1
|
Ulhe A, Raina P, Chaudhary A, Kaul-Ghanekar R. Alpha-linolenic acid-mediated epigenetic reprogramming of cervical cancer cell lines. Epigenetics 2025; 20:2451551. [PMID: 39895102 PMCID: PMC11792827 DOI: 10.1080/15592294.2025.2451551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 11/25/2024] [Accepted: 01/02/2025] [Indexed: 02/04/2025] Open
Abstract
Cervical cancer, the fourth most common cancer globally and the second most prevalent cancer among women in India, is primarily caused by Human Papilloma Virus (HPV). The association of diet with cancer etiology and prevention has been well established and nutrition has been shown to regulate cancer through modulation of epigenetic markers. Dietary fatty acids, especially omega-3, reduce the risk of cancer by preventing or reversing the progression through a variety of cellular targets, including epigenetic regulation. In this work, we have evaluated the potential of ALA (α linolenic acid), an ω-3 fatty acid, to regulate cervical cancer through epigenetic mechanisms. The effect of ALA was evaluated on the regulation of histone deacetylases1, DNA methyltransferases 1, and 3b, and global DNA methylation by ELISA. RT-PCR was utilized to assess the expression of tumor regulatory genes (hTERT, DAPK, RARβ, and CDH1) and their promoter methylation in HeLa (HPV18-positive), SiHa (HPV16-positive) and C33a (HPV-negative) cervical cancer cell lines. ALA increased DNA demethylase, HMTs, and HATs while decreasing global DNA methylation, DNMT, HDMs, and HDACs mRNA expression/activity in all cervical cancer cell lines. ALA downregulated hTERT oncogene while upregulating the mRNA expression of TSGs (Tumor Suppressor Genes) CDH1, RARβ, and DAPK in all the cell lines. ALA reduced methylation in the 5' CpG island of CDH1, RARβ, and DAPK1 promoters and reduced global DNA methylation in cervical cancer cell lines. These results suggest that ALA regulates the growth of cervical cancer cells by targeting epigenetic markers, shedding light on its potential therapeutic role in cervical cancer management.
Collapse
Affiliation(s)
- Amrita Ulhe
- Cancer Research Lab, Interactive Research School for Health Affairs (IRSHA), Bharati Vidyapeeth (Deemed to be University), Pune, India
| | - Prerna Raina
- Cancer Research Lab, Interactive Research School for Health Affairs (IRSHA), Bharati Vidyapeeth (Deemed to be University), Pune, India
- Analytical Department (ADT), Lupin Limited, Pune, India
| | - Amol Chaudhary
- Cancer Research Lab, Interactive Research School for Health Affairs (IRSHA), Bharati Vidyapeeth (Deemed to be University), Pune, India
| | - Ruchika Kaul-Ghanekar
- Cancer Research Lab, Interactive Research School for Health Affairs (IRSHA), Bharati Vidyapeeth (Deemed to be University), Pune, India
- Symbiosis Centre for Research and Innovation (SCRI); Symbiosis International Deemed University (SIU), Pune, India
- Cancer Research Lab, Symbiosis School of Biological Sciences (SSBS), Symbiosis International Deemed University (SIU), Pune, India
| |
Collapse
|
2
|
Lei Y, Lai M. Epigenetic Regulation and Therapeutic Targeting of Alternative Splicing Dysregulation in Cancer. Pharmaceuticals (Basel) 2025; 18:713. [PMID: 40430531 PMCID: PMC12115227 DOI: 10.3390/ph18050713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2025] [Revised: 05/02/2025] [Accepted: 05/07/2025] [Indexed: 05/29/2025] Open
Abstract
Alternative splicing enables a single precursor mRNA to generate multiple mRNA isoforms, leading to protein variants with different structures and functions. Abnormal alternative splicing is frequently associated with cancer development and progression. Recent studies have revealed a complex and dynamic interplay between epigenetic modifications and alternative splicing. On the one hand, dysregulated epigenetic changes can alter splicing patterns; on the other hand, splicing events can influence epigenetic landscapes. The reversibility of epigenetic modifications makes epigenetic drugs, both approved and investigational, attractive therapeutic options. This review provides a comprehensive overview of the bidirectional relationship between epigenetic regulation and alternative splicing in cancer. It also highlights emerging therapeutic approaches aimed at correcting splicing abnormalities, with a special focus on drug-based strategies. These include epigenetic inhibitors, antisense oligonucleotides (ASOs), small-molecule compounds, CRISPR-Cas9 genome editing, and the SMaRT (splice-switching molecule) technology. By integrating recent advances in research and therapeutic strategies, this review provides novel insights into the molecular mechanisms of cancer and supports the development of more precise and effective therapies targeting aberrant splicing.
Collapse
Affiliation(s)
- Yan Lei
- Department of Pharmacology, China Pharmaceutical University, Nanjing 210009, China;
| | - Maode Lai
- Department of Pharmacology, China Pharmaceutical University, Nanjing 210009, China;
- Research Unit of Intelligence Classification of Tumor Pathology and Precision Therapy, Chinese Academy of Medical Science (2019RU042), Key Laboratory of Disease Proteomics of Zhejiang Province, Department of Pathology, Zhejiang University School of Medicine, Hangzhou 310058, China
- Department of Pathology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
| |
Collapse
|
3
|
Paes T, Hofland LJ, Iyer AM, Feelders RA. Epigenetic implications in the pathogenesis of corticotroph tumors. Pituitary 2025; 28:51. [PMID: 40257628 PMCID: PMC12011945 DOI: 10.1007/s11102-025-01522-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/02/2025] [Indexed: 04/22/2025]
Abstract
Non-mutational epigenetic reprogramming is considered an important enabling characteristic of neoplasia. Corticotroph tumors and other subtypes of pituitary tumors are characterized by distinct epigenetic profiles. The DNA methylation profile is consistent with disease-specific gene expression, which highlights the importance of epigenetic changes in tumor formation and progression. Elucidating the epigenetic changes underlying tumorigenesis plays an important role in understanding the molecular pathogenesis of corticotroph tumors and may ultimately contribute to improving tumor-specific treatment. Here, we provide an overview of the epigenetic landscape of corticotroph tumors. We also review the role of epigenetics in silencing the expression of tumor suppressor genes and promoting oncogenes expression, which could potentially be involved in the pathogenesis of corticotroph tumors. We briefly discuss microRNAs and epigenetic aspects of POMC regulation. Lastly, since the epigenetic changes are reversible, we discuss drugs that target epigenetic modifiers that could potentially be used in the arsenal of Cushing's disease treatment modalities.
Collapse
Affiliation(s)
- Ticiana Paes
- Department of Internal Medicine, Division of Endocrinology, Erasmus Medical Center, Erasmus MC Cancer Institute, Dr. Molewaterplein 40, Rotterdam, GD 3015, The Netherlands
- Department of Internal Medicine, Roger Williams Medical Center, Providence, RI, USA
| | - Leo J Hofland
- Department of Internal Medicine, Division of Endocrinology, Erasmus Medical Center, Erasmus MC Cancer Institute, Dr. Molewaterplein 40, Rotterdam, GD 3015, The Netherlands
| | - Anand M Iyer
- Department of Internal Medicine, Division of Endocrinology, Erasmus Medical Center, Erasmus MC Cancer Institute, Dr. Molewaterplein 40, Rotterdam, GD 3015, The Netherlands
| | - Richard A Feelders
- Department of Internal Medicine, Division of Endocrinology, Erasmus Medical Center, Erasmus MC Cancer Institute, Dr. Molewaterplein 40, Rotterdam, GD 3015, The Netherlands.
- Division of Endocrinology, Diabetes and Metabolism, New York University Langone Medical Center, New York, NY, 10016, USA.
| |
Collapse
|
4
|
Caloian AD, Cristian M, Calin E, Pricop AR, Mociu SI, Seicaru L, Deacu S, Ciufu N, Suceveanu AI, Suceveanu AP, Mazilu L. Epigenetic Symphony in Diffuse Large B-Cell Lymphoma: Orchestrating the Tumor Microenvironment. Biomedicines 2025; 13:853. [PMID: 40299416 PMCID: PMC12024808 DOI: 10.3390/biomedicines13040853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 03/18/2025] [Accepted: 03/21/2025] [Indexed: 04/30/2025] Open
Abstract
DLBCL is a testament to the complexity of nature. It is characterized by remarkable diversity in its molecular and pathological subtypes and clinical manifestations. Despite the strides made in DLBCL treatment and the introduction of innovative drugs, around one-third of patients face a relapse or develop refractory disease. Recent findings over the past ten years have highlighted the critical interplay between the evolution of DLBCL and various epigenetic mechanisms, including chromatin remodeling, DNA methylation, histone modifications, and the regulatory roles of non-coding RNAs. These epigenetic alterations are integral to the pathways of oncogenesis, tumor progression, and the development of therapeutic resistance. In the past decade, the identification of dysregulated epigenetic mechanisms in lymphomas has paved the way for an exciting field of epigenetic therapies. Crucially, these epigenetic transformations span beyond tumor cells to include the sophisticated network within the tumor microenvironment (TME). While the exploration of epigenetic dysregulation in lymphoma cells is thriving, the mechanisms affecting the functions of immune cells in the TME invite further investigation. This review is dedicated to weaving together the narrative of epigenetic alterations impacting both lymphoma cells with a focus on their infiltrating immune companions.
Collapse
Affiliation(s)
- Andreea-Daniela Caloian
- Faculty of Medicine, “Ovidius” University of Constanta, 900470 Constanta, Romania; (E.C.); (S.D.); (N.C.); (A.-I.S.); (A.-P.S.); (L.M.)
- Department of Hemato-Oncology, “Ovidius” Clinical Hospital, 900470 Constanta, Romania;
| | - Miruna Cristian
- Faculty of Medicine, “Ovidius” University of Constanta, 900470 Constanta, Romania; (E.C.); (S.D.); (N.C.); (A.-I.S.); (A.-P.S.); (L.M.)
- Center for Research and Development of the Morphological and Genetic Studies of Malignant Pathology-CEDMOG, “Ovidius” University of Constanta, 900470 Constanta, Romania
- Department of Forensic Medicine, “Sf. Apostol Andrei” Emergency County Hospital, 900439 Constanta, Romania
| | - Elena Calin
- Faculty of Medicine, “Ovidius” University of Constanta, 900470 Constanta, Romania; (E.C.); (S.D.); (N.C.); (A.-I.S.); (A.-P.S.); (L.M.)
- Department of Hemato-Oncology, “Ovidius” Clinical Hospital, 900470 Constanta, Romania;
| | - Andreea-Raluca Pricop
- Department of Dermatology, “Sf. Apostol Andrei” Emergency County Hospital, 900591 Constanta, Romania;
| | - Stelian-Ilie Mociu
- Department of Hemato-Oncology, “Ovidius” Clinical Hospital, 900470 Constanta, Romania;
| | - Liliana Seicaru
- Department of Clinical Patology, “Sf. Apostol Andrei” Emergency County Hospital, 900591 Constanta, Romania;
| | - Sorin Deacu
- Faculty of Medicine, “Ovidius” University of Constanta, 900470 Constanta, Romania; (E.C.); (S.D.); (N.C.); (A.-I.S.); (A.-P.S.); (L.M.)
- Department of Clinical Patology, “Sf. Apostol Andrei” Emergency County Hospital, 900591 Constanta, Romania;
| | - Nicolae Ciufu
- Faculty of Medicine, “Ovidius” University of Constanta, 900470 Constanta, Romania; (E.C.); (S.D.); (N.C.); (A.-I.S.); (A.-P.S.); (L.M.)
- Department of Hemato-Oncology, “Ovidius” Clinical Hospital, 900470 Constanta, Romania;
| | - Andra-Iulia Suceveanu
- Faculty of Medicine, “Ovidius” University of Constanta, 900470 Constanta, Romania; (E.C.); (S.D.); (N.C.); (A.-I.S.); (A.-P.S.); (L.M.)
- Department of Gastroenterology, “Sf. Apostol Andrei” Emergency County Hospital, 900591 Constanta, Romania
| | - Adrian-Paul Suceveanu
- Faculty of Medicine, “Ovidius” University of Constanta, 900470 Constanta, Romania; (E.C.); (S.D.); (N.C.); (A.-I.S.); (A.-P.S.); (L.M.)
- Department of Gastroenterology, “Sf. Apostol Andrei” Emergency County Hospital, 900591 Constanta, Romania
| | - Laura Mazilu
- Faculty of Medicine, “Ovidius” University of Constanta, 900470 Constanta, Romania; (E.C.); (S.D.); (N.C.); (A.-I.S.); (A.-P.S.); (L.M.)
- Department of Hemato-Oncology, “Ovidius” Clinical Hospital, 900470 Constanta, Romania;
| |
Collapse
|
5
|
Skjølberg C, Degani L, Sileikaite-Morvaközi I, Hawkins CL. Oxidative modification of extracellular histones by hypochlorous acid modulates their ability to induce β-cell dysfunction. Free Radic Biol Med 2025; 230:209-221. [PMID: 39956473 DOI: 10.1016/j.freeradbiomed.2025.02.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 02/04/2025] [Accepted: 02/14/2025] [Indexed: 02/18/2025]
Abstract
Histones are nuclear proteins that play a key role in chromatin assembly and regulation of gene expression by their ability to bind to DNA. Histones can also be released from cells owing to necrosis or extracellular trap release from neutrophils (NETs) and other immune cells. The presence of histones in the extracellular environment has implications for many pathologies, including diabetes mellitus, owing to the cytotoxic nature of these proteins, and their ability to promote inflammation. NETs also contain myeloperoxidase, a defensive enzyme that produces hypochlorous acid (HOCl), to kill pathogens, but also readily damages host proteins. In this study, we examined the reactivity of histones with and without HOCl modification, with a pancreatic β-cell model. Exposure of β-cells to histones resulted in a loss of metabolic activity and cell death by a combination of apoptosis and necrosis. This toxicity was increased on pretreatment of the β-cells with tumour necrosis factor α and interleukin 1β. Histones upregulated endoplasmic reticulum (ER) stress genes, including the pro-apoptotic transcription factor CHOP. There was also evidence for alterations to the cellular redox environment and upregulation of antioxidant gene expression. However, downregulation of insulin-associated genes and insulin was observed. Interestingly, modification of the histones with HOCl reduced their toxicity and altered the patterns of gene expression observed, and a further decrease in the expression of insulin-associated genes was observed. These findings could be relevant to the development of Type 2 diabetes, where low-grade inflammation favours NET release, resulting in elevated histones in the circulation.
Collapse
Affiliation(s)
- Clara Skjølberg
- Department of Biomedical Sciences, University of Copenhagen, Panum, Blegdamsvej 3B, Copenhagen N, DK-2200, Denmark
| | - Laura Degani
- Department of Biomedical Sciences, University of Copenhagen, Panum, Blegdamsvej 3B, Copenhagen N, DK-2200, Denmark
| | - Inga Sileikaite-Morvaközi
- Department of Biomedical Sciences, University of Copenhagen, Panum, Blegdamsvej 3B, Copenhagen N, DK-2200, Denmark
| | - Clare L Hawkins
- Department of Biomedical Sciences, University of Copenhagen, Panum, Blegdamsvej 3B, Copenhagen N, DK-2200, Denmark.
| |
Collapse
|
6
|
Yang L, Yang T, Wen Y, Tang M, Teng Y, Zhang W, Zheng Y, Chen L, Yang Z. Design and Synthesis of Novel Deazapurine DNMT 1 Inhibitors with In Vivo Efficacy in DLBCL. J Med Chem 2025; 68:5333-5357. [PMID: 40022722 DOI: 10.1021/acs.jmedchem.4c02391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2025]
Abstract
The application of drugs to regulate abnormal epigenetic changes has become an important means of tumor treatment. In this study, we employed computer-aided design methods to develop a novel deazapurine compound targeting DNA methyltransferase 1 (DNMT1). Through screening for enzyme activity, selectivity, and cellular efficacy, we optimized three structural skeletons, ultimately yielding compound 55, exhibiting an IC50 of 2.42 μM for DNMT1. Compound 55 displayed excellent in vitro inhibitory effects on various hematological tumor and solid tumor cell lines, especially lymphoma cells, with IC50 values in the nanomolar range. In vitro studies confirmed compound 55 selectively inhibited DNMT1 and exhibited demethylation ability. In vivo mouse model validated the DNA methylation inhibition of compound 55. Compound 55 demonstrated good antitumor activity in vivo. Specifically, compound 55 combined with chidamide demonstrated a superior therapeutic effect over the first-line therapy RTX-CHOP in both the DEL and TP53 mutant DLBCL PDX tumor models.
Collapse
Affiliation(s)
- Linyu Yang
- Laboratory of Natural and Targeted Small Molecule Drugs, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu 610041, China
| | - Tao Yang
- Laboratory of Natural and Targeted Small Molecule Drugs and National Chengdu Center for Safety Evaluation of Drugs, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu 610041, China
| | - Yi Wen
- Laboratory of Natural and Targeted Small Molecule Drugs, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu 610041, China
| | - Minghai Tang
- Laboratory of Natural and Targeted Small Molecule Drugs, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu 610041, China
| | - Yaxin Teng
- Laboratory of Natural and Targeted Small Molecule Drugs, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu 610041, China
| | - Wanhua Zhang
- Laboratory of Natural and Targeted Small Molecule Drugs, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu 610041, China
| | - Yunhua Zheng
- Department of Quality Evaluation and Medical Record Management, The Affiliated Hospital of Southwest Jiaotong University & The Third People's Hospital of Chengdu, Chengdu, Sichuan 610000, China
| | - Lijuan Chen
- Laboratory of Natural and Targeted Small Molecule Drugs, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu 610041, China
| | - Zhuang Yang
- Laboratory of Natural and Targeted Small Molecule Drugs, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu 610041, China
| |
Collapse
|
7
|
Wang Z, Liu Z, Lv M, Luan Z, Li T, Hu J. Novel histone modifications and liver cancer: emerging frontiers in epigenetic regulation. Clin Epigenetics 2025; 17:30. [PMID: 39980025 PMCID: PMC11841274 DOI: 10.1186/s13148-025-01838-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 02/08/2025] [Indexed: 02/22/2025] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the leading causes of cancer-related death worldwide, and its onset and progression are closely associated with epigenetic modifications, particularly post-translational modifications of histones (HPTMs). In recent years, advances in mass spectrometry (MS) have revealed a series of novel HPTMs, including succinylation (Ksuc), citrullination (Kcit), butyrylation (Kbhb), lactylation (Kla), crotonylation (Kcr), and 2-hydroxyisobutyrylation (Khib). These modifications not only expand the histone code but also play significant roles in key carcinogenic processes such as tumor proliferation, metastasis, and metabolic reprogramming in HCC. This review provides the first comprehensive analysis of the impact of novel HPTMs on gene expression, cellular metabolism, immune evasion, and the tumor microenvironment. It specifically focuses on their roles in promoting tumor stem cell characteristics, epithelial-mesenchymal transition (EMT), and therapeutic resistance. Additionally, the review highlights the dynamic regulation of these modifications by specific enzymes, including "writers," "readers," and "erasers."
Collapse
Affiliation(s)
- Zhonghua Wang
- Department of Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, No. 324, Jingwu Road, Jinan, 250021, Shandong, People's Republic of China
| | - Ziwen Liu
- Department of Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, No. 324, Jingwu Road, Jinan, 250021, Shandong, People's Republic of China
| | - Mengxin Lv
- Department of Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, No. 324, Jingwu Road, Jinan, 250021, Shandong, People's Republic of China
| | - Zhou Luan
- Department of Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, No. 324, Jingwu Road, Jinan, 250021, Shandong, People's Republic of China
| | - Tao Li
- Department of Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, No. 324, Jingwu Road, Jinan, 250021, Shandong, People's Republic of China
| | - Jinhua Hu
- Department of Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, No. 324, Jingwu Road, Jinan, 250021, Shandong, People's Republic of China.
| |
Collapse
|
8
|
Rech GE, Lau AC, Goldfeder RL, Maurya R, Danilov AV, Wei CL. Global DNA methylomes reveal oncogenic-associated 5-hydroxylmethylated cytosine (5hmC) signatures in the cell-free DNA of cancer patients. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2025.01.09.25320283. [PMID: 39867387 PMCID: PMC11759829 DOI: 10.1101/2025.01.09.25320283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Characterization of tumor epigenetic aberrations is integral to understanding the mechanisms of tumorigenesis and provide diagnostic, prognostic, and predictive information of high clinical relevance. Among the different tumor-associated epigenetic signatures, 5 methyl-cytosine (5mC) and 5-hydroxymethylcytosine (5hmC) are the two most well-characterized DNA methylation alterations linked to cancer pathogenesis. 5hmC has a tissue-specific distribution and its abundance is subjected to changes in tumor DNA, making it a promising biomarker. Detecting tumor-related DNA methylation alterations in tissues is highly invasive, while the analysis of the cell-free DNA (cfDNA) is poised to supplement, if not replace, surgical biopsies. Despite many studies attempted to identify new epigenetic targets for liquid biopsy assays, little is known about the regulatory roles of 5hmC, its impacts on the molecular phenotypes in tumors. Most importantly, whether the oncogenic-associated 5hmC signatures found in tumor tissues can be recapitulated in patients' cfDNA. In this study, we performed the unbiased and simultaneous detection of 5mC and 5hmC whole-genome DNA modifications at base-resolution from two distinct cancer cohorts, from patients with bladder cancer or B-Cell lymphoma, their corresponding normal tissues, and cfDNAs from plasma. We analyzed tissue-specific methylation patters and searched for signatures in gene coding and regulatory regions linked to cancerous states. We then looked for methylation signatures in patients' cfDNA to determine if they were consistent with the tumor-specific patterns. We determined the functional significance of 5hmC in tissue specific transcription and uncovered hundreds of tumor-associated 5hmC signatures. These tumor-associated 5hmC changes, particularly in genes and enhancers, were functionally significant in tumorigenesis pathways and correlated with tumor specific gene expression. To investigate if cfDNA is a faithful surrogate for tumor-associated 5hmC, we devised a targeted capture strategy to examine the alterations of 5hmC in cfDNA from patients with bladder cancer and lymphoma with sufficient sensitivity and specificity and confirmed that they recapitulated the patterns we observed in tumor tissues. Our results provide analytic validation of 5hmC as a cancer-specific biomarker. The methods described here for systematic characterization of 5hmC at functional elements open new avenues to discover epigenetic markers for non-invasive diagnosis, monitoring, and stratifying cancer.
Collapse
Affiliation(s)
- Gabriel E Rech
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, 06032, USA
| | - Alyssa C Lau
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, 06032, USA
| | | | - Rahul Maurya
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, 06032, USA
| | | | - Chia-Lin Wei
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
9
|
Balamurli G, Liew AQX, Tee WW, Pervaiz S. Interplay between epigenetics, senescence and cellular redox metabolism in cancer and its therapeutic implications. Redox Biol 2024; 78:103441. [PMID: 39612910 PMCID: PMC11629570 DOI: 10.1016/j.redox.2024.103441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 11/20/2024] [Accepted: 11/22/2024] [Indexed: 12/01/2024] Open
Abstract
There is accumulating evidence indicating a close crosstalk between key molecular events regulating cell growth and proliferation, which could profoundly impact carcinogenesis and its progression. Here we focus on reviewing observations highlighting the interplay between epigenetic modifications, irreversible cell cycle arrest or senescence, and cellular redox metabolism. Epigenetic alterations, such as DNA methylation and histone modifications, dynamically influence tumour transcriptome, thereby impacting tumour phenotype, survival, growth and spread. Interestingly, the acquisition of senescent phenotype can be triggered by epigenetic changes, acting as a double-edged sword via its ability to suppress tumorigenesis or by facilitating an inflammatory milieu conducive for cancer progression. Concurrently, an aberrant redox metabolism, which is a function of the balance between reactive oxygen species (ROS) generation and intracellular anti-oxidant defences, influences signalling cascades and genomic stability in cancer cells by serving as a critical link between epigenetics and senescence. Recognizing this intricate interconnection offers a nuanced perspective for therapeutic intervention by simultaneously targeting specific epigenetic modifications, modulating senescence dynamics, and restoring redox homeostasis.
Collapse
Affiliation(s)
- Geoffrey Balamurli
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore; NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, NUS, Singapore; Chromatin Dynamics and Disease Epigenetics Lab, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A∗STAR), Singapore
| | - Angeline Qiu Xia Liew
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore; Integrative Science and Engineering Programme (ISEP), NUS Graduate School (NUSGS), NUS, Singapore
| | - Wee Wei Tee
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore; NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, NUS, Singapore; Chromatin Dynamics and Disease Epigenetics Lab, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A∗STAR), Singapore
| | - Shazib Pervaiz
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore; NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, NUS, Singapore; Integrative Science and Engineering Programme (ISEP), NUS Graduate School (NUSGS), NUS, Singapore; NUS Medicine Healthy Longevity Program, NUS, Singapore; National University Cancer Institute, National University Health System, Singapore.
| |
Collapse
|
10
|
Oliveira DVNP, Biskup E, O'Rourke CJ, Hentze JL, Andersen JB, Høgdall C, Høgdall EV. Developing a DNA Methylation Signature to Differentiate High-Grade Serous Ovarian Carcinomas from Benign Ovarian Tumors. Mol Diagn Ther 2024; 28:821-834. [PMID: 39414761 PMCID: PMC11512855 DOI: 10.1007/s40291-024-00740-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/08/2024] [Indexed: 10/18/2024]
Abstract
INTRODUCTION Epithelial ovarian cancer (EOC) represents a significant health challenge, with high-grade serous ovarian cancer (HGSOC) being the most common subtype. Early detection is hindered by nonspecific symptoms, leading to late-stage diagnoses and poor survival rates. Biomarkers are crucial for early diagnosis and personalized treatment OBJECTIVE: Our goal was to develop a robust statistical procedure to identify a set of differentially methylated probes (DMPs) that would allow differentiation between HGSOC and benign ovarian tumors. METHODOLOGY Using the Infinium EPIC Methylation array, we analyzed the methylation profiles of 48 ovarian samples diagnosed with HGSOC, borderline ovarian tumors, or benign ovarian disease. Through a multi-step statistical procedure combining univariate and multivariate logistic regression models, we aimed to identify CpG sites of interest. RESULTS AND CONCLUSIONS We discovered 21 DMPs and developed a predictive model validated in two independent cohorts. Our model, using a distance-to-centroid approach, accurately distinguished between benign and malignant disease. This model can potentially be used in other types of sample material. Moreover, the strategy of the model development and validation can also be used in other disease contexts for diagnostic purposes.
Collapse
Affiliation(s)
| | - Edyta Biskup
- Department of Pathology, Herlev Hospital, University of Copenhagen, Herlev, Denmark
| | - Colm J O'Rourke
- Biotech Research & Innovation Centre, Department of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Julie L Hentze
- Department of Pathology, Herlev Hospital, University of Copenhagen, Herlev, Denmark
| | - Jesper B Andersen
- Biotech Research & Innovation Centre, Department of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Claus Høgdall
- Department of Gynecology, Juliane Marie Centre, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Estrid V Høgdall
- Department of Pathology, Herlev Hospital, University of Copenhagen, Herlev, Denmark.
| |
Collapse
|
11
|
Desterke C, Francés R, Monge C, Marchio A, Pineau P, Mata-Garrido J. Single-Cell RNA-Seq Analysis Links DNMT3B and PFKFB4 Transcriptional Profiles with Metastatic Traits in Hepatoblastoma. Biomolecules 2024; 14:1394. [PMID: 39595571 PMCID: PMC11591731 DOI: 10.3390/biom14111394] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/29/2024] [Accepted: 10/30/2024] [Indexed: 11/28/2024] Open
Abstract
Hepatoblastoma is the most common primary liver cancer in children. Poor outcomes are primarily associated with patients who have distant metastases. Using the Mammalian Metabolic Enzyme Database, we investigated the overexpression of metabolic enzymes in hepatoblastoma tumors compared to noncancerous liver tissue in the GSE131329 transcriptome dataset. For the overexpressed enzymes, we applied ElasticNet machine learning to assess their predictive value for metastasis. A metabolic expression score was then computed from the significant enzymes and integrated into a clinical-biological logistic regression model. Forty-one overexpressed enzymes distinguished hepatoblastoma tumors from noncancerous liver tissues. Eighteen of these enzymes predicted metastasis status with an AUC of 0.90, demonstrating 85.7% sensitivity and 92.3% specificity. ElasticNet machine learning identified DNMT3B and PFKFB4 as key predictors of metastasis. Univariate analyses confirmed the significance of these enzymes, with respective p-values of 0.0058 and 0.0091. A metabolic score based on DNMT3B and PFKFB4 expression discriminated metastasis status and high-risk CHIC scores (p-value = 0.005). The metabolic score was more sensitive than the C1/C2 classifier in predicting metastasis (accuracy: 0.72 vs. 0.55). In a regression model integrating the metabolic score with epidemiological parameters (gender, age at diagnosis, histological type, and clinical PRETEXT stage), the metabolic score was confirmed as an independent adverse predictor of metastasis (p-value = 0.003, odds ratio: 2.12). This study identified the dual overexpression of PFKFB4 and DNMT3B in hepatoblastoma patients at risk of metastasis (high-risk CHIC classification). The combined tumor expression of DNMT3B and PFKFB4 was used to compute a metabolic score, which was validated as an independent predictor of metastatic status in hepatoblastoma.
Collapse
Affiliation(s)
- Christophe Desterke
- Faculté de Médecine du Kremlin Bicêtre, Université Paris-Sud, Université Paris-Saclay, 94270 Le Kremlin-Bicêtre, France;
| | - Raquel Francés
- Energy & Memory, Brain Plasticity Unit, CNRS, ESPCI Paris, PSL Research University, 75006 Paris, France;
| | - Claudia Monge
- INSERM U993, Unité Organisation Nucléaire et Oncogenèse, Institut Pasteur, Université Paris Cité, 75015 Paris, France; (C.M.); (A.M.); (P.P.)
| | - Agnès Marchio
- INSERM U993, Unité Organisation Nucléaire et Oncogenèse, Institut Pasteur, Université Paris Cité, 75015 Paris, France; (C.M.); (A.M.); (P.P.)
| | - Pascal Pineau
- INSERM U993, Unité Organisation Nucléaire et Oncogenèse, Institut Pasteur, Université Paris Cité, 75015 Paris, France; (C.M.); (A.M.); (P.P.)
| | - Jorge Mata-Garrido
- INSERM U993, Unité Organisation Nucléaire et Oncogenèse, Institut Pasteur, Université Paris Cité, 75015 Paris, France; (C.M.); (A.M.); (P.P.)
| |
Collapse
|
12
|
Wang L, Yin M, Zhang Z, Liu S, Liu Y, Geng X, Zheng G. Methylation and transcriptome analyses construct a prognostic model and reveal the suppressor role of VMO1 in lung adenocarcinoma. Cell Signal 2024; 122:111313. [PMID: 39053673 DOI: 10.1016/j.cellsig.2024.111313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/11/2024] [Accepted: 07/22/2024] [Indexed: 07/27/2024]
Abstract
BACKGROUND DNA methylation is an important epigenetic mechanism of gene regulation. The aberrant DNA methylation has been found to play an important role in the initiation and progression of tumors. RESULTS Transcriptome and DNA methylation data of lung adenocarcinoma (LUAD) patients were co-analyzed and 95 methylation-driven genes (MDGs) was found in relation to LUAD. A prognostic model based on 3 MDGs (GMNN, SPINK2 and VMO1) was constructed by Univariate and Multivariate cox regression analyses. The risk score generated from the prognostic model could be used to classify LUAD patients into high and low risk groups. Furthermore, it was found that the risk score was associated with tumor microenvironment (TME) and clinical characteristics (survival status and T stage) of patients. Interestingly, we identified and validated that the patients in the low-risk group responded better to immunotherapy treatment. Then, a nomogram model based on the risk score and clinical characteristics was established which showed significant prediction value. The down-regulation and hypermethylation levels of vitelline membrane outer layer protein 1 homolog (VMO1) were verified in paired LUAD tumor and non-tumor tissues by pyrosequencing assay and RT-qPCR. Furthermore, MTT, migration and wound healing assays were performed with lentivector-mediated ectopic over-expression and 5-Aza-dC demethylation followed by siRNA rescue experiments to investigate the role of VMO1 in LUAD cells. Our results indicated that VMO1 could inhibit proliferation and migration of A549 and NCI-H1299 cells. CONCLUSIONS In summary, our experiments constructed a prognostic model with high capacity for risk prediction in LUAD patients. VMO1 had a malignant suppressor role in LUAD cells. The correlation between risk score and TME might elucidate a potential mechanism of oncogenesis and provide an avenue for further therapeutic targets.
Collapse
Affiliation(s)
- Lishui Wang
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Jinan 250012, Shandong Province, PR China
| | - Maopeng Yin
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Jinan 250012, Shandong Province, PR China; Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong Province, PR China
| | - Zeyu Zhang
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Jinan 250012, Shandong Province, PR China; Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong Province, PR China
| | - Shichao Liu
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Jinan 250012, Shandong Province, PR China; Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong Province, PR China
| | - Yingjie Liu
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Jinan 250012, Shandong Province, PR China; Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong Province, PR China
| | - Xueyan Geng
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Jinan 250012, Shandong Province, PR China; Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong Province, PR China
| | - Guixi Zheng
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Jinan 250012, Shandong Province, PR China.
| |
Collapse
|
13
|
Rajanathadurai J, Perumal E, Sindya J. Advances in targeting cancer epigenetics using CRISPR-dCas9 technology: A comprehensive review and future prospects. Funct Integr Genomics 2024; 24:164. [PMID: 39292321 DOI: 10.1007/s10142-024-01455-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/30/2024] [Accepted: 09/11/2024] [Indexed: 09/19/2024]
Abstract
Cancer, a complex and multifaceted group of diseases, continues to challenge the boundaries of medical science and healthcare. Its relentless impact on global health, both in terms of prevalence and mortality, underscores the urgent need for a comprehensive understanding of its underlying mechanisms and innovative therapeutic approaches. In recent years, significant progress has been achieved in identifying the genetic and epigenetic mechanisms that cause cancer development and treatment resistance. Researchers are currently investigating the possibility of epigenetic editing such as CRISPR-dCas9 (Clustered Regularly Interspaced Short Palindromic Repeats/deactivated CRISPR-associated protein 9) technologies, for targeting and modifying cancer related epigenetic alterations. A revolutionary form of precision cancer treatment called CRISPR-dCas9 is derived from the bacterial CRISPR-Cas (CRISPR-associated nuclease) system. CRISPR-dCas9 can be combined with epigenetic effectors (EE) to alter malignant epigenetic characteristics associated with cancer. The purpose of this review article is to provide a thorough analysis of recent advancements in utilizing CRISPR-dCas9 technology to target and modify epigenetic changes associated with cancer. This review aims to summarize the latest research developments, evaluate the effectiveness and limitations of CRISPR-dCas9 applications in cancer therapy, identify key challenges such as delivery methods and explore future directions for improving and expanding these technologies. Here, we address the various obstacles that may arise in clinical applications while showcasing the latest advancements and potential future uses of CRISPR-Cas9 in cancer therapy.
Collapse
Affiliation(s)
- Jeevitha Rajanathadurai
- Cancer Genomics Lab, Center for Global Health Research, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 602105, India
| | - Elumalai Perumal
- Cancer Genomics Lab, Center for Global Health Research, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 602105, India.
| | - Jospin Sindya
- Cancer Genomics Lab, Center for Global Health Research, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 602105, India
| |
Collapse
|
14
|
Kwon MC, Thuring JW, Querolle O, Dai X, Verhulst T, Pande V, Marien A, Goffin D, Wenge DV, Yue H, Cutler JA, Jin C, Perner F, Hogeling SM, Shaffer PL, Jacobs F, Vinken P, Cai W, Keersmaekers V, Eyassu F, Bhogal B, Verstraeten K, El Ashkar S, Perry JA, Jayaguru P, Barreyro L, Kuchnio A, Darville N, Krosky D, Urbanietz G, Verbist B, Edwards JP, Cowley GS, Kirkpatrick R, Steele R, Ferrante L, Guttke C, Daskalakis N, Pietsch EC, Wilson DM, Attar R, Elsayed Y, Fischer ES, Schuringa JJ, Armstrong SA, Packman K, Philippar U. Preclinical efficacy of the potent, selective menin-KMT2A inhibitor JNJ-75276617 (bleximenib) in KMT2A- and NPM1-altered leukemias. Blood 2024; 144:1206-1220. [PMID: 38905635 PMCID: PMC11419783 DOI: 10.1182/blood.2023022480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 06/11/2024] [Accepted: 06/11/2024] [Indexed: 06/23/2024] Open
Abstract
ABSTRACT The interaction between menin and histone-lysine N-methyltransferase 2A (KMT2A) is a critical dependency for KMT2A- or nucleophosmin 1 (NPM1)-altered leukemias and an emerging opportunity for therapeutic development. JNJ-75276617 (bleximenib) is a novel, orally bioavailable, potent, and selective protein-protein interaction inhibitor of the binding between menin and KMT2A. In KMT2A-rearranged (KMT2A-r) and NPM1-mutant (NPM1c) acute myeloid leukemia (AML) cells, JNJ-75276617 inhibited the association of the menin-KMT2A complex with chromatin at target gene promoters, resulting in reduced expression of several menin-KMT2A target genes, including MEIS1 and FLT3. JNJ-75276617 displayed potent antiproliferative activity across several AML and acute lymphoblastic leukemia (ALL) cell lines and patient samples harboring KMT2A or NPM1 alterations in vitro. In xenograft models of AML and ALL, JNJ-75276617 reduced leukemic burden and provided a significant dose-dependent survival benefit accompanied by expression changes of menin-KMT2A target genes. JNJ-75276617 demonstrated synergistic effects with gilteritinib in vitro in AML cells harboring KMT2A-r. JNJ-75276617 further exhibited synergistic effects with venetoclax and azacitidine in AML cells bearing KMT2A-r in vitro, and significantly increased survival in mice. Interestingly, JNJ-75276617 showed potent antiproliferative activity in cell lines engineered with recently discovered mutations (MEN1M327I or MEN1T349M) that developed in patients refractory to the menin-KMT2A inhibitor revumenib. A cocrystal structure of menin in complex with JNJ-75276617 indicates a unique binding mode distinct from other menin-KMT2A inhibitors, including revumenib. JNJ-75276617 is being clinically investigated for acute leukemias harboring KMT2A or NPM1 alterations, as a monotherapy for relapsed/refractory acute leukemia (NCT04811560), or in combination with AML-directed therapies (NCT05453903).
Collapse
MESH Headings
- Nucleophosmin
- Humans
- Animals
- Mice
- Myeloid-Lymphoid Leukemia Protein/genetics
- Myeloid-Lymphoid Leukemia Protein/metabolism
- Histone-Lysine N-Methyltransferase/genetics
- Histone-Lysine N-Methyltransferase/antagonists & inhibitors
- Histone-Lysine N-Methyltransferase/metabolism
- Nuclear Proteins/genetics
- Nuclear Proteins/metabolism
- Nuclear Proteins/antagonists & inhibitors
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/pathology
- Xenograft Model Antitumor Assays
- Proto-Oncogene Proteins/genetics
- Proto-Oncogene Proteins/antagonists & inhibitors
- Proto-Oncogene Proteins/metabolism
- Cell Line, Tumor
- Cell Proliferation/drug effects
- Mice, SCID
- Precursor Cell Lymphoblastic Leukemia-Lymphoma/drug therapy
- Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics
- Precursor Cell Lymphoblastic Leukemia-Lymphoma/pathology
- Precursor Cell Lymphoblastic Leukemia-Lymphoma/metabolism
- Antineoplastic Agents/pharmacology
- Antineoplastic Agents/therapeutic use
Collapse
Affiliation(s)
| | | | - Olivier Querolle
- Discovery Product Development and Supply, Janssen R&D, Beerse, Belgium
| | - Xuedong Dai
- Discovery Product Development and Supply, Janssen R&D, Shanghai, China
| | | | - Vineet Pande
- Discovery Product Development and Supply, Janssen R&D, Beerse, Belgium
| | - Ann Marien
- Discovery Oncology, Janssen R&D, Beerse, Belgium
| | - Dries Goffin
- Discovery Oncology, Janssen R&D, Beerse, Belgium
| | - Daniela V. Wenge
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA
- Division of Hematology/Oncology, Boston Children's Hospital, and Harvard Medical School, Boston, MA
| | - Hong Yue
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA
| | - Jevon A. Cutler
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA
- Division of Hematology/Oncology, Boston Children's Hospital, and Harvard Medical School, Boston, MA
| | - Cyrus Jin
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA
| | - Florian Perner
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA
- Division of Hematology/Oncology, Boston Children's Hospital, and Harvard Medical School, Boston, MA
| | - Shanna M. Hogeling
- Department of Experimental Hematology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Paul L. Shaffer
- Discovery Product Development and Supply, Janssen R&D, Spring House, PA
| | - Frank Jacobs
- Discovery Product Development and Supply, Janssen R&D, Beerse, Belgium
| | - Petra Vinken
- Discovery Product Development and Supply, Janssen R&D, Beerse, Belgium
| | - Wei Cai
- Discovery Product Development and Supply, Janssen R&D, Shanghai, China
| | | | | | - Balpreet Bhogal
- Discovery Product Development and Supply, Janssen R&D, Spring House, PA
| | | | | | - Jennifer A. Perry
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA
- Division of Hematology/Oncology, Boston Children's Hospital, and Harvard Medical School, Boston, MA
| | | | | | - Anna Kuchnio
- Discovery Oncology, Janssen R&D, Beerse, Belgium
| | - Nicolas Darville
- Discovery Product Development and Supply, Janssen R&D, Beerse, Belgium
| | - Daniel Krosky
- Discovery Product Development and Supply, Janssen R&D, Spring House, PA
| | - Gregor Urbanietz
- Discovery Product Development and Supply, Janssen R&D, Beerse, Belgium
| | | | - James P. Edwards
- Discovery Product Development and Supply, Janssen R&D, Spring House, PA
| | - Glenn S. Cowley
- Discovery Product Development and Supply, Janssen R&D, Spring House, PA
| | | | - Ruth Steele
- Discovery Product Development and Supply, Janssen R&D, Spring House, PA
| | | | | | | | | | - David M. Wilson
- Discovery Product Development and Supply, Janssen R&D, Beerse, Belgium
| | - Ricardo Attar
- Translational Research, Janssen R&D, Spring House, PA
| | | | - Eric S. Fischer
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA
| | - Jan Jacob Schuringa
- Department of Experimental Hematology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Scott A. Armstrong
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA
- Division of Hematology/Oncology, Boston Children's Hospital, and Harvard Medical School, Boston, MA
| | | | | |
Collapse
|
15
|
Zhou H, Hu S, Yan W. Extracellular vesicles as modifiers of epigenomic profiles. Trends Genet 2024; 40:797-809. [PMID: 38845265 DOI: 10.1016/j.tig.2024.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/12/2024] [Accepted: 05/13/2024] [Indexed: 09/12/2024]
Abstract
Extracellular vesicles (EVs), emerging as novel mediators between intercellular communication, encapsulate distinct bioactive cargoes to modulate multiple biological events, such as epigenetic remodeling. In essence, EVs and epigenomic profiles are tightly linked and reciprocally regulated. Epigenetic factors, including histone and DNA modifications, noncoding RNAs, and protein post-translational modifications (PTMs) dynamically regulate EV biogenesis to contribute to EV heterogeneity. Alternatively, EVs actively modify DNA, RNA, and histone profiles in recipient cells by delivering RNA and protein cargoes for downstream epigenetic enzyme regulation. Moreover, EVs display great potential as diagnostic markers and drug-delivery vehicles for therapeutic applications. The combination of parental cell epigenomic modification with single EV characterization would be a promising strategy for EV engineering to enhance the epidrug loading efficacy and accuracy.
Collapse
Affiliation(s)
- Haifeng Zhou
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, Hubei, China
| | - Sheng Hu
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, Hubei, China
| | - Wei Yan
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, Hubei, China..
| |
Collapse
|
16
|
Li Y, Bai H, Liu W, Zhou W, Gu H, Zhao P, Zhu M, Li Y, Yan X, Zhao N, Huang X. Intergenerational epigenetic inheritance mediated by MYS-2/MOF in the pathogenesis of Alzheimer's disease. iScience 2024; 27:110588. [PMID: 39220410 PMCID: PMC11363564 DOI: 10.1016/j.isci.2024.110588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 02/08/2024] [Accepted: 07/23/2024] [Indexed: 09/04/2024] Open
Abstract
Although autosomal-dominant inheritance is believed an important cause of familial clustering Alzheimer's disease (FAD), it covers only a small proportion of FAD incidence, and so we investigated epigenetic memory as an alternative mechanism to contribute for intergenerational AD pathogenesis. Our data in vivo showed that mys-2 of Caenorhabditis elegans that encodes a putative MYST acetyltransferase responsible for H4K16 acetylation modulated AD occurrence. The phenotypic improvements in the parent generation caused by mys-2 disfunction were passed to their progeny due to epigenetic memory, which resulted in similar H4K16ac levels among the candidate target genes of MYS-2 and similar gene expression patterns of the AD-related pathways. Furthermore, the ROS/CDK-5/ATM pathway functioned as an upstream activator of MYS-2. Our study indicated that MYS-2/MOF could be inherited intergenerationally via epigenetic mechanisms in C. elegans and mammalian cell of AD model, providing a new insight into our understanding of the etiology and inheritance of FAD.
Collapse
Affiliation(s)
- Yuhong Li
- School of Medicine, State Key Lab for Conservation and Utilization of Bio-Resources, Yunnan University, Kunming 650091, China
- College of Biological Resources and Food Engineering, Qujing Normal University, Qujing 655000, China
| | - Hua Bai
- School of Medicine, State Key Lab for Conservation and Utilization of Bio-Resources, Yunnan University, Kunming 650091, China
- School of Public Health, Kunming Medical University, Kunming 650500, China
| | - Wenwen Liu
- School of Medicine, State Key Lab for Conservation and Utilization of Bio-Resources, Yunnan University, Kunming 650091, China
| | - Wenhui Zhou
- School of Medicine, State Key Lab for Conservation and Utilization of Bio-Resources, Yunnan University, Kunming 650091, China
| | - Huan Gu
- School of Medicine, State Key Lab for Conservation and Utilization of Bio-Resources, Yunnan University, Kunming 650091, China
| | - Peiji Zhao
- School of Medicine, State Key Lab for Conservation and Utilization of Bio-Resources, Yunnan University, Kunming 650091, China
| | - Man Zhu
- School of Medicine, State Key Lab for Conservation and Utilization of Bio-Resources, Yunnan University, Kunming 650091, China
- College of Biological Resources and Food Engineering, Qujing Normal University, Qujing 655000, China
| | - Yixin Li
- School of Medicine, State Key Lab for Conservation and Utilization of Bio-Resources, Yunnan University, Kunming 650091, China
| | - Xinyi Yan
- School of Medicine, State Key Lab for Conservation and Utilization of Bio-Resources, Yunnan University, Kunming 650091, China
| | - Ninghui Zhao
- Neurosurgery of the Second Hospital Affiliated with Kunming Medical University, Kunming 650101, China
| | - Xiaowei Huang
- School of Medicine, State Key Lab for Conservation and Utilization of Bio-Resources, Yunnan University, Kunming 650091, China
| |
Collapse
|
17
|
Khalifa A, Guijarro A, Nencioni A. Advances in Diet and Physical Activity in Breast Cancer Prevention and Treatment. Nutrients 2024; 16:2262. [PMID: 39064705 PMCID: PMC11279876 DOI: 10.3390/nu16142262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/07/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
There is currently a growing interest in diets and physical activity patterns that may be beneficial in preventing and treating breast cancer (BC). Mounting evidence indicates that indeed, the so-called Mediterranean diet (MedDiet) and regular physical activity likely both help reduce the risk of developing BC. For those who have already received a BC diagnosis, these interventions may decrease the risk of tumor recurrence after treatment and improve quality of life. Studies also show the potential of other dietary interventions, including fasting or modified fasting, calorie restriction, ketogenic diets, and vegan or plant-based diets, to enhance the efficacy of BC therapies. In this review article, we discuss the biological rationale for utilizing these dietary interventions and physical activity in BC prevention and treatment. We highlight published and ongoing clinical studies that have applied these lifestyle interventions to BC patients. This review offers valuable insights into the potential application of these dietary interventions and physical activity as complimentary therapies in BC management.
Collapse
Affiliation(s)
- Amr Khalifa
- Department of Internal Medicine and Medical Specialties, University of Genoa, Viale Benedetto XV 6, 16132 Genoa, Italy;
| | - Ana Guijarro
- Department of Internal Medicine and Medical Specialties, University of Genoa, Viale Benedetto XV 6, 16132 Genoa, Italy;
| | - Alessio Nencioni
- Department of Internal Medicine and Medical Specialties, University of Genoa, Viale Benedetto XV 6, 16132 Genoa, Italy;
- IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132 Genoa, Italy
| |
Collapse
|
18
|
Chen L, Gu R, Li Y, Liu H, Han W, Yan Y, Chen Y, Zhang Y, Jiang Y. Epigenetic target identification strategy based on multi-feature learning. J Biomol Struct Dyn 2024; 42:5946-5962. [PMID: 37827992 DOI: 10.1080/07391102.2023.2259511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 06/20/2023] [Indexed: 10/14/2023]
Abstract
The identification of potential epigenetic targets for a known bioactive compound is essential and promising as more and more epigenetic drugs are used in cancer clinical treatment and the availability of chemogenomic data related to epigenetics increases. In this study, we introduce a novel epigenetic target identification strategy (ETI-Strategy) that integrates a multi-task graph convolutional neural network prior model and a protein-ligand interaction classification discriminating model using large-scale bioactivity data for a panel of 55 epigenetic targets. Our approach utilizes machine learning techniques to achieve an AUC value of 0.934 for the prior model and 0.830 for the discriminating model, outperforming inverse docking in predicting protein-ligand interactions. When comparing with other open-source target identification tools, it was found that only our tool was able to accurately predict all the targets corresponding to each compound. This further demonstrates the ability of our strategy to take full advantage of molecular-level information as well as protein-level information in molecular activity prediction. Our work highlights the contribution of machine learning in the identification of potential epigenetic targets and offers a novel approach for epigenetic drug discovery and development.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Lingfeng Chen
- Laboratory of Molecular Design and Drug Discovery, School of Science, China Pharmaceutical University, Nanjing, China
| | - Rui Gu
- Laboratory of Molecular Design and Drug Discovery, School of Science, China Pharmaceutical University, Nanjing, China
| | - Yuanyuan Li
- Laboratory of Molecular Design and Drug Discovery, School of Science, China Pharmaceutical University, Nanjing, China
| | - Haichun Liu
- Laboratory of Molecular Design and Drug Discovery, School of Science, China Pharmaceutical University, Nanjing, China
| | - Weijie Han
- Laboratory of Molecular Design and Drug Discovery, School of Science, China Pharmaceutical University, Nanjing, China
| | - Yingchao Yan
- Laboratory of Molecular Design and Drug Discovery, School of Science, China Pharmaceutical University, Nanjing, China
| | - Yadong Chen
- Laboratory of Molecular Design and Drug Discovery, School of Science, China Pharmaceutical University, Nanjing, China
| | - Yanmin Zhang
- Laboratory of Molecular Design and Drug Discovery, School of Science, China Pharmaceutical University, Nanjing, China
| | - Yulei Jiang
- Laboratory of Molecular Design and Drug Discovery, School of Science, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
19
|
Hsieh MH, Wei Y, Li L, Nguyen LH, Lin YH, Yong JM, Sun X, Wang X, Luo X, Knutson SK, Bracken C, Daley GQ, Powers JT, Zhu H. Liver cancer initiation requires translational activation by an oncofetal regulon involving LIN28 proteins. J Clin Invest 2024; 134:e165734. [PMID: 38875287 PMCID: PMC11290964 DOI: 10.1172/jci165734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 06/11/2024] [Indexed: 06/16/2024] Open
Abstract
It is unknown which posttranscriptional regulatory mechanisms are required for oncogenic competence. Here, we show that the LIN28 family of RNA-binding proteins (RBPs), which facilitate posttranscriptional RNA metabolism within ribonucleoprotein networks, is essential for the initiation of diverse oncotypes of hepatocellular carcinoma (HCC). In HCC models driven by NRASG12V/Tp53, CTNNB1/YAP/Tp53, or AKT/Tp53, mice without Lin28a and Lin28b were markedly impaired in cancer initiation. We biochemically defined an oncofetal regulon of 15 factors connected to LIN28 through direct mRNA and protein interactions. Interestingly, all were RBPs and only 1 of 15 was a Let-7 target. Polysome profiling and reporter assays showed that LIN28B directly increased the translation of 8 of these 15 RBPs. As expected, overexpression of LIN28B and IGFBP1-3 was able to genetically rescue cancer initiation. Using this platform to probe components downstream of LIN28, we found that 8 target RBPs were able to restore NRASG12V/Tp53 cancer formation in Lin28a/Lin28b-deficient mice. Furthermore, these LIN28B targets promote cancer initiation through an increase in protein synthesis. LIN28B, central to an RNP regulon that increases translation of RBPs, is important for tumor initiation in the liver.
Collapse
Affiliation(s)
- Meng-Hsiung Hsieh
- Children’s Research Institute, Departments of Pediatrics and Internal Medicine, Center for Regenerative Science and Medicine, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Yonglong Wei
- Children’s Research Institute, Departments of Pediatrics and Internal Medicine, Center for Regenerative Science and Medicine, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, Yunnan, China
| | - Lin Li
- Children’s Research Institute, Departments of Pediatrics and Internal Medicine, Center for Regenerative Science and Medicine, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Liem H. Nguyen
- Children’s Research Institute, Departments of Pediatrics and Internal Medicine, Center for Regenerative Science and Medicine, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Yu-Hsuan Lin
- Children’s Research Institute, Departments of Pediatrics and Internal Medicine, Center for Regenerative Science and Medicine, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Jung M. Yong
- Children’s Research Institute, Departments of Pediatrics and Internal Medicine, Center for Regenerative Science and Medicine, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Xuxu Sun
- Children’s Research Institute, Departments of Pediatrics and Internal Medicine, Center for Regenerative Science and Medicine, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Xun Wang
- Children’s Research Institute, Departments of Pediatrics and Internal Medicine, Center for Regenerative Science and Medicine, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Xin Luo
- Children’s Research Institute, Departments of Pediatrics and Internal Medicine, Center for Regenerative Science and Medicine, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | | | | | - George Q. Daley
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, USA
| | - John T. Powers
- Department of Pediatrics, Dell Medical School, The University of Texas at Austin, Austin, Texas, USA
| | - Hao Zhu
- Children’s Research Institute, Departments of Pediatrics and Internal Medicine, Center for Regenerative Science and Medicine, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
20
|
Zhou H, Gui J, Zhu L, Mi Y. The Role and Mechanism of the Histone Methyltransferase G9a in Tumors: Update. Onco Targets Ther 2024; 17:449-462. [PMID: 38832355 PMCID: PMC11146345 DOI: 10.2147/ott.s451108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 04/30/2024] [Indexed: 06/05/2024] Open
Abstract
Methylation-mediated gene silencing is closely related to the occurrence and development of human tumors. The euchromatic histone lysine methyltransferase 2 (EHMT2, also known as G9a) is highly expressed in many tumors and is generally considered to be an oncogene, which is associated with the poor outcome of many tumors. Combined immunotherapy and immune checkpoint blockade therapy also have good efficacy and certain safety. However, there are still many difficulties in the drugs targeting G9a, and the combined effect and safety of G9a with many drugs is still under study. This article aims to summarize the role and mechanism of G9a and its inhibitors in tumors in the past two years, and to understand the application prospect of G9a from the perspective of diagnosis and treatment.
Collapse
Affiliation(s)
- Hangsheng Zhou
- Wuxi Medical College, Jiangnan University, Wuxi, Jiangsu Province, 214122, People’s Republic of China
- Department of Urology, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu Province, 214122, People’s Republic of China
| | - Jiandong Gui
- Wuxi Medical College, Jiangnan University, Wuxi, Jiangsu Province, 214122, People’s Republic of China
- Department of Urology, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu Province, 214122, People’s Republic of China
| | - Lijie Zhu
- Department of Urology, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu Province, 214122, People’s Republic of China
| | - Yuanyuan Mi
- Department of Urology, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu Province, 214122, People’s Republic of China
| |
Collapse
|
21
|
Wang Y, Liu S, Wang Y, Li B, Liang J, Chen Y, Tang B, Yu S, Wang H. KDM5B promotes SMAD4 loss-driven drug resistance through activating DLG1/YAP to induce lipid accumulation in pancreatic ductal adenocarcinoma. Cell Death Discov 2024; 10:252. [PMID: 38789418 PMCID: PMC11126577 DOI: 10.1038/s41420-024-02020-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 04/30/2024] [Accepted: 05/09/2024] [Indexed: 05/26/2024] Open
Abstract
Inactivated suppressor of mothers against decapentaplegic homolog (SMAD) 4 significantly affects cancer development in pancreatic ductal adenocarcinoma (PDAC). However, the contribution of smad4 loss to drug resistance in PDAC is largely undetermined. In the present study, we reported that the loss of SMAD4 endows PDAC cells the ability to drug resistance through upregulating histone lysine demethylase, Lysine-Specific Demethylase 5B (KDM5B, also known as JARID1B or PLU1). Upregulated KDM5B was found in PDAC, associated with poor prognosis and recurrence of PDAC patients. Upregulated KDM5B promotes PDAC tumor malignancy, i.e. cancer cells stemness and drug resistance in vitro and in vivo, while KDM5B knockout exerts opposite effects. Mechanistically, loss of Smad4-mediated upregulation of KDM5B promotes drug resistance through inhibiting the discs-large homolog 1 (DLG1), thereby facilitating nuclear translocation of YAP to induce de novo lipogenesis. Moreover, m6A demethylase FTO is involved in the upregulation of KDM5B by maintaining KDM5B mRNA stability. Collectively, the present study suggested FTO-mediated KDM5B stabilization in the context of loss of Smad4 activate DLG1/YAP1 pathway to promote tumorigenesis by reprogramming lipid accumulation in PDAC. Our study confirmed that the KDM5B-DLG1-YAP1 pathway axis plays a crucial role in the genesis and progression of PDAC, and KDM5B was expected to become a target for the treatment of PDAC. The schematic diagram of KDM5B-DLG1-YAP pathway axis in regulating drug resistance of PDAC to gemcitabine (GEM). In the context of SMAD4 loss PDAC cells, FTO-mediated stabilization and upregulation of KDM5B promotes drug resistance through directly targeting DLG1 to promote YAP1 translocation to nucleus to induce de novo lipogenesis (DNL).
Collapse
Affiliation(s)
- Yumin Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, P. R. China
- Pharmaceutical College Guangxi Medical University, Nanning, 530021, Guangxi, P. R. China
| | - Shiqian Liu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, P. R. China
| | - Yan Wang
- Hunan Provincial Key Laboratory of Hepatobiliary Disease Research & Division of Hepato-Biliary-Pancreatic Surgery, Department of Surgery, The Second Xiangya Hospital of Central South University, Changsha, 410011, P. R. China
| | - Baibei Li
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, P. R. China
| | - Jiaming Liang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, P. R. China
| | - Yu Chen
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, P. R. China
| | - Bo Tang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, P. R. China.
| | - Shuiping Yu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, P. R. China.
| | - Hongquan Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, P. R. China.
- Pharmaceutical College Guangxi Medical University, Nanning, 530021, Guangxi, P. R. China.
| |
Collapse
|
22
|
Curcio A, Rocca R, Alcaro S, Artese A. The Histone Deacetylase Family: Structural Features and Application of Combined Computational Methods. Pharmaceuticals (Basel) 2024; 17:620. [PMID: 38794190 PMCID: PMC11124352 DOI: 10.3390/ph17050620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/03/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024] Open
Abstract
Histone deacetylases (HDACs) are crucial in gene transcription, removing acetyl groups from histones. They also influence the deacetylation of non-histone proteins, contributing to the regulation of various biological processes. Thus, HDACs play pivotal roles in various diseases, including cancer, neurodegenerative disorders, and inflammatory conditions, highlighting their potential as therapeutic targets. This paper reviews the structure and function of the four classes of human HDACs. While four HDAC inhibitors are currently available for treating hematological malignancies, numerous others are undergoing clinical trials. However, their non-selective toxicity necessitates ongoing research into safer and more efficient class-selective or isoform-selective inhibitors. Computational techniques have greatly facilitated the discovery of HDAC inhibitors that achieve the desired potency and selectivity. These techniques encompass ligand-based strategies such as scaffold hopping, pharmacophore modeling, three-dimensional quantitative structure–activity relationships (3D-QSAR), and structure-based virtual screening (molecular docking). Additionally, advancements in molecular dynamics simulations, along with Poisson–Boltzmann/molecular mechanics generalized Born surface area (PB/MM-GBSA) methods, have enhanced the accuracy of predicting ligand binding affinity. In this review, we delve into the ways in which these methods have contributed to designing and identifying HDAC inhibitors.
Collapse
Affiliation(s)
- Antonio Curcio
- Dipartimento di Scienze della Salute, Campus “S. Venuta”, Università degli Studi “Magna Græcia” di Catanzaro, Viale Europa, 88100 Catanzaro, Italy; (A.C.); (S.A.); (A.A.)
| | - Roberta Rocca
- Dipartimento di Scienze della Salute, Campus “S. Venuta”, Università degli Studi “Magna Græcia” di Catanzaro, Viale Europa, 88100 Catanzaro, Italy; (A.C.); (S.A.); (A.A.)
- Net4Science S.r.l., Università degli Studi “Magna Græcia” di Catanzaro, Viale Europa, 88100 Catanzaro, Italy
| | - Stefano Alcaro
- Dipartimento di Scienze della Salute, Campus “S. Venuta”, Università degli Studi “Magna Græcia” di Catanzaro, Viale Europa, 88100 Catanzaro, Italy; (A.C.); (S.A.); (A.A.)
- Net4Science S.r.l., Università degli Studi “Magna Græcia” di Catanzaro, Viale Europa, 88100 Catanzaro, Italy
| | - Anna Artese
- Dipartimento di Scienze della Salute, Campus “S. Venuta”, Università degli Studi “Magna Græcia” di Catanzaro, Viale Europa, 88100 Catanzaro, Italy; (A.C.); (S.A.); (A.A.)
- Net4Science S.r.l., Università degli Studi “Magna Græcia” di Catanzaro, Viale Europa, 88100 Catanzaro, Italy
| |
Collapse
|
23
|
Zhou H, Ren S, Yang Y, Qin Y, Guo T, Zhou Y, Zhang Y, Ma L. Transgenerational toxicity induced by maternal AFB 1 exposure in Caenorhabditis elegans associated with underlying epigenetic regulations. Food Chem Toxicol 2024; 187:114599. [PMID: 38490352 DOI: 10.1016/j.fct.2024.114599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 03/08/2024] [Accepted: 03/12/2024] [Indexed: 03/17/2024]
Abstract
Aflatoxin B1 (AFB1), usually seriously contaminates in grain and oil foods or feed, displayed significant acute and chronic toxic effects in human and animal populations. However, little is known about the transgenerational toxic effects induced by a maternal AFB1 intake at a lower dose on offspring. In our study, only parental wild-type Caenorhabditis elegans was exposed to AFB1 (0-8 μg/ml) and the following three filial generations were grown on AFB1-free NGM. Results showed that the toxic effects of AFB1 on the growth (body length) and reproduction (brood size, generation time and morphology of gonad arm) can be transmitted through generations. Moreover, the levels of MMP and ATP were irreversibly inhibited in the filial generations. By using RNomics and molecular biology techniques, we found that steroid biosynthesis, phagosome, valine/leucine/isoleucine biosynthesis and oxidative phosphorylation (p < 0.05) were the core signaling pathways to exert the transgenerational toxic effects on nematodes. Also, notably increased histone methylation level at H3K36me3 was observed in the first generation. Taken together, our study demonstrated that AFB1 has notable transgenerational toxic effects, which were resulted from the complex regulatory network of various miRNAs, mRNAs and epigenetic modification in C. elegans.
Collapse
Affiliation(s)
- Hongyuan Zhou
- College of Food Science, Southwest University, Chongqing, 400715, China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing, 400715, China; Key Laboratory of Quality and Safety Control of Citrus Fruits, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing, 400712, China.
| | - Sirui Ren
- College of Food Science, Southwest University, Chongqing, 400715, China
| | - Yulian Yang
- College of Food Science, Southwest University, Chongqing, 400715, China
| | - Yuxian Qin
- College of Food Science, Southwest University, Chongqing, 400715, China
| | - Ting Guo
- College of Food Science, Southwest University, Chongqing, 400715, China
| | - Ying Zhou
- College of Food Science, Southwest University, Chongqing, 400715, China
| | - Yuhao Zhang
- College of Food Science, Southwest University, Chongqing, 400715, China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing, 400715, China; Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, Chongqing, 400715, China
| | - Liang Ma
- College of Food Science, Southwest University, Chongqing, 400715, China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing, 400715, China; Key Laboratory of Quality and Safety Control of Citrus Fruits, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing, 400712, China; Key Laboratory of Condiment Supervision Technology for State Market Regulation, Chongqing, 401121, China.
| |
Collapse
|
24
|
Fu H, Zhang M, Liu X, Yang Y, Xing Y. Abnormal methylation mediated upregulation of LINC00857 boosts malignant progression of lung adenocarcinoma by modulating the miR-486-5p/NEK2 axis. THE CLINICAL RESPIRATORY JOURNAL 2024; 18:e13765. [PMID: 38721812 PMCID: PMC11079885 DOI: 10.1111/crj.13765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 11/29/2023] [Accepted: 03/12/2024] [Indexed: 05/12/2024]
Abstract
LINC00857 is frequently dysregulated in varying cancers, which in turn exerts carcinogenic effects; however, its DNA methylation status in promoter region and molecular mechanisms underlying the progression of lung adenocarcinoma (LUAD) remain rarely understood. Through bioinformatics analysis, we examined the expression state and methylation site of LINC00857 in LUAD and further investigated the properties of LINC00857 as a competitive endogenous RNA in the cancer progression. The current study revealed that the overexpression of LINC00857 in LUAD tissue and cells was mainly caused by the hypomethylation of the promoter region. LINC00857 knockdown prominently reduced cell proliferation, impeded cell migration and invasion, and restrained lymph node metastasis, with enhancing radiosensitivity. The effects of LINC00857 on tumor growth were also investigated in nude mice models. Subsequently, the downstream factors, miR-486-5p and NEK2, were screened, and the putative regulatory axis was examined. Overall, the regulatory effect of methylation-mediated LINC00857 overexpression on miR-486-5p/NEK2 axis may be a new mechanism for LUAD progression.
Collapse
Affiliation(s)
- Haoyu Fu
- Department of Radiation OncologyTangshan People's HospitalTangshanChina
| | - Mingming Zhang
- Department of Thoracic SurgeryTangshan People's HospitalTangshanChina
| | - Xiaohui Liu
- Department of Thoracic SurgeryTangshan People's HospitalTangshanChina
| | - Yiming Yang
- Department of Breast SurgeryTangshan People's HospitalTangshanChina
| | - Ying Xing
- Department of Radiation OncologyTangshan People's HospitalTangshanChina
| |
Collapse
|
25
|
Zohourian N, Brown JAL. Current trends in clinical trials and the development of small molecule epigenetic inhibitors as cancer therapeutics. Epigenomics 2024; 16:671-680. [PMID: 38639711 PMCID: PMC11233149 DOI: 10.2217/epi-2023-0443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 03/20/2024] [Indexed: 04/20/2024] Open
Abstract
Epigenetic mechanisms control and regulate normal chromatin structure and gene expression patterns, with epigenetic dysregulation observed in many different cancer types. Importantly, epigenetic modifications are reversible, offering the potential to silence oncogenes and reactivate tumor suppressors. Small molecule drugs manipulating these epigenetic mechanisms are at the leading edge of new therapeutic options for cancer treatment. The clinical use of histone deacetyltransferases inhibitors (HDACi) demonstrates the effectiveness of targeting epigenetic mechanisms for cancer treatment. Notably, the development of new classes of inhibitors, including lysine acetyltransferase inhibitors (KATi), are the future of epigenetic-based therapeutics. We outline the progress of current classes of small molecule epigenetic drugs for use against cancer (preclinical and clinical) and highlight the potential market growth in epigenetic-based therapeutics.
Collapse
Affiliation(s)
- Nazanin Zohourian
- Department of Biological Science, University of Limerick, Limerick, V94 T9PX, Ireland
| | - James AL Brown
- Department of Biological Science, University of Limerick, Limerick, V94 T9PX, Ireland
- Limerick Digital Cancer Research Centre (LDCRC), University of Limerick, Limerick, Ireland
- Health Research Institute (HRI), University of Limerick, Limerick, Ireland
- Bernal Institute, University of Limerick, Limerick, Ireland
| |
Collapse
|
26
|
Zhu L, Zhou Q. Aberrant epigenetic regulation of FZD3 by TET2 is involved in ovarian cancer cell resistance to cisplatin. J Chemother 2024; 36:143-155. [PMID: 37300277 DOI: 10.1080/1120009x.2023.2219920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 05/16/2023] [Accepted: 05/24/2023] [Indexed: 06/12/2023]
Abstract
A major challenge in platinum-based cancer therapy, including cisplatin (DDP), is the clinical management of chemo-resistant tumours, which have unknown pathogenesis at the level of epigenetic mechanism. To identify potential resistance mechanisms, we integrated ovarian cancers (OC)-related GEO database retrieval and prognostic analyses. The results of bioinformatics prediction showed that frizzled class receptor 3 (FZD3) was a DDP-associated gene and closely related to the prognosis of OC. DDP resistance in OC inhibited FZD3 expression. FZD3 reduced DDP resistance in OC cells, increased the inhibitory effect of DDP on the growth and aggressiveness of DDP-resistant cells, and promoted apoptosis and DNA damage. TET2 was reduced in OC. TET2 promoted the transcription of FZD3 through DNA hydroxymethylation. TET2 sensitized the drug-resistant cells to DDP in vitro and in vivo, and the ameliorating effect of TET2 on drug resistance was significantly reversed after the inhibition of FZD3. Our findings reveal a previously unknown epigenetic axis TET2/FZD3 suppression as a potential resistance mechanism to DDP in OC.
Collapse
Affiliation(s)
- Li Zhu
- Department of Obstetrics and Gynecology, Gezhouba Central Hospital of Sinopharm, China Three Gorges University, Yichang, Hubei, P.R. China
| | - Qian Zhou
- Department of Obstetrics and Gynecology, The Third Clinical Medical College of China, Three Gorges University, Gezhouba Central Hospital of Sinopharm, Yichang, Hubei, P.R. China
| |
Collapse
|
27
|
Nishio H, Kawakatsu T, Yamaguchi N. Beyond heat waves: Unlocking epigenetic heat stress memory in Arabidopsis. PLANT PHYSIOLOGY 2024; 194:1934-1951. [PMID: 37878744 DOI: 10.1093/plphys/kiad558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/25/2023] [Accepted: 10/05/2023] [Indexed: 10/27/2023]
Abstract
Plants remember their exposure to environmental changes and respond more effectively the next time they encounter a similar change by flexibly altering gene expression. Epigenetic mechanisms play a crucial role in establishing such memory of environmental changes and fine-tuning gene expression. With the recent advancements in biochemistry and sequencing technologies, it has become possible to characterize the dynamics of epigenetic changes on scales ranging from short term (minutes) to long term (generations). Here, our main focus is on describing the current understanding of the temporal regulation of histone modifications and chromatin changes during exposure to short-term recurring high temperatures and reevaluating them in the context of natural environments. Investigations of the dynamics of histone modifications and chromatin structural changes in Arabidopsis after repeated exposure to heat at short intervals have revealed the detailed molecular mechanisms of short-term heat stress memory, which include histone modification enzymes, chromatin remodelers, and key transcription factors. In addition, we summarize the spatial regulation of heat responses. Based on the natural temperature patterns during summer, we discuss how plants cope with recurring heat stress occurring at various time intervals by utilizing 2 distinct types of heat stress memory mechanisms. We also explore future research directions to provide a more precise understanding of the epigenetic regulation of heat stress memory.
Collapse
Affiliation(s)
- Haruki Nishio
- Data Science and AI Innovation Research Promotion Center, Shiga University, Shiga 522-8522, Japan
- Center for Ecological Research, Kyoto University, Shiga 520-2113, Japan
| | - Taiji Kawakatsu
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, Ibaraki 305-8602, Japan
| | - Nobutoshi Yamaguchi
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5, Takayama, Ikoma, Nara 630-0192, Japan
| |
Collapse
|
28
|
Peng Q, Weerapana E. Profiling nuclear cysteine ligandability and effects on nuclear localization using proximity labeling-coupled chemoproteomics. Cell Chem Biol 2024; 31:550-564.e9. [PMID: 38086369 PMCID: PMC10960692 DOI: 10.1016/j.chembiol.2023.11.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/11/2023] [Accepted: 11/17/2023] [Indexed: 03/24/2024]
Abstract
The nucleus controls cell growth and division through coordinated interactions between nuclear proteins and chromatin. Mutations that impair nuclear protein association with chromatin are implicated in numerous diseases. Covalent ligands are a promising strategy to pharmacologically target nuclear proteins, such as transcription factors, which lack ordered small-molecule binding pockets. To identify nuclear cysteines that are susceptible to covalent liganding, we couple proximity labeling (PL), using a histone H3.3-TurboID (His-TID) construct, with chemoproteomics. Using covalent scout fragments, KB02 and KB05, we identified ligandable cysteines on proteins involved in spindle assembly, DNA repair, and transcriptional regulation, such as Cys101 of histone acetyltransferase 1 (HAT1). Furthermore, we show that covalent fragments can affect the abundance, localization, and chromatin association of nuclear proteins. Notably, the Parkinson disease protein 7 (PARK7) showed increased nuclear localization and chromatin association upon KB02 modification at Cys106. Together, this platform provides insights into targeting nuclear cysteines with covalent ligands.
Collapse
Affiliation(s)
- Qianni Peng
- Department of Chemistry, Boston College, Chestnut Hill, MA 02467, USA
| | | |
Collapse
|
29
|
Huang J, Jin S, Guo R, Wu W, Yang C, Qin Y, Chen Q, He X, Qu J, Yang Z. Histone lysine demethylase KDM5B facilitates proliferation and suppresses apoptosis in human acute myeloid leukemia cells through the miR-140-3p/BCL2 axis. RNA (NEW YORK, N.Y.) 2024; 30:435-447. [PMID: 38296629 PMCID: PMC10946434 DOI: 10.1261/rna.079865.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 01/21/2024] [Indexed: 02/02/2024]
Abstract
The histone lysine demethylase KDM5B is frequently up-regulated in various human cancer cells. However, its expression and functional role in human acute myeloid leukemia (AML) cells remain unclear. Here, we found that the expression level of KDM5B is high in primary human AML cells. We have demonstrated that knocking down KDM5B leads to apoptosis and impairs proliferation in primary human AML and some human AML cell lines. We further identified miR-140-3p as a downstream target gene of KDM5B. KDM5B expression was inversely correlated with the miR-140-3p level in primary human AML cells. Molecular studies showed that silencing KDM5B enhanced H3K4 trimethylation (H3K4me3) at the promoter of miR-140-3p, leading to high expression of miR-140-3p, which in turn inhibited B-cell CLL/lymphoma 2 (BCL2) expression. Finally, we demonstrate that the defective proliferation induced by KDM5B knockdown (KD) can be rescued with the miR-140-3p inhibitor or enhanced by combining KDM5B KD with a BCL2 inhibitor. Altogether, our data support the conclusion that KDM5B promotes tumorigenesis in human AML cells through the miR-140-3p/BCL2 axis. Targeting the KDM5B/miR-140-3p/BCL2 pathway may hold therapeutic promise for treating human AML.
Collapse
Affiliation(s)
- Jiaojuan Huang
- School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Shuiling Jin
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Rongqun Guo
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Wei Wu
- Department of Clinical Laboratory, Institute of Translational Medicine, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Chengxuan Yang
- Department of Galactophore, Xinxiang First People's Hospital, Xinxiang 453000, China
| | - Yali Qin
- School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Qingchuan Chen
- School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Ximiao He
- School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jing Qu
- School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zhenhua Yang
- School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
30
|
Zhang X, Wang H, Zhang Y, Wang X. Advances in epigenetic alterations of chronic lymphocytic leukemia: from pathogenesis to treatment. Clin Exp Med 2024; 24:54. [PMID: 38492089 PMCID: PMC10944427 DOI: 10.1007/s10238-023-01268-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 12/01/2023] [Indexed: 03/18/2024]
Abstract
Chronic lymphocytic leukemia (CLL) is a heterogeneous disease with alterations in genetic expression and epigenetic modifications. In recent years, the new insight into epigenetics in the pathogenesis of CLL has been developed considerably, including DNA methylation, histone modification, RNA methylation, non-coding RNAs as well as chromatin remodeling. Epigenetic modification regulates various processes such as stem cell biology, cell growth, and tumorigenesis without altering gene sequence. Growing evidence indicates that the disturbance of gene expression profiles which were regulated by epigenetic modifications exerts vital roles in the development and progress in CLL, which provides novel perspectives to explore the etiology of CLL. In addition, the integration with epigenetic therapeutic targets and the in-depth understanding of epigenetic therapy contribute to develop new therapeutic strategies for CLL. Herein, the present review discusses the advances of epigenetic alterations in the pathogenesis, diagnosis, and prognostic assessment of CLL patients and also highlights existing and emerging agents targeting epigenetic regulators.
Collapse
Affiliation(s)
- Xin Zhang
- Department of Hematology, Shandong Provincial Hospital, Shandong University, Jinan, 250021, Shandong, China
| | - Hua Wang
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Ya Zhang
- Department of Hematology, Shandong Provincial Hospital, Shandong University, Jinan, 250021, Shandong, China.
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China.
- Taishan Scholars Program of Shandong Province, Jinan, 250021, Shandong, China.
| | - Xin Wang
- Department of Hematology, Shandong Provincial Hospital, Shandong University, Jinan, 250021, Shandong, China.
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China.
- Taishan Scholars Program of Shandong Province, Jinan, 250021, Shandong, China.
- Branch of National Clinical Research Center for Hematologic Diseases, Jinan, 250021, Shandong, China.
- National Clinical Research Center for Hematologic Diseases, the First Affiliated Hospital of Soochow University, Suzhou, 251006, China.
| |
Collapse
|
31
|
Banerjee R, Ajithkumar P, Keestra N, Smith J, Gimenez G, Rodger EJ, Eccles MR, Antony J, Weeks RJ, Chatterjee A. Targeted DNA Methylation Editing Using an All-in-One System Establishes Paradoxical Activation of EBF3. Cancers (Basel) 2024; 16:898. [PMID: 38473261 DOI: 10.3390/cancers16050898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 02/17/2024] [Accepted: 02/20/2024] [Indexed: 03/14/2024] Open
Abstract
Cutaneous melanoma is rapidly on the rise globally, surpassing the growth rate of other cancers, with metastasis being the primary cause of death in melanoma patients. Consequently, understanding the mechanisms behind this metastatic process and exploring innovative treatments is of paramount importance. Recent research has shown promise in unravelling the role of epigenetic factors in melanoma progression to metastasis. While DNA hypermethylation at gene promoters typically suppresses gene expression, we have contributed to establishing the newly understood mechanism of paradoxical activation of genes via DNA methylation, where high methylation coincides with increased gene activity. This mechanism challenges the conventional paradigm that promoter methylation solely silences genes, suggesting that, for specific genes, it might actually activate them. Traditionally, altering DNA methylation in vitro has involved using global demethylating agents, which is insufficient for studying the mechanism and testing the direct consequence of gene methylation changes. To investigate promoter hypermethylation and its association with gene activation, we employed a novel approach utilising a CRISPR-SunTag All-in-one system. Here, we focused on editing the DNA methylation of a specific gene promoter segment (EBF3) in melanoma cells using the All-in-one system. Using bisulfite sequencing and qPCR with RNA-Seq, we successfully demonstrated highly effective methylation and demethylation of the EBF3 promoter, with subsequent gene expression changes, to establish and validate the paradoxical role of DNA methylation. Further, our study provides novel insights into the function of the EBF3 gene, which remains largely unknown. Overall, this study challenges the conventional view of methylation as solely a gene-silencing mechanism and demonstrates a potential function of EBF3 in IFN pathway signalling, potentially uncovering new insights into epigenetic drivers of malignancy and metastasis.
Collapse
Affiliation(s)
- Rakesh Banerjee
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin 9054, New Zealand
| | - Priyadarshana Ajithkumar
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin 9054, New Zealand
| | - Nicholas Keestra
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin 9054, New Zealand
| | - Jim Smith
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin 9054, New Zealand
| | - Gregory Gimenez
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin 9054, New Zealand
| | - Euan J Rodger
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin 9054, New Zealand
| | - Michael R Eccles
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin 9054, New Zealand
| | - Jisha Antony
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin 9054, New Zealand
| | - Robert J Weeks
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin 9054, New Zealand
| | - Aniruddha Chatterjee
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin 9054, New Zealand
- School of Health Sciences and Technology, UPES University, Dehradun 248007, India
| |
Collapse
|
32
|
Xianyu Z, Correia C, Ung CY, Zhu S, Billadeau DD, Li H. The Rise of Hypothesis-Driven Artificial Intelligence in Oncology. Cancers (Basel) 2024; 16:822. [PMID: 38398213 PMCID: PMC10886811 DOI: 10.3390/cancers16040822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/12/2024] [Accepted: 02/14/2024] [Indexed: 02/25/2024] Open
Abstract
Cancer is a complex disease involving the deregulation of intricate cellular systems beyond genetic aberrations and, as such, requires sophisticated computational approaches and high-dimensional data for optimal interpretation. While conventional artificial intelligence (AI) models excel in many prediction tasks, they often lack interpretability and are blind to the scientific hypotheses generated by researchers to enable cancer discoveries. Here we propose that hypothesis-driven AI, a new emerging class of AI algorithm, is an innovative approach to uncovering the complex etiology of cancer from big omics data. This review exemplifies how hypothesis-driven AI is different from conventional AI by citing its application in various areas of oncology including tumor classification, patient stratification, cancer gene discovery, drug response prediction, and tumor spatial organization. Our aim is to stress the feasibility of incorporating domain knowledge and scientific hypotheses to craft the design of new AI algorithms. We showcase the power of hypothesis-driven AI in making novel cancer discoveries that can be overlooked by conventional AI methods. Since hypothesis-driven AI is still in its infancy, open questions such as how to better incorporate new knowledge and biological perspectives to ameliorate bias and improve interpretability in the design of AI algorithms still need to be addressed. In conclusion, hypothesis-driven AI holds great promise in the discovery of new mechanistic and functional insights that explain the complexity of cancer etiology and potentially chart a new roadmap to improve treatment regimens for individual patients.
Collapse
Affiliation(s)
- Zilin Xianyu
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA; (Z.X.); (C.C.); (C.Y.U.); (S.Z.); (D.D.B.)
| | - Cristina Correia
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA; (Z.X.); (C.C.); (C.Y.U.); (S.Z.); (D.D.B.)
| | - Choong Yong Ung
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA; (Z.X.); (C.C.); (C.Y.U.); (S.Z.); (D.D.B.)
| | - Shizhen Zhu
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA; (Z.X.); (C.C.); (C.Y.U.); (S.Z.); (D.D.B.)
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
| | - Daniel D. Billadeau
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA; (Z.X.); (C.C.); (C.Y.U.); (S.Z.); (D.D.B.)
- Department of Immunology, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
| | - Hu Li
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA; (Z.X.); (C.C.); (C.Y.U.); (S.Z.); (D.D.B.)
| |
Collapse
|
33
|
Maurya SK, Rehman AU, Zaidi MAA, Khan P, Gautam SK, Santamaria-Barria JA, Siddiqui JA, Batra SK, Nasser MW. Epigenetic alterations fuel brain metastasis via regulating inflammatory cascade. Semin Cell Dev Biol 2024; 154:261-274. [PMID: 36379848 PMCID: PMC10198579 DOI: 10.1016/j.semcdb.2022.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/28/2022] [Accepted: 11/02/2022] [Indexed: 11/13/2022]
Abstract
Brain metastasis (BrM) is a major threat to the survival of melanoma, breast, and lung cancer patients. Circulating tumor cells (CTCs) cross the blood-brain barrier (BBB) and sustain in the brain microenvironment. Genetic mutations and epigenetic modifications have been found to be critical in controlling key aspects of cancer metastasis. Metastasizing cells confront inflammation and gradually adapt in the unique brain microenvironment. Currently, it is one of the major areas that has gained momentum. Researchers are interested in the factors that modulate neuroinflammation during BrM. We review here various epigenetic factors and mechanisms modulating neuroinflammation and how this helps CTCs to adapt and survive in the brain microenvironment. Since epigenetic changes could be modulated by targeting enzymes such as histone/DNA methyltransferase, deacetylases, acetyltransferases, and demethylases, we also summarize our current understanding of potential drugs targeting various aspects of epigenetic regulation in BrM.
Collapse
Affiliation(s)
- Shailendra Kumar Maurya
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68108, USA
| | - Asad Ur Rehman
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68108, USA
| | - Mohd Ali Abbas Zaidi
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68108, USA
| | - Parvez Khan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68108, USA
| | - Shailendra K Gautam
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68108, USA
| | | | - Jawed Akhtar Siddiqui
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68108, USA; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68108, USA
| | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68108, USA; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68108, USA; Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Mohd Wasim Nasser
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68108, USA; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68108, USA.
| |
Collapse
|
34
|
Zhang Y, Wang Q, Xue H, Guo Y, Wei S, Li F, Gong L, Pan W, Jiang P. Epigenetic Regulation of Autophagy in Bone Metabolism. FUNCTION 2024; 5:zqae004. [PMID: 38486976 PMCID: PMC10935486 DOI: 10.1093/function/zqae004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 01/18/2024] [Accepted: 01/24/2024] [Indexed: 03/17/2024] Open
Abstract
The skeletal system is crucial for supporting bodily functions, protecting vital organs, facilitating hematopoiesis, and storing essential minerals. Skeletal homeostasis, which includes aspects such as bone density, structural integrity, and regenerative processes, is essential for normal skeletal function. Autophagy, an intricate intracellular mechanism for degrading and recycling cellular components, plays a multifaceted role in bone metabolism. It involves sequestering cellular waste, damaged proteins, and organelles within autophagosomes, which are then degraded and recycled. Autophagy's impact on bone health varies depending on factors such as regulation, cell type, environmental cues, and physiological context. Despite being traditionally considered a cytoplasmic process, autophagy is subject to transcriptional and epigenetic regulation within the nucleus. However, the precise influence of epigenetic regulation, including DNA methylation, histone modifications, and non-coding RNA expression, on cellular fate remains incompletely understood. The interplay between autophagy and epigenetic modifications adds complexity to bone cell regulation. This article provides an in-depth exploration of the intricate interplay between these two regulatory paradigms, with a focus on the epigenetic control of autophagy in bone metabolism. Such an understanding enhances our knowledge of bone metabolism-related disorders and offers insights for the development of targeted therapeutic strategies.
Collapse
Affiliation(s)
- Yazhou Zhang
- Department of Foot and Ankle Surgery, Tengzhou Central People’s Hospital, Tengzhou 277500, China
| | - Qianqian Wang
- Department of Pediatric Intensive Care Unit, Tengzhou Central People’s Hospital, Tengzhou 277500, China
| | - Hongjia Xue
- Department of Computer Science, University College London, London, WC1E 6BT, UK
| | - Yujin Guo
- Institute of Clinical Pharmacy & Pharmacology, Jining First People’s Hospital, Jining 272000, China
| | - Shanshan Wei
- Department of Pharmacy, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250000, China
- Department of Graduate, Shandong Academy of Medical Sciences, Shandong First Medical University, Jinan 250000, China
| | - Fengfeng Li
- Department of Neurosurgery, Tengzhou Central People’s Hospital, Tengzhou 277500, China
| | - Linqiang Gong
- Department of Gastroenterology, Tengzhou Central People's Hospital, Tengzhou 277500, China
| | - Weiliang Pan
- Department of Foot and Ankle Surgery, Tengzhou Central People’s Hospital, Tengzhou 277500, China
| | - Pei Jiang
- Translational Pharmaceutical Laboratory, Jining First People’s Hospital, Shandong First Medical University, Jining 272000, China
- Institute of Translational Pharmacy, Jining Medical Research Academy, Jining 272000, China
| |
Collapse
|
35
|
Lu S, Sun X, Tang H, Yu J, Wang B, Xiao R, Qu J, Sun F, Deng Z, Li C, Yang P, Yang Z, Rao B. Colorectal cancer with low SLC35A3 is associated with immune infiltrates and poor prognosis. Sci Rep 2024; 14:329. [PMID: 38172565 PMCID: PMC10764849 DOI: 10.1038/s41598-023-51028-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 12/29/2023] [Indexed: 01/05/2024] Open
Abstract
The expression level of SLC35A3 is associated with the prognosis of many cancers, but its role in colorectal cancer (CRC) is unclear. The purpose of our study was to elucidate the role of SLC35A3 in CRC. The expression levels of SLC35A3 in CRC were evaluated through tumor immune resource assessment (TIMER), The Cancer Genome Atlas (TCGA), Gene Expression Omnibus (GEO), International Cancer Genome Consortium (ICGC), Human Protein Atlas (HPA), qRT-PCR, and immunohistochemical evaluation. TCGA, GEO, and ICGC databases were used to analyze the diagnostic and prognostic value of SLC35A3 in CRC. A overall survival (OS) model was constructed and validated based on the expression level of SLC35A3 and multivariable analysis results. The cBioPortal tool was used to analyze SLC35A3 mutation in CRC. The UALCAN tool was used to analyze the promoter methylation level of SLC35A3 in colorectal cancer. In addition, the role of SLC35A3 in CRC was determined through GO analysis, KEGG analysis, gene set enrichment analysis (GSEA), immune infiltration analysis, and immune checkpoint correlation analysis. In vitro experiments validated the function of SLC35A3 in colorectal cancer cells. Compared with adjacent normal tissues and colonic epithelial cells, the expression of SLC35A3 was decreased in CRC tissues and CRC cell lines. Low expression of SLC35A3 was associated with N stage, pathological stage, and lymphatic infiltration, and it was unfavorable for OS, disease-specific survival (DSS), recurrence-free survival (RFS), and post-progression survival (PPS). According to the Receiver Operating Characteristic (ROC) analysis, SLC35A3 is a potential important diagnostic biomarker for CRC patients. The nomograph based on the expression level of SLC35A3 showed a better predictive model for OS than single prognostic factors and TNM staging. SLC35A3 has multiple types of mutations in CRC, and its promoter methylation level is significantly decreased. GO and KEGG analysis indicated that SLC35A3 may be involved in transmembrane transport protein activity, cell communication, and interaction with neurotransmitter receptors. GSEA revealed that SLC35A3 may be involved in energy metabolism, DNA repair, and cancer pathways. In addition, SLC35A3 was closely related to immune cell infiltration and immune checkpoint expression. Immunohistochemistry confirmed the positive correlation between SLC35A3 and helper T cell infiltration. In vitro experiments showed that overexpression of SLC35A3 inhibited the proliferation and invasion capability of colorectal cancer cells and promoted apoptosis. The results of this study indicate that decreased expression of SLC35A3 is closely associated with poor prognosis and immune cell infiltration in colorectal cancer, and it can serve as a promising independent prognostic biomarker and potential therapeutic target.
Collapse
Affiliation(s)
- Shuai Lu
- Department of General Surgery, Beijing Shijitan Hospital, Capital Medical University, Key Laboratory of Cancer Foods for Special Medical Purpose (FSMP) for State Market Regulation, Beijing, 100038, China
| | - Xibo Sun
- Department of Breast Surgery, The Second Affiliated Hospital of Shandong First Medical University, Shandong, 271000, China
| | - Huazhen Tang
- Department of General Surgery, Beijing Shijitan Hospital, Capital Medical University, Key Laboratory of Cancer Foods for Special Medical Purpose (FSMP) for State Market Regulation, Beijing, 100038, China
| | - Jinxuan Yu
- Zibo Central Hospital Affiliated to Binzhou Medical College, Zibo, 255020, China
| | - Bing Wang
- Department of General Surgery, Beijing Shijitan Hospital, Capital Medical University, Key Laboratory of Cancer Foods for Special Medical Purpose (FSMP) for State Market Regulation, Beijing, 100038, China
| | - Ruixue Xiao
- Inner Mongolia Medical University, Hohhot, 010100, China
| | - Jinxiu Qu
- Department of General Surgery, Beijing Shijitan Hospital, Capital Medical University, Key Laboratory of Cancer Foods for Special Medical Purpose (FSMP) for State Market Regulation, Beijing, 100038, China
| | - Fang Sun
- The Fifth Medical Center of the General Hospital of the People's Liberation Army of China, Beijing, 100000, China
| | - Zhuoya Deng
- The First Medical Center of Chinese, PLA General Hospital, Beijing, 100000, China
| | - Cong Li
- The First Medical Center of Chinese, PLA General Hospital, Beijing, 100000, China
| | - Penghui Yang
- The First Medical Center of Chinese, PLA General Hospital, Beijing, 100000, China.
| | - Zhenpeng Yang
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan, 250012, China.
| | - Benqiang Rao
- Department of General Surgery, Beijing Shijitan Hospital, Capital Medical University, Key Laboratory of Cancer Foods for Special Medical Purpose (FSMP) for State Market Regulation, Beijing, 100038, China.
| |
Collapse
|
36
|
Zeng X, Jiang S, Zhong Z, Yang X, Chen Q, Li J, Zhu Z, Song J, Yang C. DIRECT: Digital Microfluidics for Isolation-Free Shared Library Construction of Single-Cell DNA Methylome and Transcriptome. SMALL METHODS 2024; 8:e2301075. [PMID: 37772685 DOI: 10.1002/smtd.202301075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/04/2023] [Indexed: 09/30/2023]
Abstract
Simultaneous profiling of DNA methylation and gene expression within single cells is a powerful technology to dissect complex gene regulatory network of cells. However, existing methods are based on picking a single-cell in a tube and split single-cell lysate into two parts for transcriptome and methylome library construction, respectively, which is costly and cumbersome. Here, DIRECT is proposed, a digital microfluidics-based method for high-efficiency single-cell isolation and simultaneous analysis of the methylome and transcriptome in a single library construction. The accuracy of DIRECT is demonstrated in comparison with bulk and single-omics data, and the high CpG site coverage of DIRECT allows for precise analysis of copy number variation information, enabling expansion of single cell analysis from two- to three-omics. By applying DIRECT to monitor the dynamics of mouse embryonic stem cell differentiation, the relationship between DNA methylation and changes in gene expression during differentiation is revealed. DIRECT enables accurate, robust, and reproducible single-cell DNA methylation and gene expression co-analysis in a more cost-effective, simpler library preparation and automated manner, broadening the application scenarios of single-cell multi-omics analysis and revealing a more comprehensive and fine-grained map of cellular regulatory landscapes.
Collapse
Affiliation(s)
- Xi Zeng
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory for Chemical Biology of Fujian Province, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Shaowei Jiang
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory for Chemical Biology of Fujian Province, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Zhixing Zhong
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory for Chemical Biology of Fujian Province, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Xiaoping Yang
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory for Chemical Biology of Fujian Province, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Qiuyue Chen
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory for Chemical Biology of Fujian Province, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Jin Li
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, 200433, P. R. China
| | - Zhi Zhu
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory for Chemical Biology of Fujian Province, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Jia Song
- Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200120, P. R. China
| | - Chaoyong Yang
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory for Chemical Biology of Fujian Province, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
- Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200120, P. R. China
| |
Collapse
|
37
|
Zhang M, Jiang Y, Wang J, Yue Y, Liu W, Wang L, Li Y, Wang W, Cai H, Yang Z, Ma M, Lu S, Fan J. NEIL3 promotes cell proliferation of ccRCC via the cyclin D1-Rb-E2F1 feedback loop regulation. DNA Repair (Amst) 2024; 133:103604. [PMID: 37992567 DOI: 10.1016/j.dnarep.2023.103604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/28/2023] [Accepted: 11/13/2023] [Indexed: 11/24/2023]
Abstract
Nei endonuclease VIII-like 3 (NEIL3), a novel tumor-related gene, is differentially expressed and involved in pathophysiological processes in multiple tumors. However, the potential biological functions and molecular mechanisms of NEIL3 in human clear cell renal cell carcinoma (ccRCC) have not been identified. In this research, we demonstrated that NEIL3, transcriptionally activated by E2F1, served as an oncogene to facilitate cell proliferation and cell cycle progression and contribute to tumorigenesis via the cyclin D1-Rb-E2F1 feedback loop in ccRCC. First, we found that NEIL3 expression was upregulated in ccRCC tissues and cell lines compared with matched adjacent nontumor tissues and renal tubular epithelial cells and was also positively correlated with adverse clinicopathological characteristics, such as advanced cancer stages and higher tumor grades, and acted as an independent prognostic marker in ccRCC. Mechanistically, we demonstrated that NEIL3 promoted cell proliferation, DNA replication and cell cycle progression in vitro and tumor growth in vivo. Furthermore, we found that NEIL3 overexpression activated the cyclin D1-Rb-E2F1 pathway, and the E2F1 upregulation transcriptionally activated NEIL3 expression, thus forming a feedback loop. In addition, there was a positive correlation between NEIL3 and E2F1 expression in clinical specimens of ccRCC. Taken together, our results suggest that NEIL3 serves as a proto-oncogene in ccRCC and presents as a novel candidate for ccRCC diagnosis and treatment.
Collapse
Affiliation(s)
- Mengzhao Zhang
- Department of Vascular Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, China
| | - Yunzhong Jiang
- Department of Urology, the First Affiliated Hospital of Xi'an Jiaotong University, China
| | - Jichang Wang
- Department of Vascular Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, China
| | - Yangyang Yue
- Department of Vascular Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, China
| | - Wei Liu
- Department of Vascular Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, China
| | - Lu Wang
- Department of Urology, the First Affiliated Hospital of Xi'an Jiaotong University, China
| | - Yan Li
- Department of Vascular Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, China
| | - Weiyi Wang
- Department of Vascular Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, China
| | - Hui Cai
- Department of Vascular Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, China
| | - Zezhong Yang
- Department of Urology, the First Affiliated Hospital of Xi'an Jiaotong University, China
| | - Minghai Ma
- Department of Urology, the First Affiliated Hospital of Xi'an Jiaotong University, China
| | - Shaoying Lu
- Department of Vascular Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, China
| | - Jinhai Fan
- Department of Urology, the First Affiliated Hospital of Xi'an Jiaotong University, China; Oncology Research Lab, Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, #277 Yanta West Road, Xi'an 710061, China.
| |
Collapse
|
38
|
Han H, Feng X, He T, Wu Y, He T, Yue Z, Zhou W. Discussion on structure classification and regulation function of histone deacetylase and their inhibitor. Chem Biol Drug Des 2024; 103:e14366. [PMID: 37776270 DOI: 10.1111/cbdd.14366] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/14/2023] [Accepted: 09/18/2023] [Indexed: 10/02/2023]
Abstract
Epigenetic regulation of genes through posttranslational regulation of proteins is a well-explored approach for disease treatment, particularly in cancer chemotherapy. Histone deacetylases have shown significant potential as effective drug targets in therapeutic studies aiming to restore epigenetic normality in oncology. Besides their role in modifying histones, histone deacetylases can also catalyze the deacetylation of various nonhistone proteins and participate in the regulation of multiple biological processes. This paper provides a review of the classification, structure, and functional characteristics of the four classes of human histone deacetylases. The increasing abundance of structural information on HDACs has led to the gradual elucidation of structural differences among subgroups and subtypes. This has provided a reasonable explanation for the selectivity of certain HDAC inhibitors. Currently, the US FDA has approved a total of six HDAC inhibitors for marketing, primarily for the treatment of various hematological tumors and a few solid tumors. These inhibitors all have a common pharmacodynamic moiety consisting of three parts: CAP, ZBG, and Linker. In this paper, the structure-effect relationship of HDAC inhibitors is explored by classifying the six HDAC inhibitors into three main groups: isohydroxamic acids, benzamides, and cyclic peptides, based on the type of inhibitor ZBG. However, there are still many questions that need to be answered in this field. In this paper, the structure-functional characteristics of HDACs and the structural information of the pharmacophore model and enzyme active region of HDAC is are considered, which can help to understand the inhibition mechanism of the compounds as well as the rational design of HDACs. This paper integrates the structural-functional characteristics of HDACs as well as the pharmacophore model of HDAC is and the structural information of the enzymatic active region, which not only contributes to the understanding of the inhibition mechanism of the compounds, but also provides a basis for the rational design of HDAC inhibitors.
Collapse
Affiliation(s)
- Han Han
- Department of Biochemistry and Molecular Biology, Shenyang Medical College, Shenyang City, P. R. China
| | - Xue Feng
- Department of Pathogen Biology, Shenyang Medical College, Shenyang City, P. R. China
| | - Ting He
- Department of Pathogen Biology, Shenyang Medical College, Shenyang City, P. R. China
| | - Yingfan Wu
- Department of Pathogen Biology, Shenyang Medical College, Shenyang City, P. R. China
| | - Tianmei He
- Department of Pathogen Biology, Shenyang Medical College, Shenyang City, P. R. China
| | - Ziwen Yue
- Department of Pathogen Biology, Shenyang Medical College, Shenyang City, P. R. China
| | - Weiqiang Zhou
- Department of Pathogen Biology, Shenyang Medical College, Shenyang City, P. R. China
| |
Collapse
|
39
|
Feng Y, Cai L, Pook M, Liu F, Chang CH, Mouti MA, Nibhani R, Militi S, Dunford J, Philpott M, Fan Y, Fan GC, Liu Q, Qi J, Wang C, Hong W, Morgan H, Wang M, Sadayappan S, Jegga AG, Oppermann U, Wang Y, Huang W, Jiang L, Pauklin S. BRD9-SMAD2/3 Orchestrates Stemness and Tumorigenesis in Pancreatic Ductal Adenocarcinoma. Gastroenterology 2024; 166:139-154. [PMID: 37739089 PMCID: PMC11304550 DOI: 10.1053/j.gastro.2023.09.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 09/06/2023] [Accepted: 09/11/2023] [Indexed: 09/24/2023]
Abstract
BACKGROUND & AIMS The dismal prognosis of pancreatic ductal adenocarcinoma (PDAC) is linked to the presence of pancreatic cancer stem-like cells (CSCs) that respond poorly to current chemotherapy regimens. The epigenetic mechanisms regulating CSCs are currently insufficiently understood, which hampers the development of novel strategies for eliminating CSCs. METHODS By small molecule compound screening targeting 142 epigenetic enzymes, we identified that bromodomain-containing protein BRD9, a component of the BAF histone remodeling complex, is a key chromatin regulator to orchestrate the stemness of pancreatic CSCs via cooperating with the TGFβ/Activin-SMAD2/3 signaling pathway. RESULTS Inhibition and genetic ablation of BRD9 block the self-renewal, cell cycle entry into G0 phase and invasiveness of CSCs, and improve the sensitivity of CSCs to gemcitabine treatment. In addition, pharmacological inhibition of BRD9 significantly reduced the tumorigenesis in patient-derived xenografts mouse models and eliminated CSCs in tumors from pancreatic cancer patients. Mechanistically, inhibition of BRD9 disrupts enhancer-promoter looping and transcription of stemness genes in CSCs. CONCLUSIONS Collectively, the data suggest BRD9 as a novel therapeutic target for PDAC treatment via modulation of CSC stemness.
Collapse
Affiliation(s)
- Yuliang Feng
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, United Kingdom
| | - Liuyang Cai
- Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Guangdong, China
| | - Martin Pook
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, United Kingdom
| | - Feng Liu
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, United Kingdom
| | - Chao-Hui Chang
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, United Kingdom
| | - Mai Abdel Mouti
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, United Kingdom
| | - Reshma Nibhani
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, United Kingdom
| | - Stefania Militi
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, United Kingdom
| | - James Dunford
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, United Kingdom
| | - Martin Philpott
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, United Kingdom
| | - Yanbo Fan
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, Ohio; Department of Internal Medicine, Division of Cardiovascular Health and Disease, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Guo-Chang Fan
- Departments of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Qi Liu
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Jun Qi
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Cheng Wang
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Ireland
| | - Wanzi Hong
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, China
| | - Hannah Morgan
- Heart, Lung and Vascular Institute, Department of Internal Medicine, Division of Cardiovascular Health and Disease, University of Cincinnati, Cincinnati, Ohio
| | - Mingyang Wang
- College of Engineering and Applied Science, University of Cincinnati, Cincinnati, Ohio
| | - Sakthivel Sadayappan
- Heart, Lung and Vascular Institute, Department of Internal Medicine, Division of Cardiovascular Health and Disease, University of Cincinnati, Cincinnati, Ohio
| | - Anil G Jegga
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio; Department of Computer Science, University of Cincinnati College of Engineering, Cincinnati, Ohio
| | - Udo Oppermann
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, United Kingdom; Oxford Translational Myeloma Centre, Botnar Research Centre, Oxford, United Kingdom
| | - Yigang Wang
- Department of Pathology and Laboratory Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio.
| | - Wei Huang
- Heart, Lung and Vascular Institute, Department of Internal Medicine, Division of Cardiovascular Health and Disease, University of Cincinnati, Cincinnati, Ohio.
| | - Lei Jiang
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, China.
| | - Siim Pauklin
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, United Kingdom.
| |
Collapse
|
40
|
Dong B, Song X, Wang X, Dai T, Wang J, Zhiyong Y, Deng J, Evers BM, Wu Y. FBXO24 Suppresses Breast Cancer Tumorigenesis by Targeting LSD1 for Ubiquitination. Mol Cancer Res 2023; 21:1303-1316. [PMID: 37540490 PMCID: PMC10840093 DOI: 10.1158/1541-7786.mcr-23-0169] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 06/27/2023] [Accepted: 08/01/2023] [Indexed: 08/05/2023]
Abstract
Lysine-specific demethylase 1 (LSD1), a critical chromatin modulator, functions as an oncogene by demethylation of H3K4me1/2. The stability of LSD1 is governed by a complex and intricate process involving ubiquitination and deubiquitination. Several deubiquitinases preserve LSD1 protein levels. However, the precise mechanism underlying the degradation of LSD1, which could mitigate its oncogenic function, remains unknown. To gain a better understanding of LSD1 degradation, we conducted an unbiased siRNA screening targeting all the human SCF family E3 ligases. Our screening identified FBXO24 as a genuine E3 ligase that ubiquitinates and degrades LSD1. As a result, FBXO24 inhibits LSD1-induced tumorigenesis and functions as a tumor suppressor in breast cancer cells. Moreover, FBXO24 exhibits an inverse correlation with LSD1 and is associated with a favorable prognosis in breast cancer patient samples. Taken together, our study uncovers the significant role of FBXO24 in impeding breast tumor progression by targeting LSD1 for degradation. IMPLICATIONS Our study provides comprehensive characterization of the significant role of FBXO24 in impeding breast tumor progression by targeting LSD1 for degradation.
Collapse
Affiliation(s)
- Bo Dong
- Department of Pharmacology & Nutritional Sciences, Markey Cancer Center, the University of Kentucky, College of Medicine, Lexington, KY 40506, United States
- Markey Cancer Center, the University of Kentucky, College of Medicine, Lexington, KY 40506, United States
| | - Xiang Song
- Department of Pharmacology & Nutritional Sciences, Markey Cancer Center, the University of Kentucky, College of Medicine, Lexington, KY 40506, United States
- Markey Cancer Center, the University of Kentucky, College of Medicine, Lexington, KY 40506, United States
- Department of Oncology, Shandong Cancer Hospital Affiliated to Shandong University, Shandong Academy of Medical Sciences, Jinan, Shandong, People’s Republic of China
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, 250355, People’s Republic of China
| | - Xinzhao Wang
- Department of Pharmacology & Nutritional Sciences, Markey Cancer Center, the University of Kentucky, College of Medicine, Lexington, KY 40506, United States
- Markey Cancer Center, the University of Kentucky, College of Medicine, Lexington, KY 40506, United States
| | - Tao Dai
- Department of Pharmacology & Nutritional Sciences, Markey Cancer Center, the University of Kentucky, College of Medicine, Lexington, KY 40506, United States
- Markey Cancer Center, the University of Kentucky, College of Medicine, Lexington, KY 40506, United States
| | - Jianlin Wang
- Department of Pharmacology & Nutritional Sciences, Markey Cancer Center, the University of Kentucky, College of Medicine, Lexington, KY 40506, United States
- Markey Cancer Center, the University of Kentucky, College of Medicine, Lexington, KY 40506, United States
| | - Yu Zhiyong
- Department of Oncology, Shandong Cancer Hospital Affiliated to Shandong University, Shandong Academy of Medical Sciences, Jinan, Shandong, People’s Republic of China
| | - Jiong Deng
- Medical Research Institute, Binzhou Medical University Hospital, Binzhou, China
| | - B. Mark Evers
- Department of Oncology, Shandong Cancer Hospital Affiliated to Shandong University, Shandong Academy of Medical Sciences, Jinan, Shandong, People’s Republic of China
| | - Yadi Wu
- Department of Pharmacology & Nutritional Sciences, Markey Cancer Center, the University of Kentucky, College of Medicine, Lexington, KY 40506, United States
- Markey Cancer Center, the University of Kentucky, College of Medicine, Lexington, KY 40506, United States
| |
Collapse
|
41
|
Wei L, Huang K, Han H, Liu RY. Human Papillomavirus Infection in Penile Cancer: Multidimensional Mechanisms and Vaccine Strategies. Int J Mol Sci 2023; 24:16808. [PMID: 38069131 PMCID: PMC10706305 DOI: 10.3390/ijms242316808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 11/19/2023] [Accepted: 11/23/2023] [Indexed: 12/18/2023] Open
Abstract
Penile cancer (PC) is a rare male malignant tumor, with early lymph node metastasis and poor prognosis. Human papillomavirus (HPV) plays a key role in the carcinogenesis of PC. This review aims to summarize the association between HPV infection and PC in terms of virus-host genome integration patterns (the disrupted regions in the HPV and PC genome), genetic alterations, and epigenetic regulation (methylation and microRNA modification) occurring in HPV and PC DNA, as well as tumor immune microenvironment reprogramming. In addition, the potential of HPV vaccination strategies for PC prevention and treatment is discussed. Understanding of the HPV-related multidimensional mechanisms and the application of HPV vaccines will promote rational and novel management of PC.
Collapse
Affiliation(s)
- Lichao Wei
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China; (L.W.); (K.H.)
- Department of Urology, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Kangbo Huang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China; (L.W.); (K.H.)
- Department of Urology, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Hui Han
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China; (L.W.); (K.H.)
- Department of Urology, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Ran-yi Liu
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China; (L.W.); (K.H.)
| |
Collapse
|
42
|
Jiang X, Li Z, Mehmood A, Wang H, Wang Q, Chu Y, Mao X, Zhao J, Jiang M, Zhao B, Lin G, Wang E, Wei D. A Self-attention Graph Convolutional Network for Precision Multi-tumor Early Diagnostics with DNA Methylation Data. Interdiscip Sci 2023; 15:405-418. [PMID: 37247186 DOI: 10.1007/s12539-023-00563-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 03/16/2023] [Accepted: 03/20/2023] [Indexed: 05/30/2023]
Abstract
DNA methylation-based precision tumor early diagnostics is emerging as state-of-the-art technology that could capture early cancer signs 3 ~ 5 years in advance, even for clinically homogenous groups. Presently, the sensitivity of early detection for many tumors is ~ 30%, which needs significant improvement. Nevertheless, based on the genome-wide DNA methylation data, one could comprehensively characterize tumors' entire molecular genetic landscape and their subtle differences. Therefore, novel high-performance methods must be modeled by considering unbiased information using excessively available DNA methylation data. To fill this gap, we have designed a computational model involving a self-attention graph convolutional network and multi-class classification support vector machine to identify the 11 most common cancers using DNA methylation data. The self-attention graph convolutional network automatically learns key methylation sites in a data-driven way. Then, multi-tumor early diagnostics is realized by training a multi-class classification support vector machine based on the selected methylation sites. We evaluated our model's performance through several data sets of experiments, and our results demonstrate the effectiveness of the selected key methylation sites, which are highly relevant for blood diagnosis. The pipeline of the self-attention graph convolutional network based computational framework.
Collapse
Affiliation(s)
- Xue Jiang
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Zhiqi Li
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Aamir Mehmood
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Heng Wang
- International School of Cosmetics, School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai, China
| | - Qiankun Wang
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Yanyi Chu
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Xueying Mao
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Jing Zhao
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Mingming Jiang
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Bowen Zhao
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Guanning Lin
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Edwin Wang
- Department of Biochemistry and Molecular Biology, Medical Genetics, and Oncology, Cumming School of Medicine, University of Calgary, Calgary, Canada.
| | - Dongqing Wei
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
43
|
Ellis SLS, Dada S, Nohara LL, Saranchova I, Munro L, Pfeifer CG, Eyford BA, Morova T, Williams DE, Cheng P, Lack NA, Andersen RJ, Jefferies WA. Curcuphenol possesses an unusual histone deacetylase enhancing activity that counters immune escape in metastatic tumours. Front Pharmacol 2023; 14:1119620. [PMID: 37637416 PMCID: PMC10449465 DOI: 10.3389/fphar.2023.1119620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 07/03/2023] [Indexed: 08/29/2023] Open
Abstract
Curcuphenol, a common component of the culinary spices, naturally found in marine invertebrates and plants, has been identified as a novel candidate for reversing immune escape by restoring expression of the antigen presentation machinery (APM) in invasive cancers, thereby resurrecting the immune recognition of metastatic tumours. Two synthetic curcuphenol analogues, were prepared by informed design that demonstrated consistent induction of APM expression in metastatic prostate and lung carcinoma cells. Both analogues were subsequently found to possess a previously undescribed histone deacetylase (HDAC)-enhancing activity. Remarkably, the H3K27ac ChIPseq analysis of curcuphenol-treated cells reveals that the induced epigenomic marks closely resemble the changes in genome-wide pattern observed with interferon-γ, a cytokine instrumental for orchestrating innate and adaptive immunity. These observations link dietary components to modifying epigenetic programs that modulate gene expression guiding poised immunity.
Collapse
Affiliation(s)
- Samantha L. S. Ellis
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
- Centre for Blood Research, University of British Columbia, Vancouver, BC, Canada
- The Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
| | - Sarah Dada
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
- Centre for Blood Research, University of British Columbia, Vancouver, BC, Canada
- The Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
- Vancouver Prostate Centre, Vancouver Coastal Health Research Institute, Vancouver, BC, Canada
- Departments of Medical Genetics, Zoology, and Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Lilian L. Nohara
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
- Centre for Blood Research, University of British Columbia, Vancouver, BC, Canada
- The Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| | - Iryna Saranchova
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
- Centre for Blood Research, University of British Columbia, Vancouver, BC, Canada
- The Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
- Vancouver Prostate Centre, Vancouver Coastal Health Research Institute, Vancouver, BC, Canada
- Departments of Medical Genetics, Zoology, and Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Lonna Munro
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
- Centre for Blood Research, University of British Columbia, Vancouver, BC, Canada
- The Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
- Vancouver Prostate Centre, Vancouver Coastal Health Research Institute, Vancouver, BC, Canada
| | - Cheryl G. Pfeifer
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
- Centre for Blood Research, University of British Columbia, Vancouver, BC, Canada
- The Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
- Vancouver Prostate Centre, Vancouver Coastal Health Research Institute, Vancouver, BC, Canada
| | - Brett A. Eyford
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
- Centre for Blood Research, University of British Columbia, Vancouver, BC, Canada
- The Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| | - Tunc Morova
- Vancouver Prostate Centre, Vancouver Coastal Health Research Institute, Vancouver, BC, Canada
| | - David E. Williams
- Departments of Chemistry and Earth Ocean, and Atmospheric Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Ping Cheng
- Departments of Chemistry and Earth Ocean, and Atmospheric Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Nathan A. Lack
- Vancouver Prostate Centre, Vancouver Coastal Health Research Institute, Vancouver, BC, Canada
- School of Medicine, Koç University, Istanbul, Türkiye
| | - Raymond J. Andersen
- Departments of Chemistry and Earth Ocean, and Atmospheric Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Wilfred A. Jefferies
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
- Centre for Blood Research, University of British Columbia, Vancouver, BC, Canada
- The Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
- Vancouver Prostate Centre, Vancouver Coastal Health Research Institute, Vancouver, BC, Canada
- Departments of Medical Genetics, Zoology, and Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
44
|
Hou S, Wang X, Guo T, Lan Y, Yuan S, Yang S, Zhao F, Fang A, Liu N, Yang W, Chu Y, Jiang E, Cheng T, Sun X, Yuan W. PHF6 maintains acute myeloid leukemia via regulating NF-κB signaling pathway. Leukemia 2023; 37:1626-1637. [PMID: 37393343 PMCID: PMC10400421 DOI: 10.1038/s41375-023-01953-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 05/29/2023] [Accepted: 06/21/2023] [Indexed: 07/03/2023]
Abstract
Acute myeloid leukemia (AML) is a major hematopoietic malignancy characterized by the accumulation of immature and abnormally differentiated myeloid cells in bone marrow. Here with in vivo and in vitro models, we demonstrate that the Plant homeodomain finger gene 6 (PHF6) plays an important role in apoptosis and proliferation in myeloid leukemia. Phf6 deficiency could delay the progression of RUNX1-ETO9a and MLL-AF9-induced AML in mice. PHF6 depletion inhibited the NF-κB signaling pathways by disrupting the PHF6-p50 complex and partially inhibiting the nuclear translocation of p50 to suppress the expression of BCL2. Treating PHF6 over-expressed myeloid leukemia cells with NF-κB inhibitor (BAY11-7082) significantly increased their apoptosis and decreased their proliferation. Taken together, in contrast to PHF6 as a tumor suppressor in T-ALL as reported, we found that PHF6 also plays a pro-oncogenic role in myeloid leukemia, and thus potentially to be a therapeutic target for treating myeloid leukemia patients.
Collapse
Affiliation(s)
- Shuaibing Hou
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Xiaomin Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China.
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of lymphoma, Peking University Cancer Hospital & Institute, Beijing, 100039, China.
- Cancer Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China.
| | - Tengxiao Guo
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Yanjie Lan
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Cancer Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Shengnan Yuan
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
| | - Shuang Yang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Fei Zhao
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Aizhong Fang
- Cancer Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Na Liu
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, National Research Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Wanzhu Yang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
| | - Yajing Chu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Erlie Jiang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Tao Cheng
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Xiaojian Sun
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, National Research Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Weiping Yuan
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China.
- Tianjin Institutes of Health Science, Tianjin, 301600, China.
| |
Collapse
|
45
|
Singh H, Das CK, Buchmuller BC, Schäfer LV, Summerer D, Linser R. Epigenetic CpG duplex marks probed by an evolved DNA reader via a well-tempered conformational plasticity. Nucleic Acids Res 2023; 51:6495-6506. [PMID: 36919612 PMCID: PMC10325892 DOI: 10.1093/nar/gkad134] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 01/14/2023] [Accepted: 02/15/2023] [Indexed: 03/16/2023] Open
Abstract
5-methylcytosine (mC) and its TET-oxidized derivatives exist in CpG dyads of mammalian DNA and regulate cell fate, but how their individual combinations in the two strands of a CpG act as distinct regulatory signals is poorly understood. Readers that selectively recognize such novel 'CpG duplex marks' could be versatile tools for studying their biological functions, but their design represents an unprecedented selectivity challenge. By mutational studies, NMR relaxation, and MD simulations, we here show that the selectivity of the first designer reader for an oxidized CpG duplex mark hinges on precisely tempered conformational plasticity of the scaffold adopted during directed evolution. Our observations reveal the critical aspect of defined motional features in this novel reader for affinity and specificity in the DNA/protein interaction, providing unexpected prospects for further design progress in this novel area of DNA recognition.
Collapse
Affiliation(s)
- Himanshu Singh
- Department of Chemistry and Chemical Biology, Technical University Dortmund, Otto-Hahn-Str. 4a, 44227 Dortmund, Germany
| | - Chandan K Das
- Theoretical Chemistry, Ruhr University Bochum, Universitätsstr. 150, 44801 Bochum, Germany
| | - Benjamin C Buchmuller
- Department of Chemistry and Chemical Biology, Technical University Dortmund, Otto-Hahn-Str. 4a, 44227 Dortmund, Germany
| | - Lars V Schäfer
- Theoretical Chemistry, Ruhr University Bochum, Universitätsstr. 150, 44801 Bochum, Germany
| | - Daniel Summerer
- Department of Chemistry and Chemical Biology, Technical University Dortmund, Otto-Hahn-Str. 4a, 44227 Dortmund, Germany
| | - Rasmus Linser
- Department of Chemistry and Chemical Biology, Technical University Dortmund, Otto-Hahn-Str. 4a, 44227 Dortmund, Germany
| |
Collapse
|
46
|
Bassal MA. The Interplay between Dysregulated Metabolism and Epigenetics in Cancer. Biomolecules 2023; 13:944. [PMID: 37371524 DOI: 10.3390/biom13060944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/21/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023] Open
Abstract
Cellular metabolism (or energetics) and epigenetics are tightly coupled cellular processes. It is arguable that of all the described cancer hallmarks, dysregulated cellular energetics and epigenetics are the most tightly coregulated. Cellular metabolic states regulate and drive epigenetic changes while also being capable of influencing, if not driving, epigenetic reprogramming. Conversely, epigenetic changes can drive altered and compensatory metabolic states. Cancer cells meticulously modify and control each of these two linked cellular processes in order to maintain their tumorigenic potential and capacity. This review aims to explore the interplay between these two processes and discuss how each affects the other, driving and enhancing tumorigenic states in certain contexts.
Collapse
Affiliation(s)
- Mahmoud Adel Bassal
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore
- Harvard Stem Cell Institute, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
47
|
Sudhakaran G, Babu SR, Mahendra H, Arockiaraj J. Updated experimental cellular models to study polycystic ovarian syndrome. Life Sci 2023; 322:121672. [PMID: 37028548 DOI: 10.1016/j.lfs.2023.121672] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/27/2023] [Accepted: 04/03/2023] [Indexed: 04/08/2023]
Abstract
Polycystic ovarian syndrome (PCOS) develops due to hormonal imbalance and hyperandrogenism. Animal models are widely used to study PCOS because they mimic essential characteristics of human PCOS; however, the pathogenesis of PCOS remains unclear. Different sources of novel drugs are currently being screened as therapeutic strategies to alleviate PCOS and its symptoms. Simplified cell line in-vitro models could be preliminarily used to screen the bioactivity of various drugs. This review describes different cell line models focusing on the PCOS condition and its complications. Therefore, the bioactivity of the drugs could be preliminarily screened in a cell line model before moving to higher animal models.
Collapse
Affiliation(s)
- Gokul Sudhakaran
- Department of Biotechnology, College of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, 603 203 Chennai, Tamil Nadu, India
| | - Sarvesh Ramesh Babu
- Department of Biotechnology, College of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, 603 203 Chennai, Tamil Nadu, India
| | - Hridai Mahendra
- Department of Biotechnology, College of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, 603 203 Chennai, Tamil Nadu, India
| | - Jesu Arockiaraj
- Department of Biotechnology, College of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, 603 203 Chennai, Tamil Nadu, India.
| |
Collapse
|
48
|
Grunt TW, Heller G. A critical appraisal of the relative contribution of tissue architecture, genetics, epigenetics and cell metabolism to carcinogenesis. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2023:S0079-6107(23)00056-1. [PMID: 37268024 DOI: 10.1016/j.pbiomolbio.2023.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 05/22/2023] [Indexed: 06/04/2023]
Abstract
Here we contrast several carcinogenesis models. The somatic-mutation-theory posits mutations as main causes of malignancy. However, inconsistencies led to alternative explanations. For example, the tissue-organization-field-theory considers disrupted tissue-architecture as main cause. Both models can be reconciled using systems-biology-approaches, according to which tumors hover in states of self-organized criticality between order and chaos, are emergent results of multiple deviations and are subject to general laws of nature: inevitable variation(mutation) explainable by increased entropy(second-law-of-thermodynamics) or indeterminate decoherence upon measurement of superposed quantum systems(quantum mechanics), followed by Darwinian-selection. Genomic expression is regulated by epigenetics. Both systems cooperate. So cancer is neither just a mutational nor an epigenetic problem. Rather, epigenetics links environmental cues to endogenous genetics engendering a regulatory machinery that encompasses specific cancer-metabolic-networks. Interestingly, mutations occur at all levels of this machinery (oncogenes/tumor-suppressors, epigenetic-modifiers, structure-genes, metabolic-genes). Therefore, in most cases, DNA mutations may be the initial and crucial cancer-promoting triggers.
Collapse
Affiliation(s)
- Thomas W Grunt
- Cell Signaling and Metabolism Networks Program, Division of Oncology, Department of Medicine I, Medical University of Vienna, 1090, Vienna, Austria; Comprehensive Cancer Center, 1090, Vienna, Austria; Ludwig Boltzmann Institute for Hematology and Oncology, 1090, Vienna, Austria.
| | - Gerwin Heller
- Comprehensive Cancer Center, 1090, Vienna, Austria; Division of Oncology, Department of Medicine I, Medical University of Vienna, 1090, Vienna, Austria
| |
Collapse
|
49
|
Saviana M, Le P, Micalo L, Del Valle-Morales D, Romano G, Acunzo M, Li H, Nana-Sinkam P. Crosstalk between miRNAs and DNA Methylation in Cancer. Genes (Basel) 2023; 14:1075. [PMID: 37239435 PMCID: PMC10217889 DOI: 10.3390/genes14051075] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/04/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
miRNAs are some of the most well-characterized regulators of gene expression. Integral to several physiological processes, their aberrant expression often drives the pathogenesis of both benign and malignant diseases. Similarly, DNA methylation represents an epigenetic modification influencing transcription and playing a critical role in silencing numerous genes. The silencing of tumor suppressor genes through DNA methylation has been reported in many types of cancer and is associated with tumor development and progression. A growing body of literature has described the crosstalk between DNA methylation and miRNAs as an additional layer in the regulation of gene expression. Methylation in miRNA promoter regions inhibits its transcription, while miRNAs can target transcripts and subsequently regulate the proteins responsible for DNA methylation. Such relationships between miRNA and DNA methylation serve an important regulatory role in several tumor types and highlight a novel avenue for potential therapeutic targets. In this review, we discuss the crosstalk between DNA methylation and miRNA expression in the pathogenesis of cancer and describe how miRNAs influence DNA methylation and, conversely, how methylation impacts the expression of miRNAs. Finally, we address how these epigenetic modifications may be leveraged as biomarkers in cancer.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Patrick Nana-Sinkam
- Department of Internal Medicine, Division of Pulmonary Diseases and Critical Care Medicine, Virginia Commonwealth University, 1250 E. Marshall Street, Richmond, VA 23298, USA
| |
Collapse
|
50
|
Sopic M, Robinson EL, Emanueli C, Srivastava P, Angione C, Gaetano C, Condorelli G, Martelli F, Pedrazzini T, Devaux Y. Integration of epigenetic regulatory mechanisms in heart failure. Basic Res Cardiol 2023; 118:16. [PMID: 37140699 PMCID: PMC10158703 DOI: 10.1007/s00395-023-00986-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/27/2023] [Accepted: 04/10/2023] [Indexed: 05/05/2023]
Abstract
The number of "omics" approaches is continuously growing. Among others, epigenetics has appeared as an attractive area of investigation by the cardiovascular research community, notably considering its association with disease development. Complex diseases such as cardiovascular diseases have to be tackled using methods integrating different omics levels, so called "multi-omics" approaches. These approaches combine and co-analyze different levels of disease regulation. In this review, we present and discuss the role of epigenetic mechanisms in regulating gene expression and provide an integrated view of how these mechanisms are interlinked and regulate the development of cardiac disease, with a particular attention to heart failure. We focus on DNA, histone, and RNA modifications, and discuss the current methods and tools used for data integration and analysis. Enhancing the knowledge of these regulatory mechanisms may lead to novel therapeutic approaches and biomarkers for precision healthcare and improved clinical outcomes.
Collapse
Affiliation(s)
- Miron Sopic
- Department of Medical Biochemistry, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia
| | - Emma L Robinson
- Division of Cardiology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Costanza Emanueli
- National Heart & Lung Institute, Imperial College London, London, UK
| | | | - Claudio Angione
- School of Computing, Engineering & Digital Technologies, Teesside University, Tees Valley, Middlesbrough, TS1 3BA, UK
- Centre for Digital Innovation, Teesside University, Campus Heart, Tees Valley, Middlesbrough, TS1 3BX, UK
- National Horizons Centre, Darlington, DL1 1HG, UK
| | - Carlo Gaetano
- Laboratorio di Epigenetica, Istituti Clinici Scientifici Maugeri IRCCS, Via Maugeri 10, 27100, Pavia, Italy
| | - Gianluigi Condorelli
- IRCCS-Humanitas Research Hospital, Via Manzoni 56, 20089, Rozzano, MI, Italy
- Institute of Genetic and Biomedical Research, National Research Council of Italy, Arnold-Heller-Str.3, 24105, Milan, Italy
| | - Fabio Martelli
- Molecular Cardiology Laboratory, IRCCS-Policlinico San Donato, Via Morandi 30, San Donato Milanese, 20097, Milan, Italy
| | - Thierry Pedrazzini
- Experimental Cardiology Unit, Division of Cardiology, Department of Cardiovascular Medicine, University of Lausanne Medical School, 1011, Lausanne, Switzerland
| | - Yvan Devaux
- Cardiovascular Research Unit, Department of Population Health, Luxembourg Institute of Health, L-1445, Strassen, Luxembourg.
| |
Collapse
|