1
|
Wang Y, Yang C, Shi Q, Zhang L, Liu H, You J, Zhang R, Sun A, Song S, Zhang Z, Shi X. Co-exposure to enrofloxacin and atrazine enhances the hepatotoxicity in Larimichthys crocea by targeting the hypothalamic-pituitary-thyroid and gut-liver axes. JOURNAL OF HAZARDOUS MATERIALS 2025; 489:137548. [PMID: 39952136 DOI: 10.1016/j.jhazmat.2025.137548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 01/22/2025] [Accepted: 02/08/2025] [Indexed: 02/17/2025]
Abstract
Enrofloxacin (ENR) and atrazine (ATZ) are common co-contaminants in marine environments. Although the immunosuppressive effects of ENR and the endocrine-disrupting properties of ATZ are well established, the combined effects of these pollutants on hepatotoxicity, particularly concerning the regulation of the hypothalamic-pituitary-thyroid (HPT) and gut-liver axes, remain poorly understood. In this study, Larimichthys crocea was exposed to ENR and ATZ at environmentally relevant concentrations, individually and in combination, to investigate the hepatotoxicity. Liver cell swelling, necrosis, oxidative stress, and elevated liver injury markers were observed, indicating hepatic damage, with co-exposure exacerbating liver injury. Decreased levels of thyrotropin-releasing hormone and thyroid-stimulating hormone, increased triiodothyronine and thyroxine, and altered expression of HPT axis-related genes demonstrated enhanced disruption of the HPT axis under co-exposure, which was strongly associated with oxidative stress and liver dysfunction. Molecular docking confirmed that ENR and ATZ inhibited thyroid hormone binding to target proteins, likely provoking the enhanced hepatotoxicity. Additionally, ATZ significantly intensified the intestinal bacterial disturbances induced by ENR, further aggravating hepatotoxicity through the gut-liver axis. This study is the first to reveal the increased risk associated with ENR and ATZ co-exposure, highlighting the need for attention to such co-contaminants.
Collapse
Affiliation(s)
- Yinan Wang
- State Key Laboratory for Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo 315211, PR China
| | - Chenxue Yang
- State Key Laboratory for Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo 315211, PR China
| | - Qiangqiang Shi
- State Key Laboratory for Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo 315211, PR China
| | - Liuquan Zhang
- State Key Laboratory for Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo 315211, PR China
| | - Hao Liu
- State Key Laboratory for Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo 315211, PR China
| | - Jinjie You
- State Key Laboratory for Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo 315211, PR China
| | - Rongrong Zhang
- State Key Laboratory for Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo 315211, PR China
| | - Aili Sun
- State Key Laboratory for Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo 315211, PR China
| | - Suquan Song
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, PR China
| | - Zeming Zhang
- State Key Laboratory for Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo 315211, PR China.
| | - Xizhi Shi
- State Key Laboratory for Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo 315211, PR China.
| |
Collapse
|
2
|
Yu S, Zhu X, Zhao X, Li Y, Niu X, Chen Y, Ying J. Improvement of chronic metabolic inflammation and regulation of gut homeostasis: Tea as a potential therapy. Pharmacol Ther 2025; 269:108828. [PMID: 40020787 DOI: 10.1016/j.pharmthera.2025.108828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 12/27/2024] [Accepted: 02/21/2025] [Indexed: 03/03/2025]
Abstract
Chronic metabolic inflammation is a common mechanism linked to the development of metabolic disorders such as obesity, diabetes, and cardiovascular disease (CVD). Chronic metabolic inflammation often related to alterations in gut homeostasis, and pathological processes involve the activation of endotoxin receptors, metabolic reprogramming, mitochondrial dysfunction, and disruption of intestinal nuclear receptor activity. Recent investigations into homeostasis and chronic metabolic inflammation have revealed a novel mechanism which is characterized by a timing interaction involving multiple components and targets. This article explores the positive impact of tea consumption on metabolic health of populations, with a special focus on the improvement of inflammatory indicators and the regulation of gut microbiota. Studies showed that tea consumption is related to the enrichment of gut microbiota. The relative proportion of Firmicutes/Bacteroidetes (F/B) is altered, while the abundance of Lactobacillus, Bifidobacterium, and A. muciniphila increased significantly in most of the studies. Thus, tea consumption could provide potential protection from the development of chronic diseases by improving gut homeostasis and reducing chronic metabolic inflammation. The direct impact of tea on intestinal homeostasis primarily targets lipopolysaccharide (LPS)-related pathways. This includes reducing the synthesis of intestinal LPS, inhibiting LPS translocation, and preventing the binding of LPS to TLR4 receptors to block downstream inflammatory pathways. The TLR4/MyD88/NF-κB p65 pathway is crucial for anti-metaflammatory responses. The antioxidant properties of tea are linked to enhancing mitochondrial function and mitigating mitochondria-related inflammation by eliminating free radicals, inhibiting NLRP3 inflammasomes, and modulating Nrf2/ARE activity. Tea also contributes to safeguarding the intestinal barrier through various mechanisms, such as promoting the synthesis of short-chain fatty acids in the intestine, activating intestinal aryl hydrocarbon receptor (AhR) and farnesoid X receptor (FXR), and improving enteritis. Functional components that improve chronic metabolic inflammation include tea polyphenols, tea pigments, TPS, etc. Tea metabolites such as 4-Hydroxyphenylacetic acid and 3,4-Dihydroxyflavan derivatives, etc., also contribute to anti-chronic metabolic inflammation effects of tea consumption. The raw materials and processing technologies affect the functional component compositions of tea; therefore, consuming different types of tea may result in varying action characteristics and mechanisms. However, there is currently limited elaboration on this aspect. Future research should conduct in-depth studies on the mechanism of tea and its functional components in improving chronic metabolic inflammation. Researchers should pay attention to whether there are interactions between tea and other foods or drugs, explore safe and effective usage and dosage, and investigate whether there are individual differences in the tea-drinking population leading to different effects of tea intervention. Ultimately, the application of tea drinking could be a universal therapy for regulating intestinal homeostasis, anti-chronic metabolic inflammatory responses, and promoting metabolic health.
Collapse
Affiliation(s)
- Shiyi Yu
- Nutrition and Health Research Institute, School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430000, China
| | - Xuan Zhu
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Xiayu Zhao
- National Institute of Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing 100050, China
| | - Yan Li
- National Institute of Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing 100050, China
| | - Xinghe Niu
- Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, China; COFCO Nutrition and Health Research Institute, Beijing 102209, China
| | - Yinghua Chen
- Nutrition and Health Research Institute, School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430000, China
| | - Jian Ying
- Nutrition and Health Research Institute, School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430000, China.
| |
Collapse
|
3
|
Duru IC, Lecomte A, Laine P, Shishido TK, Suppula J, Paulin L, Scheperjans F, Pereira PAB, Auvinen P. Comparison of phage and plasmid populations in the gut microbiota between Parkinson's disease patients and controls. Sci Rep 2025; 15:13723. [PMID: 40258842 DOI: 10.1038/s41598-025-96924-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 04/01/2025] [Indexed: 04/23/2025] Open
Abstract
The aging population worldwide is on the rise, leading to a higher number of Parkinson's disease (PD) cases each year. PD is presently the second most prevalent neurodegenerative disease, affecting an estimated 7-10 million individuals globally. This research aimed to identify mobile genetic elements in human fecal samples using a shotgun metagenomics approach. We identified over 44,000 plasmid contigs and compared plasmid populations between PD patients (n = 68) and controls (n = 68). Significant associations emerged between groups (control vs PD) based on plasmid alpha and beta diversity. Moreover, the gene populations present on plasmids displayed marked differences in alpha and beta diversity between PD patients and controls. We identified a considerable number of phage contigs that were differentially abundant in the two groups. We also developed a predictive machine learning model based on phage abundance data, achieving a mean Area Under the Curve (AUC) of 0.74 with a standard deviation of 0.105 and a mean F1 score of 0.68 with a standard deviation of 0.14 across cross-validation folds, indicating moderate discriminatory power. Additionally, when tested on external data, the model yielded an AUC of 0.74 and an F1 score of 0.8, further demonstrating the predictive potential of phage populations in Parkinson's disease. Further, we improved the continuity and identification of the protein coding regions of the phage contigs by implementing alternative genetic codes.
Collapse
Affiliation(s)
- Ilhan Cem Duru
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland.
| | - Alexandre Lecomte
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Pia Laine
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | | | - Joni Suppula
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Lars Paulin
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Filip Scheperjans
- Department of Neurology, Helsinki University Hospital and Clinicum, University of Helsinki, Helsinki, Finland
| | - Pedro A B Pereira
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland.
- Department of Neurology, Helsinki University Hospital and Clinicum, University of Helsinki, Helsinki, Finland.
| | - Petri Auvinen
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| |
Collapse
|
4
|
Maldonado-Barrueco A, Almazán-Garate E, Armijo-Suárez O, Iniesta-Pérez S, Sanz-González C, Falces-Romero I, Álvarez-López C, Cacho-Calvo J, Quiles-Melero I. Utility of sexually transmitted infection screening in diagnosing clinical gynaecological conditions using endometrial specimens. Diagn Microbiol Infect Dis 2025; 112:116830. [PMID: 40222157 DOI: 10.1016/j.diagmicrobio.2025.116830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2025] [Revised: 03/31/2025] [Accepted: 04/01/2025] [Indexed: 04/15/2025]
Abstract
Sexually transmitted infections are associated with gynaecological conditions, yet screening algorithms are lacking. The aim was determining the utility of endometrial specimens for chronic gynaecological diagnosis. In a retrospective cohort study of 91 patients (42.8 % CD138-positive), only 5.5 % tested were positive for Ureaplasma parvum. Endometrial STI screening was not useful in a population of low STI prevalence (<10 %), suggesting its value depends on STI prevalence.
Collapse
Affiliation(s)
| | - Esther Almazán-Garate
- Clinical Microbiology and Parasitology Department, Hospital Universitario La Paz, Madrid, Spain
| | | | | | - Claudia Sanz-González
- Clinical Microbiology and Parasitology Department, Hospital Universitario La Paz, Madrid, Spain
| | - Iker Falces-Romero
- Clinical Microbiology and Parasitology Department, Hospital Universitario La Paz, Madrid, Spain; CIBERINFEC ISCIII, Instituto de Salud Carlos III, Madrid, España
| | | | - Juana Cacho-Calvo
- Clinical Microbiology and Parasitology Department, Hospital Universitario La Paz, Madrid, Spain
| | | |
Collapse
|
5
|
Baker JT, Deng Z, Gormley AR, Kim SW. Impacts of non-starch polysaccharide sources with enzymes influencing intestinal mucosa-associated microbiota and mucosal immunity of nursery pigs on growth and carcass traits at market weight. J Anim Sci Biotechnol 2025; 16:47. [PMID: 40165296 PMCID: PMC11959798 DOI: 10.1186/s40104-025-01170-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 01/20/2025] [Indexed: 04/02/2025] Open
Abstract
BACKGROUND This study investigated the effects of different non-starch polysaccharide (NSP) sources with NSP degrading enzymes (NSPases) and the influence on the mucosa-associated microbiota and intestinal immunity of nursery pigs, on growth performance and carcass traits at market weight. METHODS One hundred and sixty newly weaned pigs at 7.0 ± 0.3 kg body weight (BW) were allotted in a 2 × 2 factorial with NSP sources and NSPases serving as factors. The 4 dietary treatments were: DDGS, corn distillers' dried grains with solubles as source of NSP; DDGS + NSPases (DDGS +), DDGS with xylanase at 0.01%, 3,000 U/kg of feed and β-mannanase at 0.05%, 400 U/kg of feed; SHWB, soybean hulls and wheat bran replacing corn DDGS as the source of NSP; SHWB with NSPases (SHWB +), SHWB with xylanase at 0.01%, 3,000 U/kg of feed and β-mannanase at 0.05%, 400 U/kg of feed. Pigs were fed for 37 d and housed in groups of 4 pigs per pen. At d 37, the median body weight pig in each pen was euthanized for sampling to analyze intestinal health parameters. Remaining pigs were fed a common diet for subsequent phases to evaluate the carryover effect on growth and carcass traits. RESULTS The SHWB decreased (P < 0.05) the relative abundance of Helicobacter, tended to increase (P = 0.074) the relative abundance of Lactobacillus, increased (P < 0.05) immunoglobulin G (IgG) in the jejunal mucosa, tended to increase (P = 0.096) the villus height (VH) in the jejunum, and tended to improve ADG (P = 0.099) and feed efficiency (P = 0.068) during phase 1 compared to DDGS treatment. Supplementation of NSPases increased (P < 0.05) Shannon index of diversity, increased the relative abundance of Streptococcus and Acinetobacter, and tended to increase (P = 0.082) dry matter digestibility. The BW of pigs fed SHWB was more uniform (P < 0.05) at the end of the 120 d study. Additionally, hot carcass weight of pigs fed SHWB tended to be more uniform (P = 0.089) than DDGS treatment. CONCLUSION Soybean hulls and wheat bran replacing DDGS in nursery diets improved uniformity of pigs at market weight, which might be attributed to beneficial modulation of the mucosa-associated microbiota and enhanced intestinal morphology during the nursery phase. Supplementation of NSPases had beneficial effects on the intestinal mucosa-associated microbiota, digestibility, and intestinal immunity in SHWB treatment, whereas no carryover effects were overserved at market weight.
Collapse
Affiliation(s)
- Jonathan T Baker
- Department of Animal Science, North Carolina State University, 116 Polk Hall, Campus Box 7621, Raleigh, NC, 27695, USA
| | - Zixiao Deng
- Department of Animal Science, North Carolina State University, 116 Polk Hall, Campus Box 7621, Raleigh, NC, 27695, USA
| | - Alexa R Gormley
- Department of Animal Science, North Carolina State University, 116 Polk Hall, Campus Box 7621, Raleigh, NC, 27695, USA
| | - Sung Woo Kim
- Department of Animal Science, North Carolina State University, 116 Polk Hall, Campus Box 7621, Raleigh, NC, 27695, USA.
| |
Collapse
|
6
|
Manfredi JN, Gupta SK, Vyavahare S, Deak F, Lu X, Buddha L, Wankhade U, Lohakare J, Isales C, Fulzele S. Gut microbiota dysbiosis in Alzheimer's disease (AD): Insights from human clinical studies and the mouse AD models. Physiol Behav 2025; 290:114778. [PMID: 39672482 DOI: 10.1016/j.physbeh.2024.114778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 11/19/2024] [Accepted: 12/07/2024] [Indexed: 12/15/2024]
Abstract
Alzheimer's Disease (AD) is a debilitating neurocognitive disorder with an unclear underlying mechanism. Recent studies have implicated gut microbiota dysbiosis with the onset and progression of AD. The connection between gut microbiota and AD can significantly affect the prevention and treatment of AD patients. This systematic review summarizes primary outcomes of human and mouse AD models concerning gut microbiota alterations. A systematic literature search in February through March 2023 was conducted on PubMed, Embase, and Web of Science. We identified 711 as potential manuscripts of which 672 were excluded because of irrelevance to the identified search criteria. Primary outcomes include microbiota compositions of control and AD models in humans and mice. In total, 39 studies were included (19 mouse and 20 human studies), published between 2017 and 2023. We included studies involving well-established mice models of AD (5xFAD, 3xTg-AD, APP/PS1, Tg2576, and APPPS2) which harbor mutations and genes that drive the formation of Aß plaques. All human studies were included on those with AD or mild cognitive impairment. Among alterations in gut microbiota, most studies found a decreased abundance of the phyla Firmicutes and Bifidobacteria, a genus of the phylum Actinomycetota. An increased abundance of the phyla Bacteroidetes and Proteobacteria were identified in animal and human studies. Studies indicated that gut microbiota alter the pathogenesis of AD through its impact on neuroinflammation and permeability of the gastrointestinal tract. The ensuing increase in blood-brain barrier permeability may accelerate Aβ penetrance and formation of neuritic plaques that align with the amyloid hypothesis of AD pathogenesis. Further studies should assess the relationship between gut microbiota and AD progression and therapy preserving beneficial gut microbiota.
Collapse
Affiliation(s)
- John N Manfredi
- Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Sonu Kumar Gupta
- Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Sagar Vyavahare
- Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Ferenc Deak
- Deptment of Neuroscience & Regenerative Medicine, Augusta, GA 30912, USA
| | - Xinyun Lu
- Deptment of Neuroscience & Regenerative Medicine, Augusta, GA 30912, USA
| | - Lasya Buddha
- Arkansas Children's Nutrition Center, Department of Pediatrics, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Umesh Wankhade
- Arkansas Children's Nutrition Center, Department of Pediatrics, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Jayant Lohakare
- College of Agriculture, Food, and Natural Resources, Prairie View A&M University, Prairie View, TX 77446, USA
| | - Carlos Isales
- Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA; Deptment of Neuroscience & Regenerative Medicine, Augusta, GA 30912, USA; Centre for Healthy Aging, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Sadanand Fulzele
- Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA; Deptment of Neuroscience & Regenerative Medicine, Augusta, GA 30912, USA; College of Agriculture, Food, and Natural Resources, Prairie View A&M University, Prairie View, TX 77446, USA; Centre for Healthy Aging, Medical College of Georgia, Augusta University, Augusta, GA, USA; Department of Cell Biology and Anatomy, Medical College of Georgia, Augusta University, GA, USA; Department of Orthopedic Surgery, Medical College of Georgia, Augusta University, Augusta, GA, USA.
| |
Collapse
|
7
|
Charitos IA, Scacco S, Cotoia A, Castellaneta F, Castellana G, Pasqualotto F, Venneri M, Ferrulli A, Aliani M, Santacroce L, Carone M. Intestinal Microbiota Dysbiosis Role and Bacterial Translocation as a Factor for Septic Risk. Int J Mol Sci 2025; 26:2028. [PMID: 40076650 PMCID: PMC11900423 DOI: 10.3390/ijms26052028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 02/18/2025] [Accepted: 02/22/2025] [Indexed: 03/14/2025] Open
Abstract
The human immune system is closely linked to microbiota such as a complex symbiotic relationship during the coevolution of vertebrates and microorganisms. The transfer of microorganisms from the mother's microbiota to the newborn begins before birth during gestation and is considered the initial phase of the intestinal microbiota (IM). The gut is an important site where microorganisms can establish colonies. The IM contains polymicrobial communities, which show complex interactions with diet and host immunity. The tendency towards dysbiosis of the intestinal microbiota is influenced by local but also extra-intestinal factors such as inflammatory processes, infections, or a septic state that can aggravate it. Pathogens could trigger an immune response, such as proinflammatory responses. In addition, changes in the host immune system also influence the intestinal community and structure with additional translocation of pathogenic and non-pathogenic bacteria. Finally, local intestinal inflammation has been found to be an important factor in the growth of pathogenic microorganisms, particularly in its role in sepsis. The aim of this article is to be able to detect the current knowledge of the mechanisms that can lead to dysbiosis of the intestinal microbiota and that can cause bacterial translocation with a risk of infection or septic state and vice versa.
Collapse
Affiliation(s)
- Ioannis Alexandros Charitos
- Pneumology and Respiratory Rehabilitation Unit, Istituti Clinici Scientifici Maugeri IRCCS, “Istitute” of Bari, 70124 Bari, Italy; (I.A.C.); (G.C.); (F.P.); (M.A.); (M.C.)
- Doctoral School, Applied Neurosciences, University of Bari (UNIBA), 70124 Bari, Italy
| | - Salvatore Scacco
- Dipartimento di Biomedicina Traslazionale e Neuroscienze (DiBraiN), Scuola di Medicina, Università Degli Studi di Bari, Aldo Moro, 70124 Bari, Italy;
- U.O. Medicina, Ospedale Mater Dei-CBH, 70125 Bari, Italy
| | - Antonella Cotoia
- Department of Intensive Care, University Hospital of Foggia, 71121 Foggia, Italy
| | - Francesca Castellaneta
- U.O.C. Servizio di Immunoematologia e Medicina Trasfusionale—S.I.M.T. Ospedale Di Venere, 70131 Bari, Italy;
| | - Giorgio Castellana
- Pneumology and Respiratory Rehabilitation Unit, Istituti Clinici Scientifici Maugeri IRCCS, “Istitute” of Bari, 70124 Bari, Italy; (I.A.C.); (G.C.); (F.P.); (M.A.); (M.C.)
| | - Federico Pasqualotto
- Pneumology and Respiratory Rehabilitation Unit, Istituti Clinici Scientifici Maugeri IRCCS, “Istitute” of Bari, 70124 Bari, Italy; (I.A.C.); (G.C.); (F.P.); (M.A.); (M.C.)
- Department of Public Health and Infectious Diseases, Pulmonary Division, Sapienza University of Rome, Policlinico Umberto I Hospital, Rome, Via del Policlinico 155, 00155 Rome, Italy
| | - Maria Venneri
- Genomics and Proteomics Laboratory, Istituti Clinici Scientifici Maugeri IRCCS, “Istitute” of Bari, 70124 Bari, Italy; (M.V.); (A.F.)
| | - Angela Ferrulli
- Genomics and Proteomics Laboratory, Istituti Clinici Scientifici Maugeri IRCCS, “Istitute” of Bari, 70124 Bari, Italy; (M.V.); (A.F.)
| | - Maria Aliani
- Pneumology and Respiratory Rehabilitation Unit, Istituti Clinici Scientifici Maugeri IRCCS, “Istitute” of Bari, 70124 Bari, Italy; (I.A.C.); (G.C.); (F.P.); (M.A.); (M.C.)
| | - Luigi Santacroce
- Interdisciplinary Department of Medicine, Section of Microbiology and Virology, School of Medicine, The University of Bari, 70124 Bari, Italy;
| | - Mauro Carone
- Pneumology and Respiratory Rehabilitation Unit, Istituti Clinici Scientifici Maugeri IRCCS, “Istitute” of Bari, 70124 Bari, Italy; (I.A.C.); (G.C.); (F.P.); (M.A.); (M.C.)
| |
Collapse
|
8
|
Hoeferlin GF, Grabinski SE, Druschel LN, Duncan JL, Burkhart G, Weagraff GR, Lee AH, Hong C, Bambroo M, Olivares H, Bajwa T, Coleman J, Li L, Memberg W, Sweet J, Hamedani HA, Acharya AP, Hernandez-Reynoso AG, Donskey C, Jaskiw G, Ricky Chan E, Shoffstall AJ, Bolu Ajiboye A, von Recum HA, Zhang L, Capadona JR. Bacteria invade the brain following intracortical microelectrode implantation, inducing gut-brain axis disruption and contributing to reduced microelectrode performance. Nat Commun 2025; 16:1829. [PMID: 39979293 PMCID: PMC11842729 DOI: 10.1038/s41467-025-56979-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 01/29/2025] [Indexed: 02/22/2025] Open
Abstract
Brain-machine interface performance can be affected by neuroinflammatory responses due to blood-brain barrier (BBB) damage following intracortical microelectrode implantation. Recent findings suggest that certain gut bacterial constituents might enter the brain through damaged BBB. Therefore, we hypothesized that damage to the BBB caused by microelectrode implantation could facilitate microbiome entry into the brain. In our study, we found bacterial sequences, including gut-related ones, in the brains of mice with implanted microelectrodes. These sequences changed over time. Mice treated with antibiotics showed a reduced presence of these bacteria and had a different inflammatory response, which temporarily improved microelectrode recording performance. However, long-term antibiotic use worsened performance and disrupted neurodegenerative pathways. Many bacterial sequences found were not present in the gut or in unimplanted brains. Together, the current study established a paradigm-shifting mechanism that may contribute to chronic intracortical microelectrode recording performance and affect overall brain health following intracortical microelectrode implantation.
Collapse
Grants
- R01 NS131502 NINDS NIH HHS
- R25 CA221718 NCI NIH HHS
- T32 EB004314 NIBIB NIH HHS
- This study was supported in part by Merit Review Award GRANT12418820 (Capadona), Biomedical Science and Engineering Summer Program for Rehabilitation Interventions GRANT14089804 (Capadona/Hess-Dunning), and Senior Research Career Scientist Award # GRANT12635707 (Capadona) from the United States (US) Department of Veterans Affairs Rehabilitation Research and Development Service. Additionally, this work was also supported in part by the National Institute of Health, National Institute of Neurological Disorders and Stroke GRANT12635723 (Capadona/Pancrazio and diversity supplement Hernandez-Reynoso) and NS131502 (Ware/Pancrazio/Capadona), the National Cancer Institute NCI R25 CA221718 (Berger) provided support for Weagraff, the Congressionally Directed Medical Research Program (CDMRP) – Spinal Cord Injury Research Program (SCIRP), administered through the Department of Defense Award # SC180308 (Ajiboye) and the National Institute for Biomedical Imaging and Bioengineering, T32EB004314, provided support for both Hoeferlin and Burkhart (Capadona/Kirsch). Microbiome analyses were partially supported by the junior faculty’s startup funding from the CWRU School of Medicine, BGT630267 (Zhang). Finally, partial funding was provided from discretionary funding from the Donnell Institute Professorship endowment (Capadona) and the Case School of Engineering Research Incentive Program (Capadona).
Collapse
Affiliation(s)
- George F Hoeferlin
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
- Advanced Platform Technology Center, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, OH, USA
| | - Sarah E Grabinski
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Lindsey N Druschel
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
- Advanced Platform Technology Center, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, OH, USA
| | - Jonathan L Duncan
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
- Advanced Platform Technology Center, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, OH, USA
| | - Grace Burkhart
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
| | - Gwendolyn R Weagraff
- Advanced Platform Technology Center, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, OH, USA
- Department of Biology, University of Florida, Gainesville, FL, USA
| | - Alice H Lee
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
- Advanced Platform Technology Center, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, OH, USA
| | - Christopher Hong
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
- Advanced Platform Technology Center, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, OH, USA
| | - Meera Bambroo
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
- Advanced Platform Technology Center, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, OH, USA
| | - Hannah Olivares
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
- Advanced Platform Technology Center, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, OH, USA
| | - Tejas Bajwa
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
- Advanced Platform Technology Center, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, OH, USA
| | - Jennifer Coleman
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
| | - Longshun Li
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
- Advanced Platform Technology Center, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, OH, USA
| | - William Memberg
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
- Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, OH, USA
| | - Jennifer Sweet
- Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, OH, USA
- Department of Neurological Surgery, University Hospitals Case Medical Center, Cleveland, OH, USA
| | - Hoda Amani Hamedani
- Advanced Platform Technology Center, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, OH, USA
- Department of Materials Science and Engineering, Case Western Reserve University, Cleveland, OH, USA
| | - Abhinav P Acharya
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
| | - Ana G Hernandez-Reynoso
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
- Department of Bioengineering, The University of Texas at Dallas, Richardson, TX, USA
| | - Curtis Donskey
- Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, OH, USA
- Division of Infectious Diseases & HIV Medicine in the Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - George Jaskiw
- Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, OH, USA
- Department of Psychiatry, Case Western Reserve University, Cleveland, OH, USA
| | - E Ricky Chan
- Cleveland Institute for Computational Biology, Case Western Reserve University, Cleveland, OH, USA
| | - Andrew J Shoffstall
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
- Advanced Platform Technology Center, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, OH, USA
| | - A Bolu Ajiboye
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
- Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, OH, USA
| | - Horst A von Recum
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
- Advanced Platform Technology Center, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, OH, USA
| | - Liangliang Zhang
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH, USA.
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, USA.
| | - Jeffrey R Capadona
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA.
- Advanced Platform Technology Center, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, OH, USA.
| |
Collapse
|
9
|
Wu F, Lin S, Luo H, Wang C, Liu J, Zhu X, Pang Y. Noncontact microbiota transplantation by core-shell microgel-enabled nonleakage envelopment. SCIENCE ADVANCES 2025; 11:eadr7373. [PMID: 39908366 DOI: 10.1126/sciadv.adr7373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 01/06/2025] [Indexed: 02/07/2025]
Abstract
Transplantation of beneficial bacteria to specific microbiota has been widely exploited to treat diseases by reshaping a healthy microbial structure. However, direct exposure of exogenous bacteria in vivo suffers from low bioavailability and infection risk. Here, we describe a noncontact microbiota transplantation system (NMTS) by core-shell microgel-enabled nonleakage envelopment. Bacteria are encapsulated into the core of core-shell microgels via two-step light-initiated emulsion polymerization of gelatin methacrylate. NMTS is versatile for biocontainment of diverse strains, showing near complete encapsulation and negligible influence on bacterial activity. As a proof-of-concept study on probiotic transplantation to the gut microbiota, NMTS demonstrates the shielding effect to protect sealed bacteria from intraluminal insults of low pH and bile acid, the toughness to prevent bacterial leakage during entire gastrointestinal passage and reduce infection risk, and the permeability to release beneficial metabolites and reconstruct a balanced intestinal microbial structure, proposing a contactless fashion for advanced microbiota transplantation.
Collapse
Affiliation(s)
- Feng Wu
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Sisi Lin
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Huilong Luo
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Chuhan Wang
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Department of Ophthalmology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200011, China
| | - Jinyao Liu
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Xinyuan Zhu
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yan Pang
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Department of Ophthalmology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200011, China
- School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
10
|
Lou F, Yan L, Luo S, Dong Y, Xu J, Kang N, Wang H, Liu Y, Pu J, Yang B, Cannon RD, Xie P, Ji P, Jin X. Dysbiotic oral microbiota-derived kynurenine, induced by chronic restraint stress, promotes head and neck squamous cell carcinoma by enhancing CD8 + T cell exhaustion. Gut 2025:gutjnl-2024-333479. [PMID: 39904603 DOI: 10.1136/gutjnl-2024-333479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 01/17/2025] [Indexed: 02/06/2025]
Abstract
BACKGROUND Chronic restraint stress (CRS) is a tumour-promoting factor. However, the underlying mechanism is unknown. OBJECTIVE We aimed to investigate whether CRS promotes head and neck squamous cell carcinoma (HNSCC) by altering the oral microbiota and related metabolites and whether kynurenine (Kyn) promotes HNSCC by modulating CD8+ T cells. DESIGN 4-nitroquinoline-1-oxide (4NQO)-treated mice were exposed to CRS. Germ-free mice treated with 4NQO received oral microbiota transplants from either CRS or control mouse donors. 16S rRNA gene sequencing and liquid chromatography-mass spectrometry were performed on mouse saliva, faecal and plasma samples to investigate alterations in their microbiota and metabolites. The effects of Kyn on HNSCC were studied using the 4NQO-induced HNSCC mouse model. RESULTS Mice subjected to CRS demonstrated a higher incidence of HNSCC and oral microbial dysbiosis than CRS-free control mice. Pseudomonas and Veillonella species were enriched while certain oral bacteria, including Corynebacterium and Staphylococcus species, were depleted with CRS exposure. Furthermore, CRS-altered oral microbiota promoted HNSCC formation, caused oral and gut barrier dysfunction, and induced a host metabolome shift with increased plasma Kyn in germ-free mice exposed to 4NQO treatment. Under stress conditions, we also found that Kyn activated aryl hydrocarbon receptor (AhR) nuclear translocation and deubiquitination in tumour-reactive CD8+ T cells, thereby promoting HNSCC tumourigenesis. CONCLUSION CRS-induced oral microbiota dysbiosis plays a protumourigenic role in HNSCC and can influence host metabolism. Mechanistically, under stress conditions, Kyn promotes CD8+ T cell exhaustion and HNSCC tumourigenesis through stabilising AhR by its deubiquitination.
Collapse
Affiliation(s)
- Fangzhi Lou
- College of Stomatology, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases, Chongqing, China
| | - Li Yan
- College of Medical Informatics, Chongqing Medical University, Chongqing, China
| | - Shihong Luo
- College of Stomatology, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases, Chongqing, China
| | - Yunmei Dong
- College of Stomatology, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases, Chongqing, China
| | - Jingyi Xu
- College of Stomatology, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases, Chongqing, China
| | - Ning Kang
- College of Stomatology, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases, Chongqing, China
| | - Haiyang Wang
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yiyun Liu
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Juncai Pu
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Bing Yang
- College of Stomatology, Chongqing Medical University, Chongqing, China
| | - Richard D Cannon
- Department of Oral Sciences, Faculty of Dentistry, Sir John Walsh Research Institute, University of Otago, Dunedin, New Zealand
| | - Peng Xie
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ping Ji
- College of Stomatology, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases, Chongqing, China
| | - Xin Jin
- College of Stomatology, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases, Chongqing, China
| |
Collapse
|
11
|
Won TH, Arifuzzaman M, Parkhurst CN, Miranda IC, Zhang B, Hu E, Kashyap S, Letourneau J, Jin WB, Fu Y, Guzior DV, Quinn RA, Guo CJ, David LA, Artis D, Schroeder FC. Host metabolism balances microbial regulation of bile acid signalling. Nature 2025; 638:216-224. [PMID: 39779854 PMCID: PMC11886927 DOI: 10.1038/s41586-024-08379-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 11/08/2024] [Indexed: 01/11/2025]
Abstract
Metabolites derived from the intestinal microbiota, including bile acids (BA), extensively modulate vertebrate physiology, including development1, metabolism2-4, immune responses5-7 and cognitive function8. However, to what extent host responses balance the physiological effects of microbiota-derived metabolites remains unclear9,10. Here, using untargeted metabolomics of mouse tissues, we identified a family of BA-methylcysteamine (BA-MCY) conjugates that are abundant in the intestine and dependent on vanin 1 (VNN1), a pantetheinase highly expressed in intestinal tissues. This host-dependent MCY conjugation inverts BA function in the hepatobiliary system. Whereas microbiota-derived free BAs function as agonists of the farnesoid X receptor (FXR) and negatively regulate BA production, BA-MCYs act as potent antagonists of FXR and promote expression of BA biosynthesis genes in vivo. Supplementation with stable-isotope-labelled BA-MCY increased BA production in an FXR-dependent manner, and BA-MCY supplementation in a mouse model of hypercholesteraemia decreased lipid accumulation in the liver, consistent with BA-MCYs acting as intestinal FXR antagonists. The levels of BA-MCY were reduced in microbiota-deficient mice and restored by transplantation of human faecal microbiota. Dietary intervention with inulin fibre further increased levels of both free BAs and BA-MCY levels, indicating that BA-MCY production by the host is regulated by levels of microbiota-derived free BAs. We further show that diverse BA-MCYs are also present in human serum. Together, our results indicate that BA-MCY conjugation by the host balances host-dependent and microbiota-dependent metabolic pathways that regulate FXR-dependent physiology.
Collapse
Affiliation(s)
- Tae Hyung Won
- Department of Chemistry and Chemical Biology, Boyce Thompson Institute, Cornell University, Ithaca, NY, USA
- College of Pharmacy and Institute of Pharmaceutical Sciences, CHA University, Pocheon-si, Republic of Korea
| | - Mohammad Arifuzzaman
- Joan and Sanford I. Weill Department of Medicine, Jill Roberts Institute for Research in Inflammatory Bowel Disease, Division of Gastroenterology and Hepatology, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Friedman Center for Nutrition and Inflammation, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Christopher N Parkhurst
- Joan and Sanford I. Weill Department of Medicine, Jill Roberts Institute for Research in Inflammatory Bowel Disease, Division of Gastroenterology and Hepatology, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Isabella C Miranda
- Joan and Sanford I. Weill Department of Medicine, Jill Roberts Institute for Research in Inflammatory Bowel Disease, Division of Gastroenterology and Hepatology, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Bingsen Zhang
- Department of Chemistry and Chemical Biology, Boyce Thompson Institute, Cornell University, Ithaca, NY, USA
| | - Elin Hu
- Joan and Sanford I. Weill Department of Medicine, Jill Roberts Institute for Research in Inflammatory Bowel Disease, Division of Gastroenterology and Hepatology, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Friedman Center for Nutrition and Inflammation, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Sanchita Kashyap
- Joan and Sanford I. Weill Department of Medicine, Jill Roberts Institute for Research in Inflammatory Bowel Disease, Division of Gastroenterology and Hepatology, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Friedman Center for Nutrition and Inflammation, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Jeffrey Letourneau
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC, USA
| | - Wen-Bing Jin
- Joan and Sanford I. Weill Department of Medicine, Jill Roberts Institute for Research in Inflammatory Bowel Disease, Division of Gastroenterology and Hepatology, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Yousi Fu
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA
| | - Douglas V Guzior
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA
- Department of Microbiology, Genetics, and Immunology, Michigan State University, East Lansing, MI, USA
| | - Robert A Quinn
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA
| | - Chun-Jun Guo
- Joan and Sanford I. Weill Department of Medicine, Jill Roberts Institute for Research in Inflammatory Bowel Disease, Division of Gastroenterology and Hepatology, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Friedman Center for Nutrition and Inflammation, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Lawrence A David
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC, USA
- Program in Computational Biology and Bioinformatics, Duke University School of Medicine, Durham, NC, USA
| | - David Artis
- Joan and Sanford I. Weill Department of Medicine, Jill Roberts Institute for Research in Inflammatory Bowel Disease, Division of Gastroenterology and Hepatology, Weill Cornell Medicine, Cornell University, New York, NY, USA.
- Friedman Center for Nutrition and Inflammation, Weill Cornell Medicine, Cornell University, New York, NY, USA.
- Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY, USA.
- Allen Discovery Center for Neuroimmune Interactions, Weill Cornell Medicine, Cornell University, New York, NY, USA.
| | - Frank C Schroeder
- Department of Chemistry and Chemical Biology, Boyce Thompson Institute, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
12
|
Ayyanar MP, Vijayan M. A review on gut microbiota and miRNA crosstalk: implications for Alzheimer's disease. GeroScience 2025; 47:339-385. [PMID: 39562408 PMCID: PMC11872870 DOI: 10.1007/s11357-024-01432-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 11/07/2024] [Indexed: 11/21/2024] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder characterized by cognitive decline and progressive neuronal damage. Recent research has highlighted the significant roles of the gut microbiota and microRNAs (miRNAs) in the pathogenesis of AD. This review explores the intricate interaction between gut microbiota and miRNAs, emphasizing their combined impact on Alzheimer's progression. First, we discuss the bidirectional communication within the gut-brain axis and how gut dysbiosis contributes to neuroinflammation and neurodegeneration in AD. Changes in gut microbiota composition in Alzheimer's patients have been linked to inflammation, which exacerbates disease progression. Next, we delve into the biology of miRNAs, focusing on their roles in gene regulation, neurodevelopment, and neurodegeneration. Dysregulated miRNAs are implicated in AD pathogenesis, influencing key processes like inflammation, tau pathology, and amyloid deposition. We then examine how the gut microbiota modulates miRNA expression, particularly in the brain, potentially altering neuroinflammatory responses and synaptic plasticity. The interplay between gut microbiota and miRNAs also affects blood-brain barrier integrity, further contributing to Alzheimer's pathology. Lastly, we explore therapeutic strategies targeting this gut microbiota-miRNA axis, including probiotics, prebiotics, and dietary interventions, aiming to modulate miRNA expression and improve AD outcomes. While promising, challenges remain in fully elucidating these interactions and translating them into effective therapies. This review highlights the importance of understanding the gut microbiota-miRNA relationship in AD, offering potential pathways for novel therapeutic approaches aimed at mitigating the disease's progression.
Collapse
Affiliation(s)
- Maruthu Pandian Ayyanar
- Department of Biology, The Gandhigram Rural Institute (Deemed to be University), Gandhigram, 624302, Tamil Nadu, India
| | - Murali Vijayan
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, 79430, USA.
| |
Collapse
|
13
|
Tao S, Wu Y, Xiao L, Huang Y, Wang H, Tang Y, Liu S, Liu Y, Ma Q, Yin Y, Dai M, Xie M, Cai J, Zhao Z, Lv Q, Zhang J, Zhang M, Wei M, Chen Y, Li M, Wang Q. Alterations in fecal bacteriome virome interplay and microbiota-derived dysfunction in patients with schizophrenia. Transl Psychiatry 2025; 15:35. [PMID: 39880843 PMCID: PMC11779829 DOI: 10.1038/s41398-025-03239-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 12/17/2024] [Accepted: 01/14/2025] [Indexed: 01/31/2025] Open
Abstract
Rising studies have consistently reported gut bacteriome alterations in schizophrenia (SCZ). However, little is known about the role of the gut virome on shaping the gut bacteriome in SCZ. Here in, we sequenced the fecal virome, bacteriome, and host peripheral metabolome in 49 SCZ patients and 49 health controls (HCs). We compared the gut bacterial community composition and specific abundant bacteria in SCZ patients and HCs. Specific gut viruses and host peripheral metabolites co-occurring with differential bacteria were identified using Multiple Co-inertia Analysis (MCIA). Additionally, we construct a latent serial mediation model (SMM) to investigate the effect of the gut virome on SCZ through the bacteriome and host metabolic profile. SCZ patients exhibited a decreased gut bacterial β-diversity compared to HCs, with seven differentially abundant bacteria, including Coprobacillaceae, Enterococcaceae etc. Gut viruses including Suoliviridae and Rountreeviridae, co-occur with these SCZ-related bacteria. We found that the viral-bacterial transkingdom correlations observed in HCs were dramatically lost in SCZ. The altered correlations profile observed in SCZ may impact microbiota-derived peripheral metabolites enriched in the bile acids pathway, eicosanoids pathway, and others, contributing to host immune dysfunction and inflammation. The SMM model suggested potential causal chains between gut viruses and SCZ, indicating that the effect of gut virome on SCZ is significantly mediated by bacteriome and metabolites. In conclusion, these findings provide a comprehensive perspective on the role of gut microbiota in the pathogenesis of SCZ. They reveal that patients with schizophrenia harbor an abnormal virome-bacteriome ecology, shedding light on the potential development of microbial therapeutics.
Collapse
Affiliation(s)
- Shiwan Tao
- Mental Health Center, West China Hospital of Sichuan University, Chengdu, Sichuan, China
- Sichuan Clinical Medical Research Center for Mental Disorders, Chengdu, Sichuan, China
- Mental Health Center and Psychiatric Laboratory, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Yulu Wu
- Mental Health Center, West China Hospital of Sichuan University, Chengdu, Sichuan, China
- Sichuan Clinical Medical Research Center for Mental Disorders, Chengdu, Sichuan, China
| | - Liling Xiao
- Mental Health Center, West China Hospital of Sichuan University, Chengdu, Sichuan, China
- Sichuan Clinical Medical Research Center for Mental Disorders, Chengdu, Sichuan, China
| | - Yunqi Huang
- Mental Health Center, West China Hospital of Sichuan University, Chengdu, Sichuan, China
- Sichuan Clinical Medical Research Center for Mental Disorders, Chengdu, Sichuan, China
| | - Han Wang
- Mental Health Center, West China Hospital of Sichuan University, Chengdu, Sichuan, China
- Sichuan Clinical Medical Research Center for Mental Disorders, Chengdu, Sichuan, China
| | - Yiguo Tang
- Mental Health Center, West China Hospital of Sichuan University, Chengdu, Sichuan, China
- Sichuan Clinical Medical Research Center for Mental Disorders, Chengdu, Sichuan, China
| | - Siyi Liu
- Mental Health Center, West China Hospital of Sichuan University, Chengdu, Sichuan, China
- Sichuan Clinical Medical Research Center for Mental Disorders, Chengdu, Sichuan, China
| | - Yunjia Liu
- Mental Health Center, West China Hospital of Sichuan University, Chengdu, Sichuan, China
- Sichuan Clinical Medical Research Center for Mental Disorders, Chengdu, Sichuan, China
| | - Qianshu Ma
- Mental Health Center, West China Hospital of Sichuan University, Chengdu, Sichuan, China
- Sichuan Clinical Medical Research Center for Mental Disorders, Chengdu, Sichuan, China
| | - Yubing Yin
- Mental Health Center, West China Hospital of Sichuan University, Chengdu, Sichuan, China
- Sichuan Clinical Medical Research Center for Mental Disorders, Chengdu, Sichuan, China
| | - Minhan Dai
- Mental Health Center, West China Hospital of Sichuan University, Chengdu, Sichuan, China
- Sichuan Clinical Medical Research Center for Mental Disorders, Chengdu, Sichuan, China
| | - Min Xie
- Mental Health Center, West China Hospital of Sichuan University, Chengdu, Sichuan, China
- Sichuan Clinical Medical Research Center for Mental Disorders, Chengdu, Sichuan, China
- Mental Health Center and Psychiatric Laboratory, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Jia Cai
- Mental Health Center, West China Hospital of Sichuan University, Chengdu, Sichuan, China
- Sichuan Clinical Medical Research Center for Mental Disorders, Chengdu, Sichuan, China
- Mental Health Center and Psychiatric Laboratory, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Zhengyang Zhao
- Mental Health Center, West China Hospital of Sichuan University, Chengdu, Sichuan, China
- Sichuan Clinical Medical Research Center for Mental Disorders, Chengdu, Sichuan, China
- Mental Health Center and Psychiatric Laboratory, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Qiuyue Lv
- Mental Health Center, West China Hospital of Sichuan University, Chengdu, Sichuan, China
- Sichuan Clinical Medical Research Center for Mental Disorders, Chengdu, Sichuan, China
- Mental Health Center and Psychiatric Laboratory, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Jiashuo Zhang
- Mental Health Center, West China Hospital of Sichuan University, Chengdu, Sichuan, China
- Sichuan Clinical Medical Research Center for Mental Disorders, Chengdu, Sichuan, China
- Mental Health Center and Psychiatric Laboratory, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Mengting Zhang
- Mental Health Center, West China Hospital of Sichuan University, Chengdu, Sichuan, China
- Sichuan Clinical Medical Research Center for Mental Disorders, Chengdu, Sichuan, China
| | - Menghan Wei
- Mental Health Center, West China Hospital of Sichuan University, Chengdu, Sichuan, China
- Sichuan Clinical Medical Research Center for Mental Disorders, Chengdu, Sichuan, China
| | - Yang Chen
- Mental Health Center, West China Hospital of Sichuan University, Chengdu, Sichuan, China
- Sichuan Clinical Medical Research Center for Mental Disorders, Chengdu, Sichuan, China
| | - Mingli Li
- Mental Health Center, West China Hospital of Sichuan University, Chengdu, Sichuan, China
- Sichuan Clinical Medical Research Center for Mental Disorders, Chengdu, Sichuan, China
- Mental Health Center and Psychiatric Laboratory, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Qiang Wang
- Mental Health Center, West China Hospital of Sichuan University, Chengdu, Sichuan, China.
- Sichuan Clinical Medical Research Center for Mental Disorders, Chengdu, Sichuan, China.
- Mental Health Center and Psychiatric Laboratory, West China Hospital of Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
14
|
Su D, Li M, Xie Y, Xu Z, Lv G, Jiu Y, Lin J, Chang CJ, Chen H, Cheng F. Gut commensal bacteria Parabacteroides goldsteinii-derived outer membrane vesicles suppress skin inflammation in psoriasis. J Control Release 2025; 377:127-145. [PMID: 39532207 DOI: 10.1016/j.jconrel.2024.11.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 10/19/2024] [Accepted: 11/07/2024] [Indexed: 11/16/2024]
Abstract
Despite gut microbiota-derived extracellular vesicles (EVs) serving as pivotal mediators in bacteria-host cell interactions, their potential role in modulating skin inflammation remains poorly understood. Here, we developed strategies for mass production of Parabacteroides goldsteinii-derived outer membrane vesicles (Pg OMVs), commonly known as EVs. We found that orally administered Pg OMVs can reach the colon, traverse the intestinal barrier, and circulate to the inflamed skin of psoriasis-like mice, resulting in reduced epidermal hyperplasia, suppressed infiltration of inflammatory cells in the skin lesions, and effective amelioration of both skin and systemic inflammation. Additionally, subcutaneous injection of thermosensitive PF-127 hydrogel loaded with Pg OMVs exerts similar immunomodulatory effects, allowing sustained release of Pg OMVs into skin cells, effectively suppressing skin inflammation and ameliorating symptoms of psoriasis. This study unveils the importance of gut microbiota-derived OMVs, which can target inflamed skin via both the gut-skin axis and local skin administration, providing a promising alternative to live bacteria therapy for the treatment of skin inflammatory diseases.
Collapse
Affiliation(s)
- Dandan Su
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Manchun Li
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Yuedong Xie
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Zhanxue Xu
- Shenzhen Key Laboratory of Chinese Medicine Active Substance Screening and Translational Research, Department of Pharmacy, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen 518107, China
| | - Guowen Lv
- College of Life Sciences, Northwest A&F University, Yangling 712100, China
| | - Yaming Jiu
- Unit of Cell Biology and Imaging Study of Pathogen Host Interaction, The Center for Microbes, Development and Health, Key Laboratory of Molecular Virology and Immunology, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Yuquan Road No. 19(A), Shijingshan District, Beijing 100049, China
| | - Jingxiong Lin
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Chih-Jung Chang
- Medical Research Center and Xiamen Chang Gung Allergology Consortium, Xiamen Chang Gung Hospital, Xiamen 361028, China; School of Medicine, Huaqiao University, Quanzhou 362021, China.
| | - Hongbo Chen
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China.
| | - Fang Cheng
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China.
| |
Collapse
|
15
|
Zhou X, Wu Y, Zhu Z, Lu C, Zhang C, Zeng L, Xie F, Zhang L, Zhou F. Mucosal immune response in biology, disease prevention and treatment. Signal Transduct Target Ther 2025; 10:7. [PMID: 39774607 PMCID: PMC11707400 DOI: 10.1038/s41392-024-02043-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 09/05/2024] [Accepted: 10/27/2024] [Indexed: 01/11/2025] Open
Abstract
The mucosal immune system, as the most extensive peripheral immune network, serves as the frontline defense against a myriad of microbial and dietary antigens. It is crucial in preventing pathogen invasion and establishing immune tolerance. A comprehensive understanding of mucosal immunity is essential for developing treatments that can effectively target diseases at their entry points, thereby minimizing the overall impact on the body. Despite its importance, our knowledge of mucosal immunity remains incomplete, necessitating further research. The outbreak of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has underscored the critical role of mucosal immunity in disease prevention and treatment. This systematic review focuses on the dynamic interactions between mucosa-associated lymphoid structures and related diseases. We delve into the basic structures and functions of these lymphoid tissues during disease processes and explore the intricate regulatory networks and mechanisms involved. Additionally, we summarize novel therapies and clinical research advances in the prevention of mucosal immunity-related diseases. The review also addresses the challenges in developing mucosal vaccines, which aim to induce specific immune responses while maintaining tolerance to non-pathogenic microbes. Innovative therapies, such as nanoparticle vaccines and inhalable antibodies, show promise in enhancing mucosal immunity and offer potential for improved disease prevention and treatment.
Collapse
Affiliation(s)
- Xiaoxue Zhou
- School of Medicine, Hangzhou City University, Hangzhou, China
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Yuchen Wu
- The First School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zhipeng Zhu
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Chu Lu
- The First Affiliated Hospital, the Institutes of Biology and Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Chunwu Zhang
- The First School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Linghui Zeng
- School of Medicine, Hangzhou City University, Hangzhou, China
| | - Feng Xie
- The First Affiliated Hospital, the Institutes of Biology and Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China.
| | - Long Zhang
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, China.
- The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China.
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, China.
| | - Fangfang Zhou
- The First Affiliated Hospital, the Institutes of Biology and Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China.
| |
Collapse
|
16
|
Chiaro TR, Greenewood M, Bauer KM, Ost KS, Stephen-Victor E, Murphy M, Weis AM, Nelson MC, Hill JH, Bell R, Voth W, Jackson T, Klag KA, O'Connell RM, Zac Stephens W, Round JL. Clec12a controls colitis by tempering inflammation and restricting expansion of specific commensals. Cell Host Microbe 2025; 33:89-103.e7. [PMID: 39788099 PMCID: PMC11824846 DOI: 10.1016/j.chom.2024.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 11/02/2024] [Accepted: 12/06/2024] [Indexed: 01/12/2025]
Abstract
Microbiota composition regulates colitis severity, yet the innate immune mechanisms that control commensal communities and prevent disease remain unclear. We show that the innate immune receptor, Clec12a, impacts colitis severity by regulating microbiota composition. Transplantation of microbiota from a Clec12a-/- animal is sufficient to worsen colitis in wild-type mice. Clec12a-/- mice have expanded Faecalibaculum rodentium, and treatment with F. rodentium similarly exacerbates disease. However, Clec12a-/- animals are resistant to colitis development when rederived into an 11-member community, underscoring the role of specific species. Colitis in Clec12a-/- mice is dependent on monocytes, and cytokine and sequencing analysis in Clec12a-/- macrophages and serum shows enhanced inflammation with a reduction in phagocytic genes. F. rodentium specifically binds to Clec12a, and Clec12a-/--deficient macrophages are impaired in their ability to phagocytose F. rodentium. Thus, Clec12a contributes to an innate-immune-surveillance mechanism that controls the expansion of potentially harmful commensals while limiting inflammation.
Collapse
Affiliation(s)
- Tyson R Chiaro
- University of Utah School of Medicine, Department of Pathology, Division of Microbiology and Immunology, Salt Lake City, UT 84211, USA
| | - Morgan Greenewood
- University of Utah School of Medicine, Department of Pathology, Division of Microbiology and Immunology, Salt Lake City, UT 84211, USA
| | - Kaylyn M Bauer
- University of Utah School of Medicine, Department of Pathology, Division of Microbiology and Immunology, Salt Lake City, UT 84211, USA
| | - Kyla S Ost
- University of Utah School of Medicine, Department of Pathology, Division of Microbiology and Immunology, Salt Lake City, UT 84211, USA
| | - Emmanuel Stephen-Victor
- University of Utah School of Medicine, Department of Pathology, Division of Microbiology and Immunology, Salt Lake City, UT 84211, USA
| | - Michaela Murphy
- University of Utah School of Medicine, Department of Pathology, Division of Microbiology and Immunology, Salt Lake City, UT 84211, USA
| | - Allison M Weis
- University of Utah School of Medicine, Department of Pathology, Division of Microbiology and Immunology, Salt Lake City, UT 84211, USA
| | - Morgan C Nelson
- University of Utah School of Medicine, Department of Pathology, Division of Microbiology and Immunology, Salt Lake City, UT 84211, USA
| | - Jennifer H Hill
- University of Utah School of Medicine, Department of Pathology, Division of Microbiology and Immunology, Salt Lake City, UT 84211, USA
| | - Rickesha Bell
- University of Utah School of Medicine, Department of Pathology, Division of Microbiology and Immunology, Salt Lake City, UT 84211, USA
| | - Warren Voth
- University of Utah School of Medicine, Department of Pathology, Division of Microbiology and Immunology, Salt Lake City, UT 84211, USA
| | - Taylor Jackson
- University of Utah School of Medicine, Department of Pathology, Division of Microbiology and Immunology, Salt Lake City, UT 84211, USA
| | - Kendra A Klag
- University of Utah School of Medicine, Department of Pathology, Division of Microbiology and Immunology, Salt Lake City, UT 84211, USA
| | - Ryan M O'Connell
- University of Utah School of Medicine, Department of Pathology, Division of Microbiology and Immunology, Salt Lake City, UT 84211, USA
| | - W Zac Stephens
- University of Utah School of Medicine, Department of Pathology, Division of Microbiology and Immunology, Salt Lake City, UT 84211, USA
| | - June L Round
- University of Utah School of Medicine, Department of Pathology, Division of Microbiology and Immunology, Salt Lake City, UT 84211, USA.
| |
Collapse
|
17
|
Kellogg TD, Ceglia S, Mortzfeld BM, Tanna TM, Zeamer AL, Mancini MR, Foley SE, Ward DV, Bhattarai SK, McCormick BA, Reboldi A, Bucci V. Succinate-producing microbiota drives tuft cell hyperplasia to protect against Clostridioides difficile. J Exp Med 2025; 222:e20232055. [PMID: 39589553 PMCID: PMC11602550 DOI: 10.1084/jem.20232055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 09/26/2024] [Accepted: 10/23/2024] [Indexed: 11/27/2024] Open
Abstract
The role of microbes and their metabolites in modulating tuft cell (TC) dynamics in the large intestine and the relevance of this pathway to infections is unknown. Here, we uncover that microbiome-driven colonic TC hyperplasia protects against Clostridioides difficile infection. Using selective antibiotics, we demonstrate increased type 2 cytokines and TC hyperplasia in the colon but not in the ileum. We demonstrate the causal role of the microbiome in modulating this phenotype using fecal matter transplantation and administration of consortia of succinate-producing bacteria. Administration of succinate production-deficient microbes shows a reduced response in a Pou2f3-dependent manner despite similar intestinal colonization. Finally, antibiotic-treated mice prophylactically administered with succinate-producing bacteria show increased protection against C. difficile-induced morbidity and mortality. This effect is nullified in Pou2f3-/- mice, confirming that the protection occurs via the TC pathway. We propose that activation of TCs by the microbiota in the colon is a mechanism evolved by the host to counterbalance microbiome-derived cues that facilitate invasion by pathogens.
Collapse
Affiliation(s)
- Tasia D. Kellogg
- Department of Microbiology, UMass Chan Medical School, Worcester, MA, USA
- Program in Microbiome Dynamics, UMass Chan Medical School, Worcester, MA, USA
- Immunology and Microbial Pathogenesis Program, UMass Chan Medical School, Worcester, MA, USA
| | - Simona Ceglia
- Immunology and Microbial Pathogenesis Program, UMass Chan Medical School, Worcester, MA, USA
- Department of Pathology, UMass Chan Medical School, Worcester, MA, USA
| | - Benedikt M. Mortzfeld
- Department of Microbiology, UMass Chan Medical School, Worcester, MA, USA
- Program in Microbiome Dynamics, UMass Chan Medical School, Worcester, MA, USA
- Immunology and Microbial Pathogenesis Program, UMass Chan Medical School, Worcester, MA, USA
| | - Tanvi M. Tanna
- Department of Pathology, UMass Chan Medical School, Worcester, MA, USA
| | - Abigail L. Zeamer
- Department of Microbiology, UMass Chan Medical School, Worcester, MA, USA
- Program in Microbiome Dynamics, UMass Chan Medical School, Worcester, MA, USA
| | - Matthew R. Mancini
- Department of Microbiology, UMass Chan Medical School, Worcester, MA, USA
- Program in Microbiome Dynamics, UMass Chan Medical School, Worcester, MA, USA
| | - Sage E. Foley
- Department of Microbiology, UMass Chan Medical School, Worcester, MA, USA
| | - Doyle V. Ward
- Department of Microbiology, UMass Chan Medical School, Worcester, MA, USA
- Program in Microbiome Dynamics, UMass Chan Medical School, Worcester, MA, USA
| | - Shakti K. Bhattarai
- Department of Microbiology, UMass Chan Medical School, Worcester, MA, USA
- Program in Microbiome Dynamics, UMass Chan Medical School, Worcester, MA, USA
- Immunology and Microbial Pathogenesis Program, UMass Chan Medical School, Worcester, MA, USA
| | - Beth A. McCormick
- Department of Microbiology, UMass Chan Medical School, Worcester, MA, USA
- Program in Microbiome Dynamics, UMass Chan Medical School, Worcester, MA, USA
- Immunology and Microbial Pathogenesis Program, UMass Chan Medical School, Worcester, MA, USA
| | - Andrea Reboldi
- Immunology and Microbial Pathogenesis Program, UMass Chan Medical School, Worcester, MA, USA
- Department of Pathology, UMass Chan Medical School, Worcester, MA, USA
| | - Vanni Bucci
- Department of Microbiology, UMass Chan Medical School, Worcester, MA, USA
- Program in Microbiome Dynamics, UMass Chan Medical School, Worcester, MA, USA
- Immunology and Microbial Pathogenesis Program, UMass Chan Medical School, Worcester, MA, USA
| |
Collapse
|
18
|
Anwer EKE, Ajagbe M, Sherif M, Musaibah AS, Mahmoud S, ElBanbi A, Abdelnaser A. Gut Microbiota Secondary Metabolites: Key Roles in GI Tract Cancers and Infectious Diseases. Biomedicines 2025; 13:100. [PMID: 39857684 PMCID: PMC11762448 DOI: 10.3390/biomedicines13010100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 12/23/2024] [Accepted: 12/27/2024] [Indexed: 01/27/2025] Open
Abstract
The gut microbiota, a dynamic ecosystem of trillions of microorganisms, produces secondary metabolites that profoundly influence host health. Recent research has highlighted the significant role of these metabolites, particularly short-chain fatty acids, indoles, and bile acids, in modulating immune responses, impacting epigenetic mechanisms, and contributing to disease processes. In gastrointestinal (GI) cancers such as colorectal, liver, and gastric cancer, microbial metabolites can drive tumorigenesis by promoting inflammation, DNA damage, and immune evasion. Conversely, these same metabolites hold therapeutic promise, potentially enhancing responses to chemotherapy and immunotherapy and even directly suppressing tumor growth. In addition, gut microbial metabolites play crucial roles in infectious disease susceptibility and resilience, mediating immune pathways that impact pathogen resistance. By consolidating recent insights into the gut microbiota's role in shaping disease and health, this review underscores the therapeutic potential of targeting microbiome-derived metabolites for treating GI cancers and infectious diseases and calls for further research into microbiome-based interventions.
Collapse
Affiliation(s)
- Eman K. E. Anwer
- Biotechnology Graduate Program, School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt; (E.K.E.A.); (M.A.); (M.S.)
- Department of Microbiology and Immunology, Faculty of Pharmacy, Modern University for Technology and Information, Cairo 4411601, Egypt
| | - Muhammad Ajagbe
- Biotechnology Graduate Program, School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt; (E.K.E.A.); (M.A.); (M.S.)
| | - Moustafa Sherif
- Biotechnology Graduate Program, School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt; (E.K.E.A.); (M.A.); (M.S.)
| | - Abobaker S. Musaibah
- Institute of Global Health and Human Ecology, School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt; (A.S.M.); (S.M.)
| | - Shuaib Mahmoud
- Institute of Global Health and Human Ecology, School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt; (A.S.M.); (S.M.)
| | - Ali ElBanbi
- Biology Department, School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt;
| | - Anwar Abdelnaser
- Institute of Global Health and Human Ecology, School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt; (A.S.M.); (S.M.)
| |
Collapse
|
19
|
Lakhanpal S, Aggarwal K, Kaur H, Kanwar K, Gupta V, Bhavsar J, Jain R. Cardiovascular disease: extraintestinal manifestation of inflammatory bowel disease. Intest Res 2025; 23:23-36. [PMID: 38712363 PMCID: PMC11834363 DOI: 10.5217/ir.2023.00104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 10/22/2023] [Accepted: 11/06/2023] [Indexed: 05/08/2024] Open
Abstract
Inflammatory bowel disease (IBD) is a spectrum of diseases characterized by the interplay of the aberrant immune system, genetic factors, environmental factors, and intestinal microbiota, resulting in relapsing inflammation of the gastrointestinal tract. Underlying pro-inflammatory state and immune dysregulation act as a catalyst for increasing the likelihood of developing extraintestinal manifestations, including cardiovascular diseases (CVD) like atherosclerosis, pericarditis, myocarditis, venous and arterial thromboembolism, arrhythmias, despite a lower prevalence of classic CVD risk factors, like high body mass index or dyslipidemia compared to the general population. Chronic inflammation damages endothelium resulting in the recruitment of inflammatory cells, which induce cytotoxicity, lipoprotein oxidation, and matrix degradation, which increases the risk of atherosclerosis. Additionally, intestinal dysbiosis disrupts the intestinal mucosal barrier, releasing endotoxins and lipopolysaccharides into circulation, further exaggerating the atherosclerotic process. Abnormal collagen metabolism and alteration of nitric oxide-mediated vasodilation lead to blood pressure dysregulation in patients with IBD. Therefore, it is essential to make lifestyle modifications like smoking cessation, dietary changes, and increasing physical activity with adherence to medication to mitigate the risk of developing CVD in patients with IBD. This article reviews the potential links between IBD and the increased risk of CVD in such individuals.
Collapse
Affiliation(s)
- Samridhi Lakhanpal
- Department of Internal Medicine, Government Medical College, Amritsar, India
| | - Kanishk Aggarwal
- Department of Internal Medicine, Dayanand Medical College & Hospital, Ludhiana, India
| | - Harmanjit Kaur
- Department of Internal Medicine, Government Medical College, Patiala, India
| | - Kunal Kanwar
- Department of Internal Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Vasu Gupta
- Department of Internal Medicine, Dayanand Medical College & Hospital, Ludhiana, India
| | - Jill Bhavsar
- Department of Internal Medicine, Baroda Medical College, Baroda, India
| | - Rohit Jain
- Department of Internal Medicine, Penn State Milton S. Hershey Medical Center, Hershey, PA, USA
| |
Collapse
|
20
|
Sandys O, Stokkers PCF, Te Velde AA. DAMP-ing IBD: Extinguish the Fire and Prevent Smoldering. Dig Dis Sci 2025; 70:49-73. [PMID: 38963463 PMCID: PMC11761125 DOI: 10.1007/s10620-024-08523-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 06/04/2024] [Indexed: 07/05/2024]
Abstract
In inflammatory bowel diseases (IBD), the most promising therapies targeting cytokines or immune cell trafficking demonstrate around 40% efficacy. As IBD is a multifactorial inflammation of the intestinal tract, a single-target approach is unlikely to solve this problem, necessitating an alternative strategy that addresses its variability. One approach often overlooked by the pharmaceutically driven therapeutic options is to address the impact of environmental factors. This is somewhat surprising considering that IBD is increasingly viewed as a condition heavily influenced by such factors, including diet, stress, and environmental pollution-often referred to as the "Western lifestyle". In IBD, intestinal responses result from a complex interplay among the genetic background of the patient, molecules, cells, and the local inflammatory microenvironment where danger- and microbe-associated molecular patterns (D/MAMPs) provide an adjuvant-rich environment. Through activating DAMP receptors, this array of pro-inflammatory factors can stimulate, for example, the NLRP3 inflammasome-a major amplifier of the inflammatory response in IBD, and various immune cells via non-specific bystander activation of myeloid cells (e.g., macrophages) and lymphocytes (e.g., tissue-resident memory T cells). Current single-target biological treatment approaches can dampen the immune response, but without reducing exposure to environmental factors of IBD, e.g., by changing diet (reducing ultra-processed foods), the adjuvant-rich landscape is never resolved and continues to drive intestinal mucosal dysregulation. Thus, such treatment approaches are not enough to put out the inflammatory fire. The resultant smoldering, low-grade inflammation diminishes physiological resilience of the intestinal (micro)environment, perpetuating the state of chronic disease. Therefore, our hypothesis posits that successful interventions for IBD must address the complexity of the disease by simultaneously targeting all modifiable aspects: innate immunity cytokines and microbiota, adaptive immunity cells and cytokines, and factors that relate to the (micro)environment. Thus the disease can be comprehensively treated across the nano-, meso-, and microscales, rather than with a focus on single targets. A broader perspective on IBD treatment that also includes options to adapt the DAMPing (micro)environment is warranted.
Collapse
Affiliation(s)
- Oliver Sandys
- Tytgat Institute for Liver and Intestinal Research, AmsterdamUMC, AGEM, University of Amsterdam, Amsterdam, The Netherlands
| | - Pieter C F Stokkers
- Department of Gastroenterology and Hepatology, OLVG West, Amsterdam, The Netherlands
| | - Anje A Te Velde
- Tytgat Institute for Liver and Intestinal Research, AmsterdamUMC, AGEM, University of Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
21
|
Ciernikova S, Sevcikova A, Novisedlakova M, Mego M. Insights into the Relationship Between the Gut Microbiome and Immune Checkpoint Inhibitors in Solid Tumors. Cancers (Basel) 2024; 16:4271. [PMID: 39766170 PMCID: PMC11674129 DOI: 10.3390/cancers16244271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 12/16/2024] [Accepted: 12/20/2024] [Indexed: 01/11/2025] Open
Abstract
Immunotherapy with immune checkpoint inhibitors represents a revolutionary approach to the treatment of solid tumors, including malignant melanoma, lung cancer, and gastrointestinal malignancies. Anti-CTLA-4 and anti-PD-1/PDL-1 therapies provide prolonged survival for cancer patients, but their efficacy and safety are highly variable. This review focuses on the crucial role of the gut microbiome in modulating the efficacy and toxicity of immune checkpoint blockade. Studies suggest that the composition of the gut microbiome may influence the response to immunotherapy, with specific bacterial strains able to promote an anti-tumor immune response. On the other hand, dysbiosis may increase the risk of adverse effects, such as immune-mediated colitis. Interventions aimed at modulating the microbiome, including the use of probiotics, prebiotics, fecal microbial transplantation, or dietary modifications, represent promising strategies to increase treatment efficacy and reduce toxicity. The combination of immunotherapy with the microbiome-based strategy opens up new possibilities for personalized treatment. In addition, factors such as physical activity and nutritional supplementation may indirectly influence the gut ecosystem and consequently improve treatment outcomes in refractory patients, leading to enhanced patient responses and prolonged survival.
Collapse
Affiliation(s)
- Sona Ciernikova
- Department of Genetics, Cancer Research Institute, Biomedical Research Center of the Slovak Academy of Sciences, Dubravska Cesta 9, 845 05 Bratislava, Slovakia;
| | - Aneta Sevcikova
- Department of Genetics, Cancer Research Institute, Biomedical Research Center of the Slovak Academy of Sciences, Dubravska Cesta 9, 845 05 Bratislava, Slovakia;
| | - Maria Novisedlakova
- Department of Oncology, Hospital Bory, Ivana Bukovčana 6118, 841 08 Bratislava, Slovakia;
| | - Michal Mego
- 2nd Department of Oncology, Faculty of Medicine, Comenius University, Bratislava and National Cancer Institute, Klenova 1, 833 10 Bratislava, Slovakia;
| |
Collapse
|
22
|
Cao EY, Burrows K, Chiaranunt P, Popovic A, Zhou X, Xie C, Thakur A, Britton G, Spindler M, Ngai L, Tai SL, Dasoveanu DC, Nguyen A, Faith JJ, Parkinson J, Gommerman JL, Mortha A. The protozoan commensal Tritrichomonas musculis is a natural adjuvant for mucosal IgA. J Exp Med 2024; 221:e20221727. [PMID: 39535524 PMCID: PMC11561467 DOI: 10.1084/jem.20221727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 08/29/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024] Open
Abstract
Immunoglobulin (Ig) A supports mucosal immune homeostasis and host-microbiota interactions. While commensal bacteria are known for their ability to promote IgA, the role of non-bacterial commensal microbes in the induction of IgA remains elusive. Here, we demonstrate that permanent colonization with the protozoan commensal Tritrichomonas musculis (T.mu) promotes T cell-dependent, IgA class-switch recombination, and intestinal accumulation of IgA-secreting plasma cells (PC). T.mu colonization specifically drives the expansion of T follicular helper cells and a unique ICOS+ non-Tfh cell population, accompanied by an increase in germinal center B cells. Blockade of ICOS:ICOSL co-stimulation or MHCII-expression on B cells is central for the induction of IgA following colonization by T.mu, implicating a previously underappreciated mode of IgA induction following protozoan commensal colonization. Finally, T.mu further improves the induction of IgA-secreting PC specific to orally ingested antigens and their peripheral dissemination, identifying T.mu as a "natural adjuvant" for IgA. Collectively, these findings propose a protozoa-driven mode of IgA induction to support intestinal immune homeostasis.
Collapse
Affiliation(s)
- Eric Yixiao Cao
- Department of Immunology, University of Toronto, Toronto, Canada
| | - Kyle Burrows
- Department of Immunology, University of Toronto, Toronto, Canada
| | | | - Ana Popovic
- Department of Biochemistry, University of Toronto, Toronto, Canada
- Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, Canada
| | - Xueyang Zhou
- Department of Immunology, University of Toronto, Toronto, Canada
| | - Cong Xie
- Department of Immunology, University of Toronto, Toronto, Canada
| | - Ayushi Thakur
- Department of Immunology, University of Toronto, Toronto, Canada
| | - Graham Britton
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Matthew Spindler
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Louis Ngai
- Department of Immunology, University of Toronto, Toronto, Canada
| | - Siu Ling Tai
- Department of Immunology, University of Toronto, Toronto, Canada
| | | | - Albert Nguyen
- Department of Immunology, University of Toronto, Toronto, Canada
| | - Jeremiah J. Faith
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - John Parkinson
- Department of Biochemistry, University of Toronto, Toronto, Canada
- Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | | | - Arthur Mortha
- Department of Immunology, University of Toronto, Toronto, Canada
| |
Collapse
|
23
|
Liu W, Zhang Y, Hu D, Huang L, Liu X, Lu Z. Oral Astragalus polysaccharide alleviates adenine-induced kidney injury by regulating gut microbiota-short-chain fatty acids-kidney G protein-coupled receptors axis. Ren Fail 2024; 46:2429693. [PMID: 39603250 DOI: 10.1080/0886022x.2024.2429693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/21/2024] [Accepted: 11/10/2024] [Indexed: 11/29/2024] Open
Abstract
Chronic kidney disease (CKD) can cause gut microbiota dysbiosis and decreasing production of short-chain fatty acids (SCFAs), which aggravate the injury of kidney. It has been found that a variety of Chinese medicine polysaccharides can regulate gut microbiota, especially probiotics, and have beneficial effects on human health. Astragalus polysaccharide (APS) is a major component of Astragalus aceus. The aim of this study was to investigate whether APS can regulate gut microbiota-SCFAs to slow the progression of CKD. Adenine-induced CKD mice (Ade) were established and APS was treated. The renal protection of APS on CKD mice was evaluated by renal function and pathological staining of renal tissues. Feces samples were collected for 16SrRNA sequence and LC-MS/MS analysis. Kidney G protein-coupled receptor (GPR) levels were also detected in renal tissue. APS supplementation can reduce serum creatinine and urea nitrogen levels in mice model (Ade) and attenuate renal tubular interstitial injury and renal fibrosis. Further application of 16SrRNA sequencing showed that the abundance of SCFA producing bacteria, such as Kineothrix, Faecalibaculum, Akkermansia, Lactobacillus, and Roseburia, was upregulated after APS treatment. Fecal LC-MS/MS detection showed that the levels of acetate, propionate and butyrate in Ade mice increased after APS supplementation. The detection of renal GPRs showed that APS supplementing could significantly increase the levels of renal GPR41 and GPR43, and also partially increase the levels of GPR109a in Ade mice. Our research confirms that APS supplementation can upregulate the abundance of SCFA producing bacteria and increase SCFA levels to attenuate renal tubular interstitial injury and fibrosis via GPRs.
Collapse
Affiliation(s)
- Wenbo Liu
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yuanyuan Zhang
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Dongmei Hu
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lihua Huang
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
- Nephrology Department, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Xusheng Liu
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
- Nephrology Department, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Zhaoyu Lu
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
- Nephrology Department, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| |
Collapse
|
24
|
Maldonado-Barrueco A, Almazán-Garate E, Armijo-Suárez O, Iniesta-Pérez S, Sanz-González C, Falces-Romero I, Álvarez-López C, Cacho-Calvo J, Quiles-Melero I. Utility of culture and molecular methods using Allplex TM Bacterial Vaginosis Plus Assay (Seegene Ⓡ) as a tool for endometriosis, infertility and recurrent pregnancy loss diagnosis. Diagn Microbiol Infect Dis 2024; 110:116437. [PMID: 39128204 DOI: 10.1016/j.diagmicrobio.2024.116437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/10/2024] [Accepted: 07/10/2024] [Indexed: 08/13/2024]
Abstract
Endometriosis, infertility, or recurrent pregnancy loss (RPL) are entities characterised by a decrease in Lactobacillus spp. and an increase in bacterial vaginosis-associated bacteria, (BVAV) according with 16S rRNA sequencing studies. However, the use of nucleic acid amplification tests (NAAT) as a tool for diagnosis algorithms is unknown. Seventy-four patients were included, with a median age of 36.5 years old (IQR: 34-39) including infertility (n=31), endometriosis (n=25), or RPL (n=18), for culturing and NAAT using the Allplex™ Bacterial Vaginosis Plus (ABVP) assay (SeegeneⓇ) with endometrial samples. The objective was determining the utility of ABVP assay for diagnosing the entities. Forty-six microorganisms were isolated from 31 out of 74 patients (41.9 %). Twenty-five endometrial samples (33.8 %) were positive for some targets included in the ABVP-assay, with median Ct value ∼37 (IQR: 31.3-37.1) and Qt value 1.43 Log10copies/reaction (IQR:1.1-2.6). For Lactobacillus species, sensitivity and specificity were 80 % and 84 %, respectively. Gardnerella vaginalis, 63.6 % and 95.7 %. No significant increase in BVAV was detected in any of the gynaecological entities. The ABVP and culture based algorithm did not show utility as a tool for endometriosis, infertility, or RPL diagnosis.
Collapse
Affiliation(s)
| | | | | | | | | | - Iker Falces-Romero
- Clinical Microbiology Department. Hospital Universitario La Paz. Madrid, Spain; CIBERINFEC ISCIII. Instituto de Salud Carlos III. Madrid, Spain
| | | | - Juana Cacho-Calvo
- Clinical Microbiology Department. Hospital Universitario La Paz. Madrid, Spain
| | | |
Collapse
|
25
|
Wang Y, He F, Liu B, Wu X, Han Z, Wang X, Liao Y, Duan J, Ren W. Interaction between intestinal mycobiota and microbiota shapes lung inflammation. IMETA 2024; 3:e241. [PMID: 39429884 PMCID: PMC11487552 DOI: 10.1002/imt2.241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 08/10/2024] [Accepted: 08/29/2024] [Indexed: 10/22/2024]
Abstract
Gut microbiota is an intricate microbial community containing bacteria, fungi, viruses, archaea, and protozoa, and each of them contributes to diverse aspects of host health. Nevertheless, the influence of interaction among gut microbiota on host health remains uncovered. Here, we showed that the interaction between intestinal fungi and bacteria shaped lung inflammation during infection. Specifically, antifungal drug-induced dysbiosis of gut mycobiota enhanced lung inflammation during infection. Dysbiosis of gut mycobiota led to gut Escherichia coli (E. coli) overgrowth and translocation to the lung during infection, which induced lung accumulation of the CD45+F4/80+Ly6G-Ly6C-CD11b+CD11c+ macrophages. Clearance of macrophages or deletion of TLR4 (Toll-like receptor 4, recognition of LPS) rather than Dectin-1 (recognition of beta-1,3/1,6 glucans on fungi) blocked the antifungal drug-induced aggravation of lung inflammation during infection. These findings suggest that the interaction between intestinal mycobiota and commensal bacteria affects host health through the gut-lung axis, offering a potential therapeutic target for ameliorating lung inflammation during infection.
Collapse
Affiliation(s)
- Youxia Wang
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal ScienceSouth China Agricultural UniversityGuangzhouChina
| | - Fang He
- College of Veterinary MedicineSouthwest UniversityChongqingChina
| | - Bingnan Liu
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal ScienceSouth China Agricultural UniversityGuangzhouChina
| | - Xiaoyan Wu
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal ScienceSouth China Agricultural UniversityGuangzhouChina
| | - Ziyi Han
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal ScienceSouth China Agricultural UniversityGuangzhouChina
| | - Xuefei Wang
- School of Basic Medical SciencesCapital Medical UniversityBeijingChina
| | - Yuexia Liao
- School of Nursing & School of Public HealthYangzhou UniversityYangzhouChina
| | - Jielin Duan
- Department of Allergy and Clinical Immunology, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory HealthThe First Affiliated Hospital of Guangzhou Medical UniversityGuangzhouChina
| | - Wenkai Ren
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal ScienceSouth China Agricultural UniversityGuangzhouChina
| |
Collapse
|
26
|
Lam TK, Daschner P, Ishibe N, Wali A, Hall K, Czajkowski S, Mahabir S, Watson JM, Nebeling L, Ross S, Sauter E. Metabolic Dysregulation and Cancer Risk Program (MeDOC): a transdisciplinary approach to obesity-associated cancers. J Natl Cancer Inst 2024; 116:1555-1561. [PMID: 38885413 PMCID: PMC11461156 DOI: 10.1093/jnci/djae134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 06/07/2024] [Indexed: 06/20/2024] Open
Abstract
With the escalating prevalence of obesity, the association between obesity and cancer is a growing public health concern. Obesity will soon surpass tobacco smoking as the most important preventable cause of cancer. Obesity-driven mechanisms can alter cell functions to induce metabolic changes, chronic inflammation, and insulin resistance that are believed to contribute to cancer risk and development; yet the specific underlying biological mechanisms of obesity-related cancer development are largely unknown. The Metabolic Dysregulation and Cancer Risk Program: a transdisciplinary approach to obesity-associated cancers (MeDOC) is a trans-National Cancer Institute research initiative supported by the Division of Cancer Control and Population Sciences, the Division of Cancer Biology, the Division of Cancer Prevention, and the Center to Reduce Cancer Health Disparities. The overall purpose of the MeDOC Program is to advance our understanding of the underlying mechanisms that connect obesity, metabolic dysregulation, and increased obesity cancer risk as well as identify markers that will enhance cancer risk prediction, improve screening for high-risk individuals, and identify targets for preventive and therapeutic interventions for cancer interception or treatment. This report describes the funded research projects, the Coordinating Center, and the goals of the MeDOC program.
Collapse
Affiliation(s)
- Tram Kim Lam
- Division of Cancer Control and Population Sciences, National Cancer Institute, Rockville, MD, USA
| | - Phil Daschner
- Division of Cancer Biology, National Cancer Institute, Rockville, MD, USA
| | - Naoko Ishibe
- Division of Cancer Control and Population Sciences, National Cancer Institute, Rockville, MD, USA
| | - Anil Wali
- Center to Reduce Cancer Health Disparities, National Cancer Institute, Rockville, MD, USA
| | - Kara Hall
- Division of Cancer Control and Population Sciences, National Cancer Institute, Rockville, MD, USA
| | - Susan Czajkowski
- Division of Cancer Control and Population Sciences, National Cancer Institute, Rockville, MD, USA
| | - Somdat Mahabir
- Division of Cancer Control and Population Sciences, National Cancer Institute, Rockville, MD, USA
| | - Joanna M Watson
- Division of Cancer Biology, National Cancer Institute, Rockville, MD, USA
| | - Linda Nebeling
- Division of Cancer Control and Population Sciences, National Cancer Institute, Rockville, MD, USA
| | - Sharon Ross
- Division of Cancer Prevention, National Cancer Institute, Rockville, MD, USA
| | - Edward Sauter
- Division of Cancer Prevention, National Cancer Institute, Rockville, MD, USA
| |
Collapse
|
27
|
Xu J, Liu Y, Cao X, Guo X, Wang J, Liu Y, Zhou H, Ma B, Peng S. Modulation of liver metabolism and gut microbiota by Alhagi-honey alleviated heat stress-induced liver damage. STRESS BIOLOGY 2024; 4:41. [PMID: 39347852 PMCID: PMC11442815 DOI: 10.1007/s44154-024-00178-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 05/26/2024] [Indexed: 10/01/2024]
Abstract
Alhagi-honey (AH) is a well-established traditional ethnic medicine with advantageous effects against diarrhea and headaches. We aimed to explore the preventive effect of AH on liver damage induced by heat stress (HS) and its underlying mechanism. HS models were established by thermostat, and mice were treated at 39 ℃ for 10 h, lasting for 7 days. Hematoxylin-eosin (H&E) staining and Periodic Acid-Schiff (PAS) staining were used for histological observation, and transmission electron microscopy (TEM) was used for ultrastructure examination of hepatocytes. Gut microbiota (GM) composition and liver metabolites were respectively analyzed by 16S rRNA sequencing and non-targeted metabolome sequencing. AH pretreatment alleviated liver damage caused by heat stress in mice. The main manifestation was that AH alleviated serum aspartate transferase (AST) and aspartate transaminase (ALT). It was found that AH improved symptoms of hepatocyte damage. In addition, the relative abundance of f_Rikenellaceae, g_Incertae_Sedis and s_Staphylococcus_Orisratti, g_Lachnoclostridium, g_GCA-900066575, and s_Alistipes_inops were modified by AH and these bacterial genera showed association with 6 metabolites (2- (3,4-dihydroxyphenyl) acetamide, 3-hydroxy-3-methylpentanedioic acid, PC (17:0/17:1), Y-L-Glutamy-L-glutamic acid, L-Isoleucine, 5-Methyluridine, 8,8-dimethyl-2-phenyl-4H,8H-pyrano [2, 3-h] chromen-4-one). The Pearson analysis also showed a strong correlation between these microbes and 2 risk indicators (AST and ALT) of liver damage. AH alleviated HS-induced liver damage by regulating liver metabolism and maintaining normal GM. It demonstrated that AH held potential as a prophylactic drug for the prevention of HS-induced liver damage.
Collapse
Affiliation(s)
- Jing Xu
- College of Veterinary Medicine, Northwest A & F University, Yangling, 712100, Shaanxi, China
| | - Yundie Liu
- College of Veterinary Medicine, Northwest A & F University, Yangling, 712100, Shaanxi, China
| | - Xuanhong Cao
- College of Veterinary Medicine, Northwest A & F University, Yangling, 712100, Shaanxi, China
| | - Xinrui Guo
- College of Veterinary Medicine, Northwest A & F University, Yangling, 712100, Shaanxi, China
| | - Jie Wang
- College of Veterinary Medicine, Northwest A & F University, Yangling, 712100, Shaanxi, China
| | - Yang Liu
- College of Veterinary Medicine, Northwest A & F University, Yangling, 712100, Shaanxi, China
| | - Hongda Zhou
- College of Veterinary Medicine, Northwest A & F University, Yangling, 712100, Shaanxi, China
| | - Baohua Ma
- College of Veterinary Medicine, Northwest A & F University, Yangling, 712100, Shaanxi, China.
| | - Sha Peng
- College of Veterinary Medicine, Northwest A & F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
28
|
Byun S, Lee J, Choi YH, Ko H, Lee C, Park JC, Kim SW, Lee H, Sharma A, Kim KS, Rudra D, Kim JK, Im SH. Gut Microbiota Defines Functional Direction of Colonic Regulatory T Cells with Unique TCR Repertoires. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 213:886-897. [PMID: 39101764 DOI: 10.4049/jimmunol.2300395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 07/03/2024] [Indexed: 08/06/2024]
Abstract
Intestinal microbiota and selected strains of commensal bacteria influence regulatory T (Treg) cell functionality in the colon. Nevertheless, whether and how microbiota changes the transcriptome profile and TCR specificities of colonic Tregs remain to be precisely defined. In this study, we have employed single-cell RNA sequencing and comparatively analyzed colonic Tregs from specific pathogen-free and germ-free (GF) mice. We found that microbiota shifts the activation trajectory of colonic Tregs toward a distinct phenotypic subset enriched in specific pathogen-free but not in GF mice. Moreover, microbiota induced the expansion of specific Treg clonotypes with shared transcriptional specificities. The microbiota-induced subset of colonic Tregs, identified as PD-1- CXCR3+ Tregs, displayed enhanced suppressive capabilities compared with colonic Tregs derived from GF mice, enhanced production of IL-10, and were the primary regulators of enteric inflammation in dextran sodium sulfate-induced colitis. These findings identify a hitherto unknown gut microbiota and immune cell interaction module that could contribute to the development of a therapeutic modality for intestinal inflammatory diseases.
Collapse
Affiliation(s)
- Seohyun Byun
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Jusung Lee
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea
- Department of New Biology, Daegu Gyeongbuk Institute of Science & Technology, Daegu, Republic of Korea
| | - Yoon Ha Choi
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea
- Department of New Biology, Daegu Gyeongbuk Institute of Science & Technology, Daegu, Republic of Korea
| | - Haeun Ko
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Changhon Lee
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - John Chulhoon Park
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Seung Won Kim
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Haena Lee
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Amit Sharma
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Kwang Soon Kim
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Dipayan Rudra
- School of Life Science and Technology, ShanghaiTech University; Shanghai, People's Republic of China
| | - Jong Kyoung Kim
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea
- Department of New Biology, Daegu Gyeongbuk Institute of Science & Technology, Daegu, Republic of Korea
- Institute for Convergence Research and Education in Advanced Technology, Yonsei University, Seoul, Republic of Korea
| | - Sin-Hyeog Im
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea
- Institute for Convergence Research and Education in Advanced Technology, Yonsei University, Seoul, Republic of Korea
- ImmunoBiome Inc., Pohang, Republic of Korea
| |
Collapse
|
29
|
Yang H, Liu W, Gao T, Liu Q, Zhang M, Liu Y, Ma X, Zhang N, Shi K, Duan M, Ma S, Zhang X, Cheng Y, Qu H, Chen M, Zhan S. Causal associations between gut microbiota, circulating inflammatory proteins, and epilepsy: a multivariable Mendelian randomization study. Front Immunol 2024; 15:1438645. [PMID: 39315097 PMCID: PMC11416947 DOI: 10.3389/fimmu.2024.1438645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Accepted: 08/22/2024] [Indexed: 09/25/2024] Open
Abstract
Background Previous studies have suggested that gut microbiota (GM) may be involved in the pathogenesis of epilepsy through the microbiota-gut-brain axis (MGBA). However, the causal relationship between GM and different epilepsy subtypes and whether circulating inflammatory proteins act as mediators to participate in epileptogenesis through the MGBA remain unclear. Therefore, it is necessary to identify specific GM associated with epilepsy and its subtypes and explore their underlying inflammatory mechanisms for risk prediction, personalized treatment, and prognostic monitoring of epilepsy. Methods We hypothesized the existence of a pathway GM-inflammatory proteins-epilepsy. We found genetic variants strongly associated with GM, circulating inflammatory proteins, epilepsy and its subtypes, including generalized and partial seizures, from large-scale genome-wide association studies (GWAS) summary data and used Multivariate Mendelian Randomization to explore the causal relationship between the three and whether circulating inflammatory proteins play a mediating role in the pathway from GM to epilepsy, with inverse variance weighted (IVW) method as the primary statistical method, supplemented by four methods: MR-Egger, weighted median estimator (WME), Weighted mode and Simple mode. Results 16 positive and three negative causal associations were found between the genetic liability of GM and epilepsy and its subtypes. There were nine positive and nine negative causal associations between inflammatory proteins and epilepsy and its subtypes. Furthermore, we found that C-X-C motif chemokine 11 (CXCL11) levels mediated the causal association between Genus Family XIII AD3011 group and epilepsy. Conclusion Our study highlights the possible causal role of specific GM and specific inflammatory proteins in the development of epilepsy and suggests that circulating inflammatory proteins may mediate epileptogenesis through the MGBA.
Collapse
Affiliation(s)
- Han Yang
- Department of Neurology, the Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Wei Liu
- Department of Pediatric Surgery, the Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Tiantian Gao
- Department of Neurology, the Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Qifan Liu
- Department of Transplant Surgery, the Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Mengyuan Zhang
- Department of Neurology, the Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Yixin Liu
- Department of Neurology, the Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Xiaodong Ma
- Department of Neurology, the Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Nan Zhang
- Department of Neurology, the Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Kaili Shi
- Department of Neurology, the Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Minyu Duan
- Department of Neurology, the Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Shuyin Ma
- Department of Neurology, the Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Xiaodong Zhang
- Department of Neurology, the Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Yuxuan Cheng
- Department of Neurology, the Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Huiyang Qu
- Department of Neurology, the Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Mengying Chen
- Department of Neurology, the Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Shuqin Zhan
- Department of Neurology, the Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| |
Collapse
|
30
|
Kumar T, Maitra S, Rai R, Priyanka, Maitra S, Tirkey NN, Kumari R. The dichotomy between probiotic lactic acid bacteria and Plasmodium: A promising therapeutic avenue. Acta Trop 2024; 257:107284. [PMID: 38857820 DOI: 10.1016/j.actatropica.2024.107284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 06/02/2024] [Accepted: 06/07/2024] [Indexed: 06/12/2024]
Abstract
Our understanding of gut microbial populations and their immense influence on host immunity, health, and diseases has increased deeply in recent years. Numerous reports have identified the role of mosquito and mammalian gut microbiota in the modulation of host susceptibility to Plasmodium infection. Artemisinin resistance in malaria-endemic regions necessitates the development of new, safer, and more affordable treatments to supplement existing therapies. In this review, we compiled a colossal amount of data from numerous studies that have assessed the roles played by gut microbial communities in Plasmodium infection, progression, transmission, and severity. Most interestingly, our study points to the overwhelming evidence from experimental studies in mural malaria to human trials, suggesting that the presence of lactic acid bacteria in the gut microbiota of mammalian hosts provides a great degree of protection against malaria. Therefore, our study provides a compelling narrative for probiotic administration as an adjunct therapy for combatting malaria.
Collapse
Affiliation(s)
- Tarkeshwar Kumar
- Department of Zoology, Panch Pargana Kisan College, Ranchi University, Ranchi, Jharkhand, 835204, India.
| | - Satarupa Maitra
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Richa Rai
- Department of Zoology, Allahabad University, Prayagraj, Uttar Pradesh, India
| | - Priyanka
- Department of Zoology, Allahabad University, Prayagraj, Uttar Pradesh, India
| | - Satwat Maitra
- Noida International Institute of Medical Sciences, Greater Noida, Uttar Pradesh, India
| | | | - Rajesh Kumari
- Department of Zoology, Allahabad University, Prayagraj, Uttar Pradesh, India
| |
Collapse
|
31
|
Liu R, Wang J, Liu Y, Gao Y, Yang R. Regulation of gut microbiota on immune cell ferroptosis: A novel insight for immunotherapy against tumor. Cancer Lett 2024; 598:217115. [PMID: 39025428 DOI: 10.1016/j.canlet.2024.217115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 06/26/2024] [Accepted: 07/09/2024] [Indexed: 07/20/2024]
Abstract
Gut microbiota contributes to the homeostasis of immune system and is related to various diseases such as tumorigenesis. Ferroptosis, a new type of cell death, is also involved in the disease pathogenesis. Recent studies have found the correlations of gut microbiota mediated ferroptosis and immune cell death. Gut microbiota derived immunosuppressive metabolites, which can promote differentiation and function of immune cells, tend to inhibit ferroptosis through their receptors, whereas inflammatory metabolites from gut microbiota also affect the differentiation and function of immune cells and their ferroptosis. Thus, it is possible for gut microbiota to regulate immune cell ferroptosis. Indeed, gut microbiota metabolite receptor aryl hydrocarbon receptor (AhR) can affect ferroptosis of intestinal intraepithelial lymphocytes, leading to disease pathogenesis. Since immune cell ferroptosis in tumor microenvironment (TME) affects the occurrence and development of tumor, the modulation of gut microbiota in these cell ferroptosis might influence on the tumorigenesis, and also immunotherapy against tumors. Here we will summarize the recent advance of ferroptosis mediated by gut microbiota metabolites, which potentially acts as regulator(s) on immune cells in TME for therapy against tumor.
Collapse
Affiliation(s)
- Ruobing Liu
- Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin 300071, China
| | - Juanjuan Wang
- Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin 300071, China
| | - Yuqing Liu
- Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin 300071, China
| | - Yunhuan Gao
- Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin 300071, China
| | - Rongcun Yang
- Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin 300071, China; State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China; Translational Medicine Institute, Affiliated Tianjin Union Medical Center of Nankai University, Nankai University, Tianjin 300071, China.
| |
Collapse
|
32
|
Qi X, Xiao Y, Zhang X, Zhu Z, Zhang H, Wei J, Zhao Z, Li J, Chen T. Probiotics suppress LL37 generated rosacea-like skin inflammation by modulating the TLR2/MyD88/NF-κB signaling pathway. Food Funct 2024; 15:8916-8934. [PMID: 39143863 DOI: 10.1039/d4fo03083d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
Rosacea, a chronic inflammatory dermatological condition, is characterized by facial erythema and pustules. Recent investigations have delved into the interplay between the gut microbiota and rosacea pathogenesis, unveiling promising avenues for therapeutic intervention. In this study, we screened and isolated strains Ligilactobacillus salivarius 23-006 and Lacticaseibacillus paracasei 23-008 from the feces of healthy volunteers and evaluated the intervention effects of probiotics on rosacea by constructing an LL37 induced rosacea-like mouse model. Our results showed that both L. salivarius 23-006 and L. paracasei 23-008 were probiotic strains with favourable properties. In specific, we observed that both L. salivarius 23-006 and L. paracasei 23-008 alleviated skin lesions, reduced skin inflammatory infiltrates, and decreased the expression of inflammatory factors in mice, with the combination of L. salivarius 23-006 and L. paracasei 23-008 having the most significant effect. Moreover, the combination of strains reduced the expression of cathelicidin LL37 and rosacea-associated factors by inhibiting the TLR2/MyD88/NF-κB pathway. The 16S rRNA analysis showed that the combination enhanced the intestinal barrier, restored intestinal microbiota homeostasis, and up-regulated the abundance of Lactobacillus while down-regulating the abundance of Coprococcus and Oscillospira. We also explored the effects of postbiotics of L. salivarius 23-006 and L. paracasei 23-008 on rosacea. While postbiotics could also ameliorate the rosacea-like phenotype in mice via the TLR2/MyD88/NF-κB pathway, the effects were not as pronounced as those observed with probiotic treatment. However, the postbiotics still enhanced the intestinal barrier, up-regulated the Lactobacillus abundance, and modulated the intestinal microbiota. In conclusion, our study revealed that L. salivarius 23-006 and L. paracasei 23-008 improved rosacea by regulating the TLR2/MyD88/NF-κB pathway and intestinal microbiota, providing a theoretical basis for the treatment of rosacea.
Collapse
Affiliation(s)
- Xinyue Qi
- School of Life Sciences, Nanchang University, Nanchang, China.
- School of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang, China
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Yiran Xiao
- Queen Mary School, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Xinfeng Zhang
- School of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Zhenlin Zhu
- School of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Hongyan Zhang
- Medical Center of Burn Plastic and Wound Repair, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Jing Wei
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Zhixiang Zhao
- Department of Dermatology, Xiangya Hospital of Central South University, Changsha, China.
- Hunan Key Laboratory of Aging Biology, Xiangya Hospital of Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital of Central South University, Changsha, China
| | - Ji Li
- Department of Dermatology, Xiangya Hospital of Central South University, Changsha, China.
- Hunan Key Laboratory of Aging Biology, Xiangya Hospital of Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital of Central South University, Changsha, China
| | - Tingtao Chen
- School of Life Sciences, Nanchang University, Nanchang, China.
- School of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang, China
- Medical Center of Burn Plastic and Wound Repair, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, Nanchang, China
| |
Collapse
|
33
|
Jia Y, Liu Y, Wu Y, Feng C, Zhang H, Ren F, Liu H. The regulation of glucose and lipid metabolism through the interaction of dietary polyphenols and polysaccharides via the gut microbiota pathway. Food Funct 2024; 15:8200-8216. [PMID: 39039938 DOI: 10.1039/d4fo00585f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
The interaction of polyphenols-polysaccharides-gut microbiota to promote health benefits has become a hotspot and direction for precise dietary intervention strategies and foundational research in biomedicine. Both dietary polyphenols and polysaccharides possess biological activities that regulate body health. Single components, due to their inherent structure and physicochemical properties, have a low bioavailability, thus are unable to exert their optimal effects. The compound structure formed by the interaction of polyphenols and polysaccharides can enhance their functional properties, thereby more effectively promoting health benefits and preventing diseases. This review primarily focuses on the roles played by polyphenols and polysaccharides in regulating glucose and lipid metabolism, the improvement of glucose and lipid metabolism through the gut microbial pathway by polyphenols and polysaccharides, and the mechanisms by which polyphenols and polysaccharides interact to regulate glucose and lipid metabolism. A considerable amount of preliminary research has confirmed the regulatory effects of plant polyphenols and polysaccharides on glucose and lipid metabolism. However, studies on the combined effects and mechanisms of these two components are still very limited. This review aims to provide a reference for subsequent research on their interactions and changes in functional properties.
Collapse
Affiliation(s)
- Yuanqiang Jia
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, School of Food and Health, Beijing Technology & Business University (BTBU), Beijing 100048, China.
| | - Yanan Liu
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, School of Food and Health, Beijing Technology & Business University (BTBU), Beijing 100048, China.
| | - Yingying Wu
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, School of Food and Health, Beijing Technology & Business University (BTBU), Beijing 100048, China.
| | - Chaohui Feng
- School of Regional Innovation and Social Design Engineering, Faculty of Engineering, Kitami Institute of Technology, 165 Koen-cho, Kitami 090-8507, Hokkaido, Japan
| | - Huijuan Zhang
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), School of Food and Health, Beijing Technology & Business University (BTBU), Beijing 100048, China
| | - Feiyue Ren
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, School of Food and Health, Beijing Technology & Business University (BTBU), Beijing 100048, China.
| | - Hongzhi Liu
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, School of Food and Health, Beijing Technology & Business University (BTBU), Beijing 100048, China.
| |
Collapse
|
34
|
Zhang H, Wang Y, Zhao H, Wang W, Han F. The involvement of effector memory CD4 + T cells in mediating the impact of genus Oscillibacter gut microbiota on Alzheimer's disease: a Mendelian randomization study. Front Aging Neurosci 2024; 16:1423707. [PMID: 39170894 PMCID: PMC11335717 DOI: 10.3389/fnagi.2024.1423707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 07/26/2024] [Indexed: 08/23/2024] Open
Abstract
Objective This study aimed to investigate the causal relationship between gut microbiota characteristics (207 taxa and 205 pathways) and Alzheimer's disease and determine and quantify the role of immune cells as potential mediators. Methods Gut microbiota characteristics (207 taxa and 205 pathways) were obtained from the NHGRI-EBI GWAS Catalog project, while Alzheimer's disease data and 731 immune cell characteristics were obtained from the IEU Open GWAS project. Two-sample Mendelian randomization (MR) was conducted to determine whether gut microbiota characteristics (207 taxa and 205 pathways) were causally related to Alzheimer's disease. Furthermore, two-step MR was employed to quantify the proportion of the effect of immune cell characteristics mediated by gut microbiota characteristics (207 taxa and 205 pathways) on Alzheimer's disease. Results A total of 17 immune cell characteristics were identified as potential mediators for 13 gut microbiota influencing Alzheimer's disease, with Effector Memory CD4+ T-cell Absolute Count accounted for 8.99% of the causal relationship between genus Oscillibacter and Alzheimer's disease. Conclusion In summary, our research confirms a causal relationship between gut microbiota and Alzheimer's disease, with immune cells contributing to a significant portion of the effect. However, the full mediators of gut microbiota's impact on Alzheimer's disease remain unclear. Further investigation is warranted to explore additional potential risk factors acting as mediators.
Collapse
Affiliation(s)
- Huachang Zhang
- The Institute for Tissue Engineering and Regenerative Medicine, Stem Cell and Regenerative Medicine Laboratory, Liaocheng People's Hospital/Liaocheng University, Liaocheng, Shandong, China
| | - Yudong Wang
- Department of Nursing, Liaocheng People’s Hospital, Liaocheng, Shandong, China
- Intensive Care Unit, Liaocheng People’s Hospital, Liaocheng, Shandong, China
| | - Hui Zhao
- Henan Academy of Sciences, Zhengzhou, Henan, China
- Henan High Tech Industrial Co., Ltd., Zhengzhou, Henan, China
| | - Wei Wang
- The Institute for Tissue Engineering and Regenerative Medicine, Stem Cell and Regenerative Medicine Laboratory, Liaocheng People's Hospital/Liaocheng University, Liaocheng, Shandong, China
| | - Fabin Han
- The Institute for Tissue Engineering and Regenerative Medicine, Stem Cell and Regenerative Medicine Laboratory, Liaocheng People's Hospital/Liaocheng University, Liaocheng, Shandong, China
| |
Collapse
|
35
|
Zhou P, Hao Z, Chen Y, Zhang Z, Xu W, Yu J. Association between gut microbiota and diabetic microvascular complications: a two-sample Mendelian randomization study. Front Endocrinol (Lausanne) 2024; 15:1364280. [PMID: 39157683 PMCID: PMC11327146 DOI: 10.3389/fendo.2024.1364280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 06/27/2024] [Indexed: 08/20/2024] Open
Abstract
Background Gut microbiota (GM) homeostasis in the human body is closely associated with health, which can be used as a regulator for preventing the onset and progression of disease. Diabetic microvascular complications bring about not only a huge economic burden to society, but also miserable mental and physical pain. Thus, alteration of the GM may be a method to delay diabetic microvascular complications. Objective A two-sample Mendelian randomization (MR) analysis was conducted to reveal the causal inference between GM and three core diabetic microvascular complications, namely, diabetic kidney disease (DKD), diabetic retinopathy (DR), and diabetic neuropathy (DNP). Methods First, genome-wide association study (GWAS) summary statistics for GM from the MiBioGen consortium and three main diabetic microvascular complications acquired from the FinnGen research project were assessed. Second, a forward MR analysis was conducted to assess the causality of GM on the risk of DKD, DR, and DNP. Third, a series of sensitivity studies, such as heterogeneity tests, pleiotropy evaluations, and leave-one-out analyses, were further conducted to assess the accuracy of MR analysis. Finally, Steiger tests and reverse MR analyses were performed to appraise the possibility of reverse causation. Results A total of 2,092 single-nucleotide polymorphisms related to 196 bacterial traits were selected as instrumental variables. This two-sample MR analysis provided strongly reasonable evidence that 28 genetically predicted abundance of specific GM that played non-negligible roles in the occurrence of DKD, DR, and DNP complications were causally associated with 23 GM, the odds ratio of which generally ranged from 0.9 to 1.1. Further sensitivity analysis indicated low heterogeneity, low pleiotropy, and high reliability of the causal estimates. Conclusion The study raised the possibility that GM may be a potential target to prevent and delay the progression of diabetic microvascular complications. Further experiments of GM therapy on diabetic microvascular complications are warranted to clarify their effects and specific mechanisms.
Collapse
Affiliation(s)
- Peipei Zhou
- Department of Endocrinology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- The First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Zhenning Hao
- Department of Endocrinology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- The First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yu Chen
- Department of Endocrinology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- The First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Ziqi Zhang
- Department of Endocrinology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- The First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Weilong Xu
- Department of Endocrinology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- The First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jiangyi Yu
- Department of Endocrinology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- The First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
36
|
Shangguan J, Yu F, Ding B, Jiang Z, Wang J, Li D, Chen Y, Zhao Y, Hu S, Xu H. Hydrogel-forming viscous liquid in response to ROS restores the gut mucosal barrier of colitis mice via regulating oxidative redox homeostasis. Acta Biomater 2024; 184:127-143. [PMID: 38906207 DOI: 10.1016/j.actbio.2024.06.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 06/05/2024] [Accepted: 06/13/2024] [Indexed: 06/23/2024]
Abstract
The disrupted oxidative redox homeostasis plays a critical role in the progress of ulcerative colitis (UC). Herein, hydrogel-forming viscous liquid (HSD) composed of cysteamine-grafted hyaluronic acid (HS) and superoxide dismutase (SOD) has been designed for UC. When the viscous HSD liquid was infused into colitis colon, SOD would convert the pathological superoxide (O2·-) to hydrogen peroxides (H2O2), which was subsequently scavenged by HS. Accordingly, the sol-gel transition of HSD was initiated by scavenging H2O2, enhancing its adhesion toward colitis colon. H2O2-treated HSD presented the higher storage modulus and stronger adhesion force toward porcine colon than the untreated HSD. Besides, H2O2-treated HSD presented the slower erosion profile in the colitis-mimicking medium (pH 3-5), while its rapid degradation was displayed in physiologic condition (pH7.4). The combination of pH-resistant erosion and ROS-responsive adhesion for HSD rendered it with the specifical retention on the inflamed colonic mucosa of DSS-induced colitis mice. Rectally administrating HSD could effectively hinder the body weight loss, reduce the disease activity index and improve the colonic shorting of DSS-induced colitis mice. Moreover, the pro-inflammatory cytokines (IL-1β, IL-6 and TNF-α) were substantially decreased, the colonic epitheliums were well rearranged and the tight junction proteins were greatly recovered after HSD treatment. Besides, HSD also modulated the gut flora, markedly augmenting the abundance of Firmicutes, Barnesiella and Lachnospiraceae. Moreover, HSD treatment could regulate oxidative redox homeostasis via activating Nrf2-HO-1 pathway to reduce ROS and malondialdehyde and upregulate antioxidant enzymes (SOD, GPx and GSH). Collectively, HSD might be a promising therapy for UC treatments. STATEMENT OF SIGNIFICANCE: Herein, a hydrogel-forming viscous liquid (HSD) was designed by cysteamine-grafted hyaluronic acid (HS) and superoxide dismutase (SOD) for UC treatments. When the viscous HSD liquid was infused into a colitis colon, SOD would convert the pathological superoxide to hydrogen peroxides (H2O2), which was subsequently scavenged by HS. Accordingly, the sol-gel transition of HSD was initiated by scavenging H2O2, enhancing its adhesion to the colitis colon. The colonic epitheliums of DSS-induced colitis mice were well rearranged and the tight junction proteins (Zonula-1 and Claudin-5) were greatly recovered after the HSD treatment. Moreover, the HSD treatment could regulate oxidative redox homeostasis via activating the Nrf2-HO-1 pathway to reduce ROS and malondialdehyde and upregulate antioxidant enzymes (SOD, GPx and GSH).
Collapse
Affiliation(s)
- Jianxun Shangguan
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou City, Zhejiang Province, 325035, China
| | - Fengnan Yu
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou City, Zhejiang Province, 325035, China
| | - Bingyu Ding
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou City, Zhejiang Province, 325035, China
| | - Zhijiang Jiang
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou City, Zhejiang Province, 325035, China
| | - Jie Wang
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou City, Zhejiang Province, 325035, China
| | - Dingwei Li
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou City, Zhejiang Province, 325035, China
| | - Yi Chen
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou City, Zhejiang Province, 325035, China
| | - Yingzheng Zhao
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou City, Zhejiang Province, 325035, China
| | - Sunkuan Hu
- Department of Gastroenterology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Helin Xu
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou City, Zhejiang Province, 325035, China.
| |
Collapse
|
37
|
Bian X, Shao X. Advances in the study of gut microbes in pediatric epilepsy. Epilepsy Behav 2024; 157:109899. [PMID: 38885595 DOI: 10.1016/j.yebeh.2024.109899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/28/2024] [Accepted: 06/09/2024] [Indexed: 06/20/2024]
Abstract
Epilepsy a prevalent childhood neurological disorder, arises from chronic brain dysfunction caused by oversynchronized firing of neurons. Frequent seizures often lead to both physical and intellectual damage in children, seriously affecting their growth and development, life and health. Recent research studies have shown that the intestinal microbes in pediatric epilepsy is significantly different from that of healthy children, characterised by changes in the abundance of specific microbe communities and a reduction in diversity. These alterations may influence epileptic seizures through various pathways, including the microbiota-gut-brain axis by modulating neurotransmitters metabolism, affecting gut barrier function and immune responses, and directly impacting brain activity via the vagus nerves. This review highlights the alterations in gut microbes and their metabolites in epileptic children, analyzes their impact on seizures, and explores potential associations.
Collapse
Affiliation(s)
- Xueying Bian
- Pediatrics, Shaoxing People's Hospital, The First Affiliated Hospital of Shaoxing University, Shaoxing 312000, China; School of Medicine, Shaoxing University, Shaoxing, Zhejiang, China
| | - Xiaoli Shao
- Pediatrics, Shaoxing People's Hospital, The First Affiliated Hospital of Shaoxing University, Shaoxing 312000, China.
| |
Collapse
|
38
|
Onwuka S, Bravo-Merodio L, Gkoutos GV, Acharjee A. Explainable AI-prioritized plasma and fecal metabolites in inflammatory bowel disease and their dietary associations. iScience 2024; 27:110298. [PMID: 39040076 PMCID: PMC11261406 DOI: 10.1016/j.isci.2024.110298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 04/29/2024] [Accepted: 06/14/2024] [Indexed: 07/24/2024] Open
Abstract
Fecal metabolites effectively discriminate inflammatory bowel disease (IBD) and show differential associations with diet. Metabolomics and AI-based models, including explainable AI (XAI), play crucial roles in understanding IBD. Using datasets from the UK Biobank and the Human Microbiome Project Phase II IBD Multi'omics Database (HMP2 IBDMDB), this study uses multiple machine learning (ML) classifiers and Shapley additive explanations (SHAP)-based XAI to prioritize plasma and fecal metabolites and analyze their diet correlations. Key findings include the identification of discriminative metabolites like glycoprotein acetyl and albumin in plasma, as well as nicotinic acid metabolites andurobilin in feces. Fecal metabolites provided a more robust disease predictor model (AUC [95%]: 0.93 [0.87-0.99]) compared to plasma metabolites (AUC [95%]: 0.74 [0.69-0.79]), with stronger and more group-differential diet-metabolite associations in feces. The study validates known metabolite associations and highlights the impact of IBD on the interplay between gut microbial metabolites and diet.
Collapse
Affiliation(s)
- Serena Onwuka
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - Laura Bravo-Merodio
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
- Centre for Health Data Research, University of Birmingham, Birmingham, UK
- Institute of Translational Medicine, University of Birmingham, Birmingham, UK
| | - Georgios V. Gkoutos
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
- Centre for Health Data Research, University of Birmingham, Birmingham, UK
- Institute of Translational Medicine, University of Birmingham, Birmingham, UK
| | - Animesh Acharjee
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
- Centre for Health Data Research, University of Birmingham, Birmingham, UK
- Institute of Translational Medicine, University of Birmingham, Birmingham, UK
| |
Collapse
|
39
|
Zhao N, Chen X, Chen QG, Liu XT, Geng F, Zhu MM, Yan FL, Zhang ZJ, Ren QG. NLRP3-mediated autophagy dysfunction links gut microbiota dysbiosis to tau pathology in chronic sleep deprivation. Zool Res 2024; 45:857-874. [PMID: 39004863 PMCID: PMC11298670 DOI: 10.24272/j.issn.2095-8137.2024.085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 05/27/2024] [Indexed: 07/16/2024] Open
Abstract
Emerging evidence indicates that sleep deprivation (SD) can lead to Alzheimer's disease (AD)-related pathological changes and cognitive decline. However, the underlying mechanisms remain obscure. In the present study, we identified the existence of a microbiota-gut-brain axis in cognitive deficits resulting from chronic SD and revealed a potential pathway by which gut microbiota affects cognitive functioning in chronic SD. Our findings demonstrated that chronic SD in mice not only led to cognitive decline but also induced gut microbiota dysbiosis, elevated NLRP3 inflammasome expression, GSK-3β activation, autophagy dysfunction, and tau hyperphosphorylation in the hippocampus. Colonization with the "SD microbiota" replicated the pathological and behavioral abnormalities observed in chronic sleep-deprived mice. Remarkably, both the deletion of NLRP3 in NLRP3 -/- mice and specific knockdown of NLRP3 in the hippocampus restored autophagic flux, suppressed tau hyperphosphorylation, and ameliorated cognitive deficits induced by chronic SD, while GSK-3β activity was not regulated by the NLRP3 inflammasome in chronic SD. Notably, deletion of NLRP3 reversed NLRP3 inflammasome activation, autophagy deficits, and tau hyperphosphorylation induced by GSK-3β activation in primary hippocampal neurons, suggesting that GSK-3β, as a regulator of NLRP3-mediated autophagy dysfunction, plays a significant role in promoting tau hyperphosphorylation. Thus, gut microbiota dysbiosis was identified as a contributor to chronic SD-induced tau pathology via NLRP3-mediated autophagy dysfunction, ultimately leading to cognitive deficits. Overall, these findings highlight GSK-3β as a regulator of NLRP3-mediated autophagy dysfunction, playing a critical role in promoting tau hyperphosphorylation.
Collapse
Affiliation(s)
- Na Zhao
- Department of Neurology, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, China
| | - Xiu Chen
- Department of Neurology, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, China
| | - Qiu-Gu Chen
- Department of Neurology, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, China
| | - Xue-Ting Liu
- Department of Neurology, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, China
| | - Fan Geng
- Department of Neurology, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, China
| | - Meng-Meng Zhu
- Department of Neurology, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, China
| | - Fu-Ling Yan
- Department of Neurology, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, China
| | - Zhi-Jun Zhang
- Department of Neurology, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, China
| | - Qing-Guo Ren
- Department of Neurology, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, China
- Department of Neurology, Affiliated Zhongda Hospital, Southeast University, Nanjing, Jiangsu 210009, China. E-mail:
| |
Collapse
|
40
|
Seida I, Al Shawaf M, Mahroum N. Fecal microbiota transplantation in autoimmune diseases - An extensive paper on a pathogenetic therapy. Autoimmun Rev 2024; 23:103541. [PMID: 38593970 DOI: 10.1016/j.autrev.2024.103541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/31/2024] [Accepted: 04/04/2024] [Indexed: 04/11/2024]
Abstract
The role of infections in the pathogenesis of autoimmune diseases has long been recognized and reported. In addition to infectious agents, the internal composition of the "friendly" living bacteria, (microbiome) and its correlation to immune balance and dysregulation have drawn the attention of researchers for decades. Nevertheless, only recently, scientific papers regarding the potential role of transferring microbiome from healthy donor subjects to patients with autoimmune diseases has been proposed. Fecal microbiota transplantation or FMT, carries the logic of transferring microorganisms responsible for immune balance from healthy donors to individuals with immune dysregulation or more accurately for our paper, autoimmune diseases. Viewing the microbiome as a pathogenetic player allows us to consider FMT as a pathogenetic-based treatment. Promising results alongside improved outcomes have been demonstrated in patients with different autoimmune diseases following FMT. Therefore, in our current extensive review, we aimed to highlight the implication of FMT in various autoimmune diseases, such as inflammatory bowel disease, autoimmune thyroid and liver diseases, systemic lupus erythematosus, and type 1 diabetes mellitus, among others. Presenting all the aspects of FMT in more than 12 autoimmune diseases in one paper, to the best of our knowledge, is the first time presented in medical literature. Viewing FMT as such could contribute to better understanding and newer application of the model in the therapy of autoimmune diseases, indeed.
Collapse
Affiliation(s)
- Isa Seida
- International School of Medicine, Istanbul Medipol University, Istanbul, Turkey
| | - Maisam Al Shawaf
- International School of Medicine, Istanbul Medipol University, Istanbul, Turkey
| | - Naim Mahroum
- International School of Medicine, Istanbul Medipol University, Istanbul, Turkey.
| |
Collapse
|
41
|
Liu M, Peng R, Tian C, Shi J, Ma J, Shi R, Qi X, Zhao R, Guan H. Effects of the gut microbiota and its metabolite short-chain fatty acids on endometriosis. Front Cell Infect Microbiol 2024; 14:1373004. [PMID: 38938880 PMCID: PMC11208329 DOI: 10.3389/fcimb.2024.1373004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 05/31/2024] [Indexed: 06/29/2024] Open
Abstract
In recent years, a growing body of research has confirmed that the gut microbiota plays a major role in the maintenance of human health and disease. A gut microbiota imbalance can lead to the development of many diseases, such as pregnancy complications, adverse pregnancy outcomes, polycystic ovary syndrome, endometriosis, and cancer. Short-chain fatty acids are metabolites of specific intestinal bacteria and are crucial for maintaining intestinal homeostasis and regulating metabolism and immunity. Endometriosis is the result of cell proliferation, escape from immune surveillance, and invasive metastasis. There is a strong correlation between the anti-proliferative and anti-inflammatory effects of short-chain fatty acids produced by gut microbes and the development of endometriosis. Given that the mechanism of action of gut microbiota and Short-chain fatty acids in endometriosis remain unclear, this paper aims to provide a comprehensive review of the complex interactions between intestinal flora, short-chain fatty acids and endometriosis. In addition, we explored potential microbial-based treatment strategies for endometriosis, providing new insights into the future development of diagnostic tests and prevention and treatment methods for endometriosis.
Collapse
Affiliation(s)
- Menghe Liu
- College of Pharmacy, Inner Mongolia Medical University, Hohhot, Inner Mongolia Autonomous Region, China
| | - Ru Peng
- Department of Obstetrics and Gynecology, Hohhot Maternal and Child Health Care Hospital, Hohhot, Inner Mongolia Autonomous Region, China
| | - Chunfang Tian
- Department of Oncology, Inner Mongolia Traditional Chinese Medicine Hospital, Hohhot, Inner Mongolia Autonomous Region, China
| | - Jianping Shi
- College of Traditional Chinese Medicine, Inner Mongolia Medical University, Hohhot, Inner Mongolia Autonomous Region, China
| | - Jiannan Ma
- College of Pharmacy, Inner Mongolia Medical University, Hohhot, Inner Mongolia Autonomous Region, China
| | - Ruiwen Shi
- College of Pharmacy, Inner Mongolia Medical University, Hohhot, Inner Mongolia Autonomous Region, China
| | - Xiao Qi
- College of Pharmacy, Inner Mongolia Medical University, Hohhot, Inner Mongolia Autonomous Region, China
| | - Rongwei Zhao
- Department of Obstetrics and Gynecology, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia Autonomous Region, China
| | - Haibin Guan
- College of Pharmacy, Inner Mongolia Medical University, Hohhot, Inner Mongolia Autonomous Region, China
| |
Collapse
|
42
|
Cuffaro F, Russo E, Amedei A. Endometriosis, Pain, and Related Psychological Disorders: Unveiling the Interplay among the Microbiome, Inflammation, and Oxidative Stress as a Common Thread. Int J Mol Sci 2024; 25:6473. [PMID: 38928175 PMCID: PMC11203696 DOI: 10.3390/ijms25126473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/29/2024] [Accepted: 06/05/2024] [Indexed: 06/28/2024] Open
Abstract
Endometriosis (EM), a chronic condition in endometrial tissue outside the uterus, affects around 10% of reproductive-age women, significantly affecting fertility. Its prevalence remains elusive due to the surgical confirmation needed for diagnosis. Manifesting with a range of symptoms, including dysmenorrhea, dyschezia, dysuria, dyspareunia, fatigue, and gastrointestinal discomfort, EM significantly impairs quality of life due to severe chronic pelvic pain (CPP). Psychological manifestations, notably depression and anxiety, frequently accompany the physical symptoms, with CPP serving as a key mediator. Pain stems from endometrial lesions, involving oxidative stress, neuroinflammation, angiogenesis, and sensitization processes. Microbial dysbiosis appears to be crucial in the inflammatory mechanisms underlying EM and associated CPP, as well as psychological symptoms. In this scenario, dietary interventions and nutritional supplements could help manage EM symptoms by targeting inflammation, oxidative stress, and the microbiome. Our manuscript starts by delving into the complex relationship between EM pain and psychological comorbidities. It subsequently addresses the emerging roles of the microbiome, inflammation, and oxidative stress as common links among these abovementioned conditions. Furthermore, the review explores how dietary and nutritional interventions may influence the composition and function of the microbiome, reduce inflammation and oxidative stress, alleviate pain, and potentially affect EM-associated psychological disorders.
Collapse
Affiliation(s)
- Francesca Cuffaro
- Division of Interdisciplinary Internal Medicine, Careggi University Hospital of Florence, 50134 Florence, Italy;
| | - Edda Russo
- Department of Clinical and Experimental Medicine, University of Florence, 50134 Florence, Italy
| | - Amedeo Amedei
- Department of Clinical and Experimental Medicine, University of Florence, 50134 Florence, Italy
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), 50139 Florence, Italy
| |
Collapse
|
43
|
Park J, Lee HJ. Specific Foods Associated with Depressive Symptoms among Young Adults and Their Bioactive Effects. Nutrients 2024; 16:1818. [PMID: 38931173 PMCID: PMC11206412 DOI: 10.3390/nu16121818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/06/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024] Open
Abstract
Depression represents a widespread and devastating psychiatric public health challenge globally. It is particularly prevalent among young adults in Korea. Certain foods may have medicinal properties that alleviate depressive symptoms. This study aimed to examine the association between specific foods and depressive symptoms among young adults, exploring their bioactive effects and possible mechanisms. We conducted a cross-sectional study involving 1000 Korean young adults aged 18-39 years. Food frequency questionnaires were used to assess diets and their associations with depressive symptoms. Results from multivariable logistic regression analysis indicated associations between several specific foods and their effects: milk (odds ratio = 0.58, 95% confidence interval: 0.36-0.94), eggs (0.55, 0.35-0.87), bananas (0.58, 0.36-0.94), oranges (0.62, 0.40-0.96), sweet potatoes (0.60, 0.37-0.97), mushrooms (0.53, 0.31-0.92, females only), and kimchi (0.40, 0.17-0.95, males only). Furthermore, molecular docking indicated that hesperidin had the highest docking score of 5.86 in oranges. Several bioactive compounds identified as potentially beneficial in combatting depression include calcium, casein, alpha-lactalbumin, tryptophan (TRP), vitamin B6 and B12, magnesium, flavonoids (especially hesperidin), carotenoids, ergothioneine, fiber, and probiotics. To recommend these foods in the management of depression among young adults, further clinical intervention studies are necessary.
Collapse
Affiliation(s)
- Junghyun Park
- Institute for Aging and Clinical Nutrition Research, Gachon University, Seongnam 13120, Republic of Korea;
- Department of Food and Nutrition, College of BioNano Technology, Gachon University, Seongnam 13120, Republic of Korea
| | - Hae-Jeung Lee
- Institute for Aging and Clinical Nutrition Research, Gachon University, Seongnam 13120, Republic of Korea;
- Department of Food and Nutrition, College of BioNano Technology, Gachon University, Seongnam 13120, Republic of Korea
- Department of Health Sciences and Technology, Gachon Advanced Institute for Health Sciences and Technology (GAIHST), Gachon University, Incheon 21999, Republic of Korea
- Clinical Research Center, Gachon University Gil Medical Center, Incheon 21999, Republic of Korea
| |
Collapse
|
44
|
Liao Q, Wang F, Zhou W, Liao G, Zhang H, Shu Y, Chen Y. Identification of Causal Relationships between Gut Microbiota and Influenza a Virus Infection in Chinese by Mendelian Randomization. Microorganisms 2024; 12:1170. [PMID: 38930552 PMCID: PMC11205835 DOI: 10.3390/microorganisms12061170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/01/2024] [Accepted: 06/05/2024] [Indexed: 06/28/2024] Open
Abstract
Numerous studies have reported a correlation between gut microbiota and influenza A virus (IAV) infection and disease severity. However, the causal relationship between these factors remains inadequately explored. This investigation aimed to assess the influence of gut microbiota on susceptibility to human infection with H7N9 avian IAV and the severity of influenza A (H1N1)pdm09 infection. A two-sample Mendelian randomization analysis was conducted, integrating our in-house genome-wide association study (GWAS) on H7N9 susceptibility and H1N1pdm09 severity with a metagenomics GWAS dataset from a Chinese population. Twelve and fifteen gut microbiotas were causally associated with H7N9 susceptibility or H1N1pdm09 severity, separately. Notably, Clostridium hylemonae and Faecalibacterium prausnitzii were negative associated with H7N9 susceptibility and H1N1pdm09 severity, respectively. Moreover, Streptococcus peroris and Streptococcus sanguinis were associated with H7N9 susceptibility, while Streptococcus parasanguini and Streptococcus suis were correlated with H1N1pdm09 severity. These results provide novel insights into the interplay between gut microbiota and IAV pathogenesis as well as new clues for mechanism research regarding therapeutic interventions or IAV infections. Future studies should concentrate on clarifying the regulatory mechanisms of gut microbiota and developing efficacious approaches to reduce the incidence of IAV infections, which could improve strategy for preventing and treating IAV infection worldwide.
Collapse
Affiliation(s)
- Qijun Liao
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China; (Q.L.); (F.W.); (W.Z.); (G.L.)
- BGI Genomics, Shenzhen 518085, China
| | - Fuxiang Wang
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China; (Q.L.); (F.W.); (W.Z.); (G.L.)
| | - Wudi Zhou
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China; (Q.L.); (F.W.); (W.Z.); (G.L.)
| | - Guancheng Liao
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China; (Q.L.); (F.W.); (W.Z.); (G.L.)
| | - Haoyang Zhang
- School of Data and Computer Science, Sun Yat-sen University, Guangzhou 510006, China;
| | - Yuelong Shu
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China; (Q.L.); (F.W.); (W.Z.); (G.L.)
- Key Laboratory of Pathogen Infection Prevention and Control (MOE), State Key Laboratory of Respiratory Health and Multimorbidity, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 102629, China
| | - Yongkun Chen
- Guangdong Provincial Key Laboratory of Infection Immunity and Inflammation, Department of Pathogen Biology, School of Basic Medical Sciences, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China
| |
Collapse
|
45
|
Zhu R, Zhao X, Wu H, Zeng X, Wei J, Chen T. Psychobiotics Lactiplantibacillus plantarum JYLP-326: Antidepressant-like effects on CUMS-induced depressed mouse model and alleviation of gut microbiota dysbiosis. J Affect Disord 2024; 354:752-764. [PMID: 38537753 DOI: 10.1016/j.jad.2024.03.136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 03/18/2024] [Accepted: 03/24/2024] [Indexed: 04/01/2024]
Abstract
BACKGROUND Depression affects a significant portion of the global population and has emerged as one of the most debilitating conditions worldwide. Recent studies have explored the relationship between depression and the microbiota of the intestine, revealing potential avenues for effective treatment. METHODS To evaluate the potential alleviation of depression symptoms, we employed a depression C57BL/6 mice model induced by chronic unpredictable mild stress (CUMS). We administered Lactiplantibacillus plantarum JYLP-326 and conducted various animal behavior tests, including the open-field test (OFT), sucrose preference test (SPT), and tail-suspension test (TST). Additionally, we conducted immunohistochemistry staining and analyzed the hippocampal and colon parts of the mice. RESULTS The results of the behavior tests indicated that L. plantarum JYLP-326 alleviated spontaneous behavior associated with depression. Moreover, the treatment led to significant improvements in GFAP and Iba1, suggesting its potential neuroprotective effects. Analysis of the hippocampal region indicated that L. plantarum JYLP-326 administration upregulated p-TPH2, TPH2, and 5-HT1AR, while downregulating the expression of pro-inflammatory cytokines IL-1β, IL-6, and TNF-α. In the colon, the treatment inhibited the TLR4-MyD88-NF-κB pathway and increased the levels of occludin and ZO-1, indicating improved intestinal barrier function. Additionally, the probiotic demonstrated a regulatory effect on the HMGB1-RAGE-TLR4 signaling pathway. CONCLUSIONS Our findings demonstrate that L. plantarum JYLP-326 exhibits significant antidepressant-like effects in mice, suggesting its potential as a therapeutic approach for depression through the modulation of gut microbiota. However, further investigations and clinical trials are required to validate its safety and efficacy for human use.
Collapse
Affiliation(s)
- Ruizhe Zhu
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institution of Translational Medicine, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Xuanqi Zhao
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institution of Translational Medicine, Jiangxi Medical College, Nanchang University, Nanchang, China; School of Life Sciences, Nanchang University, Nanchang 330031, China
| | - Heng Wu
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institution of Translational Medicine, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Xiangdi Zeng
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institution of Translational Medicine, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Jing Wei
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institution of Translational Medicine, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Tingtao Chen
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institution of Translational Medicine, Jiangxi Medical College, Nanchang University, Nanchang, China; School of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang 330006, China.
| |
Collapse
|
46
|
Chen C, Han P, Qing Y. Metabolic heterogeneity in tumor microenvironment - A novel landmark for immunotherapy. Autoimmun Rev 2024; 23:103579. [PMID: 39004158 DOI: 10.1016/j.autrev.2024.103579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/10/2024] [Accepted: 07/09/2024] [Indexed: 07/16/2024]
Abstract
The surrounding non-cancer cells and tumor cells that make up the tumor microenvironment (TME) have various metabolic rhythms. TME metabolic heterogeneity is influenced by the intricate network of metabolic control within and between cells. DNA, protein, transport, and microbial levels are important regulators of TME metabolic homeostasis. The effectiveness of immunotherapy is also closely correlated with alterations in TME metabolism. The response of a tumor patient to immunotherapy is influenced by a variety of variables, including intracellular metabolic reprogramming, metabolic interaction between cells, ecological changes within and between tumors, and general dietary preferences. Although immunotherapy and targeted therapy have made great strides, their use in the accurate identification and treatment of tumors still has several limitations. The function of TME metabolic heterogeneity in tumor immunotherapy is summarized in this article. It focuses on how metabolic heterogeneity develops and is regulated as a tumor progresses, the precise molecular mechanisms and potential clinical significance of imbalances in intracellular metabolic homeostasis and intercellular metabolic coupling and interaction, as well as the benefits and drawbacks of targeted metabolism used in conjunction with immunotherapy. This offers insightful knowledge and important implications for individualized tumor patient diagnosis and treatment plans in the future.
Collapse
Affiliation(s)
- Chen Chen
- The First Affiliated Hospital of Ningbo University, Ningbo 315211, Zhejiang, China
| | - Peng Han
- Harbin Medical University Cancer Hospital, Harbin 150081, Heilongjiang, China.
| | - Yanping Qing
- The First Affiliated Hospital of Ningbo University, Ningbo 315211, Zhejiang, China.
| |
Collapse
|
47
|
Zheng J, Li S, He J, Liu H, Huang Y, Jiang X, Zhao X, Li J, Feng B, Che L, Fang Z, Xu S, Lin Y, Hua L, Zhuo Y, Wu D. A Gestational Pectin Diet Could Improve the Health of Multiparous Sows by Modulating the Gut Microbiota and Cytokine Level during Late Pregnancy. Animals (Basel) 2024; 14:1559. [PMID: 38891606 PMCID: PMC11171106 DOI: 10.3390/ani14111559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/22/2024] [Accepted: 05/23/2024] [Indexed: 06/21/2024] Open
Abstract
This study aimed to investigate the effects of the dietary fiber pectin on the gut microbiota and health of parturient sows. A total of 30 parity 5-7, multiparous gestation sows (Large White × Landrace) were randomly assigned to two treatment groups after mating: Con (control, basic diet) and Pec (pectin, 3%). The sows received the two diets during gestation, and all sows were fed the same standard basic diet during lactation. The results of β-diversity showed that the composition of the gut microbiota was different in the Con and Pec groups. Compared with the sows in the Con group, the Pec sows showed a higher abundance of the gut bacteria Clostridium and Romboutsia and a lower abundance of harmful bacteria (Micrococcaceae, Coriobacteriaceae, Dorea, Actinomyces). On the other hand, the SCFA plasma concentration was increased in the Pec group, while pro-inflammatory cytokine (IL-6, IL-1β, and TNF-α) concentrations were decreased. In conclusion, the soluble dietary fiber pectin could improve the reproductive performance and health of sows by increasing the abundance of some commensal bacteria enhancing the metabolite SCFA levels and reducing the pro-inflammatory cytokine plasma levels.
Collapse
Affiliation(s)
- Jie Zheng
- Key Laboratory for Animal Disease-Resistance Nutrition, China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, No. 211, Huimin Road, Chengdu 611130, China
| | - Shuang Li
- Key Laboratory for Animal Disease-Resistance Nutrition, China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, No. 211, Huimin Road, Chengdu 611130, China
- College of Bioengineering, Sichuan University of Science & Engineering, Yibin 644000, China
| | - Jiaqi He
- Key Laboratory for Animal Disease-Resistance Nutrition, China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, No. 211, Huimin Road, Chengdu 611130, China
| | - Hao Liu
- Key Laboratory for Animal Disease-Resistance Nutrition, China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, No. 211, Huimin Road, Chengdu 611130, China
| | - Yingyan Huang
- Key Laboratory for Animal Disease-Resistance Nutrition, China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, No. 211, Huimin Road, Chengdu 611130, China
| | - Xuemei Jiang
- Key Laboratory for Animal Disease-Resistance Nutrition, China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, No. 211, Huimin Road, Chengdu 611130, China
| | - Xilun Zhao
- Key Laboratory for Animal Disease-Resistance Nutrition, China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, No. 211, Huimin Road, Chengdu 611130, China
| | - Jian Li
- Key Laboratory for Animal Disease-Resistance Nutrition, China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, No. 211, Huimin Road, Chengdu 611130, China
| | - Bin Feng
- Key Laboratory for Animal Disease-Resistance Nutrition, China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, No. 211, Huimin Road, Chengdu 611130, China
| | - Lianqiang Che
- Key Laboratory for Animal Disease-Resistance Nutrition, China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, No. 211, Huimin Road, Chengdu 611130, China
| | - Zhengfeng Fang
- Key Laboratory for Animal Disease-Resistance Nutrition, China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, No. 211, Huimin Road, Chengdu 611130, China
| | - Shengyu Xu
- Key Laboratory for Animal Disease-Resistance Nutrition, China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, No. 211, Huimin Road, Chengdu 611130, China
| | - Yan Lin
- Key Laboratory for Animal Disease-Resistance Nutrition, China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, No. 211, Huimin Road, Chengdu 611130, China
| | - Lun Hua
- Key Laboratory for Animal Disease-Resistance Nutrition, China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, No. 211, Huimin Road, Chengdu 611130, China
| | - Yong Zhuo
- Key Laboratory for Animal Disease-Resistance Nutrition, China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, No. 211, Huimin Road, Chengdu 611130, China
| | - De Wu
- Key Laboratory for Animal Disease-Resistance Nutrition, China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, No. 211, Huimin Road, Chengdu 611130, China
| |
Collapse
|
48
|
Song G, Lu Y. Association between the dietary inflammatory index and all-cause mortality in osteoarthritis. BMC Musculoskelet Disord 2024; 25:407. [PMID: 38783297 PMCID: PMC11112835 DOI: 10.1186/s12891-024-07506-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 05/07/2024] [Indexed: 05/25/2024] Open
Abstract
BACKGROUND To investigate the association between the Dietary Inflammatory Index (DII) and all-cause mortality in patients with osteoarthritis (OA). METHODS In this retrospective cohort study, data on OA patients were obtained from the National Health and Nutrition Examination Survey (NHANES) 2003-2018. OA diagnosis was self-reported. The study population was divided into low and high DII groups based on the DII's median. All-cause mortality was the outcome, which was determined via linkage to the National Death Index (NDI) until 31 December 2019. Multivariable Cox regression analyses were employed to investigate the association between the DII and all-cause mortality. The survival of the low and high DII groups was exhibited by Kaplan-Meier curves. Furthermore, subgroup analyses were carried out in terms of age and comorbidity. RESULTS A total of 3804 patients with OA were included, with 1902 (50%) in the low DII group and 1902 (50%) in the high DII group. Patients with a high DII had a significantly greater risk of all-cause mortality than those with a low DII (HR = 1.21, 95%CI: 1.02-1.44, P = 0.025). A high DII was associated with a significantly increased risk of all-cause mortality compared with a low DII in patients aged ≥ 65 years [hazard ratio (HR) = 1.28, 95% confidence level (CI): 1.07-1.53, P = 0.006). Hypertensive patients with a high DII had a significantly greater risk of all-cause mortality than those with a low DII (HR = 1.25, 95%CI: 1.03-1.52, P = 0.025). For patients with cardiovascular disease (CVD), a high DII was associated with a significantly higher risk of all-cause mortality than a low DII (HR = 1.43, 95%CI: 1.17-1.75, P < 0.001). A high DII was associated with a significantly greater risk of all-cause mortality, as compared with a low DII in patients with chronic kidney disease (CKD) (HR = 1.22, 95%CI: 1.02-1.45, P = 0.026). CONCLUSION The DII was positively associated with the risk of all-cause mortality in patients with OA. This association differed by age, hypertension, CVD, and CKD. Adherence to diet with a low DII may be beneficial in prognosis improvement.
Collapse
Affiliation(s)
- Genglu Song
- Department of Orthopedics and Traumatology, Qiannan Buyi and Miao Autonomous Prefecture Hospital of Traditional Chinese Medicine, No. 32 Jianjiang Middle Road, Qiannan Buyi and Miao Autonomous Prefecture, Duyun, 558000, Guizhou, People's Republic of China.
| | - Yaoyu Lu
- Department of Orthopedics and Traumatology, Qiannan Buyi and Miao Autonomous Prefecture Hospital of Traditional Chinese Medicine, No. 32 Jianjiang Middle Road, Qiannan Buyi and Miao Autonomous Prefecture, Duyun, 558000, Guizhou, People's Republic of China
| |
Collapse
|
49
|
Melilli MG, Buzzanca C, Di Stefano V. Quality characteristics of cereal-based foods enriched with different degree of polymerization inulin: A review. Carbohydr Polym 2024; 332:121918. [PMID: 38431396 DOI: 10.1016/j.carbpol.2024.121918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 02/02/2024] [Accepted: 02/04/2024] [Indexed: 03/05/2024]
Abstract
Vegetables, cereals and fruit are foods rich in fibre with beneficial and nutritional effects as their consumption reduces the onset of degenerative diseases, especially cardiovascular ones. Among fibres, inulin, oligofructose or fructooligosaccharide (FOS) are the best-studied. Inulin is a generic term to cover all linear β(2-1) fructans, with a variable degree of polymerization. In this review a better understanding of the importance of the degree of polymerization of inulin as a dietary fibre, functions, health benefits, classifications, types and its applications in the food industry was considered in different fortified foods. Inulin has been used to increase the nutritional and healthy properties of the product as a sweetener and as a substitute for fats and carbohydrates, improving the nutritional value and decreasing the glycemic index, with the advantage of not compromising taste and consistency of the product. Bifidogenic and prebiotic effects of inulin have been well established, inulin-type fructans are fermented by the colon to produce short-chain fatty acids, with important local and systemic actions. Addition of inulin with different degrees of polymerization to daily foods for the production of fortified pasta and bread was reviewed, and the impact on sensorial, technological and organoleptic characteristics even of gluten-free bread was also reported.
Collapse
Affiliation(s)
- Maria Grazia Melilli
- National Council of Research, Institute of Biomolecular Chemistry (CNR-ICB), Catania, Italy.
| | - Carla Buzzanca
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Italy.
| | - Vita Di Stefano
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Italy; National Biodiversity Future Center (NBFC), 90123, Palermo, Italy.
| |
Collapse
|
50
|
Arifuzzaman M, Won TH, Yano H, Uddin J, Emanuel ER, Hu E, Zhang W, Li TT, Jin WB, Grier A, Kashyap S, Guo CJ, Schroeder FC, Artis D. Dietary fiber is a critical determinant of pathologic ILC2 responses and intestinal inflammation. J Exp Med 2024; 221:e20232148. [PMID: 38506708 PMCID: PMC10955042 DOI: 10.1084/jem.20232148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/18/2023] [Accepted: 02/20/2024] [Indexed: 03/21/2024] Open
Abstract
Innate lymphoid cells (ILCs) can promote host defense, chronic inflammation, or tissue protection and are regulated by cytokines and neuropeptides. However, their regulation by diet and microbiota-derived signals remains unclear. We show that an inulin fiber diet promotes Tph1-expressing inflammatory ILC2s (ILC2INFLAM) in the colon, which produce IL-5 but not tissue-protective amphiregulin (AREG), resulting in the accumulation of eosinophils. This exacerbates inflammation in a murine model of intestinal damage and inflammation in an ILC2- and eosinophil-dependent manner. Mechanistically, the inulin fiber diet elevated microbiota-derived bile acids, including cholic acid (CA) that induced expression of ILC2-activating IL-33. In IBD patients, bile acids, their receptor farnesoid X receptor (FXR), IL-33, and eosinophils were all upregulated compared with controls, implicating this diet-microbiota-ILC2 axis in human IBD pathogenesis. Together, these data reveal that dietary fiber-induced changes in microbial metabolites operate as a rheostat that governs protective versus pathologic ILC2 responses with relevance to precision nutrition for inflammatory diseases.
Collapse
Affiliation(s)
- Mohammad Arifuzzaman
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Friedman Center for Nutrition and Inflammation, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Division of Gastroenterology and Hepatology, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Tae Hyung Won
- Department of Chemistry and Chemical Biology, Boyce Thompson Institute, Cornell University, Ithaca, NY, USA
| | - Hiroshi Yano
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Friedman Center for Nutrition and Inflammation, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Division of Gastroenterology and Hepatology, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Jazib Uddin
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Friedman Center for Nutrition and Inflammation, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Division of Gastroenterology and Hepatology, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Elizabeth R. Emanuel
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Friedman Center for Nutrition and Inflammation, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Division of Gastroenterology and Hepatology, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Immunology and Microbial Pathogenesis Program, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Elin Hu
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Friedman Center for Nutrition and Inflammation, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Division of Gastroenterology and Hepatology, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Wen Zhang
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Friedman Center for Nutrition and Inflammation, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Division of Gastroenterology and Hepatology, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Ting-Ting Li
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Friedman Center for Nutrition and Inflammation, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Division of Gastroenterology and Hepatology, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Wen-Bing Jin
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Friedman Center for Nutrition and Inflammation, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Division of Gastroenterology and Hepatology, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Alex Grier
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Friedman Center for Nutrition and Inflammation, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Division of Gastroenterology and Hepatology, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Sanchita Kashyap
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Friedman Center for Nutrition and Inflammation, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Division of Gastroenterology and Hepatology, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Chun-Jun Guo
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Friedman Center for Nutrition and Inflammation, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Division of Gastroenterology and Hepatology, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Frank C. Schroeder
- Department of Chemistry and Chemical Biology, Boyce Thompson Institute, Cornell University, Ithaca, NY, USA
| | - David Artis
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Friedman Center for Nutrition and Inflammation, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Division of Gastroenterology and Hepatology, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Immunology and Microbial Pathogenesis Program, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Allen Discovery Center for Neuroimmune Interactions, New York, NY, USA
| |
Collapse
|