1
|
Luo Y, Lan C, Ren W, Wu A, Yu B, He J, Chen D. Bacteroides thetaiotaomicron: A symbiotic ally against diarrhea along with modulation of gut microbial networks via tryptophan metabolism and AHR-Nrf2 signaling. J Adv Res 2025:S2090-1232(25)00260-7. [PMID: 40233891 DOI: 10.1016/j.jare.2025.04.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 02/01/2025] [Accepted: 04/11/2025] [Indexed: 04/17/2025] Open
Abstract
INTRODUCTION Bacteroides is a crucial mucosal symbiotic bacterium in mammals, with Bacteroides thetaiotaomicron (B. thetaiotaomicron) being particularly noteworthy as a glyco-specialist due to its significant nutritional impact. However, B. thetaiotaomicron may affect host health, but related research is limited. OBJECTIVES Our main focus is to understand the patterns of microbial community changes and the molecular mechanisms mediated by microbial metabolites in the alleviation of piglet diarrhea by B. thetaiotaomicron. METHODS Cold stress was induced in piglets to trigger stress-induced diarrhea. The control group and B group were administered a blank medium and 1 × 108 CFU of B. thetaiotaomicron, respectively, on days 1, 3, and 5. The diarrhea rate and growth performance of the piglets were recorded during the experimental period. Based on 16S rRNA gene amplicon sequencing, microbial network analysis, and metabolomics analysis, the composition and changes of the colonic microbiota and metabolites were analyzed. The antibacterial capacity and anti-inflammatory molecular mechanisms of B. thetaiotaomicron metabolites were analyzed through in vitro antibacterial assays and inflammatory cell models. RESULTS B. thetaiotaomicron alleviated diarrhea in piglets and improved their growth performance. It influenced the composition of the intestinal microbiota and microbial interactions, with metabolites primarily enriched in the tryptophan metabolism pathway, particularly indole and its derivatives, which were closely related to host phenotypes. In vitro co-culture experiments demonstrated that B. thetaiotaomicron metabolites inhibited the growth of pathogenic bacteria. Further in vitro experiments revealed that these metabolites, including indole, reinforced barrier function and reduced TNF-α-induced inflammation and apoptosis in Caco-2 cells, confirming the significance of the AHR-Nrf2 pathway in mediating these positive effects. CONCLUSION In conclusion, this study offers a theoretical framework for understanding the role of the symbiotic bacterium B. thetaiotaomicron in the gut microbiota ecosystem during diarrhea and its interactions with the host's intestinal tract.
Collapse
Affiliation(s)
- Yuheng Luo
- Key Laboratory for Animal Disease-Resistance Nutrition of Ministry of Education of China, Key Laboratory for Animal Disease-Resistance Nutrition and Feed of Ministry of Agriculture of China, Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Engineering Research Center of Animal Disease-Resistance Nutrition Biotechnology of Ministry of Education of China, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Cong Lan
- Key Laboratory for Animal Disease-Resistance Nutrition of Ministry of Education of China, Key Laboratory for Animal Disease-Resistance Nutrition and Feed of Ministry of Agriculture of China, Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Engineering Research Center of Animal Disease-Resistance Nutrition Biotechnology of Ministry of Education of China, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Wen Ren
- Key Laboratory for Animal Disease-Resistance Nutrition of Ministry of Education of China, Key Laboratory for Animal Disease-Resistance Nutrition and Feed of Ministry of Agriculture of China, Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Engineering Research Center of Animal Disease-Resistance Nutrition Biotechnology of Ministry of Education of China, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Aimin Wu
- Key Laboratory for Animal Disease-Resistance Nutrition of Ministry of Education of China, Key Laboratory for Animal Disease-Resistance Nutrition and Feed of Ministry of Agriculture of China, Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Engineering Research Center of Animal Disease-Resistance Nutrition Biotechnology of Ministry of Education of China, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Bing Yu
- Key Laboratory for Animal Disease-Resistance Nutrition of Ministry of Education of China, Key Laboratory for Animal Disease-Resistance Nutrition and Feed of Ministry of Agriculture of China, Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Engineering Research Center of Animal Disease-Resistance Nutrition Biotechnology of Ministry of Education of China, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Jun He
- Key Laboratory for Animal Disease-Resistance Nutrition of Ministry of Education of China, Key Laboratory for Animal Disease-Resistance Nutrition and Feed of Ministry of Agriculture of China, Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Engineering Research Center of Animal Disease-Resistance Nutrition Biotechnology of Ministry of Education of China, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Daiwen Chen
- Key Laboratory for Animal Disease-Resistance Nutrition of Ministry of Education of China, Key Laboratory for Animal Disease-Resistance Nutrition and Feed of Ministry of Agriculture of China, Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Engineering Research Center of Animal Disease-Resistance Nutrition Biotechnology of Ministry of Education of China, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China.
| |
Collapse
|
2
|
Zhang J, Yang J, Luo J, Wu W, Luo H, Wei W, Lyu H, Wang Y, Yi H, Zhang Y, Fan Z, Lyu H, Kanakaveti VP, Qin B, Yuan P, Yang R, Zhang H, Zuo T, Felsher DW, Lee MH, Li K. Lactobacillus acidophilus potentiates oncolytic virotherapy through modulating gut microbiota homeostasis in hepatocellular carcinoma. Nat Commun 2025; 16:3315. [PMID: 40195307 PMCID: PMC11976979 DOI: 10.1038/s41467-025-58407-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 03/20/2025] [Indexed: 04/09/2025] Open
Abstract
Oncolytic viruses (OVs) hold promise for cancer treatment. However, the antitumor efficacy is limited. Microbiota plays a pivotal role in cancer treatment and its impact on oncolytic virotherapy is unknown. Here, we show that VSVΔ51 has higher antitumor efficacy for hepatocellular carcinoma in the absence of microbiota in female mouse models. VSVΔ51 infection causes microbiota dysbiosis, increasing most of the gut bacteria abundance, while decreasing the commensal Lactobacillus. VSVΔ51 reduced intestinal expression of SLC20A1 that binds to Lactobacillus acidophilus (L. acidophilus) CdpA cell wall protein through IL6-JAK-STAT3 signaling, thereby attenuating attachment and colonization of L. acidophilus. L. acidophilus supplementation confers sensitivity to VSVΔ51 through restoring gut barrier integrity and microbiota homeostasis destroyed by VSVΔ51. In this work, we show that targeting microbiota homostasis holds substantial potential in improving therapeutic outcomes of oncolytic virotherapy.
Collapse
Affiliation(s)
- Jiayu Zhang
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, China
- Guangdong Research Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, China
- Key Laboratory of Human Microbiome and Chronic Diseases (Sun Yat-sen University), Ministry of Education, Guangzhou, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jinneng Yang
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, China
- Guangdong Research Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, China
- Key Laboratory of Human Microbiome and Chronic Diseases (Sun Yat-sen University), Ministry of Education, Guangzhou, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jinyan Luo
- The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, China
| | - Weili Wu
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, China
- Guangdong Research Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, China
- Department of Clinical Laboratory, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Haidan Luo
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, China
- Guangdong Research Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, China
- Key Laboratory of Human Microbiome and Chronic Diseases (Sun Yat-sen University), Ministry of Education, Guangzhou, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Wenxia Wei
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, China
- Guangdong Research Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, China
- Key Laboratory of Human Microbiome and Chronic Diseases (Sun Yat-sen University), Ministry of Education, Guangzhou, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Haimei Lyu
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, China
- Guangdong Research Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, China
- Key Laboratory of Human Microbiome and Chronic Diseases (Sun Yat-sen University), Ministry of Education, Guangzhou, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yuzhi Wang
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, China
- Guangdong Research Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, China
- Key Laboratory of Human Microbiome and Chronic Diseases (Sun Yat-sen University), Ministry of Education, Guangzhou, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Hairong Yi
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, China
- Guangdong Research Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, China
- Key Laboratory of Human Microbiome and Chronic Diseases (Sun Yat-sen University), Ministry of Education, Guangzhou, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yijing Zhang
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, China
- Guangdong Research Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, China
- Key Laboratory of Human Microbiome and Chronic Diseases (Sun Yat-sen University), Ministry of Education, Guangzhou, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zongmin Fan
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, China
- Guangdong Research Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, China
- Key Laboratory of Human Microbiome and Chronic Diseases (Sun Yat-sen University), Ministry of Education, Guangzhou, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Haiwen Lyu
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, China
- Guangdong Research Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, China
- Key Laboratory of Human Microbiome and Chronic Diseases (Sun Yat-sen University), Ministry of Education, Guangzhou, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | | | - Baifu Qin
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, China
- Guangdong Research Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, China
- Key Laboratory of Human Microbiome and Chronic Diseases (Sun Yat-sen University), Ministry of Education, Guangzhou, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Ping Yuan
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, China
- Guangdong Research Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, China
- Key Laboratory of Human Microbiome and Chronic Diseases (Sun Yat-sen University), Ministry of Education, Guangzhou, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Runxiang Yang
- Department of the Second Medical Oncology, The Third Affiliated Hospital of Kunming Medical University, 519, Kunzhou Road, Kunming, 650118, China
| | - Haipeng Zhang
- Department of Pharmacology, School of Medicine, Jinan University, Guangzhou, Guangdong, 510632, China
| | - Tao Zuo
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, China
- Guangdong Research Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, China
- Key Laboratory of Human Microbiome and Chronic Diseases (Sun Yat-sen University), Ministry of Education, Guangzhou, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Dean W Felsher
- Division of Oncology, Department of Medicine, Stanford University, Stanford, CA, 94305, USA
| | - Mong-Hong Lee
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, China.
- Guangdong Research Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, China.
- Key Laboratory of Human Microbiome and Chronic Diseases (Sun Yat-sen University), Ministry of Education, Guangzhou, China.
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
| | - Kai Li
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, China.
- Guangdong Research Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, China.
- Key Laboratory of Human Microbiome and Chronic Diseases (Sun Yat-sen University), Ministry of Education, Guangzhou, China.
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
3
|
Cuadrado A, Cazalla E, Bach A, Bathish B, Naidu SD, DeNicola GM, Dinkova-Kostova AT, Fernández-Ginés R, Grochot-Przeczek A, Hayes JD, Kensler TW, León R, Liby KT, López MG, Manda G, Shivakumar AK, Hakomäki H, Moerland JA, Motohashi H, Rojo AI, Sykiotis GP, Taguchi K, Valverde ÁM, Yamamoto M, Levonen AL. Health position paper and redox perspectives - Bench to bedside transition for pharmacological regulation of NRF2 in noncommunicable diseases. Redox Biol 2025; 81:103569. [PMID: 40059038 PMCID: PMC11970334 DOI: 10.1016/j.redox.2025.103569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Revised: 02/13/2025] [Accepted: 02/24/2025] [Indexed: 03/22/2025] Open
Abstract
Nuclear factor erythroid 2-related factor 2 (NRF2) is a redox-activated transcription factor regulating cellular defense against oxidative stress, thereby playing a pivotal role in maintaining cellular homeostasis. Its dysregulation is implicated in the progression of a wide array of human diseases, making NRF2 a compelling target for therapeutic interventions. However, challenges persist in drug discovery and safe targeting of NRF2, as unresolved questions remain especially regarding its context-specific role in diseases and off-target effects. This comprehensive review discusses the dualistic role of NRF2 in disease pathophysiology, covering its protective and/or destructive roles in autoimmune, respiratory, cardiovascular, and metabolic diseases, as well as diseases of the digestive system and cancer. Additionally, we also review the development of drugs that either activate or inhibit NRF2, discuss main barriers in translating NRF2-based therapies from bench to bedside, and consider the ways to monitor NRF2 activation in vivo.
Collapse
Affiliation(s)
- Antonio Cuadrado
- Department of Biochemistry, Medical College, Autonomous University of Madrid (UAM), Madrid, Spain; Instituto de Investigaciones Biomédicas Sols-Morreale (CSIC-UAM), Madrid, Spain; Instituto de Investigación Sanitaria La Paz (IdiPaz), Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.
| | - Eduardo Cazalla
- Department of Biochemistry, Medical College, Autonomous University of Madrid (UAM), Madrid, Spain; Instituto de Investigaciones Biomédicas Sols-Morreale (CSIC-UAM), Madrid, Spain; Instituto de Investigación Sanitaria La Paz (IdiPaz), Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Anders Bach
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100, Copenhagen, Denmark
| | - Boushra Bathish
- Jacqui Wood Cancer Centre, Division of Cancer Research, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY, Scotland, UK
| | - Sharadha Dayalan Naidu
- Jacqui Wood Cancer Centre, Division of Cancer Research, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY, Scotland, UK
| | - Gina M DeNicola
- Department of Metabolism and Physiology, H. Lee. Moffitt Cancer Center, Tampa, FL, 33612, USA
| | - Albena T Dinkova-Kostova
- Jacqui Wood Cancer Centre, Division of Cancer Research, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY, Scotland, UK
| | - Raquel Fernández-Ginés
- Department of Biochemistry, Medical College, Autonomous University of Madrid (UAM), Madrid, Spain; Instituto de Investigaciones Biomédicas Sols-Morreale (CSIC-UAM), Madrid, Spain; Instituto de Investigación Sanitaria La Paz (IdiPaz), Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Anna Grochot-Przeczek
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - John D Hayes
- Jacqui Wood Cancer Centre, Division of Cancer Research, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY, Scotland, UK
| | - Thomas W Kensler
- Translational Research Program, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA
| | - Rafael León
- Instituto de Química Médica, Consejo Superior de Investigaciones Científicas (IQM-CSIC), 28007, Madrid, Spain
| | - Karen T Liby
- Indiana University School of Medicine, Department of Medicine, W. Walnut Street, Indianapolis, IN, 46202, USA
| | - Manuela G López
- Department of Pharmacology, School of Medicine, Universidad Autónoma Madrid, Madrid, Spain; Instituto de Investigación Sanitario (IIS-IP), Hospital Universitario de La Princesa, Madrid, Spain; Instituto Teófilo Hernando, Madrid, Spain
| | - Gina Manda
- Radiobiology Laboratory, Victor Babes National Institute of Pathology, Bucharest, Romania
| | | | - Henriikka Hakomäki
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Jessica A Moerland
- Indiana University School of Medicine, Department of Medicine, W. Walnut Street, Indianapolis, IN, 46202, USA
| | - Hozumi Motohashi
- Department of Medical Biochemistry, Graduate School of Medicine Tohoku University, Sendai, Japan; Service of Endocrinology, Diabetology and Metabolism, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Ana I Rojo
- Department of Biochemistry, Medical College, Autonomous University of Madrid (UAM), Madrid, Spain; Instituto de Investigaciones Biomédicas Sols-Morreale (CSIC-UAM), Madrid, Spain; Instituto de Investigación Sanitaria La Paz (IdiPaz), Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | | | - Keiko Taguchi
- Laboratory of Food Chemistry, Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Japan; Department of Biochemistry and Molecular Biology, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
| | - Ángela M Valverde
- Instituto de Investigaciones Biomédicas "Sols-Morreale" UAM-CSIC, Instituto de Investigación Sanitaria La Paz (IdiPaz), Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), ISCIII, Madrid, Spain
| | - Masayuki Yamamoto
- Department of Biochemistry and Molecular Biology, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
| | - Anna-Liisa Levonen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland.
| |
Collapse
|
4
|
Hu J, Shi X, Cao S, Dong X, Dai J, Yin H. Exploring the phototherapy modalities and dosages for an ingestible light-emitting diode capsule to eliminate Helicobacter pylori infection. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2025; 267:113155. [PMID: 40184898 DOI: 10.1016/j.jphotobiol.2025.113155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Revised: 03/07/2025] [Accepted: 03/28/2025] [Indexed: 04/07/2025]
Abstract
Helicobacter pylori (H. pylori) infection presents increasing challenges to antibiotic therapies owing to limited drug bioavailability, multi-drug resistance and collateral damage to commensal intestinal microflora. To address these problems, here, an ingestible magnetically controlled light-emitting diode (LED) light source was designed for an ingestible capsule to perform antimicrobial photodynamic therapy (aPDT) without an exogenous photosensitizer (ex-PS) at 630 nm. Specifically, we first optimized the antibacterial rates of aPDT with ex-PS and aPDT without ex-PS against H. pylori at the bacterial suspension level by varying the wavelength (405, 530, 630 nm), photosensitizer concentration (2, 4, 6, 8, 10 μg/mL), power density (15, 30 mW/cm2), and energy density (0, 3.6, 7.2, 10.8, 14.4, 18.0 J/cm2). Then, we compared the antibacterial effect of aPDT with ex-PS and aPDT without ex-PS against H. pylori at the biofilm level, revealing that the antibacterial rate of aPDT without ex-PS reached approximately 97 % at 405 nm and 18 J/cm2, similar to that of aPDT with ex-PS under the same conditions. Furthermore, 80 SD rats infected with H. pylori were treated with aPDT with ex-PS and aPDT without ex-PS at the above wavelengths. Histopathological analysis of rat gastrointestinal tissues revealed that aPDT with ex-PS and aPDT without ex-PS exhibited significant antibacterial activity against H. pylori, without side effects on normal tissues. Additionally, aPDT without ex-PS at 630 nm induced an anti-inflammatory response and regulated the intestinal flora. Ultimately, we developed a magnetically controlled LED capsule for in vivo aPDT without ex-PS at 630 nm against H. pylori.
Collapse
Affiliation(s)
- Jiashen Hu
- Integrative Regeneration Laboratory, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
| | - Xiafei Shi
- School of Life Sciences, Tiangong University, Tianjin 300387, China
| | - Shisheng Cao
- Integrative Regeneration Laboratory, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
| | - Xiaoxi Dong
- Integrative Regeneration Laboratory, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China.
| | - Jianwu Dai
- Integrative Regeneration Laboratory, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China.
| | - Huijuan Yin
- Integrative Regeneration Laboratory, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China; Tianjin Key Laboratory of Neuromodulation and Neurorepair, Tianjin 300192, China.
| |
Collapse
|
5
|
Sun X, Zhai J. Research Status and Trends of Gut Microbiota and Intestinal Diseases Based on Bibliometrics. Microorganisms 2025; 13:673. [PMID: 40142565 PMCID: PMC11946491 DOI: 10.3390/microorganisms13030673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 02/27/2025] [Accepted: 03/13/2025] [Indexed: 03/28/2025] Open
Abstract
Gut microbiota plays an important role in gut health, and its dysbiosis is closely related to the pathogenesis of various intestinal diseases. The field of gut microbiota and intestinal diseases has not yet been systematically quantified through bibliometric methods. This study conducted bibliometric analysis to delineate the evolution of research on gut microbiota and intestinal diseases. Data were sourced from the Web of Science Core Collection database from 2009 to 2023 and were scientometrically analyzed using CiteSpace. We have found that the number of annual publications has been steadily increasing and showing an upward trend. China and the Chinese Academy of Sciences are the country and institution with the most contributions, respectively. Frontiers in Microbiology and Nutrients are the journals with the most publications, while Plos One and Nature are the journals with the most citations. The field has shifted from focusing on traditional descriptive analysis of gut microbiota composition to exploring the causal relationship between gut microbiota and intestinal diseases. The research hotspots and trends mainly include the correlation between specific intestinal diseases and gut microbiota diversity, the mechanism of gut microbiota involvement in intestinal diseases, the exploration of important gut microbiota related to intestinal diseases, and the relationship between gut microbiota and human gut health. This study provides a comprehensive knowledge map of gut microbiota and intestinal diseases, highlights key research areas, and outlines potential future directions.
Collapse
Affiliation(s)
- Xiao Sun
- Natural Reserve Planning and Research Institute, East China University of Technology, Nanchang 330013, China
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330029, China
| | - Jiancheng Zhai
- Natural Reserve Planning and Research Institute, East China University of Technology, Nanchang 330013, China
- School of Earth Sciences, East China University of Technology, Nanchang 330013, China
| |
Collapse
|
6
|
Li H, Aguilar Meza L, Shahi SK, Zhang Z, Wen W, Hu D, Lin H, Mangalam A, Luo J. Effects of alcohol on gut microbiome in adolescent and adult MMTV-Wnt1 mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.17.643801. [PMID: 40166271 PMCID: PMC11957038 DOI: 10.1101/2025.03.17.643801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Breast cancer is the most commonly diagnosed cancer in women worldwide, with alcohol consumption recognized as a significant risk factor. While epidemiological studies consistently show a positive correlation between alcohol consumption and increased breast cancer risk, the underlying mechanisms remain unclear. Recent evidence suggests that the gut microbiome-the diverse collection of microorganisms, including bacteria, viruses, and fungi, residing in the gastrointestinal tract-plays a pivotal role in systemic health and disease. This is achieved through its regulation of key physiological processes such as metabolism, immune function, and inflammatory responses. Disruption of the gut microbiome (dysbiosis) has recently been implicated in the development of breast cancer. We hypothesized that alcohol exposure induces gut dysbiosis, which in turn drives systemic inflammation and carcinogenic processes. Previously, we demonstrated that alcohol exposure promotes mammary tumor growth and aggressiveness in MMTV-Wnt1 (Wnt1) transgenic mice, an established model for investigating mechanisms of alcohol-induced tumor promotion. In this study, we sought to determine whether alcohol exposure induces gut dysbiosis in adolescent and adult Wnt1 transgenic mice and their wild-type FVB counterparts. Our findings revealed that alcohol exposure significantly reduced microbiome richness in adult Wnt1 and FVB mice. Alcohol exposure also markedly altered microbiome composition in adolescents and adults in both strains. Additionally, we identified specific microbial taxa that were significantly affected by alcohol exposure. These results demonstrate that alcohol disrupts the gut microbiome in a preclinical breast cancer model, providing insights into the potential role of gut dysbiosis in alcohol-induced mammary tumor promotion and offering avenues for future research.
Collapse
|
7
|
Zheng J, Huang Y, Zhang L, Liu T, Zou Y, He L, Guo S. Role of the Gut-Lung Microbiome Axis in Airway Inflammation in OVA-Challenged Mice and the Effect of Azithromycin. J Inflamm Res 2025; 18:2661-2676. [PMID: 40008084 PMCID: PMC11853874 DOI: 10.2147/jir.s506688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Accepted: 02/09/2025] [Indexed: 02/27/2025] Open
Abstract
Objective This study aimed to investigate the role of the gut-lung microbiome axis in airway inflammation in asthma and to evaluate the effect of azithromycin on this axis, with a focus on the potential mechanism by which azithromycin reduces allergic airway inflammation. Methods Haematoxylin and eosin (H&E) and periodic acid-Schiff (PAS) staining were used to assess pathological changes in the lung tissues of asthmatic mice. Leukocyte cell types in bronchoalveolar lavage fluid (BALF) samples were quantified following Wright-Giemsa staining. Total IgE, OVA-specific IgE, IL-4, IL-6, and IL-17A levels in BALF and total IgE in serum were measured by ELISA. The respiratory and gut microbiota were analysed using 16S rRNA gene sequencing and subsequent taxonomic analysis. Results OVA-challenged asthmatic mice with gut microbiota dysbiosis exhibited alterations in the respiratory microbiota, resulting in further aggravation of airway inflammation. Following faecal microbiota transplantation (FMT) to restore gut microbiota, respiratory microbiota dysbiosis was partially improved, and airway inflammation was significantly alleviated. Furthermore, azithromycin reduced airway inflammation in asthmatic mice, particularly non-eosinophilic inflammation, for which low-dose azithromycin combined with budesonide proved more effective. Azithromycin significantly enhanced the diversity and microbial composition of the gut microbiota and also affected the respiratory microbiota. At the phylum level, azithromycin decreased the abundance of Proteobacteria in the gut microbiota. At the genus level, azithromycin reduced the abundance of Pseudomonas in the respiratory microbiota. Conclusion The gut-lung microbiome axis plays a crucial role in airway inflammation in asthma. Azithromycin may reduce airway inflammation in asthma through modulation of the gut-lung microbiome axis.
Collapse
Affiliation(s)
- Jun Zheng
- Department of Traditional Chinese Medicine, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| | - Yuying Huang
- Department of Traditional Chinese Medicine, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| | - Liang Zhang
- Department of Endocrine, Genetics and Metabolism, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| | - Tiantian Liu
- Department of Traditional Chinese Medicine, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| | - Ya Zou
- Department of Traditional Chinese Medicine, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| | - Li He
- Department of Traditional Chinese Medicine, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| | - Sheng Guo
- Department of Endocrine, Genetics and Metabolism, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| |
Collapse
|
8
|
Jiao X, Li Y, Hu Y, Yan R, Fu T, Liu J, Li Z. Antibiotic-Induced dysbiosis of the ocular microbiome affects corneal circadian rhythmic activity in mice. Mucosal Immunol 2025:S1933-0219(25)00010-8. [PMID: 39920996 DOI: 10.1016/j.mucimm.2025.01.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 01/09/2025] [Accepted: 01/28/2025] [Indexed: 02/10/2025]
Abstract
The ocular surface microbiota plays a critical role in maintaining corneal homeostasis, but its disruption and subsequent effects on corneal functions remain poorly understood. This study investigates how antibiotic-induced microbial depletion affects the corneal circadian transcriptome in C57BL/6J mice. Dysbiosis was induced using a topical antibiotic cocktail, and RNA sequencing was employed to analyze gene expression across eight time points over 24 h. Antibiotic treatment disrupted corneal circadian rhythms, eliminating rhythmicity in 1,812 genes and introducing rhythmicity in 1,928 previously arrhythmic genes. Furthermore, epithelial adhesion was impaired, inflammation was elevated, and neural sensitivity was reduced. More than 50 % of ocular microbial genera exhibited daily oscillations, with six genera showing significant correlations with corneal rhythmic transcripts. Additionally, the administration of TLR agonists restored circadian gene expression patterns, with partial recovery of corneal barrier function and immune homeostasis, further highlighting the potential of microbiota-targeted therapies in treating ocular surface disorders. These findings underscore the critical role of the ocular microbiota in regulating corneal health and suggest that restoring microbial balance via TLR activation may offer new therapeutic avenues for eye diseases.
Collapse
Affiliation(s)
- Xinwei Jiao
- Department of Pathology, Medical School, Jinan University, Guangzhou, China; International Ocular Surface Research Center, Institute of Ophthalmology, and Key Laboratory for Regenerative Medicine, Jinan University, Guangzhou, China
| | - Yan Li
- International Ocular Surface Research Center, Institute of Ophthalmology, and Key Laboratory for Regenerative Medicine, Jinan University, Guangzhou, China; Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Yu Hu
- International Ocular Surface Research Center, Institute of Ophthalmology, and Key Laboratory for Regenerative Medicine, Jinan University, Guangzhou, China; Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Ruyu Yan
- International Ocular Surface Research Center, Institute of Ophthalmology, and Key Laboratory for Regenerative Medicine, Jinan University, Guangzhou, China; Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Ting Fu
- International Ocular Surface Research Center, Institute of Ophthalmology, and Key Laboratory for Regenerative Medicine, Jinan University, Guangzhou, China; Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Jun Liu
- International Ocular Surface Research Center, Institute of Ophthalmology, and Key Laboratory for Regenerative Medicine, Jinan University, Guangzhou, China; Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Zhijie Li
- International Ocular Surface Research Center, Institute of Ophthalmology, and Key Laboratory for Regenerative Medicine, Jinan University, Guangzhou, China; Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Guangzhou, China.
| |
Collapse
|
9
|
Wang Y, Hu T, Liang K, Li S, Zhang Q, Li W, Qu H, Dong B, Zhang H, Ma Q, Jia R, Huang S. Spatial variations in the microbiota: comparative analysis of microbial composition and predicted functions across different intestinal segments and feces in donkeys. Front Microbiol 2025; 15:1494926. [PMID: 39895934 PMCID: PMC11782143 DOI: 10.3389/fmicb.2024.1494926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 11/25/2024] [Indexed: 02/04/2025] Open
Abstract
Donkeys, as single-stomach herbivores, have a complex and diverse microbial community in their digestive tracts. The intestinal bacterial community is crucial for maintaining intestinal homeostasis, as well as the host's overall nutrition and health. However, research on donkey gut microbes is relatively limited, particularly regarding the microbial colonization patterns in different intestinal segments of adult donkeys. Therefore, this study examined the abundance and function of microbiota across various sites of the intestinal tract (duodenum, jejunum, ileum, cecum, colon) and feces of healthy adult Dezhou male donkeys using 16S rRNA gene sequencing and PICRUSt analysis. The results indicate that donkeys have a rich gut microbial diversity and a large microbial population. No significant differences in the indices of alpha diversity were observed among the donkey's duodenum, jejunum, ileum, cecum, colon, and feces. A Venn diagram analysis revealed the presence of both unique (Duodenum: 4645; Jejunum: 3586; Ileum: 4904; Cecum: 4253; Colon: 6135; Feces: 4885) and shared (339) ASVs among the different sections. A principal coordinate analysis (PCoA) revealed significant differences (R2 = 0.2076, p < 0.007) across the six intestinal segments of the donkeys. At the phylum level, Firmicutes (63.64%), Bacteroidetes (20.72%), Verrucomicrobiota (9.16%), Patescibacteria (1.95%), Spirochaetota (1.87%), Actinobacteriota (1.13%), and Proteobacteria (0.42%) were the dominant bacteria in all samples. The Wilcoxon rank-sum test revealed significant differences in the proportions of genera among different intestinal segments. Specific genera were significantly enriched in various segments: Lachnospiraceae_UCG-008 and Sphaerochaeta in the duodenum; Christensenellaceae_R-7_group and Bacillus in the jejunum; NK4A214_group and Alloprevotella in the ileum; UCG-005 and Lactobacillus in the cecum; Clostridium_sensu_stricto_1 and Chlamydia in the colon; and Rikenellaceae_RC9_gut_group and Prevotellaceae_UCG-004 in the feces. A PICRUSt2 functional prediction analysis indicated that carbohydrate metabolism, prokaryotic cellular communities, antimicrobial drug resistance, immune diseases, membrane transport, signal transduction, and transcription exhibited significant differences among the different intestinal segments. This study provided critical primary data on the differences in donkey gut microbiota and the synergistic effects between gut microbiota and host functions. These findings can be used to assess donkey health status, improve breeding, and develop microbial additives.
Collapse
Affiliation(s)
- Yanwei Wang
- Food Processing and Safety, College of Life Sciences, Shanxi University, Taiyuan, China
- National Key Laboratory of Livestock and Poultry Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
- Laboratory of Feed Grain Safety and Healthy Poultry Farming, Beijing Jingwa Agricultural Science and Technology Innovation Center, Beijing, China
| | - Tong Hu
- National Key Laboratory of Livestock and Poultry Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
- Laboratory of Feed Grain Safety and Healthy Poultry Farming, Beijing Jingwa Agricultural Science and Technology Innovation Center, Beijing, China
| | - Kaixuan Liang
- National Key Laboratory of Livestock and Poultry Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
- Laboratory of Feed Grain Safety and Healthy Poultry Farming, Beijing Jingwa Agricultural Science and Technology Innovation Center, Beijing, China
| | - Shinuo Li
- National Key Laboratory of Livestock and Poultry Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
- Laboratory of Feed Grain Safety and Healthy Poultry Farming, Beijing Jingwa Agricultural Science and Technology Innovation Center, Beijing, China
| | - Qiyue Zhang
- National Key Laboratory of Livestock and Poultry Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
- Laboratory of Feed Grain Safety and Healthy Poultry Farming, Beijing Jingwa Agricultural Science and Technology Innovation Center, Beijing, China
- College of Animal Science and Veterinary Medicine, Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Wenqiang Li
- Laboratory of Feed Grain Safety and Healthy Poultry Farming, Beijing Jingwa Agricultural Science and Technology Innovation Center, Beijing, China
| | - Honglei Qu
- National Key Laboratory of Livestock and Poultry Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
- National Engineering Research Center for Gelatin-Based Traditional Chinese Medicine, Dong-E-E-Jiao Co., Ltd., Liaocheng, China
| | - Boying Dong
- National Engineering Research Center for Gelatin-Based Traditional Chinese Medicine, Dong-E-E-Jiao Co., Ltd., Liaocheng, China
| | - Haihua Zhang
- Hebei Key Laboratory of Specialty Animal Germplasm Resources Exploration and Innovation, College of Animal Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao, China
| | - Qiugang Ma
- National Key Laboratory of Livestock and Poultry Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
- Laboratory of Feed Grain Safety and Healthy Poultry Farming, Beijing Jingwa Agricultural Science and Technology Innovation Center, Beijing, China
| | - Ru Jia
- Food Processing and Safety, College of Life Sciences, Shanxi University, Taiyuan, China
| | - Shimeng Huang
- National Key Laboratory of Livestock and Poultry Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
- Laboratory of Feed Grain Safety and Healthy Poultry Farming, Beijing Jingwa Agricultural Science and Technology Innovation Center, Beijing, China
| |
Collapse
|
10
|
Melville DW, Meyer M, Risely A, Wilhelm K, Baldwin HJ, Badu EK, Nkrumah EE, Oppong SK, Schwensow N, Tschapka M, Vallo P, Corman VM, Drosten C, Sommer S. Hibecovirus (genus Betacoronavirus) infection linked to gut microbial dysbiosis in bats. ISME COMMUNICATIONS 2025; 5:ycae154. [PMID: 40134608 PMCID: PMC11936109 DOI: 10.1093/ismeco/ycae154] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 11/05/2024] [Accepted: 12/14/2024] [Indexed: 03/27/2025]
Abstract
Little is known about how zoonotic virus infections manifest in wildlife reservoirs. However, a common health consequence of enteric virus infections is gastrointestinal diseases following a shift in gut microbial composition. The sub-Saharan hipposiderid bat complex has recently emerged to host at least three coronaviruses (CoVs), with Hipposideros caffer D appearing particularly susceptible to Hibecovirus CoV-2B infection. In this study, we complement body condition and infection status data with information about the gut microbial community to understand the health impact of CoV infections in a wild bat population. Of the three CoVs, only infections with the distantly SARS-related Hibecovirus CoV-2B were associated with lower body condition and altered the gut microbial diversity and composition. The gut microbial community of infected bats became progressively less diverse and more dissimilar with infection intensity, arguing for dysbiosis as per the Anna Karenina principle. Putatively beneficial bacteria, such as Alistipes and Christensenella, decreased with infection intensity, while potentially pathogenic bacteria, namely Mycoplasma and Staphylococcus, increased. Infections with enterically replicating viruses may therefore cause changes in body condition and gut dysbiosis with potential negative health consequences even in virus reservoirs. We argue that high-resolution data on multiple health markers, ideally including microbiome information, will provide a more nuanced picture of bat disease ecology.
Collapse
Affiliation(s)
- Dominik W Melville
- Institute of Evolutionary Ecology and Conservation Genomics, Ulm University, Ulm, BW 89081, Germany
| | - Magdalena Meyer
- Institute of Evolutionary Ecology and Conservation Genomics, Ulm University, Ulm, BW 89081, Germany
| | - Alice Risely
- Institute of Evolutionary Ecology and Conservation Genomics, Ulm University, Ulm, BW 89081, Germany
- School of Science, Engineering, and the Environment, Salford University, Salford M5 4NT, UK
| | - Kerstin Wilhelm
- Institute of Evolutionary Ecology and Conservation Genomics, Ulm University, Ulm, BW 89081, Germany
| | - Heather J Baldwin
- Institute of Evolutionary Ecology and Conservation Genomics, Ulm University, Ulm, BW 89081, Germany
- School of Natural Sciences, Macquarie University, Sydney, New South Wales 2113, Australia
| | - Ebenezer K Badu
- Department of Wildlife and Range Management, Kwame Nkrumah University of Science and Technology, AK-385-1973, Kumasi, Ghana
| | - Evans Ewald Nkrumah
- Department of Wildlife and Range Management, Kwame Nkrumah University of Science and Technology, AK-385-1973, Kumasi, Ghana
| | - Samuel Kingsley Oppong
- Department of Wildlife and Range Management, Kwame Nkrumah University of Science and Technology, AK-385-1973, Kumasi, Ghana
| | - Nina Schwensow
- Institute of Evolutionary Ecology and Conservation Genomics, Ulm University, Ulm, BW 89081, Germany
| | - Marco Tschapka
- Institute of Evolutionary Ecology and Conservation Genomics, Ulm University, Ulm, BW 89081, Germany
| | - Peter Vallo
- Institute of Evolutionary Ecology and Conservation Genomics, Ulm University, Ulm, BW 89081, Germany
- Institute of Vertebrate Biology, Czech Academy of Sciences, Brno 675 02, Czech Republic
| | - Victor M Corman
- German Centre for Infection Research (DZIF) and Charité—Universitätsmedizin Berlin Institute of Virology, Berlin 10117, Germany
| | - Christian Drosten
- German Centre for Infection Research (DZIF) and Charité—Universitätsmedizin Berlin Institute of Virology, Berlin 10117, Germany
| | - Simone Sommer
- Institute of Evolutionary Ecology and Conservation Genomics, Ulm University, Ulm, BW 89081, Germany
| |
Collapse
|
11
|
Wang Z, Shang P, Song X, Wu M, Zhang T, Zhao Q, Zhu S, Qiao Y, Zhao F, Zhang R, Wang J, Yu Y, Han H, Dong H. Alterations in Ileal Microbiota and Fecal Metabolite Profiles of Chickens with Immunity to Eimeria mitis. Animals (Basel) 2024; 14:3515. [PMID: 39682480 DOI: 10.3390/ani14233515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 11/19/2024] [Accepted: 12/03/2024] [Indexed: 12/18/2024] Open
Abstract
Coccidiosis, caused by different species of Eimeria parasites, is an economically important disease in poultry and livestock worldwide. This study aimed to investigate the changes in the ileal microbiota and fecal metabolites in chickens after repeated infections with low-dose E. mitis. The chickens developed solid immunity against a high dose of E. mitis infection after repeated infections with low-dose E. mitis. The composition of the ileal microbiota and the metabonomics of the Eimeria-immunized group and the control group were detected using 16S rRNA sequencing and liquid chromatography-mass spectrometry (LC-MS). The relative abundance of Neisseria, Erysipelotrichaceae, Incertae sedis, Coprobacter, Capnocytophaga, Bifidobacterium, and the Ruminococcus torques group declined in the Eimeria-immunized chickens, whereas Alloprevotella, Staphylococcus, Haemophilus, and Streptococcus increased. Furthermore, 286 differential metabolites (including N-undecylbenzenesulfonic acid, 1,25-dihydroxyvitamin D3, gluconic acid, isoleucylproline, proline, and 1-kestose) and 19 significantly altered metabolic pathways (including galactose metabolism, ABC transporters, starch and sucrose metabolism, the ErbB signaling pathway, and the MAPK signaling pathway) were identified between the Eimeria-immunized group and the control group. These discoveries will help us learn more about the composition and dynamics of the gut microbiota as well as the metabolic changes in chickens infected with Eimeria spp.
Collapse
Affiliation(s)
- Zhongchuang Wang
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Minhang, Shanghai 200241, China
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China
| | - Peiyao Shang
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Minhang, Shanghai 200241, China
| | - Xingju Song
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China
| | - Minghui Wu
- Beijing Yuanda Spark Medical Technology Co., Ltd., Beijing 102615, China
| | - Tong Zhang
- Beijing Yuanda Spark Medical Technology Co., Ltd., Beijing 102615, China
| | - Qiping Zhao
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Minhang, Shanghai 200241, China
| | - Shunhai Zhu
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Minhang, Shanghai 200241, China
| | - Yu Qiao
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Minhang, Shanghai 200241, China
| | - Fanghe Zhao
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Minhang, Shanghai 200241, China
| | - Ruiting Zhang
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Minhang, Shanghai 200241, China
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China
| | - Jinwen Wang
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Minhang, Shanghai 200241, China
| | - Yu Yu
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Minhang, Shanghai 200241, China
| | - Hongyu Han
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Minhang, Shanghai 200241, China
| | - Hui Dong
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Minhang, Shanghai 200241, China
| |
Collapse
|
12
|
Zhang B, Yang H, Cai G, Nie Q, Sun Y. The interactions between the host immunity and intestinal microorganisms in fish. Appl Microbiol Biotechnol 2024; 108:30. [PMID: 38170313 DOI: 10.1007/s00253-023-12934-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/31/2023] [Accepted: 11/07/2023] [Indexed: 01/05/2024]
Abstract
There is a huge quantity of microorganisms in the gut of fish, which exert pivotal roles in maintaining host intestinal and general health. The fish immunity can sense and shape the intestinal microbiota and maintain the intestinal homeostasis. In the meantime, the intestinal commensal microbes regulate the fish immunity, control the extravagant proliferation of pathogenic microorganisms, and ensure the intestinal health of the host. This review summarizes developments and progress on the known interactions between host immunity and intestinal microorganisms in fish, focusing on the recent advances in zebrafish (Danio rerio) showing the host immunity senses and shapes intestinal microbiota, and intestinal microorganisms tune host immunity. This review will offer theoretical references for the development, application, and commercialization of intestinal functional microorganisms in fish. KEY POINTS: • The interactions between the intestinal microorganisms and host immunity in zebrafish • Fish immunity senses and shapes the microbiota • Intestinal microbes tune host immunity in fish.
Collapse
Affiliation(s)
- Biyun Zhang
- Xiamen Key Laboratory for Feed Quality Testing and Safety Evaluation, Fisheries College, Jimei University, Xiamen, 361021, Fujian, China
| | - Hongling Yang
- Xiamen Key Laboratory for Feed Quality Testing and Safety Evaluation, Fisheries College, Jimei University, Xiamen, 361021, Fujian, China
| | - Guohe Cai
- Xiamen Key Laboratory for Feed Quality Testing and Safety Evaluation, Fisheries College, Jimei University, Xiamen, 361021, Fujian, China
| | - Qingjie Nie
- Xiamen Key Laboratory for Feed Quality Testing and Safety Evaluation, Fisheries College, Jimei University, Xiamen, 361021, Fujian, China
| | - Yunzhang Sun
- Xiamen Key Laboratory for Feed Quality Testing and Safety Evaluation, Fisheries College, Jimei University, Xiamen, 361021, Fujian, China.
| |
Collapse
|
13
|
Manus MB, Lucore J, Kuthyar S, Moy M, Savo Sardaro ML, Amato KR. Technical note: A biological anthropologist's guide for applying microbiome science to studies of human and non-human primates. AMERICAN JOURNAL OF BIOLOGICAL ANTHROPOLOGY 2024; 185:e25020. [PMID: 39222382 DOI: 10.1002/ajpa.25020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/28/2024] [Accepted: 08/18/2024] [Indexed: 09/04/2024]
Abstract
A central goal of biological anthropology is connecting environmental variation to differences in host physiology, biology, health, and evolution. The microbiome represents a valuable pathway for studying how variation in host environments impacts health outcomes. While there are many resources for learning about methods related to microbiome sample collection, laboratory analyses, and genetic sequencing, there are fewer dedicated to helping researchers navigate the dense portfolio of bioinformatics and statistical approaches for analyzing microbiome data. Those that do exist are rarely related to questions in biological anthropology and instead are often focused on human biomedicine. To address this gap, we expand on existing tutorials and provide a "road map" to aid biological anthropologists in understanding, selecting, and deploying the data analysis and visualization methods that are most appropriate for their specific research questions. Leveraging an existing dataset of fecal samples and survey data collected from wild geladas living in Simien Mountains National Park in Ethiopia (Baniel et al., 2021), this paper guides researchers toward answering three questions related to variation in the gut microbiome across host and environmental factors. By providing explanations, examples, and a reproducible workflow for different analytic methods, we move beyond the theoretical benefits of considering the microbiome within anthropological research and instead present researchers with a guide for applying microbiome science to their work. This paper makes microbiome science more accessible to biological anthropologists and paves the way for continued research into the microbiome's role in the ecology, evolution, and health of human and non-human primates.
Collapse
Affiliation(s)
- Melissa B Manus
- Department of Anthropology, University of Texas at San Antonio, San Antonio, Texas, USA
- Department of Anthropology, Northwestern University, Evanston, Illinois, USA
| | - Jordan Lucore
- Department of Anthropology, University of Michigan, Ann Arbor, Michigan, USA
| | - Sahana Kuthyar
- Division of Biological Sciences, University of California San Diego, La Jolla, California, USA
| | - Madelyn Moy
- Department of Anthropology, Northwestern University, Evanston, Illinois, USA
| | - Maria Luisa Savo Sardaro
- Department of Anthropology, Northwestern University, Evanston, Illinois, USA
- Department of Human Science and Promotion of the Quality of Life, University of San Raffaele, Rome, Italy
| | - Katherine R Amato
- Department of Anthropology, Northwestern University, Evanston, Illinois, USA
| |
Collapse
|
14
|
Chang PV. Microbial metabolite-receptor interactions in the gut microbiome. Curr Opin Chem Biol 2024; 83:102539. [PMID: 39461049 PMCID: PMC11588511 DOI: 10.1016/j.cbpa.2024.102539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 10/03/2024] [Accepted: 10/03/2024] [Indexed: 10/29/2024]
Abstract
The gut microbiome impacts many physiological processes that greatly influence host health and disease. Metabolites produced by the gut microbiota have emerged as central players in regulating these biological pathways, often through the engagement of specific host receptors. Despite the importance of these microbial metabolites and receptors in human biology, the vast majority of these interactions remain uncharted due to the complex nature of the gut microbiome and the multitude of metabolites that these microbes produce. Here, we highlight recent developments in identifying such host-gut microbiota interactions, including characterization of bioactive metabolites and their mechanisms of action. Understanding these pathways will enable the development of prophylactics and therapeutics for treating many inflammatory diseases that are impacted by the gut microbiota.
Collapse
Affiliation(s)
- Pamela V Chang
- Department of Microbiology and Immunology, USA; Department of Chemistry and Chemical Biology, USA; Cornell Center for Immunology, USA; Cornell Institute of Host-Microbe Interactions and Disease, USA; Cornell Center for Innovative Proteomics, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
15
|
Ataollahi H, Hedayati M, Zia-Jahromi N, Daneshpour M, Siadat SD. Investigating the role of the intratumoral microbiome in thyroid cancer development and progression. Crit Rev Oncol Hematol 2024; 204:104545. [PMID: 39476992 DOI: 10.1016/j.critrevonc.2024.104545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 10/14/2024] [Accepted: 10/24/2024] [Indexed: 11/04/2024] Open
Abstract
The intratumoral microbiome (ITM) is in the spotlight due to its possible contribution to the initiation, progression, and invasion of a wide range of cancers. Its precise contribution to cancer tumorigenesis is still elusive, though. Thyroid cancer(TC), the ninth leading cause of cancer globally and the most prevalent endocrine malignancy with a rapidly rising incidence among all cancers, has attracted much attention nowadays. Still, the association between the tumor's microbiome and TC progression and development is an evolving area of investigation with significant consequences for disease understanding and intervention. Therefore, this review offers an appropriate perspective on this emerging concept in TC based on prior studies on the ITM among the most common tumors worldwide, concentrating on TC. Moreover, information on the origin of the ITM and practical methods can pave the way for researchers to opt for the most appropriate method for further investigations on the ITM more accurately.
Collapse
Affiliation(s)
- Hanieh Ataollahi
- Department of Biology, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Mehdi Hedayati
- Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, No 23, Shahid Arabi St.Yemen St, Velenjak, PO Box:19395-4763, Tehran, Iran.
| | - Noosha Zia-Jahromi
- Department of Biology, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran.
| | - Maryam Daneshpour
- Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, No 23, Shahid Arabi St.Yemen St, Velenjak, PO Box:19395-4763, Tehran, Iran
| | - Seyed Davar Siadat
- Microbiology Research Center(MRC), Pasteur Institute of Iran, Tehran, Iran; Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
16
|
Sun X, Shukla M, Wang W, Li S. Unlocking gut-liver-brain axis communication metabolites: energy metabolism, immunity and barriers. NPJ Biofilms Microbiomes 2024; 10:136. [PMID: 39587086 PMCID: PMC11589602 DOI: 10.1038/s41522-024-00610-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 11/14/2024] [Indexed: 11/27/2024] Open
Abstract
The interaction between the gut-microbiota-derived metabolites and brain has long been recognized in both health and disease. The liver, as the primary metabolic organ for nutrients in animals or humans, plays an indispensable role in signal transduction. Therefore, in recent years, Researcher have proposed the Gut-Liver-Brain Axis (GLBA) as a supplement to the Gut-Brain Axis. The GLBA plays a crucial role in numerous physiological and pathological mechanisms through a complex interplay of signaling pathways. However, gaps remain in our knowledge regarding the developmental and functional influences of the GLBA communication pathway. The gut microbial metabolites serve as communication agents between these three distant organs, functioning prominently within the GLBA. In this review, we provide a comprehensive overview of the current understanding of the GLBA, focusing on signaling molecules role in animal and human health and disease. In this review paper elucidate its mechanisms of communication, explore its implications for immune, and energy metabolism in animal and human, and highlight future research directions. Understanding the intricate communication pathways of the GLBA holds promise for creating innovative treatment approaches for a wide range of immune and metabolic conditions.
Collapse
Affiliation(s)
- Xiaoge Sun
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, P. R. China
- Department of Neurosurgery, College of Medicine, The Pennsylvania State University, Hershey, PA, 17033, USA
| | - Manish Shukla
- Department of Neurosurgery, College of Medicine, The Pennsylvania State University, Hershey, PA, 17033, USA
| | - Wei Wang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, P. R. China.
| | - Shengli Li
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, P. R. China.
| |
Collapse
|
17
|
Li S, Wang J, Zhang Y, Wang J, Zhou T, Xie Y, Zhou Y, Tang L, Hu L, Dong Q, Sun P. Gut microbiota and short-chain fatty acids signatures in postmenopausal osteoporosis patients: A retrospective study. Medicine (Baltimore) 2024; 103:e40554. [PMID: 39809201 PMCID: PMC11596502 DOI: 10.1097/md.0000000000040554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 10/28/2024] [Indexed: 01/16/2025] Open
Abstract
Studies have shown that gut microbiota (GM) and its metabolites, short-chain fatty acids (SCFAs), are associated with the development of postmenopausal osteoporosis (PMO). This study explored the clinical and laboratory evidence of the relationship of GM and SCFAs to PMO and attempted to determine the potential mechanism of action. 18 patients (Collected from the First Affiliated Hospital of Guangdong Pharmaceutical University between January 2021 and August 2021) were included in this retrospective study, including 10 PMO women and 8 healthy young women as the healthy control (HC) group from Guangzhou, China. Bone mineral density (BMD) was determined by dual-energy X-ray absorptiometry. The composition of GM and its metabolites, SCFAs, in the fecal samples were measured by 16S rRNA gene sequencing and gas chromatography/mass spectrometry analysis, respectively. Compared with healthy control, PMO group had significantly decreased BMD in lumbar spines 1-4 (BMD_L) and femoral neck (BMD_F). 16S rRNA gene sequencing revealed that, compared with healthy control, PMO group had a markedly decreased abundance in Subdoligranulum, Norank_f_Muribaculaceae, and Alistipes at the genus level. Gas chromatography/mass spectrometry analysis indicated that the concentration of propanoic acid significantly dropped in PMO group. Additionally, we found that Subdoligranulum, Norank_f_Muribaculaceae, and Alistipes were positively correlated with BMD_L. Subdoligranulum and Norank_f_Muribaculaceae were also positively correlated BMD_F and propanoic acid, while Subdoligranulum is the only species that presented a strong correlation with the levels of acetic acid and butyric acid. Our findings indicated that, in postmenopausal women, there were evident changes in GM and SCFAs, and these changes were found correlated with patients' BMD. These correlations provide novel insights into the underlying mechanism of PMO development, representative of early diagnostic markers and therapeutic targets that may improve the bone health in postmenopausal women.
Collapse
Affiliation(s)
- Shimei Li
- Department of Endocrinology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, P. R. China
| | - Jinzhi Wang
- Department of Infectious Diseases, The People’s Hospital of Jimo, Qingdao, P. R. China
| | - Yingtong Zhang
- Department of Endocrinology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, P. R. China
| | - Jiangyan Wang
- Department of Endocrinology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, P. R. China
| | - Tianyu Zhou
- Department of Endocrinology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, P. R. China
| | - Youhong Xie
- Department of Endocrinology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, P. R. China
| | - Yilin Zhou
- Department of Endocrinology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, P. R. China
| | - Lin Tang
- Department of Endocrinology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, P. R. China
| | - Li Hu
- Department of Endocrinology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, P. R. China
| | - Qunwei Dong
- Department of Orthopedics, Yunfu Hospital of Traditional Chinese Medicine, Yunfu, P. R. China
| | - Ping Sun
- Department of Endocrinology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, P. R. China
| |
Collapse
|
18
|
Kustrimovic N, Balkhi S, Bilato G, Mortara L. Gut Microbiota and Immune System Dynamics in Parkinson's and Alzheimer's Diseases. Int J Mol Sci 2024; 25:12164. [PMID: 39596232 PMCID: PMC11595203 DOI: 10.3390/ijms252212164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/25/2024] [Accepted: 10/27/2024] [Indexed: 11/28/2024] Open
Abstract
The gut microbiota, a diverse collection of microorganisms in the gastrointestinal tract, plays a critical role in regulating metabolic, immune, and cognitive functions. Disruptions in the composition of these microbial communities, termed dysbiosis, have been linked to various neurodegenerative diseases (NDs), such as Parkinson's disease (PD) and Alzheimer's disease (AD). One of the key pathological features of NDs is neuroinflammation, which involves the activation of microglia and peripheral immune cells. The gut microbiota modulates immune responses through the production of metabolites and interactions with immune cells, influencing the inflammatory processes within the central nervous system. This review explores the impact of gut dysbiosis on neuroinflammation, focusing on the roles of microglia, immune cells, and potential therapeutic strategies targeting the gut microbiota to alleviate neuroinflammatory processes in NDs.
Collapse
Affiliation(s)
- Natasa Kustrimovic
- Department of Biotechnology and Life Sciences, University of Insubria, 21100 Varese, Italy;
| | - Sahar Balkhi
- Immunology and General Pathology Laboratory, Department of Biotechnology and Life Sciences, University of Insubria, 21100 Varese, Italy; (S.B.); (G.B.)
| | - Giorgia Bilato
- Immunology and General Pathology Laboratory, Department of Biotechnology and Life Sciences, University of Insubria, 21100 Varese, Italy; (S.B.); (G.B.)
- Unit of Molecular Pathology, Biochemistry and Immunology, IRCCS MultiMedica, 20138 Milan, Italy
| | - Lorenzo Mortara
- Immunology and General Pathology Laboratory, Department of Biotechnology and Life Sciences, University of Insubria, 21100 Varese, Italy; (S.B.); (G.B.)
- Unit of Molecular Pathology, Biochemistry and Immunology, IRCCS MultiMedica, 20138 Milan, Italy
| |
Collapse
|
19
|
dos Santos Pereira E, de Oliveira Raphaelli C, Massaut KB, Ribeiro JA, Soares Vitola HR, Pieniz S, Fiorentini ÂM. Probiotics: Therapeutic Strategy on the Prevention and Treatment of
Inflammatory Diseases: Obesity, Type 2 Diabetes Mellitus and Celiac
Disease. CURRENT NUTRITION & FOOD SCIENCE 2024; 20:1112-1125. [DOI: 10.2174/0115734013252358231016181809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/29/2023] [Accepted: 08/24/2023] [Indexed: 01/03/2025]
Abstract
Background:
Recent evidence demonstrates the fundamental role of the gut microbiota
in inflammatory diseases, and several mechanisms of action of probiotics in improvement of inflammatory
parameters.
Objective:
The objective of this review was to relate the consumption of probiotic bacteria and its
effects on inflammatory diseases, including obesity, type II diabetes and celiac disease.
Methods:
A search was carried out in English, between the years 2011 and 2022, for research articles
and clinical trials with humans and in vivo studies. Research showed improvement in cardiovascular
risk markers, and improvement in insulin sensitivity, lipid profile and plasma atherogenic
index, in obesity with the use of probiotics. In type II diabetes, decreased levels of fasting glucose,
glycated hemoglobin, insulin and glycemic index, and increased levels of peptide 1, superoxide
dismutase and glutathione peroxidase were observed.
Results:
In addition to cellular protection of the islets of Langerhans and positive alteration of TNF-
α and IL-1β markers. Improvement in the condition of patients with celiac disease was observed,
since the neutralization of the imbalance in serotonin levels was observed, reducing the expression
of genes of interest and also, a decrease in cytokines.
Conclusion:
Therefore, the use of probiotics should be encouraged.
Collapse
Affiliation(s)
| | | | - Khadija Bezerra Massaut
- Department of Food Science and Technology, Universidade Federal de Pelotas, Pelotas, Rs, Brazil
| | - Jardel Araújo Ribeiro
- Department of Food Science and Technology, Universidade Federal de Pelotas, Pelotas, Rs, Brazil
| | | | - Simone Pieniz
- Department of Food Science and Technology, Universidade Federal de Pelotas, Pelotas, Rs, Brazil
| | - Ângela Maria Fiorentini
- Department of Food Science and Technology, Universidade Federal de Pelotas, Pelotas, Rs, Brazil
| |
Collapse
|
20
|
Drzazga A, Bernat P, Nowak A, Szustak M, Korkus E, Gendaszewska-Darmach E, Koziołkiewicz M. N-acyl glycines produced by commensal bacteria potentiate GLP-1 secretion as GPCR ligands. Biomed Pharmacother 2024; 180:117467. [PMID: 39362066 DOI: 10.1016/j.biopha.2024.117467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 08/31/2024] [Accepted: 09/19/2024] [Indexed: 10/05/2024] Open
Abstract
Commensal microbiota is crucial for nutrient digestion and production of biologically active molecules, many of which mimic endogenous ligands of human GPCRs. Bacteroides spp. are among the most abundant bacteria residing in the human gut and their absence has been positively correlated with metabolic disorders. In the present study, we focused on N-acylated glycines (NAGlys) as products of Bacteroides spp. and potential GPCR ligands modulating GLP-1 secretion. Representative strains of the most abundant commensal Bacteroides were cultured in either yeast- or animal-based nutrient broths. The broths post-culture were investigated in terms of the contents of NAGlys and stimulatory effects towards GLP-1 production in GLUTag and NCI-H716 cell lines. Pure preparations of the detected NAGlys were further studied to evaluate stimulation of GLP-1 production and related cellular signalling evoked. The most potent NAGlys were also tested as ligands of key lipid GPCRs involved in the regulation of carbohydrate metabolism: GPR40/FFAR1, GPR55, GPR119, and GPR120/FFAR4. We found that Bacteroides potentiate GLP-1 production, depending on the strain and provided nutrient mix. Long-chain unsaturated oleoyl and arachidonoyl glycines, produced by B. thetaiotaomicron and B. intestinalis in the animal-based broth, were particularly effective in stimulation of GLP-1 secretion. They served as agonists of all the receptors under study expressed in GLP-1-producing cells. The obtained results broaden the knowledge of microbial signalling molecules and their role in regulation of carbohydrate homeostasis. They also emphasise the importance of balanced diet as a source of building blocks for commensal bacteria to produce efficient agonists of lipid GPCRs.
Collapse
Affiliation(s)
- Anna Drzazga
- Institute of Molecular and Industrial Biotechnology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Stefanowskiego Street 2/22, Lodz 90-537, Poland.
| | - Przemysław Bernat
- University of Lodz, Faculty of Biology and Environmental Protection, Department of Industrial Microbiology and Biotechnology, Banacha Street 12/16, Lodz 90-237, Poland
| | - Adriana Nowak
- Department of Environmental Biotechnology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Wolczanska Street 171/173, Lodz 90-530, Poland
| | - Marcin Szustak
- Institute of Molecular and Industrial Biotechnology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Stefanowskiego Street 2/22, Lodz 90-537, Poland
| | - Eliza Korkus
- Institute of Molecular and Industrial Biotechnology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Stefanowskiego Street 2/22, Lodz 90-537, Poland
| | - Edyta Gendaszewska-Darmach
- Institute of Molecular and Industrial Biotechnology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Stefanowskiego Street 2/22, Lodz 90-537, Poland
| | - Maria Koziołkiewicz
- Institute of Molecular and Industrial Biotechnology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Stefanowskiego Street 2/22, Lodz 90-537, Poland
| |
Collapse
|
21
|
Panda S, Jayasinghe YP, Shinde DD, Bueno E, Stastny A, Bertrand BP, Chaudhari SS, Kielian T, Cava F, Ronning DR, Thomas VC. Staphylococcus aureus counters organic acid anion-mediated inhibition of peptidoglycan cross-linking through robust alanine racemase activity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.15.575639. [PMID: 38293037 PMCID: PMC10827132 DOI: 10.1101/2024.01.15.575639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Weak organic acids are commonly found in host niches colonized by bacteria, and they can inhibit bacterial growth as the environment becomes acidic. This inhibition is often attributed to the toxicity resulting from the accumulation of high concentrations of organic anions in the cytosol, which disrupts cellular homeostasis. However, the precise cellular targets that organic anions poison and the mechanisms used to counter organic anion intoxication in bacteria have not been elucidated. Here, we utilize acetic acid, a weak organic acid abundantly found in the gut to investigate its impact on the growth of Staphylococcus aureus. We demonstrate that acetate anions bind to and inhibit d-alanyl-d-alanine ligase (Ddl) activity in S. aureus. Ddl inhibition reduces intracellular d-alanyl-d-alanine (d-Ala-d-Ala) levels, compromising staphylococcal peptidoglycan cross-linking and cell wall integrity. To overcome the effects of acetate-mediated Ddl inhibition, S. aureus maintains a substantial intracellular d-Ala pool through alanine racemase (Alr1) activity and additionally limits the flux of d-Ala to d-glutamate by controlling d-alanine aminotransferase (Dat) activity. Surprisingly, the modus operandi of acetate intoxication in S. aureus is common to multiple biologically relevant weak organic acids indicating that Ddl is a conserved target of small organic anions. These findings suggest that S. aureus may have evolved to maintain high intracellular d-Ala concentrations, partly to counter organic anion intoxication.
Collapse
Affiliation(s)
- Sasmita Panda
- Center for Staphylococcal Research, Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska 68198-5900, USA
| | - Yahani P. Jayasinghe
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Dhananjay D. Shinde
- Center for Staphylococcal Research, Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska 68198-5900, USA
| | - Emilio Bueno
- Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå Center for Microbial Research (UCMR), Department of Molecular Biology, Umeå University, Umea SE-90187, Sweden
| | - Amanda Stastny
- Center for Staphylococcal Research, Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska 68198-5900, USA
| | - Blake P. Bertrand
- Center for Staphylococcal Research, Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska 68198-5900, USA
| | - Sujata S. Chaudhari
- Center for Staphylococcal Research, Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska 68198-5900, USA
| | - Tammy Kielian
- Center for Staphylococcal Research, Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska 68198-5900, USA
| | - Felipe Cava
- Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå Center for Microbial Research (UCMR), Department of Molecular Biology, Umeå University, Umea SE-90187, Sweden
| | - Donald R. Ronning
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Vinai C. Thomas
- Center for Staphylococcal Research, Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska 68198-5900, USA
| |
Collapse
|
22
|
Safdar M, Ullah M, Hamayun S, Wahab A, Khan SU, Abdikakhorovich SA, Haq ZU, Mehreen A, Naeem M, Mustopa AZ, Hasan N. Microbiome miracles and their pioneering advances and future frontiers in cardiovascular disease. Curr Probl Cardiol 2024; 49:102686. [PMID: 38830479 DOI: 10.1016/j.cpcardiol.2024.102686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 05/28/2024] [Indexed: 06/05/2024]
Abstract
Cardiovascular diseases (CVDs) represent a significant global health challenge, underscoring the need for innovative approaches to prevention and treatment. Recent years have seen a surge in interest in unraveling the complex relationship between the gut microbiome and cardiovascular health. This article delves into current research on the composition, diversity, and impact of the gut microbiome on CVD development. Recent advancements have elucidated the profound influence of the gut microbiome on disease progression, particularly through key mediators like Trimethylamine-N-oxide (TMAO) and other microbial metabolites. Understanding these mechanisms reveals promising therapeutic targets, including interventions aimed at modulating the gut microbiome's interaction with the immune system and its contribution to endothelial dysfunction. Harnessing this understanding, personalized medicine strategies tailored to individuals' gut microbiome profiles offer innovative avenues for reducing cardiovascular risk. As research in this field continues to evolve, there is vast potential for transformative advancements in cardiovascular medicine, paving the way for precision prevention and treatment strategies to address this global health challenge.
Collapse
Affiliation(s)
- Mishal Safdar
- Department of Biological Sciences, National University of Medical Sciences (NUMS), Rawalpindi, Punjab, Pakistan
| | - Muneeb Ullah
- College of Pharmacy, Pusan National University, Busandaehak-ro 63 beon-gil 2, Geumjeong-gu, Busan 46241, Republic of Korea; Department of Pharmacy, Kohat University of Science and Technology, Kohat, 26000, Khyber Pakhtunkhwa, Pakistan
| | - Shah Hamayun
- Department of Cardiology, Pakistan Institute of Medical Sciences (PIMS), Islamabad, 04485 Punjab, Pakistan
| | - Abdul Wahab
- Department of Pharmacy, Kohat University of Science and Technology, Kohat, 26000, Khyber Pakhtunkhwa, Pakistan
| | - Shahid Ullah Khan
- Department of Biochemistry, Women Medical and Dental College, Khyber Medical University, Abbottabad, 22080, Khyber Pakhtunkhwa, Pakistan
| | | | - Zia Ul Haq
- Department of Public Health, Institute of Public Health Sciences, Khyber Medical University, Peshawar 25120, Pakistan
| | - Aqsa Mehreen
- Department of Biological Sciences, National University of Medical Sciences (NUMS), Rawalpindi, Punjab, Pakistan
| | - Muhammad Naeem
- Department of Biological Sciences, National University of Medical Sciences (NUMS), Rawalpindi, Punjab, Pakistan
| | - Apon Zaenal Mustopa
- Research Center for Genetic Engineering, National Research, and Innovation Agency (BRIN), Bogor 16911, Indonesia
| | - Nurhasni Hasan
- Faculty of Pharmacy, Universitas Hasanuddin, Jl. Perintis Kemerdekaan Km 10, Makassar 90245, Republic of Indonesia.
| |
Collapse
|
23
|
Cai G, Ren L, Yu J, Jiang S, Liu G, Wu S, Cheng B, Li W, Xia J. A Microenvironment-Responsive, Controlled Release Hydrogel Delivering Embelin to Promote Bone Repair of Periodontitis via Anti-Infection and Osteo-Immune Modulation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2403786. [PMID: 38978324 PMCID: PMC11425865 DOI: 10.1002/advs.202403786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/12/2024] [Indexed: 07/10/2024]
Abstract
Periodontitis, a prevalent chronic inflammatory disease, poses significant challenges for effective treatment due to its complex etiology involving specific bacteria and the inflammatory immune microenvironment. Here, this study presents a novel approach for the targeted treatment of periodontitis utilizing the immunomodulatory and antibacterial properties of Embelin, a plant-derived compound, within an injectable hydrogel system. The developed Carboxymethyl Chitosan-Oxidized Dextran (CMCS-OD) hydrogel formed via dynamic chemical bonds exhibited self-healing capabilities and pH-responsive behavior, thereby facilitating the controlled release of Embelin and enhancing its efficacy in a dynamic oral periodontitis microenvironment. This study demonstrates that this hydrogel system effectively prevents bacterial invasion and mitigates excessive immune response activation. Moreover, it precisely modulates macrophage M1/M2 phenotypes and suppresses inflammatory cytokine expression, thereby fostering a conducive environment for bone regeneration and addressing periodontitis-induced bone loss. These findings highlight the potential of the approach as a promising strategy for the clinical management of periodontitis-induced bone destruction.
Collapse
Affiliation(s)
- Guanming Cai
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, 510055, P. R. China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, 510055, China
| | - Lin Ren
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, 510055, P. R. China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, 510055, China
| | - Jiali Yu
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, 510055, P. R. China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, 510055, China
| | - Siqi Jiang
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, 510055, P. R. China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, 510055, China
| | - Gen Liu
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, 510055, P. R. China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, 510055, China
| | - Shujie Wu
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, 510055, P. R. China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, 510055, China
| | - Bin Cheng
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, 510055, P. R. China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, 510055, China
| | - Weichang Li
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, 510055, P. R. China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, 510055, China
| | - Juan Xia
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, 510055, P. R. China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, 510055, China
| |
Collapse
|
24
|
Jo A, Kim KS, Won J, Shin H, Kim S, Kim B, Kim DJ, Cho JY, Kim HJ. Nasal symbiont Staphylococcus epidermidis restricts influenza A virus replication via the creation of a polyamine-deficient cellular environment. Commun Biol 2024; 7:1031. [PMID: 39174732 PMCID: PMC11341892 DOI: 10.1038/s42003-024-06706-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 08/08/2024] [Indexed: 08/24/2024] Open
Abstract
Studies on the immune-regulatory roles played by the commensal microbes residing in the nasal mucosa consider the contribution of antiviral immune responses. Here, we sought to identify the nasal microbiome, Staphylococcus epidermidis-regulated antiviral immune responses and the alteration of polyamine metabolites in nasal epithelium. We found that polyamines were required for the life cycle of influenza A virus (IAV) and depletion of polyamines disturbed IAV replication in normal human nasal epithelial (NHNE) cells. Inoculation of S. epidermidis also suppressed IAV infection and the concentration of polyamines including putrescine, spermidine, and spermine was completely attenuated in S. epidermidis-inoculated NHNE cells. S. epidermidis activated the enzyme involved in the production of ornithine from arginine and downregulated the activity of the enzyme involved in the production of putrescine from ornithine in nasal epithelium. S. epidermidis also induced the activation of enzymes that promote the extracellular export of spermine and spermidine in NHNE cells. Our findings demonstrate that S. epidermidis is shown to be able of creating an intracellular environment lacking polyamines in the nasal epithelium and promote the balance of cellular polyamines in favor of the host to restrict influenza virus replication.
Collapse
Affiliation(s)
- Ara Jo
- Department of Otorhinolaryngology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Kyeong-Seog Kim
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, Seoul, Republic of Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jina Won
- Department of Otorhinolaryngology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Haeun Shin
- Department of Otorhinolaryngology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Sujin Kim
- Department of Otorhinolaryngology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Bora Kim
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, Seoul, Republic of Korea
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Da Jung Kim
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, Seoul, Republic of Korea
- Liver Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Joo-Youn Cho
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, Seoul, Republic of Korea.
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea.
| | - Hyun Jik Kim
- Department of Otorhinolaryngology, Seoul National University College of Medicine, Seoul, Republic of Korea.
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, Seoul, Republic of Korea.
- Seoul National University Hospital, Seoul, Republic of Korea.
- Sensory Organ Research Institute, Seoul National University Medical Research Center, Seoul, Republic of Korea.
| |
Collapse
|
25
|
Ouyang Q, Yu H, Xu L, Yu M, Zhang Y. Relationship between gut microbiota and multiple sclerosis: a scientometric visual analysis from 2010 to 2023. Front Immunol 2024; 15:1451742. [PMID: 39224586 PMCID: PMC11366631 DOI: 10.3389/fimmu.2024.1451742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 07/29/2024] [Indexed: 09/04/2024] Open
Abstract
Background Numerous studies have investigated the relationship between gut microbiota (GM) and multiple sclerosis(MS), highlighting the significant role of GM in MS. However, there is a lack of systematic Scientometric analyses published in this specific research area to provide an overall understanding of the current research status. Methods Perform a scientometric analysis on research conducted between 2010 and 2023 concerning the link between GM and MS using quantitative and visual analysis software (CiteSpace and VOSviewer.). Results From January 1, 2010, and December 31, 2023, a total of 1019 records about GM and MS were retrieved. The number of publications exhibited a consistent upward trend annually. The United States led in publications, showed the strongest level of collaboration among countries. The University of California, San Francisco stands as the top institution in terms of output, and the most prolific and cited authors were Lloyd H. Kasper and Javier Ochoa-Reparaz from the USA. The research in this field primarily centers on investigating the alterations and associations of GM in MS or EAE, the molecular immunological mechanisms, and the potential of GM-based interventions to provide beneficial effects in MS or EAE. The Keywords co-occurrence network reveals five primary research directions in this field. The most frequently occurring keywords are inflammation, probiotics, diet, dysbiosis, and tryptophan. In recent years, neurodegeneration and neuropsychiatric disorders have been prominent, indicating that the investigation of the mechanisms and practical applications of GM in MS has emerged as a current research focus. Moreover, GM research is progressively extending into the realm of neurodegenerative and psychiatric diseases, potentially becoming future research hotspots. Conclusions This study revealed a data-driven systematic comprehension of research in the field of GM in MS over the past 13 years, highlighted noteworthy research within the field, provided us with a clear understanding of the current research status and future trends, providing a valuable reference for researchers venturing into this domain.
Collapse
Affiliation(s)
- Qingrong Ouyang
- Department of Neurology, Suining Central Hospital, Suining, China
| | - Hao Yu
- Department of Emergency, Suining Central Hospital, Suining, China
| | - Lei Xu
- Department of Neurology, Suining Central Hospital, Suining, China
| | - Ming Yu
- Department of Neurology, Suining Central Hospital, Suining, China
| | - Yunwei Zhang
- Department of Neurology, Suining Central Hospital, Suining, China
| |
Collapse
|
26
|
Moss CD, Wilson AL, Reed KJ, Jennings KJ, Kunz IGZ, Landolt GA, Metcalf J, Engle TE, Coleman SJ. Gene Expression Analysis before and after the Pelvic Flexure in the Epithelium of the Equine Hindgut. Animals (Basel) 2024; 14:2303. [PMID: 39199837 PMCID: PMC11350661 DOI: 10.3390/ani14162303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 07/30/2024] [Accepted: 08/06/2024] [Indexed: 09/01/2024] Open
Abstract
Previous research demonstrated the distribution of distinct microbial communities in the equine hindgut surrounding the pelvic flexure. The current study evaluated gene expression in epithelial tissues surrounding the pelvic flexure to characterize patterns that might correlate with microbial distribution. Gene expression was determined by analyzing RNA sequence data from the pelvic flexure, the left and right ventral colon, and the left and right dorsal colon. An average of 18,330 genes were expressed across the five tissues sampled. Most of the genes showed some level of expression in all five tissues. Tissue-restricted patterns of expression were also observed. Genes with restricted expression in the left ventral and left dorsal colons have communication, signaling, and regulatory functions that correlate with their known physiology. In contrast, genes expressed exclusively in the pelvic flexure have diverse functions. The ontology of genes differentially expressed between the pelvic flexure and the surrounding tissues was associated with immune functions and signaling processes. Despite being non-significant, these enrichment trends were reinforced by the functions of statistically significant expression differences between tissues of the hindgut. These results provide insight into the physiology of the equine hindgut epithelium that might influence the microbiota and its distribution.
Collapse
Affiliation(s)
- Cameron D. Moss
- Department of Animal Sciences, Colorado State University, Fort Collins, CO 8023, USA; (C.D.M.); (I.G.Z.K.); (T.E.E.)
| | - Amber L. Wilson
- Department of Animal Sciences, Colorado State University, Fort Collins, CO 8023, USA; (C.D.M.); (I.G.Z.K.); (T.E.E.)
| | - Kailee J. Reed
- Department of Animal Sciences, Colorado State University, Fort Collins, CO 8023, USA; (C.D.M.); (I.G.Z.K.); (T.E.E.)
- Watchmaker Genomics, Boulder, CO 80301, USA
| | - Kaysie J. Jennings
- Department of Animal Sciences, Colorado State University, Fort Collins, CO 8023, USA; (C.D.M.); (I.G.Z.K.); (T.E.E.)
- Transnetyx, Memphis, TN 38016, USA
| | - Isabelle G. Z. Kunz
- Department of Animal Sciences, Colorado State University, Fort Collins, CO 8023, USA; (C.D.M.); (I.G.Z.K.); (T.E.E.)
| | - Gabriele A. Landolt
- Department of Clinical Sciences, Colorado State University, Fort Collins, CO 8023, USA
| | - Jessica Metcalf
- Department of Animal Sciences, Colorado State University, Fort Collins, CO 8023, USA; (C.D.M.); (I.G.Z.K.); (T.E.E.)
| | - Terry E. Engle
- Department of Animal Sciences, Colorado State University, Fort Collins, CO 8023, USA; (C.D.M.); (I.G.Z.K.); (T.E.E.)
| | - Stephen J. Coleman
- Department of Animal Sciences, Colorado State University, Fort Collins, CO 8023, USA; (C.D.M.); (I.G.Z.K.); (T.E.E.)
| |
Collapse
|
27
|
Yin XF, Ye T, Chen HL, Liu J, Mu XF, Li H, Wang J, Hu YJ, Cao H, Kang WQ. The microbiome compositional and functional differences between rectal mucosa and feces. Microbiol Spectr 2024; 12:e0354923. [PMID: 38916335 PMCID: PMC11302734 DOI: 10.1128/spectrum.03549-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 05/06/2024] [Indexed: 06/26/2024] Open
Abstract
In recent years, most studies on the gut microbiome have primarily focused on feces samples, leaving the microbial communities in the intestinal mucosa relatively unexplored. To address this gap, our study employed shotgun metagenomics to analyze the microbial compositions in normal rectal mucosa and matched feces from 20 patients with colonic polyps. Our findings revealed a pronounced distinction of the microbial communities between these two sample sets. Compared with feces, the mucosal microbiome contains fewer genera, with Burkholderia being the most discriminating genus between feces and mucosa, highlighting its significant influence on the mucosa. Furthermore, based on the microbial classification and KEGG Orthology (KO) annotation results, we explored the association between rectal mucosal microbiota and factors such as age, gender, BMI, and polyp risk level. Notably, we identified novel biomarkers for these phenotypes, such as Clostridium ramosum and Enterobacter cloacae in age. The mucosal microbiota showed an enrichment of KO pathways related to sugar transport and short chain fatty acid metabolism. Our comprehensive approach not only bridges the knowledge gap regarding the microbial community in the rectal mucosa but also underscores the complexity and specificity of microbial interactions within the human gut, particularly in the Chinese population. IMPORTANCE This study presents a system-level map of the differences between feces and rectal mucosal microbial communities in samples with colorectal cancer risk. It reveals the unique microecological characteristics of rectal mucosa and its potential influence on health. Additionally, it provides novel insights into the role of the gut microbiome in the pathogenesis of colorectal cancer and paves the way for the development of new prevention and treatment strategies.
Collapse
Affiliation(s)
- Xiao-Fei Yin
- Department of Gastroenterology, Huazhong University of Science and Technology Union Shenzhen Hospital, The 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
| | - Taoyu Ye
- iCarbonX(zhuhai) Company Limited, Zhuhai, China
| | - Han-Lin Chen
- Department of Gastroenterology, Huazhong University of Science and Technology Union Shenzhen Hospital, The 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
| | - Junyan Liu
- iCarbonX(zhuhai) Company Limited, Zhuhai, China
| | - Xue-Feng Mu
- Department of Gastroenterology, Huazhong University of Science and Technology Union Shenzhen Hospital, The 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
| | - Hao Li
- iCarbonX(zhuhai) Company Limited, Zhuhai, China
| | - Jun Wang
- iCarbonX(zhuhai) Company Limited, Zhuhai, China
- Shenzhen Digital Life Institute, Shenzhen, China
- State Key Laboratory of Quality Research in Chinese Medicines, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau, China
| | - Yuan-Jia Hu
- Department of Gastroenterology, Huazhong University of Science and Technology Union Shenzhen Hospital, The 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
| | - Hongzhi Cao
- iCarbonX(zhuhai) Company Limited, Zhuhai, China
- Shenzhen Digital Life Institute, Shenzhen, China
- Department of Digital Health, South China Hospital of Shenzhen University, Shenzhen, China
| | - Wen-Quan Kang
- Department of Gastroenterology, Huazhong University of Science and Technology Union Shenzhen Hospital, The 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
| |
Collapse
|
28
|
Lamba A, Taneja V. Gut microbiota as a sensor of autoimmune response and treatment for rheumatoid arthritis. Immunol Rev 2024; 325:90-106. [PMID: 38867408 PMCID: PMC11338721 DOI: 10.1111/imr.13359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2024]
Abstract
Rheumatoid arthritis (RA) is considered a multifactorial condition where interaction between the genetic and environmental factors lead to immune dysregulation causing autoreactivity. While among the various genetic factors, HLA-DR4 and DQ8, have been reported to be the strongest risk factors, the role of various environmental factors has been unclear. Though events initiating autoreactivity remain unknown, a mucosal origin of RA has gained attention based on the recent observations with the gut dysbiosis in patients. However, causality of gut dysbiosis has been difficult to prove in humans. Mouse models, especially mice expressing RA-susceptible and -resistant HLA class II genes have helped unravel the complex interactions between genetic factors and gut microbiome. This review describes the interactions between HLA genes and gut dysbiosis in sex-biased preclinical autoreactivity and discusses the potential use of endogenous commensals as indicators of treatment efficacy as well as therapeutic tool to suppress pro-inflammatory response in rheumatoid arthritis.
Collapse
Affiliation(s)
| | - Veena Taneja
- Department of Immunology and Division of Rheumatology, Mayo Clinic College of Medicine, Rochester, MN, USA
| |
Collapse
|
29
|
Zhang S, Zhang H, Zhang C, Wang G, Shi C, Li Z, Gao F, Cui Y, Li M, Yang G. Composition and evolutionary characterization of the gut microbiota in pigs. Int Microbiol 2024; 27:993-1008. [PMID: 37982990 PMCID: PMC11300507 DOI: 10.1007/s10123-023-00449-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 10/28/2023] [Accepted: 11/10/2023] [Indexed: 11/21/2023]
Abstract
The intestinal microbiota plays significant role in the physiology and functioning of host organisms. However, there is limited knowledge of the composition and evolution of microbiota-host relationships from wild ancestors to modern domesticated species. In this study, the 16S rRNA gene V3-V4 in the intestinal contents of different pig breeds was analyzed and was compared using high-throughput sequencing. This identified 18 323 amplicon sequence variants, of which the Firmicutes and Actinobacteria phyla and Bifidobacterium and Allobaculum genera were most prevalent in wild pigs (WP). In contrast, Proteobacteria and Firmicutes predominated in Chinese Shanxi Black pigs (CSB), while Firmicutes were the most prevalent phylum in Large White pigs (LW) and Iberian pigs (IB), followed by Bacteroidetes in IB and Proteobacteria in LW. At the genus level, Shigella and Lactobacillus were most prevalent in CSB and LW, while Actinobacillus and Sarcina predominated in IB. Differential gene expression together with phylogenetic and functional analyses indicated significant differences in the relative abundance of microbial taxa between different pig breeds. Although many microbial taxa were common to both wild and domestic pigs, significant diversification was observed in bacterial genes that potentially influence host phenotypic traits. Overall, these findings suggested that both the composition and functions of the microbiota were closely associated with domestication and the evolutionary changes in the host. The members of the microbial communities were vertically transmitted in pigs, with evidence of co-evolution of both the hosts and their intestinal microbial communities. These results enhance our understanding and appreciation of the complex interactions between intestinal microbes and hosts and highlight the importance of applying this knowledge in agricultural and microbiological research.
Collapse
Affiliation(s)
- Shuhong Zhang
- College of Biology and Food, Shangqiu Normal University, Shangqiu, 476000, China
| | - Huan Zhang
- College of Biology and Food, Shangqiu Normal University, Shangqiu, 476000, China
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450002, China
| | - Cheng Zhang
- College of Biology and Food, Shangqiu Normal University, Shangqiu, 476000, China
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450002, China
| | - Guan Wang
- College of Biology and Food, Shangqiu Normal University, Shangqiu, 476000, China
| | - Chuanxing Shi
- College of Biology and Food, Shangqiu Normal University, Shangqiu, 476000, China
| | - Zhiqiang Li
- College of Biology and Food, Shangqiu Normal University, Shangqiu, 476000, China
| | - Fengyi Gao
- College of Biology and Food, Shangqiu Normal University, Shangqiu, 476000, China
| | - Yanyan Cui
- College of Biology and Food, Shangqiu Normal University, Shangqiu, 476000, China
| | - Ming Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450002, China.
| | - Guangli Yang
- College of Biology and Food, Shangqiu Normal University, Shangqiu, 476000, China.
| |
Collapse
|
30
|
Lu Y, Cai X, Shi B, Gong H. Gut microbiota, plasma metabolites, and osteoporosis: unraveling links via Mendelian randomization. Front Microbiol 2024; 15:1433892. [PMID: 39077745 PMCID: PMC11284117 DOI: 10.3389/fmicb.2024.1433892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 07/03/2024] [Indexed: 07/31/2024] Open
Abstract
Objective Osteoporosis, characterized by reduced bone density and heightened fracture risk, is influenced by genetic and environmental factors. This study investigates the interplay between gut microbiota, plasma metabolomics, and osteoporosis, identifying potential causal relationships mediated by plasma metabolites. Methods Utilizing aggregated genome-wide association studies (GWAS) data, a comprehensive two-sample Mendelian Randomization (MR) analysis was performed involving 196 gut microbiota taxa, 1,400 plasma metabolites, and osteoporosis indicators. Causal relationships between gut microbiota, plasma metabolites, and osteoporosis were explored. Results The MR analyses revealed ten gut microbiota taxa associated with osteoporosis, with five taxa positively linked to increased risk and five negatively associated. Additionally, 96 plasma metabolites exhibited potential causal relationships with osteoporosis, with 49 showing positive associations and 47 displaying negative associations. Mediation analyses identified six causal pathways connecting gut microbiota to osteoporosis through ten mediating relationships involving seven distinct plasma metabolites, two of which demonstrated suppression effects. Conclusion This study provides suggestive evidence of genetic correlations and causal links between gut microbiota, plasma metabolites, and osteoporosis. The findings underscore the complex, multifactorial nature of osteoporosis and suggest the potential of gut microbiota and plasma metabolite profiles as biomarkers or therapeutic targets in the management of osteoporosis.
Collapse
|
31
|
Özçam M, Lin DL, Gupta CL, Li A, Wheatley LM, Baloh CH, Sanda S, Jones SM, Lynch SV. Enhanced Gut Microbiome Capacity for Amino Acid Metabolism is associated with Peanut Oral Immunotherapy Failure. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.07.15.24309840. [PMID: 39072014 PMCID: PMC11275660 DOI: 10.1101/2024.07.15.24309840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Peanut Oral Immunotherapy (POIT) holds promise for remission of peanut allergy, though treatment is protracted and successful in only a subset of patients. Because the gut microbiome is linked to food allergy, we sought to identify fecal microbial predictors of POIT efficacy and to develop mechanistic insights into treatment response. Longitudinal functional analysis of the fecal microbiome of children (n=79) undergoing POIT in a first double-blind, placebo-controlled clinical trial, identified five microbial-derived bile acids enriched in fecal samples prior to POIT initiation that predicted treatment efficacy (AUC 0.71). Failure to induce disease remission was associated with a distinct fecal microbiome with enhanced capacity for bile acid deconjugation, amino acid metabolism, and increased peanut peptide degradation in vitro . Thus, microbiome mechanisms of POIT failure appear to include depletion of immunomodulatory secondary bile and amino acids and the antigenic peanut peptides necessary to promote peanut allergy desensitization and remission.
Collapse
|
32
|
Tabrizi E, Pourteymour Fard Tabrizi F, Mahmoud Khaled G, Sestito MP, Jamie S, Boone BA. Unraveling the gut microbiome's contribution to pancreatic ductal adenocarcinoma: mechanistic insights and therapeutic perspectives. Front Immunol 2024; 15:1434771. [PMID: 39044834 PMCID: PMC11263025 DOI: 10.3389/fimmu.2024.1434771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Accepted: 06/25/2024] [Indexed: 07/25/2024] Open
Abstract
The gut microbiome plays a significant role in the pathogenesis of pancreatic ductal adenocarcinoma (PDAC), influencing oncogenesis, immune responses, and treatment outcomes. Studies have identified microbial species like Porphyromonas gingivalis and Fusobacterium nucleatum, that promote PDAC progression through various mechanisms. Additionally, the gut microbiome affects immune cell activation and response to immunotherapy, including immune checkpoint inhibitors and CAR-T therapy. Specific microbes and their metabolites play a significant role in the effectiveness of immune checkpoint inhibitors (ICIs). Alterations in the gut microbiome can either enhance or diminish responses to PD-1/PD-L1 and CTLA-4 blockade therapy. Additionally, bacterial metabolites like trimethylamine N-oxide (TMAO) and lipopolysaccharide (LPS) impact antitumor immunity, offering potential targets to augment immunotherapy responses. Modulating the microbiome through fecal microbiota transplantation, probiotics, prebiotics, dietary changes, and antibiotics shows promise in PDAC treatment, although outcomes are highly variable. Dietary modifications, particularly high-fiber diets and specific fat consumption, influence microbiome composition and impact cancer risk. Combining microbiome-based therapies with existing treatments holds potential for improving PDAC therapy outcomes, but further research is needed to optimize their effectiveness.
Collapse
Affiliation(s)
- Eileen Tabrizi
- Department of Microbiology, Immunology and Cell Biology, School of Medicine, West Virginia University, Morgantown, WV, United States
- Cancer Institute, West Virginia University, Morgantown, WV, United States
| | - Fatemeh Pourteymour Fard Tabrizi
- Department of Community Nutrition, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, East Azerbaijan, Iran
| | - Gehad Mahmoud Khaled
- Department of Biotechnology, School of Sciences and Engineering, American University in Cairo, New Cairo, Cairo, Egypt
| | - Michael P. Sestito
- Department of Surgery, West Virginia University School of Medicine, Morgantown, WV, United States
| | - Saeid Jamie
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Brian A. Boone
- Department of Microbiology, Immunology and Cell Biology, School of Medicine, West Virginia University, Morgantown, WV, United States
- Department of Surgery, West Virginia University School of Medicine, Morgantown, WV, United States
| |
Collapse
|
33
|
Guo X, Wang R, Chen R, Zhang Z, Wang J, Liu X. Gut microbiota and serum metabolite signatures along the colorectal adenoma-carcinoma sequence: Implications for early detection and intervention. Clin Chim Acta 2024; 560:119732. [PMID: 38772522 DOI: 10.1016/j.cca.2024.119732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 04/11/2024] [Accepted: 05/14/2024] [Indexed: 05/23/2024]
Abstract
AIM Our study focuses on the microbial and metabolomic profile changes during the adenoma stage, as adenomas can be considered potential precursors to colorectal cancer through the adenoma-carcinoma sequence. Identifying possible intervention targets at this stage may aid in preventing the progression of colorectal adenoma (CRA) to malignant lesions. Furthermore, we evaluate the efficacy of combined microbial and metabolite biomarkers in detecting CRA. METHODS Fecal metagenomic and serum metabolomic analyses were performed for the discovery of alterations of gut microbiome and metabolites in CRA patients (n = 26), Colorectal cancer (CRC) patients (n = 19), Familial Adenomatous Polyposis (FAP) patients (n = 10), and healthy controls (n = 20). Finally, analyzing the associations between gut microbes and metabolites was performed by a Receiver Operating Characteristic (ROC) curve. RESULTS Our analysis present that CRA patients differ significantly in gut microflora and serum metabolites compared with healthy controls, especially for Lachnospiraceae and Parasutterella. Its main metabolite, butyric acid, concentrations were raised in CRA patients compared with the healthy controls, indicating its role as a promoter of colorectal tumorigenesis. α-Linolenic acid and lysophosphatidylcholine represented the other healthy metabolite for CRA. Combining five microbial and five metabolite biomarkers, we differentiated CRA from CRC with an Area Under the Curve (AUC) of 0.85 out of this performance vastly superior to the specificity recorded by traditional markers CEA and CA199 in such differentiation of these conditions. CONCLUSIONS The study underlines significant microbial and metabolic alterations in CRA with a novel insight into screening and early intervention of its tumorigenesis.
Collapse
Affiliation(s)
- Xiaodong Guo
- Department of Oncology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, ShangHai 200437, China.
| | - Ruoyao Wang
- Department of Oncology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, ShangHai 200437, China
| | - Rui Chen
- Department of Oncology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, ShangHai 200437, China
| | - Zhongxiao Zhang
- Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, No.1111, XianXia Road, Shanghai 200336, China.
| | - Jingxia Wang
- Department of Oncology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, ShangHai 200437, China
| | - Xuan Liu
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| |
Collapse
|
34
|
Kim J, Tierney BT, Overbey EG, Dantas E, Fuentealba M, Park J, Narayanan SA, Wu F, Najjar D, Chin CR, Meydan C, Loy C, Mathyk B, Klotz R, Ortiz V, Nguyen K, Ryon KA, Damle N, Houerbi N, Patras LI, Schanzer N, Hutchinson GA, Foox J, Bhattacharya C, Mackay M, Afshin EE, Hirschberg JW, Kleinman AS, Schmidt JC, Schmidt CM, Schmidt MA, Beheshti A, Matei I, Lyden D, Mullane S, Asadi A, Lenz JS, Mzava O, Yu M, Ganesan S, De Vlaminck I, Melnick AM, Barisic D, Winer DA, Zwart SR, Crucian BE, Smith SM, Mateus J, Furman D, Mason CE. Single-cell multi-ome and immune profiles of the Inspiration4 crew reveal conserved, cell-type, and sex-specific responses to spaceflight. Nat Commun 2024; 15:4954. [PMID: 38862516 PMCID: PMC11166952 DOI: 10.1038/s41467-024-49211-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 05/28/2024] [Indexed: 06/13/2024] Open
Abstract
Spaceflight induces an immune response in astronauts. To better characterize this effect, we generated single-cell, multi-ome, cell-free RNA (cfRNA), biochemical, and hematology data for the SpaceX Inspiration4 (I4) mission crew. We found that 18 cytokines/chemokines related to inflammation, aging, and muscle homeostasis changed after spaceflight. In I4 single-cell multi-omics data, we identified a "spaceflight signature" of gene expression characterized by enrichment in oxidative phosphorylation, UV response, immune function, and TCF21 pathways. We confirmed the presence of this signature in independent datasets, including the NASA Twins Study, the I4 skin spatial transcriptomics, and 817 NASA GeneLab mouse transcriptomes. Finally, we observed that (1) T cells showed an up-regulation of FOXP3, (2) MHC class I genes exhibited long-term suppression, and (3) infection-related immune pathways were associated with microbiome shifts. In summary, this study reveals conserved and distinct immune disruptions occurring and details a roadmap for potential countermeasures to preserve astronaut health.
Collapse
Affiliation(s)
- JangKeun Kim
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, 100221, USA
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Braden T Tierney
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, 100221, USA
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Eliah G Overbey
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, 100221, USA
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, 10021, USA
- Center for STEM, University of Austin, Austin, TX, USA
- BioAstra, Inc, New York, NY, USA
| | - Ezequiel Dantas
- Division of Endocrinology, Department of Medicine, Weill Cornell Medicine, New York, NY, 10065, USA
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Matias Fuentealba
- Buck Artificial Intelligence Platform, Buck Institute for Research on Aging, Novato, CA, 94945, USA
| | - Jiwoon Park
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, 100221, USA
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, 10021, USA
| | - S Anand Narayanan
- Department of Health, Nutrition, and Food Sciences, Florida State University, Tallahassee, FL, USA
| | - Fei Wu
- Buck Artificial Intelligence Platform, Buck Institute for Research on Aging, Novato, CA, 94945, USA
| | - Deena Najjar
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, 100221, USA
| | - Christopher R Chin
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, 10021, USA
- Tri-Institutional Biology and Medicine Program, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Cem Meydan
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, 100221, USA
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, 10021, USA
- Division of Hematology/Oncology, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Conor Loy
- Cornell University, Meinig School of Biomedical Engineering, Ithaca, NY, 14850, USA
| | - Begum Mathyk
- Department of Obstetrics and Gynecology, Division of Reproductive Endocrinology and Infertility, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | - Remi Klotz
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Veronica Ortiz
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Khiem Nguyen
- Buck Artificial Intelligence Platform, Buck Institute for Research on Aging, Novato, CA, 94945, USA
| | - Krista A Ryon
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, 100221, USA
| | - Namita Damle
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, 100221, USA
| | - Nadia Houerbi
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, 100221, USA
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Laura I Patras
- Children's Cancer and Blood Foundation Laboratories, Departments of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children's Health, Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Department of Molecular Biology and Biotechnology, Center of Systems Biology, Biodiversity and Bioresources, Faculty of Biology and Geology, Babes-Bolyai University, Cluj-Napoca, Romania
| | - Nathan Schanzer
- School of Medicine, New York Medical College, Valhalla, NY, 10595, USA
| | - Gwyneth A Hutchinson
- NASA Center for the Utilization of Biological Engineering in Space (CUBES), Berkeley, CA, 94720, USA
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA, 94720, USA
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, 94158, USA
| | - Jonathan Foox
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, 100221, USA
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Chandrima Bhattacharya
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, 10021, USA
- Tri-Institutional Biology and Medicine Program, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Matthew Mackay
- Tri-Institutional Biology and Medicine Program, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Evan E Afshin
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, 100221, USA
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Jeremy Wain Hirschberg
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, 100221, USA
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Ashley S Kleinman
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, 100221, USA
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Julian C Schmidt
- Sovaris Aerospace, Boulder, CO, USA
- Advanced Pattern Analysis & Human Performance Group, Boulder, CO, USA
| | - Caleb M Schmidt
- Sovaris Aerospace, Boulder, CO, USA
- Advanced Pattern Analysis & Human Performance Group, Boulder, CO, USA
- Department of Systems Engineering, Colorado State University, Fort Collins, CO, USA
| | - Michael A Schmidt
- Sovaris Aerospace, Boulder, CO, USA
- Advanced Pattern Analysis & Human Performance Group, Boulder, CO, USA
| | - Afshin Beheshti
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
- Blue Marble Space Institute of Science, Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, 94035, USA
| | - Irina Matei
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, 10065, USA
- Children's Cancer and Blood Foundation Laboratories, Departments of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children's Health, Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - David Lyden
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, 10065, USA
- Children's Cancer and Blood Foundation Laboratories, Departments of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children's Health, Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Sean Mullane
- Space Exploration Technologies Corporation (SpaceX), Hawthorne, CA, USA
| | - Amran Asadi
- Space Exploration Technologies Corporation (SpaceX), Hawthorne, CA, USA
| | - Joan S Lenz
- Cornell University, Meinig School of Biomedical Engineering, Ithaca, NY, 14850, USA
| | - Omary Mzava
- Cornell University, Meinig School of Biomedical Engineering, Ithaca, NY, 14850, USA
| | - Min Yu
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Saravanan Ganesan
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, 10065, USA
- Division of Hematology/Oncology, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Iwijn De Vlaminck
- Cornell University, Meinig School of Biomedical Engineering, Ithaca, NY, 14850, USA
| | - Ari M Melnick
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, 10065, USA
- Division of Hematology/Oncology, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Darko Barisic
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, 10065, USA
- Division of Hematology/Oncology, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Daniel A Winer
- Buck Artificial Intelligence Platform, Buck Institute for Research on Aging, Novato, CA, 94945, USA
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, 90089, USA
- Department of Immunology, University of Toronto, Toronto, ON, M5S 1A8, Canada
- Division of Cellular & Molecular Biology, Toronto General Hospital Research Institute (TGHRI), University Health Network, Toronto, ON, M5G 1L7, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Sara R Zwart
- University of Texas Medical Branch, 301 University Blvd, Galveston, TX, 77555, USA
| | - Brian E Crucian
- Biomedical Research and Environmental Sciences Division, NASA Johnson Space Center, Human Health and Performance Directorate, 2101 NASA Parkway, Houston, TX, 77058, USA
| | - Scott M Smith
- Biomedical Research and Environmental Sciences Division, NASA Johnson Space Center, Human Health and Performance Directorate, 2101 NASA Parkway, Houston, TX, 77058, USA
| | - Jaime Mateus
- Blue Marble Space Institute of Science, Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, 94035, USA
| | - David Furman
- Buck Artificial Intelligence Platform, Buck Institute for Research on Aging, Novato, CA, 94945, USA.
- Stanford 1000 Immunomes Project, Stanford School of Medicine, Stanford, CA, 94306, USA.
- Instituto de Investigaciones en Medicina Traslacional (IIMT), Universidad Austral, CONICET, Pilar, Argentina.
| | - Christopher E Mason
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, 100221, USA.
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, 10021, USA.
- Tri-Institutional Biology and Medicine Program, Weill Cornell Medicine, New York, NY, 10021, USA.
- The Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, 10021, USA.
- WorldQuant Initiative for Quantitative Prediction, Weill Cornell Medicine, New York, NY, 10021, USA.
| |
Collapse
|
35
|
Álvarez-Herms J, Odriozola A. Microbiome and physical activity. ADVANCES IN GENETICS 2024; 111:409-450. [PMID: 38908903 DOI: 10.1016/bs.adgen.2024.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/24/2024]
Abstract
Regular physical activity promotes health benefits and contributes to develop the individual biological potential. Chronical physical activity performed at moderate and high-intensity is the intensity more favorable to produce health development in athletes and improve the gut microbiota balance. The athletic microbiome is characterized by increased microbial diversity and abundance as well as greater phenotypic versatility. In addition, physical activity and microbiota composition have bidirectional effects, with regular physical activity improving microbial composition and microbial composition enhancing physical performance. The improvement of physical performance by a healthy microbiota is related to different phenotypes: i) efficient metabolic development, ii) improved regulation of intestinal permeability, iii) favourable modulation of local and systemic inflammatory and efficient immune responses, iv) efective regulation of systemic pH and, v) protection against acute stressful events such as environmental exposure to altitude or heat. The type of sport, both intensity or volume characteristics promote microbiota specialisation. Individual assessment of the state of the gut microbiota can be an effective biomarker for monitoring health in the medium to long term. The relationship between the microbiota and the rest of the body is bidirectional and symbiotic, with a full connection between the systemic functions of the nervous, musculoskeletal, endocrine, metabolic, acid-base and immune systems. In addition, circadian rhythms, including regular physical activity, directly influence the adaptive response of the microbiota. In conclusion, regular stimuli of moderate- and high-intensity physical activity promote greater diversity, abundance, resilience and versatility of the gut microbiota. This effect is highly beneficial for human health when healthy lifestyle habits including nutrition, hydration, rest, chronoregulation and physical activity.
Collapse
Affiliation(s)
- Jesús Álvarez-Herms
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country (UPV/EHU), Leioa, Spain; Phymo® Lab, Physiology and Molecular Laboratory, Collado Hermoso, Segovia, Spain.
| | - Adrián Odriozola
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country (UPV/EHU), Leioa, Spain
| |
Collapse
|
36
|
Wahl A, Yao W, Liao B, Chateau M, Richardson C, Ling L, Franks A, Senthil K, Doyon G, Li F, Frost J, Whitehurst CB, Pagano JS, Fletcher CA, Azcarate-Peril MA, Hudgens MG, Rogala AR, Tucker JD, McGowan I, Sartor RB, Garcia JV. A germ-free humanized mouse model shows the contribution of resident microbiota to human-specific pathogen infection. Nat Biotechnol 2024; 42:905-915. [PMID: 37563299 PMCID: PMC11073568 DOI: 10.1038/s41587-023-01906-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 07/10/2023] [Indexed: 08/12/2023]
Abstract
Germ-free (GF) mice, which are depleted of their resident microbiota, are the gold standard for exploring the role of the microbiome in health and disease; however, they are of limited value in the study of human-specific pathogens because they do not support their replication. Here, we develop GF mice systemically reconstituted with human immune cells and use them to evaluate the role of the resident microbiome in the acquisition, replication and pathogenesis of two human-specific pathogens, Epstein-Barr virus (EBV) and human immunodeficiency virus (HIV). Comparison with conventional (CV) humanized mice showed that resident microbiota enhance the establishment of EBV infection and EBV-induced tumorigenesis and increase mucosal HIV acquisition and replication. HIV RNA levels were higher in plasma and tissues of CV humanized mice compared with GF humanized mice. The frequency of CCR5+ CD4+ T cells throughout the intestine was also higher in CV humanized mice, indicating that resident microbiota govern levels of HIV target cells. Thus, resident microbiota promote the acquisition and pathogenesis of two clinically relevant human-specific pathogens.
Collapse
Affiliation(s)
- Angela Wahl
- International Center for the Advancement of Translational Science, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Division of Infectious Diseases, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Center for AIDS Research, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| | - Wenbo Yao
- International Center for the Advancement of Translational Science, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Division of Infectious Diseases, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Center for AIDS Research, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Baolin Liao
- International Center for the Advancement of Translational Science, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Division of Infectious Diseases, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Center for AIDS Research, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Morgan Chateau
- International Center for the Advancement of Translational Science, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Division of Infectious Diseases, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Center for AIDS Research, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Cara Richardson
- International Center for the Advancement of Translational Science, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Division of Infectious Diseases, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Center for AIDS Research, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Lijun Ling
- International Center for the Advancement of Translational Science, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Division of Infectious Diseases, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Center for AIDS Research, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Adrienne Franks
- International Center for the Advancement of Translational Science, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Division of Infectious Diseases, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Center for AIDS Research, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Krithika Senthil
- International Center for the Advancement of Translational Science, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Division of Infectious Diseases, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Center for AIDS Research, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Genevieve Doyon
- International Center for the Advancement of Translational Science, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Division of Infectious Diseases, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Center for AIDS Research, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Fengling Li
- Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Josh Frost
- Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Division of Comparative Medicine, Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Christopher B Whitehurst
- Department of Pathology, Microbiology, and Immunology, New York Medical College, Valhalla, NY, USA
| | - Joseph S Pagano
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Craig A Fletcher
- Division of Comparative Medicine, Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - M Andrea Azcarate-Peril
- Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Division of Gastroenterology and Hepatology, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- UNC Microbiome Core, University of North Carolina, Chapel Hill, NC, USA
| | - Michael G Hudgens
- Department of Biostatistics, Gillings School of Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Allison R Rogala
- Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Division of Comparative Medicine, Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Joseph D Tucker
- Division of Infectious Diseases, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Clinical Research Department, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK
| | - Ian McGowan
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, University of Pittsburgh Medical School, Pittsburgh, PA, USA
- Orion Biotechnology, Ottawa, Ontario, Canada
| | - R Balfour Sartor
- Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Division of Gastroenterology and Hepatology, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - J Victor Garcia
- International Center for the Advancement of Translational Science, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Division of Infectious Diseases, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Center for AIDS Research, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
37
|
Germ-free humanized mice reveal a crucial role for the gut microbiota in HIV and EBV pathogenesis. Nat Biotechnol 2024; 42:854-855. [PMID: 37568032 DOI: 10.1038/s41587-023-01908-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/13/2023]
|
38
|
Chen Y, Huang X, Liu A, Fan S, Liu S, Li Z, Yang X, Guo H, Wu M, Liu M, Liu P, Fu F, Liu S, Xuan K. Lactobacillus Reuteri Vesicles Regulate Mitochondrial Function of Macrophages to Promote Mucosal and Cutaneous Wound Healing. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2309725. [PMID: 38647360 PMCID: PMC11199966 DOI: 10.1002/advs.202309725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 04/07/2024] [Indexed: 04/25/2024]
Abstract
The interplay between bacteria and their host influences the homeostasis of the human immune microenvironment, and this reciprocal interaction also affects the process of tissue damage repair. A variety of immunomodulatory commensal bacteria reside in the body, capable of delivering membrane vesicles (MVs) to host cells to regulate the local immune microenvironment. This research revealed, for the initial time, the significant enhancement of mucosal and cutaneous wound healing by MVs secreted by the human commensal Lactobacillus reuteri (RMVs) through modulation of the inflammatory environment in wound tissue. Local administration of RMVs reduces the proportion of pro-inflammatory macrophages in inflamed tissues and mitigates the level of local inflammation, thereby facilitating the healing of oral mucosa and cutaneous wounds. The elevated oxidative stress levels in activated pro-inflammatory macrophages can be modulated by RMVs, resulting in phenotypic transformation of macrophages. Furthermore, 3-hydroxypropionaldehyde present in RMVs can decrease the mitochondrial permeability of macrophages and stabilize the mitochondrial membrane potential, thereby promoting the conversion of macrophages to an anti-inflammatory phenotype. This study pioneers the significance of commensal bacterial MVs in tissue injury repair and presents a novel concept for the repair of tissue damage.
Collapse
Affiliation(s)
- Yuan Chen
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration and National Clinical Research Center for Oral Diseases and Shaanxi Clinical Research Center for Oral DiseasesDepartment of Preventive DentistrySchool of StomatologyThe Fourth Military Medical UniversityXi'an710032China
| | - Xiaoyao Huang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration and National Clinical Research Center for Oral Diseases and Shaanxi Clinical Research Center for Oral DiseasesDepartment of Preventive DentistrySchool of StomatologyThe Fourth Military Medical UniversityXi'an710032China
| | - Anqi Liu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration and National Clinical Research Center for Oral Diseases and Shaanxi Clinical Research Center for Oral DiseasesDepartment of Preventive DentistrySchool of StomatologyThe Fourth Military Medical UniversityXi'an710032China
| | - Siyuan Fan
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration and National Clinical Research Center for Oral Diseases and Shaanxi Clinical Research Center for Oral DiseasesDepartment of Preventive DentistrySchool of StomatologyThe Fourth Military Medical UniversityXi'an710032China
| | - Shiyu Liu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration and National Clinical Research Center for Oral Diseases and Shaanxi Clinical Research Center for Oral DiseasesCenter for Tissue EngineeringSchool of StomatologyThe Fourth Military Medical UniversityXi'an710032China
| | - Zihan Li
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration and National Clinical Research Center for Oral Diseases and Shaanxi Clinical Research Center for Oral DiseasesCenter for Tissue EngineeringSchool of StomatologyThe Fourth Military Medical UniversityXi'an710032China
| | - Xiaoxue Yang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration and National Clinical Research Center for Oral Diseases and Shaanxi Clinical Research Center for Oral DiseasesDepartment of Preventive DentistrySchool of StomatologyThe Fourth Military Medical UniversityXi'an710032China
| | - Hao Guo
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration and National Clinical Research Center for Oral Diseases and Shaanxi Clinical Research Center for Oral DiseasesDepartment of Preventive DentistrySchool of StomatologyThe Fourth Military Medical UniversityXi'an710032China
| | - Meiling Wu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration and National Clinical Research Center for Oral Diseases and Shaanxi Clinical Research Center for Oral DiseasesDepartment of Preventive DentistrySchool of StomatologyThe Fourth Military Medical UniversityXi'an710032China
| | - Meng Liu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration and National Clinical Research Center for Oral Diseases and Shaanxi Clinical Research Center for Oral DiseasesDepartment of Preventive DentistrySchool of StomatologyThe Fourth Military Medical UniversityXi'an710032China
| | - Peisheng Liu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration and National Clinical Research Center for Oral Diseases and Shaanxi Clinical Research Center for Oral DiseasesDepartment of Preventive DentistrySchool of StomatologyThe Fourth Military Medical UniversityXi'an710032China
| | - Fei Fu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration and National Clinical Research Center for Oral Diseases and Shaanxi Clinical Research Center for Oral DiseasesDepartment of Preventive DentistrySchool of StomatologyThe Fourth Military Medical UniversityXi'an710032China
| | - Siying Liu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration and National Clinical Research Center for Oral Diseases and Shaanxi Clinical Research Center for Oral DiseasesCenter for Tissue EngineeringSchool of StomatologyThe Fourth Military Medical UniversityXi'an710032China
| | - Kun Xuan
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration and National Clinical Research Center for Oral Diseases and Shaanxi Clinical Research Center for Oral DiseasesDepartment of Preventive DentistrySchool of StomatologyThe Fourth Military Medical UniversityXi'an710032China
| |
Collapse
|
39
|
Zhang L, Ni X, Jiang M, Du M, Zhang S, Jiang H, Liu C, Liu S. Lacticaseibacillus rhamnosus Strains for Alleviation of Irritable Bowel Disease and Chronic Fatigue Syndrome. Microorganisms 2024; 12:1081. [PMID: 38930463 PMCID: PMC11205684 DOI: 10.3390/microorganisms12061081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 05/16/2024] [Accepted: 05/21/2024] [Indexed: 06/28/2024] Open
Abstract
Lacticaseibacillus rhamnosus is applied as a probiotic to alleviate various metabolic, gastrointestinal, and psychological symptoms and diseases, and its probiotic effectiveness is strain-specific. In this study, we obtained 21 strains of Ls. rhamnosus, and their genomes were sequenced. We defined the pan- and core-genomes of Ls. rhamnosus. Phenotypes such as the assimilation of carbohydrates and antibiotic resistance were experimentally characterized and associated with genome annotations. Nine strains were selected and tested for growth rates, tolerance to acidity/alkalinity and bile acids, the production of short-chain fatty acids, and competition with pathogenic microbes. Strains WL11 and WL17 were targeted as potential probiotics and were applied in mouse model tests for the alleviation of chronic fatigue syndrome (CFS) and irritable bowel syndrome (IBS). The results showed that WL11 and WL17 effectively alleviated slow body weight gain, anxiety, poor memory, and cognitive impairment in CFS mouse models. They also reduced the expression of pro-inflammatory factors, such as TNF-α and IL-6, and alleviated intestinal peristalsis, visceral hypersensitivity, and anxiety-like behavior in IBS mouse models. This study reports new Ls. rhamnosus strain resources and their effect on alleviation of both IBS and CFS symptoms with mouse models; the probiotic functions of those strains in human patients remain to be further tested.
Collapse
Affiliation(s)
- Liang Zhang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China; (L.Z.); (X.N.); (M.J.); (M.D.); (S.Z.); (H.J.); (C.L.)
| | - Xue Ni
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China; (L.Z.); (X.N.); (M.J.); (M.D.); (S.Z.); (H.J.); (C.L.)
| | - Minzhi Jiang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China; (L.Z.); (X.N.); (M.J.); (M.D.); (S.Z.); (H.J.); (C.L.)
| | - Mengxuan Du
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China; (L.Z.); (X.N.); (M.J.); (M.D.); (S.Z.); (H.J.); (C.L.)
| | - Shuwen Zhang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China; (L.Z.); (X.N.); (M.J.); (M.D.); (S.Z.); (H.J.); (C.L.)
| | - He Jiang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China; (L.Z.); (X.N.); (M.J.); (M.D.); (S.Z.); (H.J.); (C.L.)
| | - Chang Liu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China; (L.Z.); (X.N.); (M.J.); (M.D.); (S.Z.); (H.J.); (C.L.)
| | - Shuangjiang Liu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China; (L.Z.); (X.N.); (M.J.); (M.D.); (S.Z.); (H.J.); (C.L.)
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
40
|
Jones R, Robinson AT, Beach LB, Lindsey ML, Kirabo A, Hinton A, Erlandson KM, Jenkins ND. Exercise to Prevent Accelerated Vascular Aging in People Living With HIV. Circ Res 2024; 134:1607-1635. [PMID: 38781293 PMCID: PMC11126195 DOI: 10.1161/circresaha.124.323975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Given advances in antiretroviral therapy, the mortality rate for HIV infection has dropped considerably over recent decades. However, people living with HIV (PLWH) experience longer life spans coupled with persistent immune activation despite viral suppression and potential toxicity from long-term antiretroviral therapy use. Consequently, PLWH face a cardiovascular disease (CVD) risk more than twice that of the general population, making it the leading cause of death among this group. Here, we briefly review the epidemiology of CVD in PLWH highlighting disparities at the intersections of sex and gender, age, race/ethnicity, and the contributions of social determinants of health and psychosocial stress to increased CVD risk among individuals with marginalized identities. We then overview the pathophysiology of HIV and discuss the primary factors implicated as contributors to CVD risk among PLWH on antiretroviral therapy. Subsequently, we highlight the functional evidence of premature vascular dysfunction as an early pathophysiological determinant of CVD risk among PLWH, discuss several mechanisms underlying premature vascular dysfunction in PLWH, and synthesize current research on the pathophysiological mechanisms underlying accelerated vascular aging in PLWH, focusing on immune activation, chronic inflammation, and oxidative stress. We consider understudied aspects such as HIV-related changes to the gut microbiome and psychosocial stress, which may serve as mechanisms through which exercise can abrogate accelerated vascular aging. Emphasizing the significance of exercise, we review various modalities and their impacts on vascular health, proposing a holistic approach to managing CVD risks in PLWH. The discussion extends to critical future study areas related to vascular aging, CVD, and the efficacy of exercise interventions, with a call for more inclusive research that considers the diversity of the PLWH population.
Collapse
Affiliation(s)
- Raymond Jones
- Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL
| | | | - Lauren B. Beach
- Department of Medical Social Sciences, Northwestern, Chicago, IL
- Department of Preventive Medicine, Northwestern, Chicago, IL
| | - Merry L. Lindsey
- School of Graduate Studies, Meharry Medical College, Nashville, TN
- Research Service, Nashville VA Medical Center, Nashville, TN
| | - Annet Kirabo
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
- Vanderbilt Center for Immunobiology, Nashville, TN
- Vanderbilt Institute for Infection, Immunology and Inflammation, Nashville, TN
- Vanderbilt Institute for Global Health, Nashville, TN
| | - Antentor Hinton
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN
| | | | - Nathaniel D.M. Jenkins
- Department of Health and Human Physiology, University of Iowa, Iowa City, IA
- Abboud Cardiovascular Research Center, University of Iowa, Iowa City, IA
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA
| |
Collapse
|
41
|
Lee JH, Shin JH, Kim JY, Ju HJ, Kim GM. Exploring the Role of Gut Microbiota in Patients with Alopecia Areata. Int J Mol Sci 2024; 25:4256. [PMID: 38673841 PMCID: PMC11050148 DOI: 10.3390/ijms25084256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/05/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
Imbalances in gut microbiota reportedly contribute to the development of autoimmune diseases, but the association between the etiopathogenesis of alopecia areata (AA) and gut microbial dysbiosis remains unclear. This cross-sectional study was conducted to identify and compare the composition of the gut microbiome in patients affected by AA and those in a healthy control (HC) group, and to investigate possible bacterial biomarkers for the disease. Fecal samples were collected from 19 AA patients and 20 HCs to analyze the relationship with fecal bacteria. The three major genera constituting the gut microbiome of AA patients were Bacteroides, Blautia, and Faecalibacterium. The alpha diversity of the AA group was not statistically significant different from that of the HC group. However, bacterial community composition in the AA group was significantly different from that of HC group according to Jensen-Shannon dissimilarities. In patients with AA, we found an enriched presence of the genera Blautia and Eubacterium_g5 compared to the HC group (p < 0.05), whereas Bacteroides were less prevalent (p < 0.05). The gut microbiota of AA patients was distinct from those of the HC group. Our findings suggest a possible involvement of gut microbiota in in the as-yet-undefined pathogenesis of AA.
Collapse
Affiliation(s)
- Ji Hae Lee
- Department of Dermatology, St. Vincent’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 16247, Republic of Korea; (J.H.S.); (J.Y.K.); (H.J.J.); (G.M.K.)
| | | | | | | | | |
Collapse
|
42
|
Mohammad S, Karim MR, Iqbal S, Lee JH, Mathiyalagan R, Kim YJ, Yang DU, Yang DC. Atopic dermatitis: Pathophysiology, microbiota, and metabolome - A comprehensive review. Microbiol Res 2024; 281:127595. [PMID: 38218095 DOI: 10.1016/j.micres.2023.127595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 10/11/2023] [Accepted: 12/24/2023] [Indexed: 01/15/2024]
Abstract
Atopic dermatitis (AD) is a prevalent inflammatory skin condition that commonly occurs in children. Genetics, environment, and defects in the skin barrier are only a few of the factors that influence how the disease develops. As human microbiota research has advanced, more scientific evidence has shown the critical involvement of the gut and skin bacteria in the pathogenesis of atopic dermatitis. Microbiome dysbiosis, defined by changed diversity and composition, as well as the development of pathobionts, has been identified as a potential cause for recurring episodes of atopic dermatitis. Gut dysbiosis causes "leaky gut syndrome" by disrupting the epithelial lining of the gut, which allows bacteria and other endotoxins to enter the bloodstream and cause inflammation. The same is true for the disruption of cutaneous homeostasis caused by skin dysbiosis, which enables bacteria and other pathogens to reach deeper skin layers or even systemic circulation, resulting in inflammation. Furthermore, it is now recognized that the gut and skin microbiota releases both beneficial and toxic metabolites. Here, this review covers a range of topics related to AD, including its pathophysiology, the microbiota-AD connection, commonly used treatments, and the significance of metabolomics in AD prevention, treatment, and management, recognizing its potential in providing valuable insights into the disease.
Collapse
Affiliation(s)
- Shahnawaz Mohammad
- Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Yongin-si, Gyeonggi-do 17104, Republic of Korea
| | - Md Rezaul Karim
- Department of Biopharmaceutical Biotechnology, College of Life Sciences, Kyung Hee University, Yongin-si, Gyeonggi-do 17104, Republic of Korea; Department of Biotechnology and Genetic Engineering, Faculty of Biological Sciences, Islamic University, Kushtia 7003, Bangladesh
| | - Safia Iqbal
- Department of Biopharmaceutical Biotechnology, College of Life Sciences, Kyung Hee University, Yongin-si, Gyeonggi-do 17104, Republic of Korea; Department of Microbiology, Varendra Institute of Biosciences, Affiliated by Rajshahi University, Natore, Rajshahi 6400, Bangladesh
| | - Jung Hyeok Lee
- Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Yongin-si, Gyeonggi-do 17104, Republic of Korea
| | - Ramya Mathiyalagan
- Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Yongin-si, Gyeonggi-do 17104, Republic of Korea; Department of Oriental Medicinal Biotechnology, College of Life Sciences, Kyung Hee University, Yongin-si, Gyeonggi-do 17104, Republic of Korea
| | - Yeon Ju Kim
- Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Yongin-si, Gyeonggi-do 17104, Republic of Korea; Department of Oriental Medicinal Biotechnology, College of Life Sciences, Kyung Hee University, Yongin-si, Gyeonggi-do 17104, Republic of Korea
| | - Dong Uk Yang
- Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Yongin-si, Gyeonggi-do 17104, Republic of Korea; Department of Oriental Medicinal Biotechnology, College of Life Sciences, Kyung Hee University, Yongin-si, Gyeonggi-do 17104, Republic of Korea.
| | - Deok Chun Yang
- Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Yongin-si, Gyeonggi-do 17104, Republic of Korea; Department of Oriental Medicinal Biotechnology, College of Life Sciences, Kyung Hee University, Yongin-si, Gyeonggi-do 17104, Republic of Korea.
| |
Collapse
|
43
|
Scott SA, Fu J, Chang PV. Dopamine receptor D2 confers colonization resistance via microbial metabolites. Nature 2024; 628:180-185. [PMID: 38480886 PMCID: PMC11097147 DOI: 10.1038/s41586-024-07179-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 02/07/2024] [Indexed: 03/26/2024]
Abstract
The gut microbiome has major roles in modulating host physiology. One such function is colonization resistance, or the ability of the microbial collective to protect the host against enteric pathogens1-3, including enterohaemorrhagic Escherichia coli (EHEC) serotype O157:H7, an attaching and effacing (AE) food-borne pathogen that causes severe gastroenteritis, enterocolitis, bloody diarrhea and acute renal failure4,5 (haemolytic uremic syndrome). Although gut microorganisms can provide colonization resistance by outcompeting some pathogens or modulating host defence provided by the gut barrier and intestinal immune cells6,7, this phenomenon remains poorly understood. Here, we show that activation of the neurotransmitter receptor dopamine receptor D2 (DRD2) in the intestinal epithelium by gut microbial metabolites produced upon dietary supplementation with the essential amino acid L-tryptophan protects the host against Citrobacter rodentium, a mouse AE pathogen that is widely used as a model for EHEC infection8,9. We further find that DRD2 activation by these tryptophan-derived metabolites decreases expression of a host actin regulatory protein involved in C. rodentium and EHEC attachment to the gut epithelium via formation of actin pedestals. Our results reveal a noncanonical colonization resistance pathway against AE pathogens that features an unconventional role for DRD2 outside the nervous system in controlling actin cytoskeletal organization in the gut epithelium. Our findings may inspire prophylactic and therapeutic approaches targeting DRD2 with dietary or pharmacological interventions to improve gut health and treat gastrointestinal infections, which afflict millions globally.
Collapse
Affiliation(s)
- Samantha A Scott
- Department of Microbiology, Cornell University, Ithaca, NY, USA
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY, USA
| | - Jingjing Fu
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY, USA
| | - Pamela V Chang
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY, USA.
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, USA.
- Cornell Center for Immunology, Cornell University, Ithaca, NY, USA.
- Cornell Institute of Host-Microbe Interactions and Disease, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
44
|
Bi K, Lei Y, Kong D, Li Y, Fan X, Luo X, Yang J, Wang G, Li X, Xu Y, Luo H. Progress in the study of intestinal microbiota involved in morphine tolerance. Heliyon 2024; 10:e27187. [PMID: 38533077 PMCID: PMC10963202 DOI: 10.1016/j.heliyon.2024.e27187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 01/09/2024] [Accepted: 02/26/2024] [Indexed: 03/28/2024] Open
Abstract
Morphine is a widely used opioid for treatment of pain. The attendant problems including morphine tolerance and morphine dependence pose a major public health challenge. In recent years, there has been increasing interest in the gastrointestinal microbiota in many physiological and pathophysiological processes. The connectivity network between the gut microbiota and the brain is involved in multiple biological systems, and bidirectional communication between them is critical in gastrointestinal tract homeostasis, the central nervous system, and the microbial system. Many research have previously shown that morphine has a variety of effects on the gastrointestinal tract, but none have determined the function of intestinal microbiota in morphine tolerance. This study reviewed the mechanisms of morphine tolerance from the perspective of dysregulation of microbiota-gut-brain axis homeostasis, by summarizing the possible mechanisms originating from the gut that may affect morphine tolerance and the improvement of morphine tolerance through the gut microbiota.
Collapse
Affiliation(s)
- Ke Bi
- Department of Gastrointestinal and Hernia Surgery, First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China
- Yunnan Technological Innovation Centre of Drug Addiction Medicine, Yunnan University, Kunming, 650032, China
| | - Yi Lei
- Department of Gastrointestinal and Hernia Surgery, First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China
| | - Deshenyue Kong
- Department of Gastrointestinal and Hernia Surgery, First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China
- Yunnan Technological Innovation Centre of Drug Addiction Medicine, Yunnan University, Kunming, 650032, China
| | - Yuansen Li
- Department of Gastrointestinal and Hernia Surgery, First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China
- Yunnan Technological Innovation Centre of Drug Addiction Medicine, Yunnan University, Kunming, 650032, China
| | - Xuan Fan
- Department of Gastrointestinal and Hernia Surgery, First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China
- Yunnan Technological Innovation Centre of Drug Addiction Medicine, Yunnan University, Kunming, 650032, China
| | - Xiao Luo
- Department of Gastrointestinal and Hernia Surgery, First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China
- Yunnan Technological Innovation Centre of Drug Addiction Medicine, Yunnan University, Kunming, 650032, China
| | - Jiqun Yang
- Third People's Hospital of Kunming City/Drug Rehabilitation Hospital of Kunming City, Kunming, 650041, China
| | - Guangqing Wang
- Drug Rehabilitation Administration of Yunnan Province, Kunming, 650032, China
| | - Xuejun Li
- Drug Rehabilitation Administration of Yunnan Province, Kunming, 650032, China
| | - Yu Xu
- Department of Gastrointestinal and Hernia Surgery, First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China
| | - Huayou Luo
- Department of Gastrointestinal and Hernia Surgery, First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China
| |
Collapse
|
45
|
Liu A, Garrett S, Hong W, Zhang J. Staphylococcus aureus Infections and Human Intestinal Microbiota. Pathogens 2024; 13:276. [PMID: 38668232 PMCID: PMC11053856 DOI: 10.3390/pathogens13040276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 03/18/2024] [Accepted: 03/23/2024] [Indexed: 04/29/2024] Open
Abstract
Staphylococcus aureus (S. aureus) is a common pathogen that can cause many human diseases, such as skin infection, food poisoning, endocarditis, and sepsis. These diseases can be minor infections or life-threatening, requiring complex medical management resulting in substantial healthcare costs. Meanwhile, as the critically ignored "organ," the intestinal microbiome greatly impacts physiological health, not only in gastrointestinal diseases but also in disorders beyond the gut. However, the correlation between S. aureus infection and intestinal microbial homeostasis is largely unknown. Here, we summarized the recent progress in understanding S. aureus infections and their interactions with the microbiome in the intestine. These summarizations will help us understand the mechanisms behind these infections and crosstalk and the challenges we are facing now, which could contribute to preventing S. aureus infections, effective treatment investigation, and vaccine development.
Collapse
Affiliation(s)
- Aotong Liu
- Department of Pharmacology & Regenerative Medicine, College of Medicine, University of Illinois Chicago, Chicago, IL 60612, USA;
| | - Shari Garrett
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois Chicago, Chicago, IL 60612, USA;
- Department of Microbiology and Immunology, University of Illinois Chicago, Chicago, IL 60612, USA
| | - Wanqing Hong
- Faculty of Science, University of Waterloo, Waterloo, ON N2L 3G1, Canada;
- School of Chemistry & Chemical Engineering and Materials Sciences, Shandong Normal University, Jinan 250061, China
| | - Jilei Zhang
- Department of Pharmacology & Regenerative Medicine, College of Medicine, University of Illinois Chicago, Chicago, IL 60612, USA;
| |
Collapse
|
46
|
Cavalluzzo B, Viuff MC, Tvingsholm SA, Ragone C, Manolio C, Mauriello A, Buonaguro FM, Tornesello ML, Izzo F, Morabito A, Hadrup SR, Tagliamonte M, Buonaguro L. Cross-reactive CD8 + T cell responses to tumor-associated antigens (TAAs) and homologous microbiota-derived antigens (MoAs). J Exp Clin Cancer Res 2024; 43:87. [PMID: 38509571 PMCID: PMC10953141 DOI: 10.1186/s13046-024-03004-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 03/06/2024] [Indexed: 03/22/2024] Open
Abstract
BACKGROUND We have recently shown extensive sequence and conformational homology between tumor-associated antigens (TAAs) and antigens derived from microorganisms (MoAs). The present study aimed to assess the breadth of T-cell recognition specific to MoAs and the corresponding TAAs in healthy subjects (HS) and patients with cancer (CP). METHOD A library of > 100 peptide-MHC (pMHC) combinations was used to generate DNA-barcode labelled multimers. Homologous peptides were selected from the Cancer Antigenic Peptide Database, as well as Bacteroidetes/Firmicutes-derived peptides. They were incubated with CD8 + T cells from the peripheral blood of HLA-A*02:01 healthy individuals (n = 10) and cancer patients (n = 16). T cell recognition was identified using tetramer-staining analysis. Cytotoxicity assay was performed using as target cells TAP-deficient T2 cells loaded with MoA or the paired TuA. RESULTS A total of 66 unique pMHC recognized by CD8+ T cells across all groups were identified. Of these, 21 epitopes from microbiota were identified as novel immunological targets. Reactivity against selected TAAs was observed for both HS and CP. pMHC tetramer staining confirmed CD8+ T cell populations cross-reacting with CTA SSX2 and paired microbiota epitopes. Moreover, PBMCs activated with the MoA where shown to release IFNγ as well as to exert cytotoxic activity against cells presenting the paired TuA. CONCLUSIONS Several predicted microbiota-derived MoAs are recognized by T cells in HS and CP. Reactivity against TAAs was observed also in HS, primed by the homologous bacterial antigens. CD8+ T cells cross-reacting with MAGE-A1 and paired microbiota epitopes were identified in three subjects. Therefore, the microbiota can elicit an extensive repertoire of natural memory T cells to TAAs, possibly able to control tumor growth ("natural anti-cancer vaccination"). In addition, non-self MoAs can be included in preventive/therapeutic off-the-shelf cancer vaccines with more potent anti-tumor efficacy than those based on TAAs.
Collapse
Affiliation(s)
- Beatrice Cavalluzzo
- Innovative Immunological Models Unit, Istituto Nazionale Tumori - IRCCS - "Fond G. Pascale", Via Mariano Semmola, 52, Naples, Italy
| | - Marie Christine Viuff
- Department of Health Technology, Section of Experimental and Translational Immunology, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Siri Amanda Tvingsholm
- Department of Health Technology, Section of Experimental and Translational Immunology, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Concetta Ragone
- Innovative Immunological Models Unit, Istituto Nazionale Tumori - IRCCS - "Fond G. Pascale", Via Mariano Semmola, 52, Naples, Italy
| | - Carmen Manolio
- Innovative Immunological Models Unit, Istituto Nazionale Tumori - IRCCS - "Fond G. Pascale", Via Mariano Semmola, 52, Naples, Italy
| | - Angela Mauriello
- Innovative Immunological Models Unit, Istituto Nazionale Tumori - IRCCS - "Fond G. Pascale", Via Mariano Semmola, 52, Naples, Italy
| | - Franco M Buonaguro
- Molecular Biology and Viral Oncogenesis Unit, Istituto Nazionale Tumori - IRCCS - "Fond G. Pascale", Naples, Italy
| | - Maria Lina Tornesello
- Molecular Biology and Viral Oncogenesis Unit, Istituto Nazionale Tumori - IRCCS - "Fond G. Pascale", Naples, Italy
| | - Francesco Izzo
- Hepatobiliary Surgical Oncology Unit, Istituto Nazionale Tumori - IRCCS - "Fond. G. Pascale", Naples, Italy
| | - Alessandro Morabito
- Thoracic Medical Oncology, Istituto Nazionale Tumori - IRCCS - "Fond G. Pascale", Naples, Italy
| | - Sine Reker Hadrup
- Department of Health Technology, Section of Experimental and Translational Immunology, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Maria Tagliamonte
- Innovative Immunological Models Unit, Istituto Nazionale Tumori - IRCCS - "Fond G. Pascale", Via Mariano Semmola, 52, Naples, Italy.
| | - Luigi Buonaguro
- Innovative Immunological Models Unit, Istituto Nazionale Tumori - IRCCS - "Fond G. Pascale", Via Mariano Semmola, 52, Naples, Italy.
| |
Collapse
|
47
|
Jo H, Han G, Kim EB, Kong C, Kim BG. Effects of supplemental bacteriophage on the gut microbiota and nutrient digestibility of ileal-cannulated pigs. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2024; 66:340-352. [PMID: 38628684 PMCID: PMC11016748 DOI: 10.5187/jast.2023.e96] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/02/2023] [Accepted: 09/10/2023] [Indexed: 04/19/2024]
Abstract
This study measured the potential changes of the microbiota in the gastrointestinal tract and energy and nutrient digestibility by supplemental bacteriophages in pigs. Twelve castrated male pigs (initial mean body weight = 29.5 ± 2.3 kg) were surgically cannulated using T-cannula. The animals were housed individually in pens equipped with a feeder and a nipple waterer. The pigs were allotted to 1 of 3 experimental diets in a quadruplicated 3 × 2 Latin square design with 3 experimental diets, 2 periods, and 12 pigs resulting in 8 replicates per diet. The 3 diets were a control mainly based on corn and soybean meal with no antibiotics or bacteriophages, a diet containing 0.1% antibiotics, and a diet containing 0.2% bacteriophages. On day 5 of the experimental period, feces were collected and on days 6 and 7, ileal digesta were collected. Genomic DNA for bacteria were extracted from the ileal digesta and feces and the V4 region of the 16S rRNA gene was amplified. The ileal and fecal digestibility of energy, dry matter, organic matter, crude protein, and fiber was unaffected by dietary antibiotics or bacteriophages. At the phylum level, the supplemental antibiotic or bacteriophage tended to result in a higher proportion of Firmicutes (p = 0.059) and a lower proportion of Bacteroidetes (p = 0.099) in the ileal digesta samples compared with the control group with no difference between the antibiotic and bacteriophage groups. At the genus level, the supplemental antibiotic or bacteriophage tended to result in a higher proportion of Lactobacillus (p = 0.062) and a lower proportion of Bacteroides (p = 0.074) and Streptococcus (p = 0.088) in the ileal digesta compared with the control group with no difference between the antibiotic and bacteriophage groups. In the feces, supplemental antibiotics or bacteriophages reduced the proportion of Bifidobacterium compared with the control group (p = 0.029) with no difference between the antibiotic and bacteriophage groups. Overall, supplemental antibiotics and bacteriophages showed positive effect on the microbiota of in the ileal digesta without largely affecting energy or nutrient digestibility, with no differences between the antibiotic and bacteriophage groups in growing pigs.
Collapse
Affiliation(s)
- Hyunwoong Jo
- Monogastric Animal Feed Research
Institute, Konkuk University, Seoul 05029, Korea
| | - Geongoo Han
- Molecular Microbiology and Immunology,
Brown University, Providence 02912, Rhode Island, USA
| | - Eun Bae Kim
- Department of Applied Animal Science,
Kangwon National University, Chuncheon 24341, Korea
| | - Changsu Kong
- Department of Animal Science, Kyungpook
National University, Sangju 37224, Korea
| | - Beob Gyun Kim
- Monogastric Animal Feed Research
Institute, Konkuk University, Seoul 05029, Korea
- Department of Animal Science and
Technology, Konkuk University, Seoul 05029, Korea
| |
Collapse
|
48
|
Oganov AC, Seddon I, Zein M, Yazdanpanah G, Fonoudi H, Jabbehdari S. Composition of the gut microbiome, role of diet, lifestyle, and antioxidant therapies in diabetes mellitus and diabetic retinopathy. Eur J Ophthalmol 2024; 34:367-383. [PMID: 37150930 DOI: 10.1177/11206721231174490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
The gut microbiome is a complex ecosystem in the gastrointestinal tract composed of trillions of bacteria, viruses, fungi, and protozoa. Disruption of this delicate ecosystem, formally called "dysbiosis", has been linked to a variety of metabolic and inflammatory pathologies. Several studies have focused on abnormal microbiome composition and correlated these findings with the development of type 2 diabetes mellitus (T2DM) and diabetic retinopathy (DR). However, given the complexity of this ecosystem, the current studies are narrow in design and present variable findings. Composition of the gut microbiome in patients with DR significantly differs from patients with diabetes without retinopathy as well as from healthy controls. Additionally, the gut microbiome has been shown to modify effects of medication, diet, exercise, and antioxidant use on the development and progression of DR. In this paper, we present a comprehensive review of literature on the effect of oxidative stress, antioxidant therapies, and dysbiosis on DR.
Collapse
Affiliation(s)
- Anthony C Oganov
- Department of Ophthalmology, Renaissance School of Medicine, Stony Brook, NY, USA
| | - Ian Seddon
- College of Osteopathic Medicine, Nova Southeastern University, Fort Lauderdale, FL, USA
| | - Mike Zein
- Department of Ophthalmology, Cook County Health, Chicago, IL, USA
| | - Ghasem Yazdanpanah
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago, Chicago, IL, USA
| | - Hossein Fonoudi
- Eye Research Center, Farabi Eye Hospital, Tehran University of Medical Sciences, Tehran, Iran
- Iranshahr University of Medical Sciences, Iranshahr, Iran
| | - Sayena Jabbehdari
- Jones Eye Institute, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| |
Collapse
|
49
|
Chung IY, Kim J, Koh A. The Microbiome Matters: Its Impact on Cancer Development and Therapeutic Responses. J Microbiol 2024; 62:137-152. [PMID: 38587593 DOI: 10.1007/s12275-024-00110-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 01/07/2024] [Accepted: 01/11/2024] [Indexed: 04/09/2024]
Abstract
In the evolving landscape of cancer research, the human microbiome emerges as a pivotal determinant reshaping our understanding of tumorigenesis and therapeutic responses. Advanced sequencing technologies have uncovered a vibrant microbial community not confined to the gut but thriving within tumor tissues. Comprising bacteria, viruses, and fungi, this diverse microbiota displays distinct signatures across various cancers, with most research primarily focusing on bacteria. The correlations between specific microbial taxa within different cancer types underscore their pivotal roles in driving tumorigenesis and influencing therapeutic responses, particularly in chemotherapy and immunotherapy. This review amalgamates recent discoveries, emphasizing the translocation of the oral microbiome to the gut as a potential marker for microbiome dysbiosis across diverse cancer types and delves into potential mechanisms contributing to cancer promotion. Furthermore, it highlights the adverse effects of the microbiome on cancer development while exploring its potential in fortifying strategies for cancer prevention and treatment.
Collapse
Affiliation(s)
- In-Young Chung
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea.
| | - Jihyun Kim
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea
| | - Ara Koh
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea.
| |
Collapse
|
50
|
Rana AK, Kumar Saraswati SS, Anang V, Singh A, Singh A, Verma C, Natarajan K. Butyrate induces oxidative burst mediated apoptosis via Glucose-6-Phosphate Dehydrogenase (G6PDH) in macrophages during mycobacterial infection. Microbes Infect 2024; 26:105271. [PMID: 38036036 DOI: 10.1016/j.micinf.2023.105271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 11/22/2023] [Accepted: 11/27/2023] [Indexed: 12/02/2023]
Abstract
Microorganisms present in the gut modulate host defence responses against infections in order to maintain immune homeostasis. This host-microbe crosstalk is regulated by gut metabolites. Butyrate is one such small chain fatty acid produced by gut microbes upon fermentation that has the potential to influence immune responses. Here we investigated the role of butyrate in macrophages during mycobacterial infection. Results demonstrate that butyrate significantly suppresses the growth kinetics of mycobacteria in culture medium as well as inhibits mycobacterial survival inside macrophages. Interestingly, butyrate alters the pentose phosphate pathway by inducing higher expression of Glucose-6-Phosphate Dehydrogenase (G6PDH) resulting in a higher oxidative burst via decreased Sod-2 and increased Nox-2 (NADPH oxidase-2) expression. Butyrate-induced G6PDH also mediated a decrease in mitochondrial membrane potential. This in turn lead to an induction of apoptosis as measured by lower expression of the anti-apoptotic protein Bcl-2 and a higher release of Cytochrome C as a result of induction of apoptosis. These results indicate that butyrate alters the metabolic status of macrophages and induces protective immune responses against mycobacterial infection.
Collapse
Affiliation(s)
- Ankush Kumar Rana
- Infectious Disease Immunology Lab, Dr. B.R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi 110007, India.
| | | | - Vandana Anang
- Infectious Disease Immunology Lab, Dr. B.R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi 110007, India
| | - Aayushi Singh
- Infectious Disease Immunology Lab, Dr. B.R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi 110007, India
| | - Aarti Singh
- Infectious Disease Immunology Lab, Dr. B.R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi 110007, India
| | - Chaitenya Verma
- Infectious Disease Immunology Lab, Dr. B.R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi 110007, India
| | - Krishnamurthy Natarajan
- Infectious Disease Immunology Lab, Dr. B.R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi 110007, India.
| |
Collapse
|