1
|
Ramirez P, Sun W, Dehkordi SK, Zare H, Pascarella G, Carninci P, Fongang B, Bieniek KF, Frost B. Nanopore Long-Read Sequencing Unveils Genomic Disruptions in Alzheimer's Disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.02.01.578450. [PMID: 38370753 PMCID: PMC10871260 DOI: 10.1101/2024.02.01.578450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Studies in laboratory models and postmortem human brain tissue from patients with Alzheimer's disease have revealed disruption of basic cellular processes such as DNA repair and epigenetic control as drivers of neurodegeneration. While genomic alterations in regions of the genome that are rich in repetitive sequences, often termed "dark regions," are difficult to resolve using traditional sequencing approaches, long-read technologies offer promising new avenues to explore previously inaccessible regions of the genome. In the current study, we leverage nanopore-based long-read whole-genome sequencing of DNA extracted from postmortem human frontal cortex at early and late stages of Alzheimer's disease, as well as age-matched controls, to analyze retrotransposon insertion events, non-allelic homologous recombination (NAHR), structural variants and DNA methylation within retrotransposon loci and other repetitive/dark regions of the human genome. Interestingly, we find that retrotransposon insertion events and repetitive element-associated NAHR are particularly enriched within centromeric and pericentromeric regions of DNA in the aged human brain, and that ribosomal DNA (rDNA) is subject to a high degree of NAHR compared to other regions of the genome. We detect a trending increase in potential somatic retrotransposition events of the small interfering nuclear element (SINE) AluY in late-stage Alzheimer's disease, and differential changes in methylation within repetitive elements and retrotransposons according to disease stage. Taken together, our analysis provides the first long-read DNA sequencing-based analysis of retrotransposon sequences, NAHR, structural variants, and DNA methylation in the aged brain, and points toward transposable elements, centromeric/pericentromeric regions and rDNA as hotspots for genomic variation.
Collapse
Affiliation(s)
- Paulino Ramirez
- Barshop Institute for Longevity and Aging Studies
- Glenn Biggs Institute for Alzheimer’s and Neurodegenerative Diseases
- Department of Cell Systems and Anatomy, University of Texas Health San Antonio, San Antonio, Texas
- Brown University, Providence, Rhode Island
| | - Wenyan Sun
- Barshop Institute for Longevity and Aging Studies
- Glenn Biggs Institute for Alzheimer’s and Neurodegenerative Diseases
- Department of Cell Systems and Anatomy, University of Texas Health San Antonio, San Antonio, Texas
- Clinical Neuroscience Research Center, Department of Neurosurgery, School of Medicine, Tulane University, New Orleans, Louisiana
| | - Shiva Kazempour Dehkordi
- Glenn Biggs Institute for Alzheimer’s and Neurodegenerative Diseases
- Department of Cell Systems and Anatomy, University of Texas Health San Antonio, San Antonio, Texas
| | - Habil Zare
- Glenn Biggs Institute for Alzheimer’s and Neurodegenerative Diseases
- Department of Cell Systems and Anatomy, University of Texas Health San Antonio, San Antonio, Texas
| | | | - Piero Carninci
- RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Bernard Fongang
- Glenn Biggs Institute for Alzheimer’s and Neurodegenerative Diseases
- Department of Biochemistry & Structural Biology, University of Texas Health San Antonio, San Antonio, Texas
| | - Kevin F. Bieniek
- Glenn Biggs Institute for Alzheimer’s and Neurodegenerative Diseases
- Department of Pathology, University of Texas Health San Antonio, San Antonio, Texas
| | - Bess Frost
- Barshop Institute for Longevity and Aging Studies
- Glenn Biggs Institute for Alzheimer’s and Neurodegenerative Diseases
- Department of Cell Systems and Anatomy, University of Texas Health San Antonio, San Antonio, Texas
- Brown University, Providence, Rhode Island
| |
Collapse
|
2
|
Maestri S, Scalzo D, Damaggio G, Zobel M, Besusso D, Cattaneo E. Navigating triplet repeats sequencing: concepts, methodological challenges and perspective for Huntington's disease. Nucleic Acids Res 2025; 53:gkae1155. [PMID: 39676657 PMCID: PMC11724279 DOI: 10.1093/nar/gkae1155] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 10/16/2024] [Accepted: 12/02/2024] [Indexed: 12/17/2024] Open
Abstract
The accurate characterization of triplet repeats, especially the overrepresented CAG repeats, is increasingly relevant for several reasons. First, germline expansion of CAG repeats above a gene-specific threshold causes multiple neurodegenerative disorders; for instance, Huntington's disease (HD) is triggered by >36 CAG repeats in the huntingtin (HTT) gene. Second, extreme expansions up to 800 CAG repeats have been found in specific cell types affected by the disease. Third, synonymous single nucleotide variants within the CAG repeat stretch influence the age of disease onset. Thus, new sequencing-based protocols that profile both the length and the exact nucleotide sequence of triplet repeats are crucial. Various strategies to enrich the target gene over the background, along with sequencing platforms and bioinformatic pipelines, are under development. This review discusses the concepts, challenges, and methodological opportunities for analyzing triplet repeats, using HD as a case study. Starting with traditional approaches, we will explore how sequencing-based methods have evolved to meet increasing scientific demands. We will also highlight experimental and bioinformatic challenges, aiming to provide a guide for accurate triplet repeat characterization for diagnostic and therapeutic purposes.
Collapse
Affiliation(s)
- Simone Maestri
- Department of Biosciences, University of Milan, Street Giovanni Celoria, 26, 20133, Milan, Italy
- INGM, Istituto Nazionale Genetica Molecolare ‘Romeo ed Enrica Invernizzi’, Street Francesco Sforza, 35, 20122, Milan, Italy
| | - Davide Scalzo
- Department of Biosciences, University of Milan, Street Giovanni Celoria, 26, 20133, Milan, Italy
- INGM, Istituto Nazionale Genetica Molecolare ‘Romeo ed Enrica Invernizzi’, Street Francesco Sforza, 35, 20122, Milan, Italy
| | - Gianluca Damaggio
- Department of Biosciences, University of Milan, Street Giovanni Celoria, 26, 20133, Milan, Italy
- INGM, Istituto Nazionale Genetica Molecolare ‘Romeo ed Enrica Invernizzi’, Street Francesco Sforza, 35, 20122, Milan, Italy
| | - Martina Zobel
- Department of Biosciences, University of Milan, Street Giovanni Celoria, 26, 20133, Milan, Italy
- INGM, Istituto Nazionale Genetica Molecolare ‘Romeo ed Enrica Invernizzi’, Street Francesco Sforza, 35, 20122, Milan, Italy
| | - Dario Besusso
- Department of Biosciences, University of Milan, Street Giovanni Celoria, 26, 20133, Milan, Italy
- INGM, Istituto Nazionale Genetica Molecolare ‘Romeo ed Enrica Invernizzi’, Street Francesco Sforza, 35, 20122, Milan, Italy
| | - Elena Cattaneo
- Department of Biosciences, University of Milan, Street Giovanni Celoria, 26, 20133, Milan, Italy
- INGM, Istituto Nazionale Genetica Molecolare ‘Romeo ed Enrica Invernizzi’, Street Francesco Sforza, 35, 20122, Milan, Italy
| |
Collapse
|
3
|
Hujoel MLA, Handsaker RE, Kamitaki N, Mukamel RE, Rubinacci S, Palamara PF, McCarroll SA, Loh PR. Insights into the causes and consequences of DNA repeat expansions from 700,000 biobank participants. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.25.625248. [PMID: 39651202 PMCID: PMC11623664 DOI: 10.1101/2024.11.25.625248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
Expansions and contractions of tandem DNA repeats are a source of genetic variation in human populations and in human tissues: some expanded repeats cause inherited disorders, and some are also somatically unstable. We analyzed DNA sequence data, derived from the blood cells of >700,000 participants in UK Biobank and the All of Us Research Program, and developed new computational approaches to recognize, measure and learn from DNA-repeat instability at 15 highly polymorphic CAG-repeat loci. We found that expansion and contraction rates varied widely across these 15 loci, even for alleles of the same length; repeats at different loci also exhibited widely variable relative propensities to mutate in the germline versus the blood. The high somatic instability of TCF4 repeats enabled a genome-wide association analysis that identified seven loci at which inherited variants modulate TCF4 repeat instability in blood cells. Three of the implicated loci contained genes ( MSH3 , FAN1 , and PMS2 ) that also modulate Huntington's disease age-at-onset as well as somatic instability of the HTT repeat in blood; however, the specific genetic variants and their effects (instability-increasing or-decreasing) appeared to be tissue-specific and repeat-specific, suggesting that somatic mutation in different tissues-or of different repeats in the same tissue-proceeds independently and under the control of substantially different genetic variation. Additional modifier loci included DNA damage response genes ATAD5 and GADD45A . Analyzing DNA repeat expansions together with clinical data showed that inherited repeats in the 5' UTR of the glutaminase ( GLS) gene are associated with stage 5 chronic kidney disease (OR=14.0 [5.7-34.3]) and liver diseases (OR=3.0 [1.5-5.9]). These and other results point to the dynamics of DNA repeats in human populations and across the human lifespan.
Collapse
|
4
|
Ruiz de Sabando A, Ciosi M, Galbete A, Cumming SA, Monckton DG, Ramos-Arroyo MA. Somatic CAG repeat instability in intermediate alleles of the HTT gene and its potential association with a clinical phenotype. Eur J Hum Genet 2024; 32:770-778. [PMID: 38433266 PMCID: PMC11220145 DOI: 10.1038/s41431-024-01546-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 01/08/2024] [Accepted: 01/17/2024] [Indexed: 03/05/2024] Open
Abstract
Huntington disease (HD) is a neurodegenerative disorder caused by ≥36 CAGs in the HTT gene. Intermediate alleles (IAs) (27-35 CAGs) are not considered HD-causing, but their potential association with neurocognitive symptoms remains controversial. As HTT somatic CAG expansion influences HD onset, we hypothesised that IAs are somatically unstable, and that somatic CAG expansion may drive phenotypic presentation in some IA carriers. We quantified HTT somatic CAG expansions by MiSeq sequencing in the blood DNA of 164 HD subjects and 191 IA (symptomatic and control) carriers, and in the brain DNA of a symptomatic 33 CAG carrier. We also performed genotype-phenotype analysis. The phenotype of symptomatic IA carriers was characterised by motor (85%), cognitive (27%) and/or behavioural (29%) signs, with a late (58.7 ± 18.6 years), but not CAG-dependent, age at onset. IAs displayed somatic expansion that were CAG and age-dependent in blood DNA, with 0.4% and 0.01% of DNA molecules expanding by CAG and year, respectively. Somatic expansions of +1 and +2 CAGs were detected in the brain of the individual with 33 CAGs, with the highest expansion frequency in the putamen (10.3%) and the lowest in the cerebellum (4.8%). Somatic expansion in blood DNA was not different in symptomatic vs. control IA carriers. In conclusion, we show that HTT IAs are somatically unstable, but we found no association with HD-like phenotypes. It is plausible, however, that some IAs, close to the HD pathological threshold and with a predisposing genetic background, could manifest with neurocognitive symptoms.
Collapse
Affiliation(s)
- Ainara Ruiz de Sabando
- Department of Medical Genetics, Hospital Universitario de Navarra, IdiSNA, 31008, Pamplona, Spain
- Department of Health Sciences, Universidad Pública de Navarra, IdiSNA, 31008, Pamplona, Spain
- Fundación Miguel Servet-Navarrabiomed, IdiSNA, 31008, Pamplona, Spain
| | - Marc Ciosi
- School of Molecular Biosciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Arkaitz Galbete
- Department of Statistics, Informatics and Mathematics, Universidad Pública de Navarra, IdiSNA, 31006, Pamplona, Spain
| | - Sarah A Cumming
- School of Molecular Biosciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Darren G Monckton
- School of Molecular Biosciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Maria A Ramos-Arroyo
- Department of Medical Genetics, Hospital Universitario de Navarra, IdiSNA, 31008, Pamplona, Spain.
- Fundación Miguel Servet-Navarrabiomed, IdiSNA, 31008, Pamplona, Spain.
| |
Collapse
|
5
|
Rajan-Babu IS, Dolzhenko E, Eberle MA, Friedman JM. Sequence composition changes in short tandem repeats: heterogeneity, detection, mechanisms and clinical implications. Nat Rev Genet 2024; 25:476-499. [PMID: 38467784 DOI: 10.1038/s41576-024-00696-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/19/2024] [Indexed: 03/13/2024]
Abstract
Short tandem repeats (STRs) are a class of repetitive elements, composed of tandem arrays of 1-6 base pair sequence motifs, that comprise a substantial fraction of the human genome. STR expansions can cause a wide range of neurological and neuromuscular conditions, known as repeat expansion disorders, whose age of onset, severity, penetrance and/or clinical phenotype are influenced by the length of the repeats and their sequence composition. The presence of non-canonical motifs, depending on the type, frequency and position within the repeat tract, can alter clinical outcomes by modifying somatic and intergenerational repeat stability, gene expression and mutant transcript-mediated and/or protein-mediated toxicities. Here, we review the diverse structural conformations of repeat expansions, technological advances for the characterization of changes in sequence composition, their clinical correlations and the impact on disease mechanisms.
Collapse
Affiliation(s)
- Indhu-Shree Rajan-Babu
- Department of Medical Genetics, The University of British Columbia, and Children's & Women's Hospital, Vancouver, British Columbia, Canada.
| | | | | | - Jan M Friedman
- Department of Medical Genetics, The University of British Columbia, and Children's & Women's Hospital, Vancouver, British Columbia, Canada
- BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada
| |
Collapse
|
6
|
Kacher R, Lejeune FX, David I, Boluda S, Coarelli G, Leclere-Turbant S, Heinzmann A, Marelli C, Charles P, Goizet C, Kabir N, Hilab R, Jornea L, Six J, Dommergues M, Fauret AL, Brice A, Humbert S, Durr A. CAG repeat mosaicism is gene specific in spinocerebellar ataxias. Am J Hum Genet 2024; 111:913-926. [PMID: 38626762 PMCID: PMC11080609 DOI: 10.1016/j.ajhg.2024.03.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 03/25/2024] [Accepted: 03/25/2024] [Indexed: 04/18/2024] Open
Abstract
Expanded CAG repeats in coding regions of different genes are the most common cause of dominantly inherited spinocerebellar ataxias (SCAs). These repeats are unstable through the germline, and larger repeats lead to earlier onset. We measured somatic expansion in blood samples collected from 30 SCA1, 50 SCA2, 74 SCA3, and 30 SCA7 individuals over a mean interval of 8.5 years, along with postmortem tissues and fetal tissues from SCA1, SCA3, and SCA7 individuals to examine somatic expansion at different stages of life. We showed that somatic mosaicism in the blood increases over time. Expansion levels are significantly different among SCAs and correlate with CAG repeat lengths. The level of expansion is greater in individuals with SCA7 who manifest disease compared to that of those who do not yet display symptoms. Brain tissues from SCA individuals have larger expansions compared to the blood. The cerebellum has the lowest mosaicism among the studied brain regions, along with a high expression of ATXNs and DNA repair genes. This was the opposite in cortices, with the highest mosaicism and lower expression of ATXNs and DNA repair genes. Fetal cortices did not show repeat instability. This study shows that CAG repeats are increasingly unstable during life in the blood and the brain of SCA individuals, with gene- and tissue-specific patterns.
Collapse
Affiliation(s)
- Radhia Kacher
- Sorbonne Université, Paris Brain Institute - ICM, Inserm, CNRS, APHP, Hopital de la Pitié-Salpêtrière, Paris, France
| | - François-Xavier Lejeune
- Sorbonne Université, Paris Brain Institute's Data Analysis Core Facility, Inserm, CNRS, APHP, Hopital de la Pitié-Salpêtrière, Paris, France
| | - Isabelle David
- Sorbonne Université, Department of Genetics, APHP, Hopital de la Pitié-Salpêtrière, Paris, France
| | - Susana Boluda
- Sorbonne Université, Department of Neuropathology Raymond Escourolle, APHP, Hopital de la Pitié-Salpêtrière, Paris, France
| | - Giulia Coarelli
- Sorbonne Université, Paris Brain Institute - ICM, Inserm, CNRS, APHP, Hopital de la Pitié-Salpêtrière, Paris, France
| | - Sabrina Leclere-Turbant
- Sorbonne Université, Biobank Neuro-CEB Biological Resource Platform, APHP, Hopital de la Pitié-Salpêtrière, Paris, France
| | - Anna Heinzmann
- Sorbonne Université, Paris Brain Institute - ICM, Inserm, CNRS, APHP, Hopital de la Pitié-Salpêtrière, Paris, France
| | - Cecilia Marelli
- MMDN, Université Montpellier, EPHE, INSERM, Montpellier, France; Expert Center for Neurogenetic Diseases, CHU, Montpellier, France
| | - Perrine Charles
- Sorbonne Université, Department of Genetics, APHP, Hopital de la Pitié-Salpêtrière, Paris, France
| | - Cyril Goizet
- Université Bordeaux, Equipe « Neurogénétique Translationnelle - NRGEN », INCIA CNRS UMR5287 Université Bordeaux and Centre de Reference Maladies Rares « Neurogénétique », Service de Génétique Médicale, Bordeaux University Hospital (CHU Bordeaux), Bordeaux, France
| | - Nisha Kabir
- Sorbonne Université, Paris Brain Institute - ICM, Inserm, CNRS, APHP, Hopital de la Pitié-Salpêtrière, Paris, France
| | - Rania Hilab
- Sorbonne Université, Paris Brain Institute - ICM, Inserm, CNRS, APHP, Hopital de la Pitié-Salpêtrière, Paris, France
| | - Ludmila Jornea
- Sorbonne Université, Paris Brain Institute - ICM, Inserm, CNRS, APHP, Hopital de la Pitié-Salpêtrière, Paris, France
| | - Julie Six
- Sorbonne Université, Paris Brain Institute - ICM, Inserm, CNRS, APHP, Hopital de la Pitié-Salpêtrière, Paris, France
| | - Marc Dommergues
- Sorbonne Université, Service de Gynécologie Obstetrique, APHP, Hopital de la Pitié-Salpêtrière, Paris, France
| | - Anne-Laure Fauret
- Sorbonne Université, Department of Genetics, APHP, Hopital de la Pitié-Salpêtrière, Paris, France
| | - Alexis Brice
- Sorbonne Université, Paris Brain Institute - ICM, Inserm, CNRS, APHP, Hopital de la Pitié-Salpêtrière, Paris, France
| | - Sandrine Humbert
- Sorbonne Université, Paris Brain Institute - ICM, Inserm, CNRS, APHP, Hopital de la Pitié-Salpêtrière, Paris, France
| | - Alexandra Durr
- Sorbonne Université, Paris Brain Institute - ICM, Inserm, CNRS, APHP, Hopital de la Pitié-Salpêtrière, Paris, France.
| |
Collapse
|
7
|
Rapid and comprehensive diagnostic method for repeat expansion diseases using nanopore sequencing. NPJ Genom Med 2022; 7:62. [PMID: 36289212 PMCID: PMC9606279 DOI: 10.1038/s41525-022-00331-y] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 09/30/2022] [Indexed: 11/23/2022] Open
Abstract
We developed a diagnostic method for repeat expansion diseases using a long-read sequencer to improve currently available, low throughput diagnostic methods. We employed the real-time target enrichment system of the nanopore GridION sequencer using the adaptive sampling option, in which software-based target assignment is available without prior sample enrichment, and built an analysis pipeline that prioritized the disease-causing loci. Twenty-two patients with various neurological and neuromuscular diseases, including 12 with genetically diagnosed repeat expansion diseases and 10 manifesting cerebellar ataxia, but without genetic diagnosis, were analyzed. We first sequenced the 12 molecularly diagnosed patients and accurately confirmed expanded repeats in all with uniform depth of coverage across the loci. Next, we applied our method and a conventional method to 10 molecularly undiagnosed patients. Our method corrected inaccurate diagnoses of two patients by the conventional method. Our method is superior to conventional diagnostic methods in terms of speed, accuracy, and comprehensiveness.
Collapse
|
8
|
Blum JA, Gitler AD. Singling out motor neurons in the age of single-cell transcriptomics. Trends Genet 2022; 38:904-919. [PMID: 35487823 PMCID: PMC9378604 DOI: 10.1016/j.tig.2022.03.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/24/2022] [Accepted: 03/28/2022] [Indexed: 01/07/2023]
Abstract
Motor neurons are a remarkably powerful cell type in the central nervous system. They innervate and control the contraction of virtually every muscle in the body and their dysfunction underlies numerous neuromuscular diseases. Some motor neurons seem resistant to degeneration whereas others are vulnerable. The intrinsic heterogeneity of motor neurons in adult organisms has remained elusive. The development of high-throughput single-cell transcriptomics has changed the paradigm, empowering rapid isolation and profiling of motor neuron nuclei, revealing remarkable transcriptional diversity within the skeletal and autonomic nervous systems. Here, we discuss emerging technologies for defining motor neuron heterogeneity in the adult motor system as well as implications for disease and spinal cord injury. We establish a roadmap for future applications of emerging techniques - such as epigenetic profiling, spatial RNA sequencing, and single-cell somatic mutational profiling to adult motor neurons, which will revolutionize our understanding of the healthy and degenerating adult motor system.
Collapse
Affiliation(s)
- Jacob A Blum
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA; Neurosciences Interdepartmental Program, Stanford University School of Medicine, Stanford, CA, USA.
| | - Aaron D Gitler
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA; Chan Zuckerberg Biohub, San Francisco, CA 94158, USA.
| |
Collapse
|
9
|
Barbé L, Finkbeiner S. Genetic and Epigenetic Interplay Define Disease Onset and Severity in Repeat Diseases. Front Aging Neurosci 2022; 14:750629. [PMID: 35592702 PMCID: PMC9110800 DOI: 10.3389/fnagi.2022.750629] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 03/01/2022] [Indexed: 11/13/2022] Open
Abstract
Repeat diseases, such as fragile X syndrome, myotonic dystrophy, Friedreich ataxia, Huntington disease, spinocerebellar ataxias, and some forms of amyotrophic lateral sclerosis, are caused by repetitive DNA sequences that are expanded in affected individuals. The age at which an individual begins to experience symptoms, and the severity of disease, are partially determined by the size of the repeat. However, the epigenetic state of the area in and around the repeat also plays an important role in determining the age of disease onset and the rate of disease progression. Many repeat diseases share a common epigenetic pattern of increased methylation at CpG islands near the repeat region. CpG islands are CG-rich sequences that are tightly regulated by methylation and are often found at gene enhancer or insulator elements in the genome. Methylation of CpG islands can inhibit binding of the transcriptional regulator CTCF, resulting in a closed chromatin state and gene down regulation. The downregulation of these genes leads to some disease-specific symptoms. Additionally, a genetic and epigenetic interplay is suggested by an effect of methylation on repeat instability, a hallmark of large repeat expansions that leads to increasing disease severity in successive generations. In this review, we will discuss the common epigenetic patterns shared across repeat diseases, how the genetics and epigenetics interact, and how this could be involved in disease manifestation. We also discuss the currently available stem cell and mouse models, which frequently do not recapitulate epigenetic patterns observed in human disease, and propose alternative strategies to study the role of epigenetics in repeat diseases.
Collapse
Affiliation(s)
- Lise Barbé
- Center for Systems and Therapeutics, Gladstone Institutes, San Francisco, CA, United States
- Department of Neurology, University of California, San Francisco, San Francisco, CA, United States
- Department of Physiology, University of California, San Francisco, San Francisco, CA, United States
| | - Steve Finkbeiner
- Center for Systems and Therapeutics, Gladstone Institutes, San Francisco, CA, United States
- Department of Neurology, University of California, San Francisco, San Francisco, CA, United States
- Department of Physiology, University of California, San Francisco, San Francisco, CA, United States
- *Correspondence: Steve Finkbeiner,
| |
Collapse
|
10
|
Zhao X, McHugh C, Coffey SR, Jimenez DA, Adams E, Carroll JB, Usdin K. Stool is a sensitive and noninvasive source of DNA for monitoring expansion in repeat expansion disease mouse models. Dis Model Mech 2022; 15:275011. [PMID: 35403689 PMCID: PMC9118036 DOI: 10.1242/dmm.049453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 04/05/2022] [Indexed: 11/27/2022] Open
Abstract
Repeat expansion diseases are a large group of human genetic disorders caused by expansion of a specific short tandem repeat tract. Expansion in somatic cells affects age of onset and disease severity in some of these disorders. However, alleles in DNA derived from blood, a commonly used source of DNA, usually show much less expansion than disease-relevant cells in the central nervous system in both humans and mouse models. Here we examined the extent of expansion in different DNA sources from mouse models of the fragile X-related disorders, Huntington's disease, spinocerebellar ataxia type 1 and spinocerebellar ataxia type 2. We found that DNA isolated from stool is a much better indicator of somatic expansion than DNA from blood. As stool is a sensitive and noninvasive source of DNA, it can be useful for studies of factors affecting the risk of expansion, or the monitoring of treatments aimed at reducing expansion in preclinical trials, as it would allow expansions to be examined longitudinally in the same animal and allow significant changes in expansion to be observed much earlier than is possible with other DNA sources. Summary: Stool is a readily available, noninvasive and sensitive source of DNA for monitoring repeat expansion in mouse models of four different repeat expansion diseases.
Collapse
Affiliation(s)
- Xiaonan Zhao
- Section on Gene Structure and Disease, Laboratory of Cell and Molecular Biology, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Cassandra McHugh
- Behavioral Neuroscience Program, Psychology Department, Western Washington University, Bellingham, WA 98225, USA
| | - Sydney R Coffey
- Behavioral Neuroscience Program, Psychology Department, Western Washington University, Bellingham, WA 98225, USA
| | - Diego Antonio Jimenez
- Section on Gene Structure and Disease, Laboratory of Cell and Molecular Biology, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Elizabeth Adams
- Behavioral Neuroscience Program, Psychology Department, Western Washington University, Bellingham, WA 98225, USA
| | - Jeffrey B Carroll
- Behavioral Neuroscience Program, Psychology Department, Western Washington University, Bellingham, WA 98225, USA
| | - Karen Usdin
- Section on Gene Structure and Disease, Laboratory of Cell and Molecular Biology, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
11
|
Gall-Duncan T, Sato N, Yuen RKC, Pearson CE. Advancing genomic technologies and clinical awareness accelerates discovery of disease-associated tandem repeat sequences. Genome Res 2022; 32:1-27. [PMID: 34965938 PMCID: PMC8744678 DOI: 10.1101/gr.269530.120] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 11/29/2021] [Indexed: 11/25/2022]
Abstract
Expansions of gene-specific DNA tandem repeats (TRs), first described in 1991 as a disease-causing mutation in humans, are now known to cause >60 phenotypes, not just disease, and not only in humans. TRs are a common form of genetic variation with biological consequences, observed, so far, in humans, dogs, plants, oysters, and yeast. Repeat diseases show atypical clinical features, genetic anticipation, and multiple and partially penetrant phenotypes among family members. Discovery of disease-causing repeat expansion loci accelerated through technological advances in DNA sequencing and computational analyses. Between 2019 and 2021, 17 new disease-causing TR expansions were reported, totaling 63 TR loci (>69 diseases), with a likelihood of more discoveries, and in more organisms. Recent and historical lessons reveal that properly assessed clinical presentations, coupled with genetic and biological awareness, can guide discovery of disease-causing unstable TRs. We highlight critical but underrecognized aspects of TR mutations. Repeat motifs may not be present in current reference genomes but will be in forthcoming gapless long-read references. Repeat motif size can be a single nucleotide to kilobases/unit. At a given locus, repeat motif sequence purity can vary with consequence. Pathogenic repeats can be "insertions" within nonpathogenic TRs. Expansions, contractions, and somatic length variations of TRs can have clinical/biological consequences. TR instabilities occur in humans and other organisms. TRs can be epigenetically modified and/or chromosomal fragile sites. We discuss the expanding field of disease-associated TR instabilities, highlighting prospects, clinical and genetic clues, tools, and challenges for further discoveries of disease-causing TR instabilities and understanding their biological and pathological impacts-a vista that is about to expand.
Collapse
Affiliation(s)
- Terence Gall-Duncan
- Program of Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario M5G 1L7, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Nozomu Sato
- Program of Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario M5G 1L7, Canada
| | - Ryan K C Yuen
- Program of Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario M5G 1L7, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Christopher E Pearson
- Program of Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario M5G 1L7, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| |
Collapse
|
12
|
Abstract
At fifteen different genomic locations, the expansion of a CAG/CTG repeat causes a neurodegenerative or neuromuscular disease, the most common being Huntington's disease and myotonic dystrophy type 1. These disorders are characterized by germline and somatic instability of the causative CAG/CTG repeat mutations. Repeat lengthening, or expansion, in the germline leads to an earlier age of onset or more severe symptoms in the next generation. In somatic cells, repeat expansion is thought to precipitate the rate of disease. The mechanisms underlying repeat instability are not well understood. Here we review the mammalian model systems that have been used to study CAG/CTG repeat instability, and the modifiers identified in these systems. Mouse models have demonstrated prominent roles for proteins in the mismatch repair pathway as critical drivers of CAG/CTG instability, which is also suggested by recent genome-wide association studies in humans. We draw attention to a network of connections between modifiers identified across several systems that might indicate pathway crosstalk in the context of repeat instability, and which could provide hypotheses for further validation or discovery. Overall, the data indicate that repeat dynamics might be modulated by altering the levels of DNA metabolic proteins, their regulation, their interaction with chromatin, or by direct perturbation of the repeat tract. Applying novel methodologies and technologies to this exciting area of research will be needed to gain deeper mechanistic insight that can be harnessed for therapies aimed at preventing repeat expansion or promoting repeat contraction.
Collapse
Affiliation(s)
- Vanessa C. Wheeler
- Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA,Department of Neurology, Harvard Medical School, Boston, MA, USA,Correspondence to: Vanessa C. Wheeler, Center for Genomic Medicine, Massachusetts Hospital, Boston MAA 02115, USA. E-mail: . and Vincent Dion, UK Dementia Research Institute at Cardiff University, Hadyn Ellis Building, Maindy Road, CF24 4HQ Cardiff, UK. E-mail:
| | - Vincent Dion
- UK Dementia Research Institute at Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff, UK,Correspondence to: Vanessa C. Wheeler, Center for Genomic Medicine, Massachusetts Hospital, Boston MAA 02115, USA. E-mail: . and Vincent Dion, UK Dementia Research Institute at Cardiff University, Hadyn Ellis Building, Maindy Road, CF24 4HQ Cardiff, UK. E-mail:
| |
Collapse
|
13
|
Mouro Pinto R, Arning L, Giordano JV, Razghandi P, Andrew MA, Gillis T, Correia K, Mysore JS, Grote Urtubey DM, Parwez CR, von Hein SM, Clark HB, Nguyen HP, Förster E, Beller A, Jayadaev S, Keene CD, Bird TD, Lucente D, Vonsattel JP, Orr H, Saft C, Petrasch-Parwez E, Wheeler VC. Patterns of CAG repeat instability in the central nervous system and periphery in Huntington's disease and in spinocerebellar ataxia type 1. Hum Mol Genet 2021; 29:2551-2567. [PMID: 32761094 PMCID: PMC7471505 DOI: 10.1093/hmg/ddaa139] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 06/24/2020] [Accepted: 07/01/2020] [Indexed: 12/23/2022] Open
Abstract
The expanded HTT CAG repeat causing Huntington’s disease (HD) exhibits somatic expansion proposed to drive the rate of disease onset by eliciting a pathological process that ultimately claims vulnerable cells. To gain insight into somatic expansion in humans, we performed comprehensive quantitative analyses of CAG expansion in ~50 central nervous system (CNS) and peripheral postmortem tissues from seven adult-onset and one juvenile-onset HD individual. We also assessed ATXN1 CAG repeat expansion in brain regions of an individual with a neurologically and pathologically distinct repeat expansion disorder, spinocerebellar ataxia type 1 (SCA1). Our findings reveal similar profiles of tissue instability in all HD individuals, which, notably, were also apparent in the SCA1 individual. CAG expansion was observed in all tissues, but to different degrees, with multiple cortical regions and neostriatum tending to have the greatest instability in the CNS, and liver in the periphery. These patterns indicate different propensities for CAG expansion contributed by disease locus-independent trans-factors and demonstrate that expansion per se is not sufficient to cause cell type or disease-specific pathology. Rather, pathology may reflect distinct toxic processes triggered by different repeat lengths across cell types and diseases. We also find that the HTT CAG length-dependent expansion propensity of an individual is reflected in all tissues and in cerebrospinal fluid. Our data indicate that peripheral cells may be a useful source to measure CAG expansion in biomarker assays for therapeutic efforts, prompting efforts to dissect underlying mechanisms of expansion that may differ between the brain and periphery.
Collapse
Affiliation(s)
- Ricardo Mouro Pinto
- Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA.,Department of Neurology, Harvard Medical School, Boston, MA 02115, USA
| | - Larissa Arning
- Department of Human Genetics, Ruhr-University Bochum, Bochum 44780, Germany
| | - James V Giordano
- Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Pedram Razghandi
- Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Marissa A Andrew
- Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Tammy Gillis
- Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Kevin Correia
- Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Jayalakshmi S Mysore
- Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | | | - Constanze R Parwez
- Department of Neuroanatomy and Molecular Brain Research, Institute of Anatomy, Ruhr-University Bochum, Bochum 44780, Germany
| | - Sarah M von Hein
- Department of Neurology, Huntington Centre NRW, St. Josef-Hospital, Ruhr-University Bochum, Bochum 44791, Germany
| | - H Brent Clark
- Department of Laboratory Medicine and Pathology, Institute of Translational Neuroscience, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Huu Phuc Nguyen
- Department of Human Genetics, Ruhr-University Bochum, Bochum 44780, Germany
| | - Eckart Förster
- Department of Neuroanatomy and Molecular Brain Research, Institute of Anatomy, Ruhr-University Bochum, Bochum 44780, Germany
| | - Allison Beller
- Department of Pathology, University of Washington, Seattle, Washington 98195, USA
| | - Suman Jayadaev
- Department of Neurology, University of Washington, Seattle, Washington 98195, USA
| | - C Dirk Keene
- Department of Pathology, University of Washington, Seattle, Washington 98195, USA
| | - Thomas D Bird
- Department of Neurology, University of Washington, Seattle, Washington 98195, USA.,Department of Medicine, University of Washington, Seattle, Washington 98195, USA.,Geriatrics Research Education and Clinical Center, VA Puget Sound Medical Center, Seattle, WA 98108, USA
| | - Diane Lucente
- Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Jean-Paul Vonsattel
- Department of Pathology and Cell Biology, Columbia University Medical Center and the New York Presbyterian Hospital, New York, NY 10032, USA
| | - Harry Orr
- Department of Laboratory Medicine and Pathology, Institute of Translational Neuroscience, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Carsten Saft
- Department of Neurology, Huntington Centre NRW, St. Josef-Hospital, Ruhr-University Bochum, Bochum 44791, Germany
| | - Elisabeth Petrasch-Parwez
- Department of Neuroanatomy and Molecular Brain Research, Institute of Anatomy, Ruhr-University Bochum, Bochum 44780, Germany
| | - Vanessa C Wheeler
- Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA.,Department of Neurology, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
14
|
Xu J, Chong J, Wang D. Strand-specific effect of Rad26 and TFIIS in rescuing transcriptional arrest by CAG trinucleotide repeat slip-outs. Nucleic Acids Res 2021; 49:7618-7627. [PMID: 34197619 PMCID: PMC8287942 DOI: 10.1093/nar/gkab573] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/08/2021] [Accepted: 06/21/2021] [Indexed: 02/03/2023] Open
Abstract
Transcription induced CAG repeat instability is associated with fatal neurological disorders. Genetic approaches found transcription-coupled nucleotide excision repair (TC-NER) factor CSB protein and TFIIS play critical roles in modulating the repeat stability. Here, we took advantage of an in vitro reconstituted yeast transcription system to investigate the underlying mechanism of RNA polymerase II (Pol II) transcriptional pausing/stalling by CAG slip-out structures and the functions of TFIIS and Rad26, the yeast ortholog of CSB, in modulating transcriptional arrest. We identified length-dependent and strand-specific mechanisms that account for CAG slip-out induced transcriptional arrest. We found substantial R-loop formation for the distal transcriptional pausing induced by template strand (TS) slip-out, but not non-template strand (NTS) slip-out. In contrast, Pol II backtracking was observed at the proximal transcriptional pausing sites induced by both NTS and TS slip-out blockage. Strikingly, we revealed that Rad26 and TFIIS can stimulate bypass of NTS CAG slip-out, but not TS slip-out induced distal pausing. Our biochemical results provide new insights into understanding the mechanism of CAG slip-out induced transcriptional pausing and functions of transcription factors in modulating transcription-coupled CAG repeat instability, which may pave the way for developing potential strategies for the treatment of repeat sequence associated human diseases.
Collapse
Affiliation(s)
- Jun Xu
- Division of Pharmaceutical Sciences, Skaggs School of Pharmacy & Pharmaceutical Sciences; University of California, San Diego, La Jolla, CA 92093, USA
| | - Jenny Chong
- Division of Pharmaceutical Sciences, Skaggs School of Pharmacy & Pharmaceutical Sciences; University of California, San Diego, La Jolla, CA 92093, USA
| | - Dong Wang
- Division of Pharmaceutical Sciences, Skaggs School of Pharmacy & Pharmaceutical Sciences; University of California, San Diego, La Jolla, CA 92093, USA.,Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA.,Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
15
|
Donaldson J, Powell S, Rickards N, Holmans P, Jones L. What is the Pathogenic CAG Expansion Length in Huntington's Disease? J Huntingtons Dis 2021; 10:175-202. [PMID: 33579866 PMCID: PMC7990448 DOI: 10.3233/jhd-200445] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Huntington's disease (HD) (OMIM 143100) is caused by an expanded CAG repeat tract in the HTT gene. The inherited CAG length is known to expand further in somatic and germline cells in HD subjects. Age at onset of the disease is inversely correlated with the inherited CAG length, but is further modulated by a series of genetic modifiers which are most likely to act on the CAG repeat in HTT that permit it to further expand. Longer repeats are more prone to expansions, and this expansion is age dependent and tissue-specific. Given that the inherited tract expands through life and most subjects develop disease in mid-life, this implies that in cells that degenerate, the CAG length is likely to be longer than the inherited length. These findings suggest two thresholds- the inherited CAG length which permits further expansion, and the intracellular pathogenic threshold, above which cells become dysfunctional and die. This two-step mechanism has been previously proposed and modelled mathematically to give an intracellular pathogenic threshold at a tract length of 115 CAG (95% confidence intervals 70- 165 CAG). Empirically, the intracellular pathogenic threshold is difficult to determine. Clues from studies of people and models of HD, and from other diseases caused by expanded repeat tracts, place this threshold between 60- 100 CAG, most likely towards the upper part of that range. We assess this evidence and discuss how the intracellular pathogenic threshold in manifest disease might be better determined. Knowing the cellular pathogenic threshold would be informative for both understanding the mechanism in HD and deploying treatments.
Collapse
Affiliation(s)
- Jasmine Donaldson
- MRC Centre for Neuropsychiatric Genetics and Genomics, School of Medicine, Cardiff University, Cardiff, UK
| | - Sophie Powell
- MRC Centre for Neuropsychiatric Genetics and Genomics, School of Medicine, Cardiff University, Cardiff, UK
| | - Nadia Rickards
- MRC Centre for Neuropsychiatric Genetics and Genomics, School of Medicine, Cardiff University, Cardiff, UK
| | - Peter Holmans
- MRC Centre for Neuropsychiatric Genetics and Genomics, School of Medicine, Cardiff University, Cardiff, UK
| | - Lesley Jones
- MRC Centre for Neuropsychiatric Genetics and Genomics, School of Medicine, Cardiff University, Cardiff, UK
| |
Collapse
|
16
|
Monckton DG. The Contribution of Somatic Expansion of the CAG Repeat to Symptomatic Development in Huntington's Disease: A Historical Perspective. J Huntingtons Dis 2021; 10:7-33. [PMID: 33579863 PMCID: PMC7990401 DOI: 10.3233/jhd-200429] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The discovery in the early 1990s of the expansion of unstable simple sequence repeats as the causative mutation for a number of inherited human disorders, including Huntington's disease (HD), opened up a new era of human genetics and provided explanations for some old problems. In particular, an inverse association between the number of repeats inherited and age at onset, and unprecedented levels of germline instability, biased toward further expansion, provided an explanation for the wide symptomatic variability and anticipation observed in HD and many of these disorders. The repeats were also revealed to be somatically unstable in a process that is expansion-biased, age-dependent and tissue-specific, features that are now increasingly recognised as contributory to the age-dependence, progressive nature and tissue specificity of the symptoms of HD, and at least some related disorders. With much of the data deriving from affected individuals, and model systems, somatic expansions have been revealed to arise in a cell division-independent manner in critical target tissues via a mechanism involving key components of the DNA mismatch repair pathway. These insights have opened new approaches to thinking about how the disease could be treated by suppressing somatic expansion and revealed novel protein targets for intervention. Exciting times lie ahead in turning these insights into novel therapies for HD and related disorders.
Collapse
Affiliation(s)
- Darren G. Monckton
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| |
Collapse
|
17
|
Maiuri T, Hung CL, Suart C, Begeja N, Barba-Bazan C, Peng Y, Savic N, Wong T, Truant R. DNA Repair in Huntington's Disease and Spinocerebellar Ataxias: Somatic Instability and Alternative Hypotheses. J Huntingtons Dis 2021; 10:165-173. [PMID: 33579859 PMCID: PMC7990435 DOI: 10.3233/jhd-200414] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The use of genome wide association studies (GWAS) in Huntington's disease (HD) research, driven by unbiased human data analysis, has transformed the focus of new targets that could affect age at onset. While there is a significant depth of information on DNA damage repair, with many drugs and drug targets, most of this development has taken place in the context of cancer therapy. DNA damage repair in neurons does not rely on DNA replication correction mechanisms. However, there is a strong connection between DNA repair and neuronal metabolism, mediated by nucleotide salvaging and the poly ADP-ribose (PAR) response, and this connection has been implicated in other age-onset neurodegenerative diseases. Validation of leads including the mismatch repair protein MSH3, and interstrand cross-link repair protein FAN1, suggest the mechanism is driven by somatic CAG instability, which is supported by the protective effect of CAA substitutions in the CAG tract. We currently do not understand: how somatic instability is triggered; the state of DNA damage within expanding alleles in the brain; whether this damage induces mismatch repair and interstrand cross-link pathways; whether instability mediates toxicity, and how this relates to human ageing. We discuss DNA damage pathways uncovered by HD GWAS, known roles of other polyglutamine disease proteins in DNA damage repair, and a panel of hypotheses for pathogenic mechanisms.
Collapse
Affiliation(s)
- Tamara Maiuri
- McMaster University, Department of Biochemistry and Biomedical Sciences, Hamilton, Ontario, Canada
| | - Claudia L.K. Hung
- McMaster University, Department of Biochemistry and Biomedical Sciences, Hamilton, Ontario, Canada
| | - Celeste Suart
- McMaster University, Department of Biochemistry and Biomedical Sciences, Hamilton, Ontario, Canada
| | - Nola Begeja
- McMaster University, Department of Biochemistry and Biomedical Sciences, Hamilton, Ontario, Canada
| | - Carlos Barba-Bazan
- McMaster University, Department of Biochemistry and Biomedical Sciences, Hamilton, Ontario, Canada
| | - Yi Peng
- McMaster University, Department of Biochemistry and Biomedical Sciences, Hamilton, Ontario, Canada
| | - Natasha Savic
- McMaster University, Department of Biochemistry and Biomedical Sciences, Hamilton, Ontario, Canada
| | - Timothy Wong
- McMaster University, Department of Biochemistry and Biomedical Sciences, Hamilton, Ontario, Canada
| | - Ray Truant
- McMaster University, Department of Biochemistry and Biomedical Sciences, Hamilton, Ontario, Canada
| |
Collapse
|
18
|
Wright GEB, Black HF, Collins JA, Gall-Duncan T, Caron NS, Pearson CE, Hayden MR. Interrupting sequence variants and age of onset in Huntington's disease: clinical implications and emerging therapies. Lancet Neurol 2020; 19:930-939. [PMID: 33098802 DOI: 10.1016/s1474-4422(20)30343-4] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 08/23/2020] [Accepted: 08/25/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND Huntington's disease is a fatal neurodegenerative disorder that is caused by CAG-CAA repeat expansion, encoding polyglutamine, in the huntingtin (HTT) gene. Current age-of-clinical-onset prediction models for Huntington's disease are based on polyglutamine length and explain only a proportion of the variability in age of onset observed between patients. These length-based assays do not interrogate the underlying genetic variation, because known genetic variants in this region do not alter the protein coding sequence. Given that individuals with identical repeat lengths can present with Huntington's disease decades apart, the search for genetic modifiers of clinical age of onset has become an active area of research. RECENT DEVELOPMENTS Results from three independent genetic studies of Huntington's disease have shown that glutamine-encoding CAA variants that interrupt DNA CAG repeat tracts, but do not alter polyglutamine length or polyglutamine homogeneity, are associated with substantial differences in age of onset of Huntington's disease in carriers. A variant that results in the loss of CAA interruption is associated with early onset and is particularly relevant to individuals that carry alleles in the reduced penetrance range (ie, CAG 36-39). Approximately a third of clinically manifesting carriers of reduced penetrance alleles, defined by current diagnostics, carry this variant. Somatic repeat instability, modified by interrupted CAG tracts, is the most probable cause mediating this effect. This relationship is supported by genome-wide screens for disease modifiers, which have revealed the importance of DNA-repair genes in Huntington's disease (ie, FAN1, LIG1, MLH1, MSH3, PMS1, and PMS2). WHERE NEXT?: Focus needs to be placed on refining our understanding of the effect of the loss-of-interruption and duplication-of-interruption variants and other interrupting sequence variants on age of onset, and assessing their effect in disease-relevant brain tissues, as well as in diverse population groups, such as individuals from Africa and Asia. Diagnostic tests should be augmented or updated, since current tests do not assess the underlying DNA sequence variation, especially when assessing individuals that carry alleles in the reduced penetrance range. Future studies should explore somatic repeat instability and DNA repair as new therapeutic targets to modify age of onset in Huntington's disease and in other repeat-mediated disorders. Disease-modifying therapies could potentially be developed by therapeutically targeting these processes. Promising approaches include therapeutically targeting the expanded repeat or directly perturbing key DNA-repair genes (eg, with antisense oligonucleotides or small molecules). Targeting the CAG repeat directly with naphthyridine-azaquinolone, a compound that induces contractions, and altering the expression of MSH3, represent two viable therapeutic strategies. However, as a first step, the capability of such novel therapeutic approaches to delay clinical onset in animal models should be assessed.
Collapse
Affiliation(s)
- Galen E B Wright
- Centre for Molecular Medicine and Therapeutics, Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada; BC Children's Hospital Research Institute, Vancouver, BC, Canada; Neuroscience Research Program, Kleysen Institute for Advanced Medicine, Department of Pharmacology and Therapeutics, University of Manitoba, Winnipeg, MB, Canada
| | - Hailey Findlay Black
- Centre for Molecular Medicine and Therapeutics, Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada; BC Children's Hospital Research Institute, Vancouver, BC, Canada
| | - Jennifer A Collins
- Centre for Molecular Medicine and Therapeutics, Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada; BC Children's Hospital Research Institute, Vancouver, BC, Canada
| | - Terence Gall-Duncan
- Program of Genetics and Genome Biology, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON, Canada; Program of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Nicholas S Caron
- Centre for Molecular Medicine and Therapeutics, Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada; BC Children's Hospital Research Institute, Vancouver, BC, Canada
| | - Christopher E Pearson
- Program of Genetics and Genome Biology, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON, Canada; Program of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Michael R Hayden
- Centre for Molecular Medicine and Therapeutics, Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada; BC Children's Hospital Research Institute, Vancouver, BC, Canada.
| |
Collapse
|
19
|
Miller JN, van der Plas E, Hamilton M, Koscik TR, Gutmann L, Cumming SA, Monckton DG, Nopoulos PC. Variant repeats within the DMPK CTG expansion protect function in myotonic dystrophy type 1. NEUROLOGY-GENETICS 2020; 6:e504. [PMID: 32851192 PMCID: PMC7428360 DOI: 10.1212/nxg.0000000000000504] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 07/09/2020] [Indexed: 01/10/2023]
Abstract
Objective We tested the hypothesis that variant repeat interruptions (RIs) within the DMPK CTG repeat tract lead to milder symptoms compared with pure repeats (PRs) in myotonic dystrophy type 1 (DM1). Methods We evaluated motor, neurocognitive, and behavioral outcomes in a group of 6 participants with DM1 with RI compared with a case-matched sample of 12 participants with DM1 with PR and a case-matched sample of 12 unaffected healthy comparison participants (UA). Results In every measure, the RI participants were intermediate between UA and PR participants. For muscle strength, the RI group was significantly less impaired than the PR group. For measures of Full Scale IQ, depression, and sleepiness, all 3 groups were significantly different from each other with UA > RI > PR in order of impairment. The RI group was different from unaffected, but not significantly different from PR (UA > RI = PR) in apathy and working memory. Finally, in finger tapping and processing speed, RI did not differ from UA comparisons, but PR had significantly lower scores than the UA comparisons (UA = RI > PR). Conclusions Our results support the notion that patients affected by DM1 with RI demonstrate a milder phenotype with the same pattern of deficits as those with PR indicating a similar disease process.
Collapse
Affiliation(s)
- Jacob N Miller
- Department of Psychiatry (J.N.M., E.P., T.R.K., P.C.N.), University of Iowa Hospitals and Clinics; West of Scotland Clinical Genetics Service (M.H.), Queen Elizabeth University Hospital; Institute of Molecular, Cell and Systems Biology (M.H., S.A.C., D.G.M.), College of Medical, Veterinary and Life Sciences, University of Glasgow, United Kingdom; and Department of Neurology (L.G.), University of Iowa Hospitals and Clinics
| | - Ellen van der Plas
- Department of Psychiatry (J.N.M., E.P., T.R.K., P.C.N.), University of Iowa Hospitals and Clinics; West of Scotland Clinical Genetics Service (M.H.), Queen Elizabeth University Hospital; Institute of Molecular, Cell and Systems Biology (M.H., S.A.C., D.G.M.), College of Medical, Veterinary and Life Sciences, University of Glasgow, United Kingdom; and Department of Neurology (L.G.), University of Iowa Hospitals and Clinics
| | - Mark Hamilton
- Department of Psychiatry (J.N.M., E.P., T.R.K., P.C.N.), University of Iowa Hospitals and Clinics; West of Scotland Clinical Genetics Service (M.H.), Queen Elizabeth University Hospital; Institute of Molecular, Cell and Systems Biology (M.H., S.A.C., D.G.M.), College of Medical, Veterinary and Life Sciences, University of Glasgow, United Kingdom; and Department of Neurology (L.G.), University of Iowa Hospitals and Clinics
| | - Timothy R Koscik
- Department of Psychiatry (J.N.M., E.P., T.R.K., P.C.N.), University of Iowa Hospitals and Clinics; West of Scotland Clinical Genetics Service (M.H.), Queen Elizabeth University Hospital; Institute of Molecular, Cell and Systems Biology (M.H., S.A.C., D.G.M.), College of Medical, Veterinary and Life Sciences, University of Glasgow, United Kingdom; and Department of Neurology (L.G.), University of Iowa Hospitals and Clinics
| | - Laurie Gutmann
- Department of Psychiatry (J.N.M., E.P., T.R.K., P.C.N.), University of Iowa Hospitals and Clinics; West of Scotland Clinical Genetics Service (M.H.), Queen Elizabeth University Hospital; Institute of Molecular, Cell and Systems Biology (M.H., S.A.C., D.G.M.), College of Medical, Veterinary and Life Sciences, University of Glasgow, United Kingdom; and Department of Neurology (L.G.), University of Iowa Hospitals and Clinics
| | - Sarah A Cumming
- Department of Psychiatry (J.N.M., E.P., T.R.K., P.C.N.), University of Iowa Hospitals and Clinics; West of Scotland Clinical Genetics Service (M.H.), Queen Elizabeth University Hospital; Institute of Molecular, Cell and Systems Biology (M.H., S.A.C., D.G.M.), College of Medical, Veterinary and Life Sciences, University of Glasgow, United Kingdom; and Department of Neurology (L.G.), University of Iowa Hospitals and Clinics
| | - Darren G Monckton
- Department of Psychiatry (J.N.M., E.P., T.R.K., P.C.N.), University of Iowa Hospitals and Clinics; West of Scotland Clinical Genetics Service (M.H.), Queen Elizabeth University Hospital; Institute of Molecular, Cell and Systems Biology (M.H., S.A.C., D.G.M.), College of Medical, Veterinary and Life Sciences, University of Glasgow, United Kingdom; and Department of Neurology (L.G.), University of Iowa Hospitals and Clinics
| | - Peggy C Nopoulos
- Department of Psychiatry (J.N.M., E.P., T.R.K., P.C.N.), University of Iowa Hospitals and Clinics; West of Scotland Clinical Genetics Service (M.H.), Queen Elizabeth University Hospital; Institute of Molecular, Cell and Systems Biology (M.H., S.A.C., D.G.M.), College of Medical, Veterinary and Life Sciences, University of Glasgow, United Kingdom; and Department of Neurology (L.G.), University of Iowa Hospitals and Clinics
| |
Collapse
|
20
|
Proukakis C. Somatic mutations in neurodegeneration: An update. Neurobiol Dis 2020; 144:105021. [PMID: 32712267 DOI: 10.1016/j.nbd.2020.105021] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 06/12/2020] [Accepted: 07/13/2020] [Indexed: 12/20/2022] Open
Abstract
Mosaicism, the presence of genomic differences between cells due to post-zygotic somatic mutations, is widespread in the human body, including within the brain. A role for this in neurodegenerative diseases has long been hypothesised, and technical developments are now allowing the question to be addressed in detail. The rapidly accumulating evidence is discussed in this review, with a focus on recent developments. Somatic mutations of numerous types may occur, including single nucleotide variants (SNVs), copy number variants (CNVs), and retrotransposon insertions. They could act as initiators or risk factors, especially if they arise in development, although they could also result from the disease process, potentially contributing to progression. In common sporadic neurodegenerative disorders, relevant mutations have been reported in synucleinopathies, comprising somatic gains of SNCA in Parkinson's disease and multiple system atrophy, and in Alzheimer's disease, where a novel recombination mechanism leading to somatic variants of APP, as well as an excess of somatic SNVs affecting tau phosphorylation, have been reported. In Mendelian repeat expansion disorders, mosaicism due to somatic instability, first detected 25 years ago, has come to the forefront. Brain somatic SNVs occur in DNA repair disorders, and there is evidence for a role of several ALS genes in DNA repair. While numerous challenges, and need for further validation, remain, this new, or perhaps rediscovered, area of research has the potential to transform our understanding of neurodegeneration.
Collapse
Affiliation(s)
- Christos Proukakis
- Department of Clinical and Movement Neurosciences, Queen Square Institute of Neurology, University College London, London, UK.
| |
Collapse
|
21
|
Xu P, Pan F, Roland C, Sagui C, Weninger K. Dynamics of strand slippage in DNA hairpins formed by CAG repeats: roles of sequence parity and trinucleotide interrupts. Nucleic Acids Res 2020; 48:2232-2245. [PMID: 31974547 PMCID: PMC7049705 DOI: 10.1093/nar/gkaa036] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 12/11/2019] [Accepted: 01/15/2020] [Indexed: 01/08/2023] Open
Abstract
DNA trinucleotide repeats (TRs) can exhibit dynamic expansions by integer numbers of trinucleotides that lead to neurodegenerative disorders. Strand slipped hairpins during DNA replication, repair and/or recombination may contribute to TR expansion. Here, we combine single-molecule FRET experiments and molecular dynamics studies to elucidate slipping dynamics and conformations of (CAG)n TR hairpins. We directly resolve slipping by predominantly two CAG units. The slipping kinetics depends on the even/odd repeat parity. The populated states suggest greater stability for 5′-AGCA-3′ tetraloops, compared with alternative 5′-CAG-3′ triloops. To accommodate the tetraloop, even(odd)-numbered repeats have an even(odd) number of hanging bases in the hairpin stem. In particular, a paired-end tetraloop (no hanging TR) is stable in (CAG)n = even, but such situation cannot occur in (CAG)n = odd, where the hairpin is “frustrated’’ and slips back and forth between states with one TR hanging at the 5′ or 3′ end. Trinucleotide interrupts in the repeating CAG pattern associated with altered disease phenotypes select for specific conformers with favorable loop sequences. Molecular dynamics provide atomic-level insight into the loop configurations. Reducing strand slipping in TR hairpins by sequence interruptions at the loop suggests disease-associated variations impact expansion mechanisms at the level of slipped hairpins.
Collapse
Affiliation(s)
- Pengning Xu
- Department of Physics, North Carolina State University, Raleigh, NC 27695-8202, USA
| | - Feng Pan
- Department of Physics, North Carolina State University, Raleigh, NC 27695-8202, USA
| | - Christopher Roland
- Department of Physics, North Carolina State University, Raleigh, NC 27695-8202, USA
| | - Celeste Sagui
- Department of Physics, North Carolina State University, Raleigh, NC 27695-8202, USA
| | - Keith Weninger
- Department of Physics, North Carolina State University, Raleigh, NC 27695-8202, USA
| |
Collapse
|
22
|
Martins Junior CR, Martinez ARM, Vasconcelos IF, de Rezende TJR, Casseb RF, Pedroso JL, Barsottini OGP, Lopes-Cendes Í, França MC. Structural signature in SCA1: clinical correlates, determinants and natural history. J Neurol 2018; 265:2949-2959. [PMID: 30324307 DOI: 10.1007/s00415-018-9087-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Revised: 09/29/2018] [Accepted: 10/08/2018] [Indexed: 12/20/2022]
Abstract
Spinocerebellar ataxia type 1 is an autosomal dominant disorder caused by a CAG repeat expansion in ATXN1, characterized by progressive cerebellar and extracerebellar symptoms. MRI-based studies in SCA1 focused in the cerebellum and connections, but there are few data about supratentorial/spinal damage and its clinical relevance. We have thus designed this multimodal MRI study to uncover the structural signature of SCA1. To accomplish that, a group of 33 patients and 33 age-and gender-matched healthy controls underwent MRI on a 3T scanner. All patients underwent a comprehensive neurological and neuropsychological evaluation. We correlated the structural findings with the clinical features of the disease. In addition, we evaluated the disease progression looking at differences in SCA1 subgroups defined by disease duration. Ataxia and pyramidal signs were the main symptoms. Neuropsychological evaluation disclosed cognitive impairment in 53% with predominant frontotemporal dysfunction. Gray matter analysis unfolded cortical thinning of primary and associative motor areas with more restricted impairment of deep structures. Deep gray matter atrophy was associated with motor handicap and poor cognition skills. White matter integrity loss was diffuse in the brainstem but restricted in supratentorial structures. Cerebellar cortical thinning was found in multiple areas and correlated not only with motor disability but also with verbal fluency. Spinal cord atrophy correlated with motor handicap. Comparison of MRI findings in disease duration-defined subgroups identified a peculiar pattern of progressive degeneration.
Collapse
Affiliation(s)
- Carlos Roberto Martins Junior
- Department of Neurology, University of Campinas (UNICAMP), R. Tessália Vieira de Camargo, 126, Campinas, 13083-887, Brazil
| | - Alberto Rolim Muro Martinez
- Department of Neurology, University of Campinas (UNICAMP), R. Tessália Vieira de Camargo, 126, Campinas, 13083-887, Brazil
| | - Ingrid Faber Vasconcelos
- Department of Neurology, University of Campinas (UNICAMP), R. Tessália Vieira de Camargo, 126, Campinas, 13083-887, Brazil
| | | | - Raphael Fernandes Casseb
- Department of Neurology, University of Campinas (UNICAMP), R. Tessália Vieira de Camargo, 126, Campinas, 13083-887, Brazil
| | - Jose Luiz Pedroso
- Department of Neurology, Federal University of São Paulo (UNIFESP), São Paulo, Brazil
| | | | - Íscia Lopes-Cendes
- Department of Medical Genetics, University of Campinas (UNICAMP), Campinas, Brazil
| | - Marcondes Cavalcante França
- Department of Neurology, University of Campinas (UNICAMP), R. Tessália Vieira de Camargo, 126, Campinas, 13083-887, Brazil.
| |
Collapse
|
23
|
Mechanisms of genetic instability caused by (CGG) n repeats in an experimental mammalian system. Nat Struct Mol Biol 2018; 25:669-676. [PMID: 30061600 PMCID: PMC6082162 DOI: 10.1038/s41594-018-0094-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 06/19/2018] [Indexed: 12/17/2022]
Abstract
We describe a new experimental system to study genome instability caused by fragile X (CGG)n repeats in mammalian cells. It is based on a selectable cassette carrying the HyTK gene under the control of the FMR1 promoter with (CGG)n repeats in its 5′-UTR, which was integrated into the unique RL5 site in murine erythroid leukemia cells. Carrier-size (CGG)n repeats dramatically elevate the frequency of the reporter’s inactivation making cells ganciclovir-resistant. These resistant clones have a unique mutational signature: a change in the repeat length concurrent with mutagenesis in the reporter gene. Inactivation of genes implicated in break-induced replication including POLD3, POLD4, RAD52, RAD51 and SMARCAL1, reduced the frequency of ganciclovir-resistant clones to the baseline level that was observed in the absence of (CGG)n repeats. We propose that replication fork collapse at carrier-size (CGG)n repeats can trigger break-induced replication, which result in simultaneous repeat length changes and mutagenesis at a distance.
Collapse
|
24
|
Abstract
Diseases such as Huntington's disease and certain spinocerebellar ataxias are caused by the expansion of genomic cytosine-adenine-guanine (CAG) trinucleotide repeats beyond a specific threshold. These diseases are all characterised by neurological symptoms and central neurodegeneration, but our understanding of how expanded repeats drive neuronal loss is incomplete. Recent human genetic evidence implicates DNA repair pathways, especially mismatch repair, in modifying the onset and progression of CAG repeat diseases. Repair pathways might operate directly on repeat sequences by licensing or inhibiting repeat expansion in neurons. Alternatively, or in addition, because many of the genes containing pathogenic CAG repeats encode proteins that themselves have roles in the DNA damage response, it is possible that repeat expansions impair specific DNA repair pathways. DNA damage could then accrue in neurons, leading to further expansion at repeat loci, thus setting up a vicious cycle of pathology. In this review, we consider DNA damage and repair pathways in postmitotic neurons in the context of disease-causing CAG repeats. Investigating and understanding these pathways, which are clearly relevant in promoting and ameliorating disease in humans, is a research priority, as they are known to modify disease and therefore constitute prevalidated drug targets.
Collapse
Affiliation(s)
- Thomas H Massey
- Institute of Psychological Medicine and Clinical Neurosciences, MRC Centre for Neuropsychiatric Genetics and Genomics, Hadyn Ellis Building, Cardiff University, Cardiff, CF24 4HQ, UK
| | - Lesley Jones
- Institute of Psychological Medicine and Clinical Neurosciences, MRC Centre for Neuropsychiatric Genetics and Genomics, Hadyn Ellis Building, Cardiff University, Cardiff, CF24 4HQ, UK
| |
Collapse
|
25
|
Abstract
Spinocerebellar ataxia type 1 (SCA1) is an autosomal dominant disorder caused by a CAG repeat expansion, characterized by progressive cerebellar ataxia and pyramidal signs. Non-motor and extracerebellar symptoms may occur. MRI-based studies in SCA1 focused in the cerebellum and connections, but there are no data about cord damage in the disease and its clinical relevance. To evaluate in vivo spinal cord damage in SCA1, a group of 31 patients with SCA1 and 31 age- and gender-matched healthy controls underwent MRI on a 3T scanner. We used T1-weighted 3D images to estimate the cervical spinal cord area (CA) and eccentricity (CE) at three C2/C3 levels based on a semi-automatic image segmentation protocol. The scale for assessment and rating of ataxia (SARA) was used to quantify disease severity. The groups were significantly different regarding CA (47.26 ± 7.4 vs. 68.8 ± 5.7 mm2, p < 0.001) and CE values (0.803 ± 0.044 vs. 0.774 ± 0.043, p < 0.05). Furthermore, in the patient group, CA presented significant correlation with SARA scores (R = -0.633, p < 0.001) and CAGn expansion (R = -0.658, p < 0.001). CE was not associated with SARA scores (p = 0.431). In the multiple variable regression, CA was strongly associated with disease duration (coefficient -0.360, p < 0.05) and CAGn expansion (coefficient -1.124, p < 0.001). SCA1 is characterized by cervical cord atrophy and anteroposterior flattening. Morphometric analyses of the spinal cord MRI might be a useful biomarker in the disease.
Collapse
|
26
|
Darling AL, Uversky VN. Intrinsic Disorder in Proteins with Pathogenic Repeat Expansions. Molecules 2017; 22:2027. [PMID: 29186753 PMCID: PMC6149999 DOI: 10.3390/molecules22122027] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 11/18/2017] [Accepted: 11/21/2017] [Indexed: 11/18/2022] Open
Abstract
Intrinsically disordered proteins and proteins with intrinsically disordered regions have been shown to be highly prevalent in disease. Furthermore, disease-causing expansions of the regions containing tandem amino acid repeats often push repetitive proteins towards formation of irreversible aggregates. In fact, in disease-relevant proteins, the increased repeat length often positively correlates with the increased aggregation efficiency and the increased disease severity and penetrance, being negatively correlated with the age of disease onset. The major categories of repeat extensions involved in disease include poly-glutamine and poly-alanine homorepeats, which are often times located in the intrinsically disordered regions, as well as repeats in non-coding regions of genes typically encoding proteins with ordered structures. Repeats in such non-coding regions of genes can be expressed at the mRNA level. Although they can affect the expression levels of encoded proteins, they are not translated as parts of an affected protein and have no effect on its structure. However, in some cases, the repetitive mRNAs can be translated in a non-canonical manner, generating highly repetitive peptides of different length and amino acid composition. The repeat extension-caused aggregation of a repetitive protein may represent a pivotal step for its transformation into a proteotoxic entity that can lead to pathology. The goals of this article are to systematically analyze molecular mechanisms of the proteinopathies caused by the poly-glutamine and poly-alanine homorepeat expansion, as well as by the polypeptides generated as a result of the microsatellite expansions in non-coding gene regions and to examine the related proteins. We also present results of the analysis of the prevalence and functional roles of intrinsic disorder in proteins associated with pathological repeat expansions.
Collapse
Affiliation(s)
- April L. Darling
- Department of Molecular Medicine, College of Medicine, Byrd Alzheimer’s Institute, University of South Florida, Tampa, FL 33612, USA
- James A. Haley Veteran’s Hospital, Tampa, FL 33612, USA
| | - Vladimir N. Uversky
- Department of Molecular Medicine, College of Medicine, Byrd Alzheimer’s Institute, University of South Florida, Tampa, FL 33612, USA
- Institute for Biological Instrumentation of the Russian Academy of Sciences, Pushchino, Moscow Region 142290, Russia
| |
Collapse
|
27
|
Gomes-Pereira M, Monckton DG. Ethidium Bromide Modifies The Agarose Electrophoretic Mobility of CAG•CTG Alternative DNA Structures Generated by PCR. Front Cell Neurosci 2017; 11:153. [PMID: 28611596 PMCID: PMC5447772 DOI: 10.3389/fncel.2017.00153] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2017] [Accepted: 05/10/2017] [Indexed: 12/21/2022] Open
Abstract
The abnormal expansion of unstable simple sequence DNA repeats can cause human disease through a variety of mechanisms, including gene loss-of-function, toxic gain-of-function of the encoded protein and toxicity of the repeat-containing RNA transcript. Disease-associated unstable DNA repeats display unusual biophysical properties, including the ability to adopt non-B-DNA structures. CAG•CTG trinucleotide sequences, in particular, have been most extensively studied and they can fold into slipped-stranded DNA structures, which have been proposed as mutation intermediates in repeat size expansion. Here, we describe a simple assay to detect unusual DNA structures generated by PCR amplification, based on their slow electrophoretic migration in agarose and on the effects of ethidium bromide on the mobility of structural isoforms through agarose gels. Notably, the inclusion of ethidium bromide in agarose gels and running buffer eliminates the detection of additional slow-migrating DNA species, which are detected in the absence of the intercalating dye and may be incorrectly classified as mutant alleles with larger than actual expansion sizes. Denaturing and re-annealing experiments confirmed the slipped-stranded nature of the additional DNA species observed in agarose gels. Thus, we have shown that genuine non-B-DNA conformations are generated during standard PCR amplification of CAG•CTG sequences and detected by agarose gel electrophoresis. In contrast, ethidium bromide does not change the multi-band electrophoretic profiles of repeat-containing PCR products through native polyacrylamide gels. These data have implications for the analysis of trinucleotide repeat DNA and possibly other types of unstable repetitive DNA sequences by standard agarose gel electrophoresis in diagnostic and research protocols. We suggest that proper sizing of CAG•CTG PCR products in agarose gels should be performed in the presence of ethidium bromide.
Collapse
Affiliation(s)
- Mário Gomes-Pereira
- Laboratory CTGDM, INSERM UMR1163Paris, France.,Institut Imagine, Université Paris Descartes-Sorbonne Paris CitéParis, France
| | - Darren G Monckton
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of GlasgowGlasgow, United Kingdom
| |
Collapse
|
28
|
Landrian I, McFarland KN, Liu J, Mulligan CJ, Rasmussen A, Ashizawa T. Inheritance patterns of ATCCT repeat interruptions in spinocerebellar ataxia type 10 (SCA10) expansions. PLoS One 2017; 12:e0175958. [PMID: 28423040 PMCID: PMC5397023 DOI: 10.1371/journal.pone.0175958] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 04/03/2017] [Indexed: 11/18/2022] Open
Abstract
Spinocerebellar ataxia type 10 (SCA10), an autosomal dominant cerebellar ataxia disorder, is caused by a non-coding ATTCT microsatellite repeat expansion in the ataxin 10 gene. In a subset of SCA10 families, the 5’-end of the repeat expansion contains a complex sequence of penta- and heptanucleotide interruption motifs which is followed by a pure tract of tandem ATCCT repeats of unknown length at its 3’-end. Intriguingly, expansions that carry these interruption motifs correlate with an epileptic seizure phenotype and are unstable despite the theory that interruptions are expected to stabilize expanded repeats. To examine the apparent contradiction of unstable, interruption-positive SCA10 expansion alleles and to determine whether the instability originates outside of the interrupted region, we sequenced approximately 1 kb of the 5’-end of SCA10 expansions using the ATCCT-PCR product in individuals across multiple generations from four SCA10 families. We found that the greatest instability within this region occurred in paternal transmissions of the allele in stretches of pure ATTCT motifs while the intervening interrupted sequences were stable. Overall, the ATCCT interruption changes by only one to three repeat units and therefore cannot account for the instability across the length of the disease allele. We conclude that the AT-rich interruptions locally stabilize the SCA10 expansion at the 5’-end but do not completely abolish instability across the entire span of the expansion. In addition, analysis of the interruption alleles across these families support a parsimonious single origin of the mutation with a shared distant ancestor.
Collapse
Affiliation(s)
- Ivette Landrian
- Department of Neurology, College of Medicine, and the McKnight Brain Institute, University of Florida, Gainesville, Florida, United States of America
| | - Karen N. McFarland
- Department of Neurology, College of Medicine, and the McKnight Brain Institute, University of Florida, Gainesville, Florida, United States of America
- Center for Translational Research in Neurodegenerative Disease, The University of Florida, Gainesville, Florida, United States of America
- * E-mail:
| | - Jilin Liu
- Department of Neurology, College of Medicine, and the McKnight Brain Institute, University of Florida, Gainesville, Florida, United States of America
| | - Connie J. Mulligan
- Department of Anthropology, College of Liberal Arts and Sciences, University of Florida, Gainesville, Florida, United States of America
- Genetics Institute, University of Florida, Gainesville, Florida, United States of America
| | - Astrid Rasmussen
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, United States of America
| | - Tetsuo Ashizawa
- Department of Neurology, College of Medicine, and the McKnight Brain Institute, University of Florida, Gainesville, Florida, United States of America
| |
Collapse
|
29
|
Kraus-Perrotta C, Lagalwar S. Expansion, mosaicism and interruption: mechanisms of the CAG repeat mutation in spinocerebellar ataxia type 1. CEREBELLUM & ATAXIAS 2016; 3:20. [PMID: 27895927 PMCID: PMC5118900 DOI: 10.1186/s40673-016-0058-y] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 11/03/2016] [Indexed: 11/12/2022]
Abstract
Spinocerebellar ataxia type 1 (SCA1) is an autosomal dominant neurodegenerative disorder that primarily affects the cerebellum and brainstem. The genetic mutation is an expansion of CAG trinucleotide repeats within the coding region of the ataxin-1 gene, characterizing SCA1 as a polyglutamine expansion disease like Huntington’s. As with most polyglutamine expansion diseases, SCA1 follows the rules of genetic anticipation: the larger the expansion, the earlier and more rapid the symptoms. Unlike the majority of polyglutamine expansion diseases, the presence of histidine interruptions within the polyglutamine tract of ataxin-1 protein can prevent or mitigate disease. The present review aims to synthesize three decades of research on the ataxin-1 polyglutamine expansion mutation that causes SCA1. Data from genetic population studies and case studies is gathered along with data from manipulation studies in animal models. Specifically, we examine the molecular mechanisms that cause tract expansions and contractions, the molecular pathways that confer instability of tract length in gametic and somatic cells resulting in gametic and somatic mosaicism, the influence of maternal or paternal factors in inheritance of the expanded allele, and the effects of CAT/histidine interruptions to the ataxin-1 allele and protein product. Our review of existing data supports the following conclusions. First, polyCAG expansion of gametic alleles occur due to the failure of gap repair mechanisms for single or double strand breaks during the transition from an immature haploid spermatid to a mature haploid sperm cell. Equivalent failures were not detected in female gametic cells. Second, polyCAG expansion of somatic alleles occur due to hairpins formed on Okazaki fragments and slipped strand structures due to failures in mismatch repair and transcription-coupled nucleotide excision repair mechanisms. Third, CAT trinucleotide interruptions, which code for histidines in the translated protein, attenuate the formation of slipped strand structures which may protect the allele from the occurrence of large expansions. Many of the mechanisms of expansion identified in this review differ from those noted in Huntington’s disease indicating that gene -or sequence-specific factors may affect the behavior of the polyCAG/glutamine tract. Therefore, synthesis and review of research from the SCA1 field is valuable for future clinical and diagnostic work in the treatment and prevention of SCA1.
Collapse
Affiliation(s)
- Cara Kraus-Perrotta
- Department of Biology, Skidmore College, 815 North Broadway, Saratoga Springs, NY 12866 USA
| | - Sarita Lagalwar
- Neuroscience Program, Skidmore College, 815 North Broadway, Saratoga Springs, NY 12866 USA
| |
Collapse
|
30
|
Autophagy Promoted the Degradation of Mutant ATXN3 in Neurally Differentiated Spinocerebellar Ataxia-3 Human Induced Pluripotent Stem Cells. BIOMED RESEARCH INTERNATIONAL 2016; 2016:6701793. [PMID: 27847820 PMCID: PMC5099487 DOI: 10.1155/2016/6701793] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 08/30/2016] [Accepted: 09/18/2016] [Indexed: 11/18/2022]
Abstract
Spinocerebellar ataxia-3 (SCA3) is the most common dominant inherited ataxia worldwide and is caused by an unstable CAG trinucleotide expansion mutation within the ATXN3 gene, resulting in an expanded polyglutamine tract within the ATXN3 protein. Many in vitro studies have examined the role of autophagy in neurodegenerative disorders, including SCA3, using transfection models with expression of pathogenic proteins in normal cells. In the current study, we aimed to develop an improved model for studying SCA3 in vitro using patient-derived cells. The patient-derived iPS cells presented a phenotype similar to that of human embryonic stem cells and could be differentiated into neurons. Additionally, these cells expressed abnormal ATXN3 protein without changes in the CAG repeat length during culture for at least 35 passages as iPS cells, up to 3 passages as neural stem cells, and after 4 weeks of neural differentiation. Furthermore, we demonstrated that neural differentiation in these iPS cells was accompanied by autophagy and that rapamycin promoted autophagy through degradation of mutant ATXN3 proteins in neurally differentiated spinocerebellar ataxia-3 human induced pluripotent stem cells (p < 0.05). In conclusion, patient-derived iPS cells are a good model for studying the mechanisms of SCA3 and may provide a tool for drug discovery in vitro.
Collapse
|
31
|
Kohiyama MF, Lagalwar S. Stabilization and Degradation Mechanisms of Cytoplasmic Ataxin-1. J Exp Neurosci 2016; 9:123-9. [PMID: 27168726 PMCID: PMC4859447 DOI: 10.4137/jen.s25469] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Revised: 04/11/2016] [Accepted: 04/13/2016] [Indexed: 12/24/2022] Open
Abstract
Aggregation-prone proteins in neurodegenerative disease disrupt cellular protein stabilization and degradation pathways. The neurodegenerative disease spinocerebellar ataxia type 1 (SCA1) is caused by a coding polyglutamine expansion in the Ataxin-1 gene (ATXN1), which gives rise to the aggregation-prone mutant form of ATXN1 protein. Cerebellar Purkinje neurons, preferentially vulnerable in SCA1, produce ATXN1 protein in both cytoplasmic and nuclear compartments. Cytoplasmic stabilization of ATXN1 by phosphorylation and 14-3-3-mediated mechanisms ultimately drive translocation of the protein to the nucleus where aggregation may occur. However, experimental inhibition of phosphorylation and 14-3-3 binding results in rapid degradation of ATXN1, thus preventing nuclear translocation and cellular toxicity. The exact mechanism of cytoplasmic ATXN1 degradation is currently unknown; further investigation of degradation may provide future therapeutic targets. This review examines the present understanding of cytoplasmic ATXN1 stabilization and potential degradation mechanisms during normal and pathogenic states.
Collapse
Affiliation(s)
- Mayumi F Kohiyama
- B.A., Skidmore College Neuroscience Program, Saratoga Springs, NY, USA
| | - Sarita Lagalwar
- Assistant Professor of Neuroscience, Williamson Chair in Neuroscience, Skidmore College Neuroscience Program, Saratoga Springs, NY, USA
| |
Collapse
|
32
|
Santoro M, Fontana L, Masciullo M, Bianchi MLE, Rossi S, Leoncini E, Novelli G, Botta A, Silvestri G. Expansion size and presence of CCG/CTC/CGG sequence interruptions in the expanded CTG array are independently associated to hypermethylation at the DMPK locus in myotonic dystrophy type 1 (DM1). Biochim Biophys Acta Mol Basis Dis 2015; 1852:2645-52. [PMID: 26391753 DOI: 10.1016/j.bbadis.2015.09.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 09/09/2015] [Accepted: 09/16/2015] [Indexed: 01/01/2023]
Affiliation(s)
- Massimo Santoro
- Fondazione Don Carlo Gnocchi, Via Capecelatro 66, 20148 Milan, Italy.
| | - Luana Fontana
- Department of Biomedicine and Prevention, University of Tor Vergata, Via Montpellier 1, 00133 Rome, Italy.
| | | | - Maria Laura Ester Bianchi
- Department of Geriatrics, Neuroscience and Orthopedics, Institute of Neurology, UCSC, Largo F. Vito 1, 00168 Rome Italy.
| | - Salvatore Rossi
- Department of Geriatrics, Neuroscience and Orthopedics, Institute of Neurology, UCSC, Largo F. Vito 1, 00168 Rome Italy.
| | - Emanuele Leoncini
- Institute of Public Health, Section of Hygiene, UCSC, Largo F. Vito 1, 00168 Rome, Italy.
| | - Giuseppe Novelli
- Department of Biomedicine and Prevention, University of Tor Vergata, Via Montpellier 1, 00133 Rome, Italy.
| | - Annalisa Botta
- Department of Biomedicine and Prevention, University of Tor Vergata, Via Montpellier 1, 00133 Rome, Italy.
| | - Gabriella Silvestri
- Department of Geriatrics, Neuroscience and Orthopedics, Institute of Neurology, UCSC, Largo F. Vito 1, 00168 Rome Italy.
| |
Collapse
|
33
|
Suh E, Lee EB, Neal D, Wood EM, Toledo JB, Rennert L, Irwin DJ, McMillan CT, Krock B, Elman LB, McCluskey LF, Grossman M, Xie SX, Trojanowski JQ, Van Deerlin VM. Semi-automated quantification of C9orf72 expansion size reveals inverse correlation between hexanucleotide repeat number and disease duration in frontotemporal degeneration. Acta Neuropathol 2015; 130:363-72. [PMID: 26022924 DOI: 10.1007/s00401-015-1445-9] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Revised: 05/11/2015] [Accepted: 05/12/2015] [Indexed: 12/11/2022]
Abstract
We investigated whether chromosome 9 open reading frame 72 hexanucleotide repeat expansion (C9orf72 expansion) size in peripheral DNA was associated with clinical differences in frontotemporal degeneration (FTD) and amyotrophic lateral sclerosis (ALS) linked to C9orf72 repeat expansion mutations. A novel quantification workflow was developed to measure C9orf72 expansion size by Southern blot densitometry in a cross-sectional cohort of C9orf72 expansion carriers with FTD (n = 39), ALS (n = 33), both (n = 35), or who are unaffected (n = 21). Multivariate linear regressions were performed to assess whether C9orf72 expansion size from peripheral DNA was associated with clinical phenotype, age of disease onset, disease duration and age at death. Mode values of C9orf72 expansion size were significantly shorter in FTD compared to ALS (p = 0.0001) but were not associated with age at onset in either FTD or ALS. A multivariate regression model correcting for patient's age at DNA collection and disease phenotype revealed that C9orf72 expansion size is significantly associated with shorter disease duration (p = 0.0107) for individuals with FTD, but not with ALS. Despite considerable somatic instability of the C9orf72 expansion, semi-automated expansion size measurements demonstrated an inverse relationship between C9orf72 expansion size and disease duration in patients with FTD. Our finding suggests that C9orf72 repeat size may be a molecular disease modifier in FTD linked to hexanucleotide repeat expansion.
Collapse
Affiliation(s)
- EunRan Suh
- Department of Pathology and Laboratory Medicine, Center for Neurodegenerative Disease Research, Perelman School of Medicine at the University of Pennsylvania, 3600 Spruce Street, Philadelphia, PA, 19104-4283, USA,
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Abstract
DNA repair normally protects the genome against mutations that threaten genome integrity and thus cell viability. However, growing evidence suggests that in the case of the Repeat Expansion Diseases, disorders that result from an increase in the size of a disease-specific microsatellite, the disease-causing mutation is actually the result of aberrant DNA repair. A variety of proteins from different DNA repair pathways have thus far been implicated in this process. This review will summarize recent findings from patients and from mouse models of these diseases that shed light on how these pathways may interact to cause repeat expansion.
Collapse
Affiliation(s)
- Xiao-Nan Zhao
- Section on Genomic Structure and Function Laboratory of Cell and Molecular Biology National Institute of Diabetes, Digestive and Kidney Diseases National Institutes of Health, Bethesda, MD 20892-0830, USA
| | - Karen Usdin
- Section on Genomic Structure and Function Laboratory of Cell and Molecular Biology National Institute of Diabetes, Digestive and Kidney Diseases National Institutes of Health, Bethesda, MD 20892-0830, USA.
| |
Collapse
|
35
|
Truant R, Raymond LA, Xia J, Pinchev D, Burtnik A, Atwal RS. Canadian Association of Neurosciences Review: Polyglutamine Expansion Neurodegenerative Diseases. Can J Neurol Sci 2014; 33:278-91. [PMID: 17001815 DOI: 10.1017/s031716710000514x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
ABSTRACT:Since the early 1990s, DNA triplet repeat expansions have been found to be the cause in an ever increasing number of genetic neurologic diseases. A subset of this large family of genetic diseases has the expansion of a CAG DNA triplet in the open reading frame of a coding exon. The result of this DNA expansion is the expression of expanded glutamine amino acid repeat tracts in the affected proteins, leading to the term, Polyglutamine Diseases, which is applied to this sub-family of diseases. To date, nine distinct genes are known to be linked to polyglutamine diseases, including Huntington's disease, Machado-Joseph Disease and spinobulbar muscular atrophy or Kennedy's disease. Most of the polyglutamine diseases are characterized clinically as spinocerebellar ataxias. Here we discuss recent successes and advancements in polyglutamine disease research, comparing these different diseases with a common genetic flaw at the level of molecular biology and early drug design for a family of diseases where many new research tools for these genetic disorders have been developed. Polyglutamine disease research has successfully used interdisciplinary collaborative efforts, informative multiple mouse genetic models and advanced tools of pharmaceutical industry research to potentially serve as the prototype model of therapeutic research and development for rare neurodegenerative diseases.
Collapse
Affiliation(s)
- Ray Truant
- Department of Biochemistry and Biomedical Sciences McMaster University, Hamilton, ON, Canada
| | | | | | | | | | | |
Collapse
|
36
|
FTLD-ALS of TDP-43 type and SCA2 in a family with a full ataxin-2 polyglutamine expansion. Acta Neuropathol 2014; 128:597-604. [PMID: 24718895 DOI: 10.1007/s00401-014-1277-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Accepted: 03/29/2014] [Indexed: 12/13/2022]
Abstract
Polyglutamine expansions in the ataxin-2 gene (ATXN2) cause autosomal dominant spinocerebellar ataxia type 2 (SCA2), but have recently also been associated with amyotrophic lateral sclerosis (ALS). We present clinical and pathological features of a family in which a pathological ATXN2 expansion led to frontotemporal lobar degeneration with ALS (FTLD-ALS) in the index case, but typical SCA2 in a son, and compare the neuropathology with a case of typical SCA2. The index case shares the molecular signature of SCA2 with prominent polyglutamine and p62-positive intranuclear neuronal inclusions mainly in the pontine nuclei, while harbouring more pronounced neocortical and spinal TDP-43 pathology. We conclude that ATXN2 mutations can cause not only ALS, but also a neuropathological overlap syndrome of SCA2 and FTLD presenting clinically as pure FTLD-ALS without ataxia. The cause of the phenotypic heterogeneity remains unexplained, but the presence of a CAA-interrupted CAG repeat in the FTLD case in this family suggests that one potential mechanism may be variation in repeat tract composition between members of the same family.
Collapse
|
37
|
Abstract
Repetitive genomic sequences can adopt a number of alternative DNA structures that differ from the canonical B-form duplex (i.e. non-B DNA). These non-B DNA-forming sequences have been shown to have many important biological functions related to DNA metabolic processes; for example, they may have regulatory roles in DNA transcription and replication. In addition to these regulatory functions, non-B DNA can stimulate genetic instability in the presence or absence of DNA damage, via replication-dependent and/or replication-independent pathways. This review focuses on the interactions of non-B DNA conformations with DNA repair proteins and how these interactions impact genetic instability.
Collapse
Affiliation(s)
- Guliang Wang
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Dell Pediatric Research Institute, 1400 Barbara Jordan Blvd. R1800, Austin, TX 78723, United States
| | - Karen M Vasquez
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Dell Pediatric Research Institute, 1400 Barbara Jordan Blvd. R1800, Austin, TX 78723, United States.
| |
Collapse
|
38
|
Mason AG, Tomé S, Simard JP, Libby RT, Bammler TK, Beyer RP, Morton AJ, Pearson CE, La Spada AR. Expression levels of DNA replication and repair genes predict regional somatic repeat instability in the brain but are not altered by polyglutamine disease protein expression or age. Hum Mol Genet 2013; 23:1606-18. [PMID: 24191263 DOI: 10.1093/hmg/ddt551] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Expansion of CAG/CTG trinucleotide repeats causes numerous inherited neurological disorders, including Huntington's disease (HD), several spinocerebellar ataxias and myotonic dystrophy type 1. Expanded repeats are genetically unstable with a propensity to further expand when transmitted from parents to offspring. For many alleles with expanded repeats, extensive somatic mosaicism has been documented. For CAG repeat diseases, dramatic instability has been documented in the striatum, with larger expansions noted with advancing age. In contrast, only modest instability occurs in the cerebellum. Using microarray expression analysis, we sought to identify the genetic basis of these regional instability differences by comparing gene expression in the striatum and cerebellum of aged wild-type C57BL/6J mice. We identified eight candidate genes enriched in cerebellum, and validated four--Pcna, Rpa1, Msh6 and Fen1--along with a highly associated interactor, Lig1. We also explored whether expression levels of mismatch repair (MMR) proteins are altered in a line of HD transgenic mice, R6/2, that is known to show pronounced regional repeat instability. Compared with wild-type littermates, MMR expression levels were not significantly altered in R6/2 mice regardless of age. Interestingly, expression levels of these candidates were significantly increased in the cerebellum of control and HD human samples in comparison to striatum. Together, our data suggest that elevated expression levels of DNA replication and repair proteins in cerebellum may act as a safeguard against repeat instability, and may account for the dramatically reduced somatic instability present in this brain region, compared with the marked instability observed in the striatum.
Collapse
|
39
|
Fratta P, Collins T, Pemble S, Nethisinghe S, Devoy A, Giunti P, Sweeney MG, Hanna MG, Fisher EMC. Sequencing analysis of the spinal bulbar muscular atrophy CAG expansion reveals absence of repeat interruptions. Neurobiol Aging 2013; 35:443.e1-3. [PMID: 24041967 PMCID: PMC3898077 DOI: 10.1016/j.neurobiolaging.2013.07.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Accepted: 07/19/2013] [Indexed: 11/30/2022]
Abstract
Trinucleotide repeat disorders are a heterogeneous group of diseases caused by the expansion, beyond a pathogenic threshold, of unstable DNA tracts in different genes. Sequence interruptions in the repeats have been described in the majority of these disorders and may influence disease phenotype and heritability. Spinal bulbar muscular atrophy (SBMA) is a motor neuron disease caused by a CAG trinucleotide expansion in the androgen receptor (AR) gene. Diagnostic testing and previous research have relied on fragment analysis polymerase chain reaction to determine the AR CAG repeat size, and have therefore not been able to assess the presence of interruptions. We here report a sequencing study of the AR CAG repeat in a cohort of SBMA patients and control subjects in the United Kingdom. We found no repeat interruptions to be present, and we describe differences between sequencing and traditional sizing methods.
Collapse
Affiliation(s)
- Pietro Fratta
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK; MRC Centre for Neuromuscular Disease, UCL Institute of Neurology, Queen Square, London, UK.
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
van Blitterswijk M, DeJesus-Hernandez M, Niemantsverdriet E, Murray ME, Heckman MG, Diehl NN, Brown PH, Baker MC, Finch NA, Bauer PO, Serrano G, Beach TG, Josephs KA, Knopman DS, Petersen RC, Boeve BF, Graff-Radford NR, Boylan KB, Petrucelli L, Dickson DW, Rademakers R. Association between repeat sizes and clinical and pathological characteristics in carriers of C9ORF72 repeat expansions (Xpansize-72): a cross-sectional cohort study. Lancet Neurol 2013; 12:978-88. [PMID: 24011653 DOI: 10.1016/s1474-4422(13)70210-2] [Citation(s) in RCA: 219] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
BACKGROUND Hexanucleotide repeat expansions in chromosome 9 open reading frame 72 (C9ORF72) are the most common known genetic cause of frontotemporal dementia (FTD) and motor neuron disease (MND). We assessed whether expansion size is associated with disease severity or phenotype. METHODS We did a cross-sectional Southern blot characterisation study (Xpansize-72) in a cohort of individuals with FTD, MND, both these diseases, or no clinical phenotype. All participants had GGGGCC repeat expansions in C9ORF72, and high quality DNA was available from one or more of the frontal cortex, cerebellum, or blood. We used Southern blotting techniques and densitometry to estimate the repeat size of the most abundant expansion species. We compared repeat sizes between different tissues using Wilcoxon rank sum and Wilcoxon signed rank tests, and between disease subgroups using Kruskal-Wallis rank sum tests. We assessed the association of repeat size with age at onset and age at collection using a Spearman's test of correlation, and assessed the association between repeat size and survival after disease onset using Cox proportional hazards regression models. FINDINGS We included 84 individuals with C9ORF72 expansions: 35 had FTD, 16 had FTD and MND, 30 had MND, and three had no clinical phenotype. We focused our analysis on three major tissue subgroups: frontal cortex (available from 41 patients [21 with FTD, 11 with FTD and MND, and nine with MND]), cerebellum (40 patients [20 with FTD, 12 with FTD and MND, and eight with MND]), and blood (47 patients [15 with FTD, nine with FTD and MND, and 23 with MND] and three carriers who had no clinical phenotype). Repeat lengths in the cerebellum were smaller (median 12·3 kb [about 1667 repeat units], IQR 11·1-14·3) than those in the frontal cortex (33·8 kb [about 5250 repeat units], 23·5-44·9; p<0·0001) and those in blood (18·6 kb [about 2717 repeat units], 13·9-28·1; p=0·0002). Within these tissues, we detected no difference in repeat length between disease subgroups (cerebellum p=0·96, frontal cortex p=0·27, blood p=0·10). In the frontal cortex of patients with FTD, repeat length correlated with age at onset (r=0·63; p=0·003) and age at sample collection (r=0·58; p=0·006); we did not detect such a correlation in samples from the cerebellum or blood. When assessing cerebellum samples from the overall cohort, survival after disease onset was 4·8 years (IQR 3·0-7·4) in the group with expansions greater than 1467 repeat units (the 25th percentile of repeat lengths) versus 7·4 years (6·3-10·9) in the group with smaller expansions (HR 3·27, 95% CI 1·34-7·95; p=0·009). INTERPRETATION We detected substantial variation in repeat sizes between samples from the cerebellum, frontal cortex, and blood, and longer repeat sizes in the cerebellum seem to be associated with a survival disadvantage. Our findings indicate that expansion size does affect disease severity, which--if replicated in other cohorts--could be relevant for genetic counselling. FUNDING The ALS Therapy Alliance, the National Institute of Neurological Disorders and Stroke, the National Institute on Aging, the Arizona Department of Health Services, the Arizona Biomedical Research Commission, and the Michael J Fox Foundation for Parkinson's Research.
Collapse
|
41
|
Wang G, Gaddis S, Vasquez KM. Methods to detect replication-dependent and replication-independent DNA structure-induced genetic instability. Methods 2013; 64:67-72. [PMID: 23954565 DOI: 10.1016/j.ymeth.2013.08.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Revised: 08/02/2013] [Accepted: 08/07/2013] [Indexed: 10/26/2022] Open
Abstract
DNA can adopt a variety of alternative secondary (i.e., non-B DNA) conformations that play important roles in cellular metabolism, including genetic instability, disease etiology and evolution. While we still have much to learn, research in this field has expanded dramatically in the past decade. We have summarized in our previous Methods review (Wang et al., Methods, 2009) some commonly used techniques to determine non-B DNA structural conformations and non-B DNA-induced genetic instability in prokaryotes and eukaryotes. Since that time, we and others have further characterized mechanisms involved in DNA structure-induced mutagenesis and have proposed both replication-dependent and replication-independent models. Thus, in this review, we highlight some current methodologies to identify DNA replication-related and replication-independent mutations occurring at non-B DNA regions to allow for a better understanding of the mechanisms underlying DNA structure-induced genetic instability. We also describe a new web-based search engine to identify potential intramolecular triplex (H-DNA) and left-handed Z-DNA-forming motifs in entire genomes or at selected sequences of interest.
Collapse
Affiliation(s)
- Guliang Wang
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Dell Pediatric Research Institute, 1400 Barbara Jordan Blvd. R1800, Austin, TX 78723, United States
| | | | | |
Collapse
|
42
|
Abnormal base excision repair at trinucleotide repeats associated with diseases: a tissue-selective mechanism. Genes (Basel) 2013; 4:375-87. [PMID: 24705210 PMCID: PMC3924826 DOI: 10.3390/genes4030375] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Revised: 06/25/2013] [Accepted: 06/26/2013] [Indexed: 12/03/2022] Open
Abstract
More than fifteen genetic diseases, including Huntington’s disease, myotonic dystrophy 1, fragile X syndrome and Friedreich ataxia, are caused by the aberrant expansion of a trinucleotide repeat. The mutation is unstable and further expands in specific cells or tissues with time, which can accelerate disease progression. DNA damage and base excision repair (BER) are involved in repeat instability and might contribute to the tissue selectivity of the process. In this review, we will discuss the mechanisms of trinucleotide repeat instability, focusing more specifically on the role of BER.
Collapse
|
43
|
Menon RP, Nethisinghe S, Faggiano S, Vannocci T, Rezaei H, Pemble S, Sweeney MG, Wood NW, Davis MB, Pastore A, Giunti P. The role of interruptions in polyQ in the pathology of SCA1. PLoS Genet 2013; 9:e1003648. [PMID: 23935513 PMCID: PMC3723530 DOI: 10.1371/journal.pgen.1003648] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Accepted: 06/04/2013] [Indexed: 11/18/2022] Open
Abstract
At least nine dominant neurodegenerative diseases are caused by expansion of CAG repeats in coding regions of specific genes that result in abnormal elongation of polyglutamine (polyQ) tracts in the corresponding gene products. When above a threshold that is specific for each disease the expanded polyQ repeats promote protein aggregation, misfolding and neuronal cell death. The length of the polyQ tract inversely correlates with the age at disease onset. It has been observed that interruption of the CAG tract by silent (CAA) or missense (CAT) mutations may strongly modulate the effect of the expansion and delay the onset age. We have carried out an extensive study in which we have complemented DNA sequence determination with cellular and biophysical models. By sequencing cloned normal and expanded SCA1 alleles taken from our cohort of ataxia patients we have determined sequence variations not detected by allele sizing and observed for the first time that repeat instability can occur even in the presence of CAG interruptions. We show that histidine interrupted pathogenic alleles occur with relatively high frequency (11%) and that the age at onset inversely correlates linearly with the longer uninterrupted CAG stretch. This could be reproduced in a cellular model to support the hypothesis of a linear behaviour of polyQ. We clarified by in vitro studies the mechanism by which polyQ interruption slows down aggregation. Our study contributes to the understanding of the role of polyQ interruption in the SCA1 phenotype with regards to age at disease onset, prognosis and transmission. Spinocerebellar ataxia type 1 (SCA1) is a progressive neurodegenerative disorder resulting in loss of coordination and balance. It is caused by an expanded repeated DNA sequence (CAG) in the gene ATXN1. The CAG repeat region is normally interrupted by the DNA sequence CAT. Loss of this interruption is believed to cause instability whereby the CAG repeat expands beyond a key threshold resulting, ultimately, in polyglutamine protein aggregation and cell death. Here we examine how interruptions influence pathology in patients and establish a cellular model to support our findings. We distinguish our patients into two sub-groups based on whether or not their expanded CAG repeat stretches contained an interruption. This is not possible with conventional diagnostic techniques. Differentiating the sub-group with no interruptions led to improved accuracy in predicting their age at onset. The other sub-group, with interruptions, reveals a delay in age at onset that shows greater alignment with the longest stretch of CAG repeats. These findings are significant for genetic counselling and prognosis. Our cellular model and in vitro studies confirmed the relationship between disease severity and uninterrupted repeat length and showed that interruptions do not significantly affect the polyglutamine protein aggregation, but do slow down the aggregation rate.
Collapse
Affiliation(s)
| | - Suran Nethisinghe
- Department of Molecular Neuroscience, UCL Institute of Neurology, London, United Kingdom
| | | | | | - Human Rezaei
- Department of Protein Macroassemblies and Prion Pathology, INRA, Domain de Vilvert, Jouy en Josas, France
| | - Sally Pemble
- Neurogenetics Unit, National Hospital for Neurology and Neurosurgery, London, United Kingdom
| | - Mary G. Sweeney
- Neurogenetics Unit, National Hospital for Neurology and Neurosurgery, London, United Kingdom
| | - Nicholas W. Wood
- Department of Molecular Neuroscience, UCL Institute of Neurology, London, United Kingdom
| | - Mary B. Davis
- Department of Molecular Neuroscience, UCL Institute of Neurology, London, United Kingdom
| | | | - Paola Giunti
- Department of Molecular Neuroscience, UCL Institute of Neurology, London, United Kingdom
- * E-mail: (AP); (PG)
| |
Collapse
|
44
|
Wang WF, Li X, Guo MZ, Chen JD, Yang YS, Peng LH, Wang YH, Zhang CY, Li HH. Mitochondrial ATP 6 and 8 polymorphisms in irritable bowel syndrome with diarrhea. World J Gastroenterol 2013; 19:3847-3853. [PMID: 23840124 PMCID: PMC3699044 DOI: 10.3748/wjg.v19.i24.3847] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Revised: 03/30/2013] [Accepted: 04/10/2013] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate mitochondrial ATP 6 and 8 polymorphisms in the colon and ileum of patients with irritable bowel syndrome with diarrhea (IBS-D).
METHODS: Twenty-eight patients fulfilling the Rome III criteria for IBS-D and 28 healthy subjects were investigated. All study participants underwent screening colonoscopy and mucosal biopsies were obtained from the colon and/or terminal ileum. Genomic DNA was extracted from specimens based on standard protocols. Mitochondrial ATP (MT-ATP) 6 and 8 genes in specimens were polymerase chain reaction amplified and sequenced. Sequencing data were analyzed via Variant Reporter™ Software and compared with the reference sequence from Genbank (accession No. NC_012920) to indicate possible polymorphisms. The protocol was registered at www.clinicaltrials.gov as NCT01028898.
RESULTS: Twenty-five polymorphic sites of MT-ATP 6 and 8 genes were detected and 12 of them were missense mutations. A median of two polymorphic sites in MT-ATP genes was found in colon specimens of controls while a median of three polymorphic sites was noted in patients with IBS-D (Mann-Whitney test, P = 0.012). The variants of the colon and ileum specimens from the same subjects were identical in all but one case. Symptom duration in IBS was not found to be a significant factor associated with the mtDNA polymorphism (Spearman correlation, P = 0.592). The mitochondrial DNA change at 8860 was present in all cases of both groups. The frequency of the 8701 polymorphism was found to be the second most frequent; however, no statistical difference was noted between the groups (χ2 test, P = 0.584).
CONCLUSION: Patients with IBS-D have a higher incidence of MT-ATP 6 and 8 polymorphisms than healthy subjects, implying that the mtDNA polymorphism may play a role in IBS-D.
Collapse
|
45
|
Proukakis C, Houlden H, Schapira AH. Somatic alpha-synuclein mutations in Parkinson's disease: hypothesis and preliminary data. Mov Disord 2013; 28:705-12. [PMID: 23674490 PMCID: PMC3739940 DOI: 10.1002/mds.25502] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2012] [Revised: 03/13/2013] [Accepted: 04/01/2013] [Indexed: 02/02/2023] Open
Abstract
Alpha-synuclein (SNCA) is crucial in the pathogenesis of Parkinson's disease (PD), yet mutations in the SNCA gene are rare. Evidence for somatic genetic variation in normal humans, also involving the brain, is increasing, but its role in disease is unknown. Somatic SNCA mutations, arising in early development and leading to mosaicism, could contribute to PD pathogenesis and yet be absent or undetectable in DNA derived from peripheral lymphocytes. Such mutations could underlie the widespread pathology in PD, with the precise clinical outcome dependent on their type and the timing and location of their occurrence. We recently reported a novel SNCA mutation (c.150T>G, p.H50Q) in PD brain-derived DNA. To determine if there was mosaicism for this, a PCR and cloning strategy was used to take advantage of a nearby heterozygous intronic polymorphism. No evidence of mosaicism was found. High-resolution melting curve analysis of SNCA coding exons, which was shown to be sensitive enough to detect low proportions of 2 known mutations, did not reveal any further mutations in DNA from 28 PD brain-derived samples. We outline the grounds that make the somatic SNCA mutation hypothesis consistent with genetic, embryological, and pathological data. Further studies of brain-derived DNA are warranted and should include DNA from multiple regions and methods for detecting other types of genomic variation. © 2013 Movement Disorder Society
Collapse
Affiliation(s)
- Christos Proukakis
- Department of Clinical Neuroscience, Institute of Neurology, University College London, London, United Kingdom.
| | | | | |
Collapse
|
46
|
Xia G, Santostefano K, Hamazaki T, Liu J, Subramony SH, Terada N, Ashizawa T. Generation of human-induced pluripotent stem cells to model spinocerebellar ataxia type 2 in vitro. J Mol Neurosci 2012; 51:237-48. [PMID: 23224816 DOI: 10.1007/s12031-012-9930-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Accepted: 11/21/2012] [Indexed: 12/27/2022]
Abstract
Spinocerebellar ataxia type 2 (SCA2) is caused by triple nucleotide repeat (CAG) expansion in the coding region of the ATAXN2 gene on chromosome 12, which produces an elongated, toxic polyglutamine tract, leading to Purkinje cell loss. There is currently no effective therapy. One of the main obstacles that hampers therapeutic development is lack of an ideal disease model. In this study, we have generated and characterized SCA2-induced pluripotent stem (iPS) cell lines as an in vitro cell model. Dermal fibroblasts (FBs) were harvested from primary cultures of skin explants obtained from a SCA2 subject and a healthy subject. For reprogramming, hOct4, hSox2, hKlf4, and hc-Myc were transduced to passage-3 FBs by retroviral infection. Both SCA2 iPS and control iPS cells were successfully generated and showed typical stem cell growth patterns with normal karyotype. All iPS cell lines expressed stem cell markers and differentiated in vitro into cells from three embryonic germ layers. Upon in vitro neural differentiation, SCA2 iPS cells showed abnormality in neural rosette formation but successfully differentiated into neural stem cells (NSCs) and subsequent neural cells. SCA2 and normal FBs showed a comparable level of ataxin-2 expression; whereas SCA2 NSCs showed less ataxin-2 expression than normal NSCs and SCA2 FBs. Within the neural lineage, neurons had the most abundant expression of ataxin-2. Time-lapsed neural growth assay indicated terminally differentiated SCA2 neural cells were short-lived compared with control neural cells. The expanded CAG repeats of SCA2 were stable throughout reprogramming and neural differentiation. In conclusion, we have established the first disease-specific human SCA2 iPS cell line. These mutant iPS cells have the potential for neural differentiation. These differentiated neural cells harboring mutations are invaluable for the study of SCA2 pathogenesis and therapeutic drug development.
Collapse
Affiliation(s)
- Guangbin Xia
- Department of Neurology, College of Medicine, University of Florida, Gainesville, FL, USA
| | | | | | | | | | | | | |
Collapse
|
47
|
Lokanga RA, Entezam A, Kumari D, Yudkin D, Qin M, Smith CB, Usdin K. Somatic expansion in mouse and human carriers of fragile X premutation alleles. Hum Mutat 2012; 34:157-66. [PMID: 22887750 DOI: 10.1002/humu.22177] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2012] [Accepted: 07/17/2012] [Indexed: 11/10/2022]
Abstract
Repeat expansion diseases result from expansion of a specific tandem repeat. The three fragile X-related disorders (FXDs) arise from germline expansions of a CGG•CCG repeat tract in the 5' UTR (untranslated region) of the fragile X mental retardation 1 (FMR1) gene. We show here that in addition to germline expansion, expansion also occurs in the somatic cells of both mice and humans carriers of premutation alleles. Expansion in mice primarily affects brain, testis, and liver with very little expansion in heart or blood. Our data would be consistent with a simple two-factor model for the organ specificity. Somatic expansion in humans may contribute to the mosaicism often seen in individuals with one of the FXDs. Because expansion risk and disease severity are related to repeat number, somatic expansion may exacerbate disease severity and contribute to the age-related increased risk of expansion seen on paternal transmission in humans. As little somatic expansion occurs in murine lymphocytes, our data also raise the possibility that there may be discordance in humans between repeat numbers measured in blood and that present in brain. This could explain, at least in part, the variable penetrance seen in some of these disorders.
Collapse
Affiliation(s)
- Rachel Adihe Lokanga
- Section on Gene Structure and Disease, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892–0830, USA
| | | | | | | | | | | | | |
Collapse
|
48
|
Abstract
The hereditary cerebellar ataxias are a clinically and genetically heterogeneous group of disorders that primarily affect the cerebellum; often there are additional features such as neuropathy, cognitive decline, or maculopathy that help define the clinical subtype of ataxia. They are commonly classified according to their mode of inheritance into autosomal dominant, autosomal recessive, X-linked, and mitochondrial forms. Great advances have been made in understanding the genetics of cerebellar ataxias in the last 15 years. At least 36 different forms of ADCA are known, 20 autosomal-recessive, two X-linked, and several forms of ataxia associated with mitochondrial defects are known to date. However, in about 40 % of suspected genetically determined ataxia cases, the underlying genetic defect remains undetermined. Although the majority of disease genes have been found in the last two decades, over the last 2 years the genetics has undergone a methodological revolution. New DNA sequencing technologies are enabling us to investigate the whole or large targeted proportions of the genome in a rapid, affordable, and comprehensive way. Exome and targeted sequencing has recently identified four new genes causing ataxia: TGM6, ANO10, SYT14, and rundataxin. This approach is likely to continue to discover new ataxia genes and make screening of existing genes more effective. Translating the genetic findings into isolated and overlapping disease pathways will help stratify patient groups and identify therapeutic targets for ataxia that have so far remained undiscovered.
Collapse
Affiliation(s)
- Anna Sailer
- Department of Molecular Neuroscience, Institute of Neurology, Queen Square, London WC1N 3BG, United Kingdom
| | | |
Collapse
|
49
|
Seidel K, Siswanto S, Brunt ERP, den Dunnen W, Korf HW, Rüb U. Brain pathology of spinocerebellar ataxias. Acta Neuropathol 2012; 124:1-21. [PMID: 22684686 DOI: 10.1007/s00401-012-1000-x] [Citation(s) in RCA: 304] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Revised: 05/25/2012] [Accepted: 05/25/2012] [Indexed: 12/22/2022]
Abstract
The autosomal dominant cerebellar ataxias (ADCAs) represent a heterogeneous group of neurodegenerative diseases with progressive ataxia and cerebellar degeneration. The current classification of this disease group is based on the underlying genetic defects and their typical disease courses. According to this categorization, ADCAs are divided into the spinocerebellar ataxias (SCAs) with a progressive disease course, and the episodic ataxias (EA) with episodic occurrences of ataxia. The prominent disease symptoms of the currently known and genetically defined 31 SCA types result from damage to the cerebellum and interconnected brain grays and are often accompanied by more specific extra-cerebellar symptoms. In the present review, we report the genetic and clinical background of the known SCAs and present the state of neuropathological investigations of brain tissue from SCA patients in the final disease stages. Recent findings show that the brain is commonly seriously affected in the polyglutamine SCAs (i.e. SCA1, SCA2, SCA3, SCA6, SCA7, and SCA17) and that the patterns of brain damage in these diseases overlap considerably in patients suffering from advanced disease stages. In the more rarely occurring non-polyglutamine SCAs, post-mortem neuropathological data currently are scanty and investigations have been primarily performed in vivo by means of MRI brain imaging. Only a minority of SCAs exhibit symptoms and degenerative patterns allowing for a clear and unambiguous diagnosis of the disease, e.g. retinal degeneration in SCA7, tau aggregation in SCA11, dentate calcification in SCA20, protein depositions in the Purkinje cell layer in SCA31, azoospermia in SCA32, and neurocutaneous phenotype in SCA34. The disease proteins of polyglutamine ataxias and some non-polyglutamine ataxias aggregate as cytoplasmic or intranuclear inclusions and serve as morphological markers. Although inclusions may impair axonal transport, bind transcription factors, and block protein quality control, detailed molecular and pathogenetic consequences remain to be determined.
Collapse
Affiliation(s)
- Kay Seidel
- Dr. Senckenbergisches Chronomedizinisches Institut, Goethe University, Theodor-Stern-Kai 7, 60950, Frankfurt/Main, Germany
| | | | | | | | | | | |
Collapse
|
50
|
Morales F, Couto JM, Higham CF, Hogg G, Cuenca P, Braida C, Wilson RH, Adam B, del Valle G, Brian R, Sittenfeld M, Ashizawa T, Wilcox A, Wilcox DE, Monckton DG. Somatic instability of the expanded CTG triplet repeat in myotonic dystrophy type 1 is a heritable quantitative trait and modifier of disease severity. Hum Mol Genet 2012; 21:3558-67. [DOI: 10.1093/hmg/dds185] [Citation(s) in RCA: 125] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|