1
|
Kibriya MG, Almazan A, Argos M, Islam T, Shea CR, Ahsan H, Jasmine F. Short Tandem Repeat (STR) Somatic Mutation in Non-Melanoma Skin Cancer (NMSC): Association with Transcriptomic Profile and Potential Implications for Therapy. Cancers (Basel) 2025; 17:1669. [PMID: 40427167 PMCID: PMC12110349 DOI: 10.3390/cancers17101669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2025] [Revised: 05/09/2025] [Accepted: 05/13/2025] [Indexed: 05/29/2025] Open
Abstract
BACKGROUND Studies on somatic mutations in cancer typically report single-nucleotide variants in coding regions, while mutations in short tandem repeats (STRs) are usually overlooked. Homopolymeric regions, a subset of STRs, are stretches of DNA where only a single nucleotide is repeated multiple times (e.g., AAAAA or TTTTT). Only recently have mutations in such STR regions been seen in colorectal cancer, where microsatellite instability (MSI) is common. In non-melanoma skin cancer (NMSC), MSI is rare. In this study, we focus on somatic mutations in such homopolymeric regions in NMSC and their functional implications. METHODS We performed targeted DNA sequencing (paired tissue and blood from the same individual), using more than 400 cancer-related genes from 32 NMSC patients as cases and non-lesional skin tissue from 16 independent individuals as controls. RESULTS We identified NMSC-associated STR somatic mutations. These are associated with the dysregulation of DNA damage and repair mechanisms. In artificial intelligence (AI) predictive modeling, these markers could successfully differentiate basal cell carcinoma (BCC) and non-lesional skin tissue. To our knowledge, we present the first study focusing on STR somatic mutations in multiple cancer-related genes in NMSC found only in tumor tissue and not in non-lesional skin tissue. Some of them (APC, BRAF) are associated with more pronounced dysregulation of relevant gene pathways (hedgehog, Notch signaling, and Wnt signaling). CONCLUSIONS Our findings suggest that this STR somatic mutation status might potentially be used to select BCC patients who could benefit from certain precision therapy including hedgehog inhibitors, gamma-secretase inhibitors, anti-Vasuclar endothelial growth factor (VEGF), proteasome inhibitors, and immune check-point inhibitors.
Collapse
Affiliation(s)
- Muhammad G. Kibriya
- Institute for Population and Precision Health (IPPH), University of Chicago, Chicago, IL 60637, USA; (A.A.); (H.A.); (F.J.)
- Department of Public Health Sciences, Biological Sciences Division, University of Chicago, Chicago, IL 60637, USA
| | - Armando Almazan
- Institute for Population and Precision Health (IPPH), University of Chicago, Chicago, IL 60637, USA; (A.A.); (H.A.); (F.J.)
| | - Maria Argos
- Department of Environmental Health, School of Public Health, Boston University, Boston, MA 02118, USA;
| | - Tariqul Islam
- UChicago Research Bangladesh (URB), University of Chicago, Dhaka 1230, Bangladesh
| | - Christopher R. Shea
- Division of Dermatology, Department of Medicine, University of Chicago, Chicago, IL 60637, USA;
| | - Habibul Ahsan
- Institute for Population and Precision Health (IPPH), University of Chicago, Chicago, IL 60637, USA; (A.A.); (H.A.); (F.J.)
- Department of Public Health Sciences, Biological Sciences Division, University of Chicago, Chicago, IL 60637, USA
| | - Farzana Jasmine
- Institute for Population and Precision Health (IPPH), University of Chicago, Chicago, IL 60637, USA; (A.A.); (H.A.); (F.J.)
| |
Collapse
|
2
|
Gejman RS, Izar B. Polyguanine microsatellites are robust replication clocks in cancer. Nat Genet 2025; 57:489-491. [PMID: 39962239 DOI: 10.1038/s41588-025-02098-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/15/2025]
Affiliation(s)
- Ron S Gejman
- Department of Medicine, Division of Hematology/Oncology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
- Vagelos College of Physicians and Surgeons, Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA
- Columbia Center for Translational Immunology, Columbia University Irving Medical Center, New York, NY, USA
| | - Benjamin Izar
- Department of Medicine, Division of Hematology/Oncology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA.
- Vagelos College of Physicians and Surgeons, Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA.
- Columbia Center for Translational Immunology, Columbia University Irving Medical Center, New York, NY, USA.
- Department of Systems Biology, Program for Mathematical Genomics, Columbia University, New York, NY, USA.
| |
Collapse
|
3
|
Cotan HT, Emilescu RA, Iaciu CI, Orlov-Slavu CM, Olaru MC, Popa AM, Jinga M, Nitipir C, Schreiner OD, Ciobanu RC. Prognostic and Predictive Determinants of Colorectal Cancer: A Comprehensive Review. Cancers (Basel) 2024; 16:3928. [PMID: 39682117 DOI: 10.3390/cancers16233928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 11/20/2024] [Accepted: 11/22/2024] [Indexed: 12/18/2024] Open
Abstract
Colorectal cancer (CRC) remains a significant global health burden, necessitating a thorough understanding of prognostic and predictive factors to enhance patient outcomes. This systematic review aims to comprehensively evaluate prognostic and predictive determinants in CRC, encompassing both traditional and emerging biomarkers. A systematic search of major electronic databases was conducted to identify relevant studies published from 1995 up to 2024. Eligible articles were critically appraised, and data extraction was performed according to predefined criteria. The prognostic determinants examined included clinicopathological features such as tumor stage, grade, and lymph node involvement, as well as molecular biomarkers including RAS, BRAF, and MSI status. Predictive determinants encompassed biomarkers influencing response to targeted therapies and immunotherapy, such as HER2 and Immunoscore. The review also explores novel prognostic and predictive markers, including tumor microenvironment characteristics and liquid biopsy-based biomarkers. Synthesizing evidence from diverse studies, this review provides insights into the prognostic and predictive landscape of CRC, highlighting the potential clinical implications of identified determinants. Understanding the multifaceted nature of prognostic and predictive factors in CRC is imperative for the advancement of personalized treatment strategies and improvement of patient outcomes.
Collapse
Affiliation(s)
- Horia T Cotan
- General Medicine Faculty, Carol Davila University of Medicine and Pharmacy, 8 Sanitary Heroes Boulevard, 050474 Bucharest, Romania
| | - Radu A Emilescu
- General Medicine Faculty, Carol Davila University of Medicine and Pharmacy, 8 Sanitary Heroes Boulevard, 050474 Bucharest, Romania
| | - Cristian I Iaciu
- General Medicine Faculty, Carol Davila University of Medicine and Pharmacy, 8 Sanitary Heroes Boulevard, 050474 Bucharest, Romania
| | - Cristina M Orlov-Slavu
- General Medicine Faculty, Carol Davila University of Medicine and Pharmacy, 8 Sanitary Heroes Boulevard, 050474 Bucharest, Romania
| | - Mihaela C Olaru
- General Medicine Faculty, Carol Davila University of Medicine and Pharmacy, 8 Sanitary Heroes Boulevard, 050474 Bucharest, Romania
| | - Ana M Popa
- General Medicine Faculty, Carol Davila University of Medicine and Pharmacy, 8 Sanitary Heroes Boulevard, 050474 Bucharest, Romania
| | - Mariana Jinga
- General Medicine Faculty, Carol Davila University of Medicine and Pharmacy, 8 Sanitary Heroes Boulevard, 050474 Bucharest, Romania
| | - Cornelia Nitipir
- General Medicine Faculty, Carol Davila University of Medicine and Pharmacy, 8 Sanitary Heroes Boulevard, 050474 Bucharest, Romania
| | - Oliver Daniel Schreiner
- Regional Institute of Oncology Iasi, 2-4 General Henri Mathias Berthelot Street, 700483 Iasi, Romania
- Department 3-Medical Sciences, Grigore T. Popa University of Medicine and Pharmacy, 16 University Street, 700115 Iasi, Romania
- Department of Electrical Measurements and Materials, Gheorghe Asachi Technical University, 700050 Iasi, Romania
| | - Romeo Cristian Ciobanu
- Department of Electrical Measurements and Materials, Gheorghe Asachi Technical University, 700050 Iasi, Romania
| |
Collapse
|
4
|
Sun M, Moquet J, Barnard S, Mancey H, Burling D, Baldwin-Cleland R, Monahan K, Latchford A, Lloyd D, Bouffler S, Badie C, Anyamene NA, Ainsbury E. In vitro study of radiosensitivity in colorectal cancer cell lines associated with Lynch syndrome. Front Public Health 2024; 12:1369201. [PMID: 38638480 PMCID: PMC11024246 DOI: 10.3389/fpubh.2024.1369201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 03/18/2024] [Indexed: 04/20/2024] Open
Abstract
Introduction Lynch syndrome patients have an inherited predisposition to cancer due to a deficiency in DNA mismatch repair (MMR) genes which could lead to a higher risk of developing cancer if exposed to ionizing radiation. This pilot study aims to reveal the association between MMR deficiency and radiosensitivity at both a CT relevant low dose (20 mGy) and a therapeutic higher dose (2 Gy). Methods Human colorectal cancer cell lines with (dMMR) or without MMR deficiency (pMMR) were analyzed before and after exposure to radiation using cellular and cytogenetic analyses i.e., clonogenic assay to determine cell reproductive death; sister chromatid exchange (SCE) assay to detect the exchange of DNA between sister chromatids; γH2AX assay to analyze DNA damage repair; and apoptosis analysis to compare cell death response. The advantages and limitations of these assays were assessed in vitro, and their applicability and feasibility investigated for their potential to be used for further studies using clinical samples. Results Results from the clonogenic assay indicated that the pMMR cell line (HT29) was significantly more radio-resistant than the dMMR cell lines (HCT116, SW48, and LoVo) after 2 Gy X-irradiation. Both cell type and radiation dose had a significant effect on the yield of SCEs/chromosome. When the yield of SCEs/chromosome for the irradiated samples (2 Gy) was normalized against the controls, no significant difference was observed between the cell lines. For the γH2AX assay, 0, 20 mGy and 2 Gy were examined at post-exposure time points of 30 min (min), 4 and 24 h (h). Statistical analysis revealed that HT29 was only significantly more radio-resistant than the MLH1-deficient cells lines, but not the MSH2-deficient cell line. Apoptosis analysis (4 Gy) revealed that HT29 was significantly more radio-resistant than HCT116 albeit with very few apoptotic cells observed. Discussion Overall, this study showed radio-resistance of the MMR proficient cell line in some assays, but not in the others. All methods used within this study have been validated; however, due to the limitations associated with cancer cell lines, the next step will be to use these assays in clinical samples in an effort to understand the biological and mechanistic effects of radiation in Lynch patients as well as the health implications.
Collapse
Affiliation(s)
- Mingzhu Sun
- United Kingdom Health Security Agency, Department of Radiation Effects, Cytogenetics and Pathology Group, Radiation, Chemical and Environmental Hazards Directorate, Didcot, United Kingdom
| | - Jayne Moquet
- United Kingdom Health Security Agency, Department of Radiation Effects, Cytogenetics and Pathology Group, Radiation, Chemical and Environmental Hazards Directorate, Didcot, United Kingdom
| | - Stephen Barnard
- United Kingdom Health Security Agency, Department of Radiation Effects, Cytogenetics and Pathology Group, Radiation, Chemical and Environmental Hazards Directorate, Didcot, United Kingdom
| | - Hannah Mancey
- United Kingdom Health Security Agency, Department of Radiation Effects, Cytogenetics and Pathology Group, Radiation, Chemical and Environmental Hazards Directorate, Didcot, United Kingdom
| | - David Burling
- Intestinal Imaging Centre, St Mark's Hospital, London North West University Healthcare National Health Service Trust, Harrow, United Kingdom
| | - Rachel Baldwin-Cleland
- Intestinal Imaging Centre, St Mark's Hospital, London North West University Healthcare National Health Service Trust, Harrow, United Kingdom
| | - Kevin Monahan
- Lynch Syndrome Clinic, Centre for Familial Intestinal Cancer, St Mark's Hospital, London North West University Healthcare National Health Service Trust, Harrow, United Kingdom
| | - Andrew Latchford
- Lynch Syndrome Clinic, Centre for Familial Intestinal Cancer, St Mark's Hospital, London North West University Healthcare National Health Service Trust, Harrow, United Kingdom
| | - David Lloyd
- United Kingdom Health Security Agency, Department of Radiation Effects, Cytogenetics and Pathology Group, Radiation, Chemical and Environmental Hazards Directorate, Didcot, United Kingdom
| | - Simon Bouffler
- United Kingdom Health Security Agency, Department of Radiation Effects, Cytogenetics and Pathology Group, Radiation, Chemical and Environmental Hazards Directorate, Didcot, United Kingdom
| | - Christophe Badie
- United Kingdom Health Security Agency, Department of Radiation Effects, Cytogenetics and Pathology Group, Radiation, Chemical and Environmental Hazards Directorate, Didcot, United Kingdom
| | - Nicola A. Anyamene
- East and North Hertfordshire National Health Service Trust, Mount Vernon Cancer Centre, Northwood, United Kingdom
| | - Elizabeth Ainsbury
- United Kingdom Health Security Agency, Department of Radiation Effects, Cytogenetics and Pathology Group, Radiation, Chemical and Environmental Hazards Directorate, Didcot, United Kingdom
- Environmental Research Group Within the School of Public Health, Faculty of Medicine at Imperial College of Science, Technology and Medicine, London, United Kingdom
| |
Collapse
|
5
|
Kelly RJ, Bever K, Chao J, Ciombor KK, Eng C, Fakih M, Goyal L, Hubbard J, Iyer R, Kemberling HT, Krishnamurthi S, Ku G, Mordecai MM, Morris VK, Paulson AS, Peterson V, Shah MA, Le DT. Society for Immunotherapy of Cancer (SITC) clinical practice guideline on immunotherapy for the treatment of gastrointestinal cancer. J Immunother Cancer 2023; 11:e006658. [PMID: 37286304 PMCID: PMC10254964 DOI: 10.1136/jitc-2022-006658] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/09/2023] [Indexed: 06/09/2023] Open
Abstract
Gastrointestinal (GI) cancers, including esophageal, gastroesophageal junction, gastric, duodenal and distal small bowel, biliary tract, pancreatic, colon, rectal, and anal cancer, comprise a heterogeneous group of malignancies that impose a significant global burden. Immunotherapy has transformed the treatment landscape for several GI cancers, offering some patients durable responses and prolonged survival. Specifically, immune checkpoint inhibitors (ICIs) directed against programmed cell death protein 1 (PD-1), either as monotherapies or in combination regimens, have gained tissue site-specific regulatory approvals for the treatment of metastatic disease and in the resectable setting. Indications for ICIs in GI cancer, however, have differing biomarker and histology requirements depending on the anatomic site of origin. Furthermore, ICIs are associated with unique toxicity profiles compared with other systemic treatments that have long been the mainstay for GI cancer, such as chemotherapy. With the goal of improving patient care by providing guidance to the oncology community, the Society for Immunotherapy of Cancer (SITC) convened a panel of experts to develop this clinical practice guideline on immunotherapy for the treatment of GI cancer. Drawing from published data and clinical experience, the expert panel developed evidence- and consensus-based recommendations for healthcare professionals using ICIs to treat GI cancers, with topics including biomarker testing, therapy selection, and patient education and quality of life considerations, among others.
Collapse
Affiliation(s)
- Ronan J Kelly
- Charles A. Sammons Cancer Center, Baylor University Medical Center at Dallas, Dallas, Texas, USA
| | - Katherine Bever
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Joseph Chao
- City of Hope Comprehensive Cancer Center, Duarte, California, USA
| | - Kristen K Ciombor
- Department of Medicine, Division of Hematology/Oncology, Vanderbilt-Ingram Cancer Center, Nashville, Tennessee, USA
| | - Cathy Eng
- Department of Hematology and Oncology, Vanderbilt-Ingram Cancer Center, Nashville, Tennessee, USA
| | - Marwan Fakih
- Medical Oncology and Therapeutics Research, City of Hope Comprehensive Cancer Center Duarte, Duarte, California, USA
| | - Lipika Goyal
- Department of Medicine, Stanford University, Palo Alto, California, USA
| | - Joleen Hubbard
- Department of Oncology, Mayo Clinic, Rochester, Minnesota, USA
| | - Renuka Iyer
- Department of GI Medical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - Holly T Kemberling
- Department of GI Immunology Oncology, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, Maryland, USA
| | | | - Geoffrey Ku
- Gastrointestinal Oncology Service, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | | | - Van K Morris
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center Division of Cancer Medicine, Houston, Texas, USA
| | - Andrew Scott Paulson
- Department of Medical Oncology, Texas Oncology-Baylor Charles A Sammons Cancer Center, Dallas, Texas, USA
| | - Valerie Peterson
- Department of Thoracic Medical Oncology, Johns Hopkins Sidney Kimmel Cancer Center, Baltimore, Maryland, USA
| | - Manish A Shah
- Department of Medicine, Weill Cornell Medicine, New York, New York, USA
| | - Dung T Le
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
6
|
Ahadova A, Witt J, Haupt S, Gallon R, Hüneburg R, Nattermann J, Ten Broeke S, Bohaumilitzky L, Hernandez-Sanchez A, Santibanez-Koref M, Jackson MS, Ahtiainen M, Pylvänäinen K, Andini K, Grolmusz VK, Möslein G, Dominguez-Valentin M, Møller P, Fürst D, Sijmons R, Borthwick GM, Burn J, Mecklin JP, Heuveline V, von Knebel Doeberitz M, Seppälä T, Kloor M. Is HLA type a possible cancer risk modifier in Lynch syndrome? Int J Cancer 2023; 152:2024-2031. [PMID: 36214792 DOI: 10.1002/ijc.34312] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 09/02/2022] [Accepted: 09/16/2022] [Indexed: 11/05/2022]
Abstract
Lynch syndrome (LS) is the most common inherited cancer syndrome. It is inherited via a monoallelic germline variant in one of the DNA mismatch repair (MMR) genes. LS carriers have a broad 30% to 80% risk of developing various malignancies, and more precise, individual risk estimations would be of high clinical value, allowing tailored cancer prevention and surveillance. Due to MMR deficiency, LS cancers are characterized by the accumulation of frameshift mutations leading to highly immunogenic frameshift peptides (FSPs). Thus, immune surveillance is proposed to inhibit the outgrowth of MMR-deficient cell clones. Recent studies have shown that immunoediting during the evolution of MMR-deficient cancers leads to a counter-selection of highly immunogenic antigens. The immunogenicity of FSPs is dependent on the antigen presentation. One crucial factor determining antigen presentation is the HLA genotype. Hence, a LS carrier's HLA genotype plays an important role in the presentation of FSP antigens to the immune system, and may influence the likelihood of progression from precancerous lesions to cancer. To address the challenge of clarifying this possibility including diverse populations with different HLA types, we have established the INDICATE initiative (Individual cancer risk by HLA type, http://indicate-lynch.org/), an international network aiming at a systematic evaluation of the HLA genotype as a possible cancer risk modifier in LS. Here we summarize the current knowledge on the role of HLA type in cancer risk and outline future research directions to delineate possible association in the scenario of LS with genetically defined risk population and highly immunogenic tumors.
Collapse
Affiliation(s)
- Aysel Ahadova
- Department of Applied Tumor Biology, Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany.,Cooperation Unit Applied Tumor Biology, German Cancer Research Centre (DKFZ), Heidelberg, Germany
| | - Johannes Witt
- Department of Applied Tumor Biology, Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany.,Cooperation Unit Applied Tumor Biology, German Cancer Research Centre (DKFZ), Heidelberg, Germany
| | - Saskia Haupt
- Engineering Mathematics and Computing Lab (EMCL), Interdisciplinary Center for Scientific Computing (IWR), Heidelberg University, Heidelberg, Germany.,Data Mining and Uncertainty Quantification (DMQ), Heidelberg Institute for Theoretical Studies (HITS), Heidelberg, Germany
| | - Richard Gallon
- Translational and Clinical Research Institute, Newcastle University, International Centre for Life, Newcastle upon Tyne, UK
| | - Robert Hüneburg
- Department of Internal Medicine I, University Hospital Bonn, Bonn, Germany.,National Center for Hereditary Tumor Syndromes, University Hospital Bonn, Bonn, Germany
| | - Jacob Nattermann
- Department of Internal Medicine I, University Hospital Bonn, Bonn, Germany.,National Center for Hereditary Tumor Syndromes, University Hospital Bonn, Bonn, Germany
| | - Sanne Ten Broeke
- Department of Genetics, University Medical Center Groningen, Groningen, The Netherlands
| | - Lena Bohaumilitzky
- Department of Applied Tumor Biology, Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany.,Cooperation Unit Applied Tumor Biology, German Cancer Research Centre (DKFZ), Heidelberg, Germany
| | - Alejandro Hernandez-Sanchez
- Department of Applied Tumor Biology, Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany.,Cooperation Unit Applied Tumor Biology, German Cancer Research Centre (DKFZ), Heidelberg, Germany
| | - Mauro Santibanez-Koref
- Translational and Clinical Research Institute, Newcastle University, International Centre for Life, Newcastle upon Tyne, UK
| | - Michael S Jackson
- Translational and Clinical Research Institute, Newcastle University, International Centre for Life, Newcastle upon Tyne, UK
| | | | - Kirsi Pylvänäinen
- Department of Education and science, Nova Hospital, Jyväskylä, Finland
| | - Katarina Andini
- Department of Genetics, University Medical Center Groningen, Groningen, The Netherlands
| | - Vince Kornel Grolmusz
- Department of Molecular Genetics, National Institute of Oncology, Budapest, Hungary.,Hereditary Cancers Research Group, Hungarian Academy of Sciences-Semmelweis University, Budapest, Hungary
| | - Gabriela Möslein
- Department of Surgery, Ev. Krankenhaus Bethesda Hospital, Duisburg, Germany
| | - Mev Dominguez-Valentin
- Department of Tumor Biology, Institute of Cancer Research, The Norwegian Radium Hospital, Oslo, Norway
| | - Pål Møller
- Department of Tumor Biology, Institute of Cancer Research, The Norwegian Radium Hospital, Oslo, Norway
| | - Daniel Fürst
- Institute of Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Transfusion Service, Baden Wuerttemberg-Hessen, University Hospital Ulm, Ulm, Germany.,Institute of Transfusion Medicine, University of Ulm, Ulm, Germany
| | - Rolf Sijmons
- Department of Genetics, University Medical Center Groningen, Groningen, The Netherlands
| | - Gillian M Borthwick
- Translational and Clinical Research Institute, Newcastle University, International Centre for Life, Newcastle upon Tyne, UK
| | - John Burn
- Translational and Clinical Research Institute, Newcastle University, International Centre for Life, Newcastle upon Tyne, UK
| | - Jukka-Pekka Mecklin
- Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland.,Department of Surgery, Nova Hospital, Jyväskylä, Finland
| | - Vincent Heuveline
- Engineering Mathematics and Computing Lab (EMCL), Interdisciplinary Center for Scientific Computing (IWR), Heidelberg University, Heidelberg, Germany.,Data Mining and Uncertainty Quantification (DMQ), Heidelberg Institute for Theoretical Studies (HITS), Heidelberg, Germany
| | - Magnus von Knebel Doeberitz
- Department of Applied Tumor Biology, Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany.,Cooperation Unit Applied Tumor Biology, German Cancer Research Centre (DKFZ), Heidelberg, Germany
| | - Toni Seppälä
- Faculty of Medicine and Health Technology, Tampere University and Tays Cancer Center, Tampere University Hospital, Tampere, Finland.,Department of Gastrointestinal Surgery, Helsinki University Central Hospital, Helsinki, Finland.,Applied Tumor Genomics Research Program, University of Helsinki, Helsinki, Finland
| | - Matthias Kloor
- Department of Applied Tumor Biology, Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany.,Cooperation Unit Applied Tumor Biology, German Cancer Research Centre (DKFZ), Heidelberg, Germany
| |
Collapse
|
7
|
Volovat SR, Augustin I, Zob D, Boboc D, Amurariti F, Volovat C, Stefanescu C, Stolniceanu CR, Ciocoiu M, Dumitras EA, Danciu M, Apostol DGC, Drug V, Shurbaji SA, Coca LG, Leon F, Iftene A, Herghelegiu PC. Use of Personalized Biomarkers in Metastatic Colorectal Cancer and the Impact of AI. Cancers (Basel) 2022; 14:4834. [PMID: 36230757 PMCID: PMC9562853 DOI: 10.3390/cancers14194834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 09/18/2022] [Accepted: 09/29/2022] [Indexed: 12/09/2022] Open
Abstract
Colorectal cancer is a major cause of cancer-related death worldwide and is correlated with genetic and epigenetic alterations in the colonic epithelium. Genetic changes play a major role in the pathophysiology of colorectal cancer through the development of gene mutations, but recent research has shown an important role for epigenetic alterations. In this review, we try to describe the current knowledge about epigenetic alterations, including DNA methylation and histone modifications, as well as the role of non-coding RNAs as epigenetic regulators and the prognostic and predictive biomarkers in metastatic colorectal disease that can allow increases in the effectiveness of treatments. Additionally, the intestinal microbiota's composition can be an important biomarker for the response to strategies based on the immunotherapy of CRC. The identification of biomarkers in mCRC can be enhanced by developing artificial intelligence programs. We present the actual models that implement AI technology as a bridge connecting ncRNAs with tumors and conducted some experiments to improve the quality of the model used as well as the speed of the model that provides answers to users. In order to carry out this task, we implemented six algorithms: the naive Bayes classifier, the random forest classifier, the decision tree classifier, gradient boosted trees, logistic regression and SVM.
Collapse
Affiliation(s)
- Simona-Ruxandra Volovat
- Department of Medical Oncology-Radiotherapy, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Str., 700115 Iasi, Romania
| | - Iolanda Augustin
- Department of Medical Oncology, AI.Trestioreanu Institute of Oncology, 022328 Bucharest, Romania
| | - Daniela Zob
- Department of Medical Oncology, AI.Trestioreanu Institute of Oncology, 022328 Bucharest, Romania
| | - Diana Boboc
- Department of Medical Oncology-Radiotherapy, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Str., 700115 Iasi, Romania
| | - Florin Amurariti
- Department of Medical Oncology-Radiotherapy, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Str., 700115 Iasi, Romania
| | - Constantin Volovat
- Department of Medical Oncology, “Euroclinic” Center of Oncology, 2 Vasile Conta Str., 700106 Iasi, Romania
| | - Cipriana Stefanescu
- Department of Biophysics and Medical Physics-Nuclear Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Str., 700115 Iasi, Romania
| | - Cati Raluca Stolniceanu
- Department of Biophysics and Medical Physics-Nuclear Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Str., 700115 Iasi, Romania
| | - Manuela Ciocoiu
- Department of Pathophysiology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Eduard Alexandru Dumitras
- Department of Pathophysiology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
- Department of Anesthesiology and Intensive Care, Regional Institute of Oncology, 700115 Iasi, Romania
| | - Mihai Danciu
- Pathology Department, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | | | - Vasile Drug
- Department of Gastroenterology, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Str., 700115 Iasi, Romania
- Gastroenterology Clinic, Institute of Gastroenterology and Hepatology, ‘St. Spiridon’ Clinical Hospital, 700115 Iasi, Romania
| | - Sinziana Al Shurbaji
- Gastroenterology Clinic, Institute of Gastroenterology and Hepatology, ‘St. Spiridon’ Clinical Hospital, 700115 Iasi, Romania
| | - Lucia-Georgiana Coca
- Faculty of Computer Science, Alexandru Ioan Cuza University, 700115 Iasi, Romania
| | - Florin Leon
- Faculty of Automatic Control and Computer Engineering, Gheorghe Asachi Technical University, 700115 Iasi, Romania
| | - Adrian Iftene
- Faculty of Computer Science, Alexandru Ioan Cuza University, 700115 Iasi, Romania
| | - Paul-Corneliu Herghelegiu
- Faculty of Automatic Control and Computer Engineering, Gheorghe Asachi Technical University, 700115 Iasi, Romania
| |
Collapse
|
8
|
Xiong B, Song FX, Chen HL, Wang XJ, Jin ZX, Han TY, Li Y, Zhang DK. Discoidin domain receptor 1a (DDR1a) confers 5-fluorouracil cytotoxicity in LoVo cell via PI3K/AKT/Bcl-2 pathway. Bioengineered 2022; 13:9805-9814. [PMID: 35416117 PMCID: PMC9161994 DOI: 10.1080/21655979.2022.2060782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
5-Fluorouracil (5-FU) is a common chemotherapy drug for patients with advanced colorectal cancer; however, many patients develop resistance to 5-FU and suffer from treatment failure. Discoidin domain receptor 1 (DDR1) is upregulated in multiple cancers and positively associated with chemoresistance. We explored the effect of DDR1a on the cytotoxicity induced by 5-FU in LoVo cells and the underlying mechanism. Therefore, DDR1a overexpression (DDR1ahigh) and knockdown in LoVo cell lines (shDDR1a) were constructed to detect cell viability and cytotoxicity induced by 5-FU. The results showed that cell viability of DDR1ahigh cells was higher in comparison with that of the control group. When 5-FU (5 µM) was administered, the percentage of apoptotic cells, cytochrome C release and caspase-3 activity was found to be higher in the shDDR1a group than that in the control group. Both of PI3K and MDM2 proteins level decreased in DDR1ahigh and shDDR1a, but the BAX/Bcl-2 level in the shDDR1a group increased compared to that in the control. Therefore, DDR1a might be a potential therapeutic target for 5-FU chemoresistance in colorectal cancer.
Collapse
Affiliation(s)
- Bin Xiong
- Department of Oncology, The Second Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Fei-Xue Song
- Department of Oncology, The Second Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Hui-Ling Chen
- The Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu, China
| | - Xiao-Juan Wang
- The Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu, China
| | - Zheng-Xu Jin
- The Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu, China
| | - Ti-Yun Han
- Laboratory of Digestive Disease, The Second Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Yi Li
- School/Hospital of Stomatology Lanzhou University, Lanzhou, Gansu, China
| | - De-Kui Zhang
- Department of Gastroenterology, The Second Hospital of Lanzhou University, Lanzhou, Gansu, China
| |
Collapse
|
9
|
Golas MM, Gunawan B, Cakir M, Cameron S, Enders C, Liersch T, Füzesi L, Sander B. Evolutionary patterns of chromosomal instability and mismatch repair deficiency in proximal and distal colorectal cancer. Colorectal Dis 2022; 24:157-176. [PMID: 34623739 DOI: 10.1111/codi.15946] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 07/04/2021] [Accepted: 09/28/2021] [Indexed: 12/27/2022]
Abstract
AIM Colorectal carcinomas (CRCs) progress through heterogeneous pathways. The aim of this study was to analyse whether or not the cytogenetic evolution of CRC is linked to tumour site, level of chromosomal imbalance and metastasis. METHOD A set of therapy-naïve pT3 CRCs comprising 26 proximal and 49 distal pT3 CRCs was studied by combining immunohistochemistry of mismatch repair (MMR) proteins, microsatellite analyses and molecular karyotyping as well as clinical parameters. RESULTS A MMR deficient/microsatellite-unstable (dMMR/MSI-H) status was associated with location of the primary tumour proximal to the splenic flexure, and dMMR/MSI-H tumours presented with significantly lower levels of chromosomal imbalances compared with MMR proficient/microsatellite-stable (pMMR/MSS) tumours. Oncogenetic tree modelling suggested two evolutionary clusters characterized by dMMR/MSI-H and chromosomal instability (CIN), respectively, for both proximal and distal CRCs. In CIN cases, +13q, -18q and +20q were predicted as preferentially early events, and -1p, -4 -and -5q as late events. Separate oncogenetic tree models of proximal and distal cases indicated similar early events independent of tumour site. However, in cases with high CIN defined by more than 10 copy number aberrations, loss of 17p occurred earlier in cytogenetic evolution than in cases showing low to moderate CIN. Differences in the oncogenetic trees were observed for CRCs with lymph node and distant metastasis. Loss of 8p was modelled as an early event in node-positive CRC, while +7p and +8q comprised early events in CRC with distant metastasis. CONCLUSION CRCs characterized by CIN follow multiple, interconnected genetic pathways in line with the basic 'Vogelgram' concept proposed for the progression of CRC that places the accumulation of genetic changes at centre of tumour evolution. However, the timing of specific genetic events may favour metastatic potential.
Collapse
Affiliation(s)
- Mariola Monika Golas
- Department of Hematology and Medical Oncology, Comprehensive Cancer Center Augsburg, University Medical Center Augsburg, Augsburg, Germany
| | - Bastian Gunawan
- Institute of Pathology, University Medical Center Göttingen, Göttingen, Germany
| | - Meliha Cakir
- Institute of Pathology, University Medical Center Göttingen, Göttingen, Germany
| | - Silke Cameron
- Department of Gastroenterology and Gastrointestinal Oncology, University Medical Center Göttingen, Göttingen, Germany
| | - Christina Enders
- Institute of Pathology, University Medical Center Göttingen, Göttingen, Germany
| | - Torsten Liersch
- Department of General, Visceral and Pediatric Surgery, University Medical Center Göttingen, Göttingen, Germany
| | - Laszlo Füzesi
- Institute of Pathology, University Medical Center Göttingen, Göttingen, Germany.,Institute of Pathology and Molecular Diagnostics, University Medical Center Augsburg, Augsburg, Germany
| | - Bjoern Sander
- Institute of Pathology, University Medical Center Göttingen, Göttingen, Germany.,Institute of Pathology, Hannover Medical School, Hannover, Germany
| |
Collapse
|
10
|
Harder A. Do non-pathogenic variants of DNA mismatch repair genes modify neurofibroma load in neurofibromatosis type 1? Childs Nerv Syst 2022; 38:705-713. [PMID: 34997843 PMCID: PMC8940751 DOI: 10.1007/s00381-021-05436-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 12/13/2021] [Indexed: 01/07/2023]
Abstract
Non-pathogenic mismatch repair (MMR) gene variants can be associated with decreased MMR capacity in several settings. Due to an increased mutation rate, reduced MMR capacity leads to accumulation of somatic sequence changes in tumour suppressor genes such as in the neurofibromatosis type 1 (NF1) gene. Patients with autosomal dominant NF1 typically develop neurofibromas ranging from single to thousands. Concerning the number of neurofibromas NF1 patients face a situation that is still not predictable. A few studies suggested that germline non-pathogenic MMR gene variants modify the number of neurofibromas in NF1 and by this mechanism may promote the extent of neurofibroma manifestation. This review represents first evidence that specific non-pathogenic single nucleotide variants of MMR genes act as a modifier of neurofibroma manifestation in NF1, highlighting MSH2 re4987188 as the best analysed non-pathogenic variant so far. In summary, besides MSH2 promotor methylation, specific non-pathogenic germline MSH2 variants are associated with the extent of neurofibroma manifestation. Those variants can serve as a biomarker to facilitate better mentoring of NF1 patients at risk.
Collapse
Affiliation(s)
- Anja Harder
- Institute of Pathology, Medical Faculty, Martin Luther University Halle-Wittenberg, Halle (Saale), 06120, Germany.
- Institute of Neuropathology, University Hospital Münster, Münster, Germany.
- Faculty of Health Sciences, Joint Faculty, Potsdam, Germany.
| |
Collapse
|
11
|
Díaz-Gay M, Alexandrov LB. Unraveling the genomic landscape of colorectal cancer through mutational signatures. Adv Cancer Res 2021; 151:385-424. [PMID: 34148618 DOI: 10.1016/bs.acr.2021.03.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Colorectal cancer, along with most other cancer types, is driven by somatic mutations. Characteristic patterns of somatic mutations, known as mutational signatures, arise as a result of the activities of different mutational processes. Mutational signatures have diverse origins, including exogenous and endogenous sources. In the case of colorectal cancer, the analysis of mutational signatures has elucidated specific signatures for classically associated DNA repair deficiencies, namely mismatch repair (leading to microsatellite instability), base excision repair (due to MUTYH or NTHL1 mutations), and polymerase proofreading (due to POLE and POLD1 exonuclease domain mutations). Additional signatures also play a role in colorectal cancer, including those related to normal aging and those associated with gut microbiota, as well as a number of signatures with unknown etiologies. This chapter provides an overview of the current knowledge of mutational signatures, with a focus on colorectal cancer and on the recently reported signatures in physiologically normal and inflammatory bowel disease-affected somatic colon tissues.
Collapse
Affiliation(s)
- Marcos Díaz-Gay
- Department of Cellular and Molecular Medicine, UC San Diego, La Jolla, CA, United States; Department of Bioengineering, UC San Diego, La Jolla, CA, United States; Moores Cancer Center, UC San Diego, La Jolla, CA, United States
| | - Ludmil B Alexandrov
- Department of Cellular and Molecular Medicine, UC San Diego, La Jolla, CA, United States; Department of Bioengineering, UC San Diego, La Jolla, CA, United States; Moores Cancer Center, UC San Diego, La Jolla, CA, United States.
| |
Collapse
|
12
|
Toboni MD, Mutch DG. The emerging role of precision medicine in the treatment of endometrial cancer. EXPERT REVIEW OF PRECISION MEDICINE AND DRUG DEVELOPMENT 2020. [DOI: 10.1080/23808993.2020.1732204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Michael D. Toboni
- Division of Gynecologic Oncology, Barnes Jewish Hospital, Washington University, St. Louis, MO, USA
| | - David G. Mutch
- Division of Gynecologic Oncology, Barnes Jewish Hospital, Washington University, St. Louis, MO, USA
| |
Collapse
|
13
|
Stuckel AJ, Zhang W, Zhang X, Zeng S, Dougherty U, Mustafi R, Zhang Q, Perreand E, Khare T, Joshi T, West-Szymanski DC, Bissonnette M, Khare S. Enhanced CXCR4 Expression Associates with Increased Gene Body 5-Hydroxymethylcytosine Modification but not Decreased Promoter Methylation in Colorectal Cancer. Cancers (Basel) 2020; 12:cancers12030539. [PMID: 32110952 PMCID: PMC7139960 DOI: 10.3390/cancers12030539] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 02/19/2020] [Accepted: 02/24/2020] [Indexed: 12/19/2022] Open
Abstract
In colorectal cancer (CRC), upregulation of the C-X-C motif chemokine receptor 4 (CXCR4) is correlated with metastasis and poor prognosis, highlighting the need to further elucidate CXCR4’s regulation in CRC. For the first time, DNA methylation and 5-hydroxymethylcytosine aberrations were investigated to better understand the epigenetic regulation of CXCR4 in CRC. CXCR4 expression levels were measured using qPCR and immunoblotting in normal colon tissues, primary colon cancer tissues and CRC cell lines. Publicly available RNA-seq and methylation data from The Cancer Genome Atlas (TCGA) were extracted from tumors from CRC patients. The DNA methylation status spanning CXCR4 gene was evaluated using combined bisulfite restriction analysis (COBRA). The methylation status in the CXCR4 gene body was analyzed using previously performed nano-hmC-seal data from colon cancers and adjacent normal colonic mucosa. CXCR4 expression levels were significantly increased in tumor stromal cells and in tumor colonocytes, compared to matched cell types from adjacent normal-appearing mucosa. CXCR4 promoter methylation was detected in a minority of colorectal tumors in the TCGA. The CpG island of the CXCR4 promoter showed increased methylation in three of four CRC cell lines. CXCR4 protein expression differences were also notable between microsatellite stable (MSS) and microsatellite instable (MSI) tumor cell lines. While differential methylation was not detected in CXCR4, enrichment of 5-hydroxymethylcytosine (5hmC) in CXCR4 gene bodies in CRC was observed compared to adjacent mucosa.
Collapse
Affiliation(s)
- Alexei J. Stuckel
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Missouri, Columbia, MO 65212, USA (Q.Z.); (E.P.); (T.K.)
| | - Wei Zhang
- Department of Preventive Medicine and The Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA;
| | - Xu Zhang
- Department of Medicine, University of Illinois, Chicago, IL 60607, USA;
| | - Shuai Zeng
- Bond Life Sciences Center, University of Missouri, Columbia, MO 65201, USA; (S.Z.); (T.J.)
- Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, MO 65201, USA
| | - Urszula Dougherty
- Department of Medicine, Section of Gastroenterology, Hepatology and Nutrition, The University of Chicago, Chicago, IL 60637, USA; (U.D.); (R.M.); (D.C.W.-S.); (M.B.)
| | - Reba Mustafi
- Department of Medicine, Section of Gastroenterology, Hepatology and Nutrition, The University of Chicago, Chicago, IL 60637, USA; (U.D.); (R.M.); (D.C.W.-S.); (M.B.)
| | - Qiong Zhang
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Missouri, Columbia, MO 65212, USA (Q.Z.); (E.P.); (T.K.)
| | - Elsa Perreand
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Missouri, Columbia, MO 65212, USA (Q.Z.); (E.P.); (T.K.)
| | - Tripti Khare
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Missouri, Columbia, MO 65212, USA (Q.Z.); (E.P.); (T.K.)
| | - Trupti Joshi
- Bond Life Sciences Center, University of Missouri, Columbia, MO 65201, USA; (S.Z.); (T.J.)
- Institute for Data Science and Informatics, University of Missouri, Columbia, MO 65211, USA
- Department of Health Management and Informatics, School of Medicine, University of Missouri, Columbia, MO 65212, USA
| | - Diana C. West-Szymanski
- Department of Medicine, Section of Gastroenterology, Hepatology and Nutrition, The University of Chicago, Chicago, IL 60637, USA; (U.D.); (R.M.); (D.C.W.-S.); (M.B.)
| | - Marc Bissonnette
- Department of Medicine, Section of Gastroenterology, Hepatology and Nutrition, The University of Chicago, Chicago, IL 60637, USA; (U.D.); (R.M.); (D.C.W.-S.); (M.B.)
| | - Sharad Khare
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Missouri, Columbia, MO 65212, USA (Q.Z.); (E.P.); (T.K.)
- Harry S. Truman Memorial Veterans’ Hospital, Columbia, MO 65201, USA
- Correspondence:
| |
Collapse
|
14
|
Thomopoulou K, Tzardi M, Mavroudis D, Souglakos I. A Case Presentation of a Patient with Microsatellite Instability and BRAF Mutant Metastatic Colon Cancer and Bibliography Update. Case Rep Oncol Med 2019; 2019:4767019. [PMID: 30911424 PMCID: PMC6398041 DOI: 10.1155/2019/4767019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 01/16/2019] [Indexed: 01/03/2023] Open
Abstract
This is a case of a patient who presented to the emergency department with acute abdominal pain due to bowel obstruction. An extended right hemicolectomy with ileosigmoid anastomosis due to an obstructing mass on the splenic flexure was urgently performed. During operation, liver and peritoneal lesions were detected and samples were also sent for histological analysis. Pathology report was consistent with poorly differentiated mucinous adenocarcinoma with signet ring cells; peritoneal lesions were confirmed histologically as metastatic. Genetic testing revealed the BRAFV600E mutation and mismatch repair deficiency (dMMR). After progressing on 1st line chemotherapy, the patient has a continuing and long-lasting partial response to 2nd line treatment with pembrolizumab.
Collapse
Affiliation(s)
- K. Thomopoulou
- Department of Medical Oncology, University General Hospital of Heraklion, Heraklion, Greece
| | - M. Tzardi
- Laboratory Department of Pathology, Medical School, University of Crete, Greece
| | - D. Mavroudis
- Department of Medical Oncology, University General Hospital of Heraklion, Heraklion, Greece
| | - I. Souglakos
- Department of Medical Oncology, University General Hospital of Heraklion, Heraklion, Greece
| |
Collapse
|
15
|
Mooi JK, Luk IY, Mariadason JM. Cell Line Models of Molecular Subtypes of Colorectal Cancer. Methods Mol Biol 2019; 1765:3-26. [PMID: 29589298 DOI: 10.1007/978-1-4939-7765-9_1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Colorectal cancer (CRC) is a genetically diverse disease necessitating the need for well-characterized and reproducible models to enable its accurate investigation. Recent genomic analyses have confirmed that CRC cell lines accurately retain the key genetic alterations and represent the major molecular subtypes of primary CRC, underscoring their value as powerful preclinical models. In this chapter we detail the important issues to consider when using CRC cell lines, the techniques used for their appropriate molecular classification, and the methods by which they are cultured in vitro and as subcutaneous xenografts in immune-compromised mice. A panel of commonly available CRC cell lines that have been characterized for key molecular subtypes is also provided as a resource for investigators to select appropriate models to address specific research questions.
Collapse
Affiliation(s)
- Jennifer K Mooi
- Olivia Newton-John Cancer Research Institute, Melbourne, VIC, Australia
| | - Ian Y Luk
- Olivia Newton-John Cancer Research Institute, Melbourne, VIC, Australia
| | - John M Mariadason
- Olivia Newton-John Cancer Research Institute, Melbourne, VIC, Australia.
| |
Collapse
|
16
|
Abstract
Our knowledge of genetic mechanisms involved in cancer initiation, promotion, and progression recently bas expanded. In order to benefit from this expansion and to apply genetic discoveries to current protocols for prevention, screening, diagnosis, treatment, prognosis, and monitoring for minimal residual disease, a working knowledge must be developed of the genetic principles, oncogenes, tumor suppressor genes, and genetic models of carcinogenesis. Genetic susceptibility testing for cancer soon will be introduced into oncology practice through established familial risk counseling programs, and the oncologist must be prepared to address the medical, ethical, legal, economic, psychological, and social issues that accompany this testing.
Collapse
Affiliation(s)
- June Peters
- Familial Cancer Program at Oncogenetics, Phoenix, Ariz
| |
Collapse
|
17
|
Cama A, Genuardi M, Guanti G, Radice P, Varesco L. Molecular Genetics of Hereditary Non-Polyposis Colorectal Cancer (HNPCC). TUMORI JOURNAL 2018; 82:122-35. [PMID: 8644374 DOI: 10.1177/030089169608200206] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The story of the molecular genetics of HNPCC is one of astonishingly rapid achievements. In just 16 months, from May 1993 to September 1994, four different genes, namely hMSH2, hMLH1, hPMS1 and hPMS2 have been identified and demonstrated to be associated with the disease. Their cloning was facilitated by the finding that tumor cells in HNPCC patients display a hypermutability of DNA short tandem repeats (microsatellite instability). In fact, HNPCC associated genes are the human counterparts of genetic elements known to control the fidelity of DNA replication in lower organisms. So far, more than 50 germline mutations of hMSH2 and hMLH1 genes have been reported in HNPCC kindreds. In addition, somatic mutations have been documented in hereditary as well as sporadic cancers. Unfortunately, the molecular diagnosis of HNPCC is hampered by the lack of mutational “hot spots” and of clearly defined genotype-phenotype correlations and different screening methods are to be employed for the analysis of affected and at-risk individuals.
Collapse
Affiliation(s)
- A Cama
- Cattedra di Patologia Generale, Università Gabriele D'Annuzio, Chieti,Italy
| | | | | | | | | |
Collapse
|
18
|
Ward TA, McHugh PJ, Durant ST. Small molecule inhibitors uncover synthetic genetic interactions of human flap endonuclease 1 (FEN1) with DNA damage response genes. PLoS One 2017. [PMID: 28628639 PMCID: PMC5476263 DOI: 10.1371/journal.pone.0179278] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Flap endonuclease 1 (FEN1) is a structure selective endonuclease required for proficient DNA replication and the repair of DNA damage. Cellularly active inhibitors of this enzyme have previously been shown to induce a DNA damage response and, ultimately, cell death. High-throughput screens of human cancer cell-lines identify colorectal and gastric cell-lines with microsatellite instability (MSI) as enriched for cellular sensitivity to N-hydroxyurea series inhibitors of FEN1, but not the PARP inhibitor olaparib or other inhibitors of the DNA damage response. This sensitivity is due to a synthetic lethal interaction between FEN1 and MRE11A, which is often mutated in MSI cancers through instabilities at a poly(T) microsatellite repeat. Disruption of ATM is similarly synthetic lethal with FEN1 inhibition, suggesting that disruption of FEN1 function leads to the accumulation of DNA double-strand breaks. These are likely a result of the accumulation of aberrant replication forks, that accumulate as a consequence of a failure in Okazaki fragment maturation, as inhibition of FEN1 is toxic in cells disrupted for the Fanconi anemia pathway and post-replication repair. Furthermore, RAD51 foci accumulate as a consequence of FEN1 inhibition and the toxicity of FEN1 inhibitors increases in cells disrupted for the homologous recombination pathway, suggesting a role for homologous recombination in the resolution of damage induced by FEN1 inhibition. Finally, FEN1 appears to be required for the repair of damage induced by olaparib and cisplatin within the Fanconi anemia pathway, and may play a role in the repair of damage associated with its own disruption.
Collapse
Affiliation(s)
- Thomas A. Ward
- AstraZeneca, Innovative Medicines and Early Development Biotech Unit, Oncology Bioscience, Alderley Park, Macclesfield, Cheshire, United Kingdom
- Department of Oncology, MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
- * E-mail: (TAW); (STD)
| | - Peter J. McHugh
- Department of Oncology, MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Stephen T. Durant
- AstraZeneca, Innovative Medicines and Early Development Biotech Unit, Oncology Bioscience, Alderley Park, Macclesfield, Cheshire, United Kingdom
- AstraZeneca, Innovative Medicines and Early Development Biotech Unit, Oncology Bioscience, Little Chesterford, Cambridge, United Kingdom
- * E-mail: (TAW); (STD)
| |
Collapse
|
19
|
A Regulatory Role for RUNX1, RUNX3 in the Maintenance of Genomic Integrity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 962:491-510. [PMID: 28299675 DOI: 10.1007/978-981-10-3233-2_29] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
All human cells are constantly attacked by endogenous and exogenous agents that damage the integrity of their genomes. Yet, the ensuing damage is mostly fixed and very rarely gives rise to genomic defects that promote cancer formation. This is due to the co-ordinated functioning of DNA repair proteins and checkpoint mechanisms that accurately detect and repair DNA damage to ensure genomic fitness. According to accumulating evidence, the RUNX family of transcription factors participate in the maintenance of genomic stability through transcriptional and non-transcriptional mechanisms. RUNX1 and RUNX3 maintain genomic integrity in a transcriptional manner by regulating the transactivation of apoptotic genes following DNA damage via complex formation with p53. RUNX1 and RUNX3 also maintain genomic integrity in a non-transcriptional manner during interstand crosslink repair by promoting the recruitment of FANCD2 to sites of DNA damage. Since RUNX genes are frequently aberrant in human cancer, here, we argue that one of the major modes by which RUNX inactivation promotes neoplastic transformation is through the loss of genomic integrity. In particular, there exists strong evidence that leukemic RUNX1-fusions such as RUNX1-ETO disrupt genomic integrity and induce a "mutator" phenotype during the early stages of leukemogenesis. Consistent with increased DNA damage accumulation induced by RUNX1-ETO, PARP inhibition has been shown to be an effective synthetic-lethal therapeutic approach against RUNX1-ETO expressing leukemias. Here, in this chapter we will examine current evidence suggesting that the tumor suppressor potential of RUNX proteins can be at least partly attributed to their ability to ensure high-fidelity DNA repair and thus prevent mutational accumulation during cancer progression.
Collapse
|
20
|
Perez RE, Shen H, Duan L, Kim RH, Kim T, Park NH, Maki CG. Modeling the Etiology of p53-mutated Cancer Cells. J Biol Chem 2016; 291:10131-47. [PMID: 27022024 DOI: 10.1074/jbc.m116.724781] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Indexed: 12/23/2022] Open
Abstract
p53 gene mutations are among the most common alterations in cancer. In most cases, missense mutations in one TP53 allele are followed by loss-of-heterozygosity (LOH), so tumors express only mutant p53. TP53 mutations and LOH have been linked, in many cases, with poor therapy response and worse outcome. Despite this, remarkably little is known about how TP53 point mutations are acquired, how LOH occurs, or the cells involved. Nutlin-3a occupies the p53-binding site in MDM2 and blocks p53-MDM2 interaction, resulting in the stabilization and activation of p53 and subsequent growth arrest or apoptosis. We leveraged the powerful growth inhibitory activity of Nutlin-3a to select p53-mutated cells and examined how TP53 mutations arise and how the remaining wild-type allele is lost or inactivated. Mismatch repair (MMR)-deficient colorectal cancer cells formed heterozygote (p53 wild-type/mutant) colonies when cultured in low doses of Nutlin-3a, whereas MMR-corrected counterparts did not. Placing these heterozygotes in higher Nutlin-3a doses selected clones in which the remaining wild-type TP53 was silenced. Our data suggest silencing occurred through a novel mechanism that does not involve DNA methylation, histone methylation, or histone deacetylation. These data indicate MMR deficiency in colorectal cancer can give rise to initiating TP53 mutations and that TP53 silencing occurs via a copy-neutral mechanism. Moreover, the data highlight the use of MDM2 antagonists as tools to study mechanisms of TP53 mutation acquisition and wild-type allele loss or silencing in cells with defined genetic backgrounds.
Collapse
Affiliation(s)
- Ricardo E Perez
- From the Department of Anatomy and Cell Biology, Rush University Medical Center, Chicago, Illinois 60612 and
| | - Hong Shen
- From the Department of Anatomy and Cell Biology, Rush University Medical Center, Chicago, Illinois 60612 and
| | - Lei Duan
- From the Department of Anatomy and Cell Biology, Rush University Medical Center, Chicago, Illinois 60612 and
| | - Reuben H Kim
- The Shapiro Family Laboratory of Viral Oncology and Aging Research, UCLA School of Dentistry and David Geffen School of Medicine at UCLA, Los Angeles, California 90095
| | - Terresa Kim
- The Shapiro Family Laboratory of Viral Oncology and Aging Research, UCLA School of Dentistry and David Geffen School of Medicine at UCLA, Los Angeles, California 90095
| | - No-Hee Park
- The Shapiro Family Laboratory of Viral Oncology and Aging Research, UCLA School of Dentistry and David Geffen School of Medicine at UCLA, Los Angeles, California 90095
| | - Carl G Maki
- From the Department of Anatomy and Cell Biology, Rush University Medical Center, Chicago, Illinois 60612 and
| |
Collapse
|
21
|
Cekaite L, Eide PW, Lind GE, Skotheim RI, Lothe RA. MicroRNAs as growth regulators, their function and biomarker status in colorectal cancer. Oncotarget 2016; 7:6476-505. [PMID: 26623728 PMCID: PMC4872728 DOI: 10.18632/oncotarget.6390] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 11/16/2015] [Indexed: 02/07/2023] Open
Abstract
Gene expression is in part regulated by microRNAs (miRNAs). This review summarizes the current knowledge of miRNAs in colorectal cancer (CRC); their role as growth regulators, the mechanisms that regulate the miRNAs themselves and the potential of miRNAs as biomarkers. Although thousands of tissue samples and bodily fluids from CRC patients have been investigated for biomarker potential of miRNAs (>160 papers presented in a comprehensive tables), none single miRNA nor miRNA expression signatures are in clinical use for this disease. More than 500 miRNA-target pairs have been identified in CRC and we discuss how these regulatory nodes interconnect and affect signaling pathways in CRC progression.
Collapse
Affiliation(s)
- Lina Cekaite
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- K.G.Jebsen Colorectal Cancer Research Centre, Oslo University Hospital, Oslo, Norway
| | - Peter W. Eide
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- K.G.Jebsen Colorectal Cancer Research Centre, Oslo University Hospital, Oslo, Norway
| | - Guro E. Lind
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- K.G.Jebsen Colorectal Cancer Research Centre, Oslo University Hospital, Oslo, Norway
| | - Rolf I. Skotheim
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- K.G.Jebsen Colorectal Cancer Research Centre, Oslo University Hospital, Oslo, Norway
| | - Ragnhild A. Lothe
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- K.G.Jebsen Colorectal Cancer Research Centre, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
22
|
Pajares JA, Perea J. Multiple primary colorectal cancer: Individual or familial predisposition? World J Gastrointest Oncol 2015; 7:434-444. [PMID: 26688706 PMCID: PMC4678390 DOI: 10.4251/wjgo.v7.i12.434] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2015] [Revised: 09/28/2015] [Accepted: 10/20/2015] [Indexed: 02/05/2023] Open
Abstract
Colorectal carcinoma (CRC) is one of the most frequent cancers. Along the surface of the large bowel, several foci of CRC may appear simultaneously or over the time. The development of at least two different tumours has been defined as multiple primary CRC (MPCRC): When more than one tumour is diagnosed at the same time, it is known as synchronous CRC (SCRC), while when a second neoplasm is diagnosed some time after the resection and/or diagnosis of the first lesion, it is called metachronous CRC (MCRC). Multiple issues can promote the development of MPCRC, ranging from different personal factors, such as environmental exposure, to familial predisposition due to hereditary factors. However, most studies do not distinguish this dichotomy. High- and low-pentrance genetic variants are involved in MPCRC. An increased risk for MPCRC has been described in Lynch syndrome, familial adenomatous polyposis, and serrated polyposis. Non-syndromic familial CRCs should also be considered as risk factors for MPCRC. Environmental factors can promote damage to colon mucosae that enable the concurrence of MPCRC. Epigenetics are thought to play a major role in the carcinogenesis of sporadic MPCRC. The methylation state of the DNA depends on multiple environmental factors (e.g., smoking and eating foods cooked at high temperatures), and this can contribute to increasing the MPCRC rate. Certain clinical features may also suggest individual predisposition for MPCRC. Different etiopathogenic factors are suspected to be involved in SCRC and MCRC, and different familial vs individual factors may be implicated. MCRC seems to follow a familial pattern, whereas individual factors are more important in SCRC. Further studies must be carried out to know the molecular basis of risks for MPCRC in order to modify, if necessary, its clinical management, especially from a preventive point of view.
Collapse
|
23
|
Genther Williams SM, Kuznicki AM, Andrade P, Dolinski BM, Elbi C, O’Hagan RC, Toniatti C. Treatment with the PARP inhibitor, niraparib, sensitizes colorectal cancer cell lines to irinotecan regardless of MSI/MSS status. Cancer Cell Int 2015; 15:14. [PMID: 25685067 PMCID: PMC4326439 DOI: 10.1186/s12935-015-0162-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Accepted: 01/14/2015] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Cells with homologous recombination (HR) deficiency, most notably caused by mutations in the BRCA1 or BRCA2 genes, are sensitive to PARP inhibition. Microsatellite instability (MSI) accounts for 10-15% of colorectal cancer (CRC) and is hypothesized to lead to HR defects due to altered expression of Mre11, a protein required for double strand break (DSB) repair. Indeed, others have reported that PARP inhibition is efficacious in MSI CRC. METHODS Here we examine the response to niraparib, a potent PARP-1/PARP-2 inhibitor currently under clinical evaluation, in MSI versus microsatellite stable (MSS) CRC cell lines in vitro and in vivo. We compiled a large panel of MSI and MSS CRC cell lines and evaluated the anti-proliferative activity of niraparib. In addition to testing single agent cytotoxic activity of niraparib, we also tested irinotecan (or SN-38, the active metabolite of irinotecan) activity alone and in combination with niraparib in vitro and in vivo. RESULTS In contrast to earlier reports, MSI CRC cell lines were not more sensitive to niraparib than MSS CRC cell lines¸ suggesting that the MSI phenotype does not sensitize CRC cell lines to PARP inhibition. Moreover, even the most sensitive MSI cell lines had niraparib EC50s greater than 10 fold higher than BRCA-deficient cell lines. However, MSI lines were more sensitive to SN-38 than MSS lines, consistent with previous findings. We have also demonstrated that combination of niraparib and irinotecan was more efficacious than either agent alone in both MSI and MSS cell lines both in vitro and in vivo, and that niraparib potentiates the effect of irinotecan regardless of MSI status. CONCLUSIONS Our results support the clinical evaluation of this combination in all CRC patients, regardless of MSI status.
Collapse
Affiliation(s)
- Sybil M Genther Williams
- />Department of Oncology, Merck Research Laboratories, 33 Avenue Louis Pasteur, Boston, MA 02115 USA
| | - Apryle M Kuznicki
- />Department of In Vivo Pharmacology, Merck Research Laboratories, 33 Avenue Louis Pasteur, Boston, MA 02115 USA
| | - Paula Andrade
- />Department of In Vivo Pharmacology, Merck Research Laboratories, 33 Avenue Louis Pasteur, Boston, MA 02115 USA
| | - Brian M Dolinski
- />Department of Oncology, Merck Research Laboratories, 33 Avenue Louis Pasteur, Boston, MA 02115 USA
| | - Cem Elbi
- />Department of Oncology, Merck Research Laboratories, 33 Avenue Louis Pasteur, Boston, MA 02115 USA
- />Current address: Bayer HealthCare, 100 Bayer Road, Whippany, NJ 07891 USA
| | - Ronan C O’Hagan
- />Department of Oncology, Merck Research Laboratories, 33 Avenue Louis Pasteur, Boston, MA 02115 USA
| | - Carlo Toniatti
- />Department of Oncology, Merck Research Laboratories, 33 Avenue Louis Pasteur, Boston, MA 02115 USA
- />Current address: Institute for Applied Cancer Science, 1901 East Road, Unit 1956, Room 4SCR6.1009, Houston, TX 77005 USA
| |
Collapse
|
24
|
Kang J, Lee HW, Kim IK, Kim NK, Sohn SK, Lee KY. Clinical implications of microsatellite instability in T1 colorectal cancer. Yonsei Med J 2015; 56:175-181. [PMID: 25510762 PMCID: PMC4276753 DOI: 10.3349/ymj.2015.56.1.175] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Revised: 03/23/2014] [Accepted: 03/26/2014] [Indexed: 01/28/2023] Open
Abstract
PURPOSE The estimation of regional lymph node metastasis (LNM) risk in T1 colorectal cancer is based on histologic examination and imaging of the primary tumor. High-frequency microsatellite instability (MSI-H) is likely to decrease the possibility of metastasis to either regional lymph nodes or distant organs in colorectal cancers. This study evaluated the clinical implications of MSI in T1 colorectal cancer with emphasis on the usefulness of MSI as a predictive factor for regional LNM. MATERIALS AND METHODS A total of 133 patients who underwent radical resection for T1 colorectal cancer were included. Genomic DNA was extracted from normal and tumor tissues and amplified by polymerase chain reaction (PCR). Five microsatellite markers, BAT-25, BAT-26, D2S123, D5S346, and D17S250, were used. MSI and clinicopathological parameters were evaluated as potential predictors of LNM using univariate and multivariate analyses. RESULTS Among 133 T1 colorectal cancer patients, MSI-H, low-frequency microsatellite instability (MSI-L), and microsatellite stable (MSS) colorectal cancers accounted for 7.5%, 6%, and 86.5%, respectively. MSI-H tumors showed a female predominance, a proximal location and more retrieved lymph nodes. Twenty-two patients (16.5%) had regional LNM. Lymphovascular invasion and depth of invasion were significantly associated with LNM. There was no LNM in 10 MSI-H patients; however, MSI status was not significantly correlated with LNM. Disease-free survival did not differ between patients with MSI-H and those with MSI-L/MSS. CONCLUSION MSI status could serve as a negative predictive factor in estimating LNM in T1 colorectal cancer, given that LNM was not detected in MSI-H patients. However, validation of our result in a different cohort is necessary.
Collapse
Affiliation(s)
- Jeonghyun Kang
- Department of Surgery, Yonsei University College of Medicine, Seoul, Korea
| | - Hak Woo Lee
- Department of Surgery, Yonsei University College of Medicine, Seoul, Korea
| | - Im-kyung Kim
- Department of Surgery, Yonsei University College of Medicine, Seoul, Korea
| | - Nam Kyu Kim
- Department of Surgery, Yonsei University College of Medicine, Seoul, Korea
| | - Seung-Kook Sohn
- Department of Surgery, Yonsei University College of Medicine, Seoul, Korea
| | - Kang Young Lee
- Department of Surgery, Yonsei University College of Medicine, Seoul, Korea.
| |
Collapse
|
25
|
McHale PT, Lander AD. The protective role of symmetric stem cell division on the accumulation of heritable damage. PLoS Comput Biol 2014; 10:e1003802. [PMID: 25121484 PMCID: PMC4133021 DOI: 10.1371/journal.pcbi.1003802] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Accepted: 07/10/2014] [Indexed: 12/20/2022] Open
Abstract
Stem cell divisions are either asymmetric—in which one daughter cell remains a stem cell and one does not—or symmetric, in which both daughter cells adopt the same fate, either stem or non-stem. Recent studies show that in many tissues operating under homeostatic conditions stem cell division patterns are strongly biased toward the symmetric outcome, raising the question of whether symmetry confers some benefit. Here, we show that symmetry, via extinction of damaged stem-cell clones, reduces the lifetime risk of accumulating phenotypically silent heritable damage (mutations or aberrant epigenetic changes) in individual stem cells. This effect is greatest in rapidly cycling tissues subject to accelerating rates of damage accumulation over time, a scenario that describes the progression of many cancers. A decrease in the rate of cellular damage accumulation may be an important factor favoring symmetric patterns of stem cell division. Recently, highly symmetric patterns of stem cell division have been observed in a variety of adult mammalian somatic tissues. Here we identify conditions under which this behavior serves as a strategy to protect the organism against mutation accumulation. First, we find that a sufficient number of lifetime stem cell divisions must occur, potentially explaining why stem cell pools with the most symmetric divisions are rapidly cycling. Second, we find that late-occurring mutations must occur rapidly, a scenario known in cancer biology as genetic instability. These findings provide a potential explanation for the observation that cancer risks among large, long-lived organisms fail to rise as expected with lifespan and body size.
Collapse
Affiliation(s)
- Peter T. McHale
- Center for Complex Biological Systems & Department of Cell and Developmental Biology, University of California Irvine, Irvine, California, United States of America
- * E-mail: (PTM); (ADL)
| | - Arthur D. Lander
- Center for Complex Biological Systems & Department of Cell and Developmental Biology, University of California Irvine, Irvine, California, United States of America
- * E-mail: (PTM); (ADL)
| |
Collapse
|
26
|
Helleday T, Eshtad S, Nik-Zainal S. Mechanisms underlying mutational signatures in human cancers. Nat Rev Genet 2014; 15:585-98. [PMID: 24981601 DOI: 10.1038/nrg3729] [Citation(s) in RCA: 600] [Impact Index Per Article: 54.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The collective somatic mutations observed in a cancer are the outcome of multiple mutagenic processes that have been operative over the lifetime of a patient. Each process leaves a characteristic imprint--a mutational signature--on the cancer genome, which is defined by the type of DNA damage and DNA repair processes that result in base substitutions, insertions and deletions or structural variations. With the advent of whole-genome sequencing, researchers are identifying an increasing array of these signatures. Mutational signatures can be used as a physiological readout of the biological history of a cancer and also have potential use for discerning ongoing mutational processes from historical ones, thus possibly revealing new targets for anticancer therapies.
Collapse
Affiliation(s)
- Thomas Helleday
- Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, S-171 21 Stockholm, Sweden
| | - Saeed Eshtad
- Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, S-171 21 Stockholm, Sweden
| | - Serena Nik-Zainal
- 1] Wellcome Trust Sanger Institute, Hinxton Genome Campus, Cambridge CB10 1SA, UK. [2] East Anglian Medical Genetics Service, Cambridge University Hospitals NHS Trust, Cambridge CB2 2QQ, UK
| |
Collapse
|
27
|
Whiffin N, Houlston RS. Architecture of inherited susceptibility to colorectal cancer: a voyage of discovery. Genes (Basel) 2014; 5:270-84. [PMID: 24705330 PMCID: PMC4094933 DOI: 10.3390/genes5020270] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2013] [Revised: 03/07/2014] [Accepted: 03/10/2014] [Indexed: 01/29/2023] Open
Abstract
This review looks back at five decades of research into genetic susceptibility to colorectal cancer (CRC) and the insights these studies have provided. Initial evidence of a genetic basis of CRC stems from epidemiological studies in the 1950s and is further provided by the existence of multiple dominant predisposition syndromes. Genetic linkage and positional cloning studies identified the first high-penetrance genes for CRC in the 1980s and 1990s. More recent genome-wide association studies have identified common low-penetrance susceptibility loci and provide support for a polygenic model of disease susceptibility. These observations suggest a high proportion of CRC may arise in a group of susceptible individuals as a consequence of the combined effects of common low-penetrance risk alleles and rare variants conferring moderate CRC risks. Despite these advances, however, currently identified loci explain only a small fraction of the estimated heritability to CRC. It is hoped that a new generation of sequencing projects will help explain this missing heritability.
Collapse
Affiliation(s)
- Nicola Whiffin
- Molecular and Population Genetics Team, Genetics and Epidemiology, The Institute of Cancer Research, Sutton, SM2 5NG, UK.
| | - Richard S Houlston
- Molecular and Population Genetics Team, Genetics and Epidemiology, The Institute of Cancer Research, Sutton, SM2 5NG, UK.
| |
Collapse
|
28
|
Martín-López JV, Fishel R. The mechanism of mismatch repair and the functional analysis of mismatch repair defects in Lynch syndrome. Fam Cancer 2014; 12:159-68. [PMID: 23572416 DOI: 10.1007/s10689-013-9635-x] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The majority of Lynch syndrome (LS), also known as hereditary non-polyposis colorectal cancer (HNPCC), has been linked to heterozygous defects in DNA mismatch repair (MMR). MMR is a highly conserved pathway that recognizes and repairs polymerase misincorporation errors and nucleotide damage as well as functioning as a damage sensor that signals apoptosis. Loss-of-heterozygosity (LOH) that retains the mutant MMR allele and epigenetic silencing of MMR genes are associated with an increased mutation rate that drives carcinogenesis as well as microsatellite instability that is a hallmark of LS/HNPCC. Understanding the biophysical functions of the MMR components is crucial to elucidating the role of MMR in human tumorigenesis and determining the pathogenetic consequences of patients that present in the clinic with an uncharacterized variant of the MMR genes. We summarize the historical association between LS/HNPCC and MMR, discuss the mechanism of the MMR and finally examine the functional analysis of MMR defects found in LS/HNPCC patients and their relationship with the severity of the disease.
Collapse
Affiliation(s)
- Juana V Martín-López
- Department of Molecular Virology, Immunology and Medical Genetics, Human Cancer Genetics, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | | |
Collapse
|
29
|
Diakiw SM, D'Andrea RJ, Brown AL. The double life of KLF5: Opposing roles in regulation of gene-expression, cellular function, and transformation. IUBMB Life 2013; 65:999-1011. [DOI: 10.1002/iub.1233] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Accepted: 11/13/2013] [Indexed: 01/13/2023]
Affiliation(s)
- Sonya M. Diakiw
- Children's Cancer Institute Australia for Medical Research, Lowy Cancer Research Centre; University of New South Wales; Australia
- Department of Haematology; SA Pathology; Adelaide Australia
| | - Richard J. D'Andrea
- Department of Haematology; SA Pathology; Adelaide Australia
- School of Pharmacy and Medical Sciences; University of South Australia; Australia
- Centre for Cancer Biology, SA Pathology; Adelaide Australia
- School of Medicine; University of Adelaide; Adelaide Australia
| | - Anna L. Brown
- Department of Haematology; SA Pathology; Adelaide Australia
- School of Pharmacy and Medical Sciences; University of South Australia; Australia
- Centre for Cancer Biology, SA Pathology; Adelaide Australia
- School of Molecular and Biomedical Sciences; University of Adelaide; Adelaide Australia
| |
Collapse
|
30
|
Role of p53, Bax, p21, and DNA-PKcs in radiation sensitivity of HCT-116 cells and xenografts. Surgery 2013; 154:143-51. [PMID: 23889944 DOI: 10.1016/j.surg.2013.03.012] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2012] [Accepted: 03/28/2013] [Indexed: 02/03/2023]
Abstract
BACKGROUND Molecular factors that dictate tumor response to ionizing radiation in rectal cancer are not well described. METHODS We investigated the contribution of p53, p21, Bax, and DNA-PKcs in response to ionizing radiation in an isogeneic colorectal cancer system in vitro and in vivo. RESULTS HCT-116 DNA-PKcs(-/-) cells and xenografts were radiosensitive compared with wild-type (WT) HCT-116 cells. HCT-116 p53(-/-) cells and tumor xenografts displayed a radioresistant phenotype. Separately, p21 or Bax deficiency was associated with a radiosensitive phenotype in vitro and in vivo. In vivo, Bax deficiency led to increased tumor necrosis and decreased microvessel density. In vitro, HCT-116 Bax(-/-) cells had decreased levels of vascular endothelial growth factor. HCT-116 WT cells had a more radioresistant phenotype after pancaspase inhibition, but pancaspase inhibition did not alter radiosensitivity in HCT-116 Bax(-/-) cells subjected to ionizing radiation. There was no difference in cell growth in HCT-116 WT cells subjected to transient apoptosis-inducing factor (AIF) inhibition; however, HCT-116 Bax(-/-) cells treated with AIF siRNA followed by ionizing radiation had a significant survival advantage compared with control-treated cells, implicating AIF in the radiosensitivity of Bax(-/-) cells. CONCLUSION These data might be used along with other markers to predict response to radiation in patients with rectal cancer.
Collapse
|
31
|
Epigenetic and genetic features of 24 colon cancer cell lines. Oncogenesis 2013; 2:e71. [PMID: 24042735 PMCID: PMC3816225 DOI: 10.1038/oncsis.2013.35] [Citation(s) in RCA: 663] [Impact Index Per Article: 55.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2013] [Accepted: 07/29/2013] [Indexed: 12/12/2022] Open
Abstract
Cell lines are invaluable biomedical research tools, and recent literature has emphasized the importance of genotype authentication and characterization. In the present study, 24 out of 27 cell line identities were confirmed by short tandem repeat profiling. The molecular phenotypes of the 24 colon cancer cell lines were examined, and microsatellite instability (MSI) and CpG island methylator phenotype (CIMP) were determined, using the Bethesda panel mononucleotide repeat loci and two epimarker panels, respectively. Furthermore, the BRAF, KRAS and PIK3CA oncogenes were analyzed for mutations in known hotspots, while the entire coding sequences of the PTEN and TP53 tumor suppressors were investigated. Nine cell lines showed MSI. Thirteen and nine cell lines were found to be CIMP positive, using the Issa panel and the Weisenberger et al. panel, respectively. The latter was found to be superior for CIMP classification of colon cancer cell lines. Seventeen cell lines harbored disrupting TP53 mutations. Altogether, 20/24 cell lines had the mitogen-activated protein kinase pathway activating mutually exclusive KRAS or BRAF mutations. PIK3CA and PTEN mutations leading to hyperactivation of the phosphoinositide 3-kinase/AKT pathway were observed in 13/24 cell lines. Interestingly, in four cell lines there were no mutations in neither BRAF, KRAS, PIK3CA nor in PTEN. In conclusion, this study presents molecular features of a large number of colon cancer cell lines to aid the selection of suitable in vitro models for descriptive and functional research.
Collapse
|
32
|
Oh JR, Kim DW, Lee HS, Lee HE, Lee SM, Jang JH, Kang SB, Ku JL, Jeong SY, Park JG. Microsatellite instability testing in Korean patients with colorectal cancer. Fam Cancer 2013; 11:459-66. [PMID: 22669410 DOI: 10.1007/s10689-012-9536-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Microsatellite instability (MSI) testing is useful for identifying patients with hereditary nonpolyposis colorectal cancer and detecting sporadic colorectal cancer that develops through replication error pathways. A pentaplex panel is recommended by the National Cancer Institute for MSI testing, but simplified mononucleotide panels and immunohistochemistry of mismatch repair proteins are widely employed for convenience. This study was to evaluate the MSI status of colorectal cancer in Korean patients. This study included 1,435 patients with colorectal adenocarcinoma subjected to surgical resection. The pentaplex Bethesda panel was used for MSI testing. Seventy nine (5.5 %) carcinomas were classified as MSI-high (MSI-H) and 95 (6.6 %) as MSI-low (MSI-L). BAT-26 and BAT-25 were unstable in 73 and 75 of 79 MSI-H carcinomas, respectively. With the panel comprising these 2 mononucleotide markers, 72 carcinomas were diagnosed as MSI-H, compared to the Bethesda panel data (72/79, 91.1 %). In contrast, BAT-26 or BAT-25 were unstable in only 7 (7.4 %) of the 95 MSI-L tumors. In the panel with 2 dinucleotide markers, D17250 linked to p53 and D2S123 to hMSH2, detection rates were 89.9 % (71/79) for MSI-H and 80.0 % (76/95) for MSI-L carcinomas, compared to the Bethesda panel. Moreover, we compared the frequency of MSI tumor in our patients with those reported previously from Western countries. In conclusion, the frequency of MSI-H appears lower in colorectal cancer patients in Korea. A simplified panel for MSI testing with BAT-26 and BAT-25 seems not effective for the accurate evaluation of MSI status, particularly in MSI-L colorectal carcinomas, in our patients.
Collapse
Affiliation(s)
- Jung Ryul Oh
- Department of Surgery, Seoul National University Bundang Hospital, 166 Gumi-ro, Bundang-gu, Seongnam, 463-707, Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Acevedo F, Otarola C, Valbuena J, Garrido M. Metastatic neuroendocrine carcinoma of the colon: response to standard colorectal therapy. Int Cancer Conf J 2013. [DOI: 10.1007/s13691-012-0065-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
34
|
Gay LJ, Mitrou PN, Keen J, Bowman R, Naguib A, Cooke J, Kuhnle GG, Burns PA, Luben R, Lentjes M, Khaw KT, Ball RY, Ibrahim AE, Arends MJ. Dietary, lifestyle and clinicopathological factors associated with APC mutations and promoter methylation in colorectal cancers from the EPIC-Norfolk study. J Pathol 2012; 228:405-415. [PMID: 22864938 DOI: 10.1002/path.4085] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Revised: 07/27/2012] [Accepted: 07/29/2012] [Indexed: 12/21/2022]
Abstract
The tumour suppressor APC is the most commonly altered gene in colorectal cancer (CRC). Genetic and epigenetic alterations of APC may therefore be associated with dietary and lifestyle risk factors for CRC. Analysis of APC mutations in the extended mutation cluster region (codons 1276-1556) and APC promoter 1A methylation was performed on 185 archival CRC samples collected from participants of the European Prospective Investigation into Cancer (EPIC)-Norfolk study, with the aim of relating these to high-quality seven-day dietary and lifestyle data collected prospectively. Truncating APC mutations (APC(+) ) and promoter 1A methylation (PM(+) ) were identified in 43% and 23% of CRCs analysed, respectively. Distal CRCs were more likely than proximal CRCs to be APC(+) or PM(+) (p = 0.04). APC(+) CRCs were more likely to be moderately/well differentiated and microsatellite stable than APC(-) CRCs (p = 0.05 and 0.03). APC(+) CRC cases consumed more alcohol than their counterparts (p = 0.01) and PM(+) CRC cases consumed lower levels of folate and fibre (p = 0.01 and 0.004). APC(+) or PM(+) CRC cases consumed higher levels of processed meat and iron from red meat and red meat products (p = 0.007 and 0.006). Specifically, CRC cases harbouring GC-to-AT transition mutations consumed higher levels of processed meat (35 versus 24 g/day, p = 0.04) and iron from red meat and red meat products (0.8 versus 0.6 mg/day, p = 0.05). In a logistic regression model adjusted for age, sex and cigarette-smoking status, each 19 g/day (1SD) increment increase in processed meat consumption was associated with cases with GC-to-AT mutations (OR 1.68, 95% CI 1.03-2.75). In conclusion, APC(+) and PM(+) CRCs may be influenced by diet and GC-to-AT mutations in APC are associated with processed meat consumption, suggesting a mechanistic link with dietary alkylating agents, such as N-nitroso compounds.
Collapse
Affiliation(s)
- Laura J Gay
- Medical Research Council Dunn Human Nutrition Unit, Cambridge, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Bozzao C, Lastella P, Stella A. Anticipation in lynch syndrome: where we are where we go. Curr Genomics 2012; 12:451-65. [PMID: 22547953 PMCID: PMC3219841 DOI: 10.2174/138920211797904070] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2011] [Revised: 07/08/2011] [Accepted: 07/20/2011] [Indexed: 02/06/2023] Open
Abstract
Lynch syndrome (LS) is the most common form of inherited predisposition to develop cancer mainly in the colon and endometrium but also in other organ sites. Germline mutations in DNA mismatch repair (MMR) gene cause the transmission of the syndrome in an autosomal dominant manner. The management of LS patients is complicated by the large variation in age at cancer diagnosis which requires these patients to be enrolled in surveillance protocol starting as early as in their second decade of life. Several environmental and genetic factors have been proposed to explain this phenotypic heterogeneity, but the molecular mechanisms remain unknown. Although the presence of genetic anticipation in Lynch syndrome has been suspected since 15 years, only recently the phenomenon has been increasingly reported to be present in different cancer genetic syndromes including LS. While the biological basis of earlier cancer onset in successive generations remains poorly known, recent findings point to telomere dynamics as a mechanism significantly contributing to genetic anticipation in Lynch syndrome and in other familial cancers. In this review, we summarize the clinical and molecular features of Lynch syndrome, with a particular focus on the latest studies that have investigated the molecular mechanisms of genetic anticipation.
Collapse
Affiliation(s)
- Cristina Bozzao
- Medical Genetics Unit, Department of Biomedicine in Childhood, Università degli Studi di Bari "Aldo Moro", Bari, Italy
| | | | | |
Collapse
|
36
|
Kwon JH, Shin JH, Kim ES, Lee N, Park JY, Koo BS, Hong SM, Park CW, Choi KY. REST-dependent expression of TRF2 renders non-neuronal cancer cells resistant to DNA damage during oxidative stress. Int J Cancer 2012; 132:832-42. [PMID: 22821339 DOI: 10.1002/ijc.27741] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Accepted: 07/02/2012] [Indexed: 11/07/2022]
Abstract
REST is a neuronal gene silencing factor ubiquitously expressed in non-neuronal tissues. REST is additionally believed to serve as a tumor suppressor in non-neuronal cancers. Conversely, recent findings on REST-dependent tumorigenesis in non-neuronal cells consistently suggest a potential role of REST as a tumor promoter. Here, we have uncovered for the first time the mechanism by which REST contributes to cancer cell survival in non-neuronal cancers. We observed abundant expression of REST in various types of non-neuronal cancer cells compared to normal tissues. The delicate roles of REST were further evaluated in HCT116 and HeLa, non-neuronal cancer cell lines expressing REST. REST silencing resulted in decreased cell survival and activation of the DNA damage response (DDR) through a decrease in the level of TRF2, a telomere-binding protein. These responses were correlated with reduced colony formation ability and accelerated telomere shortening in cancer cells upon the stable knockdown of REST. Interestingly, REST was down-regulated under oxidative stress conditions via ubiquitin proteasome system, suggesting that sustainability of REST expression is critical to determine cell survival during oxidative stress in a tumor microenvironment. Our results collectively indicate that REST-dependent TRF2 expression renders cancer cells resistant to DNA damage during oxidative stress, and mechanisms to overcome oxidative stress, such as high levels of REST or the stress-resistant REST mutants found in specific human cancers, may account for REST-dependent tumorigenesis.
Collapse
Affiliation(s)
- Jung-Hee Kwon
- Department of Life Science, Pohang University of Science and Technology, Pohang, Republic of Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Jahng J, Youn YH, Kim KH, Yu J, Lee YC, Hyung WJ, Noh SH, Kim H, Kim H, Park H, Lee SI. Endoscopic and clinicopathologic characteristics of early gastric cancer with high microsatellite instability. World J Gastroenterol 2012; 18:3571-7. [PMID: 22826622 PMCID: PMC3400859 DOI: 10.3748/wjg.v18.i27.3571] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2012] [Revised: 03/20/2012] [Accepted: 04/09/2012] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate endoscopic and clinicopathologic characteristics of early gastric cancer (EGC) according to microsatellite instability phenotype.
METHODS: Data were retrospectively collected from a single tertiary referral center. Of 981 EGC patients surgically treated between December 2003 and October 2007, 73 consecutive EGC patients with two or more microsatellite instability (MSI) mutation [high MSI (MSI-H)] and 146 consecutive EGC patients with one or no MSI mutation (non-MSI-H) were selected. The endoscopic and clinicopathologic features were compared between the MSI-H and non-MSI-H EGC groups.
RESULTS: In terms of endoscopic characteristics, MSI-H EGCs more frequently presented with elevated pattern (OR 4.38, 95% CI: 2.40-8.01, P < 0.001), moderate-to-severe atrophy in the surrounding mucosa (OR 1.91, 95% CI: 1.05-3.47, P = 0.033), antral location (OR 3.99, 95% CI: 2.12-7.52, P < 0.001) and synchronous lesions, compared to non-MSI-H EGCs (OR 2.65, 95% CI: 1.16-6.07, P = 0.021). Other significant clinicopathologic characteristics of MSI-H EGC included predominance of female sex (OR 2.77, 95% CI: 1.53-4.99, P < 0.001), older age (> 70 years) (OR 3.30, 95% CI: 1.57-6.92, P = 0.002), better histologic differentiation (OR 2.35, 95% CI: 1.27-4.34, P = 0.007), intestinal type by Lauren classification (OR 2.34, 95% CI: 1.15-4.76, P = 0.019), absence of a signet ring cell component (OR 2.44, 95% CI: 1.02-5.86, P = 0.046), presence of mucinous component (OR 5.06, 95% CI: 1.27-20.17, P = 0.022), moderate-to-severe lymphoid stromal reaction (OR 3.95, 95% CI: 1.59-9.80, P = 0.003), and co-existing underlying adenoma (OR 2.66, 95% CI: 1.43-4.95, P = 0.002).
CONCLUSION: MSI-H EGC is associated with unique endoscopic and clinicopathologic characteristics including frequent presentation in protruded type, co-existing underlying adenoma, and synchronous lesions.
Collapse
|
38
|
Bischoff J, Ignatov A, Semczuk A, Schwarzenau C, Ignatov T, Krebs T, Küster D, Przadka-Rabaniuk D, Roessner A, Costa SD, Schneider-Stock R. hMLH1 promoter hypermethylation and MSI status in human endometrial carcinomas with and without metastases. Clin Exp Metastasis 2012; 29:889-900. [DOI: 10.1007/s10585-012-9478-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Accepted: 04/16/2012] [Indexed: 01/21/2023]
|
39
|
Duldulao MP, Lee W, Le M, Chen Z, Li W, Wang J, Gao H, Li H, Kim J, Garcia-Aguilar J. Gene expression variations in microsatellite stable and unstable colon cancer cells. J Surg Res 2012; 174:1-6. [PMID: 21816436 PMCID: PMC3210903 DOI: 10.1016/j.jss.2011.06.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2011] [Revised: 05/19/2011] [Accepted: 06/07/2011] [Indexed: 12/29/2022]
Abstract
BACKGROUND Microsatellite instability (MSI) is a marker of chemoresistance, but it is associated with improved survival compared with microsatellite-stable (MSS) colon cancers. We hypothesized that MSI tumors overexpress chemoresistance-associated genes and underexpress DNA damage/repair genes. We used ultra high-throughput sequencing (UHTS) to assess the expression of representative genes in MSI and MSS colon cancer cell lines. METHODS Solexa UHTS was used to examine gene expression in HCT116 (MSI) and HT29 (MSS) cells, and normal colonic mucosa (NCM). We compared expression of 40 genes involved in chemoresistance, DNA repair, DNA damage, and drug metabolism pathways. RESULTS We observed gene expression differences between MSI and MSS cell lines in 8 out of 40 genes involved in mismatch repair (MMR), DNA repair, drug metabolism, and chemoresistance. MMR gene expression was lower in MSI cells, which is consistent with the MSI phenotype, whereas DNA repair genes were highly expressed in these cells. Genes associated with chemoresistance and drug metabolism also had increased expression in MSI cells. No difference in expression of DNA damage genes was observed between MSI and MSS cell lines. CONCLUSION Using UHTS gene expression analysis, we identified differential expression of genes between MSI and MSS cell lines which may account for resistance to chemotherapy in MSI tumors. UHTS expression analysis has the potential to identify genome-wide predictors of response or resistance to chemotherapy.
Collapse
Affiliation(s)
- Marjun P. Duldulao
- Department of Oncologic Surgery, City of Hope Comprehensive Cancer Center, 1500 E. Duarte Rd, Duarte, CA 91010
| | - Wendy Lee
- Department of Oncologic Surgery, City of Hope Comprehensive Cancer Center, 1500 E. Duarte Rd, Duarte, CA 91010
| | - Maithao Le
- Department of Oncologic Surgery, City of Hope Comprehensive Cancer Center, 1500 E. Duarte Rd, Duarte, CA 91010
| | - Zhenbin Chen
- Department of Oncologic Surgery, City of Hope Comprehensive Cancer Center, 1500 E. Duarte Rd, Duarte, CA 91010
| | - Wenyan Li
- Department of Oncologic Surgery, City of Hope Comprehensive Cancer Center, 1500 E. Duarte Rd, Duarte, CA 91010
| | - Jinhui Wang
- DNA Sequencing Core Facility, City of Hope Comprehensive Cancer Center, 1500 E. Duarte Rd, Duarte, CA 91010
| | - Harry Gao
- DNA Sequencing Core Facility, City of Hope Comprehensive Cancer Center, 1500 E. Duarte Rd, Duarte, CA 91010
| | - Haiquing Li
- Department of Bioinformatics, City of Hope Comprehensive Cancer Center, 1500 E. Duarte Rd, Duarte, CA 91010
| | - Joseph Kim
- Department of Oncologic Surgery, City of Hope Comprehensive Cancer Center, 1500 E. Duarte Rd, Duarte, CA 91010
| | - Julio Garcia-Aguilar
- Department of Oncologic Surgery, City of Hope Comprehensive Cancer Center, 1500 E. Duarte Rd, Duarte, CA 91010
| |
Collapse
|
40
|
Clinicopathological features and management of cancers in lynch syndrome. PATHOLOGY RESEARCH INTERNATIONAL 2012; 2012:350309. [PMID: 22619739 PMCID: PMC3350853 DOI: 10.1155/2012/350309] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Accepted: 02/28/2012] [Indexed: 12/21/2022]
Abstract
Lynch syndrome (LS) is characterized by an autosomal dominant inheritance of the early onset of colorectal cancer (CRC) and endometrial cancer, as well as increased risk for several other cancers including gastric, urinary tract, ovarian, small bowel, biliary tract, and brain tumors. The syndrome is due to a mutation in one of the four DNA mismatch repair (MMR) genes MLH1, MSH2, MSH6, or PMS2. The majority of LS patients and families can now be identified, and the underlying mutation detected using genetic diagnostics. Regular surveillance for CRC and endometrial cancer has proved beneficial for mutation carriers. However, screening for other tumors is also recommended even though experiences in the screening of these tumors is limited. Prophylactic colectomy, prophylactic hysterectomy, and bilateral salpingo-oophorectomy may be reasonable options for selected patients with LS. This paper describes the features and management of LS.
Collapse
|
41
|
Laghi L, Bianchi P, Delconte G, Celesti G, Di Caro G, Pedroni M, Chiaravalli AM, Jung B, Capella C, de Leon MP, Malesci A. MSH3 protein expression and nodal status in MLH1-deficient colorectal cancers. Clin Cancer Res 2012; 18:3142-53. [PMID: 22496206 DOI: 10.1158/1078-0432.ccr-12-0175] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Patients with colorectal cancers (CRC) and high microsatellite instability (MSI) have a better outcome than their chromosome-unstable counterpart. Given the heterogeneity of microsatellite-unstable CRCs, we wanted to see whether any MSI-associated molecular features are specifically associated with prognosis. EXPERIMENTAL DESIGN One hundred and nine MSI-high CRCs were typed for primary mismatch repair (MMR) defect and for secondary loss of MMR proteins. Frameshifts at seven target genes, mutations in the RAS pathway, and methylation at MLH1/CDKN2A promoters were also searched. The interplay of molecular findings with clinicopathologic features and patient survival was analyzed. RESULTS Of 84 MLH1-deficient CRCs, 31 (36.9%) had MSH3 and 11 (13.1%) had MSH6 loss (P < 0.001), biallelic frameshift mutations at mononucleotide repeats accounting for most (78%) MSH3 losses. As compared with MSH3-retaining cancers, MLH1-deficient tumors with MSH3 loss showed a higher number of mutated target genes (3.94 ± 1.56 vs. 2.79 ± 1.75; P = 0.001), absence of nodal involvement at pathology [N0; OR, 0.11; 95% confidence interval (CI), 0.04-0.43, P < 0.001], and better disease-free survival (P = 0.06). No prognostic value was observed for KRAS status and for MLH1/CDKN2A promoter methylation. The association between MSH3 loss and N0 was confirmed in an independent cohort of 71 MLH1-deficient CRCs (OR, 0.23; 95% CI, 0.06-0.83, P = 0.02). CONCLUSIONS MLH1-deficient CRCs not expressing MSH3 have a more severe MSI, a lower rate of nodal involvement, and a better postsurgical outcome.
Collapse
Affiliation(s)
- Luigi Laghi
- Laboratory of Molecular Gastroenterology, Department of Gastroenterology, IRCCS Istituto Clinico Humanitas - Rozzano, Milano, Italy.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Kulendran M, Stebbing JF, Marks CG, Rockall TA. Predictive and prognostic factors in colorectal cancer: a personalized approach. Cancers (Basel) 2011; 3:1622-38. [PMID: 24212777 PMCID: PMC3757382 DOI: 10.3390/cancers3021622] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2011] [Revised: 03/13/2011] [Accepted: 03/18/2011] [Indexed: 12/13/2022] Open
Abstract
It is an exciting time for all those engaged in the treatment of colorectal cancer. The advent of new therapies presents the opportunity for a personalized approach to the patient. This approach considers the complex genetic mechanisms involved in tumorigenesis in addition to classical clinicopathological staging. The potential predictive and prognostic biomarkers which have stemmed from the study of the genetic basis of colorectal cancer and therapeutics are discussed with a focus on mismatch repair status, KRAS, BRAF, 18qLOH, CIMP and TGF-β.
Collapse
Affiliation(s)
- Myutan Kulendran
- Department of Coloproctology, Royal Surrey County Hospital NHS Foundation Trust, Egerton Road, Guildford, UK.
| | | | | | | |
Collapse
|
43
|
Abstract
BACKGROUND Colorectal cancer (CRC) is the third most common cancer in the world. In 75% CRC develops sporadically, in 25% hereditary or as a consequence of inflammatory bowel disease. CRC carcinogenesis develops over many years. The cause of CRC in 85% is chromosomal instability (CIN) and in 15% microsatellite instability (MSI-H), where hereditary nonpolyposis colorectal cancer (HNPCC) represents 10-20%. Microsatellite sequences (MS) are repeated sequences of short stretches of DNA all over the genome. Microsatellite stability (MSS) means MS are the same in each cell of an individual, whereas microsatellite instability (MSI-H) means MS differ in normal and cancer cells of an individual. The cause of MSI-H is a damaged mismatch repair mechanism (MMR), with the most important MMR proteins being MSH2, MLH1 and MSH6. CONCLUSIONS MSI-H seems to be an important prognostic factor in CRC and an important predictive factor of CRC chemotherapeutic treatment efficacy. Clinical trials conducted until now have shown contradictory findings in different chemotherapeutic settings, adjuvant and palliative; therefore MSI-H is going to be the object of the future research. The future of cancer treatment is in the individualized therapy based on molecular characteristics of the tumour, such as MSI-H in CRC.
Collapse
|
44
|
Majumder D, Mukherjee A. A passage through systems biology to systems medicine: adoption of middle-out rational approaches towards the understanding of therapeutic outcomes in cancer. Analyst 2011; 136:663-78. [DOI: 10.1039/c0an00746c] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
45
|
Huerta S, Gao X, Livingston EH, Kapur P, Sun H, Anthony T. In vitro and in vivo radiosensitization of colorectal cancer HT-29 cells by the smac mimetic JP-1201. Surgery 2010; 148:346-53. [PMID: 20633731 DOI: 10.1016/j.surg.2010.05.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2010] [Accepted: 05/14/2010] [Indexed: 12/19/2022]
Abstract
BACKGROUND The response to neoadjuvant chemoradiation in rectal cancer is variable and unpredictable. Resistance to chemoradiation has been directly correlated with the levels of the inhibitors of apoptosis (IAPs) in several malignancies. Because smac-DIABLO is a pro-apoptotic gene product that directly inhibits the activity of the IAPs, molecules with similar activity might radiosensitize rectal tumors with phenotypes that express high levels of IAPs. This study was undertaken to assess the radiosensitizing properties of the smac mimetic JP-1201 in radioresistant HT-29 colorectal cancer cells in vitro and established xenografts in SCID mice. METHODS Survival was determined by clonogenic assays. PARP-1, caspase-8 cleavage, and IAP levels were assessed by Western blot analysis. SCID mice bearing HT-29 xenografts were treated with ionizing radiation: 2.0 Gy x 5; (n = 6), JP-1201 (5.0 mg/Kg i.p., n = 5) or combination treatment (n = 7) and compared to control (n = 8). DNA repair mechanisms were interrogated by gammaH2AX positive foci. RESULTS Pretreatment of HT-29 cells with JP-1201 (5.0 microM) prior to ionizing radiation (IR) significantly decreased the survival of these cells. SCID mice bearing HT-29 xenografts demonstrated no difference in tumor load in the group receiving exclusively JP-1201 versus control. At the end of the treatment (day 40), a 46% reduction of tumor load was observed in the IR+JP-1201-treated group compared to the IR-only treated group. Radiosensitization was achieved with a substantial elevation of cleaved PARP-1 in JP-1201- treated HT-29 cells versus control cells with a concomitant decrease of XIAP, but not of survivin or cIAP1/2. JP-1201-treated HT-29 cells had a reduced ability to repair double-stranded DNA breaks (DSBs). CONCLUSION The smac mimetic JP-1201 decreased the survival of HT-29 cells and tumor growth by an additive effect in apoptosis and a reduction in the level of XIAP and an impairment of DNA repair mechanisms. The pathways leading to this response need to be further investigated.
Collapse
Affiliation(s)
- Sergio Huerta
- Department of Surgery, University of Texas Southwestern Medical Center/Dallas VA Medical Center, Dallas, TX 75216, USA.
| | | | | | | | | | | |
Collapse
|
46
|
Affiliation(s)
- Y Wallis
- DNA Laboratory, Regional Genetic Services, Birmingham Heartlands Hospital, Birmingham
| | | |
Collapse
|
47
|
Drescher KM, Sharma P, Lynch HT. Current hypotheses on how microsatellite instability leads to enhanced survival of Lynch Syndrome patients. Clin Dev Immunol 2010; 2010:170432. [PMID: 20631828 PMCID: PMC2901607 DOI: 10.1155/2010/170432] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2010] [Accepted: 04/13/2010] [Indexed: 01/20/2023]
Abstract
High levels of microsatellite instability (MSI-high) are a cardinal feature of colorectal tumors from patients with Lynch Syndrome. Other key characteristics of Lynch Syndrome are that these patients experience fewer metastases and have enhanced survival when compared to patients diagnosed with microsatellite stable (MSS) colorectal cancer. Many of the characteristics associated with Lynch Syndrome including enhanced survival are also observed in patients with sporadic MSI-high colorectal cancer. In this review we will present the current state of knowledge regarding the mechanisms that are utilized by the host to control colorectal cancer in Lynch Syndrome and why these same mechanisms fail in MSS colorectal cancers.
Collapse
Affiliation(s)
- Kristen M Drescher
- Department of Medical Microbiology and Immunology, Creighton University School of Medicine, Omaha, NE 68178, USA.
| | | | | |
Collapse
|
48
|
Gatzidou E, Michailidi C, Tseleni-Balafouta S, Theocharis S. An epitome of DNA repair related genes and mechanisms in thyroid carcinoma. Cancer Lett 2010; 290:139-47. [DOI: 10.1016/j.canlet.2009.08.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2009] [Revised: 07/31/2009] [Accepted: 08/02/2009] [Indexed: 01/18/2023]
|
49
|
Meyer TJ, Srikanta D, Conlin EM, Batzer MA. Heads or tails: L1 insertion-associated 5' homopolymeric sequences. Mob DNA 2010; 1:7. [PMID: 20226075 PMCID: PMC2837659 DOI: 10.1186/1759-8753-1-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2009] [Accepted: 02/01/2010] [Indexed: 12/01/2022] Open
Abstract
Background L1s are one of the most successful autonomous mobile elements in primate genomes. These elements comprise as much as 17% of primate genomes with the majority of insertions occurring via target primed reverse transcription (TPRT). Twin priming, a variant of TPRT, can result in unusual DNA sequence architecture. These insertions appear to be inverted, truncated L1s flanked by target site duplications. Results We report on loci with sequence architecture consistent with variants of the twin priming mechanism and introduce dual priming, a mechanism that could generate similar sequence characteristics. These insertions take the form of truncated L1s with hallmarks of classical TPRT insertions but having a poly(T) simple repeat at the 5' end of the insertion. We identified loci using computational analyses of the human, chimpanzee, orangutan, rhesus macaque and marmoset genomes. Insertion site characteristics for all putative loci were experimentally verified. Conclusions The 39 loci that passed our computational and experimental screens probably represent inversion-deletion events which resulted in a 5' inverted poly(A) tail. Based on our observations of these loci and their local sequence properties, we conclude that they most probably represent twin priming events with unusually short non-inverted portions. We postulate that dual priming could, theoretically, produce the same patterns. The resulting homopolymeric stretches associated with these insertion events may promote genomic instability and create potential target sites for future retrotransposition events.
Collapse
Affiliation(s)
- Thomas J Meyer
- Department of Biological Sciences, Biological Computation and Visualization Center, Louisiana State University, 202 Life Sciences Bldg, Baton Rouge, LA 70803, USA
| | - Deepa Srikanta
- Department of Biological Sciences, Biological Computation and Visualization Center, Louisiana State University, 202 Life Sciences Bldg, Baton Rouge, LA 70803, USA
| | - Erin M Conlin
- Department of Biological Sciences, Biological Computation and Visualization Center, Louisiana State University, 202 Life Sciences Bldg, Baton Rouge, LA 70803, USA
| | - Mark A Batzer
- Department of Biological Sciences, Biological Computation and Visualization Center, Louisiana State University, 202 Life Sciences Bldg, Baton Rouge, LA 70803, USA
| |
Collapse
|
50
|
Prenen H, Tejpar S, Van Cutsem E. Impact of molecular markers on treatment selection in advanced colorectal cancer. Eur J Cancer 2010; 45 Suppl 1:70-8. [PMID: 19775606 DOI: 10.1016/s0959-8049(09)70018-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Hans Prenen
- Department of Digestive Oncology, University Hospital Gasthuisberg, Leuven, Belgium
| | | | | |
Collapse
|