1
|
Barati A, Moghimi S, Taghavi Zanjani K, Rohani M, Sohrabi Hesar M, Arfaie A, Ghezelche Khamsiyan M, Mahmoudi J, Sadigh-Eteghad S. Acute Administration of Edaravone Improves Cognitive Impairment in a Mouse Model of mPFC Ischemia: Crosstalk Between Necroptosis, Neuroinflammation, and Antioxidant Defense. Mol Neurobiol 2025; 62:4420-4434. [PMID: 39448519 DOI: 10.1007/s12035-024-04541-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 10/08/2024] [Indexed: 10/26/2024]
Abstract
Edaravone (Eda), a well-known free radical scavenger, has been reported as a possible therapeutic agent for ischemic stroke patients' recovery. This study aimed to investigate the effects of time-dependent treatment with Eda on medial prefrontal cortex (mPFC) ischemia. Mice were randomly allocated into six groups: control, sham, normal saline, Eda-I, Eda-II, and Eda-III. After induction of a photothrombotic ischemia in the mPFC region, Eda-I, Eda-II, and Eda-III groups received 3 mg/kg Eda intraperitoneally at the times of 0, 2, and 6 h post-surgery. After 1 day of recovery, the mice underwent behavioral tests (open field, novel object recognition, and T-maze). Next, necroptosis, NOD-like receptor protein 3 (NLRP3), and nuclear factor erythroid 2-related factor 2 (Nrf2) pathway-related protein levels were measured in the lesioned area using western blot analysis. For double confirmation, IL-1β and IL-18 were also assessed by immunofluorescence in the area. Further, histological evaluations were performed to measure tissue damage. The results showed that mPFC ischemia impaired recognition and spatial working memory without affecting locomotor activity, while immediate Eda administration improved cognitive impairments. Furthermore, acute Eda treatment reduced RIP1, RIP3, and MLKL levels, inhibited NLRP3 inflammasome proteins (NLRP3, ASC, and Cas1), decreased IL-1β and IL-18, upregulated Nrf2 and its targets (NQO-1 and HO-1), and diminished tissue damage. Our results highlighted the effects of acute administration of Eda post-stroke on improving cognitive impairments by suppressing necroptosis and NLRP3 inflammasome pathways and activating the Nrf2 antioxidant defense mechanism.
Collapse
Affiliation(s)
- Alireza Barati
- Faculty of Veterinary Medicine, Tabriz Branch, Islamic Azad University, Tabriz, Iran
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sadegh Moghimi
- School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Kiana Taghavi Zanjani
- Faculty of Veterinary Medicine, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| | - Mojde Rohani
- Faculty of Veterinary Medicine, Urmia Branch, Islamic Azad University, Urmia, Iran
| | - Mehri Sohrabi Hesar
- Faculty of Veterinary Medicine, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| | - Arian Arfaie
- Faculty of Veterinary Medicine, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| | | | - Javad Mahmoudi
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Saeed Sadigh-Eteghad
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
2
|
Ying YT, Yang J, Ye HW, Chen MY, Liu X, Chen W, Xu JX, Tan X. Staphylococcus aureus reprograms CASP8 (caspase 8) signaling to evade cell death and Xenophagy. Autophagy 2025. [PMID: 40143428 DOI: 10.1080/15548627.2025.2483887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 03/18/2025] [Accepted: 03/20/2025] [Indexed: 03/28/2025] Open
Abstract
Regulated cell death and xenophagy constitute fundamental cellular mechanisms against invading microorganisms. Staphylococcus aureus, a notorious pathogen, can invade and persist within host cells for extended periods. Here, we describe a novel mechanism by which S. aureus subverts these host defenses through the manipulation of the CASP8 (caspase 8) signaling pathway. Upon invasion, S. aureus triggers the assembly of a RIPK3 (receptor interacting serine/threonine kinase 3) complex to induce CASP8 autoprocessing. However, the bacterium inhibits CUL3 (cullin 3)-dependent K63-linked ubiquitination, leading to an atypical activation of CASP8. This non-canonical activation does not initiate the CASP8-CASP3 cascade but instead suppresses RIPK3-dependent necroptosis, a regulated cell death pathway typically activated when apoptosis fails. The resulting non-apoptotic, cleaved CASP8 redirects its enzymatic activity toward cleaving SQSTM1/p62, a selective macroautophagy/autophagy receptor, thus enabling S. aureus to evade antimicrobial xenophagy. The results of this study suggest that S. aureus reprograms the CASP8 signaling pathway from inducing cell death to preserving cell survival and inhibiting xenophagy, a critical strategy that supports its stealthy replication and persistence within host cells.
Collapse
Affiliation(s)
- Yi-Tian Ying
- Department of Veterinary Medicine, Zhejiang University, Hangzhou, China
- Veterinary Medical Center, Zhejiang University, Hangzhou, China
- The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Jing Yang
- Department of Veterinary Medicine, Zhejiang University, Hangzhou, China
- Veterinary Medical Center, Zhejiang University, Hangzhou, China
| | - Hui-Wen Ye
- Department of Veterinary Medicine, Zhejiang University, Hangzhou, China
- Veterinary Medical Center, Zhejiang University, Hangzhou, China
| | - Mei-Yi Chen
- Department of Veterinary Medicine, Zhejiang University, Hangzhou, China
- Veterinary Medical Center, Zhejiang University, Hangzhou, China
| | - Xia Liu
- Department of Veterinary Medicine, Zhejiang University, Hangzhou, China
- Veterinary Medical Center, Zhejiang University, Hangzhou, China
| | - Wei Chen
- Department of Veterinary Medicine, Zhejiang University, Hangzhou, China
- Veterinary Medical Center, Zhejiang University, Hangzhou, China
| | - Jin-Xin Xu
- Department of Veterinary Medicine, Zhejiang University, Hangzhou, China
- Veterinary Medical Center, Zhejiang University, Hangzhou, China
| | - Xun Tan
- Department of Veterinary Medicine, Zhejiang University, Hangzhou, China
- Veterinary Medical Center, Zhejiang University, Hangzhou, China
| |
Collapse
|
3
|
Yeap HW, Goh GR, Rosli SN, Pung HS, Giogha C, Eng VV, Pearson JS, Hartland EL, Chen KW. A bacterial network of T3SS effectors counteracts host pro-inflammatory responses and cell death to promote infection. EMBO J 2025:10.1038/s44318-025-00412-5. [PMID: 40128366 DOI: 10.1038/s44318-025-00412-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 02/21/2025] [Accepted: 02/21/2025] [Indexed: 03/26/2025] Open
Abstract
Innate immune signalling and cell death pathways are highly interconnected processes involving receptor-interacting protein kinases (RIPKs) as mediators of potent anti-microbial responses. However, these processes are often antagonised by bacterial type III secretion system (T3SS) effectors, and the cellular mechanisms by which the host retaliates are not completely understood. Here, we demonstrate that during Citrobacter rodentium infection, murine macrophages and colonic epithelial cells exhibit RIPK1 kinase-dependent caspase-8 activation to counteract NleE effector-mediated suppression of pro-inflammatory signalling. While C. rodentium injects into the host cells a second effector, NleB, to block caspase-8 signalling, macrophages respond by triggering RIPK3-mediated necroptosis, whereupon a third T3SS effector, EspL, acts to inactivate necroptosis. We further show that NleB and EspL collaborate to suppress caspase-8 and NLRP3 inflammasome activation in macrophages. Our findings suggest that C. rodentium has evolved to express a complex network of effectors as an adaptation to the importance of cell death for anti-bacterial defence in the host-pathogen arms race.
Collapse
Affiliation(s)
- Hui Wen Yeap
- Immunology Translational Research Programme, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | - Ghin Ray Goh
- Immunology Translational Research Programme, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | - Safwah Nasuha Rosli
- Immunology Translational Research Programme, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | - Hai Shin Pung
- Immunology Translational Research Programme, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | - Cristina Giogha
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Molecular and Translational Science, Monash University, Clayton, VIC, Australia
| | - Vik Ven Eng
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Microbiology, Monash University, Clayton, VIC, Australia
| | - Jaclyn S Pearson
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Microbiology, Monash University, Clayton, VIC, Australia
- School of Medicine, University of St Andrews, St Andrews, KY16 9TF, Fife, UK
| | - Elizabeth L Hartland
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Molecular and Translational Science, Monash University, Clayton, VIC, Australia
- Department of Microbiology, Monash University, Clayton, VIC, Australia
| | - Kaiwen W Chen
- Immunology Translational Research Programme, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
- Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
4
|
Jarabicová I, Horváth C, Hrdlička J, Boroš A, Olejníčková V, Zábrodská E, Hubáčková SŠ, Šutovská HM, Molčan Ľ, Kopkan L, Chudý M, Kura B, Kaločayová B, Goncalvesová E, Neckář J, Zeman M, Kolář F, Adameová A. Necrosis-like cell death modes in heart failure: the influence of aetiology and the effects of RIP3 inhibition. Basic Res Cardiol 2025:10.1007/s00395-025-01101-4. [PMID: 40088261 DOI: 10.1007/s00395-025-01101-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 02/07/2025] [Accepted: 02/10/2025] [Indexed: 03/17/2025]
Abstract
Since cell dying in heart failure (HF) may vary based on the aetiology, we examined the main forms of regulated necrosis, such as necroptosis and pyroptosis, in the hearts damaged due to myocardial infarction (MI) or pressure overload. We also investigated the effects of a drug inhibiting RIP3, a proposed convergent point for both these necrosis-like cell death modes. In rat hearts, left ventricular function, remodelling, pro-cell death, and pro-inflammatory events were investigated, and the pharmacodynamic action of RIP3 inhibitor (GSK'872) was assessed. Regardless of the HF aetiology, the heart cells were dying due to necroptosis, albeit the upstream signals may be different. Pyroptosis was observed only in post-MI HF. The dysregulated miRNAs in post-MI hearts were accompanied by higher levels of a predicted target, HMGB1, its receptors (TLRs), as well as the exacerbation of inflammation likely originating from macrophages. The RIP3 inhibitor suppressed necroptosis, unlike pyroptosis, normalised the dysregulated miRNAs and tended to decrease collagen content and affect macrophage infiltration without affecting cardiac function or structure. The drug also mitigated the local heart inflammation and normalised the higher circulating HMGB1 in rats with post-MI HF. Elevated serum levels of HMGB1 were also detected in HF patients and positively correlated with C-reactive protein, highlighting pro-inflammatory axis. In conclusion, in MI-, but not pressure overload-induced HF, both necroptosis and pyroptosis operate and might underlie HF pathogenesis. The RIP3-targeting pharmacological intervention might protect the heart by preventing pro-death and pro-inflammatory mechanisms, however, additional strategies targeting multiple pro-death pathways may exhibit greater cardioprotection.
Collapse
Affiliation(s)
- Izabela Jarabicová
- Faculty of Pharmacy, Department of Pharmacology and Toxicology, Comenius University, Odbojárov 10, 832 32, Bratislava, Slovak Republic
| | - Csaba Horváth
- Faculty of Pharmacy, Department of Pharmacology and Toxicology, Comenius University, Odbojárov 10, 832 32, Bratislava, Slovak Republic
| | - Jaroslav Hrdlička
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Almos Boroš
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Veronika Olejníčková
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
- First Faculty of Medicine, Institute of Anatomy, Charles University, Prague, Czech Republic
| | - Eva Zábrodská
- First Faculty of Medicine, Institute of Anatomy, Charles University, Prague, Czech Republic
| | - Soňa Štemberková Hubáčková
- Institute for Clinical and Experimental Medicine, Prague, Czech Republic
- Institute of Biotechnology, Czech Academy of Sciences, Prague, Czech Republic
| | - Hana Mauer Šutovská
- Faculty of Natural Sciences, Department of Animal Physiology and Ethology, Comenius University, Bratislava, Slovak Republic
| | - Ľuboš Molčan
- Faculty of Natural Sciences, Department of Animal Physiology and Ethology, Comenius University, Bratislava, Slovak Republic
| | - Libor Kopkan
- Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Martin Chudý
- Faculty of Medicine, Department of Cardiology, Comenius University and National Cardiovascular Institute, Bratislava, Slovak Republic
| | - Branislav Kura
- Centre of Experimental Medicine, Institute for Heart Research, Slovak Academy of Sciences, Bratislava, Slovak Republic
| | - Barbora Kaločayová
- Centre of Experimental Medicine, Institute for Heart Research, Slovak Academy of Sciences, Bratislava, Slovak Republic
| | - Eva Goncalvesová
- Faculty of Medicine, Department of Cardiology, Comenius University and National Cardiovascular Institute, Bratislava, Slovak Republic
| | - Jan Neckář
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Michal Zeman
- Faculty of Natural Sciences, Department of Animal Physiology and Ethology, Comenius University, Bratislava, Slovak Republic
| | - František Kolář
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Adriana Adameová
- Faculty of Pharmacy, Department of Pharmacology and Toxicology, Comenius University, Odbojárov 10, 832 32, Bratislava, Slovak Republic.
- Centre of Experimental Medicine, Institute for Heart Research, Slovak Academy of Sciences, Bratislava, Slovak Republic.
| |
Collapse
|
5
|
Xu J, Huo C, Yang Y, Han J, Zhou L, Hu Y, Yang H. Early Highly Pathogenic Porcine Reproductive and Respiratory Syndrome Virus Infection Induces Necroptosis in Immune Cells of Peripheral Lymphoid Organs. Viruses 2025; 17:290. [PMID: 40143222 PMCID: PMC11946179 DOI: 10.3390/v17030290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 02/12/2025] [Accepted: 02/18/2025] [Indexed: 03/28/2025] Open
Abstract
The highly pathogenic porcine reproductive and respiratory syndrome virus (HP-PRRSV) has caused huge economic losses to the pig industry in China. This study evaluated the damage to peripheral immune tissues in the early infection of HP-PRRSV, including the hilar lymph nodes, mandibulares lymph nodes, inguinales superficials lymph nodes, spleens, and tonsils. HP-PRRSV infection led to a reduction in CD4+ and CD8+ T cells, as well as CD19+ B cells, in the tonsils. Additionally, CD163+ macrophages and CD56+ NK cells increased in all peripheral lymphoid organs, with NK cells migrating toward the lymphoid follicles. However, no significant changes were observed in CD11c+ dendritic cells. RNA-seq analysis showed the down-regulation of T and B cell functions, while macrophage and NK cell functions were enhanced. Gene Ontology (GO) and KEGG pathway analysis indicated the up-regulation of necroptosis processes. Western blotting and immunofluorescence confirmed that HP-PRRSV induced PKR-mediated necroptosis in immunocytes. This study provides new insights into the effects of early HP-PRRSV infection on peripheral immune organs, highlighting dynamic shifts in immune cell populations, virus-induced immunosuppression, and the role of PKR-mediated necroptosis. These findings improve our understanding of the immunomodulation induced by PRRSV infection.
Collapse
Affiliation(s)
| | | | | | | | | | - Yanxin Hu
- Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100193, China; (J.X.); (C.H.); (Y.Y.); (J.H.); (L.Z.)
| | - Hanchun Yang
- Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100193, China; (J.X.); (C.H.); (Y.Y.); (J.H.); (L.Z.)
| |
Collapse
|
6
|
Gao X, Huang Y, Wei T, Xue J, Iurii F, Yang L, Wang L, Li H, Mo G, Huang Y, Xie H, Wang H, Lou S, Han P. TFAP2A-regulated CRNDE enhances colon cancer progression and chemoresistance via RIPK3 interaction. Funct Integr Genomics 2025; 25:36. [PMID: 39954131 PMCID: PMC11829933 DOI: 10.1007/s10142-025-01545-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 12/12/2024] [Accepted: 01/27/2025] [Indexed: 02/17/2025]
Abstract
Colon cancer (CC) is a common malignancy with rising incidence worldwide. Despite advances in treatment strategies, many patients still face a poor prognosis due to the development of drug resistance. Long non-coding RNAs (lncRNAs) have emerged as important regulators of various biological processes and have been implicated in cancer progression. Among them, colorectal neoplasia differentially expressed (CRNDE) has drawn attention for its potential roles in different cancers. However, its specific functions in CC remain unclear. In this study, we identified CRNDE as highly expressed in CC, contributing to tumor progression and drug resistance. Mechanically, CRNDE is regulated by the transcription factor TFAP2A. Additionally, CRNDE inhibits pyroptosis, a form of programmed cell death, by promoting the ubiquitin-mediated degradation of RIPK3, thereby reducing the sensitivity of CC cells to 5-fluorouracil (5-FU). Our findings suggest that the TFAP2A/CRNDE/RIPK3 axis plays critical roles in colon cancer progression and chemoresistance, highlighting potential therapeutic targets for improving treatment outcomes.
Collapse
Affiliation(s)
- Xin Gao
- Department of Oncology Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Yanming Huang
- Department of Oncology Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Tonghui Wei
- Department of Oncology Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Jingmin Xue
- Department of Oncology Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Filippov Iurii
- Department of Oncology Surgery, Harbin Medical University Cancer Hospital, Harbin, China
- Bashkir State Medical University, Ufa, 450008, Russia
| | - Laishou Yang
- Department of Oncology Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Liying Wang
- Department of Oncology Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Hao Li
- Department of Oncology Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Genshen Mo
- Department of Oncology Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Yuze Huang
- Department of Oncology Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Haonan Xie
- Department of Oncology Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Hang Wang
- Department of Oncology Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Shenghan Lou
- Department of Oncology Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Peng Han
- Department of Oncology Surgery, Harbin Medical University Cancer Hospital, Harbin, China.
- Key Laboratory of Tumor Immunology in Heilongjiang, Harbin, China.
| |
Collapse
|
7
|
Eskander G, Abdelhamid SG, Wahdan SA, Radwan SM. Insights on the crosstalk among different cell death mechanisms. Cell Death Discov 2025; 11:56. [PMID: 39929794 PMCID: PMC11811070 DOI: 10.1038/s41420-025-02328-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 12/23/2024] [Accepted: 01/27/2025] [Indexed: 02/13/2025] Open
Abstract
The phenomenon of cell death has garnered significant scientific attention in recent years, emerging as a pivotal area of research. Recently, novel modalities of cellular death and the intricate interplay between them have been unveiled, offering insights into the pathogenesis of various diseases. This comprehensive review delves into the intricate molecular mechanisms, inducers, and inhibitors of the underlying prevalent forms of cell death, including apoptosis, autophagy, ferroptosis, necroptosis, mitophagy, and pyroptosis. Moreover, it elucidates the crosstalk and interconnection among the key pathways or molecular entities associated with these pathways, thereby paving the way for the identification of novel therapeutic targets, disease management strategies, and drug repurposing.
Collapse
Affiliation(s)
- Georgette Eskander
- Postgraduate program, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | | | - Sara A Wahdan
- Pharmacology and toxicology Department, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Sara M Radwan
- Biochemistry Department, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt.
| |
Collapse
|
8
|
Zhang Y, Yi S, Luan M. Advances in non-apoptotic regulated cell death: implications for malignant tumor treatment. Front Oncol 2025; 15:1519119. [PMID: 39949740 PMCID: PMC11821507 DOI: 10.3389/fonc.2025.1519119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 01/15/2025] [Indexed: 02/16/2025] Open
Abstract
Cell death mechanisms are broadly classified into accidental cell death (ACD) and regulated cell death (RCD). ACD such as necrosis, is an uncontrolled, accidental process, while RCD is tightly regulated by specific signaling pathways and molecular mechanisms. Tumor cells are characterized by their ability to evade cell death and sustain uncontrolled proliferation. The failure of programmed cell death is a key contributor to tumor initiation, progression, and resistance to cancer therapies. Traditionally, research has focused primarily on apoptosis as the dominant form of RCD in cancer. However, emerging evidence highlights the importance of other non-apoptotic forms of RCD, such as pyroptosis, ferroptosis, necroptosis, and parthanatos, in tumorigenesis and treatment response. These pathways are gaining attention for their potential roles in overcoming therapy resistance. In this review, we will discuss the recent advances in the study of non-apoptotic cell death pathways in malignant tumors and explore their therapeutic implications, offering insights into new targets for cancer treatment strategies.
Collapse
Affiliation(s)
- Yizheng Zhang
- Department of Pathology and Neuropathology, University Hospital and Comprehensive Cancer Center Tübingen, Tübingen, Germany
| | - Shiqi Yi
- Department of Obstetrics and Gynecology, West China Second Hospital, Sichuan University, Chengdu, China
| | - Mingyuan Luan
- Department of Pathology and Neuropathology, University Hospital and Comprehensive Cancer Center Tübingen, Tübingen, Germany
| |
Collapse
|
9
|
Hou G, Chen Y, Lei H, Lu S, Cheng L. Nanomaterials-Induced PANoptosis: A Promising Anti-Tumor Strategy. Angew Chem Int Ed Engl 2025; 64:e202419649. [PMID: 39560000 DOI: 10.1002/anie.202419649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 11/19/2024] [Accepted: 11/19/2024] [Indexed: 11/20/2024]
Abstract
Malignant tumors pose a significant threat to global public health. Promoting programmed cell death in cancer cells has become a critical strategy for cancer treatment. PANoptosis, a newly discovered form of regulated cell death, integrates key molecular components of pyroptosis, apoptosis, and necroptosis, activating these three death pathways simultaneously to achieve synergistic multi-mechanistic killing. PANoptosis significantly inhibits cancer cell growth and resistance and activates strong anti-tumor immune response, making tumor-specific induction of PANoptosis a potential cancer therapeutic strategy. Currently, cancer treatment research related to PANoptosis is focused mainly on the development of small molecules and cytokines. However, these approaches still face limitations in terms of metabolic stability and tumor specificity. The unique physicochemical properties and biological activities of nanomaterials hold significant promise for optimizing PANoptosis induction strategies. This review summarizes the concept and mechanisms of PANoptosis, highlights the latest applications of nanoagents in PANoptosis-based anti-cancer therapy, and discusses the challenges and future directions for clinical translation. It is hoped that this review will inspire further exploration and development of PANoptosis-based cancer treatments, providing new perspectives for researchers in the field.
Collapse
Affiliation(s)
- Guanghui Hou
- Institute of Functional Nano & Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, China
| | - Youdong Chen
- Institute of Functional Nano & Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, China
| | - Huali Lei
- Institute of Functional Nano & Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, China
| | - Shunyi Lu
- Department of Orthopedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, 215123, China
| | - Liang Cheng
- Institute of Functional Nano & Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, China
| |
Collapse
|
10
|
Saller BS, Wöhrle S, Fischer L, Dufossez C, Ingerl IL, Kessler S, Mateo-Tortola M, Gorka O, Lange F, Cheng Y, Neuwirt E, Marada A, Koentges C, Urban C, Aktories P, Reuther P, Giese S, Kirschnek S, Mayer C, Pilic J, Falquez-Medina H, Oelgeklaus A, Deepagan VG, Shojaee F, Zimmermann JA, Weber D, Tai YH, Crois A, Ciminski K, Peyronnet R, Brandenburg KS, Wu G, Baumeister R, Heimbucher T, Rizzi M, Riedel D, Helmstädter M, Buescher J, Neumann K, Misgeld T, Kerschensteiner M, Walentek P, Kreutz C, Maurer U, Rambold AS, Vince JE, Edlich F, Malli R, Häcker G, Kierdorf K, Meisinger C, Köttgen A, Jakobs S, Weber ANR, Schwemmle M, Groß CJ, Groß O. Acute suppression of mitochondrial ATP production prevents apoptosis and provides an essential signal for NLRP3 inflammasome activation. Immunity 2025; 58:90-107.e11. [PMID: 39571574 DOI: 10.1016/j.immuni.2024.10.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 08/15/2024] [Accepted: 10/24/2024] [Indexed: 01/18/2025]
Abstract
How mitochondria reconcile roles in functionally divergent cell death pathways of apoptosis and NLRP3 inflammasome-mediated pyroptosis remains elusive, as is their precise role in NLRP3 activation and the evolutionarily conserved physiological function of NLRP3. Here, we have shown that when cells were challenged simultaneously, apoptosis was inhibited and NLRP3 activation prevailed. Apoptosis inhibition by structurally diverse NLRP3 activators, including nigericin, imiquimod, extracellular ATP, particles, and viruses, was not a consequence of inflammasome activation but rather of their effects on mitochondria. NLRP3 activators turned out as oxidative phosphorylation (OXPHOS) inhibitors, which we found to disrupt mitochondrial cristae architecture, leading to trapping of cytochrome c. Although this effect was alone not sufficient for NLRP3 activation, OXPHOS inhibitors became triggers of NLRP3 when combined with resiquimod or Yoda-1, suggesting that NLRP3 activation requires two simultaneous cellular signals, one of mitochondrial origin. Therefore, OXPHOS and apoptosis inhibition by NLRP3 activators provide stringency in cell death decisions.
Collapse
Affiliation(s)
- Benedikt S Saller
- Institute of Neuropathology, Faculty of Medicine, Medical Center, University of Freiburg, Freiburg, Germany; Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
| | - Svenja Wöhrle
- Institute of Neuropathology, Faculty of Medicine, Medical Center, University of Freiburg, Freiburg, Germany; Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Larissa Fischer
- Institute of Neuropathology, Faculty of Medicine, Medical Center, University of Freiburg, Freiburg, Germany; Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Clara Dufossez
- Institute of Neuropathology, Faculty of Medicine, Medical Center, University of Freiburg, Freiburg, Germany; Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Isabella L Ingerl
- Institute of Neuropathology, Faculty of Medicine, Medical Center, University of Freiburg, Freiburg, Germany
| | - Susanne Kessler
- Institute of Virology, Faculty of Medicine, Medical Center, University of Freiburg, Freiburg, Germany
| | - Maria Mateo-Tortola
- Department of Innate Immunity, Institute of Immunology, University of Tübingen, Tübingen, Germany
| | - Oliver Gorka
- Institute of Neuropathology, Faculty of Medicine, Medical Center, University of Freiburg, Freiburg, Germany
| | - Felix Lange
- Research Group Mitochondrial Structure and Dynamics, Department of NanoBiophotonics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany; Clinic for Neurology, University Medical Center of Göttingen, Göttingen, Germany
| | - Yurong Cheng
- Institute of Genetic Epidemiology, Faculty of Medicine, Medical Center, University of Freiburg, Freiburg, Germany
| | - Emilia Neuwirt
- Institute of Neuropathology, Faculty of Medicine, Medical Center, University of Freiburg, Freiburg, Germany; Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
| | - Adinarayana Marada
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Christoph Koentges
- Institute of Neuropathology, Faculty of Medicine, Medical Center, University of Freiburg, Freiburg, Germany
| | - Chiara Urban
- Institute of Neuropathology, Faculty of Medicine, Medical Center, University of Freiburg, Freiburg, Germany
| | - Philipp Aktories
- Institute of Neuropathology, Faculty of Medicine, Medical Center, University of Freiburg, Freiburg, Germany; Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany; Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Peter Reuther
- Institute of Virology, Faculty of Medicine, Medical Center, University of Freiburg, Freiburg, Germany
| | - Sebastian Giese
- Institute of Virology, Faculty of Medicine, Medical Center, University of Freiburg, Freiburg, Germany
| | - Susanne Kirschnek
- Institute of Medical Microbiology and Hygiene, Faculty of Medicine, Medical Center, University of Freiburg, Freiburg, Germany
| | - Carolin Mayer
- Institute of Medical Microbiology and Hygiene, Faculty of Medicine, Medical Center, University of Freiburg, Freiburg, Germany
| | - Johannes Pilic
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
| | - Hugo Falquez-Medina
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Veterinary Physiological Chemical Institute, Faculty of Veterinary Medicine, University of Leipzig, Leipzig, Germany
| | - Aline Oelgeklaus
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Veterinary Physiological Chemical Institute, Faculty of Veterinary Medicine, University of Leipzig, Leipzig, Germany
| | - Veerasikku Gopal Deepagan
- The Walter and Eliza Hall Institute of Medical Research, The Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Farzaneh Shojaee
- The Walter and Eliza Hall Institute of Medical Research, The Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Julia A Zimmermann
- Department of Developmental Immunology, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Damian Weber
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany; Internal Medicine IV, Faculty of Medicine, Medical Center, University of Freiburg, Freiburg, Germany
| | - Yi-Heng Tai
- Institute of Clinical Neuroimmunology, University Hospital, Ludwig-Maximilians Universität München, Munich, Germany; Biomedical Center (BMC), Faculty of Medicine, Ludwig-Maximilians Universität München, Martinsried, Germany; Institute of Neuronal Cell Biology, Technical University of Munich, Munich, Germany
| | - Anna Crois
- Faculty of Biology, University of Freiburg, Freiburg, Germany; Institute for Molecular Medicine and Cell Research, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Kevin Ciminski
- Institute of Virology, Faculty of Medicine, Medical Center, University of Freiburg, Freiburg, Germany
| | - Remi Peyronnet
- Institute for Experimental Cardiovascular Medicine, Faculty of Medicine, University Heart Center Freiburg - Bad Krozingen, University of Freiburg, Freiburg, Germany
| | - Katharina S Brandenburg
- Institute of Neuropathology, Faculty of Medicine, Medical Center, University of Freiburg, Freiburg, Germany
| | - Gang Wu
- Bioinformatics and Molecular Genetics, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Ralf Baumeister
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany; Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Bioinformatics and Molecular Genetics, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Thomas Heimbucher
- Bioinformatics and Molecular Genetics, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Marta Rizzi
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany; Department of Rheumatology and Clinical Immunology and Center for Chronic Immunodeficiency, Faculty of Medicine, Medical Center, University of Freiburg, Freiburg, Germany; Division of Clinical and Experimental Immunology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Dietmar Riedel
- Laboratory for Electron Microscopy, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Martin Helmstädter
- EMcore, Internal Medicine IV, Faculty of Medicine, Medical Center, University of Freiburg, Freiburg, Germany
| | - Joerg Buescher
- Metabolomics and FACS Core Facilities, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Konstantin Neumann
- Institute of Clinical Chemistry, Hannover Medical School, Hannover, Germany
| | - Thomas Misgeld
- Institute of Neuronal Cell Biology, Technical University of Munich, Munich, Germany; German Center for Neurodegenerative Diseases (DZNE), Munich, Germany; Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Martin Kerschensteiner
- Institute of Clinical Neuroimmunology, University Hospital, Ludwig-Maximilians Universität München, Munich, Germany; Biomedical Center (BMC), Faculty of Medicine, Ludwig-Maximilians Universität München, Martinsried, Germany; Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Peter Walentek
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany; Internal Medicine IV, Faculty of Medicine, Medical Center, University of Freiburg, Freiburg, Germany
| | - Clemens Kreutz
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany; Institute of Medical Biometry and Statistics, Faculty of Medicine, Medical Center, University of Freiburg, Freiburg, Germany
| | - Ulrich Maurer
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany; Institute for Molecular Medicine and Cell Research, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Angelika S Rambold
- Department of Developmental Immunology, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - James E Vince
- The Walter and Eliza Hall Institute of Medical Research, The Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Frank Edlich
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Veterinary Physiological Chemical Institute, Faculty of Veterinary Medicine, University of Leipzig, Leipzig, Germany
| | - Roland Malli
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
| | - Georg Häcker
- Institute of Medical Microbiology and Hygiene, Faculty of Medicine, Medical Center, University of Freiburg, Freiburg, Germany
| | - Katrin Kierdorf
- Institute of Neuropathology, Faculty of Medicine, Medical Center, University of Freiburg, Freiburg, Germany; Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
| | - Chris Meisinger
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany; Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Anna Köttgen
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany; Institute of Genetic Epidemiology, Faculty of Medicine, Medical Center, University of Freiburg, Freiburg, Germany
| | - Stefan Jakobs
- Research Group Mitochondrial Structure and Dynamics, Department of NanoBiophotonics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany; Clinic for Neurology, University Medical Center of Göttingen, Göttingen, Germany; Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Translational Neuroinflammation and Automated Microscopy TNM, Göttingen, Germany
| | - Alexander N R Weber
- Department of Innate Immunity, Institute of Immunology, University of Tübingen, Tübingen, Germany; Clusters of Excellence EXC-2180 (iFIT) and -2124 (CMFI), University of Tübingen, Tübingen, Germany
| | - Martin Schwemmle
- Institute of Virology, Faculty of Medicine, Medical Center, University of Freiburg, Freiburg, Germany
| | - Christina J Groß
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
| | - Olaf Groß
- Institute of Neuropathology, Faculty of Medicine, Medical Center, University of Freiburg, Freiburg, Germany; Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
11
|
Zhao C, Lin S. PANoptosis in intestinal epithelium: its significance in inflammatory bowel disease and a potential novel therapeutic target for natural products. Front Immunol 2025; 15:1507065. [PMID: 39840043 PMCID: PMC11747037 DOI: 10.3389/fimmu.2024.1507065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 12/12/2024] [Indexed: 01/23/2025] Open
Abstract
The intestinal epithelium, beyond its role in absorption and digestion, serves as a critical protective mechanical barrier that delineates the luminal contents and the gut microbiota from the lamina propria within resident mucosal immune cells to maintain intestinal homeostasis. The barrier is manifested as a contiguous monolayer of specialized intestinal epithelial cells (IEC), interconnected through tight junctions (TJs). The integrity of this epithelial barrier is of paramount. Consequently, excessive IEC death advances intestinal permeability and as a consequence thereof the translocation of bacteria into the lamina propria, subsequently triggering an inflammatory response, which underpins the clinical disease trajectory of inflammatory bowel disease (IBD). A burgeoning body of evidence illustrates a landscape where IEC undergoes several the model of programmed cell death (PCD) in the pathophysiology and pathogenesis of IBD. Apoptosis, necroptosis, and pyroptosis represent the principal modalities of PCD with intricate specific pathways and molecules. Ample evidence has revealed substantial mechanistic convergence and intricate crosstalk among these three aforementioned forms of cell death, expanding the conceptualization of PANoptosis orchestrated by the PNAoptosome complex. This review provides a concise overview of the molecular mechanisms of apoptosis, necroptosis, and pyroptosis. Furthermore, based on the crosstalk between three cell deaths in IEC, this review details the current knowledge regarding PANoptosis in IEC and its regulation by natural products. Our objective is to broaden the comprehension of innovative molecular mechanisms underlying the pathogenesis of IBD and to furnish a foundation for developing more natural drugs in the treatment of IBD, benefiting both clinical practitioners and research workers.
Collapse
|
12
|
Tye H, Conos SA, Djajawi TM, Gottschalk TA, Abdoulkader N, Kong IY, Kammoun HL, Narayana VK, Kratina T, Speir M, Emery J, Simpson DS, Hall C, Vince AJ, Russo S, Crawley R, Rashidi M, Hildebrand JM, Murphy JM, Whitehead L, De Souza DP, Masters SL, Samson AL, Lalaoui N, Hawkins ED, Murphy AJ, Vince JE, Lawlor KE. Divergent roles of RIPK3 and MLKL in high-fat diet-induced obesity and MAFLD in mice. Life Sci Alliance 2025; 8:e202302446. [PMID: 39532538 PMCID: PMC11557689 DOI: 10.26508/lsa.202302446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 10/30/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024] Open
Abstract
Cell death frequently occurs in the pathogenesis of obesity and metabolic dysfunction-associated fatty liver disease (MAFLD). However, the exact contribution of core cell death machinery to disease manifestations remains ill-defined. Here, we show via the direct comparison of mice genetically deficient in the essential necroptotic regulators, receptor-interacting protein kinase-3 (RIPK3) and mixed lineage kinase domain-like (MLKL), as well as mice lacking apoptotic caspase-8 in myeloid cells combined with RIPK3 loss, that RIPK3/caspase-8 signaling regulates macrophage inflammatory responses and drives adipose tissue inflammation and MAFLD upon high-fat diet feeding. In contrast, MLKL, divergent to RIPK3, contributes to both obesity and MAFLD in a manner largely independent of inflammation. We also uncover that MLKL regulates the expression of molecules involved in lipid uptake, transport, and metabolism, and congruent with this, we discover a shift in the hepatic lipidome upon MLKL deletion. Collectively, these findings highlight MLKL as an attractive therapeutic target to combat the growing obesity pandemic and metabolic disease.
Collapse
Affiliation(s)
- Hazel Tye
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Australia
| | - Stephanie A Conos
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Australia
- Department of Molecular and Translational Science, Monash University, Clayton, Australia
| | - Tirta M Djajawi
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Australia
- Department of Molecular and Translational Science, Monash University, Clayton, Australia
| | - Timothy A Gottschalk
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Australia
- Department of Molecular and Translational Science, Monash University, Clayton, Australia
| | - Nasteho Abdoulkader
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Australia
| | - Isabella Y Kong
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- The Department of Medical Biology, University of Melbourne, Parkville, Australia
| | | | - Vinod K Narayana
- Metabolomics Australia, Bio21 Institute of Molecular Science and Biotechnology, University of Melbourne, Melbourne, Australia
| | | | - Mary Speir
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Australia
- Department of Molecular and Translational Science, Monash University, Clayton, Australia
| | - Jack Emery
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Australia
- Department of Molecular and Translational Science, Monash University, Clayton, Australia
| | - Daniel S Simpson
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- The Department of Medical Biology, University of Melbourne, Parkville, Australia
| | - Cathrine Hall
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
| | - Angelina J Vince
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
| | - Sophia Russo
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
| | - Rhiannan Crawley
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
| | - Maryam Rashidi
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- The Department of Medical Biology, University of Melbourne, Parkville, Australia
| | - Joanne M Hildebrand
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- The Department of Medical Biology, University of Melbourne, Parkville, Australia
| | - James M Murphy
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- The Department of Medical Biology, University of Melbourne, Parkville, Australia
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
| | - Lachlan Whitehead
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- The Department of Medical Biology, University of Melbourne, Parkville, Australia
| | - David P De Souza
- Metabolomics Australia, Bio21 Institute of Molecular Science and Biotechnology, University of Melbourne, Melbourne, Australia
| | - Seth L Masters
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- The Department of Medical Biology, University of Melbourne, Parkville, Australia
| | - Andre L Samson
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- The Department of Medical Biology, University of Melbourne, Parkville, Australia
| | - Najoua Lalaoui
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- Peter MacCallum Cancer Centre, Melbourne, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Australia
| | - Edwin D Hawkins
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- The Department of Medical Biology, University of Melbourne, Parkville, Australia
| | | | - James E Vince
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- The Department of Medical Biology, University of Melbourne, Parkville, Australia
| | - Kate E Lawlor
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Australia
- Department of Molecular and Translational Science, Monash University, Clayton, Australia
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- The Department of Medical Biology, University of Melbourne, Parkville, Australia
| |
Collapse
|
13
|
Shimizu K, Inuzuka H, Tokunaga F. The interplay between cell death and senescence in cancer. Semin Cancer Biol 2025; 108:1-16. [PMID: 39557316 DOI: 10.1016/j.semcancer.2024.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 11/10/2024] [Accepted: 11/12/2024] [Indexed: 11/20/2024]
Abstract
Cellular senescence is a state of permanent proliferative arrest that occurs in response to DNA damage-inducing endogenous and exogenous stresses, and is often accompanied by dynamic molecular changes such as a senescence-associated secretory phenotype (SASP). Accumulating evidence indicates that age-associated increases in the upstream and downstream signals of regulated cell death, including apoptosis, necroptosis, pyroptosis, and ferroptosis, are closely related to the induction of cellular senescence and its phenotype. Furthermore, elevated levels of pro-inflammatory SASP factors with aging can be both a cause and consequence of several cell death modes, suggesting the reciprocal effects of cellular senescence and cells undergoing regulated cell death. Here, we review the critical molecular pathways of the regulated cell death forms and describe the crosstalk between aging-related signals and cancer. In addition, we discuss how targeting regulated cell death could be harnessed in therapeutic interventions for cancer. ABBREVIATIONS: Abbreviations that are not standard in this field are defined at their first occurrence in the article and are used consistently throughout the article.
Collapse
Affiliation(s)
- Kouhei Shimizu
- Department of Medical Biochemistry, Graduate School of Medicine, Osaka Metropolitan University, Osaka 545-8585, Japan.
| | - Hiroyuki Inuzuka
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston MA02215, USA
| | - Fuminori Tokunaga
- Department of Medical Biochemistry, Graduate School of Medicine, Osaka Metropolitan University, Osaka 545-8585, Japan
| |
Collapse
|
14
|
Ambujakshan A, Sahu BD. Unraveling the role of RIPKs in diabetic kidney disease and its therapeutic perspectives. Biochem Pharmacol 2025; 231:116642. [PMID: 39571918 DOI: 10.1016/j.bcp.2024.116642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/24/2024] [Accepted: 11/18/2024] [Indexed: 11/28/2024]
Abstract
Nephropathy is the microvascular complication of diabetes mellitus and is the leading cause of chronic kidney disease. This review discusses the implications of receptor-interacting protein kinase (RIPK) family members and their regulation of inflammation and cell death pathways in the initiation and progression of diabetic kidney disease. Hyperglycemia leads to reactive oxygen species (ROS) generation and RIPK1 overexpression, the first regulator of necroptosis. Further, RIPK1 can form complex I to promote nuclear factor kappa-light-chain enhancer of activated B cells (NF-κB) and mitogen-activated protein kinase (MAPK) pathway activation or complex II to cause programmed cell death in the kidneys. The rise in RIPK1 level upon ROS generation declines the apoptosis regulators' level while the necroptosis regulators' level is boosted. Necroptosis is a programmed or controlled necrosis-type cell death pathway executed by RIPK1, RIPK3, and mixed lineage kinase domain-like (MLKL) proteins, and recent research suggests its importance in diabetic nephropathy. In necroptosis, RIPK1 and RIPK3 interrelate with their RIP homotypic interaction motif (RHIM) domains and cause the recruitment of MLKL. Next, MLKL gets oligomerized, migrate towards the plasma membrane, and causes its rupture. We emphasized different research studies on drugs highlighting the nephroprotective effects via regulating the RIPKs. We hope that the conclusions of this review may provide new strategies for diabetic kidney disease treatment and promising targets for drug development based on necroptosis.
Collapse
Affiliation(s)
- Anju Ambujakshan
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Changsari 781101, Assam, India
| | - Bidya Dhar Sahu
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Changsari 781101, Assam, India.
| |
Collapse
|
15
|
Lai Y, Zhuang L, Zhu J, Wang S, Guo C, Chen B, Li J, Shi J, Li M, Yang N, Zhou M. Novel approach to alleviate lupus nephritis: targeting the NLRP3 inflammasome in CD8 +CD69 +CD103 + T RM cells. J Transl Med 2024; 22:1139. [PMID: 39716284 DOI: 10.1186/s12967-024-05951-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 12/06/2024] [Indexed: 12/25/2024] Open
Abstract
BACKGROUND Renal CD8+ tissue-resident memory T (TRM) cells display prolonged survival and activity in lupus nephritis (LN), exacerbating renal pathology. NLRP3 regulates the T cell response. This study explored the impact of NLRP3 inflammasome activity on the regulatory functions of TRM cells in LN. METHODS NLRP3 inflammasome activity in renal CD8+ TRM cells from lupus-prone MRL/lpr mice and in vitro induced human CD8+CD103+ T cells was assessed by quantifying NLRP3, caspase-1, gasdermin D (GSDMD), and IL-1β levels using flow cytometry, ELISA, and western blotting analysis. The specific NLRP3 inhibitor MCC950, caspase-1 inhibitor Ac-YVAD-cmk, and NF-κB inhibitor JSH23 were utilized to delineate the role of NLRP3 in modulating the pathogenicity of CD8+ TRM cells in LN. RESULTS Activation of the NLRP3 inflammasome was confirmed in renal CD8+CD69+CD103+ TRM cells derived from mice with LN and in vitro-induced human CD8+CD103+ TRM-like cells. MCC950 curtailed the infiltration and activity of CD8+CD69+CD103+ TRM cells and enhanced renal outcomes. MCC950 also suppressed the maturation and functional capabilities of CD8+CD103+ T cells in a manner reliant on inflammasome activity in vitro. IL-1β promoted the expression of TGF-βRII in CD8+ T cells via the NF-κB pathway. CONCLUSIONS NLRP3 inflammasome activity in renal CD8+CD69+CD103+ TRM cells contributes to LN pathogenesis by regulating cell differentiation and effector functions. Therapeutically targeting the NLRP3 inflammasome could significantly mitigate CD8+CD69+CD103+ TRM cell-mediated renal damage in LN.
Collapse
Affiliation(s)
- Yimei Lai
- Department of Rheumatology, The First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan Second Road, Guangzhou, 510080, P. R. China
| | - Lili Zhuang
- Department of Rheumatology, The First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan Second Road, Guangzhou, 510080, P. R. China
| | - Jieying Zhu
- Department of Rheumatology, The First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan Second Road, Guangzhou, 510080, P. R. China
| | - Shuang Wang
- Department of Rheumatology, The First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan Second Road, Guangzhou, 510080, P. R. China
| | - Chaohuan Guo
- Department of Rheumatology, The First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan Second Road, Guangzhou, 510080, P. R. China
| | - Binfeng Chen
- Department of Rheumatology, The First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan Second Road, Guangzhou, 510080, P. R. China
| | - Jin Li
- Department of Rheumatology, The First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan Second Road, Guangzhou, 510080, P. R. China
| | - Jia Shi
- Department of Rheumatology, The First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan Second Road, Guangzhou, 510080, P. R. China
| | - Mengyuan Li
- Department of Rheumatology, The First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan Second Road, Guangzhou, 510080, P. R. China
| | - Niansheng Yang
- Department of Rheumatology, The First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan Second Road, Guangzhou, 510080, P. R. China.
| | - Mianjing Zhou
- Department of Rheumatology, The First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan Second Road, Guangzhou, 510080, P. R. China.
| |
Collapse
|
16
|
He R, Liu Y, Fu W, He X, Liu S, Xiao D, Tao Y. Mechanisms and cross-talk of regulated cell death and their epigenetic modifications in tumor progression. Mol Cancer 2024; 23:267. [PMID: 39614268 PMCID: PMC11606237 DOI: 10.1186/s12943-024-02172-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 11/07/2024] [Indexed: 12/01/2024] Open
Abstract
Cell death is a fundamental part of life for metazoans. To maintain the balance between cell proliferation and metabolism of human bodies, a certain number of cells need to be removed regularly. Hence, the mechanisms of cell death have been preserved during the evolution of multicellular organisms. Tumorigenesis is closely related with exceptional inhibition of cell death. Mutations or defects in cell death-related genes block the elimination of abnormal cells and enhance the resistance of malignant cells to chemotherapy. Therefore, the investigation of cell death mechanisms enables the development of drugs that directly induce tumor cell death. In the guidelines updated by the Cell Death Nomenclature Committee (NCCD) in 2018, cell death was classified into 12 types according to morphological, biochemical and functional classification, including intrinsic apoptosis, extrinsic apoptosis, mitochondrial permeability transition (MPT)-driven necrosis, necroptosis, ferroptosis, pyroptosis, PARP-1 parthanatos, entotic cell death, NETotic cell death, lysosome-dependent cell death, autophagy-dependent cell death, immunogenic cell death, cellular senescence and mitotic catastrophe. The mechanistic relationships between epigenetic controls and cell death in cancer progression were previously unclear. In this review, we will summarize the mechanisms of cell death pathways and corresponding epigenetic regulations. Also, we will explore the extensive interactions between these pathways and discuss the mechanisms of cell death in epigenetics which bring benefits to tumor therapy.
Collapse
Affiliation(s)
- Ruimin He
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410078, China
- Cancer Research Institute and School of Basic Medicine, Central South University, Changsha, Hunan, 410078, China
- Department of Pathology, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Xiangya Hospital, Central South University, Hunan, 410078, China
| | - Yifan Liu
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410078, China
- Cancer Research Institute and School of Basic Medicine, Central South University, Changsha, Hunan, 410078, China
- Department of Pathology, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Xiangya Hospital, Central South University, Hunan, 410078, China
| | - Weijie Fu
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410078, China
- Cancer Research Institute and School of Basic Medicine, Central South University, Changsha, Hunan, 410078, China
- Department of Pathology, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Xiangya Hospital, Central South University, Hunan, 410078, China
| | - Xuan He
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410078, China
- Cancer Research Institute and School of Basic Medicine, Central South University, Changsha, Hunan, 410078, China
- Department of Pathology, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Xiangya Hospital, Central South University, Hunan, 410078, China
| | - Shuang Liu
- Department of Oncology, Institute of Medical Sciences, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
| | - Desheng Xiao
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
| | - Yongguang Tao
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410078, China.
- Cancer Research Institute and School of Basic Medicine, Central South University, Changsha, Hunan, 410078, China.
- Department of Pathology, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Xiangya Hospital, Central South University, Hunan, 410078, China.
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
- Department of Thoracic Surgery, Hunan Key Laboratory of Early Diagnosis and Precision Therapy in Lung Cancer, Second Xiangya Hospital, Central South University, Changsha, 410011, China.
- Furong Laboratory, Xiangya School of Medicine, Central South University, Hunan, 410078, China.
| |
Collapse
|
17
|
Mocarski ES. Cytomegalovirus Biology Viewed Through a Cell Death Suppression Lens. Viruses 2024; 16:1820. [PMID: 39772130 PMCID: PMC11680106 DOI: 10.3390/v16121820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 11/22/2024] [Accepted: 11/22/2024] [Indexed: 01/11/2025] Open
Abstract
Cytomegaloviruses, species-specific members of the betaherpesviruses, encode an impressive array of immune evasion strategies committed to the manipulation of the host immune system enabling these viruses to remain for life in a stand-off with host innate and adaptive immune mechanisms. Even though they are species-restricted, cytomegaloviruses are distributed across a wide range of different mammalian species in which they cause systemic infection involving many different cell types. Regulated, or programmed cell death has a recognized potential to eliminate infected cells prior to completion of viral replication and release of progeny. Cell death also naturally terminates replication during the final stages of replication. Over the past two decades, the host defense potential of known programmed cell death pathways (apoptosis, necroptosis, and pyroptosis), as well as a novel mitochondrial serine protease pathway have been defined through studies of cytomegalovirus-encoded cell death suppressors. Such virus-encoded inhibitors prevent virus-induced, cytokine-induced, and stress-induced death of infected cells while also moderating inflammation. By evading cell death and consequent inflammation as well as innate and adaptive immune clearance, cytomegaloviruses represent successful pathogens that become a critical disease threat when the host immune system is compromised. This review will discuss cell death programs acquired for mammalian host defense against cytomegaloviruses and enumerate the range of modulatory strategies this type of virus employs to balance host defense in favor of lifelong persistence.
Collapse
Affiliation(s)
- Edward S. Mocarski
- Department of Microbiology & Immunology, Stanford Medical School, Stanford University, Stanford, CA 94305, USA;
- Department of Microbiology & Immunology, Emory Medical School, Emory Vaccine Center, Emory University, Atlanta, GA 30322, USA
| |
Collapse
|
18
|
Li B, Ling Z, Wang Y, Xing Y. Receptor-Interacting Protein Kinase 3 Augments Neuroinflammation by Facilitating Neutrophil Infiltration during an Ischemic Stroke. J Vasc Res 2024; 62:51-62. [PMID: 39571563 DOI: 10.1159/000542571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 10/22/2024] [Indexed: 01/11/2025] Open
Abstract
INTRODUCTION Neutrophil infiltration is responsible for the neuroinflammation during an ischemic stroke. Here, we explored the role of receptor-interacting protein kinase 3 (RIP3) in neutrophil infiltration during an ischemic stroke. METHODS The rat middle cerebral artery occlusion (MCAO) model was utilized to identify pivotal proteins involved in neutrophil infiltration during an ischemic stroke. Neutrophils were isolated from the peripheral blood of mice, and a co-immunoprecipitation (co-IP) assay was performed to identify the proteins that interact with RIP3. RESULTS The rat MCAO model was successfully established. Myeloperoxidase (MPO) was significantly upregulated in the MCAO group, indicating the presence of neutrophil infiltration. RIP3 protein level exhibited a similar trend to MPO protein level, suggesting that neuroinflammation might be partly activated by RIP3 through the promotion of neutrophil infiltration. Co-IP and mass spectrometry analyses suggested that RIP3 facilitated neutrophil infiltration partly by affecting protein kinases (Rock1 and Prkaca) downstream of RIP3, and the interaction between RIP3 and Rock1 or Prkaca was validated by IF and co-IP assays. CONCLUSION In this study, it was observed that RIP3 affects neutrophil infiltration, a critical phenomenon associated with neuronal injury during ischemic stroke, partly by the modulation of downstream proteins such as Rock1 and Prkaca.
Collapse
Affiliation(s)
- Baiyu Li
- Department of Neurology Cadre Ward, Gansu Provincial Hospital, Lanzhou, China
| | - Zexia Ling
- Department of Gastroenterology Cadre Ward, Gansu Provincial Hospital, Lanzhou, China
| | - Yanyan Wang
- Department of Neurology Cadre Ward, Gansu Provincial Hospital, Lanzhou, China
| | - Yinhua Xing
- Department of Gastroenterology Cadre Ward, Gansu Provincial Hospital, Lanzhou, China
| |
Collapse
|
19
|
Li S, Liu Y, Li D, Zhang K, Zhang Z, Zhang Z, Cai J. Microalgal astaxanthin ameliorates cypermethrin-induced necroptosis and inflammation via targeting mitochondrial Ca 2+ homeostasis and the ROS-NF-κB-RIPK3/MLKL axis in carp hepatocytes (Cyprinus carpio). FISH & SHELLFISH IMMUNOLOGY 2024; 154:109944. [PMID: 39370019 DOI: 10.1016/j.fsi.2024.109944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/26/2024] [Accepted: 10/04/2024] [Indexed: 10/08/2024]
Abstract
Cypermethrin is a toxic pesticide that has infiltrated water bodies due to its widespread use. This contamination has led to detrimental effects on the immune organs of aquatic species, including fish. The natural fat-soluble orange-red carotenoid, astaxanthin (MAT), derived from microalgae, possesses anti-inflammatory, antioxidant, and immunomodulatory properties. To elucidate the mechanism of CY induced damage to carp liver cells and assess the potential protective effects of MAT, we established a carp hepatocyte model exposed to CY and/or MAT. Hepatocytes from carp (Cyprinus carpio) were treated with either 8 μM CY or 60 μM MAT for 24 h. Upon exposure CY, a significant increase in reactive oxygen species (ROS) was observed alongside a diminution in the activities of key antioxidant enzymes, superoxide dismutase (SOD) and catalase (CAT), suggesting an impairment of cellular antioxidant capacity. Subsequently, acridine orange/ethidium bromide (AO/EB) staining and flow cytometry analysis revealed that hepatocytes exposed to CY exhibited a higher incidence of necroptosis, associated with an elevated mitochondrial Ca2+ concentration, which contributed to cellular dysfunction. Furthermore, exposure to CY also activated the ROS-NF-κB-RIPK3/MLKL signaling pathway, increasing the levels of necroptosis-related regulatory factors (RIP1, RIP3, and MLKL) in hepatocytes and the expression of inflammatory genes (IL-6, IFN-γ, IL-4, IL-1β, and TNF-α), which led to immune dysfunction in hepatocytes. The immunotoxic effects induced by CY were mitigated by MAT treatment, suggesting its potential in alleviating the aforementioned changes caused by CY. Overall, the data suggested that MAT therapy could enhance hepatocyte defenses against CY-induced necroptosis and inflammatory responses by regulating mitochondrial Ca2+ homeostasis and inhibiting the ROS-NF-κB-RIPK3/MLKL signaling cascade. This study elucidated the potential benefits of employing MAT to protect farmed fish from agrobiological hazards during CY exposure, underscoring the practical applications of MAT in aquaculture.
Collapse
Affiliation(s)
- Shuoyue Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, Peoples R China
| | - Yinuo Liu
- College of Life Sciences, Northeast Agricultural University, Harbin, 150030, Peoples R China
| | - Di Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, Peoples R China
| | - Kaixuan Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, Peoples R China
| | - Zequn Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, Peoples R China
| | - Ziwei Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, Peoples R China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Peoples R China.
| | - Jingzeng Cai
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, Peoples R China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Peoples R China.
| |
Collapse
|
20
|
Zhang W, Zhu C, Liao Y, Zhou M, Xu W, Zou Z. Caspase-8 in inflammatory diseases: a potential therapeutic target. Cell Mol Biol Lett 2024; 29:130. [PMID: 39379817 PMCID: PMC11463096 DOI: 10.1186/s11658-024-00646-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 09/23/2024] [Indexed: 10/10/2024] Open
Abstract
Caspase-8, a renowned cysteine-aspartic protease within its enzyme family, initially garnered attention for its regulatory role in extrinsic apoptosis. With advancing research, a growing body of evidence has substantiated its involvement in other cell death processes, such as pyroptosis and necroptosis, as well as its modulatory effects on inflammasomes and proinflammatory cytokines. PANoptosis, an emerging concept of cell death, encompasses pyroptosis, apoptosis, and necroptosis, providing insight into the often overlapping cellular mortality observed during disease progression. The activation or deficiency of caspase-8 enzymatic activity is closely linked to PANoptosis, positioning caspase-8 as a key regulator of cell survival or death across various physiological and pathological processes. Aberrant expression of caspase-8 is closely associated with the development and progression of a range of inflammatory diseases, including immune system disorders, neurodegenerative diseases (NDDs), sepsis, and cancer. This paper delves into the regulatory role and impact of caspase-8 in these conditions, aiming to elucidate potential therapeutic strategies for the future intervention.
Collapse
Affiliation(s)
- Wangzheqi Zhang
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Chenglong Zhu
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Yan Liao
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Miao Zhou
- Department of Anesthesiology, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University, Nanjing, 210009, Jiangsu, China.
| | - Wenyun Xu
- Department of Anesthesiology, Second Affiliated Hospital of Naval Medical University, Shanghai, 200003, China.
| | - Zui Zou
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, 200433, China.
| |
Collapse
|
21
|
Wen W, Hu X, Liu J, Zeng F, Xu Y, Yuan Y, Gao C, Sun X, Cheng B, Wang J, Hu X, Xiao RP, Chen X, Zhang X. RIP3 regulates doxorubicin-induced intestinal mucositis via FUT2-mediated α-1,2-fucosylation. Inflamm Res 2024; 73:1781-1801. [PMID: 39180691 DOI: 10.1007/s00011-024-01932-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/24/2024] [Accepted: 08/05/2024] [Indexed: 08/26/2024] Open
Abstract
OBJECTIVE Intestinal mucositis is one of the common side effects of anti-cancer chemotherapy. However, the molecular mechanisms involved in mucositis development remain incompletely understood. In this study, we investigated the function of receptor-interacting protein kinase 3 (RIP3/RIPK3) in regulating doxorubicin-induced intestinal mucositis and its potential mechanisms. METHODS Intestinal mucositis animal models were induced in mice for in vivo studies. Rat intestinal cell line IEC-6 was used for in vitro studies. RNA‑seq was used to explore the transcriptomic changes in doxorubicin-induced intestinal mucositis. Intact glycopeptide characterization using mass spectrometry was applied to identify α-1,2-fucosylated proteins associated with mucositis. RESULTS Doxorubicin treatment increased RIP3 expression in the intestine and caused severe intestinal mucositis in the mice, depletion of RIP3 abolished doxorubicin-induced intestinal mucositis. RIP3-mediated doxorubicin-induced mucositis did not depend on mixed lineage kinase domain-like (MLKL) but on α-1,2-fucosyltransferase 2 (FUT2)-catalyzed α-1,2-fucosylation on inflammation-related proteins. Deficiency of MLKL did not affect intestinal mucositis, whereas inhibition of α-1,2-fucosylation by 2-deoxy-D-galactose (2dGal) profoundly attenuated doxorubicin-induced inflammation and mucositis. CONCLUSIONS RIP3-FUT2 pathway is a central node in doxorubicin-induced intestinal mucositis. Targeting intestinal RIP3 and/or FUT2-mediated α-1,2-fucosylation may provide potential targets for preventing chemotherapy-induced intestinal mucositis.
Collapse
Affiliation(s)
- Wei Wen
- Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, 100871, China
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking University, Beijing, 100871, China
- PKU-Nanjing Institute of Translational Medicine, Nanjing, 211800, China
| | - Xiaomin Hu
- Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, 100871, China
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking University, Beijing, 100871, China
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China
| | - Jialin Liu
- College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
- Beijing National Laboratory for Molecular Sciences, Peking University, Beijing, 100871, China
| | - Fanxin Zeng
- Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, 100871, China
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking University, Beijing, 100871, China
- Department of Clinical Research Center, Dazhou Central Hospital, Dazhou, 635000, China
| | - Yihua Xu
- Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, 100871, China
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking University, Beijing, 100871, China
| | - Ye Yuan
- Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, 100871, China
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking University, Beijing, 100871, China
| | - Chunyan Gao
- Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, 100871, China
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking University, Beijing, 100871, China
| | - Xueting Sun
- Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, 100871, China
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking University, Beijing, 100871, China
| | - Bo Cheng
- College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
- Beijing National Laboratory for Molecular Sciences, Peking University, Beijing, 100871, China
| | - Jue Wang
- Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, 100871, China
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking University, Beijing, 100871, China
| | - Xinli Hu
- Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, 100871, China
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking University, Beijing, 100871, China
| | - Rui-Ping Xiao
- Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, 100871, China.
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking University, Beijing, 100871, China.
- PKU-Nanjing Institute of Translational Medicine, Nanjing, 211800, China.
- State Key Laboratory of Biomembrane and Membrane Biotechnology, Peking University, Beijing, 100871, China.
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China.
| | - Xing Chen
- College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China.
- Beijing National Laboratory for Molecular Sciences, Peking University, Beijing, 100871, China.
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China.
- Synthetic and Functional Biomolecules Center, Peking University, Beijing, 100871, China.
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Peking University, Beijing, 100871, China.
| | - Xiuqin Zhang
- Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, 100871, China.
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking University, Beijing, 100871, China.
- PKU-Nanjing Institute of Translational Medicine, Nanjing, 211800, China.
- National Biomedical Imaging Center, School of Future Technology, Peking University, Beijing, 100871, China.
| |
Collapse
|
22
|
Xu Y, Lin F, Liao G, Sun J, Chen W, Zhang L. Ripks and Neuroinflammation. Mol Neurobiol 2024; 61:6771-6787. [PMID: 38349514 DOI: 10.1007/s12035-024-03981-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 01/20/2024] [Indexed: 08/22/2024]
Abstract
Neuroinflammation is an immune response in the central nervous system and poses a significant threat to human health. Studies have shown that the receptor serine/threonine protein kinase family (RIPK) family, a popular research target in inflammation, has been shown to play an essential role in neuroinflammation. It is significant to note that the previous reviews have only examined the link between RIPK1 and neuroinflammation. However, it has yet to systematically analyze the relationship between the RIPK family and neuroinflammation. Activation of RIPK1 promotes neuroinflammation. RIPK1 and RIPK3 are responsible for the control of cell death, including apoptosis, necrosis, and inflammation. RIPK1 and RIPK3 regulate inflammatory responses through the release of damage in necroptosis. RIPK1 and RIPK3 regulate inflammatory responses by releasing damage-associated molecular patterns (DAMPs) during necrosis. In addition, activated RIPK1 nuclear translocation and its interaction with the BAF complex leads to upregulation of chromatin modification and inflammatory gene expression, thereby triggering inflammation. Although RIPK2 is not directly involved in regulating cell death, it is considered an essential target for treating neurological inflammation. When the peptidoglycan receptor detects peptidoglycan IE-DAP or MDP in bacteria, it prompts NOD1 and NOD2 to recruit RIPK2 and activate the XIAP E3 ligase. This leads to the K63 ubiquitination of RIPK2. This is followed by LUBAC-mediated linear ubiquitination, which activates NF-KB and MAPK pathways to produce cytokines and chemokines. In conclusion, there are seven known members of the RIPK family, but RIPK4, RIPK5, RIPK6, and RIPK7 have not been linked to neuroinflammation. This article seeks to explore the potential of RIPK1, RIPK2, and RIPK3 kinases as therapeutic interventions for neuroinflammation, which is associated with Alzheimer's disease (AD), amyotrophic lateral sclerosis (ALS), ischemic stroke, Parkinson's disease (PD), multiple sclerosis (MS), and traumatic brain injury (TBI).
Collapse
Affiliation(s)
- Yue Xu
- Department of Cerebrovascular Disease, Sun Yat-Sen University, The Fifth Affiliated Hospital, Zhuhai, 519000, Guangdong, People's Republic of China
| | - Feng Lin
- Department of Cerebrovascular Disease, Sun Yat-Sen University, The Fifth Affiliated Hospital, Zhuhai, 519000, Guangdong, People's Republic of China
| | - Guolei Liao
- Department of Cerebrovascular Disease, Sun Yat-Sen University, The Fifth Affiliated Hospital, Zhuhai, 519000, Guangdong, People's Republic of China
| | - Jiaxing Sun
- Department of Cerebrovascular Disease, Sun Yat-Sen University, The Fifth Affiliated Hospital, Zhuhai, 519000, Guangdong, People's Republic of China
| | - Wenli Chen
- Department of Pharmacy, Sun Yat-Sen University, The Fifth Affiliated Hospital, Zhuhai, 519000, Guangdong, People's Republic of China.
| | - Lei Zhang
- Department of Cerebrovascular Disease, Sun Yat-Sen University, The Fifth Affiliated Hospital, Zhuhai, 519000, Guangdong, People's Republic of China.
| |
Collapse
|
23
|
Peng L. Necroptosis and autoimmunity. Clin Immunol 2024; 266:110313. [PMID: 39002793 DOI: 10.1016/j.clim.2024.110313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 07/10/2024] [Indexed: 07/15/2024]
Abstract
Autoimmunity is a normal physiological state that requires immunological homeostasis and surveillance, whereas necroptosis is a type of inflammatory cell death. When necroptosis occurs, various immune system cells must perform their appropriate duties to preserve immunological homeostasis, whether the consequence is expanding or limiting the inflammatory response and the pathological condition is cleared or progresses to the autoimmune disease stage. This article discusses necroptosis based on RIP homotypic interaction motif (RHIM) interaction under various physiological and pathological situations, with the RIPK1-RIPK3-MLKL necrosome serving as the regulatory core. In addition, the cell biology of necroptosis involved in autoimmunity and its application in autoimmune diseases were also reviewed.
Collapse
Affiliation(s)
- Lin Peng
- National Clinical Research Center for Kidney Disease, Affiliated Jinling Hospital, Medical School of Nanjing University, Zhongshan East Road No.305, Nanjing, Jiangsu 210002, China.
| |
Collapse
|
24
|
Xu F, Ye Y, Gao Y, Xu S. Dual Role of Necroptosis in Cervical Cancer: Promoting Tumor Aggression and Modulating the Immune Microenvironment via the JAK2-STAT3 Pathway. J Cancer 2024; 15:5288-5307. [PMID: 39247606 PMCID: PMC11375541 DOI: 10.7150/jca.98738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 07/28/2024] [Indexed: 09/10/2024] Open
Abstract
In the dynamic landscape of cervical cancer (CC) pathophysiology, this study aimed to elucidate the role of necroptosis in modulating tumor proliferation, invasion, and the immune microenvironment in CC. In this study, the impact of necroptosis on CC was evaluated through a series of bioinformatical analyses and experimental approaches. The impact of necroptosis on CC was illustrated by analyzing its effects on tumor aggression, immune responses, and the JAK2-STAT3 signaling pathway. Bevacizumab, a monoclonal antibody targeting vascular endothelial growth factor (VEGF), was also evaluated for its potential induction of necroptosis in CC cells and its interaction with necroptosis inhibitors. Additionally, the study assessed the influence of necroptosis on the immune microenvironment, particularly in T-cell-related pathways and the expression of tumor suppressor genes in CC. Necroptosis was found to enhance VEGFA expression through the activation of the JAK2-STAT3 pathway, promoting tumor proliferative and invasive capabilities in CC. Bevacizumab induced necroptosis in CC cells, potentially leading to resistance to therapy. The combination of bevacizumab with necroptosis inhibitors attenuated VEGFA expression, suggesting a novel therapeutic strategy. Additionally, necroptosis activated T-cell-related pathways and promoted the infiltration and activation of Jurkat T cells. CD3D-a tumor suppressor gene in CC-was identified as a critical marker and its expression could be upregulated by necroptosis via the JAK2-STAT3 pathway in Jurkat T cells. Treatment of CC cells with supernatants from necroptosis-induced Jurkat cells resulted in reduced tumor cell proliferation and invasion. This study reveals a complex interaction between necroptosis, tumor progression, and the immune response in CC. The findings propose a nuanced approach to leveraging necroptosis for therapeutic interventions, highlighting the potential of combining necroptosis inhibitors with existing therapies to improve treatment outcomes in CC.
Collapse
Affiliation(s)
- Fangfang Xu
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Yingjun Ye
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Yueqing Gao
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Shaohua Xu
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| |
Collapse
|
25
|
Zhao Y, Sun W, Fan Q, Huang Y, Ma Y, Zhang S, Gong C, Wang B, Zhang W, Yang Q, Lin S. Exploring the potential molecular intersection of stroke and major depression disorder. Biochem Biophys Res Commun 2024; 720:150079. [PMID: 38759300 DOI: 10.1016/j.bbrc.2024.150079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 04/22/2024] [Accepted: 05/07/2024] [Indexed: 05/19/2024]
Abstract
Stroke and major depression disorder are common neurological diseases, and a large number of clinical studies have shown that there is a close relationship between the two diseases, but whether the two diseases are linked at the genetic level needs to be further explored. The purpose of this study was to explore the comorbidity mechanism of stroke and major depression by using bioinformatics technology and animal experiments. From the GEO database, we gathered transcriptome data of stroke and depression mice (GSE104036, GSE131712, GSE81672, and GSE146845) and identified comorbid gene set through edgR and WGCNA analyses. Further analysis revealed that these genes were enriched in pathways associated with cell death. Programmed cell death gene sets (PCDGs) are generated from genes related to apoptosis, necroptosis, pyroptosis and autophagy. The intersection of PCDGs and comorbid gene set resulted in two hub genes, Mlkl and Nlrp3. Single-cell sequencing analysis indicated that Mlkl and Nlrp3 are mainly influential on endothelial cells and microglia, suggesting that the impairment of these two cell types may be a factor in the relationship between stroke and major depression. This was experimentally confirmed by RT-PCR and immunofluorescence staining. Our research revealed that two specific genes, namely, Mlkl and Nlrp3, play crucial roles in the complex mechanism that links stroke and major depression. Additionally, we have predicted six possible therapeutic agents and the outcomes of docking simulations of target proteins and drug molecules.
Collapse
Affiliation(s)
- Yuan Zhao
- Department of Neurology, Xinqiao Hospital, The Second Affiliated Hospital, Army Medical University, Chongqing, 400042, China
| | - Wenzhe Sun
- Department of Neurology, Xinqiao Hospital, The Second Affiliated Hospital, Army Medical University, Chongqing, 400042, China
| | - Qinlin Fan
- Department of Neurology, Xinqiao Hospital, The Second Affiliated Hospital, Army Medical University, Chongqing, 400042, China
| | - Yanjie Huang
- Department of Neurology, Xinqiao Hospital, The Second Affiliated Hospital, Army Medical University, Chongqing, 400042, China
| | - Yufan Ma
- Department of Neurology, Xinqiao Hospital, The Second Affiliated Hospital, Army Medical University, Chongqing, 400042, China
| | - Shuang Zhang
- Department of Neurology, Xinqiao Hospital, The Second Affiliated Hospital, Army Medical University, Chongqing, 400042, China
| | - Changxiong Gong
- Department of Neurology, Xinqiao Hospital, The Second Affiliated Hospital, Army Medical University, Chongqing, 400042, China
| | - Bingqiao Wang
- Department of Neurology, Xinqiao Hospital, The Second Affiliated Hospital, Army Medical University, Chongqing, 400042, China
| | - Wanyun Zhang
- Department of Neurology, Xinqiao Hospital, The Second Affiliated Hospital, Army Medical University, Chongqing, 400042, China
| | - Qingwu Yang
- Department of Neurology, Xinqiao Hospital, The Second Affiliated Hospital, Army Medical University, Chongqing, 400042, China; Chongqing Institute for Brain and Intelligence, Guangyang Bay Laboratory, Chongqing, 400064, China.
| | - Sen Lin
- Department of Neurology, Xinqiao Hospital, The Second Affiliated Hospital, Army Medical University, Chongqing, 400042, China; Chongqing Institute for Brain and Intelligence, Guangyang Bay Laboratory, Chongqing, 400064, China.
| |
Collapse
|
26
|
Yu X, Feng M, Guo J, Wang H, Yu J, Zhang A, Wu J, Han Y, Sun Z, Liao Y, Zhao Q. MLKL promotes hepatocarcinogenesis through inhibition of AMPK-mediated autophagy. Cell Death Differ 2024; 31:1085-1098. [PMID: 38783090 PMCID: PMC11303813 DOI: 10.1038/s41418-024-01314-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 05/07/2024] [Accepted: 05/08/2024] [Indexed: 05/25/2024] Open
Abstract
The pseudokinase mixed lineage kinase domain-like (MLKL) is an essential component of the activation of the necroptotic pathway. Emerging evidence suggests that MLKL plays a key role in liver disease. However, how MLKL contributes to hepatocarcinogenesis has not been fully elucidated. Herein, we report that MLKL is upregulated in a diethylnitrosamine (DEN)-induced murine HCC model and is associated with human hepatocellular carcinomas. Hepatocyte-specific MLKL knockout suppresses the progression of hepatocarcinogenesis. Conversely, MLKL overexpression aggravates the initiation and progression of DEN-induced HCC. Mechanistic study reveals that deletion of MLKL significantly increases the activation of autophagy, thereby protecting against hepatocarcinogenesis. MLKL directly interacts with AMPKα1 and inhibits its activity independent of its necroptotic function. Mechanistically, MLKL serves as a bridging molecule between AMPKα1 and protein phosphatase 1B (PPM1B), thus enhancing the dephosphorylation of AMPKα1. Consistently, MLKL expression correlates negatively with AMPKα1 phosphorylation in HCC patients. Taken together, our findings highlight MLKL as a novel AMPK gatekeeper that plays key roles in inhibiting autophagy and driving hepatocarcinogenesis, suggesting that the MLKL-AMPKα1 axis is a potential therapeutic target for HCC.
Collapse
Affiliation(s)
- Xianjun Yu
- Department of Gastroenterology, Renmin Hospital, School of Basic Medical Sciences, Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan, 442000, China
- Inflammation-Cancer Transformation and Wudang Chinese Medicine Research, Hubei Talent Introduction and Innovation Demonstration Base, Biomedical Research Institute, Hubei University of Medicine, Shiyan, 442000, China
| | - Mengyuan Feng
- Department of Gastroenterology, Renmin Hospital, School of Basic Medical Sciences, Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan, 442000, China
- Inflammation-Cancer Transformation and Wudang Chinese Medicine Research, Hubei Talent Introduction and Innovation Demonstration Base, Biomedical Research Institute, Hubei University of Medicine, Shiyan, 442000, China
| | - Jian Guo
- Inflammation-Cancer Transformation and Wudang Chinese Medicine Research, Hubei Talent Introduction and Innovation Demonstration Base, Biomedical Research Institute, Hubei University of Medicine, Shiyan, 442000, China
| | - Haoyu Wang
- Department of Gastroenterology, Renmin Hospital, School of Basic Medical Sciences, Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan, 442000, China
- Inflammation-Cancer Transformation and Wudang Chinese Medicine Research, Hubei Talent Introduction and Innovation Demonstration Base, Biomedical Research Institute, Hubei University of Medicine, Shiyan, 442000, China
| | - Jun Yu
- Department of Molecular and Cellular Biology, University of Geneva, Geneva, 1211, Switzerland
| | - Anjie Zhang
- Department of Gastroenterology, Renmin Hospital, School of Basic Medical Sciences, Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan, 442000, China
- Inflammation-Cancer Transformation and Wudang Chinese Medicine Research, Hubei Talent Introduction and Innovation Demonstration Base, Biomedical Research Institute, Hubei University of Medicine, Shiyan, 442000, China
| | - Jingyi Wu
- Department of Gastroenterology, Renmin Hospital, School of Basic Medical Sciences, Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan, 442000, China
- Inflammation-Cancer Transformation and Wudang Chinese Medicine Research, Hubei Talent Introduction and Innovation Demonstration Base, Biomedical Research Institute, Hubei University of Medicine, Shiyan, 442000, China
| | - Yamei Han
- Department of Biochemistry and Molecular Biology, Key Laboratory of Breast Cancer Prevention and Therapy, Ministry of Education, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Zequn Sun
- Department of Gastroenterology, Renmin Hospital, School of Basic Medical Sciences, Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan, 442000, China
| | - Yingying Liao
- Department of Gastroenterology, Renmin Hospital, School of Basic Medical Sciences, Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan, 442000, China
| | - Qun Zhao
- Department of Gastroenterology, Renmin Hospital, School of Basic Medical Sciences, Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan, 442000, China.
- Inflammation-Cancer Transformation and Wudang Chinese Medicine Research, Hubei Talent Introduction and Innovation Demonstration Base, Biomedical Research Institute, Hubei University of Medicine, Shiyan, 442000, China.
| |
Collapse
|
27
|
Lyu P, Wen J, Zhang W, Liu N, Stolzer I, Gießl A, Jia Y, Mauro D, Zhang F, Ciccia F, Soulat D, Günther C, Schett G, Bozec A. Expression of HIF1α in intestinal epithelium restricts arthritis inflammation by inhibiting RIPK3-induced cell death machinery. Ann Rheum Dis 2024; 83:984-997. [PMID: 38503474 PMCID: PMC11287550 DOI: 10.1136/ard-2023-224491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 02/28/2024] [Indexed: 03/21/2024]
Abstract
OBJECTIVES To investigate the mechanism by which intestinal epithelial cell (IEC) death induces arthritis. METHODS IEC death was assessed by staining for necroptosis and apoptosis markers and fluorescence in situ hybridisation at different time points during collagen-induced arthritis (CIA). During the development of CIA, messenger RNA (mRNA) sequencing was performed, followed by Gene Ontology enrichment analysis of differentially expressed genes. Mice deficient for hypoxia-inducible factor 1α (Hif1a) in IECs (Hif1a ∆IEC) were generated and induced for arthritis. mRNA sequencing, chromatin immunoprecipitated (ChIP) DNA sequencing and ChIP-qualitative PCR were performed on IECs from Hif1a ∆IEC mice and littermate controls. Effects of HIF1α stabilisation by inhibition of prolyl hydroxylase domain-containing enzymes and treatment with the inhibitor of receptor-interacting protein kinase-3 (RIPK3) were tested in intestinal organoids and in CIA. RESULTS IEC underwent apoptotic and necroptotic cell death at the onset of arthritis, leading to impaired gut barrier function. HIF1α was identified as one of the most upregulated genes in IECs during the onset of arthritis. Deletion of Hif1a in IEC enhanced IEC necroptosis, triggered intestinal inflammation and exacerbated arthritis. HIF1α was found to be a key transcriptional repressor for the necroptosis-inducing factor RIPK3. Enhanced RIPK3 expression, indicating necroptosis, was also found in the intestinal epithelium of patients with new-onset rheumatoid arthritis. Therapeutic stabilisation of HIF1α as well as small-molecule-based RIPK3 inhibition rescued intestinal necroptosis in vitro and in vivo and suppressed the development of arthritis. CONCLUSION Our results identify IEC necroptosis as a critical link between the gut and the development of arthritis.
Collapse
Affiliation(s)
- Pang Lyu
- Department of Internal Medicine 3, Rheumatology and Immunology, Friedrich-Alexander University (FAU) Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum Immuntherapie, Friedrich-Alexander University (FAU) Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Jinming Wen
- Department of Internal Medicine 3, Rheumatology and Immunology, Friedrich-Alexander University (FAU) Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum Immuntherapie, Friedrich-Alexander University (FAU) Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Wenshuo Zhang
- Department of Internal Medicine 3, Rheumatology and Immunology, Friedrich-Alexander University (FAU) Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum Immuntherapie, Friedrich-Alexander University (FAU) Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Ning Liu
- Department of Internal Medicine 3, Rheumatology and Immunology, Friedrich-Alexander University (FAU) Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum Immuntherapie, Friedrich-Alexander University (FAU) Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Iris Stolzer
- Deutsches Zentrum Immuntherapie, Friedrich-Alexander University (FAU) Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
- Department of Internal Medicine 1, Friedrich-Alexander University (FAU) Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Bayern, Germany
| | - Andreas Gießl
- Department of Opthalmology, Friedrich-Alexander University (FAU) Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Yewei Jia
- Department of Internal Medicine 3, Rheumatology and Immunology, Friedrich-Alexander University (FAU) Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum Immuntherapie, Friedrich-Alexander University (FAU) Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Daniele Mauro
- Precision Medicine, Università degli Studi della Campania Luigi Vanvitelli, Napoli, Campania, Italy
| | - Fulin Zhang
- Department of Internal Medicine 3, Rheumatology and Immunology, Friedrich-Alexander University (FAU) Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum Immuntherapie, Friedrich-Alexander University (FAU) Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Francesco Ciccia
- Precision Medicine, Università degli Studi della Campania Luigi Vanvitelli, Napoli, Campania, Italy
| | - Didier Soulat
- Microbiology Institute, Friedrich-Alexander University (FAU) Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Claudia Günther
- Deutsches Zentrum Immuntherapie, Friedrich-Alexander University (FAU) Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
- Department of Internal Medicine 1, Friedrich-Alexander University (FAU) Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Bayern, Germany
| | - Georg Schett
- Department of Internal Medicine 3, Rheumatology and Immunology, Friedrich-Alexander University (FAU) Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum Immuntherapie, Friedrich-Alexander University (FAU) Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Aline Bozec
- Department of Internal Medicine 3, Rheumatology and Immunology, Friedrich-Alexander University (FAU) Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum Immuntherapie, Friedrich-Alexander University (FAU) Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| |
Collapse
|
28
|
Zhen H, Hu Y, Liu X, Fan G, Zhao S. The protease caspase-1: Activation pathways and functions. Biochem Biophys Res Commun 2024; 717:149978. [PMID: 38718564 DOI: 10.1016/j.bbrc.2024.149978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 04/18/2024] [Accepted: 04/22/2024] [Indexed: 05/21/2024]
Abstract
Caspase-1 is one of the main mediators of inflammatory caspases and has become a correspondent with inflammation, cell death, and several inflammatory diseases. In this review, we systematically summarize both original and recent advances in caspase-1 to provide references for a better understanding of the molecular mechanisms in its activation and functions. This study investigates and summarizes the published articles concerning caspase-1, inflammation, pyroptosis, apoptosis, and cell death by searching academic search systems, including the PubMed, Web of Science, and Google Scholar. Caspase-1 is one of the main mediators of inflammatory caspases and has become a correspondent with inflammation and cell death. In cell death, caspase-1 was originally found to cause apoptosis in fibroblasts. Importantly, caspase-1 was later reported to execute programmed cell death, including pyroptosis and apoptosis, in many immune cells in response to diverse stimuli. It is widely established that different pathways can activate caspase-1 and subsequently mediate cell death and inflammation. It has become increasingly clear that caspase-1 is responsible for the initiation and control of pyroptosis, apoptosis, and inflammation in addition to its well-known function in cleaving IL-1β. The significant advancement in the understanding of caspase-1-controlled cell death and novel substrates inspires new therapeutic approaches in the future.
Collapse
Affiliation(s)
- Hongmin Zhen
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology & Business University (BTBU), Beijing, 100048, China
| | - Yumeng Hu
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology & Business University (BTBU), Beijing, 100048, China
| | - Xiaoyan Liu
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology & Business University (BTBU), Beijing, 100048, China
| | - Guangsen Fan
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology & Business University (BTBU), Beijing, 100048, China
| | - Shuna Zhao
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology & Business University (BTBU), Beijing, 100048, China.
| |
Collapse
|
29
|
Liu H, Li H, Chen T, Yu F, Lin Q, Zhao H, Jin L, Peng R. Research Progress on Micro(nano)plastic-Induced Programmed Cell Death Associated with Disease Risks. TOXICS 2024; 12:493. [PMID: 39058145 PMCID: PMC11281249 DOI: 10.3390/toxics12070493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/01/2024] [Accepted: 07/02/2024] [Indexed: 07/28/2024]
Abstract
Due to their robust migration capabilities, slow degradation, and propensity for adsorbing environmental pollutants, micro(nano)plastics (MNPs) are pervasive across diverse ecosystems. They infiltrate various organisms within different food chains through multiple pathways including inhalation and dermal contact, and pose a significant environmental challenge in the 21st century. Research indicates that MNPs pose health threats to a broad range of organisms, including humans. Currently, extensive detection data and studies using experimental animals and in vitro cell culture indicate that MNPs can trigger various forms of programmed cell death (PCD) and can induce various diseases. This review provides a comprehensive and systematic analysis of different MNP-induced PCD processes, including pyroptosis, ferroptosis, autophagy, necroptosis, and apoptosis, based on recent research findings and focuses on elucidating the links between PCD and diseases. Additionally, targeted therapeutic interventions for these diseases are described. This review provides original insights into the opportunities and challenges posed by current research findings. This review evaluates ways to mitigate various diseases resulting from cell death patterns. Moreover, this paper enhances the understanding of the biohazards associated with MNPs by providing a systematic reference for subsequent toxicological research and health risk mitigation efforts.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Renyi Peng
- Institute of Life Sciences & Biomedicine Collaborative Innovation Center of Zhejiang Province, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China; (H.L.); (H.L.); (T.C.); (F.Y.); (Q.L.); (H.Z.); (L.J.)
| |
Collapse
|
30
|
Gao J, Xiong A, Liu J, Li X, Wang J, Zhang L, Liu Y, Xiong Y, Li G, He X. PANoptosis: bridging apoptosis, pyroptosis, and necroptosis in cancer progression and treatment. Cancer Gene Ther 2024; 31:970-983. [PMID: 38553639 PMCID: PMC11257964 DOI: 10.1038/s41417-024-00765-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/17/2024] [Accepted: 03/19/2024] [Indexed: 07/20/2024]
Abstract
This comprehensive review explores the intricate mechanisms of PANoptosis and its implications in cancer. PANoptosis, a convergence of apoptosis, pyroptosis, and necroptosis, plays a crucial role in cell death and immune response regulation. The study delves into the molecular pathways of each cell death mechanism and their crosstalk within PANoptosis, emphasizing the shared components like caspases and the PANoptosome complex. It highlights the significant role of PANoptosis in various cancers, including respiratory, digestive, genitourinary, gliomas, and breast cancers, showing its impact on tumorigenesis and patient survival rates. We further discuss the interwoven relationship between PANoptosis and the tumor microenvironment (TME), illustrating how PANoptosis influences immune cell behavior and tumor progression. It underscores the dynamic interplay between tumors and their microenvironments, focusing on the roles of different immune cells and their interactions with cancer cells. Moreover, the review presents new breakthroughs in cancer therapy, emphasizing the potential of targeting PANoptosis to enhance anti-tumor immunity. It outlines various strategies to manipulate PANoptosis pathways for therapeutic purposes, such as targeting key signaling molecules like caspases, NLRP3, RIPK1, and RIPK3. The potential of novel treatments like immunogenic PANoptosis-initiated therapies and nanoparticle-based strategies is also explored.
Collapse
Affiliation(s)
- Jie Gao
- Laboratory of Allergy and Precision Medicine, Chengdu Institute of Respiratory Health, the Third People's Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu, 610031, China
- Department of Pulmonary and Critical Care Medicine, Chengdu third people's hospital branch of National Clinical Research Center for Respiratory Disease, Affiliated Hospital of ChongQing Medical University, Chengdu, 610031, China
| | - Anying Xiong
- Laboratory of Allergy and Precision Medicine, Chengdu Institute of Respiratory Health, the Third People's Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu, 610031, China
- Department of Pulmonary and Critical Care Medicine, Chengdu third people's hospital branch of National Clinical Research Center for Respiratory Disease, Affiliated Hospital of ChongQing Medical University, Chengdu, 610031, China
| | - Jiliu Liu
- Laboratory of Allergy and Precision Medicine, Chengdu Institute of Respiratory Health, the Third People's Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu, 610031, China
- Department of Pulmonary and Critical Care Medicine, Chengdu third people's hospital branch of National Clinical Research Center for Respiratory Disease, Affiliated Hospital of ChongQing Medical University, Chengdu, 610031, China
| | - Xiaolan Li
- Laboratory of Allergy and Precision Medicine, Chengdu Institute of Respiratory Health, the Third People's Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu, 610031, China
- Department of Pulmonary and Critical Care Medicine, Chengdu third people's hospital branch of National Clinical Research Center for Respiratory Disease, Affiliated Hospital of ChongQing Medical University, Chengdu, 610031, China
- National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Institute of Respiratory Health, The First Affiliated Hospital of Medical University, Guangzhou, Guangdong, 510120, China
| | - Junyi Wang
- Laboratory of Allergy and Precision Medicine, Chengdu Institute of Respiratory Health, the Third People's Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu, 610031, China
- Department of Pulmonary and Critical Care Medicine, Chengdu third people's hospital branch of National Clinical Research Center for Respiratory Disease, Affiliated Hospital of ChongQing Medical University, Chengdu, 610031, China
| | - Lei Zhang
- Laboratory of Allergy and Precision Medicine, Chengdu Institute of Respiratory Health, the Third People's Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu, 610031, China
- Department of Pulmonary and Critical Care Medicine, Chengdu third people's hospital branch of National Clinical Research Center for Respiratory Disease, Affiliated Hospital of ChongQing Medical University, Chengdu, 610031, China
| | - Yao Liu
- Laboratory of Allergy and Precision Medicine, Chengdu Institute of Respiratory Health, the Third People's Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu, 610031, China
- Department of Pulmonary and Critical Care Medicine, Chengdu third people's hospital branch of National Clinical Research Center for Respiratory Disease, Affiliated Hospital of ChongQing Medical University, Chengdu, 610031, China
| | - Ying Xiong
- Department of Pulmonary and Critical Care Medicine, Sichuan friendship hospital, Chengdu, 610000, China
| | - Guoping Li
- Laboratory of Allergy and Precision Medicine, Chengdu Institute of Respiratory Health, the Third People's Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu, 610031, China.
- Department of Pulmonary and Critical Care Medicine, Chengdu third people's hospital branch of National Clinical Research Center for Respiratory Disease, Affiliated Hospital of ChongQing Medical University, Chengdu, 610031, China.
| | - Xiang He
- Laboratory of Allergy and Precision Medicine, Chengdu Institute of Respiratory Health, the Third People's Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu, 610031, China.
- Department of Pulmonary and Critical Care Medicine, Chengdu third people's hospital branch of National Clinical Research Center for Respiratory Disease, Affiliated Hospital of ChongQing Medical University, Chengdu, 610031, China.
- National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Institute of Respiratory Health, The First Affiliated Hospital of Medical University, Guangzhou, Guangdong, 510120, China.
| |
Collapse
|
31
|
Min Y, Yu ZQ. GSK'872 Improves Prognosis of Traumatic Brain Injury by Switching Receptor-Interacting Serine/Threonine-Protein Kinase 3-dependent Necroptosis to Cysteinyl Aspartate Specific Proteinase-8-Dependent Apoptosis. World Neurosurg 2024; 187:e136-e147. [PMID: 38636634 DOI: 10.1016/j.wneu.2024.04.051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 04/10/2024] [Accepted: 04/11/2024] [Indexed: 04/20/2024]
Abstract
BACKGROUND Traumatic brain injury (TBI) is an important health concern in the society. Previous studies have suggested that necroptosis occurs following TBI. However, the underlying mechanisms and roles of necroptosis are not well understood. In this study, we aimed to assess the role of receptor-interacting serine/threonine-protein kinase 3 (RIP3)-mediated necroptosis after TBI both in vitro and in vivo. METHODS We established a cell-stretching injury and mouse TBI model by applying a cell injury controller and controlled cortical impactor to evaluate the relationships among necroptosis, apotosis, inflammation, and TBI both in vitro and in vivo. RESULTS The results revealed that necroptosis mediated by RIP1, RIP3, and mixed lineage kinase domain-like protein was involved in secondary TBI. Additionally, protein kinase B (Akt), phosphorylated Akt, mammalian target of rapamycin (mTOR), and phosphorylated mTOR potentially contribute to necroptosis. The inhibition of RIP3 by GSK'872 (a specific inhibitor) blocked necroptosis and reduced the activity of Akt/mTOR, leading to the alleviation of inflammation by reducing the levels of NOD-, LRR- and pyrin domain-containing protein 3. Moreover, the inhibition of RIP3 by GSK'872 promoted the activity of cysteinyl aspartate specific proteinase-8, an enzyme involved in apoptosis and inflammation. CONCLUSIONS These data demonstrate that RIP3 inhibition could improve the prognosis of TBI, based on the attenuation of inflammation by switching RIP3-dependent necroptosis to cysteinyl aspartate specific proteinase-8-dependent apoptosis.
Collapse
Affiliation(s)
- Yue Min
- Department of Neurosurgery, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, Sichuan, China
| | - Ze-Qi Yu
- Department of Neurosurgery, Armed Police Force Hospital of Sichuan, Leshan, Sichuan, China.
| |
Collapse
|
32
|
Jiang Q, Ding Y, Li F, Fayyaz AI, Duan H, Geng X. Modulation of NLRP3 inflammasome-related-inflammation via RIPK1/RIPK3-DRP1 or HIF-1α signaling by phenothiazine in hypothermic and normothermic neuroprotection after acute ischemic stroke. Redox Biol 2024; 73:103169. [PMID: 38692093 PMCID: PMC11070764 DOI: 10.1016/j.redox.2024.103169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/24/2024] [Accepted: 04/25/2024] [Indexed: 05/03/2024] Open
Abstract
BACKGROUND Inflammation and subsequent mitochondrial dysfunction and cell death worsen outcomes after revascularization in ischemic stroke. Receptor-interacting protein kinase 1 (RIPK1) activated dynamin-related protein 1 (DRP1) in a NLRPyrin domain containing 3 (NLRP3) inflammasome-dependent fashion and Hypoxia-Inducible Factor (HIF)-1α play key roles in the process. This study determined how phenothiazine drugs (chlorpromazine and promethazine (C + P)) with the hypothermic and normothermic modality impacts the RIPK1/RIPK3-DRP1 and HIF-1α pathways in providing neuroprotection. METHODS A total of 150 adult male Sprague-Dawley rats were subjected to 2 h middle cerebral artery occlusion (MCAO) followed by 24 h reperfusion. 8 mg/kg of C + P was administered at onset of reperfusion. Infarct volumes, mRNA and protein expressions of HIF-1α, RIPK1, RIPK3, DRP-1, NLRP3-inflammation and cytochrome c-apoptosis were assessed. Apoptotic cell death, infiltration of neutrophils and macrophages, and mitochondrial function were evaluated. Interaction between RIPK1/RIPK3 and HIF-1α/NLRP3 were determined. In SH-SY5Y cells subjected to oxygen/glucose deprivation (OGD), the normothermic effect of C + P on inflammation and apoptosis were examined. RESULTS C + P significantly reduced infarct volumes, mitochondrial dysfunction (ATP and ROS concentration, citrate synthase and ATPase activity), inflammation and apoptosis with and without induced hypothermia. Overexpression of RIPK1, RIPK3, DRP-1, NLRP3-inflammasome and cytochrome c-apoptosis were all significantly reduced by C + P at 33 °C and the RIPK1 inhibitor (Nec1s), suggesting hypothermic effect of C + P via RIPK1/RIPK3-DRP1pathway. When body temperature was maintained at 37 °C, C + P and HIF-1α inhibitor (YC-1) reduced HIF-1α expression, leading to reduction in mitochondrial dysfunction, NLRP3 inflammasome and cytochrome c-apoptosis, as well as the interaction of HIF-1α and NLRP3. These were also evidenced in vitro, indicating a normothermic effect of C + P via HIF-1α. CONCLUSION Hypothermic and normothermic neuroprotection of C + P involve different pathways. The normothermic effect was mediated by HIF-1α, while hypothermic effect was via RIPK1/RIPK3-DRP1 signaling. This provides a theoretical basis for future precise exploration of hypothermic and normothermic neuroprotection.
Collapse
Affiliation(s)
- Qian Jiang
- China-America Institute of Neuroscience, Beijing Luhe Hospital, Capital Medical University, China; Department of Neurology, Beijing Luhe Hospital, Capital Medical University, China
| | - Yuchuan Ding
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, USA
| | - Fengwu Li
- China-America Institute of Neuroscience, Beijing Luhe Hospital, Capital Medical University, China; Department of Neurology, Beijing Luhe Hospital, Capital Medical University, China
| | - Aminah I Fayyaz
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, USA
| | - Honglian Duan
- Department of Neurology, Beijing Luhe Hospital, Capital Medical University, China
| | - Xiaokun Geng
- China-America Institute of Neuroscience, Beijing Luhe Hospital, Capital Medical University, China; Department of Neurology, Beijing Luhe Hospital, Capital Medical University, China; Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, USA.
| |
Collapse
|
33
|
Gao L, Shay C, Teng Y. Cell death shapes cancer immunity: spotlighting PANoptosis. J Exp Clin Cancer Res 2024; 43:168. [PMID: 38877579 PMCID: PMC11179218 DOI: 10.1186/s13046-024-03089-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 06/05/2024] [Indexed: 06/16/2024] Open
Abstract
PANoptosis represents a novel type of programmed cell death (PCD) with distinctive features that incorporate elements of pyroptosis, apoptosis, and necroptosis. PANoptosis is governed by a newly discovered cytoplasmic multimeric protein complex known as the PANoptosome. Unlike each of these PCD types individually, PANoptosis is still in the early stages of research and warrants further exploration of its specific regulatory mechanisms and primary targets. In this review, we provide a brief overview of the conceptual framework and molecular components of PANoptosis. In addition, we highlight recent advances in the understanding of the molecular mechanisms and therapeutic applications of PANoptosis. By elucidating the complex crosstalk between pyroptosis, apoptosis and necroptosis and summarizing the functional consequences of PANoptosis with a special focus on the tumor immune microenvironment, this review aims to provide a theoretical basis for the potential application of PANoptosis in cancer therapy.
Collapse
Affiliation(s)
- Lixia Gao
- National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, College of Pharmacy, Chongqing University of Arts and Sciences, Chongqing, 402160, People's Republic of China
| | - Chloe Shay
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, 30322, USA
| | - Yong Teng
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, 30322, USA.
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University School of Medicine, 201 Dowman Dr, Atlanta, GA, 30322, USA.
| |
Collapse
|
34
|
Pisetsky DS, Herbert A. The role of DNA in the pathogenesis of SLE: DNA as a molecular chameleon. Ann Rheum Dis 2024; 83:830-837. [PMID: 38749573 PMCID: PMC11168871 DOI: 10.1136/ard-2023-225266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 04/11/2024] [Indexed: 06/14/2024]
Abstract
Systemic lupus erythematosus (SLE) is a prototypic autoimmune disease characterised by antibodies to DNA (anti-DNA) and other nuclear macromolecules. Anti-DNA antibodies are markers for classification and disease activity and promote pathogenesis by forming immune complexes that deposit in the tissue or stimulate cytokine production. Studies on the antibody response to DNA have focused primarily on a conformation of DNA known as B-DNA, the classic right-handed double helix. Among other conformations of DNA, Z-DNA is a left-handed helix with a zig-zag backbone; hence, the term Z-DNA. Z-DNA formation is favoured by certain base sequences, with the energetically unfavourable flip from B-DNA to Z-DNA dependent on conditions. Z-DNA differs from B-DNA in its immunogenicity in animal models. Furthermore, anti-Z-DNA antibodies, but not anti-B-DNA antibodies, can be present in otherwise healthy individuals. In SLE, antibodies to Z-DNA can occur in association with antibodies to B-DNA as a cross-reactive response, rising and falling together. While formed transiently in chromosomal DNA, Z-DNA is stably present in bacterial biofilms; biofilms can provide protection against antibiotics and other challenges including elements of host defence. The high GC content of certain bacterial DNA also favours Z-DNA formation as do DNA-binding proteins of bacterial or host origin. Together, these findings suggest that sources of Z-DNA can enhance the immunogenicity of DNA and, in SLE, stimulate the production of cross-reactive antibodies that bind both B-DNA and Z-DNA. As such, DNA can act as a molecular chameleon that, when stabilised in the Z-DNA conformation, can drive autoimmunity.
Collapse
Affiliation(s)
- David S Pisetsky
- Duke University Medical Center, Durham, North Carolina, USA
- Medical Research, Durham VA Health Care System, Durham, North Carolina, USA
| | - Alan Herbert
- InsideOutBio Inc, Charlestown, Massachusetts, USA
| |
Collapse
|
35
|
Zhao H, Zong X, Li L, Li N, Liu C, Zhang W, Li J, Yang C, Huang S. Electroacupuncture Inhibits Neuroinflammation Induced by Astrocytic Necroptosis Through RIP1/MLKL/TLR4 Pathway in a Mouse Model of Spinal Cord Injury. Mol Neurobiol 2024; 61:3258-3271. [PMID: 37982922 DOI: 10.1007/s12035-023-03650-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 09/08/2023] [Indexed: 11/21/2023]
Abstract
Astrocytic necroptosis plays an essential role in the progression and regression of neurological disorders, which contributes to the neuroinflammation and disrupts neuronal regeneration and remyelination of severed axons. Electroacupuncture (EA), an effective therapeutic efficacy against spinal cord injury (SCI), has been proved to reduce neuronal cell apoptosis, inhibit inflammation, and prompt neural stem cell proliferation and differentiations. However, there have been few reports on whether EA regulate astrocytic necroptosis in SCI model. To investigate the effects of EA on astrocytic necroptosis and the mechanisms involved in the inhibition of astrocytic necroptosis after SCI in mice by EA, 8-week-old female C57BL/6 mice were subjected to SCI surgery and randomly divided into EA and SCI groups. Mice receiving sham surgery were included as sham group. "Jiaji" was selected as points for EA treatment, 10 min/day for 14 days. The in vitro data revealed that EA treatment significantly improved the nervous function and pathological changes after SCI. EA also reduced the number of GFAP/P-MLKL, GFAP/MLKL, GFAP/HMGB1, and Iba1/HMGB1 co-positive cells and inhibited the expressions of IL-6, IL-1β, and IL-33. The results indicate a significant reduction in inflammatory reaction and astrocytic necroptosis in mice with SCI by EA. Additionally, the expressions of RIP1, MLKL, and TLR4, which are associated with necroptosis, were found to be downregulated by EA. In this study, we confirmed that EA can inhibit neuroinflammation by reducing astrocytic necroptosis through downregulation of RIP1/MLKL/TLR4 pathway in mice with SCI.
Collapse
Affiliation(s)
- Hongdi Zhao
- Chongqing Medical University, Chongqing, 400016, China
- Affiliated Hospital of Chifeng University, Inner Mongolia Autonomous Region, Chifeng, 024099, China
| | - Xiaoqin Zong
- Chongqing Medical University, Chongqing, 400016, China
- Chongqing College of Traditional Chinese Medicine, Chongqing, 402760, China
| | - Long Li
- Chongqing Medical University, Chongqing, 400016, China
- Chongqing College of Traditional Chinese Medicine, Chongqing, 402760, China
| | - Na Li
- Chongqing College of Traditional Chinese Medicine, Chongqing, 402760, China
| | - Chunlei Liu
- Chongqing College of Traditional Chinese Medicine, Chongqing, 402760, China
| | - Wanchao Zhang
- Chongqing College of Traditional Chinese Medicine, Chongqing, 402760, China
| | - Juan Li
- Chongqing College of Traditional Chinese Medicine, Chongqing, 402760, China
| | - Cheng Yang
- Chongqing Medical University, Chongqing, 400016, China.
- Chongqing College of Traditional Chinese Medicine, Chongqing, 402760, China.
| | - Siqin Huang
- Chongqing Medical University, Chongqing, 400016, China.
- Chongqing College of Traditional Chinese Medicine, Chongqing, 402760, China.
| |
Collapse
|
36
|
Dong J, Liu W, Liu W, Wen Y, Liu Q, Wang H, Xiang G, Liu Y, Hao H. Acute lung injury: a view from the perspective of necroptosis. Inflamm Res 2024; 73:997-1018. [PMID: 38615296 DOI: 10.1007/s00011-024-01879-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 03/23/2024] [Accepted: 03/31/2024] [Indexed: 04/15/2024] Open
Abstract
BACKGROUND ALI/ARDS is a syndrome of acute onset characterized by progressive hypoxemia and noncardiogenic pulmonary edema as the primary clinical manifestations. Necroptosis is a form of programmed cell necrosis that is precisely regulated by molecular signals. This process is characterized by organelle swelling and membrane rupture, is highly immunogenic, involves extensive crosstalk with various cellular stress mechanisms, and is significantly implicated in the onset and progression of ALI/ARDS. METHODS The current body of literature on necroptosis and ALI/ARDS was thoroughly reviewed. Initially, an overview of the molecular mechanism of necroptosis was provided, followed by an examination of its interactions with apoptosis, pyroptosis, autophagy, ferroptosis, PANOptosis, and NETosis. Subsequently, the involvement of necroptosis in various stages of ALI/ARDS progression was delineated. Lastly, drugs targeting necroptosis, biomarkers, and current obstacles were presented. CONCLUSION Necroptosis plays an important role in the progression of ALI/ARDS. However, since ALI/ARDS is a clinical syndrome caused by a variety of mechanisms, we emphasize that while focusing on necroptosis, it may be more beneficial to treat ALI/ARDS by collaborating with other mechanisms.
Collapse
Affiliation(s)
- Jinyan Dong
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, 250000, Shandong, China
| | - Weihong Liu
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250000, Shandong, China
| | - Wenli Liu
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, 250000, Shandong, China
| | - Yuqi Wen
- Second Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, 250000, Shandong, China
| | - Qingkuo Liu
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, 250000, Shandong, China
| | - Hongtao Wang
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, 250000, Shandong, China
| | - Guohan Xiang
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, 250000, Shandong, China
| | - Yang Liu
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250000, Shandong, China.
| | - Hao Hao
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250000, Shandong, China.
| |
Collapse
|
37
|
Kumar V, Stewart Iv JH. Pattern-Recognition Receptors and Immunometabolic Reprogramming: What We Know and What to Explore. J Innate Immun 2024; 16:295-323. [PMID: 38740018 PMCID: PMC11250681 DOI: 10.1159/000539278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 05/07/2024] [Indexed: 05/16/2024] Open
Abstract
BACKGROUND Evolutionarily, immune response is a complex mechanism that protects the host from internal and external threats. Pattern-recognition receptors (PRRs) recognize MAMPs, PAMPs, and DAMPs to initiate a protective pro-inflammatory immune response. PRRs are expressed on the cell membranes by TLR1, 2, 4, and 6 and in the cytosolic organelles by TLR3, 7, 8, and 9, NLRs, ALRs, and cGLRs. We know their downstream signaling pathways controlling immunoregulatory and pro-inflammatory immune response. However, the impact of PRRs on metabolic control of immune cells to control their pro- and anti-inflammatory activity has not been discussed extensively. SUMMARY Immune cell metabolism or immunometabolism critically determines immune cells' pro-inflammatory phenotype and function. The current article discusses immunometabolic reprogramming (IR) upon activation of different PRRs, such as TLRs, NLRs, cGLRs, and RLRs. The duration and type of PRR activated, species studied, and location of immune cells to specific organ are critical factors to determine the IR-induced immune response. KEY MESSAGE The work herein describes IR upon TLR, NLR, cGLR, and RLR activation. Understanding IR upon activating different PRRs is critical for designing better immune cell-specific immunotherapeutics and immunomodulators targeting inflammation and inflammatory diseases.
Collapse
Affiliation(s)
- Vijay Kumar
- Department of Surgery, Laboratory of Tumor Immunology and Immunotherapy, Medical Education Building-C, Morehouse School of Medicine, Atlanta, Georgia, USA
| | - John H Stewart Iv
- Department of Surgery, Laboratory of Tumor Immunology and Immunotherapy, Medical Education Building-C, Morehouse School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
38
|
Mao R, Li L, Li P. Unveiling an oxidative stress-linked diagnostic signature and molecular subtypes in preeclampsia: novel insights into pathogenesis. Free Radic Res 2024; 58:354-365. [PMID: 38788124 DOI: 10.1080/10715762.2024.2360015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 04/17/2024] [Indexed: 05/26/2024]
Abstract
Preeclampsia (PE) is a complex pregnancy disorder characterized by hypertension and organ dysfunction, affecting both maternal and fetal health. Oxidative stress has been implicated in the pathogenesis of PE, but the underlying molecular mechanisms remain poorly understood. In this study, we aimed to identify a diagnostic signature and molecular subtypes associated with oxidative stress in PE to gain novel insights into its pathogenesis. The ssGSEA algorithm evaluated oxidative stress-related pathway scores using transcriptional data from the GSE75010 dataset. Oxidative stress-related genes (ORGs) were co lected from these pathways, and hub ORGs associated with PE were identified using the LASSO and logistic regression models. A nomogram prediction model was constructed using the identified ORGs. Consensus clustering identified two molecular subgroups related to oxidative stress, labeled as C1 and C2, with unique immune characteristics and inflammatory pathway profiles. Seventy ORGs associated with oxidative stress, ce l death, and inflammation-related pathways were identified in PE. EGFR, RIPK3, and ALAD were confirmed as core ORGs for PE biomarkers. The C1 and C2 subgroups exhibited distinct immune characteristics and inflammatory pathway profiles. This study provides novel insights into the role of oxidative stress in PE pathogenesis. A diagnostic signature and molecular subtypes associated with oxidative stress were identified, which may improve understanding, diagnosis, and management of PE.
Collapse
Affiliation(s)
- Rurong Mao
- Sichuan Jinxin Xinan Women and Children's Hospital, Chengdu, Sichuan, China
| | - Li Li
- Sichuan Jinxin Xinan Women and Children's Hospital, Chengdu, Sichuan, China
| | - Penghao Li
- Sichuan Jinxin Xinan Women and Children's Hospital, Chengdu, Sichuan, China
| |
Collapse
|
39
|
De Meyer GRY, Zurek M, Puylaert P, Martinet W. Programmed death of macrophages in atherosclerosis: mechanisms and therapeutic targets. Nat Rev Cardiol 2024; 21:312-325. [PMID: 38163815 DOI: 10.1038/s41569-023-00957-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/02/2023] [Indexed: 01/03/2024]
Abstract
Atherosclerosis is a progressive inflammatory disorder of the arterial vessel wall characterized by substantial infiltration of macrophages, which exert both favourable and detrimental functions. Early in atherogenesis, macrophages can clear cytotoxic lipoproteins and dead cells, preventing cytotoxicity. Efferocytosis - the efficient clearance of dead cells by macrophages - is crucial for preventing secondary necrosis and stimulating the release of anti-inflammatory cytokines. In addition, macrophages can promote tissue repair and proliferation of vascular smooth muscle cells, thereby increasing plaque stability. However, advanced atherosclerotic plaques contain large numbers of pro-inflammatory macrophages that secrete matrix-degrading enzymes, induce death in surrounding cells and contribute to plaque destabilization and rupture. Importantly, macrophages in the plaque can undergo apoptosis and several forms of regulated necrosis, including necroptosis, pyroptosis and ferroptosis. Regulated necrosis has an important role in the formation and expansion of the necrotic core during plaque progression, and several triggers for necrosis are present within atherosclerotic plaques. This Review focuses on the various forms of programmed macrophage death in atherosclerosis and the pharmacological interventions that target them as a potential means of stabilizing vulnerable plaques and improving the efficacy of currently available anti-atherosclerotic therapies.
Collapse
Affiliation(s)
- Guido R Y De Meyer
- Laboratory of Physiopharmacology, University of Antwerp, Antwerp, Belgium.
| | - Michelle Zurek
- Laboratory of Physiopharmacology, University of Antwerp, Antwerp, Belgium
| | - Pauline Puylaert
- Laboratory of Physiopharmacology, University of Antwerp, Antwerp, Belgium
| | - Wim Martinet
- Laboratory of Physiopharmacology, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
40
|
Tran HT, Kratina T, Coutansais A, Michalek D, Hogan BM, Lawlor KE, Vince JE, Silke J, Lalaoui N. RIPK3 cleavage is dispensable for necroptosis inhibition but restricts NLRP3 inflammasome activation. Cell Death Differ 2024; 31:662-671. [PMID: 38514849 PMCID: PMC11094093 DOI: 10.1038/s41418-024-01281-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 03/08/2024] [Accepted: 03/12/2024] [Indexed: 03/23/2024] Open
Abstract
Caspase-8 activity is required to inhibit necroptosis during embryogenesis in mice. In vitro studies have suggested that caspase-8 directly cleaves RIPK1, CYLD and the key necroptotic effector kinase RIPK3 to repress necroptosis. However, recent studies have shown that mice expressing uncleavable RIPK1 die during embryogenesis due to excessive apoptosis, while uncleavable CYLD mice are viable. Therefore, these results raise important questions about the role of RIPK3 cleavage. To evaluate the physiological significance of RIPK3 cleavage, we generated Ripk3D333A/D333A mice harbouring a point mutation in the conserved caspase-8 cleavage site. These mice are viable, demonstrating that RIPK3 cleavage is not essential for blocking necroptosis during development. Furthermore, unlike RIPK1 cleavage-resistant cells, Ripk3D333A/D333A cells were not significantly more sensitive to necroptotic stimuli. Instead, we found that the cleavage of RIPK3 by caspase-8 restricts NLRP3 inflammasome activation-dependent pyroptosis and IL-1β secretion when Inhibitors of APoptosis (IAP) are limited. These results demonstrate that caspase-8 does not inhibit necroptosis by directly cleaving RIPK3 and further underscore a role for RIPK3 in regulating the NLRP3 inflammasome.
Collapse
Affiliation(s)
- Hong Tri Tran
- Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, Australia
| | - Tobias Kratina
- Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | | | - Dominika Michalek
- Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, Australia
| | - Benjamin M Hogan
- Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, Australia
- Department of Anatomy and Physiology, University of Melbourne, Parkville, VIC, Australia
| | - Kate E Lawlor
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Molecular and Translational Science, Monash University, Clayton, VIC, Australia
| | - James E Vince
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - John Silke
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Najoua Lalaoui
- Peter MacCallum Cancer Centre, Melbourne, VIC, Australia.
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, Australia.
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.
| |
Collapse
|
41
|
Zhou Y, Xiang Y, Liu S, Li C, Dong J, Kong X, Ji X, Cheng X, Zhang L. RIPK3 signaling and its role in regulated cell death and diseases. Cell Death Discov 2024; 10:200. [PMID: 38684668 PMCID: PMC11059363 DOI: 10.1038/s41420-024-01957-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 04/09/2024] [Accepted: 04/11/2024] [Indexed: 05/02/2024] Open
Abstract
Receptor-interacting protein kinase 3 (RIPK3), a member of the receptor-interacting protein kinase (RIPK) family with serine/threonine protein kinase activity, interacts with RIPK1 to generate necrosomes, which trigger caspase-independent programmed necrosis. As a vital component of necrosomes, RIPK3 plays an indispensable role in necroptosis, which is crucial for human life and health. In addition, RIPK3 participates in the pathological process of several infections, aseptic inflammatory diseases, and tumors (including tumor-promoting and -suppressive activities) by regulating autophagy, cell proliferation, and the metabolism and production of chemokines/cytokines. This review summarizes the recent research progress of the regulators of the RIPK3 signaling pathway and discusses the potential role of RIPK3/necroptosis in the aetiopathogenesis of various diseases. An in-depth understanding of the mechanisms and functions of RIPK3 may facilitate the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Yaqi Zhou
- School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China
- Department of Pathology, the Second People's Hospital of Jiaozuo; The First Affiliated Hospital of Henan Polytechnic University, Jiaozuo, 454000, China
- Faculty of Basic Medical Subjects, Shu-Qing Medical College of Zhengzhou, No. 6 Gong-Ming Rd, Mazhai Town, Erqi District, Zhengzhou, Henan, 450064, China
| | - Yaxuan Xiang
- School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China
| | - Sijie Liu
- School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China
| | - Chenyao Li
- School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China
| | - Jiaheng Dong
- School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China
| | - Xiangrui Kong
- Wushu College, Henan University, Kaifeng, 475004, China
| | - Xinying Ji
- School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China
- Faculty of Basic Medical Subjects, Shu-Qing Medical College of Zhengzhou, No. 6 Gong-Ming Rd, Mazhai Town, Erqi District, Zhengzhou, Henan, 450064, China
| | - Xiaoxia Cheng
- School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China.
| | - Lei Zhang
- School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China.
| |
Collapse
|
42
|
Wang N, Li CY, Yao TF, Kang XD, Guo HS. OSW-1 triggers necroptosis in colorectal cancer cells through the RIPK1/RIPK3/MLKL signaling pathway facilitated by the RIPK1-p62/SQSTM1 complex. World J Gastroenterol 2024; 30:2155-2174. [PMID: 38681991 PMCID: PMC11045482 DOI: 10.3748/wjg.v30.i15.2155] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/02/2024] [Accepted: 03/14/2024] [Indexed: 04/19/2024] Open
Abstract
BACKGROUND Necroptosis has emerged as a novel molecular pathway that can be targeted by chemotherapy agents in the treatment of cancer. OSW-1, which is derived from the bulbs of Ornithogalum saundersiae Baker, exerts a wide range of pharmacological effects. AIM To explore whether OSW-1 can induce necroptosis in colorectal cancer (CRC) cells, thereby expanding its range of clinical applications. METHODS We performed a sequence of functional experiments, including Cell Counting Kit-8 assays and flow cytometry analysis, to assess the inhibitory effect of OSW-1 on CRC cells. We utilized quantitative proteomics, employing tandem mass tag labeling combined with liquid chromatography-tandem mass spectrometry, to analyze changes in protein expression. Subsequent bioinformatic analysis was conducted to elucidate the biological processes associated with the identified proteins. Transmission electron microscopy (TEM) and immunofluorescence studies were also performed to examine the effects of OSW-1 on necroptosis. Finally, western blotting, siRNA experiments, and immunoprecipitation were employed to evaluate protein interactions within CRC cells. RESULTS The results revealed that OSW-1 exerted a strong inhibitory effect on CRC cells, and this effect was accompanied by a necroptosis-like morphology that was observable via TEM. OSW-1 was shown to trigger necroptosis via activation of the RIPK1/RIPK3/MLKL pathway. Furthermore, the accumulation of p62/SQSTM1 was shown to mediate OSW-1-induced necroptosis through its interaction with RIPK1. CONCLUSION We propose that OSW-1 can induce necroptosis through the RIPK1/RIPK3/MLKL signaling pathway, and that this effect is mediated by the RIPK1-p62/SQSTM1 complex, in CRC cells. These results provide a theoretical foundation for the use of OSW-1 in the clinical treatment of CRC.
Collapse
Affiliation(s)
- Nan Wang
- Clinical Laboratory Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian 116023, Liaoning Province, China
- The Institute of Integrative Medicine, Dalian Medical University, Dalian 116044, Liaoning Province, China
| | - Chao-Yang Li
- The Institute of Laboratory Medicine, Dalian Medical University, Dalian 116044, Liaoning Province, China
| | - Teng-Fei Yao
- The Institute of Laboratory Medicine, Dalian Medical University, Dalian 116044, Liaoning Province, China
| | - Xiao-Dan Kang
- The Institute of Laboratory Medicine, Dalian Medical University, Dalian 116044, Liaoning Province, China
| | - Hui-Shu Guo
- The Institute of Integrative Medicine, Dalian Medical University, Dalian 116044, Liaoning Province, China
- Central Laboratory, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, Liaoning Province, China
| |
Collapse
|
43
|
Thal DR, Gawor K, Moonen S. Regulated cell death and its role in Alzheimer's disease and amyotrophic lateral sclerosis. Acta Neuropathol 2024; 147:69. [PMID: 38583129 DOI: 10.1007/s00401-024-02722-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/13/2024] [Accepted: 03/19/2024] [Indexed: 04/08/2024]
Abstract
Despite considerable research efforts, it is still not clear which mechanisms underlie neuronal cell death in neurodegenerative diseases. During the last 20 years, multiple pathways have been identified that can execute regulated cell death (RCD). Among these RCD pathways, apoptosis, necroptosis, pyroptosis, ferroptosis, autophagy-related cell death, and lysosome-dependent cell death have been intensively investigated. Although RCD consists of numerous individual pathways, multiple common proteins have been identified that allow shifting from one cell death pathway to another. Another layer of complexity is added by mechanisms such as the endosomal machinery, able to regulate the activation of some RCD pathways, preventing cell death. In addition, restricted axonal degeneration and synaptic pruning can occur as a result of RCD activation without loss of the cell body. RCD plays a complex role in neurodegenerative processes, varying across different disorders. It has been shown that RCD is differentially involved in Alzheimer's disease (AD) and amyotrophic lateral sclerosis (ALS), among the most common neurodegenerative diseases. In AD, neuronal loss is associated with the activation of not only necroptosis, but also pyroptosis. In ALS, on the other hand, motor neuron death is not linked to canonical necroptosis, whereas pyroptosis pathway activation is seen in white matter microglia. Despite these differences in the activation of RCD pathways in AD and ALS, the accumulation of protein aggregates immunoreactive for p62/SQSTM1 (sequestosome 1) is a common event in both diseases and many other neurodegenerative disorders. In this review, we describe the major RCD pathways with clear activation in AD and ALS, the main interactions between these pathways, as well as their differential and similar involvement in these disorders. Finally, we will discuss targeting RCD as an innovative therapeutic concept for neurodegenerative diseases, such as AD and ALS. Considering that the execution of RCD or "cellular suicide" represents the final stage in neurodegeneration, it seems crucial to prevent neuronal death in patients by targeting RCD. This would offer valuable time to address upstream events in the pathological cascade by keeping the neurons alive.
Collapse
Affiliation(s)
- Dietmar Rudolf Thal
- Laboratory for Neuropathology, Department of Imaging and Pathology and Leuven Brain Institute (LBI), KU-Leuven, Herestraat 49, 3000, Leuven, Belgium.
- Department of Pathology, University Hospitals Leuven, Leuven, Belgium.
| | - Klara Gawor
- Laboratory for Neuropathology, Department of Imaging and Pathology and Leuven Brain Institute (LBI), KU-Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - Sebastiaan Moonen
- Laboratory for Neuropathology, Department of Imaging and Pathology and Leuven Brain Institute (LBI), KU-Leuven, Herestraat 49, 3000, Leuven, Belgium
- Laboratory for the Research of Neurodegenerative Diseases, Department of Neurosciences, KU Leuven, Leuven Brain Institute (LBI), Leuven, Belgium
- Center for Brain & Disease Research, VIB, Leuven, Belgium
| |
Collapse
|
44
|
Yang K, Jeltema D, Yan N. Innate immune sensing of macromolecule homeostasis. Adv Immunol 2024; 161:17-51. [PMID: 38763701 DOI: 10.1016/bs.ai.2024.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/21/2024]
Abstract
The innate immune system uses a distinct set of germline-encoded pattern recognition receptors to recognize molecular patterns initially thought to be unique to microbial invaders, named pathogen-associated molecular patterns. The concept was later further developed to include similar molecular patterns originating from host cells during tissue damage, known as damage-associated molecular patterns. However, recent advances in the mechanism of monogenic inflammatory diseases have highlighted a much more expansive repertoire of cellular functions that are monitored by innate immunity. Here, we summarize several examples in which an innate immune response is triggered when homeostasis of macromolecule in the cell is disrupted in non-infectious or sterile settings. These ever-growing sensing mechanisms expand the repertoire of innate immune recognition, positioning it not only as a key player in host defense but also as a gatekeeper of cellular homeostasis. Therapeutics inspired by these advances to restore cellular homeostasis and correct the immune system could have far-reaching implications.
Collapse
Affiliation(s)
- Kun Yang
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Devon Jeltema
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Nan Yan
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX, United States.
| |
Collapse
|
45
|
Xu R, Zhang Y, Cao Q, Liao S, Tang Y, Zhuang Q. Imbalance of programmed cell death patterns mediated by dendritic cell subsets in systemic lupus erythematosus and lupus nephritis. ZHONG NAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF CENTRAL SOUTH UNIVERSITY. MEDICAL SCIENCES 2024; 49:331-348. [PMID: 38970507 PMCID: PMC11208407 DOI: 10.11817/j.issn.1672-7347.2024.230508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Indexed: 07/08/2024]
Abstract
OBJECTIVES Abnormal programmed cell death in immune cells is associated with autoimmune diseases, but the patterns of programmed cell death in systemic lupus erythematosus (SLE) and especially lupus nephritis (LN) remain unclear. This study aims to explore the association between SLE, LN, and immune cell death patterns. METHODS Bulk RNA sequencing (bulk RNA-seq) and single-cell RNA sequencing (scRNA-seq) data were downloaded from the Gene Expression Omnibus (GEO) database. Bioinformatic analysis was conducted to explore the expression levels of genes related to 3 cell death patterns in peripheral blood mononuclear cells of SLE patients. Key cell subsets involved in the imbalance of cell death patterns were identified through scRNA-seq. Immunofluorescence was used to detect the expression levels of receptor interacting serine/threonine kinase 3 (RIPK3), mixed-lineage kinase domain-like protein (MLKL), phosphorylated MLKL (pMLKL), caspase 1 (CASP1), CD1c molecule (CD1C), C-type lectin domain containing 9A (CLEC9A), and X-C motif chemokine receptor 1 (XCR1) in dendritic cells (DC). scRNA-seq was performed on kidney tissues collected from LN patients and healthy controls (HC) at the Third Xiangya Hospital of Central South University, followed by bioinformatic analysis to identify key cell subsets involved in the imbalance of cell death patterns. Pseudotime analysis and ligand-receptor analysis were used to explore the differentiation direction and cell communication of different DC subsets. Transient transfection was used to transfect RAW264.7 cells with empty plasmid, empty plasmid+dsDNA (HSV-DNA), empty plasmid+200 μmol/L tert-butyl hydroperoxide (TBHP), stimulator of interferon genes (STING) shRNA plasmid, STING shRNA plasmid+dsDNA (HSV-DNA), and STING shRNA plasmid+200 μmol/L TBHP. Annexin V-mCherry and SYTOX Green staining were used to detect cell death in each group. Western blotting was used to detect the activation of CASP1, gasdermin D (GSDMD), RIPK3, and MLKL in each group. RESULTS Bioinformatic analysis showed an imbalance in 3 cell death patterns in SLE and LN patients: Pro-inflammatory pyroptosis and necroptosis were activated, while anti-inflammatory apoptosis was inhibited. The key cell subsets involved were DC subsets, particularly focusing on CLEC9A+cDC1. Immunofluorescence results showed that the expression levels of RIPK3, MLKL, and CASP1 in DCs were higher in the SLE group compared to the HC group. pMLKL and CASP1 expression levels in renal cDC1 marked by CLEC9A and XCR1 were higher in the LN group than in the HC group. Pseudotime analysis and ligand-receptor analysis suggested that the CLEC9A+cDC1 subset in LN kidney tissues originated from peripheral circulation. Annexin V-mCherry and SYTOX Green staining results showed that the number of dead cells decreased in the STING shRNA transfection group compared to the empty plasmid group in RAW264.7 cells. Western blotting results showed that the activation of CASP1, GSDMD, RIPK3, and MLKL was decreased in the STING shRNA transfection group compared to the empty plasmid group. CONCLUSIONS This study provides novel insights into the role of CLEC9A+cDC1 in the imbalance of cell death patterns in SLE and LN.
Collapse
Affiliation(s)
- Ruoyao Xu
- Organ Transplantation Center, Third Xiangya Hospital, Central South University, Changsha 410013.
| | - Ying Zhang
- Organ Transplantation Center, Third Xiangya Hospital, Central South University, Changsha 410013.
| | - Qingtai Cao
- Organ Transplantation Center, Third Xiangya Hospital, Central South University, Changsha 410013
| | - Sheng Liao
- Organ Transplantation Center, Third Xiangya Hospital, Central South University, Changsha 410013
| | - Youzhou Tang
- Department of Nephropathy and Rheumatology, Third Xiangya Hospital, Central South University, Changsha 410013.
| | - Quan Zhuang
- Organ Transplantation Center, Third Xiangya Hospital, Central South University, Changsha 410013.
- Research Center of National Health Commission on Transplantation Medical Engineering Technology, Changsha 410013, China.
| |
Collapse
|
46
|
Makuch M, Stepanechko M, Bzowska M. The dance of macrophage death: the interplay between the inevitable and the microenvironment. Front Immunol 2024; 15:1330461. [PMID: 38576612 PMCID: PMC10993711 DOI: 10.3389/fimmu.2024.1330461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 02/26/2024] [Indexed: 04/06/2024] Open
Abstract
Macrophages are highly plastic cells ubiquitous in various tissues, where they perform diverse functions. They participate in the response to pathogen invasion and inflammation resolution following the immune response, as well as the maintenance of homeostasis and proper tissue functions. Macrophages are generally considered long-lived cells with relatively strong resistance to numerous cytotoxic factors. On the other hand, their death seems to be one of the principal mechanisms by which macrophages perform their physiological functions or can contribute to the development of certain diseases. In this review, we scrutinize three distinct pro-inflammatory programmed cell death pathways - pyroptosis, necroptosis, and ferroptosis - occurring in macrophages under specific circumstances, and explain how these cells appear to undergo dynamic yet not always final changes before ultimately dying. We achieve that by examining the interconnectivity of these cell death types, which in macrophages seem to create a coordinated and flexible system responding to the microenvironment. Finally, we discuss the complexity and consequences of pyroptotic, necroptotic, and ferroptotic pathway induction in macrophages under two pathological conditions - atherosclerosis and cancer. We summarize damage-associated molecular patterns (DAMPs) along with other microenvironmental factors, macrophage polarization states, associated mechanisms as well as general outcomes, as such a comprehensive look at these correlations may point out the proper methodologies and potential therapeutic approaches.
Collapse
Affiliation(s)
| | | | - Małgorzata Bzowska
- Department of Immunology, Faculty of Biochemistry, Biophysics, and Biotechnology, Jagiellonian University, Kraków, Poland
| |
Collapse
|
47
|
Tak J, An Q, Lee SG, Lee CH, Kim SG. Gα12 and endoplasmic reticulum stress-mediated pyroptosis in a single cycle of dextran sulfate-induced mouse colitis. Sci Rep 2024; 14:6335. [PMID: 38491049 PMCID: PMC10943197 DOI: 10.1038/s41598-024-56685-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 03/09/2024] [Indexed: 03/18/2024] Open
Abstract
Inflammatory bowel disease (IBD) pathogenesis involves complex inflammatory events and cell death. Although IBD involves mainly necrosis in the digestive tract, pyroptosis has also been recognized. Nonetheless, the underlying basis is elusive. Gα12/13 overexpression may affect endoplasmic reticulum (ER) stress. This study examined how Gα12/13 and ER stress affect pyroptosis using dextran sulfate sodium (DSS)-induced colitis models. Gα12/13 levels were increased in the distal and proximal colons of mice exposed to a single cycle of DSS, as accompanied by increases of IRE1α, ATF6, and p-PERK. Moreover, Il-6, Il-1β, Ym1, and Arg1 mRNA levels were increased with caspase-1 and IL-1β activation, supportive of pyroptosis. In the distal colon, RIPK1/3 levels were enhanced to a greater degree, confirming necroptosis. By contrast, the mice subjected to three cycles of DSS treatments showed decreases of Gα12/13, as accompanied by IRE1α and ATF6 suppression, but increases of RIPK1/3 and c-Cas3. AZ2 treatment, which inhibited Gα12, has an anti-pyroptotic effect against a single cycle of colitis. These results show that a single cycle of DSS-induced colitis may cause ER stress-induced pyroptosis as mediated by Gα12 overexpression in addition to necroptosis, but three cycles model induces only necroptosis, and that AZ2 may have an anti-pyroptotic effect.
Collapse
Affiliation(s)
- Jihoon Tak
- College of Pharmacy and Integrated Research Institute for Drug Development, Dongguk University-Seoul, Goyang-si, Gyeonggi-do, 10326, Republic of Korea
| | - Quanxi An
- College of Pharmacy and Integrated Research Institute for Drug Development, Dongguk University-Seoul, Goyang-si, Gyeonggi-do, 10326, Republic of Korea
| | - Sang Gil Lee
- Research and Development Institute, A Pharma Inc, Goyang-si, Gyeonggi-do, 10326, Republic of Korea
| | - Chang Hoon Lee
- College of Pharmacy and Integrated Research Institute for Drug Development, Dongguk University-Seoul, Goyang-si, Gyeonggi-do, 10326, Republic of Korea
| | - Sang Geon Kim
- College of Pharmacy and Integrated Research Institute for Drug Development, Dongguk University-Seoul, Goyang-si, Gyeonggi-do, 10326, Republic of Korea.
| |
Collapse
|
48
|
Lawlor KE, Murphy JM, Vince JE. Gasdermin and MLKL necrotic cell death effectors: Signaling and diseases. Immunity 2024; 57:429-445. [PMID: 38479360 DOI: 10.1016/j.immuni.2024.02.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/29/2023] [Accepted: 02/14/2024] [Indexed: 01/22/2025]
Abstract
Diverse inflammatory conditions, from infections to autoimmune disease, are often associated with cellular damage and death. Apoptotic cell death has evolved to minimize its inflammatory potential. By contrast, necrotic cell death via necroptosis and pyroptosis-driven by membrane-damaging MLKL and gasdermins, respectively-can both initiate and propagate inflammatory responses. In this review, we provide insights into the function and regulation of MLKL and gasdermin necrotic effector proteins and drivers of plasma membrane rupture. We evaluate genetic evidence that MLKL- and gasdermin-driven necrosis may either provide protection against, or contribute to, disease states in a context-dependent manner. These cumulative insights using gene-targeted mice underscore the necessity for future research examining pyroptotic and necroptotic cell death in human tissue, as a basis for developing specific necrotic inhibitors with the potential to benefit a spectrum of pathological conditions.
Collapse
Affiliation(s)
- Kate E Lawlor
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, VIC 3168, Australia; Department of Molecular and Translational Science, Monash University, Clayton, VIC 3168, Australia; The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; The Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia.
| | - James M Murphy
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; The Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia; Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia.
| | - James E Vince
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; The Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia.
| |
Collapse
|
49
|
Stoess C, Choi YK, Onyuru J, Friess H, Hoffman HM, Hartmann D, Feldstein AE. Cell Death in Liver Disease and Liver Surgery. Biomedicines 2024; 12:559. [PMID: 38540172 PMCID: PMC10968531 DOI: 10.3390/biomedicines12030559] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/15/2024] [Accepted: 02/17/2024] [Indexed: 01/03/2025] Open
Abstract
Cell death is crucial for maintaining tissue balance and responding to diseases. However, under pathological conditions, the surge in dying cells results in an overwhelming presence of cell debris and the release of danger signals. In the liver, this gives rise to hepatic inflammation and hepatocellular cell death, which are key factors in various liver diseases caused by viruses, toxins, metabolic issues, or autoimmune factors. Both clinical and in vivo studies strongly affirm that hepatocyte death serves as a catalyst in the progression of liver disease. This advancement is characterized by successive stages of inflammation, fibrosis, and cirrhosis, culminating in a higher risk of tumor development. In this review, we explore pivotal forms of cell death, including apoptosis, pyroptosis, and necroptosis, examining their roles in both acute and chronic liver conditions, including liver cancer. Furthermore, we discuss the significance of cell death in liver surgery and ischemia-reperfusion injury. Our objective is to illuminate the molecular mechanisms governing cell death in liver diseases, as this understanding is crucial for identifying therapeutic opportunities aimed at modulating cell death pathways.
Collapse
Affiliation(s)
- Christian Stoess
- Department of Pediatric Gastroenterology, University of California San Diego, 9500 Gilman Dr, La Jolla, CA 92093, USA; (C.S.)
- Department of Surgery, TUM School of Medicine, Klinikum rechts der Isar, Technical University of Munich, 81675 Munich, Germany
| | - Yeon-Kyung Choi
- Department of Pediatric Gastroenterology, University of California San Diego, 9500 Gilman Dr, La Jolla, CA 92093, USA; (C.S.)
- Department of Internal Medicine, School of Medicine, Kyungpook National University Chilgok Hospital, Kyungpook National University, Daegu 41404, Republic of Korea
| | - Janset Onyuru
- Department of Pediatric Allergy, Immunology and Rheumatology, University of California San Diego, La Jolla, CA 92093, USA
| | - Helmut Friess
- Department of Surgery, TUM School of Medicine, Klinikum rechts der Isar, Technical University of Munich, 81675 Munich, Germany
| | - Hal M. Hoffman
- Department of Pediatric Allergy, Immunology and Rheumatology, University of California San Diego, La Jolla, CA 92093, USA
| | - Daniel Hartmann
- Department of Surgery, TUM School of Medicine, Klinikum rechts der Isar, Technical University of Munich, 81675 Munich, Germany
| | - Ariel E. Feldstein
- Department of Pediatric Gastroenterology, University of California San Diego, 9500 Gilman Dr, La Jolla, CA 92093, USA; (C.S.)
- Novo Nordisk, Global Drug Discovery, Ørestads Boulevard 108, 2300 Copenhagen, Denmark
| |
Collapse
|
50
|
Fukuda K, Miura Y, Maeda T, Hayashi S, Kikuchi K, Takashima Y, Matsumoto T, Kuroda R. LIGHT regulated gene expression in rheumatoid synovial fibroblasts. Mol Biol Rep 2024; 51:356. [PMID: 38401037 PMCID: PMC10894125 DOI: 10.1007/s11033-024-09311-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 02/01/2024] [Indexed: 02/26/2024]
Abstract
BACKGROUND Synovial hyperplasia caused by rheumatoid arthritis (RA), an autoimmune inflammatory disease, leads to the destruction of the articular cartilage and bone. A member of the tumor necrosis factor superfamily, Lymphotoxin-related inducible ligand that competes for glycoprotein D binding to herpes virus entry mediator on T cells (LIGHT) has been shown to correlate with the pathogenesis of RA. METHODS We used cDNA microarray analysis to compare the expression of genes in rheumatoid fibroblast-like synoviocytes with and without LIGHT stimulation. RESULTS Significant changes in gene expression (P-values < 0.05 and fold change ≥ 2.0) were associated mainly with biological function categories of glycoprotein, glycosylation site as N-linked, plasma membrane part, integral to plasma membrane, intrinsic to plasma membrane, signal, plasma membrane, signal peptide, alternative splicing, and topological domain as extracellular. CONCLUSIONS Our results indicate that LIGHT may regulate the expression in RA-FLS of genes which are important in the differentiation of several cell types and in cellular functions.
Collapse
Affiliation(s)
- Koji Fukuda
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Hyogo, 650-0017, Japan
| | - Yasushi Miura
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Hyogo, 650-0017, Japan.
- Division of Orthopedic Science, Department of Rehabilitation Science, Kobe University Graduate School of Health Sciences, 7-10-2 Tomogaoka, Suma, Kobe, Hyogo, 654-0142, Japan.
| | - Toshihisa Maeda
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Hyogo, 650-0017, Japan
| | - Shinya Hayashi
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Hyogo, 650-0017, Japan
| | - Kenichi Kikuchi
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Hyogo, 650-0017, Japan
| | - Yoshinori Takashima
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Hyogo, 650-0017, Japan
| | - Tomoyuki Matsumoto
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Hyogo, 650-0017, Japan
| | - Ryosuke Kuroda
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Hyogo, 650-0017, Japan
| |
Collapse
|