1
|
Lee S, Lee B, Kwon SH, Park J, Kim SH. MCC in the spotlight: Its dual role in signal regulation and oncogenesis. Cell Signal 2025; 131:111756. [PMID: 40118128 DOI: 10.1016/j.cellsig.2025.111756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 03/13/2025] [Accepted: 03/18/2025] [Indexed: 03/23/2025]
Abstract
The mutated in colorectal cancer (MCC) gene is closely associated with the onset and progression of colorectal cancer. MCC plays a critical role in regulating the cell cycle and various signaling pathways and is recognized to inhibit cancer cell proliferation via the β-catenin signaling pathway. β-catenin is a key component of the WNT signaling pathway that influences cell growth, differentiation, survival, and migration, thereby positioning MCC as an important tumor suppressor. Notably, MCC has also been implicated in other cancer types, including lung, liver, and brain cancers. However, the precise mechanisms by which MCC functions in these malignancies remain inadequately understood. Comprehensive investigations into the interactions among MCC, various signaling pathways, and metabolic processes are essential for uncovering the molecular mechanisms of cancer and the pathological features characteristic of different cancer stages. This review presents the structural characteristics of MCC and its cell growth regulation mechanisms and functional roles within tissues, with the aims of enhancing our understanding of the role of MCC in cancer biology and highlighting potential therapeutic strategies targeting this gene.
Collapse
Affiliation(s)
- Soohyeon Lee
- Department of Pharmacology, College of Medicine, Chungnam National University, Daejeon 35015, South Korea; Department of Medical Science, Metabolic Syndrome and Cell Signaling Laboratory, Institute for Cancer Research, College of Medicine, Chungnam National University, Daejeon 35015, South Korea
| | - Beomwoo Lee
- Department of Pharmacology, College of Medicine, Chungnam National University, Daejeon 35015, South Korea; Department of Medical Science, Metabolic Syndrome and Cell Signaling Laboratory, Institute for Cancer Research, College of Medicine, Chungnam National University, Daejeon 35015, South Korea
| | - So Hee Kwon
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon 21983, South Korea.
| | - Jongsun Park
- Department of Pharmacology, College of Medicine, Chungnam National University, Daejeon 35015, South Korea; Department of Medical Science, Metabolic Syndrome and Cell Signaling Laboratory, Institute for Cancer Research, College of Medicine, Chungnam National University, Daejeon 35015, South Korea; Biomedical Research Institute, Chungnam National University Hospital, Daejeon 35015, Republic of Korea.
| | - Seon-Hwan Kim
- Biomedical Research Institute, Chungnam National University Hospital, Daejeon 35015, Republic of Korea; Department of Neurosurgery, Institute for Cancer Research, College of Medicine, Chungnam National University, Daejeon 35015, South Korea.
| |
Collapse
|
2
|
Ferro E, Szischik CL, Cunial M, Ventura AC, De Martino A, Bosia C. Out-of-Equilibrium ceRNA Crosstalk. Methods Mol Biol 2025; 2883:167-193. [PMID: 39702709 DOI: 10.1007/978-1-0716-4290-0_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
Among non-coding RNAs, microRNAs are pivotal post-transcriptional regulators of gene expression in higher eukaryotes. Through a titration-based mechanism of interaction with their target RNAs, microRNAs can mediate a weak but pervasive form of RNA cross-regulation, as different endogenous RNAs can be effectively coupled by competing for microRNA binding (a phenomenon now known as "crosstalk"). Mathematical modeling has been proven of great help in unraveling many features of these competing endogenous RNA (ceRNA) interactions. However, although many studies have been devoted to the steady-state properties of this indirect regulatory layer, little is known about how the information encoded in frequency, amplitude, duration, and other features of regulatory signals can affect the resulting ceRNA crosstalk picture and hence the overall patterns of gene expression. Here, we focus on such dynamical aspects, with a special emphasis on the encoding and decoding of time-dependent signals.
Collapse
Affiliation(s)
- Elsi Ferro
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi, Torino, Italy
- Italian Institute for Genomic Medicine, c/o IRCCS, Str. Prov. le, Candiolo, Italy
| | - Candela L Szischik
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Física, Ciudad Universitaria, Buenos Aires, Argentina
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE UBA-CONICET), Consejo Nacional de Investigaciones Científicas y Técnicas Argentina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Marta Cunial
- Italian Institute for Genomic Medicine, c/o IRCCS, Str. Prov. le, Candiolo, Italy
| | - Alejandra C Ventura
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Física, Ciudad Universitaria, Buenos Aires, Argentina
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE UBA-CONICET), Consejo Nacional de Investigaciones Científicas y Técnicas Argentina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Andrea De Martino
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi, Torino, Italy
- Italian Institute for Genomic Medicine, c/o IRCCS, Str. Prov. le, Candiolo, Italy
| | - Carla Bosia
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi, Torino, Italy.
- Italian Institute for Genomic Medicine, c/o IRCCS, Str. Prov. le, Candiolo, Italy.
| |
Collapse
|
3
|
Mohajeri Khorasani A, Mohammadi S, Raghibi A, Haj Mohammad Hassani B, Bazghandi B, Mousavi P. miR-17-92a-1 cluster host gene: a key regulator in colorectal cancer development and progression. Clin Exp Med 2024; 24:85. [PMID: 38662056 PMCID: PMC11045601 DOI: 10.1007/s10238-024-01331-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 03/14/2024] [Indexed: 04/26/2024]
Abstract
Colorectal cancer (CRC), recognized among the five most prevalent malignancies and most deadly cancers, manifests multifactorial influences stemming from environmental exposures, dietary patterns, age, and genetic predisposition. Although substantial progress has been made in comprehending the etiology of CRC, the precise genetic components driving its pathogenesis remain incompletely elucidated. Within the expansive repertoire of non-coding RNAs, particular focus has centered on the miR-17-92a-1 cluster host gene (MIR17HG) and its associated miRNAs, which actively participate in diverse cellular processes and frequently exhibit heightened expression in various solid tumors, notably CRC. Therefore, the primary objective of this research is to undertake an extensive inquiry into the regulatory mechanisms, structural features, functional attributes, and potential diagnostic and therapeutic implications associated with this cluster in CRC. Furthermore, the intricate interplay between this cluster and the development and progression of CRC will be explored. Our findings underscore the upregulation of the miR-17-92a-1 cluster host gene (MIR17HG) and its associated miRNAs in CRC compared to normal tissues, thus implying their profound involvement in the progression of CRC. Collectively, these molecules are implicated in critical oncogenic processes, encompassing metastatic activity, regulation of apoptotic pathways, cellular proliferation, and drug resistance. Consequently, these findings shed illuminating insights into the potential of MIR17HG and its associated miRNAs as promising targets for therapeutic interventions in the management of CRC.
Collapse
Affiliation(s)
- Amirhossein Mohajeri Khorasani
- Department of Medical Genetics, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
- Molecular Medicine Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
- Student Research Committee, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Samane Mohammadi
- Department of Medical Genetics, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
- Molecular Medicine Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
- Student Research Committee, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Alireza Raghibi
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Behzad Haj Mohammad Hassani
- Department of Medical Genetics, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
- Molecular Medicine Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
- Student Research Committee, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Behina Bazghandi
- Protein Research Center, Shahid Beheshti University, Tehran, Iran
| | - Pegah Mousavi
- Molecular Medicine Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran.
| |
Collapse
|
4
|
Al-Nakhle HH. Unraveling the Multifaceted Role of the miR-17-92 Cluster in Colorectal Cancer: From Mechanisms to Biomarker Potential. Curr Issues Mol Biol 2024; 46:1832-1850. [PMID: 38534736 DOI: 10.3390/cimb46030120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 02/23/2024] [Accepted: 02/26/2024] [Indexed: 03/28/2024] Open
Abstract
Colorectal cancer (CRC) is a complex disease driven by intricate mechanisms, making it challenging to understand and manage. The miR-17-92 cluster has gained significant attention in CRC research due to its diverse functions and crucial role in various aspects of the disease. This cluster, consisting of multiple individual miRNAs, influences critical processes like tumor initiation, angiogenesis, metastasis, and the epithelial-mesenchymal transition (EMT). Beyond its roles in tumorigenesis and progression, miR-17-92's dysregulation in CRC has substantial implications for diagnosis, prognosis, and treatment, including chemotherapy responsiveness. It also shows promise as a diagnostic and prognostic biomarker, offering insights into treatment responses and disease progression. This review provides a comprehensive overview of recent advancements and the context-dependent role of the miR-17-92 cluster in colorectal cancer, drawing from the latest high-quality published data. It summarizes the established mechanisms governing miR-17-92 expression and the molecular pathways under its influence. Furthermore, it examines instances where it functions as an oncogene or a tumor suppressor, elucidating how cellular contexts dictate its biological effects. Ultimately, miR-17-92 holds promise as a biomarker for prognosis and therapy response, as well as a potential target for cancer prevention and therapeutic interventions. In essence, this review underscores the multifaceted nature of miR-17-92 in CRC research, offering promising avenues for enhancing the management of CRC patients.
Collapse
Affiliation(s)
- Hakeemah H Al-Nakhle
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taibah University, Al-Madinah Al-Monawarah 42353, Saudi Arabia
| |
Collapse
|
5
|
Banerjee A, Deka D, Muralikumar M, Sun-Zhang A, Bisgin A, Christopher C, Zhang H, Sun XF, Pathak S. A concise review on miRNAs as regulators of colon cancer stem cells and associated signalling pathways. Clin Transl Oncol 2023; 25:3345-3356. [PMID: 37086351 DOI: 10.1007/s12094-023-03200-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 04/11/2023] [Indexed: 04/23/2023]
Abstract
Despite recent therapy advances and a better understanding of colon cancer biology, it remains one of the major causes of death. The cancer stem cells, associated with the progression, metastasis, and recurrence of colon cancer, play a major role in promoting the development of tumour and are found to be chemo resistant. The stroma of the tumour, which makes up the bulk of the tumour mass, is composed of the tumour microenvironment. With the advent of theranostic and the development of personalised medicine, miRNAs are becoming increasingly important in the context of colon malignancies. A holistic understanding of the regulatory roles of miRNAs in cancer cells and cancer stem cells will allow us to design effective strategies to regulate miRNAs, which could lead to improved clinical translation and creating a potent colon cancer treatment strategy. In this review paper, we briefly discuss the history of miRNA as well as the mechanisms of miRNA and cancer stem cells that contribute to the tumour growth, apoptosis, and advancement of colon cancer. The usefulness of miRNA in colorectal cancer theranostic is further concisely reviewed. We conclude by holding a stance in addressing the prospects and possibilities for miRNA by the disclosure of recent theranostic approaches aimed at eradicating cancer stem cells and enhancing overall cancer treatment outcomes.
Collapse
Affiliation(s)
- Antara Banerjee
- Department of Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), 603103, Kelambakkam, Chennai, India.
| | - Dikshita Deka
- Department of Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), 603103, Kelambakkam, Chennai, India
| | - Makalakshmi Muralikumar
- Department of Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), 603103, Kelambakkam, Chennai, India
| | - Alexander Sun-Zhang
- Department of Oncology-Pathology, Karolinska Institute, 171 77, Solna, Sweden
| | - Atil Bisgin
- InfoGenom R&D Laboratories, Cukurova Technopolis, Adana, Turkey
- Medical Genetics Department of Medical Faculty, Cukurova University AGENTEM (Adana Genetic Diseases Diagnosis and Treatment Center), Cukurova University, Adana, Turkey
| | - Cynthia Christopher
- Department of Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), 603103, Kelambakkam, Chennai, India
| | - Hong Zhang
- Department of Medical Sciences, School of Medicine, Orebro University, 701 82, Orebro, Sweden
| | - Xiao-Feng Sun
- Division of Oncology, Department of Biomedical and Clinical Sciences, Linköping University, 581 83, Linköping, Sweden.
| | - Surajit Pathak
- Department of Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), 603103, Kelambakkam, Chennai, India
| |
Collapse
|
6
|
Tariq L, Arafah A, Sehar N, Ali A, Khan A, Rasool I, Rashid SM, Ahmad SB, Beigh S, Dar TUH, Rehman MU. Novel insights on perils and promises of miRNA in understanding colon cancer metastasis and progression. Med Oncol 2023; 40:282. [PMID: 37639075 DOI: 10.1007/s12032-023-02099-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 06/19/2023] [Indexed: 08/29/2023]
Abstract
Colorectal cancer (CRC) is the third highest frequent malignancy and ultimate critical source of cancer-associated mortality around the world. Regardless of latest advances in molecular and surgical targeted medicines that have increased remedial effects in CRC patients, the 5-year mortality rate for CRC patients remains dismally low. Evidence suggests that microRNAs (miRNAs) execute an essential part in the development and spread of CRC. The miRNAs are a type of short non-coding RNA that exhibited to control the appearance of tumor suppressor genes and oncogenes. miRNA expression profiling is already being utilized in clinical practice as analytical and prognostic biomarkers to evaluate cancer patients' tumor genesis, advancement, and counteraction to drugs. By modulating their target genes, dysregulated miRNAs are linked to malignant characteristics (e.g., improved proliferative and invasive capabilities, cell cycle aberration, evasion of apoptosis, and promotion of angiogenesis). This review presents an updated summary of circulatory miRNAs, tumor-suppressive and oncogenic miRNAs, and the potential reasons for dysregulated miRNAs in CRC. Further we will explore the critical role of miRNAs in CRC drug resistance.
Collapse
Affiliation(s)
- Lubna Tariq
- Department of Biotechnology, Baba Ghulam Shah Badshah University, Rajouri, Jammu and Kashmir, 183254, India
| | - Azher Arafah
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Nouroz Sehar
- Centre for Translational and Clinical Research, School of Chemical & Life Sciences, Jamia Hamdard, New Delhi, 110062, India
| | - Aarif Ali
- Division of Veterinary Biochemistry, Faculty of Veterinary Science and Animal Husbandry, SKUAST-Kashmir, Alusteng, Shuhama, Srinagar, Jammu and Kashmir, 190006, India
| | - Andleeb Khan
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, 45142, Jazan, Saudi Arabia
| | - Iyman Rasool
- Department of Pathology, Government Medical College (GMC-Srinagar), Karanagar, Srinagar, Jammu and Kashmir, 190006, India
| | - Shahzada Mudasir Rashid
- Division of Veterinary Biochemistry, Faculty of Veterinary Science and Animal Husbandry, SKUAST-Kashmir, Alusteng, Shuhama, Srinagar, Jammu and Kashmir, 190006, India
| | - Sheikh Bilal Ahmad
- Division of Veterinary Biochemistry, Faculty of Veterinary Science and Animal Husbandry, SKUAST-Kashmir, Alusteng, Shuhama, Srinagar, Jammu and Kashmir, 190006, India
| | - Saba Beigh
- Department of Public Health, Faculty of Applied Medical Science, Al Baha University, 65431, Al Baha, Saudi Arabia
| | - Tanveer Ul Hassan Dar
- Department of Biotechnology, Baba Ghulam Shah Badshah University, Rajouri, Jammu and Kashmir, 183254, India
| | - Muneeb U Rehman
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, 11451, Riyadh, Saudi Arabia.
| |
Collapse
|
7
|
Xu L, Li L, Chen Q, Huang Y, Chen X, Qiao D. The Role of Non-coding RNAs in Methamphetamine-Induced Neurotoxicity. Cell Mol Neurobiol 2023; 43:2415-2436. [PMID: 36752885 PMCID: PMC11410138 DOI: 10.1007/s10571-023-01323-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 01/20/2023] [Indexed: 02/09/2023]
Abstract
Methamphetamine (METH) is an amphetamine-type stimulant that is highly toxic to the central nervous system (CNS). Repeated intake of METH can lead to addiction, which has become a globalized problem, resulting in multiple public health and safety problems. Recently, the non-coding RNA (ncRNA) has been certified to play an essential role in METH addiction through various mechanisms. Herein, we mainly focused on three kinds of ncRNAs including long non-coding RNAs (lncRNAs), microRNAs (miRNAs), and circular RNAs (circRNAs), which are involved in neurotoxicity effects such as cognitive impairment, behavioral abnormalities, and psychiatric disorders due to METH abuse. In addition, differential expression (DE) ncRNAs also suggest that specific responses and sensitivity to METH neurotoxicity exist in different brain regions and cells. We summarized the relationships between the ncRNAs and METH-induced neurotoxicity and psychiatric disturbances, respectively, hoping to provide new perspectives and strategies for the prevention and treatment of METH abuse. Schematic diagram of the non-coding RNAs (ncRNAs) was involved in methamphetamine (METH)-induced neurotoxicity. The ncRNAs were involved in METH-induced blood-brain barrier disruption, neuronal, astrocyte, and microglial damage, and synaptic neurotransmission impairment. The study of ncRNAs is a hot spot in the future to further understand the neurotoxicity of METH and provide more favorable scientific support for clinical diagnosis and innovation of related treatments.
Collapse
Affiliation(s)
- Luyao Xu
- Department of Forensic Pathology, School of Forensic Medicine, Southern Medical University, South Shaitai Road #1023. 510515, Guangzhou, China
| | - Lingyue Li
- Department of Forensic Pathology, School of Forensic Medicine, Southern Medical University, South Shaitai Road #1023. 510515, Guangzhou, China
| | - Qianling Chen
- Department of Forensic Pathology, School of Forensic Medicine, Southern Medical University, South Shaitai Road #1023. 510515, Guangzhou, China
| | - Yuebing Huang
- Department of Forensic Pathology, School of Forensic Medicine, Southern Medical University, South Shaitai Road #1023. 510515, Guangzhou, China
| | - Xuebing Chen
- Department of Forensic Pathology, School of Forensic Medicine, Southern Medical University, South Shaitai Road #1023. 510515, Guangzhou, China.
| | - Dongfang Qiao
- Department of Forensic Pathology, School of Forensic Medicine, Southern Medical University, South Shaitai Road #1023. 510515, Guangzhou, China.
| |
Collapse
|
8
|
Du YX, Zhou Y, Zheng XH, Duan YJ, Gu ZT, Yin YF, Wang CF. Subcellular localization of nucleolar protein 14 and its proliferative function mediated by miR-17-5p and E2F4 in pancreatic cancer. Aging (Albany NY) 2023; 15:7308-7323. [PMID: 37506248 PMCID: PMC10415562 DOI: 10.18632/aging.204915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 06/22/2023] [Indexed: 07/30/2023]
Abstract
Pancreatic cancer is one of the most lethal malignancies worldwide. Acquiring infinite proliferation ability is a key hallmark and basis of tumorigenesis. NOP14 is an identified ribosome biogenesis protein that plays potential roles in cell proliferation. However, the function and molecular mechanism of NOP14 remain ambiguous in most human cancers. In this study, we first investigated the subcellular localization and expression of NOP14 by multiple quantitative assays in pancreatic cancer. We confirmed that NOP14 was mainly localized in nucleolus in human pancreatic cancer cells. Then we studied the regulatory effects of this nucleolus protein on tumor cell proliferation in vitro. NOP14 was demonstrated to play a dominant pro-proliferation role in pancreatic cancer. Furthermore, we identified miR17-5p as a downstream target of NOP14. Transfection of miR17-5p mimics or inhibitors rescued the down- or upregulated effect of NOP14 on cell proliferation by regulating expression of P130. In addition, NOP14 induced expression of transcription factor E2F4 independent of miR17-5p/P130 signaling, which simultaneously activated a set of targeted genes, such as CCNE1, PIM1, AKT1 etc., to promote tumor proliferation. These findings might provide novel insights for better understanding the diverse function of NOP14 in human malignancies to develop new strategies for targeted therapy.
Collapse
Affiliation(s)
- Yong-Xing Du
- Department of Pancreatic and Gastric Surgery, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, People’s Republic of China
| | - Ying Zhou
- Department of Endocrinology, China-Japan Friendship Hospital, Beijing 100029, People’s Republic of China
| | - Xiao-Hao Zheng
- Department of Pancreatic and Gastric Surgery, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, People’s Republic of China
| | - Yun-Jie Duan
- Department of Pancreatic and Gastric Surgery, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, People’s Republic of China
| | - Zong-Ting Gu
- Department of Pancreatic and Gastric Surgery, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, People’s Republic of China
| | - Ye-Feng Yin
- Department of Colorectal Surgery, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, People’s Republic of China
| | - Cheng-Feng Wang
- Department of Pancreatic and Gastric Surgery, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, People’s Republic of China
- Shanxi Province Cancer Hospital/ Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan 030013, Shanxi, People’s Republic of China
| |
Collapse
|
9
|
Lucarini V, Nardozi D, Angiolini V, Benvenuto M, Focaccetti C, Carrano R, Besharat ZM, Bei R, Masuelli L. Tumor Microenvironment Remodeling in Gastrointestinal Cancer: Role of miRNAs as Biomarkers of Tumor Invasion. Biomedicines 2023; 11:1761. [PMID: 37371856 DOI: 10.3390/biomedicines11061761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/13/2023] [Accepted: 06/15/2023] [Indexed: 06/29/2023] Open
Abstract
Gastrointestinal (GI) cancers are the most frequent neoplasm, responsible for half of all cancer-related deaths. Metastasis is the leading cause of death from GI cancer; thus, studying the processes that regulate cancer cell migration is of paramount importance for the development of new therapeutic strategies. In this review, we summarize the mechanisms adopted by cancer cells to promote cell migration and the subsequent metastasis formation by highlighting the key role that tumor microenvironment components play in deregulating cellular pathways involved in these processes. We, therefore, provide an overview of the role of different microRNAs in promoting tumor metastasis and their role as potential biomarkers for the prognosis, monitoring, and diagnosis of GI cancer patients. Finally, we relate the possible use of nutraceuticals as a new strategy for targeting numerous microRNAs and different pathways involved in GI tumor invasiveness.
Collapse
Affiliation(s)
- Valeria Lucarini
- Department of Experimental Medicine, University of Rome "Sapienza", Viale Regina Elena 324, 00161 Rome, Italy
| | - Daniela Nardozi
- Department of Clinical Sciences and Translational Medicine, University of Rome "Tor Vergata", Via Montpellier 1, 00133 Rome, Italy
| | - Valentina Angiolini
- Department of Experimental Medicine, University of Rome "Sapienza", Viale Regina Elena 324, 00161 Rome, Italy
| | - Monica Benvenuto
- Department of Clinical Sciences and Translational Medicine, University of Rome "Tor Vergata", Via Montpellier 1, 00133 Rome, Italy
- Departmental Faculty of Medicine and Surgery, Saint Camillus International University of Health and Medical Sciences, via di Sant'Alessandro 8, 00131 Rome, Italy
| | - Chiara Focaccetti
- Department of Clinical Sciences and Translational Medicine, University of Rome "Tor Vergata", Via Montpellier 1, 00133 Rome, Italy
| | - Raffaele Carrano
- Department of Clinical Sciences and Translational Medicine, University of Rome "Tor Vergata", Via Montpellier 1, 00133 Rome, Italy
| | - Zein Mersini Besharat
- Department of Experimental Medicine, University of Rome "Sapienza", Viale Regina Elena 324, 00161 Rome, Italy
| | - Roberto Bei
- Department of Clinical Sciences and Translational Medicine, University of Rome "Tor Vergata", Via Montpellier 1, 00133 Rome, Italy
| | - Laura Masuelli
- Department of Experimental Medicine, University of Rome "Sapienza", Viale Regina Elena 324, 00161 Rome, Italy
| |
Collapse
|
10
|
Sharma A, Blériot C, Currenti J, Ginhoux F. Oncofetal reprogramming in tumour development and progression. Nat Rev Cancer 2022; 22:593-602. [PMID: 35999292 DOI: 10.1038/s41568-022-00497-8] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/06/2022] [Indexed: 12/12/2022]
Abstract
Embryonic development is characterized by rapidly dividing cells, cellular plasticity and a highly vascular microenvironment. These features are similar to those of tumour tissue, in that malignant cells are characterized by their ability to proliferate and exhibit cellular plasticity. The tumour microenvironment also often includes immunosuppressive features. Reciprocal communication between various cellular subpopulations enables fetal and tumour tissues to proliferate, migrate and escape immune responses. Fetal-like reprogramming has been demonstrated in the tumour microenvironment, indicating extraordinary cellular plasticity and bringing an additional layer of cellular heterogeneity. More importantly, some of these features are also present during inflammation. This Perspective discusses the similarity between embryogenesis, inflammation and tumorigenesis, and describes the mechanisms of oncofetal reprogramming that enable tumour cells to escape from immune responses, promoting tumour growth and metastasis.
Collapse
Affiliation(s)
- Ankur Sharma
- Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, Western Australia, Australia.
- Curtin Medical School, Curtin University, Bentley, Western Australia, Australia.
- Curtin Health Innovation Research Institute, Curtin University, Bentley, Western Australia, Australia.
- Institute of Molecular and Cellular Biology, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore.
| | | | - Jennifer Currenti
- Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, Western Australia, Australia
- Curtin Medical School, Curtin University, Bentley, Western Australia, Australia
| | - Florent Ginhoux
- INSERM U1015, Institut Gustave Roussy, Villejuif, France.
- Singapore Immunology Network, Agency for Science, Technology and Research (A∗STAR), Singapore, Singapore.
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Translational Immunology Institute, SingHealth Duke-NUS Academic Medical Centre, Singapore, Singapore.
| |
Collapse
|
11
|
A Systematic Review of Clinical Validated and Potential miRNA Markers Related to the Efficacy of Fluoropyrimidine Drugs. DISEASE MARKERS 2022; 2022:1360954. [PMID: 36051356 PMCID: PMC9427288 DOI: 10.1155/2022/1360954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 07/15/2022] [Accepted: 07/29/2022] [Indexed: 12/24/2022]
Abstract
Colorectal cancer (CRC) is becoming increasingly prevalent worldwide. Fluoropyrimidine drugs are the primary chemotherapy regimens in routine clinical practice of CRC. However, the survival rate of patients on fluoropyrimidine-based chemotherapy varies significantly among individuals. Biomarkers of fluoropyrimidine drugs'' efficacy are needed to implement personalized medicine. This review summarized fluoropyrimidine drug-related microRNA (miRNA) by affecting metabolic enzymes or showing the relevance of drug efficacy. We first outlined 42 miRNAs that may affect the metabolism of fluoropyrimidine drugs. Subsequently, we filtered another 41 miRNAs related to the efficacy of fluoropyrimidine drugs based on clinical trials. Bioinformatics analysis showed that most well-established miRNA biomarkers were significantly enriched in the cancer pathways instead of the fluoropyrimidine drug metabolism pathways. The result also suggests that the miRNAs screened from metastasis patients have a more critical role in cancer development than those from non-metastasis patients. There are five miRNAs shared between these two lists. The miR-21, miR-215, and miR-218 can suppress fluoropyrimidine drugs'' catabolism. The miR-326 and miR-328 can reduce the efflux of fluoropyrimidine drugs. These five miRNAs could jointly act by increasing intracellular levels of fluoropyrimidine drugs'' cytotoxic metabolites, leading to better chemotherapy responses. In conclusion, we demonstrated that the dynamic changes in the transcriptional regulation via miRNAs might play significant roles in the efficacy and toxicity of the fluoropyrimidine drug. The reported miRNA biomarkers would help evaluate the efficacy of fluoropyrimidine drug-based chemotherapy and improve the prognosis of colorectal cancer patients.
Collapse
|
12
|
Minatel BC, Cohn DE, Pewarchuk ME, Barros-Filho MC, Sage AP, Stewart GL, Marshall EA, Telkar N, Martinez VD, Reis PP, Robinson WP, Lam WL. Genetic and Epigenetic Mechanisms Deregulate the CRL2pVHL Complex in Hepatocellular Carcinoma. Front Genet 2022; 13:910221. [PMID: 35664333 PMCID: PMC9159809 DOI: 10.3389/fgene.2022.910221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 05/02/2022] [Indexed: 12/02/2022] Open
Abstract
Dysregulation of ubiquitin-proteasome pathway genes through copy number alteration, promoter hypomethylation, and miRNA deregulation is involved in cancer development and progression. Further characterizing alterations in these genes may uncover novel drug targets across a range of diseases in which druggable alterations are uncommon, including hepatocellular carcinoma (HCC). We analyzed 377 HCC and 59 adjacent non-malignant liver tissue samples, focusing on alterations to component genes of the widely studied CRL2pVHL E3 ubiquitin ligase complex. mRNA upregulation of the component genes was common, and was correlated with DNA hypomethylation and copy number increase, but many tumours displayed overexpression that was not explained by either mechanism. Interestingly, we found 66 miRNAs, including 39 previously unannotated miRNAs, that were downregulated in HCC and predicted to target one or more CRL2pVHL components. Several miRNAs, including hsa-miR-101-3p and hsa-miR-139-5p, were negatively correlated with multiple component genes, suggesting that miRNA deregulation may contribute to CRL2pVHL overexpression. Combining miRNA and mRNA expression, DNA copy number, and methylation status into one multidimensional survival analysis, we found a significant association between greater numbers of alterations and poorer overall survival for multiple component genes. While the intricacies of CRL2pVHL complex gene regulation require additional research, it is evident that multiple causes for the deregulation of these genes must be considered in HCC, including non-traditional mechanisms.
Collapse
Affiliation(s)
- Brenda C. Minatel
- Department of Integrative Oncology, British Columbia Cancer Research Institute, Vancouver, BC, Canada
| | - David E. Cohn
- Department of Integrative Oncology, British Columbia Cancer Research Institute, Vancouver, BC, Canada
- *Correspondence: David E. Cohn,
| | - Michelle E. Pewarchuk
- Department of Integrative Oncology, British Columbia Cancer Research Institute, Vancouver, BC, Canada
| | - Mateus C. Barros-Filho
- Department of Integrative Oncology, British Columbia Cancer Research Institute, Vancouver, BC, Canada
- Department of Oncology, Hospital Sírio-Libanes, São Paulo, Brazil
| | - Adam P. Sage
- Department of Integrative Oncology, British Columbia Cancer Research Institute, Vancouver, BC, Canada
| | - Greg L. Stewart
- Department of Integrative Oncology, British Columbia Cancer Research Institute, Vancouver, BC, Canada
| | - Erin A. Marshall
- Department of Integrative Oncology, British Columbia Cancer Research Institute, Vancouver, BC, Canada
| | - Nikita Telkar
- Department of Integrative Oncology, British Columbia Cancer Research Institute, Vancouver, BC, Canada
- British Columbia Children’s Hospital Research Institute, Vancouver, BC, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Victor D. Martinez
- Department of Integrative Oncology, British Columbia Cancer Research Institute, Vancouver, BC, Canada
- Department of Pathology and Laboratory Medicine, IWK Health Centre, Halifax, NS, Canada
- Department of Pathology, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
- Beatrice Hunter Cancer Research Institute, Halifax, NS, Canada
| | - Patricia P. Reis
- Department of Surgery and Orthopedics and Experimental Research Unity (UNIPEX), Faculty of Medicine, São Paulo State University (UNESP), Botucatu, Brazil
| | - Wendy P. Robinson
- British Columbia Children’s Hospital Research Institute, Vancouver, BC, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Wan L. Lam
- Department of Integrative Oncology, British Columbia Cancer Research Institute, Vancouver, BC, Canada
| |
Collapse
|
13
|
Tumor stem cell-derived exosomal microRNA-17-5p inhibits anti-tumor immunity in colorectal cancer via targeting SPOP and overexpressing PD-L1. Cell Death Dis 2022; 8:223. [PMID: 35461336 PMCID: PMC9035163 DOI: 10.1038/s41420-022-00919-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 02/17/2022] [Accepted: 02/24/2022] [Indexed: 12/22/2022]
Abstract
Exosomes are known to transmit microRNAs (miRNAs) to affect human cancer progression, and miR-17-5p has been manifested to exert facilitated effects on colorectal cancer (CRC) progression, while the role of tumor stem cells-derived exosomal miR-17-5p in CRC remains unknown. We aim to explore the effect of CRC stem cells-derived exosomes (CRCSC-exos) conveying miR-17-5p on CRC. The exosomes were isolated from CRC stem cells and identified. HCT116 cells were transfected with speckle-type POZ protein (SPOP) interfering vector or co-cultured with exosomes carrying miR-17-5p mimic/inhibitor. Then, the proliferation, migration, invasion, and apoptosis of the cells were determined. The xenograft mouse model was constructed using BALB/C mice and the serum levels of T cell cytokines were assessed. Expression of miR-17-5p, SPOP, CD4, CD8 and programmed death ligand 1 (PD-L1) was detected. The targeting relationship between miR-17-5p and SPOP was verified. MiR-17-5p was upregulated and SPOP was downregulated in CRC tissues. CRCSC-exos transmitted miR-17-5p to HCT116 cells to promote malignant behaviors and suppress anti-tumor immunity of HCT116 cells. The overexpressed SPOP exerted opposite effects. SPOP was confirmed as a target gene of miR-17-5p. Upregulated CRCSC-exosomal miR-17-5p inhibits SPOP to promote tumor cell growth and dampen anti-tumor immunity in CRC through promoting PD-L1.
Collapse
|
14
|
Jorgensen BG, Ro S. MicroRNAs and 'Sponging' Competitive Endogenous RNAs Dysregulated in Colorectal Cancer: Potential as Noninvasive Biomarkers and Therapeutic Targets. Int J Mol Sci 2022; 23:ijms23042166. [PMID: 35216281 PMCID: PMC8876324 DOI: 10.3390/ijms23042166] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 01/28/2022] [Accepted: 02/02/2022] [Indexed: 12/13/2022] Open
Abstract
The gastrointestinal (GI) tract in mammals is comprised of dozens of cell types with varied functions, structures, and histological locations that respond in a myriad of ways to epigenetic and genetic factors, environmental cues, diet, and microbiota. The homeostatic functioning of these cells contained within this complex organ system has been shown to be highly regulated by the effect of microRNAs (miRNA). Multiple efforts have uncovered that these miRNAs are often tightly influential in either the suppression or overexpression of inflammatory, apoptotic, and differentiation-related genes and proteins in a variety of cell types in colorectal cancer (CRC). The early detection of CRC and other GI cancers can be difficult, attributable to the invasive nature of prophylactic colonoscopies. Additionally, the levels of miRNAs associated with CRC in biofluids can be contradictory and, therefore, must be considered in the context of other inhibiting competitive endogenous RNAs (ceRNA) such as lncRNAs and circRNAs. There is now a high demand for disease treatments and noninvasive screenings such as testing for bloodborne or fecal miRNAs and their inhibitors/targets. The breadth of this review encompasses current literature on well-established CRC-related miRNAs and the possibilities for their use as biomarkers in the diagnoses of this potentially fatal GI cancer.
Collapse
|
15
|
microRNA-Mediated Encoding and Decoding of Time-Dependent Signals in Tumorigenesis. Biomolecules 2022; 12:biom12020213. [PMID: 35204714 PMCID: PMC8961662 DOI: 10.3390/biom12020213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 01/13/2022] [Accepted: 01/21/2022] [Indexed: 02/01/2023] Open
Abstract
microRNAs, pivotal post-transcriptional regulators of gene expression, in the past decades have caught the attention of researchers for their involvement in different biological processes, ranging from cell development to cancer. Although lots of effort has been devoted to elucidate the topological features and the equilibrium properties of microRNA-mediated motifs, little is known about how the information encoded in frequency, amplitude, duration, and other features of their regulatory signals can affect the resulting gene expression patterns. Here, we review the current knowledge about microRNA-mediated gene regulatory networks characterized by time-dependent input signals, such as pulses, transient inputs, and oscillations. First, we identify the general characteristic of the main motifs underlying temporal patterns. Then, we analyze their impact on two commonly studied oncogenic networks, showing how their dysfunction can lead to tumorigenesis.
Collapse
|
16
|
Pan S, Bao D, Li Y, Liu D, Quan S, Wang R. SOX4 induces drug resistance of colorectal cancer cells by downregulating CYLD through transcriptional activation of microRNA-17. J Biochem Mol Toxicol 2022; 36:e22910. [PMID: 34927777 DOI: 10.1002/jbt.22910] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 07/22/2021] [Accepted: 08/24/2021] [Indexed: 12/19/2022]
Abstract
Exposure to high doses of anticancer drugs can induce the emergence of a subpopulation of weakly proliferative and drug-tolerant cells. Drug tolerance can reduce the benefits obtained from canonical treatment and reduce the survival rate of patients. Regulation of SRY-related HMG box transcription factor 4 (SOX4) has been proved to affect drug sensitivity. The current study aimed to explore the role of SOX4 in drug resistance of colorectal cancer (CRC) cells as well as the related molecular mechanisms. Expression patterns of SOX4, microRNA-17 (miR-17), and CYLD in both CRC tissues and cells were determined with their relationship analyzed by bioinformatics analysis, dual-luciferase reporter gene assay, and ChIP. Loss- and gain-function assays were performed to ascertain the effect of SOX4, miR-17, and CYLD on biological cellular processes and drug resistance to 5-FU. SOX4 and miR-17 were found to be highly expressed while CYLD was poorly expressed in CRC tissues and cells. Silencing of SOX4 resulted in the suppression of cellular proliferation, invasion, migration as well as a reduction in CRC drug resistance. Mechanically, CYLD was specifically targeted by miR-17, while SOX4 upregulated the expression of miR-17. Functionally, SOX4 triggered drug resistance of CRC cells to 5-FU through the miR-17/CYLD axis. Taken together, the key findings of the present study provides evidence suggesting that SOX4 elevates miR-17 to decrease CYLD, thus inducing chemotherapy resistance of CRC cells.
Collapse
Affiliation(s)
- Shuang Pan
- Department of Physiology, Jinzhou Medical University, Jinzhou, P.R. China
| | - Dongyan Bao
- Department of Physiology, Jinzhou Medical University, Jinzhou, P.R. China
| | - Yao Li
- Department of Physiology, Jinzhou Medical University, Jinzhou, P.R. China
| | - Dahua Liu
- Jinzhou Medical University (Liaoning Province Key Laboratory of Human Phenome Research), Jinzhou, P.R. China
| | - Shuai Quan
- The First Clinical College, Jinzhou Medical University, Jinzhou, P.R. China
| | - Rong Wang
- Department of Respiratory, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, P.R. China
| |
Collapse
|
17
|
Niu X, Jiao Z, Wang Z, Jiang A, Zhang X, Zhang H, Xue F. MiR-17-5p protects neonatal mice from hypoxic-ischemic brain damage by targeting Casp2. Neurosci Lett 2022; 772:136475. [DOI: 10.1016/j.neulet.2022.136475] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/03/2022] [Accepted: 01/20/2022] [Indexed: 01/01/2023]
|
18
|
Ramesh P, Lannagan TRM, Jackstadt R, Atencia Taboada L, Lansu N, Wirapati P, van Hooff SR, Dekker D, Pritchard J, Kirov AB, van Neerven SM, Tejpar S, Kops GJPL, Sansom OJ, Medema JP. BCL-XL is crucial for progression through the adenoma-to-carcinoma sequence of colorectal cancer. Cell Death Differ 2021; 28:3282-3296. [PMID: 34117376 PMCID: PMC8630104 DOI: 10.1038/s41418-021-00816-w] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 05/25/2021] [Accepted: 05/28/2021] [Indexed: 12/13/2022] Open
Abstract
Evasion of apoptosis is a hallmark of cancer, which is frequently mediated by upregulation of the antiapoptotic BCL-2 family proteins. In colorectal cancer (CRC), previous work has highlighted differential antiapoptotic protein dependencies determined by the stage of the disease. While intestinal stem cells (ISCs) require BCL-2 for adenoma outgrowth and survival during transformation, ISC-specific MCL1 deletion results in disturbed intestinal homeostasis, eventually contributing to tumorigenesis. Colon cancer stem cells (CSCs), however, no longer require BCL-2 and depend mainly on BCL-XL for their survival. We therefore hypothesized that a shift in antiapoptotic protein reliance occurs in ISCs as the disease progresses from normal to adenoma to carcinoma. By targeting antiapoptotic proteins with specific BH3 mimetics in organoid models of CRC progression, we found that BCL-2 is essential only during ISC transformation while MCL1 inhibition did not affect adenoma outgrowth. BCL-XL, on the other hand, was crucial for stem cell survival throughout the adenoma-to-carcinoma sequence. Furthermore, we identified that the limited window of BCL-2 reliance is a result of its downregulation by miR-17-5p, a microRNA that is upregulated upon APC-mutation driven transformation. Here we show that BCL-XL inhibition effectively impairs adenoma outgrowth in vivo and enhances the efficacy of chemotherapy. In line with this dependency, expression of BCL-XL, but not BCL-2 or MCL1, directly correlated to the outcome of chemotherapy-treated CRC patients. Our results provide insights to enable the rational use of BH3 mimetics in CRC management, particularly underlining the therapeutic potential of BCL-XL targeting mimetics in both early and late-stage disease.
Collapse
Affiliation(s)
- Prashanthi Ramesh
- Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, AmsterdamUMC, University of Amsterdam, Cancer Center Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
- Oncode Institute, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | | | - Rene Jackstadt
- Cancer Research UK Beatson Institute, Garscube Estate, Glasgow, G61 1BD, UK
| | - Lidia Atencia Taboada
- Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, AmsterdamUMC, University of Amsterdam, Cancer Center Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
- Oncode Institute, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Nico Lansu
- Oncode Institute, Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, The Netherlands
| | | | - Sander R van Hooff
- Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, AmsterdamUMC, University of Amsterdam, Cancer Center Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
- Oncode Institute, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Danielle Dekker
- Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, AmsterdamUMC, University of Amsterdam, Cancer Center Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
- Oncode Institute, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Jessica Pritchard
- Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, AmsterdamUMC, University of Amsterdam, Cancer Center Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
- Oncode Institute, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Aleksandar B Kirov
- Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, AmsterdamUMC, University of Amsterdam, Cancer Center Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
- Oncode Institute, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Sanne M van Neerven
- Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, AmsterdamUMC, University of Amsterdam, Cancer Center Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
- Oncode Institute, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Sabine Tejpar
- Molecular Digestive Oncology, Department of Oncology, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Geert J P L Kops
- Oncode Institute, Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, The Netherlands
| | - Owen J Sansom
- Cancer Research UK Beatson Institute, Garscube Estate, Glasgow, G61 1BD, UK
- Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Glasgow, G61 1QH, UK
| | - Jan Paul Medema
- Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, AmsterdamUMC, University of Amsterdam, Cancer Center Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands.
- Oncode Institute, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands.
| |
Collapse
|
19
|
Xie G, Dong P, Chen H, Xu L, Liu Y, Ma Y, Zheng Y, Yang J, Zhou Y, Chen L, Shen L. Decreased expression of ATF3, orchestrated by β-catenin/TCF3, miR-17-5p and HOXA11-AS, promoted gastric cancer progression via increased β-catenin and CEMIP. Exp Mol Med 2021; 53:1706-1722. [PMID: 34728784 PMCID: PMC8639750 DOI: 10.1038/s12276-021-00694-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 06/09/2021] [Accepted: 08/24/2021] [Indexed: 01/04/2023] Open
Abstract
ATF3 has been reported to be dysregulated in various cancers and involved in various steps of tumorigenesis. However, the mechanisms underlying the abnormal expression of ATF3 and its biological function in gastric cancer (GC) have not been well investigated. Here, we report ATF3 as one of the key regulators of GC development and progression. Patients with low ATF3 expression had shorter survival and a poorer prognosis. In vitro and in vivo assays investigating ATF3 alterations revealed a complex integrated phenotype that affects cell growth and migration. Strikingly, high-throughput sequencing and microarray analysis of cells with ATF3 silencing or of ATF3-low GC tissues indicated alterations in the Wnt signaling pathway, focal adhesions and adherens junctions. Mechanistically, the expression of β-catenin and cell migration inducing hyaluronidase 1 (CEMIP) was significantly upregulated in GC cells with downregulated ATF3, which was synergistically repressed by the β-catenin/TCF3 signaling axis and noncoding RNA miR-17-5p and HOXA11-AS. In addition, we found that WDR5 expression was promoted by TCF3 and is involved in miR-17-5p and HOXA11-AS activation in GC cells. Taken together, our findings revealed the mechanism of ATF3 downregulation and its biological role in regulating the expression of Wnt signaling-related genes during GC progression, suggesting new informative biomarkers of malignancy and therapeutic directions for GC patients. New treatments for gastric cancer could involve controlling the activity of a regulatory gene and associated signaling pathway. Over-activation of the Wnt signaling pathway, which regulates many cellular functions, occurs in around half of gastric cancers. Further, the activating transcription factor 3 gene (ATF3) is thought to influence tumorigenesis, although its role in gastric cancer is unclear. Guohua Xie and co-workers at Shanghai Jiao Tong University, China, explored the function of ATF3 in human gastric cancer tissues. Patients with low ATF3 expression had poorer prognosis and shorter life expectancy. The team discovered that reduced expression of ATF3 triggered the increased expression of two of its target genes, which then altered Wnt signaling. Reduced ATF3 expression also boosted the invasiveness of gastric cancer cells. Initial results suggest that overexpression of ATF3 could suppress gastric cancer progression.
Collapse
Affiliation(s)
- Guohua Xie
- Department of Clinical Laboratory, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Ping Dong
- Department of General Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hui Chen
- Department of Clinical Laboratory, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ling Xu
- Department of Clinical Laboratory, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yi Liu
- Department of Clinical Laboratory, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yanhui Ma
- Department of Clinical Laboratory, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yingxia Zheng
- Department of Clinical Laboratory, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Junyao Yang
- Department of Clinical Laboratory, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yunlan Zhou
- Department of Clinical Laboratory, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lei Chen
- Department of General Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Lisong Shen
- Department of Clinical Laboratory, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China. .,Faculty of Medical Laboratory Sciences, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
20
|
Liu X, Song N, Qian D, Gu S, Pu J, Huang L, Liu J, Qian K. Porous Inorganic Materials for Bioanalysis and Diagnostic Applications. ACS Biomater Sci Eng 2021; 8:4092-4109. [PMID: 34494831 DOI: 10.1021/acsbiomaterials.1c00733] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Porous inorganic materials play an important role in adsorbing targeted analytes and supporting efficient reactions in analytical science. The detection performance relies on the structural properties of porous materials, considering the tunable pore size, shape, connectivity, etc. Herein, we first clarify the enhancement mechanisms of porous materials for bioanalysis, concerning the detection sensitivity and selectivity. The diagnostic applications of porous material-assisted platforms by coupling with various analytical techniques, including electrochemical sensing, optical spectrometry, and mass spectrometry, etc., are then reviewed. We foresee that advanced porous materials will bring far-reaching implications in bioanalysis toward real-case applications, especially as diagnostic assays in clinical settings.
Collapse
Affiliation(s)
- Xun Liu
- School of Biomedical Engineering, Institute of Medical Robotics and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai 200030, P. R. China
| | - Naikun Song
- School of Biomedical Engineering, Institute of Medical Robotics and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai 200030, P. R. China
| | - Dahong Qian
- School of Biomedical Engineering, Institute of Medical Robotics and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai 200030, P. R. China
| | - Sai Gu
- School of Engineering, University of Warwick, Coventry CV4 7AL, W Midlands, England.,Department of Chemical and Process Engineering, University of Surrey, Guildford, Surrey GU27XH, United Kingdom
| | - Jun Pu
- Division of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai 200127, P. R. China
| | - Lin Huang
- Stem Cell Research Center, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai 200127, P. R. China
| | - Jian Liu
- Department of Chemical and Process Engineering, University of Surrey, Guildford, Surrey GU27XH, United Kingdom.,Chinese Academy of Sciences, Dalian Institute of Chemical Physics, CAS State Key Laboratory of Catalysis, 568 Zhongshan Road, Dalian 116023, P. R. China
| | - Kun Qian
- School of Biomedical Engineering, Institute of Medical Robotics and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai 200030, P. R. China.,Division of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai 200127, P. R. China
| |
Collapse
|
21
|
Jafarzadeh M, Soltani BM. MiRNA-Wnt signaling regulatory network in colorectal cancer. J Biochem Mol Toxicol 2021; 35:e22883. [PMID: 34382723 DOI: 10.1002/jbt.22883] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 08/02/2021] [Indexed: 01/05/2023]
Abstract
Colorectal cancer (CRC) is one of the common malignancies worldwide and the Wnt signaling pathway is recognized as the main disrupted pathway in this malignancy. MicroRNAs (miRNAs) are recognized to contribute to the pathogenesis of CRC by triggering or impeding the Wnt signaling pathway. In addition, transcriptional regulation of miRNAs by canonical Wnt signaling also participates in CRC cell progression. In this review, we present comprehensive literature of the existing data on the interaction of miRNAs and Wnt signaling that could be useful in future studies in the field of CRC management.
Collapse
Affiliation(s)
- Meisam Jafarzadeh
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Bahram M Soltani
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
22
|
Pidíková P, Herichová I. miRNA Clusters with Up-Regulated Expression in Colorectal Cancer. Cancers (Basel) 2021; 13:cancers13122979. [PMID: 34198662 PMCID: PMC8232258 DOI: 10.3390/cancers13122979] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 06/05/2021] [Accepted: 06/09/2021] [Indexed: 12/13/2022] Open
Abstract
Simple Summary As miRNAs show the capacity to be used as CRC biomarkers, we analysed experimentally validated data about frequently up-regulated miRNA clusters in CRC tissue. We identified 15 clusters that showed increased expression in CRC: miR-106a/363, miR-106b/93/25, miR-17/92a-1, miR-181a-1/181b-1, miR-181a-2/181b-2, miR-181c/181d, miR-183/96/182, miR-191/425, miR-200c/141, miR-203a/203b, miR-222/221, mir-23a/27a/24-2, mir-29b-1/29a, mir-301b/130b and mir-452/224. Cluster positions in the genome are intronic or intergenic. Most clusters are regulated by several transcription factors, and by long non-coding RNAs. In some cases, co-expression of miRNA with other cluster members or host gene has been proven. miRNA expression patterns in cancer tissue, blood and faeces were compared. The members of the selected clusters target 181 genes. Their functions and corresponding pathways were revealed with the use of Panther analysis. Clusters miR-17/92a-1, miR-106a/363, miR-106b/93/25 and miR-183/96/182 showed the strongest association with metastasis occurrence and poor patient survival, implicating them as the most promising targets of translational research. Abstract Colorectal cancer (CRC) is one of the most common malignancies in Europe and North America. Early diagnosis is a key feature of efficient CRC treatment. As miRNAs can be used as CRC biomarkers, the aim of the present study was to analyse experimentally validated data on frequently up-regulated miRNA clusters in CRC tissue and investigate their members with respect to clinicopathological characteristics of patients. Based on available data, 15 up-regulated clusters, miR-106a/363, miR-106b/93/25, miR-17/92a-1, miR-181a-1/181b-1, miR-181a-2/181b-2, miR-181c/181d, miR-183/96/182, miR-191/425, miR-200c/141, miR-203a/203b, miR-222/221, mir-23a/27a/24-2, mir-29b-1/29a, mir-301b/130b and mir-452/224, were selected. The positions of such clusters in the genome can be intronic or intergenic. Most clusters are regulated by several transcription factors, and miRNAs are also sponged by specific long non-coding RNAs. In some cases, co-expression of miRNA with other cluster members or host gene has been proven. miRNA expression patterns in cancer tissue, blood and faeces were compared. Based on experimental evidence, 181 target genes of selected clusters were identified. Panther analysis was used to reveal the functions of the target genes and their corresponding pathways. Clusters miR-17/92a-1, miR-106a/363, miR-106b/93/25 and miR-183/96/182 showed the strongest association with metastasis occurrence and poor patient survival, implicating them as the most promising targets of translational research.
Collapse
|
23
|
Lai PS, Chang WM, Chen YY, Lin Y, Liao HF, Chen CY. Circulating microRNA-762 upregulates colorectal cancer may be accompanied by Wnt-1/β-catenin signaling. Cancer Biomark 2021; 32:111-122. [PMID: 34092606 DOI: 10.3233/cbm-203002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Colorectal cancer (CRC) has become the third most common cause of cancer-related deaths. CRC occurs because of abnormal growth of cells that can invade other tissues and cause distant metastases. Researchers have suggested that aberrant microRNA (miRNA) expression is involved in the initiation and progression of cancers. However, the key miRNAs that regulate the growth and metastasis of CRC remain unclear. The circulating miRNAs from BALB/c mice with CRC CT26 cell implantation were assayed by microarray. Then, Mus musculus (house mouse) mmu-miR-762 mimic and inhibitor were transfected to CT26 cells for analysis of cell viability, invasion, and epithelial-mesenchymal transition (EMT), cell cycle, and regulatory molecule expression. Human subjects were included for comparison the circulating Homo sapiens (human) has-miR-762 levels in CRC patients and control donors, as well as the patients with and without distant metastasis. The result for miRNA levels in mice with CRC cell implantation indicated that plasma mmu-miR-762 was upregulated. Transfection of mmu-miR-762 mimic to CT26 cells increased cell viability, invasion, and EMT, whereas transfection of mmu-miR-762 inhibitor decreased the above abilities. Cells treated with high-concentration mmu-miR-762 inhibitor induced cell cycle arrest at G0/G1 phase. However, mmu-miR-762 did not cause apoptosis of cells. Western blot analysis showed that mmu-miR-762 mimic transfection upregulated the expression of Wnt-1 and β-catenin, as well as increased the nuclear translocation of β-catenin. Further analysis was performed to demonstrate the correlation of miR-762 with CRC, and blood samples were collected from CRC patients and control donors. The results showed that serum has-miR-762 levels in CRC patients were higher than in control donors. Among the CRC patients (n= 20), six patients with distant metastasis showed higher serum has-miR-762 levels than patients without distant metastasis. Conclusions, the present study suggests that circulating miR-762 might be a potential biomarker for upregulation of CRC cell growth and invasion, and may be accompanied by the Wnt/β-catenin signaling.
Collapse
Affiliation(s)
- Peng-Sheng Lai
- Department of Surgery, National Taiwan University Hospital Yunlin Branch, Yunlin, Taiwan.,Department of Surgery, National Taiwan University Hospital Yunlin Branch, Yunlin, Taiwan
| | - Wei-Min Chang
- School of Oral Hygiene, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan
| | - Ying-Yin Chen
- Department of Internal Medicine, National Taiwan University Hospital Yunlin Branch, Yunlin, Taiwan.,College of Medicine, National Taiwan University, Taipei, Taiwan
| | - YiFeng Lin
- Department of Biochemical Science and Technology, National Chiayi University, Chiayi, Taiwan
| | - Hui-Fen Liao
- Department of Biochemical Science and Technology, National Chiayi University, Chiayi, Taiwan.,College of Chinese Medicine, China Medical University, Taichung, Taiwan.,Department of Surgery, National Taiwan University Hospital Yunlin Branch, Yunlin, Taiwan
| | - Chung-Yu Chen
- Department of Internal Medicine, National Taiwan University Hospital Yunlin Branch, Yunlin, Taiwan.,College of Medicine, National Taiwan University, Taipei, Taiwan.,Department of Surgery, National Taiwan University Hospital Yunlin Branch, Yunlin, Taiwan
| |
Collapse
|
24
|
Cohn DE, Barros-Filho MC, Minatel BC, Pewarchuk ME, Marshall EA, Vucic EA, Sage AP, Telkar N, Stewart GL, Jurisica I, Reis PP, Robinson WP, Lam WL. Reactivation of Multiple Fetal miRNAs in Lung Adenocarcinoma. Cancers (Basel) 2021; 13:2686. [PMID: 34072436 PMCID: PMC8199175 DOI: 10.3390/cancers13112686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/25/2021] [Accepted: 05/26/2021] [Indexed: 11/16/2022] Open
Abstract
MicroRNAs (miRNAs) play vital roles in the regulation of normal developmental pathways. However, cancer cells can co-opt these miRNAs, and the pathways that they regulate, to drive pro-tumourigenic phenotypes. Characterization of the miRNA transcriptomes of fetal organs is essential for identifying these oncofetal miRNAs, but it has been limited by fetal sample availability. As oncofetal miRNAs are absent from healthy adult lungs, they represent ideal targets for developing diagnostic and therapeutic strategies. We conducted small RNA sequencing of a rare collection of 25 human fetal lung (FL) samples and compared them to two independent cohorts (n = 140, n = 427), each comprised of adult non-neoplastic lung (ANL) and lung adenocarcinoma (LUAD) samples. We identified 13 oncofetal miRNAs that were expressed in FL and LUAD but not in ANL. These oncofetal miRNAs are potential biomarkers for LUAD detection (AUC = 0.963). Five of these miRNAs are derived from the imprinted C14MC miRNA cluster at the 14q32 locus, which has been associated with cancer development and abnormal fetal and placental development. Additionally, we observed the pulmonary expression of 44 previously unannotated miRNAs. The sequencing of these fetal lung samples also provides a baseline resource against which aberrant samples can be compared.
Collapse
Affiliation(s)
- David E. Cohn
- British Columbia Cancer Research Centre, Vancouver, BC V5Z 1L3, Canada; (M.C.B.-F.); (B.C.M.); (M.E.P.); (E.A.M.); (E.A.V.); (A.P.S.); (N.T.); (G.L.S.); (W.L.L.)
| | - Mateus C. Barros-Filho
- British Columbia Cancer Research Centre, Vancouver, BC V5Z 1L3, Canada; (M.C.B.-F.); (B.C.M.); (M.E.P.); (E.A.M.); (E.A.V.); (A.P.S.); (N.T.); (G.L.S.); (W.L.L.)
- International Research Center, A.C. Camargo Cancer Center, São Paulo, SP 01525-001, Brazil
| | - Brenda C. Minatel
- British Columbia Cancer Research Centre, Vancouver, BC V5Z 1L3, Canada; (M.C.B.-F.); (B.C.M.); (M.E.P.); (E.A.M.); (E.A.V.); (A.P.S.); (N.T.); (G.L.S.); (W.L.L.)
| | - Michelle E. Pewarchuk
- British Columbia Cancer Research Centre, Vancouver, BC V5Z 1L3, Canada; (M.C.B.-F.); (B.C.M.); (M.E.P.); (E.A.M.); (E.A.V.); (A.P.S.); (N.T.); (G.L.S.); (W.L.L.)
| | - Erin A. Marshall
- British Columbia Cancer Research Centre, Vancouver, BC V5Z 1L3, Canada; (M.C.B.-F.); (B.C.M.); (M.E.P.); (E.A.M.); (E.A.V.); (A.P.S.); (N.T.); (G.L.S.); (W.L.L.)
| | - Emily A. Vucic
- British Columbia Cancer Research Centre, Vancouver, BC V5Z 1L3, Canada; (M.C.B.-F.); (B.C.M.); (M.E.P.); (E.A.M.); (E.A.V.); (A.P.S.); (N.T.); (G.L.S.); (W.L.L.)
- NYU Langone Medical Center, New York, NY 10016, USA
| | - Adam P. Sage
- British Columbia Cancer Research Centre, Vancouver, BC V5Z 1L3, Canada; (M.C.B.-F.); (B.C.M.); (M.E.P.); (E.A.M.); (E.A.V.); (A.P.S.); (N.T.); (G.L.S.); (W.L.L.)
| | - Nikita Telkar
- British Columbia Cancer Research Centre, Vancouver, BC V5Z 1L3, Canada; (M.C.B.-F.); (B.C.M.); (M.E.P.); (E.A.M.); (E.A.V.); (A.P.S.); (N.T.); (G.L.S.); (W.L.L.)
- British Columbia Children’s Hospital Research Institute, Vancouver, BC V5Z 4H4, Canada;
- Department of Medical Genetics, University of British Columbia, Vancouver, BC V6H 3N1, Canada
| | - Greg L. Stewart
- British Columbia Cancer Research Centre, Vancouver, BC V5Z 1L3, Canada; (M.C.B.-F.); (B.C.M.); (M.E.P.); (E.A.M.); (E.A.V.); (A.P.S.); (N.T.); (G.L.S.); (W.L.L.)
| | - Igor Jurisica
- Osteoarthritis Research Program, Division of Orthopedic Surgery, Schroeder Arthritis Institute, University Health Network, Toronto, ON M5T 0S8, Canada;
- Data Science Discovery Centre for Chronic Diseases, Krembil Research Institute, University Health Network, Toronto, ON M5T 0S8, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada
- Department of Computer Science, University of Toronto, Toronto, ON M5S 2E4, Canada
| | - Patricia P. Reis
- Faculty of Medicine, São Paulo State University (UNESP), Botucatu, SP 18618-687, Brazil;
| | - Wendy P. Robinson
- British Columbia Children’s Hospital Research Institute, Vancouver, BC V5Z 4H4, Canada;
- Department of Medical Genetics, University of British Columbia, Vancouver, BC V6H 3N1, Canada
| | - Wan L. Lam
- British Columbia Cancer Research Centre, Vancouver, BC V5Z 1L3, Canada; (M.C.B.-F.); (B.C.M.); (M.E.P.); (E.A.M.); (E.A.V.); (A.P.S.); (N.T.); (G.L.S.); (W.L.L.)
| |
Collapse
|
25
|
Sur D, Balacescu L, Cainap SS, Visan S, Pop L, Burz C, Havasi A, Buiga R, Cainap C, Irimie A, Balacescu O. Predictive Efficacy of MiR-125b-5p, MiR-17-5p, and MiR-185-5p in Liver Metastasis and Chemotherapy Response Among Advanced Stage Colorectal Cancer Patients. Front Oncol 2021; 11:651380. [PMID: 34084747 PMCID: PMC8167052 DOI: 10.3389/fonc.2021.651380] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Accepted: 04/21/2021] [Indexed: 12/24/2022] Open
Abstract
MicroRNAs (miRNAs), a class of small non-coding RNAs represent potential biomarkers for colorectal cancer (CRC). The study hypothesized that miRNAs associated with liver metastases may also contribute to assessing treatment response when associated to plasma exosomes. In this study, we used two sets of biological samples, a collection of tumor tissues harvested from patients with CRC with and without liver metastases, and a collection of plasma from CRC patients with and without response to FOLFOX4/FOLFIRI regimens. We investigated 10 target miRNAs in the tissue of 28 CRC patients and identified miR-125b-5p, miR-17-5p, and miR-185-5p to be associated with liver metastasis. Further, we investigated the three miRNAs at the exosomal level in a plasma collection to test their association with chemotherapy response. Our data suggest that the elevated plasma levels of miR-17-5p and miR-185-5p could be predictive of treatment response. Overexpression of miR-17-5p and underexpression of miR-125b-5p and miR-185-5p in CRC tissue seem to be associated with metastatic potential. On the other hand, an increased expression of miR-125b-5p in plasma exosomes was potentially correlated with a more aggressive CRC phenotype.
Collapse
Affiliation(s)
- Daniel Sur
- 11th Department of Medical Oncology, University of Medicine and Pharmacy "Iuliu Hatieganu", Cluj-Napoca, Romania.,Department of Medical Oncology, The Oncology Institute "Prof. Dr. Ion Chiricuta", Cluj-Napoca, Romania
| | - Loredana Balacescu
- 11th Department of Medical Oncology, University of Medicine and Pharmacy "Iuliu Hatieganu", Cluj-Napoca, Romania.,Department of Genetics, Genomics and Experimental Pathology, The Oncology Institute "Prof. Dr. Ion Chiricuta", Cluj-Napoca, Romania
| | - Simona S Cainap
- Department of Pediatric Cardiology, Emergency County Hospital for Children, Pediatric Clinic no 2, Cluj-Napoca, Romania.,Department of Mother and Child, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Simona Visan
- Department of Genetics, Genomics and Experimental Pathology, The Oncology Institute "Prof. Dr. Ion Chiricuta", Cluj-Napoca, Romania
| | - Laura Pop
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, University of Medicine and Pharmacy "Iuliu Hatieganu", Cluj-Napoca, Romania
| | - Claudia Burz
- Department of Medical Oncology, The Oncology Institute "Prof. Dr. Ion Chiricuta", Cluj-Napoca, Romania.,Department of Immunology and Allergology, University of Medicine and Pharmacy "Iuliu Hatieganu", Cluj-Napoca, Romania
| | - Andrei Havasi
- Department of Medical Oncology, The Oncology Institute "Prof. Dr. Ion Chiricuta", Cluj-Napoca, Romania
| | - Rares Buiga
- Department of Pathology, The Oncology Institute "Prof. Dr. Ion Chiricuta", Cluj-Napoca, Romania.,Department of Pathology, "Iuliu Hatieganu", University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Calin Cainap
- 11th Department of Medical Oncology, University of Medicine and Pharmacy "Iuliu Hatieganu", Cluj-Napoca, Romania.,Department of Medical Oncology, The Oncology Institute "Prof. Dr. Ion Chiricuta", Cluj-Napoca, Romania
| | - Alexandru Irimie
- 11th Department of Oncological Surgery and Gynecological Oncology, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania.,Department of Surgery, The Oncology Institute "Prof. Dr. Ion Chiricuta", Cluj-Napoca, Romania
| | - Ovidiu Balacescu
- 11th Department of Medical Oncology, University of Medicine and Pharmacy "Iuliu Hatieganu", Cluj-Napoca, Romania.,Department of Genetics, Genomics and Experimental Pathology, The Oncology Institute "Prof. Dr. Ion Chiricuta", Cluj-Napoca, Romania
| |
Collapse
|
26
|
Feng J, Wei Q, Yang M, Wang X, Liu B, Li J. Development and validation of a novel miRNA classifier as a prognostic signature for stage II/III colorectal cancer. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:747. [PMID: 34268360 PMCID: PMC8246165 DOI: 10.21037/atm-20-1751] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 10/19/2020] [Indexed: 12/04/2022]
Abstract
Background The TNM staging remains the gold standard for determining the prognosis of patients with colorectal cancer (CRC), which is inadequate at identifying the subset of high-risk stage II and III patients that have a high potential of developing tumor recurrence and may experience death. Emerging evidence indicates that not only microRNAs (miRNAs) play important functional role in CRC development but may serve as important disease biomarkers. In this study we aimed to develop a miRNA-based classifier as a prognostic signature for improving the clinical outcome of patients with stage II/III CRC. Methods We performed a systematic and comprehensive discovery step to identify differentially expressed miRNAs in CRC. We subsequently determined the prognostic relevance of these miRNAs in stage II/III patients using qRT-PCR and developed a miRNA-based classifier for predicting disease-free survival (DFS) in a clinical cohort (n=186). Results Based upon miRNA expression profiling studies, we identified a panel of 10 miRNAs which are consistently differentially expressed in CRC vs. normal tissues. By using cox proportional hazard models, we then developed 6-miRNA-classifier (miR-183, -20a, -21, -195, -139 and -20a) to predict prognosis in clinical cohort, that had significantly superior predictive performance compared to other clinicopathological factors, and could successfully identify high-risk stage II and III CRC patients with poor prognosis [hazard ratio (HR) =2.16; P=0.0048]. In a multivariate analysis, this miRNA-based classifier emerged as an independent prognostic signature for poor DFS. Conclusions Our miRNA-based classifier is a reliable predictive tool for determining prognosis in patents with stage II/III CRC, and might be able to identify high-risk patients that are candidates for more targeted personalized clinical management and surveillance.
Collapse
Affiliation(s)
- Junlan Feng
- Department of General Surgery, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Qing Wei
- Department of Pathology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Muqing Yang
- Department of General Surgery, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xiaodong Wang
- Department of General Surgery, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Bin Liu
- Department of General Surgery, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jiyu Li
- Department of General Surgery, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
27
|
The Role of miRNAs, miRNA Clusters, and isomiRs in Development of Cancer Stem Cell Populations in Colorectal Cancer. Int J Mol Sci 2021; 22:ijms22031424. [PMID: 33572600 PMCID: PMC7867000 DOI: 10.3390/ijms22031424] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/17/2021] [Accepted: 01/26/2021] [Indexed: 02/07/2023] Open
Abstract
MicroRNAs (miRNAs or miRs) have a critical role in regulating stem cells (SCs) during development and altered expression can cause developmental defects and/or disease. Indeed, aberrant miRNA expression leads to wide-spread transcriptional dysregulation which has been linked to many cancers. Mounting evidence also indicates a role for miRNAs in the development of the cancer SC (CSC) phenotype. Our goal herein is to provide a review of: (i) current research on miRNAs and their targets in colorectal cancer (CRC), and (ii) miRNAs that are differentially expressed in colon CSCs. MicroRNAs can work in clusters or alone when targeting different SC genes to influence CSC phenotype. Accordingly, we discuss the specific miRNA cluster classifications and isomiRs that are predicted to target the ALDH1, CD166, BMI1, LRIG1, and LGR5 SC genes. miR-23b and miR-92A are of particular interest because our previously reported studies on miRNA expression in isolated normal versus malignant human colonic SCs showed that miR-23b and miR-92a are regulators of the LGR5 and LRIG1 SC genes, respectively. We also identify additional miRNAs whose expression inversely correlated with mRNA levels of their target genes and associated with CRC patient survival. Altogether, our deliberation on miRNAs, their clusters, and isomiRs in regulation of SC genes could provide insight into how dysregulation of miRNAs leads to the emergence of different CSC populations and SC overpopulation in CRC.
Collapse
|
28
|
Huang X, Zhu X, Yu Y, Zhu W, Jin L, Zhang X, Li S, Zou P, Xie C, Cui R. Dissecting miRNA signature in colorectal cancer progression and metastasis. Cancer Lett 2020; 501:66-82. [PMID: 33385486 DOI: 10.1016/j.canlet.2020.12.025] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 12/15/2020] [Accepted: 12/16/2020] [Indexed: 02/06/2023]
Abstract
Colorectal cancer (CRC) is the third most common cancer and leading cause of cancer related deaths worldwide. Despite recent advancements in surgical and molecular targeted therapies that improved the therapeutic efficacy in CRC, the 5 years survival rate of CRC patients still remains frustratingly poor. Accumulated evidences indicate that microRNAs (miRNAs) play a crucial role in the progression and metastasis of CRC. Dysregulated miRNAs are closely associated with cancerous phenotypes (e.g. enhanced proliferative and invasive ability, evasion of apoptosis, cell cycle aberration, and promotion of angiogenesis) by regulating their target genes. In this review, we provide an updated overview of tumor suppressive and oncogenic miRNAs, circulatory miRNAs, and the possible causes of dysregulated miRNAs in CRC. In addition, we discuss the important functions of miRNAs in drug resistance of CRC.
Collapse
Affiliation(s)
- Xiangjie Huang
- Cancer and Anticancer Drug Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Xinping Zhu
- Cancer and Anticancer Drug Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Yun Yu
- Cancer and Anticancer Drug Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Wangyu Zhu
- Affiliated Zhoushan Hospital, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Libo Jin
- Institute of Life Sciences, Wenzhou University, Wenzhou, Zhejiang, 325035, China; Wenzhou University-Wenzhou Medical University Collaborative Innovation Center of Biomedical, Wenzhou, Zhejiang, 325035, China
| | - Xiaodong Zhang
- First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Shaotang Li
- First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Peng Zou
- Cancer and Anticancer Drug Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China; Institute of Life Sciences, Wenzhou University, Wenzhou, Zhejiang, 325035, China; Wenzhou University-Wenzhou Medical University Collaborative Innovation Center of Biomedical, Wenzhou, Zhejiang, 325035, China
| | - Congying Xie
- First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Ri Cui
- Cancer and Anticancer Drug Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China; Institute of Life Sciences, Wenzhou University, Wenzhou, Zhejiang, 325035, China; Wenzhou University-Wenzhou Medical University Collaborative Innovation Center of Biomedical, Wenzhou, Zhejiang, 325035, China.
| |
Collapse
|
29
|
Grzywa TM, Klicka K, Włodarski PK. Regulators at Every Step-How microRNAs Drive Tumor Cell Invasiveness and Metastasis. Cancers (Basel) 2020; 12:E3709. [PMID: 33321819 PMCID: PMC7763175 DOI: 10.3390/cancers12123709] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/03/2020] [Accepted: 12/07/2020] [Indexed: 02/06/2023] Open
Abstract
Tumor cell invasiveness and metastasis are the main causes of mortality in cancer. Tumor progression is composed of many steps, including primary tumor growth, local invasion, intravasation, survival in the circulation, pre-metastatic niche formation, and metastasis. All these steps are strictly controlled by microRNAs (miRNAs), small non-coding RNA that regulate gene expression at the post-transcriptional level. miRNAs can act as oncomiRs that promote tumor cell invasion and metastasis or as tumor suppressor miRNAs that inhibit tumor progression. These miRNAs regulate the actin cytoskeleton, the expression of extracellular matrix (ECM) receptors including integrins and ECM-remodeling enzymes comprising matrix metalloproteinases (MMPs), and regulate epithelial-mesenchymal transition (EMT), hence modulating cell migration and invasiveness. Moreover, miRNAs regulate angiogenesis, the formation of a pre-metastatic niche, and metastasis. Thus, miRNAs are biomarkers of metastases as well as promising targets of therapy. In this review, we comprehensively describe the role of various miRNAs in tumor cell migration, invasion, and metastasis.
Collapse
Affiliation(s)
- Tomasz M. Grzywa
- Department of Methodology, Medical University of Warsaw, 02-091 Warsaw, Poland; (T.M.G.); (K.K.)
- Doctoral School, Medical University of Warsaw, 02-091 Warsaw, Poland
- Department of Immunology, Medical University of Warsaw, 02-097 Warsaw, Poland
| | - Klaudia Klicka
- Department of Methodology, Medical University of Warsaw, 02-091 Warsaw, Poland; (T.M.G.); (K.K.)
- Doctoral School, Medical University of Warsaw, 02-091 Warsaw, Poland
| | - Paweł K. Włodarski
- Department of Methodology, Medical University of Warsaw, 02-091 Warsaw, Poland; (T.M.G.); (K.K.)
| |
Collapse
|
30
|
miRNA as promising theragnostic biomarkers for predicting radioresistance in cancer: A systematic review and meta-analysis. Crit Rev Oncol Hematol 2020; 157:103183. [PMID: 33310279 DOI: 10.1016/j.critrevonc.2020.103183] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 11/17/2020] [Accepted: 11/23/2020] [Indexed: 02/08/2023] Open
Abstract
Radioresistance remains as an obstacle in cancer treatment. This systematic review and meta-analysis aimed to evaluate the association between the expression of miRNAs and responses to radiotherapy and the prognosis of different tumors. In total, 77 miRNAs in 19 cancer types were studied, in which 24 miRNAs were upregulated and 58 miRNAs were downregulated in cancer patients. Five miRNAs were differentially expressed. Moreover, 75 miRNAs were found to be related to radioresistance, while 5 were observed to be related to radiosensitivity. The pooled HR and 95 % confidence interval for the combined studies was 1.135 (0.819-1.574; P-value = 0.4). The HR values of the subgroup analysis for miR-21 (HR = 2.344; 95 % CI: 1.927-2.850; P-value = 0.000), nasopharyngeal carcinoma (HR = 0.448; 95 % CI: 0.265-0.760; P = 0.003) and breast cancer (HR = 1.131; 95 % CI: 0.311-4.109; P = .85) were obtained. Our results highlighted that across the published literature, miRNAs can modulate tumor radioresistance or sensitivity by affecting radiation-related signaling pathways. It seems that miRNAs could be considered as a theragnostic biomarker to predict and monitor clinical response to radiotherapy. Thus, the prediction of radioresistance in malignant patients will improve radiotherapy outcomes and radiotherapeutic resistance.
Collapse
|
31
|
Wang H. MicroRNA, Diabetes Mellitus and Colorectal Cancer. Biomedicines 2020; 8:biomedicines8120530. [PMID: 33255227 PMCID: PMC7760221 DOI: 10.3390/biomedicines8120530] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 11/19/2020] [Accepted: 11/23/2020] [Indexed: 12/11/2022] Open
Abstract
Diabetes mellitus (DM) is an endocrinological disorder that is due to either the pancreas not producing enough insulin, or the body does not respond appropriately to insulin. There are many complications of DM such as retinopathy, nephropathy, and peripheral neuropathy. In addition to these complications, DM was reported to be associated with different cancers. In this review, we discuss the association between DM and colorectal cancer (CRC). CRC is the third most commonly diagnosed cancer worldwide that mostly affects older people, however, its incidence and mortality are rising among young people. We discuss the relationship between DM and CRC based on their common microRNA (miRNA) biomarkers. miRNAs are non-coding RNAs playing important functions in cell differentiation, development, regulation of cell cycle, and apoptosis. miRNAs can inhibit cell proliferation and induce apoptosis in CRC cells. miRNAs also can improve glucose tolerance and insulin sensitivity. Therefore, investigating the common miRNA biomarkers of both DM and CRC can shed a light on how these two diseases are correlated and more understanding of the link between these two diseases can help the prevention of both DM and CRC.
Collapse
Affiliation(s)
- Hsiuying Wang
- Institute of Statistics, National Chiao Tung University, Hsinchu 30010, Taiwan
| |
Collapse
|
32
|
Hashemi A, Gorji-Bahri G. MicroRNA: Promising Roles in Cancer Therapy. Curr Pharm Biotechnol 2020; 21:1186-1203. [PMID: 32310047 DOI: 10.2174/1389201021666200420101613] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 03/17/2020] [Accepted: 03/31/2020] [Indexed: 12/19/2022]
Abstract
MicroRNAs (miRNA) are small non-coding RNAs that act as one of the main regulators of gene expression. They are involved in maintaining a proper balance of diverse processes, including differentiation, proliferation, and cell death in normal cells. Cancer biology can also be affected by these molecules by modulating the expression of oncogenes or tumor suppressor genes. Thus, miRNA based anticancer therapy is currently being developed either alone or in combination with chemotherapy agents used in cancer management, aiming at promoting tumor regression and increasing cure rate. Access to large quantities of RNA agents can facilitate RNA research and development. In addition to currently used in vitro methods, fermentation-based approaches have recently been developed, which can cost-effectively produce biological RNA agents with proper folding needed for the development of RNA-based therapeutics. Nevertheless, a major challenge in translating preclinical studies to clinical for miRNA-based cancer therapy is the efficient delivery of these agents to target cells. Targeting miRNAs/anti-miRNAs using antibodies and/or peptides can minimize cellular and systemic toxicity. Here, we provide a brief review of miRNA in the following aspects: biogenesis and mechanism of action of miRNAs, the role of miRNAs in cancer as tumor suppressors or oncogenes, the potential of using miRNAs as novel and promising therapeutics, miRNA-mediated chemo-sensitization, and currently utilized methods for the in vitro and in vivo production of RNA agents. Finally, an update on the viral and non-viral delivery systems is addressed.
Collapse
Affiliation(s)
- Atieh Hashemi
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Gilar Gorji-Bahri
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
33
|
Zhang Y, Wang S, Lai Q, Fang Y, Wu C, Liu Y, Li Q, Wang X, Gu C, Chen J, Cai J, Li A, Liu S. Cancer-associated fibroblasts-derived exosomal miR-17-5p promotes colorectal cancer aggressive phenotype by initiating a RUNX3/MYC/TGF-β1 positive feedback loop. Cancer Lett 2020; 491:22-35. [PMID: 32730779 DOI: 10.1016/j.canlet.2020.07.023] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 06/14/2020] [Accepted: 07/17/2020] [Indexed: 12/12/2022]
Abstract
Cancer-associated fibroblasts (CAFs) are the main stromal cells in the tumour microenvironment (TME). We found that the distribution of CAFs was significantly increased with tumour progression and led to a poor prognosis. In vitro and in vivo assays revealed that CAFs enhanced colorectal cancer (CRC) metastasis. Based on extraction and identification of exosomes of CAFs and normal fibroblasts (NFs), CAFs-exo showed higher expression of miR-17-5p than NFs-exo and could deliver exosomal miR-17-5p from parental CAFs to CRC cells. Further exploration verified that miR-17-5p influenced CRC metastasis capacity and directly targeted 3'-untranslated regions (UTRs) of RUNX family transcription factor 3(RUNX3). Our findings further revealed that RUNX3 interacted with MYC proto-oncogene(MYC) and that both RUNX3 and MYC bound to the promoter of transforming growth factor beta1(TGF-β1) at base pairs 1005-1296, thereby activating the TGF-β signalling pathway and contributing to tumour progression. In addition, RUNX3/MYC/TGF-β1 signalling sustained autocrine TGF-β1 to activate CAFs, and activated CAFs released more exosomal miR-17-5p to CRC cells, forming a positive feedback loop for CRC progression. Taken together, these data provide a new understanding of the potential diagnostic value of exosomal miR-17-5p in CRC.
Collapse
Affiliation(s)
- Yue Zhang
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Shanci Wang
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Qiuhua Lai
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Yuxin Fang
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Changjie Wu
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Yongfeng Liu
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Qingyuan Li
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Xinke Wang
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Chuncai Gu
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Junsheng Chen
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Jianqun Cai
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Aimin Li
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China.
| | - Side Liu
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
34
|
MiR-27b-3p promotes migration and invasion in colorectal cancer cells by targeting HOXA10. Biosci Rep 2020; 39:221323. [PMID: 31763673 PMCID: PMC6900470 DOI: 10.1042/bsr20191087] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 11/18/2019] [Accepted: 11/22/2019] [Indexed: 12/18/2022] Open
Abstract
Purpose: Dysregulation of microRNAs (miRNAs) contributes to tumor progression via the regulation of the expression of specific oncogenes and tumor suppressor genes. One such example, miR-27b-3p, has reportedly been involved in tumor progression in many types of cancer. The aim of the present study was to delve into the role and the underlying mechanism of miR-27b-3p in colorectal cancer (CRC) cells. Methods: In the present study, we detected the expression level of miR-27b-3p by RT-PCR. The effect of miR-27b-3p overexpression on cell proliferation in CRC cells was evaluated by cell counting and Edu assays. Transwell migration and invasion assays were used to examine the effects of cell migration and invasion. Bioinformatics, luciferase reporter assay and western blot assay were performed to identify the target of miR-27b-3p. Results: Here, we have demonstrated that although miR-27b-3p can affect cell morphology, it has no observable effect on the proliferation of CRC cells. However, it significantly promotes the migration and invasion of CRC cells. We discovered that HOXA10 was a newly identified target of miR-27b-3p in CRC cells, as confirmed by bioinformatics, western blots and dual luciferase reporter assay. Furthermore, the overexpression of miR-27b-3p or the suppression of HOXA10 can activate the integrin β1 signaling pathway. In conclusion, our results reveal a new function of miR-27b-3p that demonstrates its ability to promote CRC cell migration and invasion by targeting the HOXA10/integrin β1 cell signal axis. Conclusion: This may provide a mechanism to explain why miR-27b-3p promotes CRC cell migration and invasion.
Collapse
|
35
|
Li Z, Wang J, Yang J. TUG1 knockdown promoted viability and inhibited apoptosis and cartilage ECM degradation in chondrocytes via the miR-17-5p/FUT1 pathway in osteoarthritis. Exp Ther Med 2020; 20:154. [PMID: 33093892 PMCID: PMC7571376 DOI: 10.3892/etm.2020.9283] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 07/14/2020] [Indexed: 12/19/2022] Open
Abstract
Osteoarthritis (OA) is a degenerative disease characterized by cartilage destruction. Previous research has demonstrated that long non-coding RNAs serve a role in OA progression. The current study aimed to determine the function and mechanism of taurine upregulated gene (TUG) 1 in OA. The results of reverse transcription quantitative PCR revealed that TUG1 was elevated in OA cartilage tissues and interleukin (IL)-1β-induced chondrocytes. Cell Counting kit-8 and flow cytometry analysis revealed that TUG1 knockdown promoted cell viability and inhibited cell apoptosis. Furthermore, matrix metalloprotein (MMP) 13, collagen II and aggrecan expression was determined by western blotting, of which the results demonstrated that TUG1 knockdown significantly decreased MMP13 expression and increased collagen II and aggrecan expression in IL-1β-stimulated chondrocytes, indicating that extracellular matrix (ECM) damage was inhibited. Additionally, using bioinformatics analysis, dual-luciferase reporter and RNA immunoprecipitation assays, TUG1 was revealed to upregulate fucosyltransferase (FUT) 1 by targeting miR-17-5p. Furthermore, miR-17-5p was downregulated and FUT1 upregulated in OA cartilage tissues and IL-1β-induced chondrocytes. TUG1 overexpression reversed the aforementioned effects on cell viability, cell apoptosis and ECM degradation mediated by miR-17-5p in IL-1β-activated chondrocytes. Additionally, the effects of FUT1 knockdown on cell viability, apoptosis and ECM degradation mediated by FUT1 knockdown were reversed by miR-17-5p inhibition. In conclusion, TUG1 knockdown inhibited OA progression by downregulating FUT1 via miR-17-5p.
Collapse
Affiliation(s)
- Zhichao Li
- Department of Hand, Foot and Vascular Surgery, Hanyang Hospital, Wuhan University of Science and Technology, Wuhan, Hubei 430050, P.R. China
| | - Jin Wang
- Department of Hand, Foot and Vascular Surgery, Hanyang Hospital, Wuhan University of Science and Technology, Wuhan, Hubei 430050, P.R. China
| | - Jing Yang
- Department of Cardiology, Renmin Hospital, Wuhan University, Wuhan, Hubei 430060, P.R. China
| |
Collapse
|
36
|
Poel D, Gootjes EC, Bakkerus L, Trypsteen W, Dekker H, van der Vliet HJ, van Grieken NCT, Verhoef C, Buffart TE, Verheul HMW. A specific microRNA profile as predictive biomarker for systemic treatment in patients with metastatic colorectal cancer. Cancer Med 2020; 9:7558-7571. [PMID: 32864858 PMCID: PMC7571833 DOI: 10.1002/cam4.3371] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 07/15/2020] [Accepted: 07/22/2020] [Indexed: 12/24/2022] Open
Abstract
Background Palliative systemic therapy is currently standard of care for patients with extensive metastatic colorectal cancer (mCRC). A biomarker predicting chemotherapy benefit which prevents toxicity from ineffective treatment is urgently needed. Therefore, a previously developed tissue‐derived microRNA profile to predict clinical benefit from chemotherapy was evaluated in tissue biopsies and serum from patients with mCRC. Methods Samples were prospectively collected from patients (N = 132) who were treated with capecitabine or 5‐FU/LV with oxaliplatin ± bevacizumab. Response evaluation was performed according to RECIST 1.1 after three or four cycles, respectively. Baseline tissue and serum miRNAs expression levels of miR‐17‐5p, miR‐20a‐5p, miR‐30a‐5p, miR‐92a‐3p, miR‐92b‐3p, and miR‐98‐5p were quantified with RT‐qPCR and droplet digital PCR, respectively. Combined predictive performance of selected variables was tested using logistic regression analysis. Results From 132 patients, 81 fresh frozen tissue biopsies from metastases and 93 serum samples were available. Based on expression levels of miRNAs in tissue, progressive disease could be predicted with an AUC of 0.85 (95% CI:0.72‐0.91) and response could be predicted with an AUC of 0.70 (95% CI:0.56‐0.80). This did not outperform clinical parameters alone (respectively P = .14 and P = .27). Expression levels of miR‐92a‐3p and miR‐98‐5p in serum significantly improved the predictive value of clinical parameters for response to chemotherapy (AUC 0.74, 95% CI:0.64‐0.84, P = .003) in this cohort. Conclusions The additive predictive value to clinical parameters of the tissue‐derived six miRNA profile for clinical benefit could not be validated in patients with mCRC treated with first‐line systemic therapy. Although miR‐92a‐3p and miR‐98‐5p serum levels improved the predictive value of clinical parameters, it remained insufficient for clinical decision‐making.
Collapse
Affiliation(s)
- Dennis Poel
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, VU Universiteit Medical Center Amsterdam, Amsterdam, the Netherlands.,Department of Medical Oncology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Elske C Gootjes
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, VU Universiteit Medical Center Amsterdam, Amsterdam, the Netherlands.,Department of Medical Oncology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Lotte Bakkerus
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, VU Universiteit Medical Center Amsterdam, Amsterdam, the Netherlands.,Department of Medical Oncology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Wim Trypsteen
- Department of Internal Medicine and Pediatrics, Faculty of Medicine and Health Sciences, HIV Cure Research Center, Ghent University and Ghent University Hospital, Ghent, Belgium
| | - Henk Dekker
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, VU Universiteit Medical Center Amsterdam, Amsterdam, the Netherlands
| | - Hans J van der Vliet
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, VU Universiteit Medical Center Amsterdam, Amsterdam, the Netherlands
| | - Nicole C T van Grieken
- Department of Pathology, Cancer Center Amsterdam, Amsterdam UMC, VU Universiteit Medical Center Amsterdam, Amsterdam, the Netherlands
| | - Cornelis Verhoef
- Division of Surgical Oncology, Department of Surgery, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
| | - Tineke E Buffart
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, VU Universiteit Medical Center Amsterdam, Amsterdam, the Netherlands.,Department of Gastrointestinal Oncology, Antoni van Leeuwenhoek, Amsterdam, the Netherlands
| | - Henk M W Verheul
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, VU Universiteit Medical Center Amsterdam, Amsterdam, the Netherlands.,Department of Medical Oncology, Radboud University Medical Center, Nijmegen, the Netherlands
| |
Collapse
|
37
|
Tang X, Sun G, He Q, Wang C, Shi J, Gao L, Ye J, Liang Y, Qu H. Circular noncoding RNA circMBOAT2 is a novel tumor marker and regulates proliferation/migration by sponging miR-519d-3p in colorectal cancer. Cell Death Dis 2020; 11:625. [PMID: 32796815 PMCID: PMC7429508 DOI: 10.1038/s41419-020-02869-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 08/02/2020] [Accepted: 08/03/2020] [Indexed: 12/12/2022]
Abstract
Colorectal cancer (CRC) is a common malignant tumor with a poor prognosis. However, its pathogenesis has not been fully elucidated, accounting for poor overall survival. Circular RNA (circRNA) is a class of noncoding RNAs discovered many years ago. Only recently have they been re-evaluated for their important roles in the regulation of gene expression. Studies have confirmed that circRNAs have important biological functions in a variety of malignant tumors. This study aimed to characterize one circRNA derived from the MBOAT2 gene and termed it circMBOAT2, which has been reported to promote prostate cancer progression. CircMBOAT2 is highly expressed in both CRC tissues and serum samples, and has a correlation with tumor stage. The receiver-operating characteristic curves suggested that circMBOAT2 acted as a novel diagnostic tumor marker in CRC. Univariate and multivariate analyses showed that the levels of circMBOAT2 in tissues were independent prognostic markers of CRC. Further functional studies revealed that circMBOAT2 served as a microRNA (miRNA) sponge of miR-519d-3p and promoted the proliferation, migration, and invasion of CRC cells. Also, circMBOAT2 regulated cell proliferation and migration by competitively binding to miR-519d-3p and targeting troponin-associated protein (TROAP) in CRC cells. These results suggested that circMBOAT2 might be a novel potential biomarker of CRC.
Collapse
Affiliation(s)
- Xiaolong Tang
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan, 250012, China
| | - Guorui Sun
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan, 250012, China
| | - Qingsi He
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan, 250012, China
| | - Chao Wang
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan, 250012, China
| | - Jingbo Shi
- Qilu Medical College of Shandong University, Jinan, 250011, China
| | - Lei Gao
- Qilu Medical College of Shandong University, Jinan, 250011, China
| | - Jianhong Ye
- Qilu Medical College of Shandong University, Jinan, 250011, China
| | - Yahang Liang
- Qilu Medical College of Shandong University, Jinan, 250011, China
| | - Hui Qu
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan, 250012, China.
| |
Collapse
|
38
|
Wang H. MicroRNAs and Apoptosis in Colorectal Cancer. Int J Mol Sci 2020; 21:ijms21155353. [PMID: 32731413 PMCID: PMC7432330 DOI: 10.3390/ijms21155353] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/25/2020] [Accepted: 07/27/2020] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer (CRC) is the third leading cause of cancer death in the world, and its incidence is rising in developing countries. Treatment with 5-Fluorouracil (5-FU) is known to improve survival in CRC patients. Most anti-cancer therapies trigger apoptosis induction to eliminate malignant cells. However, de-regulated apoptotic signaling allows cancer cells to escape this signaling, leading to therapeutic resistance. Treatment resistance is a major challenge in the development of effective therapies. The microRNAs (miRNAs) play important roles in CRC treatment resistance and CRC progression and apoptosis. This review discusses the role of miRNAs in contributing to the promotion or inhibition of apoptosis in CRC and the role of miRNAs in modulating treatment resistance in CRC cells.
Collapse
Affiliation(s)
- Hsiuying Wang
- Institute of Statistics, National Chiao Tung University, Hsinchu 30010, Taiwan
| |
Collapse
|
39
|
|
40
|
Li C, Ding D, Gao Y, Li Y. MicroRNA‑3651 promotes colorectal cancer cell proliferation through directly repressing T‑box transcription factor 1. Int J Mol Med 2020; 45:956-966. [PMID: 31922246 DOI: 10.3892/ijmm.2020.4458] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Accepted: 11/15/2019] [Indexed: 12/24/2022] Open
Abstract
Colorectal cancer is a commonly diagnosed gastrointestinal malignancy worldwide with a high mortality rate. Accumulating evidence has indicated that the expression of a number of microRNAs (miRNAs) is associated with the development of colorectal cancer. However, the precise molecular mechanism of these miRNAs in regulating cancer progression is yet to be determined. In the present study, miR‑3651 was demonstrated to be overexpressed in colorectal cancer tissues compared with normal tissues, and to be associated with the tumor‑node‑metastasis stage. The downregulation of miR‑3651 was found to induce growth arrest and apoptosis in colorectal cancer cells. In addition, western blot analysis demonstrated that the downregulation of miR‑3651 inactivated PI3K/AKT and MAPK/ERK signaling in colorectal cancer cells. Bioinformatics analysis predicted T‑box transcription factor 1 (TBX1) as a potential target gene of miR‑3651, and a dual‑luciferase reporter assay confirmed that TBX1 was directly repressed by miR‑3651. The results of the current study also indicated that TBX1 was associated with the miR‑3651 mediated activation of oncogenic signaling and colorectal cancer cell proliferation. In conclusion, the results of the current study revealed the oncogenic potential of miR‑3651 in colorectal cancer.
Collapse
Affiliation(s)
- Changfeng Li
- Department of Endoscopy Center, China‑Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| | - Dayong Ding
- Department of Gastrointestinal Colorectal Surgery, China‑Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| | - Yongjian Gao
- Department of Gastrointestinal Colorectal Surgery, China‑Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| | - Yongchao Li
- Department of Gastrointestinal Colorectal Surgery, China‑Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| |
Collapse
|
41
|
Abstract
Despite advanced clinical treatments, mortality in patients with metastatic colorectal cancer (CRC) remains high. Three critical determinants in CRC progression include the epithelial proliferation checkpoints, epithelial-to-mesenchymal transition (EMT) and inflammatory cytokines in the tumour microenvironment. Genes involved in these three processes are regulated at the transcriptional and post-transcriptional level. Recent studies revealed previously unappreciated roles of non-coding ribonucleic acids (ncRNAs) in modulating the proliferation checkpoints, EMT, and inflammatory gene expression in CRC. In this review, we will discuss the mechanisms underlying the roles of ncRNAs in CRC as well as examine future perspectives in this field. Better understanding of ncRNA biology will provide novel targets for future therapeutic development.
Collapse
Affiliation(s)
- Shengyun Ma
- Cellular and Molecular Medicine, University of California , San Diego, USA
| | - Tianyun Long
- Cellular and Molecular Medicine, University of California , San Diego, USA
| | | |
Collapse
|
42
|
Xu J, Meng Q, Li X, Yang H, Xu J, Gao N, Sun H, Wu S, Familiari G, Relucenti M, Zhu H, Wu J, Chen R. Long Noncoding RNA MIR17HG Promotes Colorectal Cancer Progression via miR-17-5p. Cancer Res 2019; 79:4882-4895. [PMID: 31409641 DOI: 10.1158/0008-5472.can-18-3880] [Citation(s) in RCA: 141] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 04/10/2019] [Accepted: 08/05/2019] [Indexed: 12/24/2022]
Abstract
Immune dysregulation plays a vital role in colorectal cancer initiation and progression. Long noncoding RNAs (lncRNA) exhibit multiple functions including regulation of gene expression. Here, we identified an immune-related lncRNA, MIR17HG, whose expression was gradually upregulated in adjacent, adenoma, and colorectal cancer tissue. MIR17HG promoted tumorigenesis and metastasis in colorectal cancer cells both in vitro and in vivo. Mechanistically, MIR17HG increased the expression of NF-κB/RELA by competitively sponging the microRNA miR-375. In addition, RELA transcriptionally activated MIR17HG in a positive feedback loop by directly binding to its promoter region. Moreover, miR-17-5p, one of the transcribed miRNAs from MIR17HG, reduced the expression of the tumor suppressor B-cell linker (BLNK), resulting in increased migration and invasion of colorectal cancer cells. MIR17HG also upregulated PD-L1, indicating its potential role in immunotherapy. Overall, these findings demonstrate that MIR17HG plays an oncogenic role in colorectal cancer and may serve as a promising therapeutic target. SIGNIFICANCE: These findings provide mechanistic insight into the role of the lncRNA MIR17HG and its miRNA members in regulating colorectal cancer carcinogenesis and progression.
Collapse
Affiliation(s)
- Jie Xu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Qingtao Meng
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Xiaobo Li
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Hongbao Yang
- Center for New Drug Safety Evaluation and Research, China Pharmaceutical University, Nanjing, China
| | - Jin Xu
- Department of Maternal, Child and Adolescent Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Na Gao
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Hao Sun
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Shenshen Wu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Giuseppe Familiari
- Department of Anatomical, Histological, Forensic Medicine and Orthopedic Science, Sapienza University of Rome, Roma, Italia
| | - Michela Relucenti
- Department of Anatomical, Histological, Forensic Medicine and Orthopedic Science, Sapienza University of Rome, Roma, Italia
| | - Haitao Zhu
- Colorectal Cancer Center, Department of General Surgery, Jiangsu Cancer Hospital, Cancer Research Institute, Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Jiong Wu
- School of Life Sciences, Jiangsu Normal University, Xuzhou, China
| | - Rui Chen
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China.
- Institute for Chemical Carcinogenesis, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
43
|
Up-regulation of microRNA-497-5p inhibits colorectal cancer cell proliferation and invasion via targeting PTPN3. Biosci Rep 2019; 39:BSR20191123. [PMID: 31350343 PMCID: PMC6692564 DOI: 10.1042/bsr20191123] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 07/15/2019] [Accepted: 07/25/2019] [Indexed: 12/17/2022] Open
Abstract
To investigate the role of microRNA-497-5p (miR-497-5p) in the tumorigenesis of colorectal cancer (CRC), the present study applied qRT-PCR to detect the expression level of miR-497-5p in both clinical samples and CRC cell lines. Furthermore, to specifically evaluate the carcinogenic role of miR-497-5p in CRC, the expression of miR-497-5p was monitored by transfecting with the mimics or inhibitors of miR-497-5p. Transwell assay as well as CCK-8 assay were used to determine the functions of miR-497-5p on cell invasion, migration and proliferation, respectively. miR-497-5p expression was remarkably down-regulated in clinical samples with cancer development as well as in CRC cell lines. Additionally, low miR-497-5p expression was remarkably correlated with higher TNM stage and lymph node metastasis of CRC patients. Up-regulation of miR-497-5p significantly inhibited proliferation, migration, and invasion of LOVO CRC cell line. Conversely, antagonizing miR-497-5p significantly promoted cell proliferation, migration and invasion. Mechanistic analysis revealed that miR-497-5p directly bound to its downstream target, protein tyrosine phosphatase non-receptor type 3 (PTPN3), whose aberrant expression partially reversed inhibition of cell proliferation and migration. Taken together, the present study elucidated the inhibitory role of miR-497-5p in CRC via targeting PTPN3, which potentiated miR-497-5p as a potential therapeutic target for combating CRC.
Collapse
|
44
|
Zhang Y, Sun M, Chen Y, Li B. MiR-519b-3p Inhibits the Proliferation and Invasion in Colorectal Cancer via Modulating the uMtCK/Wnt Signaling Pathway. Front Pharmacol 2019; 10:741. [PMID: 31312141 PMCID: PMC6614520 DOI: 10.3389/fphar.2019.00741] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 06/07/2019] [Indexed: 01/09/2023] Open
Abstract
Dysregulation of microRNAs (miRNAs) and their targeted downstream genes is involved in the carcinogenesis and progression of colorectal cancer (CRC). miR-519b-3p has been reported to play an important role in several cancers. However, its function in CRC is unclear. In this study, we detected the expression of miR-519b-3p in CRC tissues and cell lines, and determined the potential role of miR-519b-3p in cell proliferation and invasion in CRC. Also, the downstream gene of miR-519b-3p was determined. Our results showed that miR-519b-3p was notably reduced in CRC specimens and cell lines. Overexpression of miR-519b-3p inhibited the proliferation and invasion of RKO and DLD-1 cells, whereas knockdown of miR-519b-3p had the contrary effect. The ubiquitous mitochondrial creatine kinase (uMtCK) was identified as a direct target of miR-519b-3p in CRC using luciferase assay. Additionally, miR-519b-3p expression was negatively correlated with uMtCK expression in CRC specimens. Notably, the miR-519b-3p suppressed the uMtCK/Wnt signaling pathway in CRC cells, thereby suppressing CRC cell proliferation and invasion. The inhibition of uMtCK by miR-519b-3p may provide a promising option for the treatment of CRC.
Collapse
Affiliation(s)
- Yuexiang Zhang
- Department of Comprehensive Internal Medicine, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, China
| | - Miao Sun
- College of Pharmacy, Guangxi Medical University, Nanning, China
| | - Yusha Chen
- Department of Comprehensive Internal Medicine, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, China
| | - Bixun Li
- Department of Comprehensive Internal Medicine, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
45
|
Shirmohamadi M, Eghbali E, Najjary S, Mokhtarzadeh A, Kojabad AB, Hajiasgharzadeh K, Lotfinezhad P, Baradaran B. Regulatory mechanisms of microRNAs in colorectal cancer and colorectal cancer stem cells. J Cell Physiol 2019; 235:776-789. [PMID: 31264216 DOI: 10.1002/jcp.29042] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 06/13/2019] [Indexed: 12/12/2022]
Abstract
Colorectal cancer (CRC) is one of the most lethal and hard-to-treat cancers in the world, which in its advanced stages, surgery and chemotherapy are the main common treatment approaches. The microRNAs (miRNAs), as novel markers for CRC detection, promote their regulatory effects via the 3'-untranslated binding region (3'-UTR) of target messenger RNA in posttranscriptional regulation of genes and also play a pivotal role in modulating resistance to chemotherapeutic agents. These small noncoding RNAs have also a critical role in CRC stem cells (CRCSCs) regulation, comprising self-renewal, differentiation, and tumorigenesis. Cancer stem cells (CSCs) are distinctive cell types inside a tumor tissue that are believed to derive from normal somatic stem cells. The CSCs have self-renewal abilities, angiogenesis, as well as specific surface markers expression characteristics. Furthermore, they are frequently criticized for tumor maintenance, treatment resistance, tumor development, and distant metastasis. In this review, we discuss the current understandings of CRCSCs and their environment with a focus on the role of miRNAs on the regulation of CSCs and their targeting application in CRC treatment.
Collapse
Affiliation(s)
- Masoud Shirmohamadi
- Liver and Gastrointestinal Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Elham Eghbali
- Medical Radiation Sciences Research Group, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shiva Najjary
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ahad Mokhtarzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | | | - Parisa Lotfinezhad
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
46
|
Huang C, Liu J, Xu L, Hu W, Wang J, Wang M, Yao X. MicroRNA-17 promotes cell proliferation and migration in human colorectal cancer by downregulating SIK1. Cancer Manag Res 2019; 11:3521-3534. [PMID: 31118777 PMCID: PMC6497923 DOI: 10.2147/cmar.s191087] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 03/05/2019] [Indexed: 01/13/2023] Open
Abstract
Purpose: There is mounting evidence to indicate that microRNA-17 (miR-17) is expressed and functionally involved in human cancers. However, the molecular mechanism underlying the role of miR-17 in colorectal cancer (CRC) remains largely unclear. This study aims to reveal the biological function of miR-17 in colorectal cancer. Materials and methods: The expression of miR-17 in CRC cells and tissues was examined using qRT-PCR. Cell proliferation and migration assays were performed after transfection with an miR-17 mimic and inhibitors. The potential gene targets of miR-17 were predicted by bioinformatics analysis and further validated by PCR, Western blot and dual luciferase reporter assays. Results: The expression of miR-17 was significantly upregulated in CRC cell lines and tissues and may imply poor prognosis. miR-17 upregulation promoted cell invasion and migration in CRC cell lines in vitro, while downregulation of miR-17 inhibited tumor progression. SIK1 was identified as a potential direct target of miR-17 by dual luciferase reporter assay, and its downregulation in CRC may suggest poor prognosis. Conclusions: Our study indicated that upregulated miR-17 may promote the progression of CRC and may exert its function as a tumor suppressor miRNA by targeting SIK1.
Collapse
Affiliation(s)
- Chengzhi Huang
- Department of General Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, People's Republic of China.,Medical College, Shantou University, Shantou, Guangdong, People's Republic of China
| | - Jianhua Liu
- Department of Gastroenterology Oncology, Cancer Center, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, People's Republic of China
| | - Lishu Xu
- Department of Gastroenterology, Guangdong Provincial Geriatrics Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, People's Republic of China
| | - Weixian Hu
- Department of General Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, People's Republic of China.,The Second School of Clinical Medicine, Southern Medical University, Guangzhou, People's Republic of China
| | - Junjiang Wang
- Department of General Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, People's Republic of China.,The Second School of Clinical Medicine, Southern Medical University, Guangzhou, People's Republic of China
| | - Muqing Wang
- Department of General Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, People's Republic of China.,School of Medicine, South China University of Technology, Guangzhou, Guangdong, People's Republic of China
| | - Xueqing Yao
- Department of General Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, People's Republic of China.,Medical College, Shantou University, Shantou, Guangdong, People's Republic of China.,The Second School of Clinical Medicine, Southern Medical University, Guangzhou, People's Republic of China.,School of Medicine, South China University of Technology, Guangzhou, Guangdong, People's Republic of China
| |
Collapse
|
47
|
Chu CA, Lee CT, Lee JC, Wang YW, Huang CT, Lan SH, Lin PC, Lin BW, Tian YF, Liu HS, Chow NH. MiR-338-5p promotes metastasis of colorectal cancer by inhibition of phosphatidylinositol 3-kinase, catalytic subunit type 3-mediated autophagy pathway. EBioMedicine 2019; 43:270-281. [PMID: 30982765 PMCID: PMC6557806 DOI: 10.1016/j.ebiom.2019.04.010] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 04/04/2019] [Accepted: 04/04/2019] [Indexed: 12/18/2022] Open
Abstract
Background In our preliminary screening, expression of miR-338-5p was found to be higher in primary colorectal cancer (CRC) with metastasis. The autophagy related gene- phosphatidylinositol 3-kinase, catalytic subunit type 3 (PIK3C3) appeared to be targeted by miR-338-5p. Here, we provide solid evidence in support of PIK3C3 involved in miR-338-5p related metastasis of CRC in vitro and in vivo. Methods The potential clinical relevance of miR-338-5p and its target gene was analysed on benign colorectal polyps and primary CRCs by QPCR. Mouse spleen xenograft experiment was performed to examine the importance of miR-338-5p for metastasis. Findings PIK3C3 was one of target genes of miR-338-5p. In primary CRCs, expression of miR-338-5p is positively related to tumour staging, distant metastasis and poor patient survival. Patients with higher ratios of miR-338-5p/PIK3C3 also had significantly poor overall survival, supporting their significance in the progression of CRC. Over-expression of miR-338-5p promotes CRC metastasis to the liver and lung in vivo, in which PIK3C3 was down-regulated in the metastatic tumours. In contrast, overexpression of PIK3C3 in miR-338-5p stable cells inhibited the growth of metastatic tumours. Both migration and invasion of CRC in vitro induced by miR-338-5p are mediated by suppression of PIK3C3. Using forward and reverse approaches, autophagy was proved to involve in CRC migration and invasion induced by miR-338-5p. Interpretation MiR-338-5p induces migration, invasion and metastasis of CRC in part through PIK3C3-related autophagy pathway. The miR-338-5p/PIK3C3 ratio may become a prognostic biomarker for CRC patients. Fund NCKU Hospital, Taiwan, Ministry of Science and Technology, Taiwan.
Collapse
Affiliation(s)
- Chien-An Chu
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Taiwan
| | - Chung-Ta Lee
- Department of Pathology, National Cheng Kung University Hospital, Taiwan; College of Medicine, National Cheng Kung University, Tainan, Taiwan; Department of Pathology, National Cheng Kung University Hospital Dou-Liou Branch, Douliou City, Yunlin County, Taiwan
| | - Jenq-Chang Lee
- Department of Surgery, College of Medicine, National Cheng Kung University Hospital, Tainan, Taiwan
| | - Yi-Wen Wang
- Department of Pathology, National Cheng Kung University Hospital, Taiwan; College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Ching-Tang Huang
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Taiwan
| | - Sheng-Hui Lan
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Taiwan; Department of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, Taipei, Taiwan
| | - Peng-Chan Lin
- Department of Internal Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Bo-Wen Lin
- Department of Surgery, College of Medicine, National Cheng Kung University Hospital, Tainan, Taiwan
| | - Yu-Feng Tian
- Department of Health & Nutrition, Chia Nan University of Pharmacy and Science, Tainan, Taiwan; Division of Colorectal Surgery, Department of Surgery, Chi Mei Medical Center, Tainan, Taiwan
| | - Hsiao-Sheng Liu
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Taiwan; Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Taiwan.
| | - Nan-Haw Chow
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Taiwan; Department of Pathology, National Cheng Kung University Hospital, Taiwan; College of Medicine, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
48
|
Jiang D, Zhou B, Xiong Y, Cai H. miR-135 regulated breast cancer proliferation and epithelial-mesenchymal transition acts by the Wnt/β-catenin signaling pathway. Int J Mol Med 2019; 43:1623-1634. [PMID: 30720046 PMCID: PMC6414157 DOI: 10.3892/ijmm.2019.4081] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 01/17/2019] [Indexed: 12/23/2022] Open
Abstract
Breast cancer (BC) is the most common cancer in women around the world. microRNAs (miRNAs/miRs) have been proved to be associated with the development and progression of breast cancer. In the present study, to elucidate the effects of dysregulated miR‑135 on cells and underlying mechanisms in BC, in vitro and in vivo experiments were conducted. The biological functions of miR‑135 were studied using MTT, colony formation, wound healing, transwell assays as well as tumorigenicity analysis. Gain‑ and loss‑ of function of miR‑135 studies revealed that ectopic expression of miR‑135 in MDA‑MB‑468 and MCF‑7 cells significantly inhibited cell growth, migration, invasion and EMT, at least in part through inhibiting the activation of the Wnt/β‑catenin pathway. Moreover, this was reversed in cells which were transfected with miR‑135 inhibitors. Taken together, the results of the present study provided evidence that miR‑135 acted as a tumor suppressor in BC, which may represent a novel therapeutic strategy for the diagnosis and prognosis of BC.
Collapse
Affiliation(s)
- Daqiong Jiang
- Department of Gynecological Oncology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Bo Zhou
- Department of Gynecological Oncology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Yan Xiong
- Department of Gynecological Oncology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Hongbing Cai
- Department of Gynecological Oncology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| |
Collapse
|
49
|
MiR-374b-5p-FOXP1 feedback loop regulates cell migration, epithelial-mesenchymal transition and chemosensitivity in ovarian cancer. Biochem Biophys Res Commun 2018; 505:554-560. [DOI: 10.1016/j.bbrc.2018.09.161] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 09/25/2018] [Indexed: 12/16/2022]
|
50
|
Mohajeri M, Banach M, Atkin SL, Butler AE, Ruscica M, Watts GF, Sahebkar A. MicroRNAs: Novel Molecular Targets and Response Modulators of Statin Therapy. Trends Pharmacol Sci 2018; 39:967-981. [PMID: 30249403 DOI: 10.1016/j.tips.2018.09.005] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 08/30/2018] [Accepted: 09/06/2018] [Indexed: 12/22/2022]
Abstract
Cardiovascular disease (CVD) is a major cause of death globally. Addressing cardiovascular risk factors, particularly dyslipidemia, represents the most robust clinical strategy towards reducing the CVD burden. Statins inhibit 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA) reductase and represent the main therapeutic approach for lowering cholesterol and reducing plaque formation/rupture. The protective effects of statins extend beyond lowering cholesterol. MicroRNAs (miRNAs or miRs), small noncoding regulatory RNAs, likely mediate the positive pleiotropic effects of statins via modulation of lipid metabolism, enhancement of endothelial function, inhibition of inflammation, improvement of plaque stability, and immune regulation. miRNAs are implicated in statin-related interindividual variations in therapeutic response, directly via HMG-CoA reductase, or indirectly through targeting cytochrome P450 3A (CYP3A) functionality and proprotein convertase subtilisin/kexin type9 (PCSK9) biology.
Collapse
Affiliation(s)
- Mohammad Mohajeri
- Department of Medical Biotechnology, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maciej Banach
- Department of Hypertension, WAM University Hospital Lodz, Medical University of Lodz, Zeromskiego 113, Lodz, Poland; Polish Mother's Memorial Hospital Research Institute (PMMHRI), Lodz, Poland; Cardiovascular Research Centre, University of Zielona Gora, Zielona-Gora, Poland
| | | | - Alexandra E Butler
- Diabetes Research Center, Qatar Biomedical Research Institute, Education City, Doha, Qatar
| | - Massimiliano Ruscica
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Gerald F Watts
- Lipid Disorders Clinic, Department of Cardiology, Royal Perth Hospital, Australia; School of Medicine, Faculty of Health and Medical Sciences, University of Western Australia, Australia
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|