1
|
Coughlin TM, Makarewich CA. Emerging roles for microproteins as critical regulators of endoplasmic reticulum function and cellular homeostasis. Semin Cell Dev Biol 2025; 170:103608. [PMID: 40245464 PMCID: PMC12065929 DOI: 10.1016/j.semcdb.2025.103608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 02/20/2025] [Accepted: 04/04/2025] [Indexed: 04/19/2025]
Abstract
The endoplasmic reticulum (ER) is a multifunctional organelle essential for key cellular processes including protein synthesis, calcium homeostasis, and the cellular stress response. It is composed of distinct domains, such as the rough and smooth ER, as well as membrane regions that facilitate direct communication with other organelles, enabling its diverse functions. While many well-characterized ER proteins contribute to these processes, recent studies have revealed a previously underappreciated class of small proteins that play critical regulatory roles. Microproteins, typically under 100 amino acids in length, were historically overlooked due to size-based biases in genome annotation and often misannotated as noncoding RNAs. Advances in ribosome profiling, mass spectrometry, and computational approaches have now enabled the discovery of numerous previously unrecognized microproteins, significantly expanding our understanding of the proteome. While some ER-associated microproteins, such as phospholamban and sarcolipin, were identified decades ago, newly discovered microproteins share similar fundamental characteristics, underscoring the need to refine our understanding of the coding potential of the genome. Molecular studies have demonstrated that ER microproteins play essential roles in calcium regulation, ER stress response, organelle communication, and protein translocation. Moreover, growing evidence suggests that ER microproteins contribute to cellular homeostasis and are implicated in disease processes, including cardiovascular disease and cancer. This review examines the shared and unique functions of ER microproteins, their implications for health and disease, and their potential as therapeutic targets for conditions associated with ER dysfunction.
Collapse
Affiliation(s)
- Taylor M Coughlin
- The Heart Institute, Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Pathobiology and Molecular Medicine Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Catherine A Makarewich
- The Heart Institute, Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| |
Collapse
|
2
|
Tushi NJ, Zhang Z, Sun S. The ER-associated Degradation Adaptor SEL1L is Dispensable for ER Homeostasis and the Differentiation of Spermatogenic Cells. J Biol Chem 2025:110283. [PMID: 40412517 DOI: 10.1016/j.jbc.2025.110283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2025] [Revised: 05/01/2025] [Accepted: 05/15/2025] [Indexed: 05/27/2025] Open
Abstract
The SEL1L-HRD1 complex is a critical component of the endoplasmic reticulum (ER)-associated protein degradation (ERAD) pathway, essential for maintaining ER homeostasis and cellular function. While the crucial roles of SEL1L and HRD1 in various physiological processes have been reported in mice and humans, their specific functions in male germ cells remain unexplored. Here, we show that, while SEL1L is highly expressed in spermatogenic cells, it is dispensable for their differentiation and ER homeostasis. SEL1L deletion in these cells does not affect sperm count, motility, male fertility, or testicular histology. Mechanistically, our data show that SEL1L loss reduces HRD1 protein levels in spermatids but unexpectedly, not in spermatocytes. Furthermore, SEL1L deficiency does not induce overt ER stress response, ER dilation, or cell death in the testes. Collectively, these findings indicate that SEL1L is not required for ER homeostasis or the differentiation of male germ cells.
Collapse
Affiliation(s)
- Nusrat Jahan Tushi
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, Virginia 22903, USA
| | - Zhibing Zhang
- Department of Physiology and Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Shengyi Sun
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, Virginia 22903, USA.
| |
Collapse
|
3
|
Berraquero M, Tallada VA, Jimenez J. Ltc1 localization by EMC regulates cell membrane fluidity to facilitate membrane protein biogenesis. iScience 2025; 28:112096. [PMID: 40124504 PMCID: PMC11928854 DOI: 10.1016/j.isci.2025.112096] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 01/09/2025] [Accepted: 02/20/2025] [Indexed: 03/25/2025] Open
Abstract
The EMC complex, a highly conserved transmembrane chaperone in the endoplasmic reticulum (ER), has been associated in humans with sterol homeostasis and a myriad of different cellular activities, rendering the mechanism of EMC functionality enigmatic. Using fission yeast, we demonstrate that the EMC complex facilitates the biogenesis of the sterol transfer protein Lam6/Ltc1 at ER-plasma membrane and ER-mitochondria contact sites. Cells that lose EMC function sequester unfolded Lam6/Ltc1 and other proteins at the mitochondrial matrix, leading to surplus ergosterol, cold-sensitive growth, and mitochondrial dysfunctions. Remarkably, inhibition of ergosterol biosynthesis, but also fluidization of cell membranes to counteract their rigidizing effects, reduce the ER-unfolded protein response and rescue growth and mitochondrial defects in EMC-deficient cells. These results suggest that EMC-assisted biogenesis of Lam6/Ltc1 may provide, through ergosterol homeostasis, optimal membrane fluidity to facilitate biogenesis of other ER-membrane proteins.
Collapse
Affiliation(s)
- Modesto Berraquero
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide/Consejo Superior de Investigaciones Científicas, Carretera de Utrera Km1, 41013 Seville, Spain
| | - Víctor A. Tallada
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide/Consejo Superior de Investigaciones Científicas, Carretera de Utrera Km1, 41013 Seville, Spain
| | - Juan Jimenez
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide/Consejo Superior de Investigaciones Científicas, Carretera de Utrera Km1, 41013 Seville, Spain
| |
Collapse
|
4
|
Chen JN, Wang L, He YX, Sun XW, Cheng LJ, Li YN, Yoshida S, Shen ZY. SEL1L-mediated endoplasmic reticulum associated degradation inhibition suppresses proliferation and migration in Huh7 hepatocellular carcinoma cells. World J Gastroenterol 2025; 31:103133. [PMID: 40093667 PMCID: PMC11886529 DOI: 10.3748/wjg.v31.i10.103133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 01/04/2025] [Accepted: 02/05/2025] [Indexed: 02/26/2025] Open
Abstract
BACKGROUND Proteins play a central role in regulating biological functions, and various pathways regulate their synthesis and secretion. Endoplasmic reticulum-associated protein degradation (ERAD) is crucial for monitoring protein synthesis and processing unfolded or misfolded proteins in actively growing tumor cells. However, the role of the multiple ERAD complexes in liver cancer remains unclear. AIM To elucidate the effects of SEL1L-mediated ERAD on Huh7 and explore the underlying mechanisms in vivo and in vitro. METHODS Huh7 cells were treated with ERAD inhibitor to identify ERAD's role. Cell counting kit-8, 5-ethynyl-2'-deoxyuridine and colony formation experiments were performed. Apoptosis level and migration ability were assessed using fluorescence activated cell sorting and Transwell assay, respectively. Huh7 SEL1L knockout cell line was established via clustered regularly interspaced short palindromic repeats, proliferation, apoptosis, and migration were assessed through previous experiments. The role of SEL1L in vivo and the downstream target of SEL1L were identified using Xenograft and mass spectrometry, respectively. RESULTS The ERAD inhibitor suppressed cell proliferation and migration and promoted apoptosis. SEL1L-HRD1 significantly influenced Huh7 cell growth. SEL1L knockout suppressed tumor cell proliferation and migration and enhanced apoptosis. Mass spectrometry revealed EXT2 is a primary substrate of ERAD. SEL1L knockout significantly increased the protein expression of EXT2. Furthermore, EXT2 knockdown partially restored the effect of SEL1L knockout. CONCLUSION ERAD inhibition suppressed the proliferation and migration of Huh7 and promoted its apoptosis. EXT2 plays an important role and ERAD might be a potential treatment for Huh7 hepatocellular carcinoma.
Collapse
Affiliation(s)
- Jia-Nan Chen
- School of Medicine, Nankai University, Tianjin 300071, China
- Department of Organ Transplant, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin 300192, China
| | - Li Wang
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Frontiers Science Center for Cell Responses, Nankai University, Tianjin 300071, China
| | - Yu-Xin He
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Frontiers Science Center for Cell Responses, Nankai University, Tianjin 300071, China
| | - Xiao-Wei Sun
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Frontiers Science Center for Cell Responses, Nankai University, Tianjin 300071, China
| | - Long-Jiao Cheng
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Frontiers Science Center for Cell Responses, Nankai University, Tianjin 300071, China
| | - Ya-Nan Li
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Frontiers Science Center for Cell Responses, Nankai University, Tianjin 300071, China
| | - Sei Yoshida
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Frontiers Science Center for Cell Responses, Nankai University, Tianjin 300071, China
- Research Institute of Transplant Medicine, Nankai University, Tianjin 300192, China
- Nankai International Advanced Research Institute, Shenzhen 518045, Guangdong Province, China
| | - Zhong-Yang Shen
- School of Medicine, Nankai University, Tianjin 300071, China
- Department of Organ Transplant, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin 300192, China
- Research Institute of Transplant Medicine, Nankai University, Tianjin 300192, China
- Tianjin Key Laboratory for Organ Transplantation, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin 300192, China
| |
Collapse
|
5
|
Chen Z, Minor DL. Electrosome assembly: Structural insights from high voltage-activated calcium channel (CaV)-chaperone interactions. Biochem Soc Trans 2025; 53:BST20240422. [PMID: 39912874 DOI: 10.1042/bst20240422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 12/18/2024] [Accepted: 01/09/2025] [Indexed: 02/07/2025]
Abstract
Ion channels are multicomponent complexes (termed here as"electrosomes") that conduct the bioelectrical signals required for life. It has been appreciated for decades that assembly is critical for proper channel function, but knowledge of the factors that undergird this important process has been lacking. Although there are now exemplar structures of representatives of most major ion channel classes, there has been no direct structural information to inform how these complicated, multipart complexes are put together or whether they interact with chaperone proteins that aid in their assembly. Recent structural characterization of a complex of the endoplasmic membrane protein complex (EMC) chaperone and a voltage-gated calcium channel (CaV) assembly intermediate comprising the pore-forming CaVα1 and cytoplasmic CaVβ subunits offers the first structural view into the assembly of a member of the largest ion channel class, the voltagegated ion channel (VGIC) superfamily. The structure shows how the EMC remodels the CaVα1/CaVβ complex through a set of rigid body movements for handoff to the extracellular CaVα2δ subunit to complete channel assembly in a process that involves intersubunit coordination of a divalent cation and ordering of CaVα1 elements. These findings set a new framework for deciphering the structural underpinnings of ion channel biogenesis that has implications for understanding channel function, how drugs and disease mutations act, and for investigating how other membrane proteins may engage the ubiquitous EMC chaperone.
Collapse
Affiliation(s)
- Zhou Chen
- Cardiovascular Research Institute, University of California-San Francisco, San Francisco, CA 94158-9001, U.S.A
| | - Daniel L Minor
- Cardiovascular Research Institute, University of California-San Francisco, San Francisco, CA 94158-9001, U.S.A
- Department of Biochemistry and Biophysics, and Cellular and Molecular Pharmacology, University of California-San Francisco, San Francisco, CA 94158-9001, U.S.A
- California Institute for Quantitative Biomedical Research, University of California-San Francisco, San Francisco, CA 94158-9001, U.S.A
- Kavli Institute for Fundamental Neuroscience, University of California-San Francisco, San Francisco, CA 94158-9001, U.S.A
- Molecular Biophysics and Integrated Bio-imaging Division Lawrence Berkeley National Laboratory, Berkeley, CA 94720 CA 94720, U.S.A
| |
Collapse
|
6
|
Odunsi A, Kapitonova MA, Woodward G, Rahmani E, Ghelichkhani F, Liu J, Rozovsky S. Selenoprotein K at the intersection of cellular pathways. Arch Biochem Biophys 2025; 764:110221. [PMID: 39571956 PMCID: PMC11750610 DOI: 10.1016/j.abb.2024.110221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/15/2024] [Accepted: 11/18/2024] [Indexed: 12/08/2024]
Abstract
Selenoprotein K (selenok) is linked to the integrated stress response, which helps cells combat stressors and regain normal function. The selenoprotein contains numerous protein interaction hubs and post-translational modification sites and is involved in protein palmitoylation, vesicle trafficking, and the resolution of ER stress. Anchored to the endoplasmic reticulum (ER) membrane, selenok interacts with protein partners to influence their stability, localization, and trafficking, impacting various cellular functions such as calcium homeostasis, cellular migration, phagocytosis, gene expression, and immune response. Consequently, selenok expression level is linked to cancer and neurodegenerative diseases. Because it contains the reactive amino acid selenocysteine, selenok is likely to function as an enzyme. However, highly unusual for enzymes, the protein segment containing the selenocysteine lacks a stable secondary or tertiary structure, yet it includes multiple interaction sites for protein partners and post-translational modifications. Currently, the reason(s) for the presence of the rare selenocysteine in selenok is not known. Furthermore, of selenok's numerous interaction sites, only some have been sufficiently characterized, leaving many of selenok's potential protein partners to be discovered. In this review, we explore selenok's role in various cellular pathways and its impact on human health, thereby highlighting the links between its diverse cellular functions.
Collapse
Affiliation(s)
- Atinuke Odunsi
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, USA
| | - Mariia A Kapitonova
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, USA
| | - George Woodward
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, USA
| | - Erfan Rahmani
- Department of Biomedical Engineering, University of Delaware, Newark, DE, USA
| | - Farid Ghelichkhani
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, USA
| | - Jun Liu
- Asieris Pharmaceuticals, Palo Alto, CA, USA
| | - Sharon Rozovsky
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, USA.
| |
Collapse
|
7
|
Chen L, Liu Y, Wang Y, Zhang Y, Wang S, Zhang L, Lu K, Chen X, Dong H, Zou S. The Endoplasmic Reticulum Membrane Protein Complex Is Important for Deoxynivalenol Production and the Virulence of Fusarium graminearum. J Fungi (Basel) 2025; 11:108. [PMID: 39997402 PMCID: PMC11856742 DOI: 10.3390/jof11020108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 01/26/2025] [Accepted: 01/29/2025] [Indexed: 02/26/2025] Open
Abstract
Fusarium graminearum is recognized as the pathogen responsible for wheat head blight. It produces deoxynivalenol (DON) during infection, which endangers human health. DON biosynthesis occurs within toxisomes in the endoplasmic reticulum (ER). In eukaryotes, the ER membrane protein complex (EMC) is critical for the ER's normal operation. However, the specific role of the EMC in F. graminearum remains poorly understood. In this study, six EMC subunits (FgEmc1-6) were identified in F. graminearum, and all of them were localized to the toxisomes. Our results demonstrate that the EMC is indispensable for vegetative growth and asexual and sexual reproduction, which are the fundamental life processes of F. graminearum. Importantly, EMC deletion led to reduced virulence in wheat spikes and petioles. Further investigation revealed that in ΔFgemc1-6, the expression of trichothecene (TRI) genes is decreased, the biosynthesis of lipid droplets (LDs) is diminished, toxisome formation is impaired, and DON production is reduced. Additionally, defects in the formation of the infection cushion were observed in ΔFgemc1-6. In conclusion, the EMC is involved in regulating growth and virulence in F. graminearum. This study enhances our understanding of the EMC functions in F. graminearum and offers valuable insights into potential targets for managing wheat head blight.
Collapse
Affiliation(s)
- Lei Chen
- Department of Plant Pathology, College of Plant Protection, Shandong Agricultural University, Tai’an 271018, China; (L.C.); (Y.L.); (Y.W.); (Y.Z.); (S.W.); (L.Z.); (K.L.); (X.C.); (H.D.)
- National Key Laboratory of Wheat Improvement, Shandong Agricultural University, Tai’an 271018, China
| | - Yaxian Liu
- Department of Plant Pathology, College of Plant Protection, Shandong Agricultural University, Tai’an 271018, China; (L.C.); (Y.L.); (Y.W.); (Y.Z.); (S.W.); (L.Z.); (K.L.); (X.C.); (H.D.)
| | - Yu Wang
- Department of Plant Pathology, College of Plant Protection, Shandong Agricultural University, Tai’an 271018, China; (L.C.); (Y.L.); (Y.W.); (Y.Z.); (S.W.); (L.Z.); (K.L.); (X.C.); (H.D.)
| | - Yaxin Zhang
- Department of Plant Pathology, College of Plant Protection, Shandong Agricultural University, Tai’an 271018, China; (L.C.); (Y.L.); (Y.W.); (Y.Z.); (S.W.); (L.Z.); (K.L.); (X.C.); (H.D.)
| | - Saisai Wang
- Department of Plant Pathology, College of Plant Protection, Shandong Agricultural University, Tai’an 271018, China; (L.C.); (Y.L.); (Y.W.); (Y.Z.); (S.W.); (L.Z.); (K.L.); (X.C.); (H.D.)
| | - Liyuan Zhang
- Department of Plant Pathology, College of Plant Protection, Shandong Agricultural University, Tai’an 271018, China; (L.C.); (Y.L.); (Y.W.); (Y.Z.); (S.W.); (L.Z.); (K.L.); (X.C.); (H.D.)
- National Key Laboratory of Wheat Improvement, Shandong Agricultural University, Tai’an 271018, China
| | - Kai Lu
- Department of Plant Pathology, College of Plant Protection, Shandong Agricultural University, Tai’an 271018, China; (L.C.); (Y.L.); (Y.W.); (Y.Z.); (S.W.); (L.Z.); (K.L.); (X.C.); (H.D.)
- National Key Laboratory of Wheat Improvement, Shandong Agricultural University, Tai’an 271018, China
| | - Xiaochen Chen
- Department of Plant Pathology, College of Plant Protection, Shandong Agricultural University, Tai’an 271018, China; (L.C.); (Y.L.); (Y.W.); (Y.Z.); (S.W.); (L.Z.); (K.L.); (X.C.); (H.D.)
- National Key Laboratory of Wheat Improvement, Shandong Agricultural University, Tai’an 271018, China
| | - Hansong Dong
- Department of Plant Pathology, College of Plant Protection, Shandong Agricultural University, Tai’an 271018, China; (L.C.); (Y.L.); (Y.W.); (Y.Z.); (S.W.); (L.Z.); (K.L.); (X.C.); (H.D.)
- National Key Laboratory of Wheat Improvement, Shandong Agricultural University, Tai’an 271018, China
| | - Shenshen Zou
- Department of Plant Pathology, College of Plant Protection, Shandong Agricultural University, Tai’an 271018, China; (L.C.); (Y.L.); (Y.W.); (Y.Z.); (S.W.); (L.Z.); (K.L.); (X.C.); (H.D.)
- National Key Laboratory of Wheat Improvement, Shandong Agricultural University, Tai’an 271018, China
| |
Collapse
|
8
|
Penrod S, Tang X, Moon C, Whitsett JA, Naren AP, Huang Y. EMC3 is critical for CFTR function and calcium mobilization in the mouse intestinal epithelium. Am J Physiol Gastrointest Liver Physiol 2025; 328:G72-G82. [PMID: 39641142 PMCID: PMC11901349 DOI: 10.1152/ajpgi.00066.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 11/22/2024] [Accepted: 11/22/2024] [Indexed: 12/07/2024]
Abstract
Membrane proteins, such as the cystic fibrosis transmembrane-conductance regulator (CFTR), play a crucial role in gastrointestinal functions and health. Endoplasmic reticulum (ER) membrane protein complex (EMC), a multi-subunit insertase, mediates the incorporation of membrane segments into lipid bilayers during protein synthesis. Whether EMC regulates membrane proteins' processing and function in intestinal epithelial cells remains unclear. To investigate the role of EMC in the intestinal epithelium, we generated mice in which EMC subunit 3 (EMC3) was deleted in intestinal epithelial cells (EMC3ΔIEC). EMC3ΔIEC mice were viable but notably smaller compared with their wild-type littermates. Although the intestinal structure was generally maintained, EMC3ΔIEC crypts exhibited altered morphology, particularly at the base of the crypts with decreased goblet cells and paneth cells. Levels of multiple polytopic membrane proteins, including CFTR, were decreased in EMC3-deficient epithelial cells. Several calcium ATPase pumps were downregulated, and calcium mobilization was impaired in EMC3ΔIEC enteroids. CFTR-mediated organoid swelling in EMC3ΔIEC mice was impaired in response to both cAMP-dependent signaling and calcium-secretagogue stimulation. Our study demonstrated that EMC plays a critical role in maintaining intestinal epithelium homeostasis by regulating membrane protein biogenesis and intracellular calcium homeostasis. Maintaining intracellular calcium homeostasis may be a universal cellular function regulated by EMC.NEW & NOTEWORTHY We generated mice in which endoplasmic reticulum membrane protein complex (EMC) subunit 3 was deleted from intestinal epithelium cells and studied the molecular functions of EMC in vivo. Our findings demonstrate the importance of intestinal EMC in the biogenesis of membrane proteins in vivo, including CFTR, and highlight its critical role in maintaining intracellular calcium homeostasis and, consequently, in calcium-dependent functions in the intestine and beyond.
Collapse
Affiliation(s)
- Sarah Penrod
- Division of Pediatric Pulmonology, Allergy, and Sleep Medicine, Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana, United States
| | - Xiaofang Tang
- Division of Neonatology, Perinatal and Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States
| | - Changsuk Moon
- Division of Pulmonology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States
| | - Jeffrey A Whitsett
- Division of Neonatology, Perinatal and Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States
| | - Anjaparavanda P Naren
- Division of Pulmonology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States
| | - Yunjie Huang
- Division of Pediatric Pulmonology, Allergy, and Sleep Medicine, Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana, United States
| |
Collapse
|
9
|
Kim C, Gabriel KR, Boone D, Brown MR, Oppenheimer K, Kost-Alimova M, Pablo JLB, Greka A. FAF2 is a bifunctional regulator of peroxisomal homeostasis and saturated lipid responses. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.12.628015. [PMID: 39763943 PMCID: PMC11702540 DOI: 10.1101/2024.12.12.628015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
Exposure to saturated fatty acids (SFAs), such as palmitic acid, can lead to cellular metabolic dysfunction known as lipotoxicity. Although canonical adaptive metabolic processes like lipid storage or desaturation are known cellular responses to saturated fat exposure, the link between SFA metabolism and organellar biology remains an area of active inquiry. We performed a genome-wide CRISPR knockout screen in human epithelial cells to identify modulators of SFA toxicity. The screen revealed peroxisomal proteins, especially those that impact ether lipid synthesis, as important regulators of lipotoxicity. We identified Fas-associated factor family member 2 (FAF2) as a critical bifunctional co-regulator of peroxisomal and fatty acid biology. We further uncovered a new biological function for the ubiquitin-regulatory X (UBX) and UAS thioredoxin-like domains of FAF2, demonstrating their requirement for peroxisomal protein abundance and SFA-induced cellular stress. Our work highlights the role of FAF2 in regulating peroxisomal abundance and function, and the peroxisome as a key organelle in the cellular response to SFAs.
Collapse
Affiliation(s)
- Choah Kim
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Harvard Medical School, Boston, MA 02115, USA
- Department of Medicine, Mass General Brigham, Boston, MA 02115, USA
| | - Katlyn R. Gabriel
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
- Department of Medicine, Mass General Brigham, Boston, MA 02115, USA
| | - Dylan Boone
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | | | - Katherine Oppenheimer
- Harvard Medical School, Boston, MA 02115, USA
- Department of Medicine, Mass General Brigham, Boston, MA 02115, USA
| | | | | | - Anna Greka
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Harvard Medical School, Boston, MA 02115, USA
- Department of Medicine, Mass General Brigham, Boston, MA 02115, USA
| |
Collapse
|
10
|
Shahbazi M, Wheeler HE, Armstrong GT, Frisina RD, Travis LB, Dolan ME. Comparison of GWAS results between de novo tinnitus and cancer treatment-related tinnitus suggests distinctive roles for genetic risk factors. Sci Rep 2024; 14:27952. [PMID: 39543288 PMCID: PMC11564524 DOI: 10.1038/s41598-024-78274-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 10/29/2024] [Indexed: 11/17/2024] Open
Abstract
Tinnitus is a common sensorineural complication that can occur de novo or after cancer treatments involving cisplatin or radiotherapy. Considering the heterogeneous etiology and pathophysiology of tinnitus, the extent to which shared genetic risk factors contribute to de novo tinnitus and cancer treatment-induced tinnitus is not clear. Here we report a GWAS for de novo tinnitus using the UK Biobank cohort with nine loci showing significantly associated variants (p < 5 × 10-8). To our knowledge, significant associations in four of these loci are novel, represented by rs7336872, rs115125870, rs1532898 and rs2537, with UBAC2, NUDT9, TGM4 and MPP2 as their nearest protein coding genes, respectively. Through quantitative comparison of results from GWAS of de novo tinnitus with GWAS of radiation-induced tinnitus, two intronic variants (rs7023227 and rs3780395) from a locus within immunoregulatory gene PD-L1 (CD274) reached the replication threshold using comparison thresholds of 10-5 and 10-4, with no other shared genetic risk factors identified. We did not observe shared genetic risk factors between de novo and cisplatin-induced tinnitus. Our results suggest that genetic risk factors are mainly distinct based on etiology of tinnitus and future efforts to study, prevent or treat tinnitus are expected to benefit from strategies that allow for distinction of cases based on the primary environmental risk factor.
Collapse
Affiliation(s)
- Mohammad Shahbazi
- Department of Medicine, University of Chicago, 900 E 57th St., KCBD 7100, Chicago, IL, 60637, USA
| | | | - Gregory T Armstrong
- Department of Epidemiology and Cancer Control, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Robert D Frisina
- Departments of Medical Engineering and Communication Sciences and Disorders, Global Center for Hearing and Speech Research, University of South Florida, Tampa, FL, USA
| | - Lois B Travis
- Department of Medical Oncology, Indiana University, Indianapolis, IN, USA
| | - M Eileen Dolan
- Department of Medicine, University of Chicago, 900 E 57th St., KCBD 7100, Chicago, IL, 60637, USA.
| |
Collapse
|
11
|
Weyer Y, Teis D. The Dsc complex and its role in Golgi quality control. Biochem Soc Trans 2024; 52:2023-2034. [PMID: 39324639 PMCID: PMC11555709 DOI: 10.1042/bst20230375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/20/2024] [Accepted: 08/27/2024] [Indexed: 09/27/2024]
Abstract
Membrane proteins play crucial roles in cellular functions. However, processes such as the insertion of membrane proteins into the endoplasmic reticulum (ER), their folding into native structures, the assembly of multi-subunit membrane protein complexes, and their targeting from the ER to specific organelles are prone to errors and have a relatively high failure rate. To prevent the accumulation of defective or orphaned membrane proteins, quality control mechanisms assess folding, quantity, and localization of these proteins. This quality control is vital for preserving organelle integrity and maintaining cellular health. In this mini-review, we will focus on how selective membrane protein quality control at the Golgi apparatus, particularly through the defective for SREBP cleavage (Dsc) ubiquitin ligase complex, detects orphaned proteins and prevents their mis-localization to other organelles.
Collapse
Affiliation(s)
- Yannick Weyer
- Institute of Molecular Biochemistry, Biocenter, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - David Teis
- Institute of Molecular Biochemistry, Biocenter, Medical University of Innsbruck, 6020 Innsbruck, Austria
| |
Collapse
|
12
|
Song Z, Thepsuwan P, Hur WS, Torres M, Wu SA, Wei X, Tushi NJ, Wei J, Ferraresso F, Paton AW, Paton JC, Zheng Z, Zhang K, Fang D, Kastrup CJ, Jaiman S, Flick MJ, Sun S. Regulation of hepatic inclusions and fibrinogen biogenesis by SEL1L-HRD1 ERAD. Nat Commun 2024; 15:9244. [PMID: 39455574 PMCID: PMC11512042 DOI: 10.1038/s41467-024-53639-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024] Open
Abstract
Impaired secretion of an essential blood coagulation factor fibrinogen leads to hepatic fibrinogen storage disease (HFSD), characterized by the presence of fibrinogen-positive inclusion bodies and hypofibrinogenemia. However, the molecular mechanisms underlying the biogenesis of fibrinogen in the endoplasmic reticulum (ER) remain unexplored. Here we uncover a key role of SEL1L-HRD1 complex of ER-associated degradation (ERAD) in the formation of aberrant inclusion bodies, and the biogenesis of nascent fibrinogen protein complex in hepatocytes. Acute or chronic deficiency of SEL1L-HRD1 ERAD in the hepatocytes leads to the formation of hepatocellular inclusion bodies. Proteomics studies followed by biochemical assays reveal fibrinogen as a major component of the inclusion bodies. Mechanistically, we show that the degradation of misfolded endogenous fibrinogen Aα, Bβ, and γ chains by SEL1L-HRD1 ERAD is indispensable for the formation of a functional fibrinogen complex in the ER. Providing clinical relevance of these findings, SEL1L-HRD1 ERAD indeed degrades and thereby attenuates the pathogenicity of two disease-causing fibrinogen γ mutants. Together, this study demonstrates an essential role of SEL1L-HRD1 ERAD in fibrinogen biogenesis and provides insight into the pathogenesis of protein-misfolding diseases.
Collapse
Affiliation(s)
- Zhenfeng Song
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Pattaraporn Thepsuwan
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Woosuk Steve Hur
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27514, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27514, USA
- UNC Blood Research Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27514, USA
| | - Mauricio Torres
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, 48105, USA
| | - Shuangcheng Alivia Wu
- Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| | - Xiaoqiong Wei
- Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| | - Nusrat Jahan Tushi
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Juncheng Wei
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
- Department of Cardiovascular Sciences and Center for Metabolic Disease Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Francesca Ferraresso
- Blood Research Institute, Versiti Blood Center of Wisconsin, Milwaukee, WI, 53226, USA
- Departments of Surgery, Biochemistry, Biomedical Engineering, and Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Adrienne W Paton
- Research Centre for Infectious Diseases, Department of Molecular and Biomedical Science, University of Adelaide, Adelaide, South Australia, 5005, Australia
| | - James C Paton
- Research Centre for Infectious Diseases, Department of Molecular and Biomedical Science, University of Adelaide, Adelaide, South Australia, 5005, Australia
| | - Ze Zheng
- Blood Research Institute, Versiti Blood Center of Wisconsin, Milwaukee, WI, 53226, USA
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Kezhong Zhang
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Deyu Fang
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Christian J Kastrup
- Blood Research Institute, Versiti Blood Center of Wisconsin, Milwaukee, WI, 53226, USA
- Departments of Surgery, Biochemistry, Biomedical Engineering, and Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Sunil Jaiman
- Department of Pathology, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Matthew James Flick
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27514, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27514, USA
- UNC Blood Research Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27514, USA
| | - Shengyi Sun
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA.
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, 48201, USA.
| |
Collapse
|
13
|
Tang X, Wei W, Sun Y, Weaver TE, Nakayasu ES, Clair G, Snowball JM, Na CL, Apsley KS, Martin EP, Kotton DN, Alysandratos KD, Huo J, Molkentin JD, Gower WA, Lin X, Whitsett JA. EMC3 regulates trafficking and pulmonary toxicity of the SFTPCI73T mutation associated with interstitial lung disease. J Clin Invest 2024; 134:e173861. [PMID: 39405113 PMCID: PMC11601914 DOI: 10.1172/jci173861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 10/08/2024] [Indexed: 11/29/2024] Open
Abstract
The most common mutation in surfactant protein C gene (SFTPC), SFTPCI73T, causes interstitial lung disease with few therapeutic options. We previously demonstrated that EMC3, an important component of the multiprotein endoplasmic reticulum membrane complex (EMC), is required for surfactant homeostasis in alveolar type 2 epithelial (AT2) cells at birth. In the present study, we investigated the role of EMC3 in the control of SFTPCI73T metabolism and its associated alveolar dysfunction. Using a knock-in mouse model phenocopying the I73T mutation, we demonstrated that conditional deletion of Emc3 in AT2 cells rescued alveolar remodeling/simplification defects in neonatal and adult mice. Proteomic analysis revealed that Emc3 depletion reversed the disruption of vesicle trafficking pathways and rescued the mitochondrial dysfunction associated with I73T mutation. Affinity purification-mass spectrometry analysis identified potential EMC3 interacting proteins in lung AT2 cells, including Valosin Containing Protein (VCP) and its interactors. Treatment of SftpcI73T knock-in mice and SFTPCI73T expressing iAT2 cells derived from SFTPCI73T patient-specific iPSCs with the specific VCP inhibitor CB5083 restored alveolar structure and SFTPCI73T trafficking respectively. Taken together, the present work identifies the EMC complex and VCP in the metabolism of the disease-associated SFTPCI73T mutant, providing novel therapeutical targets for SFTPCI73T-associated interstitial lung disease.
Collapse
Affiliation(s)
- Xiaofang Tang
- State Key Laboratory of Genetic Engineering, Greater Bay Area Institute of Precision Medicine (Guangzhou), School of Life Sciences, Shanghai Key Laboratory of Lung Inflammation and Injury, Zhongshan Hospital, Fudan University, Shanghai, China
- Perinatal Institute, Divisions of Neonatology, Perinatal and Pulmonary Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Wei Wei
- State Key Laboratory of Genetic Engineering, Greater Bay Area Institute of Precision Medicine (Guangzhou), School of Life Sciences, Shanghai Key Laboratory of Lung Inflammation and Injury, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yuqing Sun
- State Key Laboratory of Genetic Engineering, Greater Bay Area Institute of Precision Medicine (Guangzhou), School of Life Sciences, Shanghai Key Laboratory of Lung Inflammation and Injury, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Timothy E. Weaver
- Perinatal Institute, Divisions of Neonatology, Perinatal and Pulmonary Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Ernesto S. Nakayasu
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Geremy Clair
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - John M. Snowball
- Perinatal Institute, Divisions of Neonatology, Perinatal and Pulmonary Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Cheng-Lun Na
- Perinatal Institute, Divisions of Neonatology, Perinatal and Pulmonary Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Karen S. Apsley
- Perinatal Institute, Divisions of Neonatology, Perinatal and Pulmonary Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Emily P. Martin
- Perinatal Institute, Divisions of Neonatology, Perinatal and Pulmonary Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Darrell N. Kotton
- Department of Medicine, The Pulmonary Center, Center for Regenerative Medicine, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Konstantinos-Dionysios Alysandratos
- Department of Medicine, The Pulmonary Center, Center for Regenerative Medicine, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Jiuzhou Huo
- Division of Molecular Cardiovascular Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Jeffery D. Molkentin
- Division of Molecular Cardiovascular Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - William A. Gower
- Division of Pediatric Pulmonology and Program for Rare and Interstitial Lung Disease, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Xinhua Lin
- State Key Laboratory of Genetic Engineering, Greater Bay Area Institute of Precision Medicine (Guangzhou), School of Life Sciences, Shanghai Key Laboratory of Lung Inflammation and Injury, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jeffrey A. Whitsett
- Perinatal Institute, Divisions of Neonatology, Perinatal and Pulmonary Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| |
Collapse
|
14
|
Couto-Lima CA, Machado MCR, Anhezini L, Oliveira MT, Molina RADS, da Silva RR, Lopes GS, Trinca V, Colón DF, Peixoto PM, Monesi N, Alberici LC, Ramos RGP, Espreafico EM. EMC1 Is Required for the Sarcoplasmic Reticulum and Mitochondrial Functions in the Drosophila Muscle. Biomolecules 2024; 14:1258. [PMID: 39456191 PMCID: PMC11506464 DOI: 10.3390/biom14101258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 09/29/2024] [Accepted: 10/02/2024] [Indexed: 10/28/2024] Open
Abstract
EMC1 is part of the endoplasmic reticulum (ER) membrane protein complex, whose functions include the insertion of transmembrane proteins into the ER membrane, ER-mitochondria contact, and lipid exchange. Here, we show that the Drosophila melanogaster EMC1 gene is expressed in the somatic musculature and the protein localizes to the sarcoplasmic reticulum (SR) network. Muscle-specific EMC1 RNAi led to severe motility defects and partial late pupae/early adulthood lethality, phenotypes that are rescued by co-expression with an EMC1 transgene. Motility impairment in EMC1-depleted flies was associated with aberrations in muscle morphology in embryos, larvae, and adults, including tortuous and misaligned fibers with reduced size and weakness. They were also associated with an altered SR network, cytosolic calcium overload, and mitochondrial dysfunction and dysmorphology that impaired membrane potential and oxidative phosphorylation capacity. Genes coding for ER stress sensors, mitochondrial biogenesis/dynamics, and other EMC components showed altered expression and were mostly rescued by the EMC1 transgene expression. In conclusion, EMC1 is required for the SR network's mitochondrial integrity and influences underlying programs involved in the regulation of muscle mass and shape. We believe our data can contribute to the biology of human diseases caused by EMC1 mutations.
Collapse
Affiliation(s)
- Carlos Antonio Couto-Lima
- Department of Cell and Molecular Biology, Faculty of Medicine of Ribeirão Preto, University of São Paulo (FMRP-USP), Ribeirão Preto 14049-900, SP, Brazil
- Department of Biotechnology, College of Agricultural and Veterinary Sciences, Sao Paulo State University, Jaboticabal 14884-900, SP, Brazil
- Cellular and Molecular Biology Program, Faculty of Medicine of Ribeirão Preto, University of São Paulo (FMRP-USP), Ribeirão Preto 14049-900, SP, Brazil
| | - Maiaro Cabral Rosa Machado
- Department of Cell and Molecular Biology, Faculty of Medicine of Ribeirão Preto, University of São Paulo (FMRP-USP), Ribeirão Preto 14049-900, SP, Brazil
- Cellular and Molecular Biology Program, Faculty of Medicine of Ribeirão Preto, University of São Paulo (FMRP-USP), Ribeirão Preto 14049-900, SP, Brazil
| | - Lucas Anhezini
- Cellular and Molecular Biology Program, Faculty of Medicine of Ribeirão Preto, University of São Paulo (FMRP-USP), Ribeirão Preto 14049-900, SP, Brazil
- Institute of Biological Sciences and Health, Federal University of Alagoas, Maceió 57072-900, AL, Brazil
| | - Marcos Túlio Oliveira
- Department of Biotechnology, College of Agricultural and Veterinary Sciences, Sao Paulo State University, Jaboticabal 14884-900, SP, Brazil
- Cellular and Molecular Biology Program, Faculty of Medicine of Ribeirão Preto, University of São Paulo (FMRP-USP), Ribeirão Preto 14049-900, SP, Brazil
| | - Roberto Augusto da Silva Molina
- Department of Cell and Molecular Biology, Faculty of Medicine of Ribeirão Preto, University of São Paulo (FMRP-USP), Ribeirão Preto 14049-900, SP, Brazil
- Cellular and Molecular Biology Program, Faculty of Medicine of Ribeirão Preto, University of São Paulo (FMRP-USP), Ribeirão Preto 14049-900, SP, Brazil
| | - Rodrigo Ribeiro da Silva
- Department of Cell and Molecular Biology, Faculty of Medicine of Ribeirão Preto, University of São Paulo (FMRP-USP), Ribeirão Preto 14049-900, SP, Brazil
- Cellular and Molecular Biology Program, Faculty of Medicine of Ribeirão Preto, University of São Paulo (FMRP-USP), Ribeirão Preto 14049-900, SP, Brazil
| | - Gabriel Sarti Lopes
- Department of Cell and Molecular Biology, Faculty of Medicine of Ribeirão Preto, University of São Paulo (FMRP-USP), Ribeirão Preto 14049-900, SP, Brazil
- Cellular and Molecular Biology Program, Faculty of Medicine of Ribeirão Preto, University of São Paulo (FMRP-USP), Ribeirão Preto 14049-900, SP, Brazil
| | - Vitor Trinca
- Cellular and Molecular Biology Program, Faculty of Medicine of Ribeirão Preto, University of São Paulo (FMRP-USP), Ribeirão Preto 14049-900, SP, Brazil
| | - David Fernando Colón
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900, SP, Brazil
| | - Pablo M. Peixoto
- Baruch College and Graduate Center, The City University of New York, New York, NY 10010, USA
| | - Nadia Monesi
- Department of Clinical Analyses, Toxicology and Food Science, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14040-903, SP, Brazil
| | - Luciane Carla Alberici
- Department of Biomolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14049-900, SP, Brazil
| | - Ricardo Guelerman P. Ramos
- Department of Cell and Molecular Biology, Faculty of Medicine of Ribeirão Preto, University of São Paulo (FMRP-USP), Ribeirão Preto 14049-900, SP, Brazil
- Cellular and Molecular Biology Program, Faculty of Medicine of Ribeirão Preto, University of São Paulo (FMRP-USP), Ribeirão Preto 14049-900, SP, Brazil
| | - Enilza Maria Espreafico
- Department of Cell and Molecular Biology, Faculty of Medicine of Ribeirão Preto, University of São Paulo (FMRP-USP), Ribeirão Preto 14049-900, SP, Brazil
- Cellular and Molecular Biology Program, Faculty of Medicine of Ribeirão Preto, University of São Paulo (FMRP-USP), Ribeirão Preto 14049-900, SP, Brazil
| |
Collapse
|
15
|
Brodsky JL, Iyer A, Fortounas KI, Fisher EA. The emerging role of fat-inducing transcript 2 in endoplasmic reticulum proteostasis and lipoprotein biogenesis. Curr Opin Lipidol 2024; 35:248-252. [PMID: 39172716 PMCID: PMC11387134 DOI: 10.1097/mol.0000000000000943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
PURPOSE OF REVIEW This review examines the evolving role of the fat-inducing transcript 2 (FIT2) protein in lipid droplet (LD) biology and its broader implications in cellular physiology and disease. With recent advancements in understanding FIT2 function across various model systems, this review provides a timely synthesis of its mechanisms and physiological significance. RECENT FINDINGS FIT2, an endoplasmic reticulum (ER)-resident protein, has been established as a critical regulator of LD formation in diverse organisms, from yeast to mammals. It facilitates LD biogenesis by sequestering diacylglycerol (DAG) and potentially influencing ER membrane dynamics. Beyond its role in lipid metabolism, FIT2 intersects with the ER-associated degradation (ERAD), is critical for protein homeostasis, and is linked to the unfolded protein response (UPR). Dysregulation of FIT2 has also been linked to metabolic disorders such as insulin resistance and lipodystrophy, highlighting its clinical relevance. SUMMARY Insights into FIT2 function underscore its pivotal role in LD formation and lipid homeostasis. Understanding its involvement in ER proteostasis and very low density lipoprotein biogenesis has broad implications for metabolic diseases and cancer. Therapeutic strategies targeting FIT2 may offer novel approaches to modulate lipid metabolism and mitigate associated pathologies. Further research is needed to elucidate the full spectrum of FIT2's interactions within cellular lipid and protein networks, potentially uncovering new therapeutic avenues for metabolic and ER stress-related disorders.
Collapse
Affiliation(s)
- Jeffrey L. Brodsky
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
- Center for Protein Conformational Diseases, University of Pittsburgh, Pittsburgh, PA, USA
| | - Anuradha Iyer
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Konstantinos I. Fortounas
- Division of Cardiology and the Department of Medicine, NYU School of Medicine, New York, NY, USA
- Cardiovascular Research Center and the Marc and Ruti Bell Program in Vascular Biology, NYU School of Medicine, New York, New York, NY, USA
| | - Edward A. Fisher
- Division of Cardiology and the Department of Medicine, NYU School of Medicine, New York, NY, USA
- Cardiovascular Research Center and the Marc and Ruti Bell Program in Vascular Biology, NYU School of Medicine, New York, New York, NY, USA
| |
Collapse
|
16
|
Yang F, Ma H, Boye SL, Boye SE, Ding XQ. Promotion of endoplasmic reticulum retrotranslocation by overexpression of E3 ubiquitin-protein ligase synoviolin 1 reduces endoplasmic reticulum stress and preserves cone photoreceptors in cyclic nucleotide-gated channel deficiency. FASEB J 2024; 38:e70021. [PMID: 39215566 PMCID: PMC11419579 DOI: 10.1096/fj.202400198r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 07/29/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024]
Abstract
Cone photoreceptor cyclic nucleotide-gated (CNG) channels play an essential role in phototransduction and cellular Ca2+ homeostasis. Mutations in genes encoding the channel subunits CNGA3 and CNGB3 are associated with achromatopsia, progressive cone dystrophy, and early-onset macular degeneration. Cone loss in patients with achromatopsia and cone dystrophy associated with CNG channel mutations has been documented by optical coherence tomography and in mouse models of CNG channel deficiency. Cone death in CNG channel-deficient retinas involves endoplasmic reticulum (ER) stress-associated apoptosis, dysregulation of cellular/ER Ca2+ homeostasis, impaired protein folding/processing, and impaired ER-associated degradation (ERAD). The E3 ubiquitin-protein ligase synoviolin 1 (SYVN1) is the primary component of the SYVN1/SEL1L ER retrotranslocon responsible for ERAD. Previous studies have shown that manipulations that protect cones and reduce ER stress/cone death in CNG channel deficiency, such as increasing ER Ca2+ preservation or treatment with an ER chaperone, increase the expression of SYVN1 and other components of the ER retrotranslocon. The present work investigated the effects of SYVN1 overexpression. Intraocular injection of AAV5-IRBP/GNAT2-Syvn1 resulted in overexpression of SYVN1 in cones of CNG channel-deficient mice. Following treatment, cone density in Cnga3-/- mice was significantly increased, compared with untreated controls, outer segment localization of cone opsin was improved, and ER stress/apoptotic cell death was reduced. Overexpression of SYVN1 also led to increased expression levels of the retrotranslocon components, degradation in ER protein 1 (DERL1), ERAD E3 ligase adaptor subunit (SEL1L), and homocysteine inducible ER protein with ubiquitin-like domain 1 (HERPUD1). Moreover, overexpression of SYVN1 likely enhanced protein ubiquitination/proteasome degradation in CNG channel-deficient retinas. This study demonstrates the role of SYVN1/ERAD in cone preservation in CNG channel deficiency and supports the strategy of promoting ERAD for cone protection.
Collapse
Affiliation(s)
- Fan Yang
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, USA
| | - Hongwei Ma
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, USA
| | - Sanford L. Boye
- Powell Gene Therapy Center, Department of Pediatrics, College of Medicine, University of Florida, Gainesville, Florida 32610, USA
| | - Shannon E. Boye
- Division of Cellular and Molecular Therapy, Department of Pediatrics, College of Medicine, University of Florida, Gainesville, Florida 32610, USA
| | - Xi-Qin Ding
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, USA
| |
Collapse
|
17
|
Borgert L, Becker T, den Brave F. Conserved quality control mechanisms of mitochondrial protein import. J Inherit Metab Dis 2024; 47:903-916. [PMID: 38790152 DOI: 10.1002/jimd.12756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/15/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024]
Abstract
Mitochondria carry out essential functions for the cell, including energy production, various biosynthesis pathways, formation of co-factors and cellular signalling in apoptosis and inflammation. The functionality of mitochondria requires the import of about 900-1300 proteins from the cytosol in baker's yeast Saccharomyces cerevisiae and human cells, respectively. The vast majority of these proteins pass the outer membrane in a largely unfolded state through the translocase of the outer mitochondrial membrane (TOM) complex. Subsequently, specific protein translocases sort the precursor proteins into the outer and inner membranes, the intermembrane space and matrix. Premature folding of mitochondrial precursor proteins, defects in the mitochondrial protein translocases or a reduction of the membrane potential across the inner mitochondrial membrane can cause stalling of precursors at the protein import apparatus. Consequently, the translocon is clogged and non-imported precursor proteins accumulate in the cell, which in turn leads to proteotoxic stress and eventually cell death. To prevent such stress situations, quality control mechanisms remove non-imported precursor proteins from the TOM channel. The highly conserved ubiquitin-proteasome system of the cytosol plays a critical role in this process. Thus, the surveillance of protein import via the TOM complex involves the coordinated activity of mitochondria-localized and cytosolic proteins to prevent proteotoxic stress in the cell.
Collapse
Affiliation(s)
- Lion Borgert
- Faculty of Medicine, Institute of Biochemistry and Molecular Biology, University of Bonn, Bonn, Germany
| | - Thomas Becker
- Faculty of Medicine, Institute of Biochemistry and Molecular Biology, University of Bonn, Bonn, Germany
| | - Fabian den Brave
- Faculty of Medicine, Institute of Biochemistry and Molecular Biology, University of Bonn, Bonn, Germany
| |
Collapse
|
18
|
Wright MT, Timalsina B, Garcia Lopez V, Hermanson JN, Garcia S, Plate L. Time-resolved interactome profiling deconvolutes secretory protein quality control dynamics. Mol Syst Biol 2024; 20:1049-1075. [PMID: 39103653 PMCID: PMC11369088 DOI: 10.1038/s44320-024-00058-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/15/2024] [Accepted: 07/22/2024] [Indexed: 08/07/2024] Open
Abstract
Many cellular processes are governed by protein-protein interactions that require tight spatial and temporal regulation. Accordingly, it is necessary to understand the dynamics of these interactions to fully comprehend and elucidate cellular processes and pathological disease states. To map de novo protein-protein interactions with time resolution at an organelle-wide scale, we developed a quantitative mass spectrometry method, time-resolved interactome profiling (TRIP). We apply TRIP to elucidate aberrant protein interaction dynamics that lead to the protein misfolding disease congenital hypothyroidism. We deconvolute altered temporal interactions of the thyroid hormone precursor thyroglobulin with pathways implicated in hypothyroidism pathophysiology, such as Hsp70-/90-assisted folding, disulfide/redox processing, and N-glycosylation. Functional siRNA screening identified VCP and TEX264 as key protein degradation components whose inhibition selectively rescues mutant prohormone secretion. Ultimately, our results provide novel insight into the temporal coordination of protein homeostasis, and our TRIP method should find broad applications in investigating protein-folding diseases and cellular processes.
Collapse
Affiliation(s)
- Madison T Wright
- Department of Chemistry, Vanderbilt University, Nashville, TN, 37240, USA
| | - Bibek Timalsina
- Department of Chemistry, Vanderbilt University, Nashville, TN, 37240, USA
| | - Valeria Garcia Lopez
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, 37240, USA
| | - Jake N Hermanson
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, 37240, USA
| | - Sarah Garcia
- Department of Chemistry, Vanderbilt University, Nashville, TN, 37240, USA
| | - Lars Plate
- Department of Chemistry, Vanderbilt University, Nashville, TN, 37240, USA.
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, 37240, USA.
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA.
| |
Collapse
|
19
|
Guo X, Mutch M, Torres AY, Nano M, Rauth N, Harwood J, McDonald D, Chen Z, Montell C, Dai W, Montell DJ. The Zn 2+ transporter ZIP7 enhances endoplasmic-reticulum-associated protein degradation and prevents neurodegeneration in Drosophila. Dev Cell 2024; 59:1655-1667.e6. [PMID: 38670102 PMCID: PMC11233247 DOI: 10.1016/j.devcel.2024.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 12/15/2023] [Accepted: 04/03/2024] [Indexed: 04/28/2024]
Abstract
Proteotoxic stress drives numerous degenerative diseases. Cells initially adapt to misfolded proteins by activating the unfolded protein response (UPR), including endoplasmic-reticulum-associated protein degradation (ERAD). However, persistent stress triggers apoptosis. Enhancing ERAD is a promising therapeutic approach for protein misfolding diseases. The ER-localized Zn2+ transporter ZIP7 is conserved from plants to humans and required for intestinal self-renewal, Notch signaling, cell motility, and survival. However, a unifying mechanism underlying these diverse phenotypes was unknown. In studying Drosophila border cell migration, we discovered that ZIP7-mediated Zn2+ transport enhances the obligatory deubiquitination of proteins by the Rpn11 Zn2+ metalloproteinase in the proteasome lid. In human cells, ZIP7 and Zn2+ are limiting for deubiquitination. In a Drosophila model of neurodegeneration caused by misfolded rhodopsin (Rh1), ZIP7 overexpression degrades misfolded Rh1 and rescues photoreceptor viability and fly vision. Thus, ZIP7-mediated Zn2+ transport is a previously unknown, rate-limiting step for ERAD in vivo with therapeutic potential in protein misfolding diseases.
Collapse
Affiliation(s)
- Xiaoran Guo
- Molecular, Cellular, and Developmental Biology Department, University of California, Santa Barbara, CA 93110, USA
| | - Morgan Mutch
- Molecular, Cellular, and Developmental Biology Department, University of California, Santa Barbara, CA 93110, USA
| | - Alba Yurani Torres
- Molecular, Cellular, and Developmental Biology Department, University of California, Santa Barbara, CA 93110, USA
| | - Maddalena Nano
- Molecular, Cellular, and Developmental Biology Department, University of California, Santa Barbara, CA 93110, USA
| | - Nishi Rauth
- Molecular, Cellular, and Developmental Biology Department, University of California, Santa Barbara, CA 93110, USA
| | - Jacob Harwood
- Molecular, Cellular, and Developmental Biology Department, University of California, Santa Barbara, CA 93110, USA
| | - Drew McDonald
- Molecular, Cellular, and Developmental Biology Department, University of California, Santa Barbara, CA 93110, USA
| | - Zijing Chen
- Molecular, Cellular, and Developmental Biology Department, University of California, Santa Barbara, CA 93110, USA
| | - Craig Montell
- Molecular, Cellular, and Developmental Biology Department, University of California, Santa Barbara, CA 93110, USA
| | - Wei Dai
- Molecular, Cellular, and Developmental Biology Department, University of California, Santa Barbara, CA 93110, USA; Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai, China.
| | - Denise J Montell
- Molecular, Cellular, and Developmental Biology Department, University of California, Santa Barbara, CA 93110, USA.
| |
Collapse
|
20
|
Ghannam A, Hahn V, Fan J, Tasevski S, Moughni S, Li G, Zhang Z. Sex-specific and cell-specific regulation of ER stress and neuroinflammation after traumatic brain injury in juvenile mice. Exp Neurol 2024; 377:114806. [PMID: 38701941 DOI: 10.1016/j.expneurol.2024.114806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 04/14/2024] [Accepted: 04/30/2024] [Indexed: 05/06/2024]
Abstract
Endoplasmic reticulum (ER) stress and neuroinflammation play an important role in secondary brain damage after traumatic brain injury (TBI). Due to the complex brain cytoarchitecture, multiple cell types are affected by TBI. However, cell type-specific and sex-specific responses to ER stress and neuroinflammation remain unclear. Here we investigated differential regulation of ER stress and neuroinflammatory pathways in neurons and microglia during the acute phase post-injury in a mouse model of impact acceleration TBI in both males and females. We found that TBI resulted in significant weight loss only in males, and sensorimotor impairment and depressive-like behaviors in both males and females at the acute phase post-injury. By concurrently isolating neurons and microglia from the same brain sample of the same animal, we were able to evaluate the simultaneous responses in neurons and microglia towards ER stress and neuroinflammation in both males and females. We discovered that the ER stress and anti-inflammatory responses were significantly stronger in microglia, especially in female microglia, compared with the male and female neurons. Whereas the degree of phosphorylated-tau (pTau) accumulation was significantly higher in neurons, compared with the microglia. In conclusion, TBI resulted in behavioral deficits and cell type-specific and sex-specific responses to ER stress and neuroinflammation, and abnormal protein accumulation at the acute phase after TBI in immature mice.
Collapse
Affiliation(s)
- Amanda Ghannam
- Department of Natural Sciences, College of Arts, Sciences, and Letters, University of Michigan-Dearborn, 4901 Evergreen Rd, Dearborn, MI 48128, United States of America.
| | - Victoria Hahn
- Department of Natural Sciences, College of Arts, Sciences, and Letters, University of Michigan-Dearborn, 4901 Evergreen Rd, Dearborn, MI 48128, United States of America.
| | - Jie Fan
- Department of Natural Sciences, College of Arts, Sciences, and Letters, University of Michigan-Dearborn, 4901 Evergreen Rd, Dearborn, MI 48128, United States of America.
| | - Stefanie Tasevski
- Department of Natural Sciences, College of Arts, Sciences, and Letters, University of Michigan-Dearborn, 4901 Evergreen Rd, Dearborn, MI 48128, United States of America.
| | - Sara Moughni
- Department of Natural Sciences, College of Arts, Sciences, and Letters, University of Michigan-Dearborn, 4901 Evergreen Rd, Dearborn, MI 48128, United States of America.
| | - Gengxin Li
- Statistics, Department of Mathematics and Statistics, College of Arts, Sciences, and Letters, University of Michigan-Dearborn, 4901 Evergreen Rd, Dearborn, MI 48128, United States of America.
| | - Zhi Zhang
- Department of Natural Sciences, College of Arts, Sciences, and Letters, University of Michigan-Dearborn, 4901 Evergreen Rd, Dearborn, MI 48128, United States of America.
| |
Collapse
|
21
|
Alzayed NT, Alzuabi AH, Alqusaimi RA, El-Anany EA, Alholle A, Aboelanine AH, Omar S, Alsafi R, Elmonairy AA, Alali FJ, Alahmad A, Alsharhan H, Albash B, Marafi D. Tribal Founder EMC1 Variant in 5 Kuwaiti Families Expands Phenotypic Spectrum of EMC1-Related Disorder. Neurol Genet 2024; 10:e200156. [PMID: 38784058 PMCID: PMC11115761 DOI: 10.1212/nxg.0000000000200156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 03/18/2024] [Indexed: 05/25/2024]
Abstract
Background and Objectives The endoplasmic reticulum (ER) membrane protein complex is a conserved multisubunit transmembrane complex that enables energy-independent insertion of newly synthesized membrane proteins into ER membranes, mediating protein folding, phospholipid transfer from ER to mitochondria, and elimination of misfolded proteins. The first subunit of EMC (EMC1) is encoded by EMC1. Both monoallelic de novo and biallelic EMC1 variants have been identified to cause cerebellar atrophy, visual impairment, and psychomotor retardation (CAVIPMR) [OMIM #616875]. Eight families with biallelic EMC1 variants and CAVIPMR have been reported. Here, we describe 8 individuals from 5 Kuwaiti families from the same tribe, with the previously reported homozygous pathogenic missense EMC1 variant [c.245C>T:p.(Thr82Met)] and CAVIPMR. Methods Proband exome sequencing was performed in 3 families, while targeted molecular testing for EMC1 [c.245C>T:p.(Thr82Met)] variant was performed in the other 2 families based on strong clinical suspicion and tribal origin. Sanger sequencing confirmed variant segregation with disease in all families. Results We identified 8 individuals from 5 Kuwaiti families with the homozygous pathogenic EMC1 variant [c.245C>T:p.(Thr82Met)] previously reported in a Turkish family with CAVIPMR. The variant was absent from Kuwait Medical Genetic Center database, thus unlikely to represent a population founder allelic variant. The average age at symptom onset was 11 weeks, with all families reporting either visual abnormalities, hypotonia, and/or global developmental delay (GDD) as the presenting features. Shared clinical features included GDD (8/8), microcephaly (8/8), truncal hypotonia (8/8), visual impairment (7/7), and failure to thrive (7/7). Other common features included hyperreflexia (5/6; 83%), peripheral hypertonia (3/5; 60%), dysmorphism (3/6; 50%), epilepsy (4/8; 50%), and chorea (3/8; 36%). Brain imaging showed cerebellar atrophy in 4/7 (57%) and cerebral atrophy in 3/6 (50%) individuals. Discussion The presence of exact biallelic homozygous EMC1 variant in 5 Kuwaiti families from the same tribe suggests a tribal founder allelic variant. The clinical features in this study are consistent with the phenotypic spectrum of EMC1-associated CAVIPMR in previous reports. The presence of chorea, first noted in this study, further expands the phenotypic spectrum. Our findings emphasize the importance of targeted EMC1 variant [c.245C>T:p.(Thr82Met)] testing for infants from affected tribe who present with visual impairment, GDD, and hypotonia.
Collapse
Affiliation(s)
- Nada T Alzayed
- From the College of Medicine (N.T.A., A.H. Alzuabi, R.A.A.), Health Science Center, Kuwait University; Section of Child Neurology (E.A.E.-A., D.M.), Department of Pediatrics, Adan Hospital, Ministry of Health, Hadiya; Kuwait Medical Genetics Centre (A. Alholle, A.H. Aboelanine, S.O., A.A.E., F.J.A., A. Alahmad, H.A., D.M.), Ministry of Health, Sulaibikhat; Department of Pediatrics (R.A., B.A.), Adan Hospital, Ministry of Health, Hadiya; Department of Pediatrics (H.A., D.M.), College of Medicine, Kuwait University, Safat; and Department of Pediatrics (H.A.), Farwaniya Hospital, Ministry of Health, Sabah Al-Nasser, Kuwait
| | - Abdullah H Alzuabi
- From the College of Medicine (N.T.A., A.H. Alzuabi, R.A.A.), Health Science Center, Kuwait University; Section of Child Neurology (E.A.E.-A., D.M.), Department of Pediatrics, Adan Hospital, Ministry of Health, Hadiya; Kuwait Medical Genetics Centre (A. Alholle, A.H. Aboelanine, S.O., A.A.E., F.J.A., A. Alahmad, H.A., D.M.), Ministry of Health, Sulaibikhat; Department of Pediatrics (R.A., B.A.), Adan Hospital, Ministry of Health, Hadiya; Department of Pediatrics (H.A., D.M.), College of Medicine, Kuwait University, Safat; and Department of Pediatrics (H.A.), Farwaniya Hospital, Ministry of Health, Sabah Al-Nasser, Kuwait
| | - Reem A Alqusaimi
- From the College of Medicine (N.T.A., A.H. Alzuabi, R.A.A.), Health Science Center, Kuwait University; Section of Child Neurology (E.A.E.-A., D.M.), Department of Pediatrics, Adan Hospital, Ministry of Health, Hadiya; Kuwait Medical Genetics Centre (A. Alholle, A.H. Aboelanine, S.O., A.A.E., F.J.A., A. Alahmad, H.A., D.M.), Ministry of Health, Sulaibikhat; Department of Pediatrics (R.A., B.A.), Adan Hospital, Ministry of Health, Hadiya; Department of Pediatrics (H.A., D.M.), College of Medicine, Kuwait University, Safat; and Department of Pediatrics (H.A.), Farwaniya Hospital, Ministry of Health, Sabah Al-Nasser, Kuwait
| | - Ehab A El-Anany
- From the College of Medicine (N.T.A., A.H. Alzuabi, R.A.A.), Health Science Center, Kuwait University; Section of Child Neurology (E.A.E.-A., D.M.), Department of Pediatrics, Adan Hospital, Ministry of Health, Hadiya; Kuwait Medical Genetics Centre (A. Alholle, A.H. Aboelanine, S.O., A.A.E., F.J.A., A. Alahmad, H.A., D.M.), Ministry of Health, Sulaibikhat; Department of Pediatrics (R.A., B.A.), Adan Hospital, Ministry of Health, Hadiya; Department of Pediatrics (H.A., D.M.), College of Medicine, Kuwait University, Safat; and Department of Pediatrics (H.A.), Farwaniya Hospital, Ministry of Health, Sabah Al-Nasser, Kuwait
| | - Abdullah Alholle
- From the College of Medicine (N.T.A., A.H. Alzuabi, R.A.A.), Health Science Center, Kuwait University; Section of Child Neurology (E.A.E.-A., D.M.), Department of Pediatrics, Adan Hospital, Ministry of Health, Hadiya; Kuwait Medical Genetics Centre (A. Alholle, A.H. Aboelanine, S.O., A.A.E., F.J.A., A. Alahmad, H.A., D.M.), Ministry of Health, Sulaibikhat; Department of Pediatrics (R.A., B.A.), Adan Hospital, Ministry of Health, Hadiya; Department of Pediatrics (H.A., D.M.), College of Medicine, Kuwait University, Safat; and Department of Pediatrics (H.A.), Farwaniya Hospital, Ministry of Health, Sabah Al-Nasser, Kuwait
| | - Ashraf H Aboelanine
- From the College of Medicine (N.T.A., A.H. Alzuabi, R.A.A.), Health Science Center, Kuwait University; Section of Child Neurology (E.A.E.-A., D.M.), Department of Pediatrics, Adan Hospital, Ministry of Health, Hadiya; Kuwait Medical Genetics Centre (A. Alholle, A.H. Aboelanine, S.O., A.A.E., F.J.A., A. Alahmad, H.A., D.M.), Ministry of Health, Sulaibikhat; Department of Pediatrics (R.A., B.A.), Adan Hospital, Ministry of Health, Hadiya; Department of Pediatrics (H.A., D.M.), College of Medicine, Kuwait University, Safat; and Department of Pediatrics (H.A.), Farwaniya Hospital, Ministry of Health, Sabah Al-Nasser, Kuwait
| | - Sherief Omar
- From the College of Medicine (N.T.A., A.H. Alzuabi, R.A.A.), Health Science Center, Kuwait University; Section of Child Neurology (E.A.E.-A., D.M.), Department of Pediatrics, Adan Hospital, Ministry of Health, Hadiya; Kuwait Medical Genetics Centre (A. Alholle, A.H. Aboelanine, S.O., A.A.E., F.J.A., A. Alahmad, H.A., D.M.), Ministry of Health, Sulaibikhat; Department of Pediatrics (R.A., B.A.), Adan Hospital, Ministry of Health, Hadiya; Department of Pediatrics (H.A., D.M.), College of Medicine, Kuwait University, Safat; and Department of Pediatrics (H.A.), Farwaniya Hospital, Ministry of Health, Sabah Al-Nasser, Kuwait
| | - Rasha Alsafi
- From the College of Medicine (N.T.A., A.H. Alzuabi, R.A.A.), Health Science Center, Kuwait University; Section of Child Neurology (E.A.E.-A., D.M.), Department of Pediatrics, Adan Hospital, Ministry of Health, Hadiya; Kuwait Medical Genetics Centre (A. Alholle, A.H. Aboelanine, S.O., A.A.E., F.J.A., A. Alahmad, H.A., D.M.), Ministry of Health, Sulaibikhat; Department of Pediatrics (R.A., B.A.), Adan Hospital, Ministry of Health, Hadiya; Department of Pediatrics (H.A., D.M.), College of Medicine, Kuwait University, Safat; and Department of Pediatrics (H.A.), Farwaniya Hospital, Ministry of Health, Sabah Al-Nasser, Kuwait
| | - Alaa A Elmonairy
- From the College of Medicine (N.T.A., A.H. Alzuabi, R.A.A.), Health Science Center, Kuwait University; Section of Child Neurology (E.A.E.-A., D.M.), Department of Pediatrics, Adan Hospital, Ministry of Health, Hadiya; Kuwait Medical Genetics Centre (A. Alholle, A.H. Aboelanine, S.O., A.A.E., F.J.A., A. Alahmad, H.A., D.M.), Ministry of Health, Sulaibikhat; Department of Pediatrics (R.A., B.A.), Adan Hospital, Ministry of Health, Hadiya; Department of Pediatrics (H.A., D.M.), College of Medicine, Kuwait University, Safat; and Department of Pediatrics (H.A.), Farwaniya Hospital, Ministry of Health, Sabah Al-Nasser, Kuwait
| | - Fatemah J Alali
- From the College of Medicine (N.T.A., A.H. Alzuabi, R.A.A.), Health Science Center, Kuwait University; Section of Child Neurology (E.A.E.-A., D.M.), Department of Pediatrics, Adan Hospital, Ministry of Health, Hadiya; Kuwait Medical Genetics Centre (A. Alholle, A.H. Aboelanine, S.O., A.A.E., F.J.A., A. Alahmad, H.A., D.M.), Ministry of Health, Sulaibikhat; Department of Pediatrics (R.A., B.A.), Adan Hospital, Ministry of Health, Hadiya; Department of Pediatrics (H.A., D.M.), College of Medicine, Kuwait University, Safat; and Department of Pediatrics (H.A.), Farwaniya Hospital, Ministry of Health, Sabah Al-Nasser, Kuwait
| | - Ahmad Alahmad
- From the College of Medicine (N.T.A., A.H. Alzuabi, R.A.A.), Health Science Center, Kuwait University; Section of Child Neurology (E.A.E.-A., D.M.), Department of Pediatrics, Adan Hospital, Ministry of Health, Hadiya; Kuwait Medical Genetics Centre (A. Alholle, A.H. Aboelanine, S.O., A.A.E., F.J.A., A. Alahmad, H.A., D.M.), Ministry of Health, Sulaibikhat; Department of Pediatrics (R.A., B.A.), Adan Hospital, Ministry of Health, Hadiya; Department of Pediatrics (H.A., D.M.), College of Medicine, Kuwait University, Safat; and Department of Pediatrics (H.A.), Farwaniya Hospital, Ministry of Health, Sabah Al-Nasser, Kuwait
| | - Hind Alsharhan
- From the College of Medicine (N.T.A., A.H. Alzuabi, R.A.A.), Health Science Center, Kuwait University; Section of Child Neurology (E.A.E.-A., D.M.), Department of Pediatrics, Adan Hospital, Ministry of Health, Hadiya; Kuwait Medical Genetics Centre (A. Alholle, A.H. Aboelanine, S.O., A.A.E., F.J.A., A. Alahmad, H.A., D.M.), Ministry of Health, Sulaibikhat; Department of Pediatrics (R.A., B.A.), Adan Hospital, Ministry of Health, Hadiya; Department of Pediatrics (H.A., D.M.), College of Medicine, Kuwait University, Safat; and Department of Pediatrics (H.A.), Farwaniya Hospital, Ministry of Health, Sabah Al-Nasser, Kuwait
| | - Buthaina Albash
- From the College of Medicine (N.T.A., A.H. Alzuabi, R.A.A.), Health Science Center, Kuwait University; Section of Child Neurology (E.A.E.-A., D.M.), Department of Pediatrics, Adan Hospital, Ministry of Health, Hadiya; Kuwait Medical Genetics Centre (A. Alholle, A.H. Aboelanine, S.O., A.A.E., F.J.A., A. Alahmad, H.A., D.M.), Ministry of Health, Sulaibikhat; Department of Pediatrics (R.A., B.A.), Adan Hospital, Ministry of Health, Hadiya; Department of Pediatrics (H.A., D.M.), College of Medicine, Kuwait University, Safat; and Department of Pediatrics (H.A.), Farwaniya Hospital, Ministry of Health, Sabah Al-Nasser, Kuwait
| | - Dana Marafi
- From the College of Medicine (N.T.A., A.H. Alzuabi, R.A.A.), Health Science Center, Kuwait University; Section of Child Neurology (E.A.E.-A., D.M.), Department of Pediatrics, Adan Hospital, Ministry of Health, Hadiya; Kuwait Medical Genetics Centre (A. Alholle, A.H. Aboelanine, S.O., A.A.E., F.J.A., A. Alahmad, H.A., D.M.), Ministry of Health, Sulaibikhat; Department of Pediatrics (R.A., B.A.), Adan Hospital, Ministry of Health, Hadiya; Department of Pediatrics (H.A., D.M.), College of Medicine, Kuwait University, Safat; and Department of Pediatrics (H.A.), Farwaniya Hospital, Ministry of Health, Sabah Al-Nasser, Kuwait
| |
Collapse
|
22
|
Chamrád I, Simerský R, Lenobel R, Novák O. Exploring affinity chromatography in proteomics: A comprehensive review. Anal Chim Acta 2024; 1306:342513. [PMID: 38692783 DOI: 10.1016/j.aca.2024.342513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/19/2024] [Accepted: 03/20/2024] [Indexed: 05/03/2024]
Abstract
Over the past decades, the proteomics field has undergone rapid growth. Progress in mass spectrometry and bioinformatics, together with separation methods, has brought many innovative approaches to the study of the molecular biology of the cell. The potential of affinity chromatography was recognized immediately after its first application in proteomics, and since that time, it has become one of the cornerstones of many proteomic protocols. Indeed, this chromatographic technique exploiting the specific binding between two molecules has been employed for numerous purposes, from selective removal of interfering (over)abundant proteins or enrichment of scarce biomarkers in complex biological samples to mapping the post-translational modifications and protein interactions with other proteins, nucleic acids or biologically active small molecules. This review presents a comprehensive survey of this versatile analytical tool in current proteomics. To navigate the reader, the haphazard space of affinity separations is classified according to the experiment's aims and the separated molecule's nature. Different types of available ligands and experimental strategies are discussed in further detail for each of the mentioned procedures.
Collapse
Affiliation(s)
- Ivo Chamrád
- Laboratory of Growth Regulators, Faculty of Science, Palacký University and Institute of Experimental Botany of the Czech Academy of Sciences, Šlechtitelů 241/27, CZ-77900, Olomouc, Holice, Czech Republic.
| | - Radim Simerský
- Department of Chemical Biology, Faculty of Science, Palacký University, Šlechtitelů 241/27, CZ-77900, Olomouc, Holice, Czech Republic
| | - René Lenobel
- Laboratory of Growth Regulators, Faculty of Science, Palacký University and Institute of Experimental Botany of the Czech Academy of Sciences, Šlechtitelů 241/27, CZ-77900, Olomouc, Holice, Czech Republic
| | - Ondřej Novák
- Laboratory of Growth Regulators, Faculty of Science, Palacký University and Institute of Experimental Botany of the Czech Academy of Sciences, Šlechtitelů 241/27, CZ-77900, Olomouc, Holice, Czech Republic
| |
Collapse
|
23
|
Truong T, Martin K, Salemi M, Ray A, Phinney BS, Penn BH. The balance between antiviral and antibacterial responses during M. tuberculosis infection is regulated by the ubiquitin ligase CBL. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.15.594178. [PMID: 38798543 PMCID: PMC11118416 DOI: 10.1101/2024.05.15.594178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
As a first line of host defense, macrophages must be able to effectively sense and respond to diverse types of pathogens, and while a particular type of immune response may be beneficial in some circumstances, it can be detrimental in others. Upon infecting a macrophage, M. tuberculosis (Mtb) induces proinflammatory cytokines that activate antibacterial responses. Surprisingly, Mtb also triggers antiviral responses that actually hinder the ability of macrophages to control Mtb infection. The ubiquitin ligase CBL suppresses these antiviral responses and shifts macrophages toward a more antibacterial state during Mtb infection, however, the mechanisms by which CBL regulates immune signaling are unknown. We found that CBL controls responses to multiple stimuli and broadly suppresses the expression of antiviral effector genes. We then used mass-spectrometry to investigate potential CBL substrates and identified over 46,000 ubiquitylated peptides in Mtb-infected macrophages, as well as roughly 400 peptides with CBL-dependent ubiquitylation. We then performed genetic interaction analysis of CBL and its putative substrates, and identified the Fas associated factor 2 (FAF2) adapter protein as a key signaling molecule protein downstream of CBL. Together, these analyses identify thousands of new ubiquitin-mediated signaling events during the innate immune response and reveal an important new regulatory hub in this response.
Collapse
Affiliation(s)
- Tina Truong
- Department of Internal Medicine, University of California, Davis, Davis, California, United States of America
- Graduate Group in Immunology, University of California, Davis, Davis, California, United States of America
| | - Kelsey Martin
- Department of Internal Medicine, University of California, Davis, Davis, California, United States of America
| | - Michelle Salemi
- Proteomics Core Facility, University of California, Davis, Davis, California, United States of America
| | - Abigail Ray
- Department of Internal Medicine, University of California, Davis, Davis, California, United States of America
- Microbiology Graduate Group, University of California, Davis, Davis, California, United States of America
| | - Brett S. Phinney
- Proteomics Core Facility, University of California, Davis, Davis, California, United States of America
| | - Bennett H. Penn
- Department of Internal Medicine, University of California, Davis, Davis, California, United States of America
- Department of Medical Microbiology and Immunology, University of California, Davis, Davis, California, United States of America
| |
Collapse
|
24
|
Sarkar R, Chhabra S, Tanwar M, Agarwal N, Kalia M. Japanese encephalitis virus hijacks ER-associated degradation regulators for its replication. J Gen Virol 2024; 105. [PMID: 38787366 DOI: 10.1099/jgv.0.001995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024] Open
Abstract
Flaviviruses target their replication on membranous structures derived from the ER, where both viral and host proteins play crucial structural and functional roles. Here, we have characterized the involvement of the ER-associated degradation (ERAD) pathway core E3 ligase complex (SEL1L-HRD1) regulator proteins in the replication of Japanese encephalitis virus (JEV). Through high-resolution immunofluorescence imaging of JEV-infected HeLa cells, we observe that the virus replication complexes marked by NS1 strongly colocalize with the ERAD adapter SEL1L, lectin OS9, ER-membrane shuttle factor HERPUD1, E3 ubiquitin ligase HRD1 and rhomboid superfamily member DERLIN1. NS5 positive structures also show strong overlap with SEL1L. While these effectors show significant transcriptional upregulation, their protein levels remain largely stable in infected cells. siRNA mediated depletion of OS9, SEL1L, HERPUD1 and HRD1 significantly inhibit viral RNA replication and titres, with SEL1L depletion showing the maximum attenuation of replication. By performing protein translation arrest experiments, we show that SEL1L, and OS9 are stabilised upon JEV infection. Overall results from this study suggest that these ERAD effector proteins are crucial host-factors for JEV replication.
Collapse
Affiliation(s)
- Riya Sarkar
- Virology Research Group, Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, 121001, India
- Centre for Tuberculosis Research, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, 121001, India
- Present address: Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Simran Chhabra
- Virology Research Group, Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, 121001, India
| | - Mukesh Tanwar
- Virology Research Group, Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, 121001, India
| | - Nisheeth Agarwal
- Centre for Tuberculosis Research, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, 121001, India
| | - Manjula Kalia
- Virology Research Group, Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, 121001, India
| |
Collapse
|
25
|
Wu L, Zhang L, Feng S, Chen L, Lin C, Wang G, Zhu Y, Wang P, Cheng G. An evolutionarily conserved ubiquitin ligase drives infection and transmission of flaviviruses. Proc Natl Acad Sci U S A 2024; 121:e2317978121. [PMID: 38593069 PMCID: PMC11032495 DOI: 10.1073/pnas.2317978121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 03/08/2024] [Indexed: 04/11/2024] Open
Abstract
Mosquito-borne flaviviruses such as dengue (DENV) and Zika (ZIKV) cause hundreds of millions of infections annually. The single-stranded RNA genome of flaviviruses is translated into a polyprotein, which is cleaved equally into individual functional proteins. While structural proteins are packaged into progeny virions and released, most of the nonstructural proteins remain intracellular and could become cytotoxic if accumulated over time. However, the mechanism by which nonstructural proteins are maintained at the levels optimal for cellular fitness and viral replication remains unknown. Here, we identified that the ubiquitin E3 ligase HRD1 is essential for flaviviruses infections in both mammalian hosts and mosquitoes. HRD1 directly interacts with flavivirus NS4A and ubiquitylates a conserved lysine residue for ER-associated degradation. This mechanism avoids excessive accumulation of NS4A, which otherwise interrupts the expression of processed flavivirus proteins in the ER. Furthermore, a small-molecule inhibitor of HRD1 named LS-102 effectively interrupts DENV2 infection in both mice and Aedes aegypti mosquitoes, and significantly disturbs DENV transmission from the infected hosts to mosquitoes owing to reduced viremia. Taken together, this study demonstrates that flaviviruses have evolved a sophisticated mechanism to exploit the ubiquitination system to balance the homeostasis of viral proteins for their own advantage and provides a potential therapeutic target to interrupt flavivirus infection and transmission.
Collapse
Affiliation(s)
- Linjuan Wu
- New Cornerstone Science Laboratory, Tsinghua University-Peking University Joint Center for Life Sciences, School of Basic Medical Sciences, Tsinghua University, Beijing100084, China
- Institute of Infectious Diseases, Shenzhen Bay Laboratory, Shenzhen518000, China
- Institute of Pathogenic Organisms, Shenzhen Center for Disease Control and Prevention, Shenzhen518055, China
| | - Liming Zhang
- New Cornerstone Science Laboratory, Tsinghua University-Peking University Joint Center for Life Sciences, School of Basic Medical Sciences, Tsinghua University, Beijing100084, China
| | - Shengyong Feng
- New Cornerstone Science Laboratory, Tsinghua University-Peking University Joint Center for Life Sciences, School of Basic Medical Sciences, Tsinghua University, Beijing100084, China
- Institute of Infectious Diseases, Shenzhen Bay Laboratory, Shenzhen518000, China
- Institute of Pathogenic Organisms, Shenzhen Center for Disease Control and Prevention, Shenzhen518055, China
| | - Lu Chen
- New Cornerstone Science Laboratory, Tsinghua University-Peking University Joint Center for Life Sciences, School of Basic Medical Sciences, Tsinghua University, Beijing100084, China
| | - Cai Lin
- Institute of Infectious Diseases, Shenzhen Bay Laboratory, Shenzhen518000, China
| | - Gang Wang
- New Cornerstone Science Laboratory, Tsinghua University-Peking University Joint Center for Life Sciences, School of Basic Medical Sciences, Tsinghua University, Beijing100084, China
| | - Yibin Zhu
- New Cornerstone Science Laboratory, Tsinghua University-Peking University Joint Center for Life Sciences, School of Basic Medical Sciences, Tsinghua University, Beijing100084, China
- Institute of Pathogenic Organisms, Shenzhen Center for Disease Control and Prevention, Shenzhen518055, China
| | - Penghua Wang
- Department of Immunology, School of Medicine, University of Connecticut Health Center, Farmington, CT06030
| | - Gong Cheng
- New Cornerstone Science Laboratory, Tsinghua University-Peking University Joint Center for Life Sciences, School of Basic Medical Sciences, Tsinghua University, Beijing100084, China
- Institute of Infectious Diseases, Shenzhen Bay Laboratory, Shenzhen518000, China
- Institute of Pathogenic Organisms, Shenzhen Center for Disease Control and Prevention, Shenzhen518055, China
- Southwest United Graduate School, Kunming650092, China
| |
Collapse
|
26
|
Xu J, Song Y, Ding S, Duan W, Xiang G, Wang Z. Myeloid-derived growth factor and its effects on cardiovascular and metabolic diseases. Cytokine Growth Factor Rev 2024; 76:77-85. [PMID: 38185568 DOI: 10.1016/j.cytogfr.2023.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 12/28/2023] [Indexed: 01/09/2024]
Abstract
Myeloid-derived growth factor (MYDGF) is a paracrine protein produced by bone marrow-derived monocytes and macrophages. Current research shows that it has protective effects on the cardiovascular system, such as repairing heart tissue after myocardial infarction, enhancing cardiomyocyte proliferation, improving cardiac regeneration after myocardial injury, regulating proliferation and survival of endothelial cells, reducing endothelial cell damage, resisting pressure overload-induced heart failure, as well as protecting against atherosclerosis. Furthermore, regarding the metabolic diseases, MYDGF has effects of improving type 2 diabetes mellitus, relieving non-alcoholic fatty liver disease, alleviating glomerular diseases, and resisting osteoporosis. Herein, we will discuss the biology of MYDGF and its effects on cardiovascular and metabolic diseases.
Collapse
Affiliation(s)
- Jinling Xu
- Department of Endocrinology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430014, China
| | - Yanzhuo Song
- Nanchang University, Nanchang, Jiangxi 330031, China
| | - Sheng Ding
- Department of Endocrinology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430014, China
| | - Weizhe Duan
- Department of Endocrinology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430014, China
| | - Guangda Xiang
- Department of Endocrinology, General Hospital of Central Theater Command, Wuluo Road 627, Wuhan, Hubei 430070, China.
| | - Zhongjing Wang
- Department of Endocrinology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430014, China.
| |
Collapse
|
27
|
Zhu Q, Zhu X, Zhang L. ER membrane complex (EMC): Structure, functions, and roles in diseases. FASEB J 2024; 38:e23539. [PMID: 38498340 DOI: 10.1096/fj.202302266r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/22/2024] [Accepted: 02/21/2024] [Indexed: 03/20/2024]
Abstract
The endoplasmic reticulum (ER) is the largest membrane system in eukaryotic cells and is the primary site for the biosynthesis of lipids and carbohydrates, as well as for the folding, assembly, modification, and transport of secreted and integrated membrane proteins. The ER membrane complex (EMC) on the ER membrane is an ER multiprotein complex that affects the quality control of membrane proteins, which is abundant and widely preserved. Its disruption has been found to affect a wide range of processes, including protein and lipid synthesis, organelle communication, endoplasmic reticulum stress, and viral maturation, and may lead to neurodevelopmental disorders and cancer. Therefore, EMC has attracted the attention of many scholars and become a hot field. In this paper, we summarized the main contributions of the research of EMC in the past nearly 15 years, and reviewed the structure and function of EMC as well as its related diseases. We hope this review will promote further progress of research on EMC.
Collapse
Affiliation(s)
- Qi Zhu
- The Sichuan Provincial Key Laboratory for Human Disease Gene Study and Department of Laboratory Medicine, Center for Medical Genetics, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Xianjun Zhu
- The Sichuan Provincial Key Laboratory for Human Disease Gene Study and Department of Laboratory Medicine, Center for Medical Genetics, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Lin Zhang
- The Sichuan Provincial Key Laboratory for Human Disease Gene Study and Department of Laboratory Medicine, Center for Medical Genetics, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
- Qinghai Provincial Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai, China
| |
Collapse
|
28
|
Cao H, Zhou X, Xu B, Hu H, Guo J, Ma Y, Wang M, Li N, Jun Z. Advances in the study of protein folding and endoplasmic reticulum-associated degradation in mammal cells. J Zhejiang Univ Sci B 2024; 25:212-232. [PMID: 38453636 PMCID: PMC10918413 DOI: 10.1631/jzus.b2300403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 08/03/2023] [Indexed: 03/09/2024]
Abstract
The endoplasmic reticulum is a key site for protein production and quality control. More than one-third of proteins are synthesized and folded into the correct three-dimensional conformation in the endoplasmic reticulum. However, during protein folding, unfolded and/or misfolded proteins are prone to occur, which may lead to endoplasmic reticulum stress. Organisms can monitor the quality of the proteins produced by endoplasmic reticulum quality control (ERQC) and endoplasmic reticulum-associated degradation (ERAD), which maintain endoplasmic reticulum protein homeostasis by degrading abnormally folded proteins. The underlying mechanisms of protein folding and ERAD in mammals have not yet been fully explored. Therefore, this paper reviews the process and function of protein folding and ERAD in mammalian cells, in order to help clinicians better understand the mechanism of ERAD and to provide a scientific reference for the treatment of diseases caused by abnormal ERAD.
Collapse
Affiliation(s)
- Hong Cao
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai 200438, China
- National Key Laboratory of Immunity and Inflammation, Naval Medical University, Shanghai 200433, China
| | - Xuchang Zhou
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai 200438, China
| | - Bowen Xu
- National Key Laboratory of Immunity and Inflammation, Naval Medical University, Shanghai 200433, China
| | - Han Hu
- National Key Laboratory of Immunity and Inflammation, Naval Medical University, Shanghai 200433, China
| | - Jianming Guo
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai 200438, China
| | - Yuwei Ma
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai 200438, China
| | - Miao Wang
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai 200438, China
| | - Nan Li
- National Key Laboratory of Immunity and Inflammation, Naval Medical University, Shanghai 200433, China.
| | - Zou Jun
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai 200438, China.
| |
Collapse
|
29
|
Kandel R, Jung J, Neal S. Proteotoxic stress and the ubiquitin proteasome system. Semin Cell Dev Biol 2024; 156:107-120. [PMID: 37734998 PMCID: PMC10807858 DOI: 10.1016/j.semcdb.2023.08.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 08/01/2023] [Accepted: 08/20/2023] [Indexed: 09/23/2023]
Abstract
The ubiquitin proteasome system maintains protein homeostasis by regulating the breakdown of misfolded proteins, thereby preventing misfolded protein aggregates. The efficient elimination is vital for preventing damage to the cell by misfolded proteins, known as proteotoxic stress. Proteotoxic stress can lead to the collapse of protein homeostasis and can alter the function of the ubiquitin proteasome system. Conversely, impairment of the ubiquitin proteasome system can also cause proteotoxic stress and disrupt protein homeostasis. This review examines two impacts of proteotoxic stress, 1) disruptions to ubiquitin homeostasis (ubiquitin stress) and 2) disruptions to proteasome homeostasis (proteasome stress). Here, we provide a mechanistic description of the relationship between proteotoxic stress and the ubiquitin proteasome system. This relationship is illustrated by findings from several protein misfolding diseases, mainly neurodegenerative diseases, as well as from basic biology discoveries from yeast to mammals. In addition, we explore the importance of the ubiquitin proteasome system in endoplasmic reticulum quality control, and how proteotoxic stress at this organelle is alleviated. Finally, we highlight how cells utilize the ubiquitin proteasome system to adapt to proteotoxic stress and how the ubiquitin proteasome system can be genetically and pharmacologically manipulated to maintain protein homeostasis.
Collapse
Affiliation(s)
- Rachel Kandel
- School of Biological Sciences, Department of Cell and Developmental Biology, University of California San Diego, La Jolla, CA 92093, United States
| | - Jasmine Jung
- School of Biological Sciences, Department of Cell and Developmental Biology, University of California San Diego, La Jolla, CA 92093, United States
| | - Sonya Neal
- School of Biological Sciences, Department of Cell and Developmental Biology, University of California San Diego, La Jolla, CA 92093, United States; Howard Hughes Medical Institute, Chevy Chase, MD, USA.
| |
Collapse
|
30
|
Wąchalska M, Riepe C, Ślusarz MJ, Graul M, Borowski LS, Qiao W, Foltyńska M, Carette JE, Bieńkowska-Szewczyk K, Szczesny RJ, Kopito RR, Lipińska AD. The herpesvirus UL49.5 protein hijacks a cellular C-degron pathway to drive TAP transporter degradation. Proc Natl Acad Sci U S A 2024; 121:e2309841121. [PMID: 38442151 PMCID: PMC10945846 DOI: 10.1073/pnas.2309841121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 12/29/2023] [Indexed: 03/07/2024] Open
Abstract
The transporter associated with antigen processing (TAP) is a key player in the major histocompatibility class I-restricted antigen presentation and an attractive target for immune evasion by viruses. Bovine herpesvirus 1 impairs TAP-dependent antigenic peptide transport through a two-pronged mechanism in which binding of the UL49.5 gene product to TAP both inhibits peptide transport and triggers its proteasomal degradation. How UL49.5 promotes TAP degradation has, so far, remained unknown. Here, we use high-content siRNA and genome-wide CRISPR-Cas9 screening to identify CLR2KLHDC3 as the E3 ligase responsible for UL49.5-triggered TAP disposal. We propose that the C terminus of UL49.5 mimics a C-end rule degron that recruits the E3 to TAP and engages the cullin-RING E3 ligase in endoplasmic reticulum-associated degradation.
Collapse
Affiliation(s)
- Magda Wąchalska
- Laboratory of Virus Molecular Biology, Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, Gdańsk80-307, Poland
- Department of Biology, Stanford University, Stanford, CA94305
| | - Celeste Riepe
- Department of Biology, Stanford University, Stanford, CA94305
| | - Magdalena J. Ślusarz
- Department of Theoretical Chemistry, Faculty of Chemistry, University of Gdańsk, Gdańsk80-308, Poland
| | - Małgorzata Graul
- Laboratory of Virus Molecular Biology, Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, Gdańsk80-307, Poland
| | - Lukasz S. Borowski
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Warsaw02-106, Poland
| | - Wenjie Qiao
- Department of Microbiology and Immunology, Stanford University, Stanford, CA94305
| | - Michalina Foltyńska
- Laboratory of Virus Molecular Biology, Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, Gdańsk80-307, Poland
| | - Jan E. Carette
- Department of Microbiology and Immunology, Stanford University, Stanford, CA94305
| | - Krystyna Bieńkowska-Szewczyk
- Laboratory of Virus Molecular Biology, Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, Gdańsk80-307, Poland
| | - Roman J. Szczesny
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw02-106, Poland
| | - Ron R. Kopito
- Department of Biology, Stanford University, Stanford, CA94305
| | - Andrea D. Lipińska
- Laboratory of Virus Molecular Biology, Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, Gdańsk80-307, Poland
| |
Collapse
|
31
|
Podolsky MJ, Kheyfets B, Pandey M, Beigh AH, Yang CD, Lizama CO, Datta R, Lin LL, Wang Z, Wolters PJ, McManus MT, Qi L, Atabai K. Genome-wide screens identify SEL1L as an intracellular rheostat controlling collagen turnover. Nat Commun 2024; 15:1531. [PMID: 38378719 PMCID: PMC10879544 DOI: 10.1038/s41467-024-45817-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 01/30/2024] [Indexed: 02/22/2024] Open
Abstract
Accumulating evidence has implicated impaired extracellular matrix (ECM) clearance as a key factor in fibrotic disease. Despite decades of research elucidating the effectors of ECM clearance, relatively little is understood regarding the upstream regulation of this process. Collagen is the most abundant constituent of normal and fibrotic ECM in mammalian tissues. Its catabolism occurs through extracellular proteolysis and cell-mediated uptake of collagen fragments for intracellular degradation. Given the paucity of information regarding the regulation of this latter process, here we execute unbiased genome-wide screens to understand the molecular underpinnings of cell-mediated collagen clearance. Using this approach, we discover a mechanism through which collagen biosynthesis is sensed by cells internally and directly regulates clearance of extracellular collagen. The sensing mechanism appears to be dependent on endoplasmic reticulum-resident protein SEL1L and occurs via a noncanonical function of this protein. This pathway functions as a homeostatic negative feedback loop that limits collagen accumulation in tissues. In human fibrotic lung disease, the induction of this collagen clearance pathway by collagen synthesis is impaired, thereby contributing to the pathological accumulation of collagen in lung tissue. Thus, we describe cell-autonomous, rheostatic collagen clearance as an important pathway of tissue homeostasis.
Collapse
Affiliation(s)
- Michael J Podolsky
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA.
| | - Benjamin Kheyfets
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Monika Pandey
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Afaq H Beigh
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Christopher D Yang
- Cardiovascular Research Institute, University of California, San Francisco, CA, USA
| | - Carlos O Lizama
- Cardiovascular Research Institute, University of California, San Francisco, CA, USA
| | - Ritwik Datta
- Cardiovascular Research Institute, University of California, San Francisco, CA, USA
| | - Liangguang L Lin
- Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Zhihong Wang
- Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Paul J Wolters
- Department of Medicine, University of California, San Francisco, CA, USA
| | - Michael T McManus
- Department of Microbiology and Immunology and UCSF Diabetes Center, University of California, San Francisco, CA, USA
| | - Ling Qi
- Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Kamran Atabai
- Cardiovascular Research Institute, University of California, San Francisco, CA, USA.
- Department of Medicine, University of California, San Francisco, CA, USA.
- Lung Biology Center, University of California, San Francisco, CA, USA.
| |
Collapse
|
32
|
Lin LL, Wang HH, Pederson B, Wei X, Torres M, Lu Y, Li ZJ, Liu X, Mao H, Wang H, Zhou LE, Zhao Z, Sun S, Qi L. SEL1L-HRD1 interaction is required to form a functional HRD1 ERAD complex. Nat Commun 2024; 15:1440. [PMID: 38365914 PMCID: PMC10873344 DOI: 10.1038/s41467-024-45633-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 01/30/2024] [Indexed: 02/18/2024] Open
Abstract
The SEL1L-HRD1 protein complex represents the most conserved branch of endoplasmic reticulum (ER)-associated degradation (ERAD). Despite recent advances in both mouse models and humans, in vivo evidence for the importance of SEL1L in the ERAD complex formation and its (patho-)physiological relevance in mammals remains limited. Here we report that SEL1L variant p.Ser658Pro (SEL1LS658P) is a pathogenic hypomorphic mutation, causing partial embryonic lethality, developmental delay, and early-onset cerebellar ataxia in homozygous mice carrying the bi-allelic variant. Biochemical analyses reveal that SEL1LS658P variant not only reduces the protein stability of SEL1L, but attenuates the SEL1L-HRD1 interaction, likely via electrostatic repulsion between SEL1L F668 and HRD1 Y30 residues. Proteomic screens of SEL1L and HRD1 interactomes reveal that SEL1L-HRD1 interaction is a prerequisite for the formation of a functional HRD1 ERAD complex, as SEL1L is required for the recruitment of E2 enzyme UBE2J1 as well as DERLIN to HRD1. These data not only establish the disease relevance of SEL1L-HRD1 ERAD, but also provide additional insight into the formation of a functional HRD1 ERAD complex.
Collapse
Affiliation(s)
- Liangguang Leo Lin
- Department of Molecular Physiology and Biological Physics, University of Virginia, School of Medicine, Charlottesville, VA, 22903, USA
| | - Huilun Helen Wang
- Department of Molecular Physiology and Biological Physics, University of Virginia, School of Medicine, Charlottesville, VA, 22903, USA
| | - Brent Pederson
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, 48105, USA
| | - Xiaoqiong Wei
- Department of Molecular Physiology and Biological Physics, University of Virginia, School of Medicine, Charlottesville, VA, 22903, USA
| | - Mauricio Torres
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, 48105, USA
| | - You Lu
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, 48105, USA
- Life Sciences Institute and Department of Cell & Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Zexin Jason Li
- Department of Molecular Physiology and Biological Physics, University of Virginia, School of Medicine, Charlottesville, VA, 22903, USA
| | - Xiaodan Liu
- Zilkha Neurogenetic Institute, Keck School of Medicine of University of Southern California, Los Angeles, CA, 90033, USA
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Hancheng Mao
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, 48105, USA
| | - Hui Wang
- Department of Molecular Physiology and Biological Physics, University of Virginia, School of Medicine, Charlottesville, VA, 22903, USA
| | - Linyao Elina Zhou
- Department of Molecular Physiology and Biological Physics, University of Virginia, School of Medicine, Charlottesville, VA, 22903, USA
| | - Zhen Zhao
- Zilkha Neurogenetic Institute, Keck School of Medicine of University of Southern California, Los Angeles, CA, 90033, USA
| | - Shengyi Sun
- Department of Pharmacology, University of Virginia, School of Medicine, Charlottesville, VA, 22908, USA.
| | - Ling Qi
- Department of Molecular Physiology and Biological Physics, University of Virginia, School of Medicine, Charlottesville, VA, 22903, USA.
| |
Collapse
|
33
|
Wei X, Lu Y, Lin LL, Zhang C, Chen X, Wang S, Wu SA, Li ZJ, Quan Y, Sun S, Qi L. Proteomic screens of SEL1L-HRD1 ER-associated degradation substrates reveal its role in glycosylphosphatidylinositol-anchored protein biogenesis. Nat Commun 2024; 15:659. [PMID: 38253565 PMCID: PMC10803770 DOI: 10.1038/s41467-024-44948-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 01/08/2024] [Indexed: 01/24/2024] Open
Abstract
Endoplasmic reticulum-associated degradation (ERAD) plays indispensable roles in many physiological processes; however, the nature of endogenous substrates remains largely elusive. Here we report a proteomics strategy based on the intrinsic property of the SEL1L-HRD1 ERAD complex to identify endogenous ERAD substrates both in vitro and in vivo. Following stringent filtering using a machine learning algorithm, over 100 high-confidence potential substrates are identified in human HEK293T and mouse brown adipose tissue, among which ~88% are cell type-specific. One of the top shared hits is the catalytic subunit of the glycosylphosphatidylinositol (GPI)-transamidase complex, PIGK. Indeed, SEL1L-HRD1 ERAD attenuates the biogenesis of GPI-anchored proteins by specifically targeting PIGK for proteasomal degradation. Lastly, several PIGK disease variants in inherited GPI deficiency disorders are also SEL1L-HRD1 ERAD substrates. This study provides a platform and resources for future effort to identify proteome-wide endogenous substrates in vivo, and implicates SEL1L-HRD1 ERAD in many cellular processes including the biogenesis of GPI-anchored proteins.
Collapse
Affiliation(s)
- Xiaoqiong Wei
- Department of Molecular Physiology and Biological Physics, University of Virginia, School of Medicine, Charlottesville, VA, 22903, USA
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, 48105, USA
| | - You Lu
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, 48105, USA
- Life Sciences Institute and Department of Cell & Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Liangguang Leo Lin
- Department of Molecular Physiology and Biological Physics, University of Virginia, School of Medicine, Charlottesville, VA, 22903, USA
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, 48105, USA
| | - Chengxin Zhang
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, MI, 48105, USA
| | - Xinxin Chen
- Department of Molecular Physiology and Biological Physics, University of Virginia, School of Medicine, Charlottesville, VA, 22903, USA
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, 48105, USA
| | - Siwen Wang
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, 48105, USA
| | - Shuangcheng Alivia Wu
- Department of Molecular Physiology and Biological Physics, University of Virginia, School of Medicine, Charlottesville, VA, 22903, USA
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, 48105, USA
| | - Zexin Jason Li
- Department of Molecular Physiology and Biological Physics, University of Virginia, School of Medicine, Charlottesville, VA, 22903, USA
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI, 48105, USA
| | - Yujun Quan
- Department of Molecular Physiology and Biological Physics, University of Virginia, School of Medicine, Charlottesville, VA, 22903, USA
| | - Shengyi Sun
- Department of Pharmacology, University of Virginia, School of Medicine, Charlottesville, VA, 22903, USA
| | - Ling Qi
- Department of Molecular Physiology and Biological Physics, University of Virginia, School of Medicine, Charlottesville, VA, 22903, USA.
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, 48105, USA.
| |
Collapse
|
34
|
Makio T, Simmen T. Not So Rare: Diseases Based on Mutant Proteins Controlling Endoplasmic Reticulum-Mitochondria Contact (MERC) Tethering. CONTACT (THOUSAND OAKS (VENTURA COUNTY, CALIF.)) 2024; 7:25152564241261228. [PMID: 39070058 PMCID: PMC11273598 DOI: 10.1177/25152564241261228] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 04/12/2024] [Accepted: 05/27/2024] [Indexed: 07/30/2024]
Abstract
Mitochondria-endoplasmic reticulum contacts (MERCs), also called endoplasmic reticulum (ER)-mitochondria contact sites (ERMCS), are the membrane domains, where these two organelles exchange lipids, Ca2+ ions, and reactive oxygen species. This crosstalk is a major determinant of cell metabolism, since it allows the ER to control mitochondrial oxidative phosphorylation and the Krebs cycle, while conversely, it allows the mitochondria to provide sufficient ATP to control ER proteostasis. MERC metabolic signaling is under the control of tethers and a multitude of regulatory proteins. Many of these proteins have recently been discovered to give rise to rare diseases if their genes are mutated. Surprisingly, these diseases share important hallmarks and cause neurological defects, sometimes paired with, or replaced by skeletal muscle deficiency. Typical symptoms include developmental delay, intellectual disability, facial dysmorphism and ophthalmologic defects. Seizures, epilepsy, deafness, ataxia, or peripheral neuropathy can also occur upon mutation of a MERC protein. Given that most MERC tethers and regulatory proteins have secondary functions, some MERC protein-based diseases do not fit into this categorization. Typically, however, the proteins affected in those diseases have dominant functions unrelated to their roles in MERCs tethering or their regulation. We are discussing avenues to pharmacologically target genetic diseases leading to MERC defects, based on our novel insight that MERC defects lead to common characteristics in rare diseases. These shared characteristics of MERCs disorders raise the hope that they may allow for similar treatment options.
Collapse
Affiliation(s)
- Tadashi Makio
- Department of Cell Biology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Thomas Simmen
- Department of Cell Biology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
35
|
Janer A, Morris JL, Krols M, Antonicka H, Aaltonen MJ, Lin ZY, Anand H, Gingras AC, Prudent J, Shoubridge EA. ESYT1 tethers the ER to mitochondria and is required for mitochondrial lipid and calcium homeostasis. Life Sci Alliance 2024; 7:e202302335. [PMID: 37931956 PMCID: PMC10627786 DOI: 10.26508/lsa.202302335] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/25/2023] [Accepted: 10/26/2023] [Indexed: 11/08/2023] Open
Abstract
Mitochondria interact with the ER at structurally and functionally specialized membrane contact sites known as mitochondria-ER contact sites (MERCs). Combining proximity labelling (BioID), co-immunoprecipitation, confocal microscopy and subcellular fractionation, we found that the ER resident SMP-domain protein ESYT1 was enriched at MERCs, where it forms a complex with the outer mitochondrial membrane protein SYNJ2BP. BioID analyses using ER-targeted, outer mitochondrial membrane-targeted, and MERC-targeted baits, confirmed the presence of this complex at MERCs and the specificity of the interaction. Deletion of ESYT1 or SYNJ2BP reduced the number and length of MERCs. Loss of the ESYT1-SYNJ2BP complex impaired ER to mitochondria calcium flux and provoked a significant alteration of the mitochondrial lipidome, most prominently a reduction of cardiolipins and phosphatidylethanolamines. Both phenotypes were rescued by reexpression of WT ESYT1 and an artificial mitochondria-ER tether. Together, these results reveal a novel function for ESYT1 in mitochondrial and cellular homeostasis through its role in the regulation of MERCs.
Collapse
Affiliation(s)
- Alexandre Janer
- Department of Human Genetics, McGill University, Montreal, Canada
- Montreal Neurological Institute, McGill University, Montreal, Canada
| | - Jordan L Morris
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK
| | - Michiel Krols
- Montreal Neurological Institute, McGill University, Montreal, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, Canada
| | - Hana Antonicka
- Department of Human Genetics, McGill University, Montreal, Canada
- Montreal Neurological Institute, McGill University, Montreal, Canada
| | - Mari J Aaltonen
- Department of Human Genetics, McGill University, Montreal, Canada
- Montreal Neurological Institute, McGill University, Montreal, Canada
| | - Zhen-Yuan Lin
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Hanish Anand
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK
| | - Anne-Claude Gingras
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Julien Prudent
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK
| | - Eric A Shoubridge
- Department of Human Genetics, McGill University, Montreal, Canada
- Montreal Neurological Institute, McGill University, Montreal, Canada
| |
Collapse
|
36
|
Karamali N, Mahmoudi Z, Roghani SA, Assar S, Pournazari M, Soufivand P, Karaji AG, Rezaiemanesh A. Overexpression of Synoviolin and miR-125a-5p, miR-19b-3p in peripheral blood of rheumatoid arthritis patients after treatment with conventional DMARDs and methylprednisolone. Clin Rheumatol 2024; 43:147-157. [PMID: 38049563 DOI: 10.1007/s10067-023-06808-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 10/02/2023] [Accepted: 10/31/2023] [Indexed: 12/06/2023]
Abstract
PURPOSE SYVN1 is an endoplasmic reticulum (ER)-resident E3 ubiquitin ligase that has an essential function along with SEL1L in rheumatoid arthritis (RA) pathogenesis. This study aimed to investigate the changes in the expression of peripheral blood ncRNAs and SYVN1-SEL1L affected by DMARDs treatment. METHODS Twenty-five newly diagnosed RA patients were randomly assigned to receive conventional DMARDs (csDMARDs) and methylprednisolone for six months. The peripheral blood gene expression of SYVN1 and SEL1L and possible regulatory axes, NEAT1, miR-125a-5p, and miR-19b-3p, were evaluated before and after qRT-PCR. We also compared differences between the patients and healthy controls (HCs), and statistical analyses were performed to determine the correlation between ncRNAs with SYVN1-SEL1L and the clinical parameters of RA. RESULTS Expression of NEAT1 (P = 0.0001), miR-19b-3p (P = 0.007), miR-125a-5p (P = 0.005), and SYVN1 (P = 0.036) was significantly increased in newly diagnosed patients compared to HCs; also, miR-125a-5p, miR-19b-3p, and SYVN1 were significantly overexpressed after treatment (P = 0.001, P = 0.001, and P = 0.005, respectively). NEAT1 was positively correlated with SYVN1, and miR-125a-5p had a negative correlation with anti-cyclic citrullinated peptides. The ROC curve analysis showed the potential role of selected ncRNAs in RA pathogenesis. CONCLUSION The results indicate the ineffectiveness of the csDMARDs in reducing SYVN1 expression. The difference in expression of ncRNAs might be useful markers for monitoring disease activity and determining therapeutic responses in RA patients. Key Points • The expression of NEAT1 is significantly upregulated in RA patients compared to HC subjects. • miR-19b-3p, miR-125a-5p, and SYVN1 are significantly upregulated in RA patients compared to HC subjects. • The expression of miR-19b-3p and miR-125a-5p is significantly increased in RA patients after treatment with DMARDs and methylprednisolone. • NEAT1 is positively correlated with SYVN1.
Collapse
Affiliation(s)
- Negin Karamali
- Student Research Committee, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zahra Mahmoudi
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyed Askar Roghani
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Clinical Research Development Center, Imam Reza Hospital, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Shirin Assar
- Clinical Research Development Center, Imam Reza Hospital, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mehran Pournazari
- Clinical Research Development Center, Imam Reza Hospital, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Parviz Soufivand
- Clinical Research Development Center, Imam Reza Hospital, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Ali Gorgin Karaji
- Department of Immunology, School of Medicine, Kermanshah University of Medical Sciences, Daneshgah Street, Shahid Shiroudi Boulevard, Kermanshah, 6714869914, Iran
| | - Alireza Rezaiemanesh
- Department of Immunology, School of Medicine, Kermanshah University of Medical Sciences, Daneshgah Street, Shahid Shiroudi Boulevard, Kermanshah, 6714869914, Iran.
| |
Collapse
|
37
|
Xie S, Yuan L, Sui Y, Feng S, Li H, Li X. NME4 mediates metabolic reprogramming and promotes nonalcoholic fatty liver disease progression. EMBO Rep 2024; 25:378-403. [PMID: 38177901 PMCID: PMC10897415 DOI: 10.1038/s44319-023-00012-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 11/08/2023] [Accepted: 11/16/2023] [Indexed: 01/06/2024] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is mainly characterized by excessive fat accumulation in the liver, and it is associated with liver-related complications and adverse systemic diseases. NAFLD has become the most prevalent liver disease; however, effective therapeutic agents for NAFLD are still lacking. We combined clinical data with proteomics and metabolomics data, and found that the mitochondrial nucleoside diphosphate kinase NME4 plays a central role in mitochondrial lipid metabolism. Nme4 is markedly upregulated in mice fed with high-fat diet, and its expression is positively correlated with the level of steatosis. Hepatic deletion of Nme4 suppresses the progression of hepatic steatosis. Further studies demonstrated that NME4 interacts with several key enzymes in coenzyme A (CoA) metabolism and increases the level of acetyl-CoA and malonyl-CoA, which are the major lipid components of the liver in NAFLD. Increased level of acetyl-CoA and malonyl-CoA lead to increased triglyceride levels and lipid accumulation in the liver. Taken together, these findings reveal that NME4 is a critical regulator of NAFLD progression and a potential therapeutic target for NAFLD.
Collapse
Affiliation(s)
- Shaofang Xie
- Westlake Institute for Advanced Study, Fudan University, 310018, Shanghai, China
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, 310024, Hangzhou, Zhejiang, China
- Westlake Laboratory of Life Sciences and Biomedicine, 310024, Hangzhou, Zhejiang, China
| | - Lei Yuan
- Westlake Institute for Advanced Study, Fudan University, 310018, Shanghai, China
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, 310024, Hangzhou, Zhejiang, China
- Westlake Laboratory of Life Sciences and Biomedicine, 310024, Hangzhou, Zhejiang, China
| | - Yue Sui
- Westlake Institute for Advanced Study, Fudan University, 310018, Shanghai, China
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, 310024, Hangzhou, Zhejiang, China
- Westlake Laboratory of Life Sciences and Biomedicine, 310024, Hangzhou, Zhejiang, China
| | - Shan Feng
- Westlake Laboratory of Life Sciences and Biomedicine, 310024, Hangzhou, Zhejiang, China
| | - Hengle Li
- School of Life Sciences, Southern University of Science and Technology, 518055, Shenzhen, China
| | - Xu Li
- Westlake Institute for Advanced Study, Fudan University, 310018, Shanghai, China.
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, 310024, Hangzhou, Zhejiang, China.
- Westlake Laboratory of Life Sciences and Biomedicine, 310024, Hangzhou, Zhejiang, China.
| |
Collapse
|
38
|
Shi L, Ma H, Wang J, Ma M, Zhao H, Li Z, Wang JH, Wu S, Zhou Z, Dong MQ, Li Z. An EMC-Hpo-Yki axis maintains intestinal homeostasis under physiological and pathological conditions. Development 2023; 150:dev201958. [PMID: 38031990 DOI: 10.1242/dev.201958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 11/08/2023] [Indexed: 12/01/2023]
Abstract
Balanced control of stem cell proliferation and differentiation underlines tissue homeostasis. Disruption of tissue homeostasis often results in many diseases. However, how endogenous factors influence the proliferation and differentiation of intestinal stem cells (ISCs) under physiological and pathological conditions remains poorly understood. Here, we find that the evolutionarily conserved endoplasmic reticulum membrane protein complex (EMC) negatively regulates ISC proliferation and intestinal homeostasis. Compromising EMC function in progenitors leads to excessive ISC proliferation and intestinal homeostasis disruption. Mechanistically, the EMC associates with and stabilizes Hippo (Hpo) protein, the key component of the Hpo signaling pathway. In the absence of EMC, Yorkie (Yki) is activated to promote ISC proliferation due to Hpo destruction. The EMC-Hpo-Yki axis also functions in enterocytes to maintain intestinal homeostasis. Importantly, the levels of the EMC are dramatically diminished in tunicamycin-treated animals, leading to Hpo destruction, thereby resulting in intestinal homeostasis disruption due to Yki activation. Thus, our study uncovers the molecular mechanism underlying the action of the EMC in intestinal homeostasis maintenance under physiological and pathological conditions and provides new insight into the pathogenesis of tunicamycin-induced tumorigenesis.
Collapse
Affiliation(s)
- Lin Shi
- Laboratory of Stem Cell Biology, College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Hubing Ma
- Laboratory of Stem Cell Biology, College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Jinjun Wang
- Laboratory of Stem Cell Biology, College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Meifang Ma
- Laboratory of Stem Cell Biology, College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Hang Zhao
- Laboratory of Stem Cell Biology, College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Zhengran Li
- Laboratory of Stem Cell Biology, College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Jian-Hua Wang
- National Institute of Biological Sciences, Beijing 102206, China
| | - Shian Wu
- College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Zizhang Zhou
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| | - Meng-Qiu Dong
- National Institute of Biological Sciences, Beijing 102206, China
| | - Zhouhua Li
- Laboratory of Stem Cell Biology, College of Life Sciences, Capital Normal University, Beijing 100048, China
| |
Collapse
|
39
|
Zhang R, Pan S, Zheng S, Liao Q, Jiang Z, Wang D, Li X, Hu A, Li X, Zhu Y, Shen X, Lei J, Zhong S, Zhang X, Huang L, Wang X, Huang L, Shen L, Song BL, Zhao JW, Wang Z, Yang B, Guo X. Lipid-anchored proteasomes control membrane protein homeostasis. SCIENCE ADVANCES 2023; 9:eadj4605. [PMID: 38019907 PMCID: PMC10686573 DOI: 10.1126/sciadv.adj4605] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 10/30/2023] [Indexed: 12/01/2023]
Abstract
Protein degradation in eukaryotic cells is mainly carried out by the 26S proteasome, a macromolecular complex not only present in the cytosol and nucleus but also associated with various membranes. How proteasomes are anchored to the membrane and the biological meaning thereof have been largely unknown in higher organisms. Here, we show that N-myristoylation of the Rpt2 subunit is a general mechanism for proteasome-membrane interaction. Loss of this modification in the Rpt2-G2A mutant cells leads to profound changes in the membrane-associated proteome, perturbs the endomembrane system, and undermines critical cellular processes such as cell adhesion, endoplasmic reticulum-associated degradation and membrane protein trafficking. Rpt2G2A/G2A homozygous mutation is embryonic lethal in mice and is sufficient to abolish tumor growth in a nude mice xenograft model. These findings have defined an evolutionarily conserved mechanism for maintaining membrane protein homeostasis and underscored the significance of compartmentalized protein degradation by myristoyl-anchored proteasomes in health and disease.
Collapse
Affiliation(s)
- Ruizhu Zhang
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Shuxian Pan
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Suya Zheng
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Qingqing Liao
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Zhaodi Jiang
- National Institute of Biological Sciences, Beijing 102206, China
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing 100084, China
| | - Dixian Wang
- Department of Human Anatomy, Histology and Embryology, System Medicine Research Center, and Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
- Cryo-Electron Microscopy Center, Zhejiang University, Hangzhou 310058, China
| | - Xuemei Li
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Ao Hu
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Taikang Center for Life and Medical Sciences, Taikang Medical School, Wuhan University, Wuhan 430072, China
| | - Xinran Li
- Zhejiang University-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou 311200, China
| | - Yezhang Zhu
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Xiaoqi Shen
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Jing Lei
- Department of Neurobiology and Department of Neurology of Second Affiliated Hospital, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou 310058, China
- The MOE Frontier Science Center for Brain Research and Brain-Machine Integration, Zhejiang University School of Brain Science and Brain Medicine, Hangzhou 310058, China
| | - Siming Zhong
- Zhejiang University-University of Edinburgh Institute, Zhejiang University, Haining 314400, China
- Deanery of Biomedical Sciences, College of Medicine and Veterinary Medicine, University of Edinburgh, Edinburgh EH8 9YL, UK
| | - Xiaomei Zhang
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Lingyun Huang
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Xiaorong Wang
- Department of Physiology and Biophysics, University of California-Irvine, Irvine, CA 92697, USA
- Department of Developmental and Cell Biology, University of California-Irvine, Irvine, CA 92697, USA
| | - Lan Huang
- Department of Physiology and Biophysics, University of California-Irvine, Irvine, CA 92697, USA
- Department of Developmental and Cell Biology, University of California-Irvine, Irvine, CA 92697, USA
| | - Li Shen
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Bao-Liang Song
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Taikang Center for Life and Medical Sciences, Taikang Medical School, Wuhan University, Wuhan 430072, China
| | - Jing-Wei Zhao
- Department of Human Anatomy, Histology and Embryology, System Medicine Research Center, and Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
- Cryo-Electron Microscopy Center, Zhejiang University, Hangzhou 310058, China
| | - Zhiping Wang
- Department of Neurobiology and Department of Neurology of Second Affiliated Hospital, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou 310058, China
- The MOE Frontier Science Center for Brain Research and Brain-Machine Integration, Zhejiang University School of Brain Science and Brain Medicine, Hangzhou 310058, China
| | - Bing Yang
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Xing Guo
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
40
|
Christianson JC, Jarosch E, Sommer T. Mechanisms of substrate processing during ER-associated protein degradation. Nat Rev Mol Cell Biol 2023; 24:777-796. [PMID: 37528230 DOI: 10.1038/s41580-023-00633-8] [Citation(s) in RCA: 67] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/20/2023] [Indexed: 08/03/2023]
Abstract
Maintaining proteome integrity is essential for long-term viability of all organisms and is overseen by intrinsic quality control mechanisms. The secretory pathway of eukaryotes poses a challenge for such quality assurance as proteins destined for secretion enter the endoplasmic reticulum (ER) and become spatially segregated from the cytosolic machinery responsible for disposal of aberrant (misfolded or otherwise damaged) or superfluous polypeptides. The elegant solution provided by evolution is ER-membrane-bound ubiquitylation machinery that recognizes misfolded or surplus proteins or by-products of protein biosynthesis in the ER and delivers them to 26S proteasomes for degradation. ER-associated protein degradation (ERAD) collectively describes this specialized arm of protein quality control via the ubiquitin-proteasome system. But, instead of providing a single strategy to remove defective or unwanted proteins, ERAD represents a collection of independent processes that exhibit distinct yet overlapping selectivity for a wide range of substrates. Not surprisingly, ER-membrane-embedded ubiquitin ligases (ER-E3s) act as central hubs for each of these separate ERAD disposal routes. In these processes, ER-E3s cooperate with a plethora of specialized factors, coordinating recognition, transport and ubiquitylation of undesirable secretory, membrane and cytoplasmic proteins. In this Review, we focus on substrate processing during ERAD, highlighting common threads as well as differences between the many routes via ERAD.
Collapse
Affiliation(s)
- John C Christianson
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK.
| | - Ernst Jarosch
- Max-Delbrück-Centrer for Molecular Medicine in Helmholtz Association, Berlin-Buch, Germany
| | - Thomas Sommer
- Max-Delbrück-Centrer for Molecular Medicine in Helmholtz Association, Berlin-Buch, Germany.
- Institute for Biology, Humboldt Universität zu Berlin, Berlin, Germany.
| |
Collapse
|
41
|
Ramezannia Z, Shamekh A, Bannazadeh Baghi H. CRISPR-Cas system to discover host-virus interactions in Flaviviridae. Virol J 2023; 20:247. [PMID: 37891676 PMCID: PMC10605781 DOI: 10.1186/s12985-023-02216-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 10/25/2023] [Indexed: 10/29/2023] Open
Abstract
The Flaviviridae virus family members cause severe human diseases and are responsible for considerable mortality and morbidity worldwide. Therefore, researchers have conducted genetic screens to enhance insight into viral dependency and develop potential anti-viral strategies to treat and prevent these infections. The host factors identified by the clustered regularly interspaced short palindromic repeats (CRISPR) system can be potential targets for drug development. Meanwhile, CRISPR technology can be efficiently used to treat viral diseases as it targets both DNA and RNA. This paper discusses the host factors related to the life cycle of viruses of this family that were recently discovered using the CRISPR system. It also explores the role of immune factors and recent advances in gene editing in treating flavivirus-related diseases. The ever-increasing advancements of this technology may promise new therapeutic approaches with unique capabilities, surpassing the traditional methods of drug production and treatment.
Collapse
Affiliation(s)
- Zahra Ramezannia
- Department of Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Medical Virology, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Ali Shamekh
- Department of Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, 5166/15731, Iran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hossein Bannazadeh Baghi
- Department of Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, 5166/15731, Iran.
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
42
|
Rao B, Wang Q, Yao D, Xia Y, Li W, Xie Y, Li S, Cao M, Shen Y, Qin A, Zhao J, Cao Y. The cryo-EM structure of the human ERAD retrotranslocation complex. SCIENCE ADVANCES 2023; 9:eadi5656. [PMID: 37831771 PMCID: PMC10575581 DOI: 10.1126/sciadv.adi5656] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 09/12/2023] [Indexed: 10/15/2023]
Abstract
Endoplasmic reticulum-associated degradation (ERAD) maintains protein homeostasis by retrieving misfolded proteins from the endoplasmic reticulum (ER) lumen into the cytosol for degradation. The retrotranslocation of misfolded proteins across the ER membrane is an energy-consuming process, with the detailed transportation mechanism still needing clarification. We determined the cryo-EM structures of the hetero-decameric complex formed by the Derlin-1 tetramer and the p97 hexamer. It showed an intriguing asymmetric complex and a putative coordinated squeezing movement in Derlin-1 and p97 parts. With the conformational changes of p97 induced by its ATP hydrolysis activities, the Derlin-1 channel could be torn into a "U" shape with a large opening to the lipidic environment, thereby forming an entry for the substrates in the ER membrane. The EM analysis showed that p97 formed a functional protein complex with Derlin-1, revealing the coupling mechanism between the ERAD retrotranslocation and the ATP hydrolysis activities.
Collapse
Affiliation(s)
- Bing Rao
- Department of Orthopaedics, Shanghai Key Laboratory of Orthopaedic Implant, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Qian Wang
- Shanghai Institute of Precision Medicine, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, 115 Jinzun Road, Shanghai 200125, China
| | - Deqiang Yao
- Shanghai Institute of Precision Medicine, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, 115 Jinzun Road, Shanghai 200125, China
- State Key Laboratory of Oncogenes and Related Genes, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Ying Xia
- Shanghai Institute of Precision Medicine, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, 115 Jinzun Road, Shanghai 200125, China
| | - Wenguo Li
- Shanghai Institute of Precision Medicine, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, 115 Jinzun Road, Shanghai 200125, China
| | - Yuming Xie
- College of Basic Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Shaobai Li
- Shanghai Institute of Precision Medicine, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, 115 Jinzun Road, Shanghai 200125, China
| | - Mi Cao
- Shanghai Institute of Precision Medicine, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, 115 Jinzun Road, Shanghai 200125, China
| | - Yafeng Shen
- Shanghai Institute of Precision Medicine, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, 115 Jinzun Road, Shanghai 200125, China
| | - An Qin
- Department of Orthopaedics, Shanghai Key Laboratory of Orthopaedic Implant, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
- Department of Orthopaedics, Shanghai Frontiers Science Center of Degeneration and Regeneration in Skeletal System, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Jie Zhao
- Department of Orthopaedics, Shanghai Key Laboratory of Orthopaedic Implant, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
- Department of Orthopaedics, Shanghai Frontiers Science Center of Degeneration and Regeneration in Skeletal System, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Yu Cao
- Department of Orthopaedics, Shanghai Key Laboratory of Orthopaedic Implant, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
- Shanghai Institute of Precision Medicine, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, 115 Jinzun Road, Shanghai 200125, China
| |
Collapse
|
43
|
Kim W, Yeon HR, Kim JH, Kim JH, Kim JH, Kim HA, Jung JY, Kim J, Choi IA, Lee KE. Association between SYVN1 and SEL1 genetic polymorphisms and remission in rheumatoid arthritis patients treated with TNF-α inhibitors: a machine learning approach. Immunol Res 2023; 71:709-716. [PMID: 37119459 DOI: 10.1007/s12026-023-09382-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 04/01/2023] [Indexed: 05/01/2023]
Abstract
Rheumatoid arthritis (RA) is a severe chronic inflammatory condition that affects joint synovium. Suppressor/enhancer of lin-12-like (SEL1L)-Synoviolin 1 (SYVN1)-mediated endoplasmic reticulum-associated degradation (ERAD) is highly associated with RA development. Although targeting SEL1L-SYVN1-mediated ERAD can be beneficial, studies that evaluate the association between polymorphisms in their genes and remission from the disease in RA patients taking tumor necrosis factor (TNF)-α inhibitors have yet to be carried out. Hence, the purpose of this study was to investigate the association between SYVN1 and SEL1L polymorphisms and TNF-α inhibitor response using various machine learning models. A total of 12 single-nucleotide polymorphisms (SNPs), including 5 SNPs in SYVN1 and 7 SNPs of SEL1L were investigated. Logistic regression analysis was used to examine the relationship between genetic polymorphisms and response to treatment. Various machine learning methods were employed to evaluate factors associated with remission in patients receiving TNF-α inhibitors. After adjusting for covariates, we found that sulfasalazine and rs2025214 in SEL1L increase the remission rates by approximately 3.3 and 2.8 times, respectively (95% confidence intervals 1.126-9.695 and 1.074-7.358, respectively). Machine learning approaches showed acceptable prediction estimates for remission in RA patients receiving TNF-α inhibitors, with the area under the receiver-operating curve (AUROC) values ranging from 0.60 to 0.65. A polymorphism of the SEL1L gene (rs2025214) and sulfasalazine were found to be associated with treatment response in RA patients receiving TNF-α inhibitors. These preliminary data could be used to tailor treatment for RA patients using TNF-α inhibitors.
Collapse
Affiliation(s)
- Woorim Kim
- College of Pharmacy, Chungbuk National University, 660-1, Yeonje-ri, Osong-eup, Heungdeok-gu, Cheongju-si, 28160, Republic of Korea
- College of Pharmacy, Kangwon National University, Chuncheon, Republic of Korea
| | - Ha Rim Yeon
- College of Pharmacy, Chungbuk National University, 660-1, Yeonje-ri, Osong-eup, Heungdeok-gu, Cheongju-si, 28160, Republic of Korea
| | - Jun Hyeob Kim
- College of Pharmacy, Chungbuk National University, 660-1, Yeonje-ri, Osong-eup, Heungdeok-gu, Cheongju-si, 28160, Republic of Korea
| | - Joo Hee Kim
- College of Pharmacy, Ajou University, 164 Worldcup-ro, Yeongtong-gu, Suwon, 16499, Republic of Korea
| | - Ji Hyoun Kim
- Division of Rheumatology, Department of Internal Medicine, Chungbuk National University Hospital, 776, 1sunhwan-ro, Seowon-gu, Cheongju, 28644, Republic of Korea
| | - Hyoun-Ah Kim
- Department of Rheumatology, Ajou University School of Medicine, 164 Worldcup-ro, Yeongtong-gu, 14, Suwon, 16499, Republic of Korea
| | - Ju-Yang Jung
- Department of Rheumatology, Ajou University School of Medicine, 164 Worldcup-ro, Yeongtong-gu, 14, Suwon, 16499, Republic of Korea
| | - Jinhyun Kim
- Department of Internal Medicine, Chungnam National University College of Medicine, Daejeon, 35015, Republic of Korea
| | - In Ah Choi
- Division of Rheumatology, Department of Internal Medicine, Chungbuk National University Hospital, 776, 1sunhwan-ro, Seowon-gu, Cheongju, 28644, Republic of Korea.
| | - Kyung Eun Lee
- College of Pharmacy, Chungbuk National University, 660-1, Yeonje-ri, Osong-eup, Heungdeok-gu, Cheongju-si, 28160, Republic of Korea.
| |
Collapse
|
44
|
Liu H, Xu L, Zhang Y, Xie Y, Wang L, Zhou Y, Wang Z, Pan Y, Li W, Xu L, Xu X, Wang T, Meng K, He J, Qiu Y, Xu G, Ge W, Zhu Y, Wang L. Copper Increases the Sensitivity of Cholangiocarcinoma Cells to Tripterine by Inhibiting TMX2-Mediated Unfolded Protein Reaction Activation. Adv Healthc Mater 2023; 12:e2300913. [PMID: 37119498 DOI: 10.1002/adhm.202300913] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/18/2023] [Indexed: 05/01/2023]
Abstract
Chemotherapy-induced adaptive resistance is a significant factor that contributes to low therapeutic efficacy in tumor cells. The unfolded protein response (UPR) is a key mechanism in the development of drug resistance and serves as a critical reactive system for endoplasmic reticulum stress. Cu(II) can reduce the abundance of 60S ribosomal subunits and inhibit rRNA processing, leading to a decrease in the translation efficiency of the GRP78/BiP mRNA, which serves as a primary sensor for UPR activation. In this study, CuET-Lipid@Cela, composed of CuET and tripterine (Cela), demonstrates a significant synergistic antitumor effect on cholangiocarcinoma (CCA) cells. RNA-Seq is used to investigate the underlying mechanism, which suggests that the transmembrane protein 2 (TMX2) gene may be crucial in Cu(II) regulation of UPR by inhibiting the activation of GRP78/BiP and PERK/eIF2α. The synergistic antitumor efficacy of CuET-Lipid@Cela via inhibition of TMX2 is also confirmed in a myrAKT/YapS127A plasmid-induced primary CCA mouse model, providing new insights into the reversal of acquired chemotherapy-induced resistance in CCA.
Collapse
Affiliation(s)
- Hongwen Liu
- Department of Gastroenterology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu Province, 210008, P. R. China
| | - Lei Xu
- Department of Gastroenterology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu Province, 210008, P. R. China
| | - Yiyang Zhang
- Department of Gastroenterology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu Province, 210008, P. R. China
| | - Yiqiong Xie
- Department of Pharmacy, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, 21008, P. R. China
| | - Lishan Wang
- Department of Gastroenterology, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, 21008, P. R. China
| | - Yue Zhou
- Department of Gastroenterology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu Province, 210008, P. R. China
| | - Zhangding Wang
- Department of Gastroenterology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu Province, 210008, P. R. China
| | - Yani Pan
- Department of Gastroenterology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu Province, 210008, P. R. China
| | - Wenying Li
- Department of Gastroenterology, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, 21008, P. R. China
| | - Lu Xu
- Department of Pharmacy, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, 21008, P. R. China
| | - Xinyun Xu
- Department of Pathology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu Province, 210008, P. R. China
| | - Ting Wang
- Department of Pathology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu Province, 210008, P. R. China
| | - Kui Meng
- Department of Pathology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu Province, 210008, P. R. China
| | - Jian He
- Department of Nuclear Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu Province, 210008, P. R. China
| | - Yudong Qiu
- Department of Hepatopancreatobiliary Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu Province, 210008, P. R. China
| | - Guifang Xu
- Department of Gastroenterology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu Province, 210008, P. R. China
- Department of Gastroenterology, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, 21008, P. R. China
| | - Weihong Ge
- Department of Pharmacy, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, 21008, P. R. China
- Nanjing Medical Center for Clinical Pharmacy, Nanjing, Jiangsu Province, 210008, P. R. China
| | - Yun Zhu
- Department of Gastroenterology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu Province, 210008, P. R. China
- Department of Pharmacy, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, 21008, P. R. China
- Nanjing Medical Center for Clinical Pharmacy, Nanjing, Jiangsu Province, 210008, P. R. China
| | - Lei Wang
- Department of Gastroenterology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu Province, 210008, P. R. China
- Department of Gastroenterology, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, 21008, P. R. China
| |
Collapse
|
45
|
Wąhalska M, Riepe C, Ślusarz MJ, Graul M, Borowski LS, Qiao W, Foltynska M, Carette JE, Bieńkowska-Szewczyk K, Szczesny RJ, Kopito RR, Lipińska AD. The herpesvirus UL49.5 protein hijacks a cellular C-degron pathway to drive TAP transporter degradation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.27.559663. [PMID: 37808699 PMCID: PMC10557673 DOI: 10.1101/2023.09.27.559663] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
The transporter associated with antigen processing (TAP) is a key player in the MHC class I-restricted antigen presentation and an attractive target for immune evasion by viruses. Bovine herpesvirus 1 (BoHV-1) impairs TAP-dependent antigenic peptide transport through a two-pronged mechanism in which binding of the UL49.5 gene product to TAP both inhibits peptide transport and promotes its proteasomal degradation. How UL49.5 promotes TAP degradation is unknown. Here, we use high-content siRNA and genome-wide CRISPR-Cas9 screening to identify CLR2KLHDC3 as the E3 ligase responsible for UL49.5-triggered TAP disposal in human cells. We propose that the C-terminus of UL49.5 mimics a C-end rule degron that recruits the E3 to TAP and engages the CRL2 E3 in ER-associated degradation.
Collapse
Affiliation(s)
- Magda Wąhalska
- Laboratory of Virus Molecular Biology, Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, 80-307 Gdańsk, Poland
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Celeste Riepe
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Magdalena J. Ślusarz
- Department of Theoretical Chemistry, Faculty of Chemistry, University of Gdańsk, 80-308 Gdańsk, Poland
| | - Małgorzata Graul
- Laboratory of Virus Molecular Biology, Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, 80-307 Gdańsk, Poland
| | - Lukasz S. Borowski
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, 02-106 Warsaw, Poland
| | - Wenjie Qiao
- Department of Microbiology and Immunology, Stanford University, Stanford, CA 94305, USA
| | - Michalina Foltynska
- Laboratory of Virus Molecular Biology, Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, 80-307 Gdańsk, Poland
| | - Jan E. Carette
- Department of Microbiology and Immunology, Stanford University, Stanford, CA 94305, USA
| | - Krystyna Bieńkowska-Szewczyk
- Laboratory of Virus Molecular Biology, Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, 80-307 Gdańsk, Poland
| | - Roman J. Szczesny
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Ron R. Kopito
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Andrea D. Lipińska
- Laboratory of Virus Molecular Biology, Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, 80-307 Gdańsk, Poland
| |
Collapse
|
46
|
Podolsky MJ, Kheyfets B, Pandey M, Beigh AH, Yang CD, Lizama Valenzuela C, Datta R, Wolters PJ, McManus M, Qi L, Atabai K. Genome-wide screens identify SEL1L as an intracellular rheostat controlling collagen turnover. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.13.523943. [PMID: 36711851 PMCID: PMC9882208 DOI: 10.1101/2023.01.13.523943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Accumulating evidence has implicated impaired extracellular matrix (ECM) clearance as a key factor in fibrotic disease. Despite decades of research elucidating the effectors of ECM clearance, relatively little is understood regarding the upstream regulation of this process. Collagen is the most abundant constituent of normal and fibrotic ECM in mammalian tissues. Its catabolism occurs through extracellular proteolysis and cell-mediated uptake of collagen fragments for intracellular degradation. Given the paucity of information regarding the regulation of this latter process, we executed unbiased genome-wide screens to understand the molecular underpinnings of cell-mediated collagen clearance. Using this approach, we discovered a previously unappreciated mechanism through which collagen biosynthesis is sensed by cells internally and directly regulates clearance of extracellular collagen. The sensing mechanism is dependent on endoplasmic reticulum-resident protein SEL1L and occurs via a noncanonical function of SEL1L. This pathway functions as a homeostatic negative feedback loop that limits collagen accumulation in tissues. In human fibrotic lung disease, the induction of this collagen clearance pathway by collagen synthesis is impaired, thereby contributing to the pathological accumulation of collagen in lung tissue. Thus cell-autonomous, rheostatic collagen clearance is a previously unidentified pathway of tissue homeostasis.
Collapse
|
47
|
Yan W, Zhong Y, Hu X, Xu T, Zhang Y, Kales S, Qu Y, Talley DC, Baljinnyam B, LeClair CA, Simeonov A, Polster BM, Huang R, Ye Y, Rai G, Henderson MJ, Tao D, Fang S. Auranofin targets UBA1 and enhances UBA1 activity by facilitating ubiquitin trans-thioesterification to E2 ubiquitin-conjugating enzymes. Nat Commun 2023; 14:4798. [PMID: 37558718 PMCID: PMC10412574 DOI: 10.1038/s41467-023-40537-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 07/25/2023] [Indexed: 08/11/2023] Open
Abstract
UBA1 is the primary E1 ubiquitin-activating enzyme responsible for generation of activated ubiquitin required for ubiquitination, a process that regulates stability and function of numerous proteins. Decreased or insufficient ubiquitination can cause or drive aging and many diseases. Therefore, a small-molecule enhancing UBA1 activity could have broad therapeutic potential. Here we report that auranofin, a drug approved for the treatment of rheumatoid arthritis, is a potent UBA1 activity enhancer. Auranofin binds to the UBA1's ubiquitin fold domain and conjugates to Cys1039 residue. The binding enhances UBA1 interactions with at least 20 different E2 ubiquitin-conjugating enzymes, facilitating ubiquitin charging to E2 and increasing the activities of seven representative E3s in vitro. Auranofin promotes ubiquitination and degradation of misfolded ER proteins during ER-associated degradation in cells at low nanomolar concentrations. It also facilitates outer mitochondrial membrane-associated degradation. These findings suggest that auranofin can serve as a much-needed tool for UBA1 research and therapeutic exploration.
Collapse
Affiliation(s)
- Wenjing Yan
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Yongwang Zhong
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Xin Hu
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, 20850, USA
| | - Tuan Xu
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, 20850, USA
| | - Yinghua Zhang
- Center for Innovative Biomedical Resources, Biosensor Core, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Stephen Kales
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, 20850, USA
| | - Yanyan Qu
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, 20850, USA
| | - Daniel C Talley
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, 20850, USA
| | - Bolormaa Baljinnyam
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, 20850, USA
| | - Christopher A LeClair
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, 20850, USA
| | - Anton Simeonov
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, 20850, USA
| | - Brian M Polster
- Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research (STAR), University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Ruili Huang
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, 20850, USA
| | - Yihong Ye
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Ganesha Rai
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, 20850, USA
| | - Mark J Henderson
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, 20850, USA
| | - Dingyin Tao
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, 20850, USA.
| | - Shengyun Fang
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.
- Program in Oncology, UM Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.
| |
Collapse
|
48
|
Pleiner T, Hazu M, Pinton Tomaleri G, Nguyen VN, Januszyk K, Voorhees RM. A selectivity filter in the ER membrane protein complex limits protein misinsertion at the ER. J Cell Biol 2023; 222:e202212007. [PMID: 37199759 PMCID: PMC10200711 DOI: 10.1083/jcb.202212007] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 03/31/2023] [Accepted: 04/20/2023] [Indexed: 05/19/2023] Open
Abstract
Tail-anchored (TA) proteins play essential roles in mammalian cells, and their accurate localization is critical for proteostasis. Biophysical similarities lead to mistargeting of mitochondrial TA proteins to the ER, where they are delivered to the insertase, the ER membrane protein complex (EMC). Leveraging an improved structural model of the human EMC, we used mutagenesis and site-specific crosslinking to map the path of a TA protein from its cytosolic capture by methionine-rich loops to its membrane insertion through a hydrophilic vestibule. Positively charged residues at the entrance to the vestibule function as a selectivity filter that uses charge-repulsion to reject mitochondrial TA proteins. Similarly, this selectivity filter retains the positively charged soluble domains of multipass substrates in the cytosol, thereby ensuring they adopt the correct topology and enforcing the "positive-inside" rule. Substrate discrimination by the EMC provides a biochemical explanation for one role of charge in TA protein sorting and protects compartment integrity by limiting protein misinsertion.
Collapse
Affiliation(s)
- Tino Pleiner
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Masami Hazu
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Giovani Pinton Tomaleri
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Vy N. Nguyen
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Kurt Januszyk
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Rebecca M. Voorhees
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| |
Collapse
|
49
|
Chen S, Zhang J, Sun D, Wu Y, Fang J, Wan X, Li S, Zhang S, Gu Q, Shao Q, Dong J, Xu X, Wei F, Sun Q. SYVN1 Promotes STAT3 Protein Ubiquitination and Exerts Antiangiogenesis Effects in Retinopathy of Prematurity Development. Invest Ophthalmol Vis Sci 2023; 64:8. [PMID: 37540175 PMCID: PMC10408771 DOI: 10.1167/iovs.64.11.8] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 07/17/2023] [Indexed: 08/05/2023] Open
Abstract
PURPOSE SYVN1, a gene involved in endoplasmic reticulum-associated degradation, has been found to exert a protective effect by inhibiting inflammation in retinopathy. This study aimed to clarify whether SYVN1 is involved in the pathogenesis of retinopathy of prematurity (ROP) and its potential as a candidate for target therapy. METHODS Human retinal microvascular endothelial cells (hRMECs) and a mouse model of oxygen-induced retinopathy (OIR) were used to reveal the retinopathy development-associated protein expression and molecular mechanism. An adenovirus overexpressing SYVN1 or vehicle control was injected intravitreally at postnatal day 12 (P12), and the neovascular lesions were evaluated in retinal flatmounts with immunofluorescence staining, and hematoxylin and eosin staining at P17. Visual function was assessed by using electroretinogram (ERG). RESULTS Endogenous SYVN1 expression dramatically decreased in hRMECs under hypoxia and in ROP mouse retinas. SYVN1 regulated the signal transducer and activator of transcription 3 (STAT3)/vascular endothelial growth factor (VEGF) axis. SYVN1 overexpression promoted ubiquitination and degradation of STAT3, decreased the levels of phospho-STAT3, secretion of VEGF, and formation of neovascularization in hRMECs, which could be rescued by STAT3 activator treatment. In addition, SYVN1 overexpression prevented neovascularization and extended physiologic retinal vascular development in the retinal tissues of OIR mice without affecting retinal function. CONCLUSIONS SYVN1 has a protective effect against OIR, and the molecular mechanisms are partly through SYVN1-mediated ubiquitination of STAT3 and the subsequent downregulation of VEGF. These findings strongly support our assumption that SYVN1 confers ROP resistance and may be a potentially novel pharmaceutical target against proliferative retinopathy.
Collapse
Affiliation(s)
- Shimei Chen
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, National Clinical Research Center for Eye Diseases, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, China
| | - Jian Zhang
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, National Clinical Research Center for Eye Diseases, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, China
| | - Dandan Sun
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, National Clinical Research Center for Eye Diseases, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, China
| | - Yidong Wu
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, National Clinical Research Center for Eye Diseases, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, China
| | - Junwei Fang
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, National Clinical Research Center for Eye Diseases, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, China
| | - Xiaoling Wan
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, National Clinical Research Center for Eye Diseases, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, China
| | - Shenping Li
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, National Clinical Research Center for Eye Diseases, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, China
| | - Shuchang Zhang
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, National Clinical Research Center for Eye Diseases, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, China
| | - Qing Gu
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, National Clinical Research Center for Eye Diseases, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, China
| | - Qing Shao
- Department of Ophthalmology, Shanghai Aier Eye Hospital, Xuhui District, Shanghai Aier Eye Institute, Shanghai, China
| | - Jun Dong
- Department of Ophthalmology, Shanghai Aier Eye Hospital, Xuhui District, Shanghai Aier Eye Institute, Shanghai, China
| | - Xun Xu
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, National Clinical Research Center for Eye Diseases, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, China
| | - Fang Wei
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, National Clinical Research Center for Eye Diseases, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, China
| | - Qiao Sun
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, National Clinical Research Center for Eye Diseases, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, China
- Department of Ophthalmology, Shanghai Aier Eye Hospital, Xuhui District, Shanghai Aier Eye Institute, Shanghai, China
| |
Collapse
|
50
|
Chen Z, Mondal A, Abderemane-Ali F, Jang S, Niranjan S, Montaño JL, Zaro BW, Minor DL. EMC chaperone-Ca V structure reveals an ion channel assembly intermediate. Nature 2023; 619:410-419. [PMID: 37196677 PMCID: PMC10896479 DOI: 10.1038/s41586-023-06175-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 05/05/2023] [Indexed: 05/19/2023]
Abstract
Voltage-gated ion channels (VGICs) comprise multiple structural units, the assembly of which is required for function1,2. Structural understanding of how VGIC subunits assemble and whether chaperone proteins are required is lacking. High-voltage-activated calcium channels (CaVs)3,4 are paradigmatic multisubunit VGICs whose function and trafficking are powerfully shaped by interactions between pore-forming CaV1 or CaV2 CaVα1 (ref. 3), and the auxiliary CaVβ5 and CaVα2δ subunits6,7. Here we present cryo-electron microscopy structures of human brain and cardiac CaV1.2 bound with CaVβ3 to a chaperone-the endoplasmic reticulum membrane protein complex (EMC)8,9-and of the assembled CaV1.2-CaVβ3-CaVα2δ-1 channel. These structures provide a view of an EMC-client complex and define EMC sites-the transmembrane (TM) and cytoplasmic (Cyto) docks; interaction between these sites and the client channel causes partial extraction of a pore subunit and splays open the CaVα2δ-interaction site. The structures identify the CaVα2δ-binding site for gabapentinoid anti-pain and anti-anxiety drugs6, show that EMC and CaVα2δ interactions with the channel are mutually exclusive, and indicate that EMC-to-CaVα2δ hand-off involves a divalent ion-dependent step and CaV1.2 element ordering. Disruption of the EMC-CaV complex compromises CaV function, suggesting that the EMC functions as a channel holdase that facilitates channel assembly. Together, the structures reveal a CaV assembly intermediate and EMC client-binding sites that could have wide-ranging implications for the biogenesis of VGICs and other membrane proteins.
Collapse
Affiliation(s)
- Zhou Chen
- Cardiovascular Research Institute, University of California, San Francisco, CA, USA
| | - Abhisek Mondal
- Cardiovascular Research Institute, University of California, San Francisco, CA, USA
| | - Fayal Abderemane-Ali
- Cardiovascular Research Institute, University of California, San Francisco, CA, USA
- Department of Physiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Seil Jang
- Cardiovascular Research Institute, University of California, San Francisco, CA, USA
| | - Sangeeta Niranjan
- Cardiovascular Research Institute, University of California, San Francisco, CA, USA
| | - José L Montaño
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA, USA
| | - Balyn W Zaro
- Cardiovascular Research Institute, University of California, San Francisco, CA, USA
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA, USA
| | - Daniel L Minor
- Cardiovascular Research Institute, University of California, San Francisco, CA, USA.
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA, USA.
- California Institute for Quantitative Biomedical Research, University of California, San Francisco, CA, USA.
- Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, CA, USA.
- Molecular Biophysics and Integrated Bio-imaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA, USA.
| |
Collapse
|