1
|
Abe J, Chau K, Mojiri A, Wang G, Oikawa M, Samanthapudi VSK, Osborn AM, Ostos-Mendoza KC, Mariscal-Reyes KN, Mathur T, Jain A, Herrmann J, Yusuf SW, Krishnan S, Deswal A, Lin SH, Kotla S, Cooke JP, Le NT. Impacts of Radiation on Metabolism and Vascular Cell Senescence. Antioxid Redox Signal 2025. [PMID: 40233257 DOI: 10.1089/ars.2024.0741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
Significance: This review investigates how radiation therapy (RT) increases the risk of delayed cardiovascular disease (CVD) in cancer survivors. Understanding the mechanisms underlying radiation-induced CVD is essential for developing targeted therapies to mitigate these effects and improve long-term outcomes for patients with cancer. Recent Advances: Recent studies have primarily focused on metabolic alterations induced by irradiation in various cancer cell types. However, there remains a significant knowledge gap regarding the role of chronic metabolic alterations in normal cells, particularly vascular cells, in the progression of CVD after RT. Critical Issues: This review centers on RT-induced metabolic alterations in vascular cells and their contribution to senescence accumulation and chronic inflammation across the vasculature post-RT. We discuss key metabolic pathways, including glycolysis, the tricarboxylic acid cycle, lipid metabolism, glutamine metabolism, and redox metabolism (nicotinamide adenine dinucleotide/Nicotinamide adenine dinucleotide (NADH) and nicotinamide adenine dinucleotide phosphate (NADP+)/NADPH). We further explore the roles of regulatory proteins such as p53, adenosine monophosphate-activated protein kinase, and mammalian target of rapamycin in driving these metabolic dysregulations. The review emphasizes the impact of immune-vascular crosstalk mediated by the senescence-associated secretory phenotype, which perpetuates metabolic dysfunction, enhances chronic inflammation, drives senescence accumulation, and causes vascular damage, ultimately contributing to cardiovascular pathogenesis. Future Directions: Future research should prioritize identifying therapeutic targets within these metabolic pathways or the immune-vascular interactions influenced by RT. Correcting metabolic dysfunction and reducing chronic inflammation through targeted therapies could significantly improve cardiovascular outcomes in cancer survivors. Antioxid. Redox Signal. 00, 000-000.
Collapse
Affiliation(s)
- Junichi Abe
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Khanh Chau
- Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, Texas, USA
| | - Anahita Mojiri
- Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, Texas, USA
| | - Guangyu Wang
- Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, Texas, USA
| | - Masayoshi Oikawa
- Department of Cardiovascular Medicine, Fukushima Medical University, Fukushima, Japan
| | - Venkata S K Samanthapudi
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Abigail M Osborn
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | | | | | - Tammay Mathur
- Department of Biomedical Engineering, College of Engineering, Texas A&M University, College Station, Texas, USA
| | - Abhishek Jain
- Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, Texas, USA
- Department of Biomedical Engineering, College of Engineering, Texas A&M University, College Station, Texas, USA
- Department of Medical Physiology, School of Medicine, Texas A&M Health Science Center, College Station, Texas, USA
| | - Joerg Herrmann
- Cardio Oncology Clinic, Division of Preventive Cardiology, Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Syed Wamique Yusuf
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Sunil Krishnan
- Department of Neurosurgery, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Anita Deswal
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Steven H Lin
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Sivareddy Kotla
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - John P Cooke
- Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, Texas, USA
| | - Nhat-Tu Le
- Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, Texas, USA
| |
Collapse
|
2
|
Koo KY, Moon K, Song HS, Lee MS. Metabolic regulation by p53: Implications for cancer therapy. Mol Cells 2025; 48:100198. [PMID: 39986611 PMCID: PMC11925517 DOI: 10.1016/j.mocell.2025.100198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 02/12/2025] [Accepted: 02/12/2025] [Indexed: 02/24/2025] Open
Abstract
The tumor suppressor p53, long known for its roles in maintaining genomic integrity and suppressing tumorigenesis, has recently been recognized as a key regulator of cellular metabolism. Here, we review p53's emerging metabolic functions, highlighting its ability to orchestrate glucose, amino acid, and lipid metabolism. By promoting oxidative phosphorylation while inhibiting glycolysis and anabolic pathways, wild-type p53 counters metabolic reprogramming characteristic of cancer cells, such as the Warburg effect, and protects cells from mild cellular stresses. In contrast, mutant p53 disrupts these processes, fostering metabolic adaptations that support tumor progression. These findings pave the way for therapeutic approaches targeting p53-driven metabolic vulnerabilities in cancer.
Collapse
Affiliation(s)
- Ki Yeon Koo
- Department of Life Sciences, POSTECH, Pohang, Korea
| | - Kwanho Moon
- Department of Life Sciences, POSTECH, Pohang, Korea
| | | | - Min-Sik Lee
- Department of Life Sciences, POSTECH, Pohang, Korea.
| |
Collapse
|
3
|
Gore M, Kabekkodu SP, Chakrabarty S. Exploring the metabolic alterations in cervical cancer induced by HPV oncoproteins: From mechanisms to therapeutic targets. Biochim Biophys Acta Rev Cancer 2025; 1880:189292. [PMID: 40037419 DOI: 10.1016/j.bbcan.2025.189292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 02/24/2025] [Accepted: 02/25/2025] [Indexed: 03/06/2025]
Abstract
The role of human Papillomavirus (HPV) in metabolic reprogramming is implicated in the development and progression of cervical cancer. During carcinogenesis, cancer cells modify various metabolic pathways to generate energy and sustain their growth and development. Cervical cancer, one of the most prevalent malignancies affecting women globally, involves metabolic alterations such as increased glycolysis, elevated lactate production, and lipid accumulation. The oncoproteins, primarily E6 and E7, which are encoded by high-risk HPVs, facilitate the accumulation of several cancer markers, promoting not only the growth and development of cancer but also metastasis, immune evasion, and therapy resistance. HPV oncoproteins interact with cellular MYC (c-MYC), retinoblastoma protein (pRB), p53, and hypoxia-inducible factor 1α (HIF-1α), leading to the induction of metabolic reprogramming and favour the Warburg effect. Metabolic reprogramming enables HPV to persist for an extended period and accelerates the progression of cervical cancer. This review summarizes the role of HPV oncoproteins in metabolic reprogramming and their contributions to the development and progression of cervical cancer. Additionally, this review provides insights into how metabolic reprogramming opens avenues for novel therapeutic strategies, including the discovery of new and repurposed drugs that could be applied to treat cervical cancer.
Collapse
Affiliation(s)
- Mrudula Gore
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Shama Prasada Kabekkodu
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India.
| | - Sanjiban Chakrabarty
- Department of Public Health Genomics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| |
Collapse
|
4
|
Chang J, Liu D, Xiao Y, Tan B, Deng J, Mei Z, Liao J. Disulfidptosis: a new target for central nervous system disease therapy. Front Neurosci 2025; 19:1514253. [PMID: 40109666 PMCID: PMC11920580 DOI: 10.3389/fnins.2025.1514253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Accepted: 01/27/2025] [Indexed: 03/22/2025] Open
Abstract
Disulfidptosis is a pathologic process that occurs under conditions of NADPH deficiency and excess disulfide bonds in cells that express high levels of SLC7A11. This process is caused by glucose deprivation-induced disulfide stress and was first described by cancer researchers. Oxidative stress is a hypothesized mechanism underlying diseases of the central nervous system (CNS), and disulfide stress is a specific type of oxidative stress. Proteins linked to disulfidptosis and metabolic pathways involved in disulfidptosis are significantly associated with diseases of the CNS (neurodegenerative disease, neurogliomas and ischemic stroke). However, the specific mechanism responsible for this correlation remains unknown. This review provides a comprehensive overview of the current knowledge regarding the origin elements, genetic factors, and signaling proteins involved in the pathogenesis of disulfidptosis. It demonstrates that the disruption of thiometabolism and disulfide stress play critical roles in CNS diseases, which are associated with the potential role of disulfidptosis. We also summarize disulfidptosis-related drugs and highlight potential therapeutic strategies for treating CNS diseases. Additionally, this paper suggests a testable hypothesis that might be a promising target for treating CNS diseases.
Collapse
Affiliation(s)
- Jing Chang
- College of Medicine, Hunan University of Traditional Chinese Medicine, Changsha, China
| | - Danhong Liu
- Institute of Clinical Pharmacology of Chinese Materia Medica, Hunan Academy of Chinese Medicine, Changsha, China
- Hunan Provincial Hospital of Integrated Traditional Chinese and Western Medicine (The Affiliated Hospital of Hunan Academy of Chinese Medicine), Changsha, China
| | - Yuqi Xiao
- College of Medicine, Hunan University of Traditional Chinese Medicine, Changsha, China
| | - Boyao Tan
- College of Medicine, Hunan University of Traditional Chinese Medicine, Changsha, China
| | - Jun Deng
- Department of Neurology, Hunan Provincial Hospital of Integrated Traditional Chinese and Western Medicine, Changsha, China
| | - Zhigang Mei
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, China
| | - Jun Liao
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, China
- Vascular Biology Laboratory, Medical College, Hunan University of Chinese Medicine, Changsha, China
| |
Collapse
|
5
|
Liu W, Ni Y, Bai H, Liu X, Shahzad A, Cui K, Duan Q, Bai Z, Dong Y, Yi Z, Sai B, Kuang Y, Guo C, Zhu Y, Zhang Q, Yang Z. A BRAF-activated noncoding RNA attenuates clear cell renal cell carcinoma via repression of glucose-6-phosphate dehydrogenase. J Biol Chem 2025; 301:108247. [PMID: 39894218 PMCID: PMC11889594 DOI: 10.1016/j.jbc.2025.108247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 01/07/2025] [Accepted: 01/18/2025] [Indexed: 02/04/2025] Open
Abstract
Clear cell renal cell carcinoma (ccRCC) is a disease rooted in metabolic disorders, distinguished by abnormally high activity of glucose 6-phosphate dehydrogenase (G6PD). G6PD serves as a key rate-limiting enzyme in the pentose phosphate pathway. Meanwhile, BRAF-activated noncoding RNA (BANCR) has emerged as a crucial regulatory factor linked to various cancers. The expression pattern of BANCR varies across different cancer types, exhibiting apparent duality in its function. However, the precise role and underlying mechanisms of BANCR in ccRCC tumorigenesis remain incompletely understood. Our study indicated that BANCR was downregulated in ccRCC and influenced cell survival by modulating cell proliferation, apoptosis, and G6PD enzyme activity. The underlying mechanism was that BANCR could directly bind to G6PD through a long noncoding RNA-protein interaction, ultimately inhibiting G6PD activity by impeding its dimer formation. Moreover, BANCR exhibited the capability to modulate the glucose metabolic flow in ccRCC cells. Subsequent experiments demonstrated a significant inhibition of tumor growth in vivo upon overexpression of BANCR, and G6PD played a pivotal role in mediating the tumor-suppressive effect of BANCR in ccRCC cells. In conclusion, this study provides novel insights into the molecular pathogenesis of ccRCC, highlights a distinct and new regulatory mechanism responsible for the ectopic overactivation of G6PD in ccRCC progression, and suggests that BANCR-mediated suppression of G6PD activity could emerge as a potential therapeutic strategy for ccRCC treatment.
Collapse
Affiliation(s)
- Wenjing Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Yunnan, Kunming, PR China
| | - Yueli Ni
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Yunnan, Kunming, PR China
| | - Honggang Bai
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Yunnan, Kunming, PR China; Department of Clinical Laboratory, The Second Hospital of Jingzhou, Jingzhou, Hubei, PR China
| | - Xiangjie Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Yunnan, Kunming, PR China
| | - Asif Shahzad
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Yunnan, Kunming, PR China
| | - Kun Cui
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Yunnan, Kunming, PR China
| | - Qiuxin Duan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Yunnan, Kunming, PR China
| | - Ziyuan Bai
- Department of Pathology, The First Affiliated Hospital of Kunming Medical University, Yunnan, Kunming, PR China
| | - Yurong Dong
- Department of Pathology, The First Affiliated Hospital of Kunming Medical University, Yunnan, Kunming, PR China
| | - Zihan Yi
- Department of Medical Oncology, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Yunnan, Kunming, PR China
| | - Buqing Sai
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Yunnan, Kunming, PR China
| | - Yingmin Kuang
- Department of Organ Transplantation, The First Affiliated Hospital of Kunming Medical University, Yunnan, Kunming, PR China
| | - Chen Guo
- Greater Bay Biomedical InnoCenter, Shenzhen Bay Laboratory, Shenzhen, PR China.
| | - Yuechun Zhu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Yunnan, Kunming, PR China
| | - Qiao Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Yunnan, Kunming, PR China.
| | - Zhe Yang
- Department of Pathology, The First Affiliated Hospital of Kunming Medical University, Yunnan, Kunming, PR China.
| |
Collapse
|
6
|
Hu Y, Chen M, Sun S, Zhang C, Xin Z, Sun X, Wang K, Jin K, Du X, Xing B, Liu X. Long non-coding RNA LINC01532 sustains redox homeostasis and accelerates lenvatinib resistance in hepatocellular carcinoma. J Adv Res 2025:S2090-1232(25)00132-8. [PMID: 40023250 DOI: 10.1016/j.jare.2025.02.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 01/26/2025] [Accepted: 02/25/2025] [Indexed: 03/04/2025] Open
Abstract
INTRODUCTION Lenvatinib is the first-line therapy of hepatocellular carcinoma (HCC) and the high frequency of lenvatinib resistance hinders the improvement of HCC treatment. Since NADPH plays vital roles in antioxidant defense and reductive biosynthesis, cancer cells exert NADPH metabolic adaptation to support their malignant activities, including drug resistance. However, the underlying mechanisms need to be further studied. OBJECTIVES This study aims to delineate the latent mechanism by which HCC cells modulate NADPH metabolic adaptation and lenvatinib resistance. METHODS Using high-throughput screening, we screened LINC01532 as a critical regulator in NADPH metabolic adaptation. The function of LINC01532 in drug resistance of HCC cells was analyzed by in vitro and in vivo model. NADPH assay, malondialdehyde (MDA) assay, and glutathione (GSH) detection assay were carried out to explore the role of LINC01532 in NADPH metabolism. Furthermore, RNA-binding protein immunoprecipitation, RNA pull-down assay, co-immunoprecipitation, and chromatin immunoprecipitation experiments were utilized to uncover the underlying mechanisms. RESULTS High expression of LINC01532 predicted poorer prognosis in HCC patients. LINC01532 stimulated NADPH production and blunted lenvatinib-induced cell death, leading to drug resistance. Mechanistically, LINC01532 bound to hnRNPK and promoted CDK2-mediated phosphorylation of hnRNPK, which facilitated G6PD pre-mRNA splicing, resulting in high expression of G6PD and upregulated NADPH synthesis. The elevated NADPH cleared reactive oxygen species (ROS), supported biomass synthesis, and epigenetically modulated gene expression. Inhibition of LINC01532 significantly enhanced lenvatinib sensitivity of HCC cells. The m6A modification induced by mTORC1 promoted the expression of LINC01532 in HCC cells. CONCLUSION Collectively, our findings demonstrate that LINC01532 confers lenvatinib resistance of HCC cells by modulating NADPH metabolic adaptation. LINC01532 might be a prognostic or therapeutic target for HCC.
Collapse
Affiliation(s)
- Yang Hu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Hepatopancreatobiliary Surgery Department I, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Muhua Chen
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Hepatopancreatobiliary Surgery Department I, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Shiqi Sun
- Department of Cell Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Chunfeng Zhang
- Department of Medical Genetics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Zechang Xin
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Hepatopancreatobiliary Surgery Department I, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Xiaoyan Sun
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Hepatopancreatobiliary Surgery Department I, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Kun Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Hepatopancreatobiliary Surgery Department I, Peking University Cancer Hospital & Institute, Beijing 100142, China; State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, Hepatopancreatobiliary Surgery Department I, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Kemin Jin
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Hepatopancreatobiliary Surgery Department I, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Xiaojuan Du
- Department of Cell Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Baocai Xing
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Hepatopancreatobiliary Surgery Department I, Peking University Cancer Hospital & Institute, Beijing 100142, China.
| | - Xiaofeng Liu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Hepatopancreatobiliary Surgery Department I, Peking University Cancer Hospital & Institute, Beijing 100142, China.
| |
Collapse
|
7
|
Jiang X, Wang T, Zhao B, Sun H, Dong Y, Ma Y, Li Z, Wu Y, Wang K, Guan X, Long B, Qin L, Shi W, Shi L, He Q, Liu W, Li M, Xiao L, Zhou C, Sun H, Yang J, Guan J, Zhou H, Yu Z, Jiao Z. KRAS G12D-driven pentose phosphate pathway remodeling imparts a targetable vulnerability synergizing with MRTX1133 for durable remissions in PDAC. Cell Rep Med 2025; 6:101966. [PMID: 39970873 DOI: 10.1016/j.xcrm.2025.101966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 11/04/2024] [Accepted: 01/16/2025] [Indexed: 02/21/2025]
Abstract
The KRASG12D inhibitor MRTX1133 shows the potential to revolutionize the treatment paradigm for pancreatic ductal adenocarcinoma (PDAC), yet presents challenges. Our findings indicate that KRASG12D remodels a pentose phosphate pathway (PPP)-dominant central carbon metabolism pattern, facilitating malignant progression and resistance to MRTX1133 in PDAC. Mechanistically, KRASG12D drives excessive degradation of p53 and glucose-6-phosphate dehydrogenase (G6PD)-mediated PPP reprogramming through retinoblastoma (Rb)/E2F1/p53 axis-regulated feedback loops that amplify ubiquitin-conjugating enzyme E2T (UBE2T) transcription. Genetic ablation or pharmacological inhibition of UBE2T significantly suppresses PDAC progression and potentiates MRTX1133 efficacy. Leveraging structure advantages of the UBE2T inhibitor pentagalloylglucose (PGG), we develop a self-assembling nano co-delivery system with F-127, PGG, and MRTX1133. This system enhances the efficacy of PGG and MRTX1133, achieving durable remissions (85% overall response rate) and long-term survival (100% progression-free survival) in patient-derived xenografts and spontaneous PDAC mice. This study reveals the role of KRASG12D-preferred PPP reprogramming in MRTX1133 resistance and proposes a potentially therapeutic strategy for KRASG12D-mutated PDAC.
Collapse
Affiliation(s)
- Xiangyan Jiang
- Department of General Surgery, Lanzhou University Second Hospital, Lanzhou 730000, China; The Second Clinical Medical School, Lanzhou University, Lanzhou 730000, China
| | - Tao Wang
- Department of General Surgery, Lanzhou University Second Hospital, Lanzhou 730000, China; The Second Clinical Medical School, Lanzhou University, Lanzhou 730000, China
| | - Bin Zhao
- Department of General Surgery, Lanzhou University Second Hospital, Lanzhou 730000, China; The Second Clinical Medical School, Lanzhou University, Lanzhou 730000, China
| | - Haonan Sun
- Department of General Surgery, Lanzhou University Second Hospital, Lanzhou 730000, China; The Second Clinical Medical School, Lanzhou University, Lanzhou 730000, China
| | - Yuman Dong
- Gansu Province High-Altitude High-Incidence Cancer Biobank, Lanzhou University Second Hospital, Lanzhou 730000, China; Cuiying Biomedical Research Center, Lanzhou University Second Hospital, Lanzhou 730000, China; State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Yong Ma
- Department of General Surgery, Lanzhou University Second Hospital, Lanzhou 730000, China; The Second Clinical Medical School, Lanzhou University, Lanzhou 730000, China
| | - Zhigang Li
- The Second Clinical Medical School, Lanzhou University, Lanzhou 730000, China
| | - Yuxia Wu
- The Second Clinical Medical School, Lanzhou University, Lanzhou 730000, China
| | - Keshen Wang
- Department of General Surgery, Lanzhou University Second Hospital, Lanzhou 730000, China; The Second Clinical Medical School, Lanzhou University, Lanzhou 730000, China
| | - Xiaoying Guan
- Department of Pathology, Lanzhou University Second Hospital, Lanzhou 730000, China
| | - Bo Long
- Department of General Surgery, Lanzhou University Second Hospital, Lanzhou 730000, China
| | - Long Qin
- Gansu Province High-Altitude High-Incidence Cancer Biobank, Lanzhou University Second Hospital, Lanzhou 730000, China; Cuiying Biomedical Research Center, Lanzhou University Second Hospital, Lanzhou 730000, China
| | - Wengui Shi
- Gansu Province High-Altitude High-Incidence Cancer Biobank, Lanzhou University Second Hospital, Lanzhou 730000, China; Cuiying Biomedical Research Center, Lanzhou University Second Hospital, Lanzhou 730000, China
| | - Lei Shi
- School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Qichen He
- Department of General Surgery, Lanzhou University Second Hospital, Lanzhou 730000, China; The Second Clinical Medical School, Lanzhou University, Lanzhou 730000, China
| | - Wenbo Liu
- The Second Clinical Medical School, Lanzhou University, Lanzhou 730000, China
| | - Mingdou Li
- The Second Clinical Medical School, Lanzhou University, Lanzhou 730000, China
| | - Lixia Xiao
- Department of General Surgery, Lanzhou University Second Hospital, Lanzhou 730000, China; The Second Clinical Medical School, Lanzhou University, Lanzhou 730000, China
| | - Chengliang Zhou
- Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6500 HB Nijmegen, the Netherlands
| | - Hui Sun
- Cuiying Biomedical Research Center, Lanzhou University Second Hospital, Lanzhou 730000, China
| | - Jing Yang
- Cuiying Biomedical Research Center, Lanzhou University Second Hospital, Lanzhou 730000, China
| | - Junhong Guan
- Cuiying Biomedical Research Center, Lanzhou University Second Hospital, Lanzhou 730000, China
| | - Huinian Zhou
- Department of General Surgery, Lanzhou University Second Hospital, Lanzhou 730000, China
| | - Zeyuan Yu
- Department of General Surgery, Lanzhou University Second Hospital, Lanzhou 730000, China; Gansu Province High-Altitude High-Incidence Cancer Biobank, Lanzhou University Second Hospital, Lanzhou 730000, China
| | - Zuoyi Jiao
- Department of General Surgery, Lanzhou University Second Hospital, Lanzhou 730000, China; Gansu Province High-Altitude High-Incidence Cancer Biobank, Lanzhou University Second Hospital, Lanzhou 730000, China.
| |
Collapse
|
8
|
Trejo-Solís C, Escamilla-Ramírez Á, Gómez-Manzo S, Castillo-Rodriguez RA, Palomares-Alonso F, Castillo-Pérez C, Jiménez-Farfán D, Sánchez-García A, Gallardo-Pérez JC. The pentose phosphate pathway (PPP) in the glioma metabolism: A potent enhancer of malignancy. Biochimie 2025; 232:117-126. [PMID: 39894336 DOI: 10.1016/j.biochi.2025.01.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 01/23/2025] [Accepted: 01/31/2025] [Indexed: 02/04/2025]
Abstract
The glioma hallmark includes reprogramming metabolism to support biosynthetic and bioenergetic demands, as well as to maintain their redox equilibrium. It has been suggested that the pentose phosphate pathway (PPP) and glycolysis are directly involved in the dynamics and regulation of glioma cell proliferation and migration. The PPP is implicated in cellular redox homeostasis and the modulation of signaling pathways, which play a fundamental role in the progression of tumors to malignant grades, metastasis, and drug resistance. Several studies have shown that in glioblastoma cells, the activity, expression, and metabolic flux of some PPP enzymes increase, leading to heightened activity of the pathway. This generates higher levels of DNA, lipids, cholesterol, and amino acids, favoring rapid cell proliferation. Due to the crucial role played by the PPP in the development of glioma cells, enzymes from this pathway have been proposed as potential therapeutic targets. This review summarizes and highlights the role that the PPP plays in glioma cells and focuses on the key functions of the enzymes and metabolites generated by this pathway, as well as the regulation of the PPP. The studies described in this article enrich the understanding of the PPP as a therapeutic tool in the search for pharmacological targets for the development of a new generation of drugs to treat glioma.
Collapse
Affiliation(s)
- Cristina Trejo-Solís
- Laboratorio Experimental de Enfermedades Neurodegenerativas, Unidad Periférica para el Estudio de la Neuroinflamación, Laboratorio de Neuropatologia Experimental, Instituto Nacional de Neurología y Neurocirugía, CDMX, 14269, Mexico.
| | | | - Saúl Gómez-Manzo
- Laboratorio de Bioquímica Genética, Instituto Nacional de Pediatría, Secretaría de Salud, CDMX, 04530, Mexico.
| | - Rosa Angélica Castillo-Rodriguez
- CICATA Unidad Morelos, Instituto Politécnico Nacional, Boulevard de la Tecnología, 1036 Z-1, P 2/2, Atlacholoaya, 62790, Xochitepec, Mexico.
| | - Francisca Palomares-Alonso
- Laboratorio Experimental de Enfermedades Neurodegenerativas, Unidad Periférica para el Estudio de la Neuroinflamación, Laboratorio de Neuropatologia Experimental, Instituto Nacional de Neurología y Neurocirugía, CDMX, 14269, Mexico
| | - Carlos Castillo-Pérez
- Laboratorio Experimental de Enfermedades Neurodegenerativas, Unidad Periférica para el Estudio de la Neuroinflamación, Laboratorio de Neuropatologia Experimental, Instituto Nacional de Neurología y Neurocirugía, CDMX, 14269, Mexico.
| | - Dolores Jiménez-Farfán
- Laboratorio de Inmunología, División de Estudios de Posgrado e Investigación, Facultad de Odontología, Universidad Nacional Autónoma de México, 04510, Ciudad de Mexico, Mexico.
| | - Aurora Sánchez-García
- Laboratorio Experimental de Enfermedades Neurodegenerativas, Unidad Periférica para el Estudio de la Neuroinflamación, Laboratorio de Neuropatologia Experimental, Instituto Nacional de Neurología y Neurocirugía, CDMX, 14269, Mexico
| | - Juan Carlos Gallardo-Pérez
- Departamento de Fisiopatología Cardio-Renal, Instituto Nacional de Cardiología, 14080, Ciudad de Mexico, Mexico; Facultad de Ciencias, Universidad Nacional Autónoma de México, 04510, Ciudad de México, Mexico.
| |
Collapse
|
9
|
He K, Tao F, Lu Y, Fang M, Huang H, Zhou Y. The Role of HK2 in Tumorigenesis and Development: Potential for Targeted Therapy with Natural Products. Int J Med Sci 2025; 22:790-805. [PMID: 39991762 PMCID: PMC11843137 DOI: 10.7150/ijms.105553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 01/11/2025] [Indexed: 02/25/2025] Open
Abstract
Hexokinase 2 (HK2) is widely distributed in various tissues, particularly showing significantly elevated expression levels in tumor tissues. As the initial rate-limiting enzyme in the glycolysis process, HK2 is believed to directly participate in the metabolic reprogramming of tumor cells. This phenomenon, known as the "Warburg effect," provides the energy and substances necessary for the rapid proliferation, growth, and division of tumor cells. Furthermore, by enhancing glycolysis, HK2 exerts its influence on various metabolic pathways in tumor cells, such as pentose phosphate metabolism, glutamine metabolism, serine metabolism, and glycine metabolism, thereby playing a role in the occurrence and development of cancer. Therefore, HK2 represents a promising target for cancer therapy. Simultaneously, natural products with effects on inhibiting the expression or activity of HK2, have already been discovered to exhibit significant anticancer potential. Flavonoids, pentacyclic triterpenoids, phenolic compounds, and lignans constitute the majority of these natural products, directly inhibiting HK2 or indirectly downregulating it through protein kinase B (AKT), hypoxia-inducible factor 1 alpha (HIF-1α), and c-Myc signaling pathways. However, several challenges remain, such as further screening for natural products that directly target and inhibit HK2, optimizing the selection of natural product inhibitors for HK2, and elucidating the molecular mechanisms by which natural products indirectly inhibit HK2. In conclusion, the potential of targeting HK2 for cancer therapy is promising, and with these challenges addressed, natural products inhibiting HK2 will play an even greater role in the fight against cancer.
Collapse
Affiliation(s)
- Keren He
- The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Fangfang Tao
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
- Zhejiang Key Laboratory of Blood-Stasis-Toxin Syndrome, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yangyuxiao Lu
- The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Mengqi Fang
- The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Hong Huang
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
- Zhejiang Key Laboratory of Blood-Stasis-Toxin Syndrome, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yuan Zhou
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
- Zhejiang Key Laboratory of Blood-Stasis-Toxin Syndrome, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
10
|
Qiao J, Yu Z, Zhou H, Wang W, Wu H, Ye J. The Pentose Phosphate Pathway: From Mechanisms to Implications for Gastrointestinal Cancers. Int J Mol Sci 2025; 26:610. [PMID: 39859324 PMCID: PMC11765532 DOI: 10.3390/ijms26020610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/27/2024] [Accepted: 01/08/2025] [Indexed: 01/27/2025] Open
Abstract
The pentose phosphate pathway (PPP), traditionally recognized for its role in generating nicotinamide adenine dinucleotide phosphate (NADPH) and ribose-5-phosphate (R5P), has emerged as a critical metabolic hub with involvements in various gastrointestinal (GI) cancers. The PPP plays crucial roles in the initiation, development, and tumor microenvironment (TME) of GI cancers by modulating redox homeostasis and providing precursors for nucleotide biosynthesis. Targeting PPP enzymes and their regulatory axis has been a potential strategy in anti-GI cancer therapies. In this review, we summarize the regulatory mechanisms of PPP enzymes, elucidate the relationships between the PPP and TME's elements, and discuss the therapeutic potential of targeting the PPP in GI cancers.
Collapse
Affiliation(s)
- Jincheng Qiao
- Department of Gastroenterology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China; (J.Q.); (Z.Y.)
- Cancer Institute (A Key Laboratory for Cancer Prevention & Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China;
| | - Zhengchen Yu
- Department of Gastroenterology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China; (J.Q.); (Z.Y.)
- Cancer Institute (A Key Laboratory for Cancer Prevention & Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China;
| | - Han Zhou
- Cancer Institute (A Key Laboratory for Cancer Prevention & Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China;
| | - Wankun Wang
- Department of Surgical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China;
| | - Hao Wu
- Cancer Institute (A Key Laboratory for Cancer Prevention & Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China;
| | - Jun Ye
- Department of Gastroenterology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China; (J.Q.); (Z.Y.)
| |
Collapse
|
11
|
Zhang R, Dai F, Deng S, Zeng Y, Wang J, Liu G. Reprogramming of Glucose Metabolism for Revisiting Hepatocellular Carcinoma Resistance to Transcatheter Hepatic Arterial Chemoembolization. Chembiochem 2025; 26:e202400719. [PMID: 39501124 DOI: 10.1002/cbic.202400719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 11/04/2024] [Indexed: 11/24/2024]
Abstract
Hepatocellular carcinoma (HCC) is recognized globally as one of the most lethal tumors, presenting a significant menace to patients' lives owing to its exceptional aggressiveness and tendency to recur. Transcatheter hepatic arterial chemoembolization (TACE) therapy, as a first-line treatment option for patients with advanced HCC, has been proven effective. However, it is disheartening that nearly 40 % of patients exhibit resistance to this therapy. Consequently, this review delves into the metabolic aspects of glucose metabolism to explore the underlying mechanisms behind TACE treatment resistance and to propose potentially fruitful therapeutic strategies. The ultimate objective is to present novel insights for the development of personalized treatment methods targeting HCC.
Collapse
Affiliation(s)
- Ruijie Zhang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, National Innovation Platform for Industry-Education Integration in Vaccine Research, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Fan Dai
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, National Innovation Platform for Industry-Education Integration in Vaccine Research, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Songhan Deng
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, 361102, China
| | - Yun Zeng
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, National Innovation Platform for Industry-Education Integration in Vaccine Research, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Jinyang Wang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, National Innovation Platform for Industry-Education Integration in Vaccine Research, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Gang Liu
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, National Innovation Platform for Industry-Education Integration in Vaccine Research, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| |
Collapse
|
12
|
DeLuca S, Strash N, Chen Y, Patsy M, Myers A, Tejeda L, Broders S, Miranda A, Jiang X, Bursac N. Engineered Cardiac Tissues as a Platform for CRISPR-Based Mitogen Discovery. Adv Healthc Mater 2025; 14:e2402201. [PMID: 39508305 PMCID: PMC11695184 DOI: 10.1002/adhm.202402201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 09/23/2024] [Indexed: 11/15/2024]
Abstract
Improved understanding of cardiomyocyte (CM) cell cycle regulation may allow researchers to stimulate pro-regenerative effects in injured hearts or promote maturation of human stem cell-derived CMs. Gene therapies, in particular, hold promise to induce controlled proliferation of endogenous or transplanted CMs via transient activation of mitogenic processes. Methods to identify and characterize candidate cardiac mitogens in vitro can accelerate translational efforts and contribute to the understanding of the complex regulatory landscape of CM proliferation and postnatal maturation. In this study, A CRISPR knockout-based screening strategy using in vitro neonatal rat ventricular myocyte (NRVM) monolayers is established, followed by candidate mitogen validation in mature 3-D engineered cardiac tissues (ECTs). This screen identified knockout of the purine metabolism enzyme adenosine deaminase (ADA-KO) as an effective pro-mitogenic stimulus. RNA-sequencing of ECTs further reveals increased pentose phosphate pathway (PPP) activity as the primary driver of ADA-KO-induced CM cycling. Inhibition of the pathway's rate limiting enzyme, glucose-6-phosphate dehydrogenase (G6PD), prevented ADA-KO induced CM cycling, while increasing PPP activity via G6PD overexpression increased CM cycling. Together, this study demonstrates the development and application of a genetic/tissue engineering platform for in vitro discovery and validation of new candidate mitogens affecting regenerative or maturation states of cardiomyocytes.
Collapse
Affiliation(s)
- Sophia DeLuca
- Department of Biomedical Engineering
- Department of Cell Biology, Duke University, Durham, NC, 27708, USA
| | - Nicholas Strash
- Department of Biomedical Engineering
- Department of Cell Biology, Duke University, Durham, NC, 27708, USA
| | | | | | | | | | | | | | | | - Nenad Bursac
- Department of Biomedical Engineering
- Department of Cell Biology, Duke University, Durham, NC, 27708, USA
| |
Collapse
|
13
|
Abdullah A, Kumbrink J, Liokatis P, Mock A, Abdullah A, Dewenter I, Obermeier KT. The Role of Glucose-6-Phosphate Dehydrogenase in Skin Cancer Metabolism: A Paradigm Shift in Treatment Approaches. Cancers (Basel) 2024; 17:48. [PMID: 39796677 PMCID: PMC11718909 DOI: 10.3390/cancers17010048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 12/19/2024] [Accepted: 12/25/2024] [Indexed: 01/13/2025] Open
Abstract
Skin cancer is one of the most prevalent malignancies in the world, with increasing incidence. In 2022, the World Health Organization estimated over 1.5 million new diagnoses of skin malignancies, primarily affecting the older population. Surgical excision, particularly in the head and neck area, can cause aesthetic deficits and significantly impair patients' quality of life. There are limited therapeutic options for advanced skin malignancies, and the development of resistance to targeted therapy further restricts treatment choices. Cancer metabolism may offer a novel approach to overcome these challenges. The pentose phosphate pathway, along with its rate-limiting enzyme, glucose-6-phosphate dehydrogenase, is essential for both the antioxidative response and the synthesis of ribonucleotides and may play a critical role in the proliferation and growth of cancer cells. This review examines current knowledge on the correlation between altered glucose-6-phosphate dehydrogenase expression and activity and skin cancer progression, with the aim of identifying a potential therapeutic target for treating advanced skin cancer.
Collapse
Affiliation(s)
- Anusha Abdullah
- Department of Oral and Maxillofacial Surgery and Facial Plastic Surgery, Ludwig Maximilian University of Munich (LMU), 80337 Munich, Germany
| | - Jörg Kumbrink
- Institute of Pathology, Faculty of Medicine, Ludwig Maximilian University of Munich (LMU), 80337 Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, 80337 Munich, Germany
| | - Paris Liokatis
- Department of Oral and Maxillofacial Surgery and Facial Plastic Surgery, Ludwig Maximilian University of Munich (LMU), 80337 Munich, Germany
| | - Andreas Mock
- Institute of Pathology, Faculty of Medicine, Ludwig Maximilian University of Munich (LMU), 80337 Munich, Germany
| | - Ahdiya Abdullah
- Department of Oral and Maxillofacial Surgery and Facial Plastic Surgery, Ludwig Maximilian University of Munich (LMU), 80337 Munich, Germany
| | - Ina Dewenter
- Department of Oral and Maxillofacial Surgery and Facial Plastic Surgery, Ludwig Maximilian University of Munich (LMU), 80337 Munich, Germany
| | - Katharina Theresa Obermeier
- Department of Oral and Maxillofacial Surgery and Facial Plastic Surgery, Ludwig Maximilian University of Munich (LMU), 80337 Munich, Germany
| |
Collapse
|
14
|
Mao Y, Xia Z, Xia W, Jiang P. Metabolic reprogramming, sensing, and cancer therapy. Cell Rep 2024; 43:115064. [PMID: 39671294 DOI: 10.1016/j.celrep.2024.115064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 10/30/2024] [Accepted: 11/21/2024] [Indexed: 12/15/2024] Open
Abstract
The metabolic reprogramming of tumor cells is a crucial strategy for their survival and proliferation, involving tissue- and condition-dependent remodeling of certain metabolic pathways. While it has become increasingly clear that tumor cells integrate extracellular and intracellular signals to adapt and proliferate, nutrient and metabolite sensing also exert direct or indirect influences, although the underlying mechanisms remain incompletely understood. Furthermore, metabolic changes not only support the rapid growth and dissemination of tumor cells but also promote immune evasion by metabolically "educating" immune cells in the tumor microenvironment (TME). Recent studies have highlighted the profound impact of metabolic reprogramming on the TME and the potential of targeting metabolic pathways as a therapeutic strategy, with several enzyme inhibitors showing promising results in clinical trials. Thus, understanding how tumor cells alter their metabolic pathways and metabolically remodel the TME to support their survival and proliferation may offer new strategies for metabolic therapy and immunotherapy.
Collapse
Affiliation(s)
- Youxiang Mao
- State Key Laboratory of Molecular Oncology, School of Life Sciences, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Ziyan Xia
- State Key Laboratory of Molecular Oncology, School of Life Sciences, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Wenjun Xia
- State Key Laboratory of Molecular Oncology, School of Life Sciences, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Peng Jiang
- State Key Laboratory of Molecular Oncology, School of Life Sciences, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Center for Life Sciences, Beijing 100084, China.
| |
Collapse
|
15
|
Zhou J, Hu D, Feng N, Liu S, Li J. An Investigation of the Saccharides Profile and Metabolic Gene Expression in Muskrat Scented Glands in Different Secretion Seasons. Animals (Basel) 2024; 14:3705. [PMID: 39765609 PMCID: PMC11672420 DOI: 10.3390/ani14243705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 12/18/2024] [Accepted: 12/20/2024] [Indexed: 01/11/2025] Open
Abstract
The adult male muskrat has a pair of scented glands, which show clear seasonal changes in their developmental status between the secretion season and non-secretion season. During the secretion season, the scented glands are much larger than in the non-secretion season, with the metabolism of glandular cells increasing and a large amount of musk being produced. In this work, the blood, musk, and scented gland tissue were collected from three healthy adult male muskrats during secretion season (September). And the blood and scented gland tissue from another three healthy adult male muskrats during the non-secretion season (November) were also sampled. The saccharides from blood and musk were detected by liquid chromatography-mass spectrometry (LC-MS), indicating the saccharides are concentrated in the scented glands during the secretion season. What is more, transcriptome analysis was employed to investigate the expression patterns of saccharides' pathways, suggesting some saccharides' metabolism-related genes undergo significant seasonal changes. Above all, scented gland saccharides' metabolism displays seasonal differences, and the enhancement in saccharides' metabolic activity during the secretion phase maintains glandular proliferation and secretion function.
Collapse
Affiliation(s)
| | - Defu Hu
- Department of Ecology, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, China; (J.Z.); (N.F.); (S.L.); (J.L.)
| | | | | | | |
Collapse
|
16
|
Gao Y, Siyu zhang, Zhang X, Du Y, Ni T, Hao S. Crosstalk between metabolic and epigenetic modifications during cell carcinogenesis. iScience 2024; 27:111359. [PMID: 39660050 PMCID: PMC11629229 DOI: 10.1016/j.isci.2024.111359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2024] Open
Abstract
Genetic mutations arising from various internal and external factors drive cells to become cancerous. Cancerous cells undergo numerous changes, including metabolic reprogramming and epigenetic modifications, to support their abnormal proliferation. This metabolic reprogramming leads to the altered expression of many metabolic enzymes and the accumulation of metabolites. Recent studies have shown that these enzymes and metabolites can serve as substrates or cofactors for chromatin-modifying enzymes, thereby participating in epigenetic modifications and promoting carcinogenesis. Additionally, epigenetic modifications play a role in the metabolic reprogramming and immune evasion of cancer cells, influencing cancer progression. This review focuses on the origins of cancer, particularly the metabolic reprogramming of cancer cells and changes in epigenetic modifications. We discuss how metabolites in cancer cells contribute to epigenetic remodeling, including lactylation, acetylation, succinylation, and crotonylation. Finally, we review the impact of epigenetic modifications on tumor immunity and the latest advancements in cancer therapies targeting these modifications.
Collapse
Affiliation(s)
- Yue Gao
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Institutes of Biomedical Sciences, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Siyu zhang
- Key Lab of Ministry of Education for Protection and Utilization of Special Biological Resources in Western China, School of Life Sciences, Ningxia University, Yinchuan 750021, China
| | - Xianhong Zhang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Institutes of Biomedical Sciences, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Yitian Du
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Institutes of Biomedical Sciences, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Ting Ni
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Institutes of Biomedical Sciences, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Shuailin Hao
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Institutes of Biomedical Sciences, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| |
Collapse
|
17
|
Elmitwalli O, Darwish R, Al-Jabery L, Algahiny A, Roy S, Butler AE, Hasan AS. The Emerging Role of p21 in Diabetes and Related Metabolic Disorders. Int J Mol Sci 2024; 25:13209. [PMID: 39684919 DOI: 10.3390/ijms252313209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 12/02/2024] [Accepted: 12/05/2024] [Indexed: 12/18/2024] Open
Abstract
In the context of cell cycle inhibition, anti-proliferation, and the dysregulation observed in certain cancer pathologies, the protein p21 assumes a pivotal role. p21 links DNA damage responses to cellular processes such as apoptosis, senescence, and cell cycle arrest, primarily functioning as a regulator of the cell cycle. However, accumulating empirical evidence suggests that p21 is both directly and indirectly linked to a number of different metabolic processes. Intriguingly, recent investigations indicate that p21 significantly contributes to the pathogenesis of diabetes. In this review, we present a comprehensive evaluation of the scientific literature regarding the involvement of p21 in metabolic processes, diabetes etiology, pancreatic function, glucose homeostasis, and insulin resistance. Furthermore, we provide an encapsulated overview of therapies that target p21 to alleviate metabolic disorders. A deeper understanding of the complex interrelationship between p21 and diabetes holds promise for informing current and future therapeutic strategies to address this rapidly escalating health crisis.
Collapse
Affiliation(s)
- Omar Elmitwalli
- Department of Medicine, Royal College of Surgeons in Ireland-Medical University of Bahrain Busaiteen, Adliya P.O. Box 15503, Bahrain
| | - Radwan Darwish
- Department of Medicine, Royal College of Surgeons in Ireland-Medical University of Bahrain Busaiteen, Adliya P.O. Box 15503, Bahrain
| | - Lana Al-Jabery
- Department of Medicine, Royal College of Surgeons in Ireland-Medical University of Bahrain Busaiteen, Adliya P.O. Box 15503, Bahrain
| | - Ahmed Algahiny
- Department of Medicine, Royal College of Surgeons in Ireland-Medical University of Bahrain Busaiteen, Adliya P.O. Box 15503, Bahrain
| | - Sornali Roy
- Department of Medicine, Royal College of Surgeons in Ireland-Medical University of Bahrain Busaiteen, Adliya P.O. Box 15503, Bahrain
| | - Alexandra E Butler
- Department of Postgraduate Studies and Research, Royal College of Surgeons in Ireland-Medical University of Bahrain Busaiteen, Adliya P.O. Box 15503, Bahrain
| | - Ammar S Hasan
- Department of Postgraduate Studies and Research, Royal College of Surgeons in Ireland-Medical University of Bahrain Busaiteen, Adliya P.O. Box 15503, Bahrain
| |
Collapse
|
18
|
Sánchez-Castillo A, Kampen KR. Understanding serine and glycine metabolism in cancer: a path towards precision medicine to improve patient's outcomes. Discov Oncol 2024; 15:652. [PMID: 39538085 PMCID: PMC11561223 DOI: 10.1007/s12672-024-01544-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024] Open
Abstract
In this perspective, we highlight and reflect on the current knowledge with respect to serine/glycine metabolism in cancer, therapeutic resistance, and precision medicine opportunities for therapeutic targeting and treatment follow-up. Cancer subtypes with high mortality rates include lung cancer and glioblastomas. In order to improve future therapeutic opportunities, patient stratification need to be performed to select patients that might benefit from adjuvant serine/glycine targeting compounds. In an effort to identify the group of patients for stratification purposes, we analyzed publicly available TCGA patient datasets to test associations between serine/glycine metabolism enzyme expression and important cancer drivers in lung cancer and glioblastoma. These patients presenting serine/glycine pathway overexpression might benefit from adjuvant sertraline treatment in the future.
Collapse
Affiliation(s)
- Anaís Sánchez-Castillo
- Department of Radiation Oncology (MAASTRO), GROW School for Oncology and Reproduction, Maastricht University Medical Center, Maastricht University, Maastricht, The Netherlands
| | - Kim R Kampen
- Department of Radiation Oncology (MAASTRO), GROW School for Oncology and Reproduction, Maastricht University Medical Center, Maastricht University, Maastricht, The Netherlands.
- Department of Oncology, Laboratory for Disease Mechanisms in Cancer, KU Leuven and Leuven Cancer Institute (LKI), Louvain, Belgium.
| |
Collapse
|
19
|
Yeap CSY, Nguyen NHA, Busche T, Wibberg D, Riha J, Kruse O, Cernik M, Blifernez-Klassen O, Sevcu A. Transcriptomic analysis and cellular responses to nanoscale zero-valent iron in green microalga Raphidocelis subcapitata. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 286:117194. [PMID: 39454359 DOI: 10.1016/j.ecoenv.2024.117194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 10/11/2024] [Accepted: 10/12/2024] [Indexed: 10/28/2024]
Abstract
Nanoscale zero valent iron (nZVI) is used to remediate aquifers polluted by organochlorines or heavy metals and was also suggested to eliminate harmful algal blooms. nZVI can therefore affect microorganisms in the vicinity of the application area, including microalgae. However, studies on early transcriptomic effects of microalgae after exposure to nZVI are rare. Here, we described the early physiological and transcriptomic response of the freshwater ecological indicator green microalga, Raphidocelis subcapitata ATCC 22662, to 100 mg/L of reactive nZVI and non-reactive nano-magnetite (nFe3O4). The combined effect of shading and the release of total iron from nZVI posed a short-term inhibition effect leading to 15 % of deformed cells and cytosol leakage, while cells viability increased after 24 h. nZVI triggered a more pronounced transcriptomic response with (7380 differentially expressed genes [DEGs]) compared to nFe3O4 (4601 DEGs) after 1 h. nZVI, but not nFe3O4 increased the expression of genes function in DNA repair and replication, while deactivated carbohydrate-energy metabolisms, mitochondria signaling, and transmembrane ion transport. This study highlights an early fate assessment of algal cells under nZVI and nFe3O4 exposure using next-generation risk assessment methods and will serve as valuable information for safe and sustainable application of nZVI in water remediation.
Collapse
Affiliation(s)
- Cheryl S Y Yeap
- Institute for Nanomaterials Advanced Technologies and Innovation, Technical University of Liberec, Bendlova 1409/7, Liberec 46117, Czech Republic; Algae Biotechnology and Bioenergy, Faculty of Biology, Center for Biotechnology (CeBiTec), Bielefeld University, Universitätsstraße 27, Bielefeld 33615, Germany; Oujiang Laboratory; Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of Aging, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Nhung H A Nguyen
- Institute for Nanomaterials Advanced Technologies and Innovation, Technical University of Liberec, Bendlova 1409/7, Liberec 46117, Czech Republic
| | - Tobias Busche
- Microbial Genomics and Biotechnology, Faculty of Biology, Center for Biotechnology (CeBiTec), Bielefeld University, Universitätsstraße 27, Bielefeld 33615, Germany; Medical School East Westphalia-Lippe, Bielefeld University, Universitätsstraße 27, Bielefeld 33615, Germany
| | - Daniel Wibberg
- Genome Research of Industrial Microorganisms, Center for Biotechnology (CeBiTec), Bielefeld University, Universitätsstraße 27, Bielefeld 33615, Germany; Institute of Bio, and Geosciences - Computational Metagenomics (IBG-5), Forschungszentrum Jülich GmbH - Branch Office Bielefeld University, Universitätsstraße 25, Bielefeld 33615, Germany
| | - Jakub Riha
- Institute for Nanomaterials Advanced Technologies and Innovation, Technical University of Liberec, Bendlova 1409/7, Liberec 46117, Czech Republic
| | - Olaf Kruse
- Algae Biotechnology and Bioenergy, Faculty of Biology, Center for Biotechnology (CeBiTec), Bielefeld University, Universitätsstraße 27, Bielefeld 33615, Germany
| | - Miroslav Cernik
- Institute for Nanomaterials Advanced Technologies and Innovation, Technical University of Liberec, Bendlova 1409/7, Liberec 46117, Czech Republic
| | - Olga Blifernez-Klassen
- Algae Biotechnology and Bioenergy, Faculty of Biology, Center for Biotechnology (CeBiTec), Bielefeld University, Universitätsstraße 27, Bielefeld 33615, Germany.
| | - Alena Sevcu
- Institute for Nanomaterials Advanced Technologies and Innovation, Technical University of Liberec, Bendlova 1409/7, Liberec 46117, Czech Republic; Faculty of Science, Humanities and Education, Technical University of Liberec, Studentská 2, Liberec 46117, Czech Republic.
| |
Collapse
|
20
|
Ye Y, Cao Z. Glucose Metabolism and Glucose Transporters in Head and Neck Squamous Cell Carcinoma. Cancer Invest 2024; 42:827-844. [PMID: 39324504 DOI: 10.1080/07357907.2024.2407424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 09/18/2024] [Indexed: 09/27/2024]
Abstract
Head and neck squamous cell carcinoma ranks seventh globally in malignancy prevalence, with persistent high mortality rates despite treatment advancements. Glucose, pivotal in cancer metabolism via the Warburg effect, enters cells via glucose transporters, notably GLUT proteins. Glycolysis, aerobic oxidation, and the pentose phosphate pathway in glucose metabolism significantly impact HNSCC progression. HNSCC exhibits elevated expression of glucose metabolism enzymes and GLUT proteins, correlating with prognosis. Heterogeneity in HNSCC yields varied metabolic profiles, influenced by factors like HPV status and disease stage. This review highlights glucose metabolism's role and potential as therapeutic targets and cancer imaging tracers in HNSCC.
Collapse
Affiliation(s)
- Yanyan Ye
- Department of Otolaryngology, Shulan (Hangzhou) Hospital, affiliated to Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Zaizai Cao
- Department of Otolaryngology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
21
|
Wang N, Yuan Y, Hu T, Xu H, Piao H. Metabolism: an important player in glioma survival and development. Discov Oncol 2024; 15:577. [PMID: 39436434 PMCID: PMC11496451 DOI: 10.1007/s12672-024-01402-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 09/26/2024] [Indexed: 10/23/2024] Open
Abstract
Gliomas are malignant tumors originating from both neuroglial cells and neural stem cells. The involvement of neural stem cells contributes to the tumor's heterogeneity, affecting its metabolic features, development, and response to therapy. This review provides a brief introduction to the importance of metabolism in gliomas before systematically categorizing them into specific groups based on their histological and molecular genetic markers. Metabolism plays a critical role in glioma biology, as tumor cells rely heavily on altered metabolic pathways to support their rapid growth, survival, and progression. Dysregulated metabolic processes, involving carbohydrates, lipids, and amino acids not only fuel tumor development but also contribute to therapy resistance and metastatic potential. By understanding these metabolic changes, key intervention points, such as mutations in genes like RTK, EGFR, RAS, and IDH can be identified, paving the way for novel therapeutic strategies. This review emphasizes the connection between metabolic pathways and clinical challenges, offering actionable insights for future research and therapeutic development in gliomas.
Collapse
Affiliation(s)
- Ning Wang
- Department of Neurosurgery, Cancer Hospital of Dalian University of Technology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, No.44 Xiaoheyan Road, Shenyang, Dadong, 110042, P R China
- Institute of Cancer Medicine, Dalian University of Technology, No.2 Linggong Road, Dalian, Ganjingzi, 116024, P R China
| | - Yiru Yuan
- Department of Neurosurgery, Cancer Hospital of Dalian University of Technology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, No.44 Xiaoheyan Road, Shenyang, Dadong, 110042, P R China
- Institute of Cancer Medicine, Dalian University of Technology, No.2 Linggong Road, Dalian, Ganjingzi, 116024, P R China
| | - Tianhao Hu
- Department of Neurosurgery, Cancer Hospital of Dalian University of Technology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, No.44 Xiaoheyan Road, Shenyang, Dadong, 110042, P R China
- Institute of Cancer Medicine, Dalian University of Technology, No.2 Linggong Road, Dalian, Ganjingzi, 116024, P R China
| | - Huizhe Xu
- Institute of Cancer Medicine, Dalian University of Technology, No.2 Linggong Road, Dalian, Ganjingzi, 116024, P R China.
- Central Laboratory, Cancer Hospital of China Medical University, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, No.44 Xiaoheyan Road, Shenyang, Liaoning Province, 110042, P R China.
| | - Haozhe Piao
- Department of Neurosurgery, Cancer Hospital of Dalian University of Technology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, No.44 Xiaoheyan Road, Shenyang, Dadong, 110042, P R China.
- Institute of Cancer Medicine, Dalian University of Technology, No.2 Linggong Road, Dalian, Ganjingzi, 116024, P R China.
| |
Collapse
|
22
|
He X, Liu F, Gong Q. Identification of a senescence-related transcriptional signature to uncover molecular subtypes and key genes in hepatocellular carcinoma. PLoS One 2024; 19:e0311696. [PMID: 39383169 PMCID: PMC11463828 DOI: 10.1371/journal.pone.0311696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 09/23/2024] [Indexed: 10/11/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is a cancer caused by abnormal cell growth due to faulty signal transduction. Cells secrete tumor suppressor factors in response to potential carcinogenic signals, inducing cellular senescence (CS) as a countermeasure. However, accurately measuring CS levels in different types of tumors is challenging due to tumor heterogeneity and the lack of universal and specific CS markers. Machine learning has revealed unique molecular traits in HCC patients, leading to clinical advantages. More research is needed to understand senescence-related molecular features in these patients. In this study, the gene expression profile features of patients with HCC were analyzed by integrating single-cell RNA sequencing and bulk RNA-seq datasets from HCC samples. The analysis identified the senescence-related pathways exhibiting HCC specificity. Subsequently, genes from these pathways were used to identify senescence-related molecular subtypes in HCC, showing significant variations in biological and clinical attributes. An HCC-specific CS risk model developed in this study revealed substantial associations between the patients' CS scores and prognosis grouping, clinical staging, immune infiltration levels, immunotherapy response, and drug sensitivity levels. Within the constructed model, G6PD was identified as a key gene, potentially serving as a senescence-related target in liver cancer. Molecular biology experiments demonstrated that overexpression of G6PD effectively promotes the proliferative, invasive, and migration capacities of HepG2 and SK-HEP-1 cells. In conclusion, this analysis offers a valuable framework for understanding senescence in HCC and introduces a new biomarker. These findings improve our understanding of senescence in HCC and have potential for future research.
Collapse
Affiliation(s)
- Xiaorong He
- Dermatology Institute of Fuzhou, Dermatology Hospital of Fuzhou, Fuzhou, China
| | - Fahui Liu
- Xiamen Cell Therapy Research Center, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian Province, China
| | - Qiming Gong
- Department of Nephrology, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
- Education Department of Guangxi Zhuang Autonomous Region, Baise Key Laboratory for Metabolic Diseases (Youjiang Medical University for Nationalities), Baise, China
| |
Collapse
|
23
|
Nguyen TH, Ko HJ, Tsai PY, Cheng TS, Tran TH, Doan LH, Hsiao M, Chang PMH, Liu HS, Hong YR, Huang CYF. Dehydroepiandrosterone suppresses human colorectal cancer progression through ER stress-mediated autophagy and apoptosis in a p53-independent manner. Front Pharmacol 2024; 15:1464647. [PMID: 39431156 PMCID: PMC11487585 DOI: 10.3389/fphar.2024.1464647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 09/16/2024] [Indexed: 10/22/2024] Open
Abstract
Colorectal cancer (CRC) is one of the primary contributors to cancer-related fatalities, with up to 80% of advanced CRC cases exhibiting mutations in the p53 gene. Unfortunately, the development of new compounds targeting mutant p53 is quite limited. The anticancer effects of Dehydroepiandrosterone (DHEA) on various cancers have been reported. However, the suppressive effect of DHEA on CRC cells harboring wild-type or mutant p53 gene remains controversial. This study emphasized revealing the suppressive mechanism and the effect of DHEA on CRC cell tumorigenesis in the presence of wild-type or mutant p53 gene. We demonstrate that DHEA causes CRC cell death and cell cycle arrest in a dose and time-dependent manner. Notably, DHEA exhibits similar inhibitory effects on CRC cells regardless of the p53 gene status. Further study reveals that DHEA induces endoplasmic reticulum (ER) stress and triggers PERK/eIF2/ATF4/CHOP UPR signaling pathway to activate autophagy followed by apoptosis, which was confirmed by suppression of 4-phenylbutyric acid (an ER stress inhibitor) or knockdown either ATF4 or CHOP. DHEA-induced apoptosis was attenuated by silencing ATG5 gene in either p53+/+ or p53-/- CRC cells, indicating autophagy regulation of apoptosis. Furthermore, DHEA treatment accompanied by bafilomycin A1 (a blocker of autophagosome degradation) leads to the accumulation of ATF4, CHOP, DR5, and p21 levels in CRC cells, implying that the degradative autophagy machinery regulates these four molecules. Consistently, DHEA demonstrates its inhibitory effect by suppressing CRC tumor formation in vivo. Altogether, we provide compelling evidence that DHEA is a potential therapeutic candidate for CRC patient treatment regardless of the p53 status through ER stress-PERK-autophagy-apoptosis axis.
Collapse
Affiliation(s)
- Thi-Huong Nguyen
- Institute of Biopharmaceutical Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Institute of Biotechnology and Food Technology, Thai Nguyen University of Agriculture and Forestry, Thai Nguyen, Vietnam
| | - Huey-Jiun Ko
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Biochemistry, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Po-Yu Tsai
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Biochemistry, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Tai-Shan Cheng
- Institute of Biopharmaceutical Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Thu-Ha Tran
- Institute of Biopharmaceutical Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Ly Hien Doan
- Institute of Biopharmaceutical Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Institute of Biotechnology, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Michael Hsiao
- Department of Biochemistry, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Peter Mu-Hsin Chang
- Institute of Biopharmaceutical Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Oncology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Hsiao-Sheng Liu
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- Center for Cancer Research, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yi-Ren Hong
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Biochemistry, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chi-Ying F. Huang
- Institute of Biopharmaceutical Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Biochemistry, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
24
|
Pavlova NN, Thompson CB. Oncogenic Control of Metabolism. Cold Spring Harb Perspect Med 2024; 14:a041531. [PMID: 38565265 PMCID: PMC11444253 DOI: 10.1101/cshperspect.a041531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
A cell committed to proliferation must reshape its metabolism to enable robust yet balanced production of building blocks for the assembly of proteins, lipids, nucleic acids, and other macromolecules, from which two functional daughter cells can be produced. The metabolic remodeling associated with proliferation is orchestrated by a number of pro-proliferative signaling nodes, which include phosphatidylinositol-3 kinase (PI3K), the RAS family of small GTPases, and transcription factor c-myc In metazoan cells, these signals are activated in a paracrine manner via growth factor-mediated activation of receptor (or receptor-associated) tyrosine kinases. Such stimuli are limited in duration and therefore allow the metabolism of target cells to return to the resting state once the proliferation demands have been satisfied. Cancer cells acquire activating genetic alterations within common pro-proliferative signaling nodes. These alterations lock cellular nutrient uptake and utilization into a perpetual progrowth state, leading to the aberrant accumulation and spread of cancer cells.
Collapse
Affiliation(s)
- Natalya N Pavlova
- Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah 84112, USA
| | - Craig B Thompson
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| |
Collapse
|
25
|
Hanau S, Helliwell JR. Glucose-6-phosphate dehydrogenase and its 3D structures from crystallography and electron cryo-microscopy. Acta Crystallogr F Struct Biol Commun 2024; 80:236-251. [PMID: 39259139 PMCID: PMC11448927 DOI: 10.1107/s2053230x24008112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 08/16/2024] [Indexed: 09/12/2024] Open
Abstract
Glucose-6-phosphate dehydrogenase (G6PD) is the first enzyme in the pentose phosphate pathway. It has been extensively studied by biochemical and structural techniques. 13 X-ray crystal structures and five electron cryo-microscopy structures in the PDB are focused on in this topical review. Two F420-dependent glucose-6-phosphate dehydrogenase (FGD) structures are also reported. The significant differences between human and parasite G6PDs can be exploited to find selective drugs against infections such as malaria and leishmaniasis. Furthermore, G6PD is a prognostic marker in several cancer types and is also considered to be a tumour target. On the other hand, FGD is considered to be a target against Mycobacterium tuberculosis and possesses a high biotechnological potential in biocatalysis and bioremediation.
Collapse
Affiliation(s)
- Stefania Hanau
- Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara, Italy
| | - John R Helliwell
- Department of Chemistry, University of Manchester, Manchester M13 9PL, United Kingdom
| |
Collapse
|
26
|
Robert A, Crottès D, Bourgeais J, Gueguen N, Chevrollier A, Dumas JF, Servais S, Domingo I, Chadet S, Sobilo J, Hérault O, Lecomte T, Vandier C, Raoul W, Guéguinou M. MICU2 up-regulation enhances tumor aggressiveness and metabolic reprogramming during colorectal cancer development. PLoS Biol 2024; 22:e3002854. [PMID: 39466877 PMCID: PMC11542858 DOI: 10.1371/journal.pbio.3002854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 11/07/2024] [Accepted: 09/20/2024] [Indexed: 10/30/2024] Open
Abstract
The mitochondrial Ca2+ uniporter (MCU) plays crucial role in intramitochondrial Ca2+ uptake, allowing Ca2+-dependent activation of oxidative metabolism. In recent decades, the role of MCU pore-forming proteins has been highlighted in cancer. However, the contribution of MCU-associated regulatory proteins mitochondrial calcium uptake 1 and 2 (MICU1 and MICU2) to pathophysiological conditions has been poorly investigated. Here, we describe the role of MICU2 in cell proliferation and invasion using in vitro and in vivo models of human colorectal cancer (CRC). Transcriptomic analysis demonstrated an increase in MICU2 expression and the MICU2/MICU1 ratio in advanced CRC and CRC-derived metastases. We report that expression of MICU2 is necessary for mitochondrial Ca2+ uptake and quality of the mitochondrial network. Our data reveal the interplay between MICU2 and MICU1 in the metabolic flexibility between anaerobic glycolysis and OXPHOS. Overall, our study sheds light on the potential role of the MICUs in diseases associated with metabolic reprogramming.
Collapse
Affiliation(s)
- Alison Robert
- UMR Inserm 1069 N2COx « Niche, Nutrition, Cancer et métabolisme Oxydatif », Tours University, Tours, France
| | - David Crottès
- UMR Inserm 1069 N2COx « Niche, Nutrition, Cancer et métabolisme Oxydatif », Tours University, Tours, France
| | - Jérôme Bourgeais
- UMR Inserm 1069 N2COx « Niche, Nutrition, Cancer et métabolisme Oxydatif », Tours University, Tours, France
| | - Naig Gueguen
- CNRS UMR 6015, Inserm U1083 MITOVASC, MitoLab team, Angers University, Angers, France
| | - Arnaud Chevrollier
- CNRS UMR 6015, Inserm U1083 MITOVASC, MitoLab team, Angers University, Angers, France
| | - Jean-François Dumas
- UMR Inserm 1069 N2COx « Niche, Nutrition, Cancer et métabolisme Oxydatif », Tours University, Tours, France
| | - Stéphane Servais
- UMR Inserm 1069 N2COx « Niche, Nutrition, Cancer et métabolisme Oxydatif », Tours University, Tours, France
| | - Isabelle Domingo
- UMR Inserm 1069 N2COx « Niche, Nutrition, Cancer et métabolisme Oxydatif », Tours University, Tours, France
| | - Stéphanie Chadet
- UMR Inserm 1069 N2COx « Niche, Nutrition, Cancer et métabolisme Oxydatif », Tours University, Tours, France
| | | | - Olivier Hérault
- UMR Inserm 1069 N2COx « Niche, Nutrition, Cancer et métabolisme Oxydatif », Tours University, Tours, France
| | - Thierry Lecomte
- UMR Inserm 1069 N2COx « Niche, Nutrition, Cancer et métabolisme Oxydatif », Tours University, Tours, France
| | - Christophe Vandier
- UMR Inserm 1069 N2COx « Niche, Nutrition, Cancer et métabolisme Oxydatif », Tours University, Tours, France
| | - William Raoul
- UMR Inserm 1069 N2COx « Niche, Nutrition, Cancer et métabolisme Oxydatif », Tours University, Tours, France
| | - Maxime Guéguinou
- UMR Inserm 1069 N2COx « Niche, Nutrition, Cancer et métabolisme Oxydatif », Tours University, Tours, France
| |
Collapse
|
27
|
Vásquez Martínez IP, Pérez-Campos E, Pérez-Campos Mayoral L, Cruz Luis HI, Pina Canseco MDS, Zenteno E, Bazán Salinas IL, Martínez Cruz M, Pérez-Campos Mayoral E, Hernández-Huerta MT. O-GlcNAcylation: Crosstalk between Hemostasis, Inflammation, and Cancer. Int J Mol Sci 2024; 25:9896. [PMID: 39337387 PMCID: PMC11432004 DOI: 10.3390/ijms25189896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/03/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024] Open
Abstract
O-linked β-N-acetylglucosamine (O-GlcNAc, O-GlcNAcylation) is a post-translational modification of serine/threonine residues of proteins. Alterations in O-GlcNAcylation have been implicated in several types of cancer, regulation of tumor progression, inflammation, and thrombosis through its interaction with signaling pathways. We aim to explore the relationship between O-GlcNAcylation and hemostasis, inflammation, and cancer, which could serve as potential prognostic tools or clinical predictions for cancer patients' healthcare and as an approach to combat cancer. We found that cancer is characterized by high glucose demand and consumption, a chronic inflammatory state, a state of hypercoagulability, and platelet hyperaggregability that favors thrombosis; the latter is a major cause of death in these patients. Furthermore, we review transcription factors and pathways associated with O-GlcNAcylation, thrombosis, inflammation, and cancer, such as the PI3K/Akt/c-Myc pathway, the nuclear factor kappa B pathway, and the PI3K/AKT/mTOR pathway. We also review infectious agents associated with cancer and chronic inflammation and potential inhibitors of cancer cell development. We conclude that it is necessary to approach both the diagnosis and treatment of cancer as a network in which multiple signaling pathways are integrated, and to search for a combination of potential drugs that regulate this signaling network.
Collapse
Affiliation(s)
- Itzel Patricia Vásquez Martínez
- UNAM-UABJO Faculty of Medicine Research Center, Faculty of Medicine and Surgery, Autonomous University "Benito Juarez" of Oaxaca, Oaxaca 68020, Mexico
| | - Eduardo Pérez-Campos
- National Institute of Technology of Mexico, Technological Institute of Oaxaca, Oaxaca 68033, Mexico
| | - Laura Pérez-Campos Mayoral
- UNAM-UABJO Faculty of Medicine Research Center, Faculty of Medicine and Surgery, Autonomous University "Benito Juarez" of Oaxaca, Oaxaca 68020, Mexico
| | - Holanda Isabel Cruz Luis
- UNAM-UABJO Faculty of Medicine Research Center, Faculty of Medicine and Surgery, Autonomous University "Benito Juarez" of Oaxaca, Oaxaca 68020, Mexico
| | - María Del Socorro Pina Canseco
- UNAM-UABJO Faculty of Medicine Research Center, Faculty of Medicine and Surgery, Autonomous University "Benito Juarez" of Oaxaca, Oaxaca 68020, Mexico
| | - Edgar Zenteno
- Department of Biochemistry, Faculty of Medicine, National Autonomous University of Mexico, Mexico City 04510, Mexico
| | - Irma Leticia Bazán Salinas
- UNAM-UABJO Faculty of Medicine Research Center, Faculty of Medicine and Surgery, Autonomous University "Benito Juarez" of Oaxaca, Oaxaca 68020, Mexico
| | - Margarito Martínez Cruz
- National Institute of Technology of Mexico, Technological Institute of Oaxaca, Oaxaca 68033, Mexico
| | - Eduardo Pérez-Campos Mayoral
- UNAM-UABJO Faculty of Medicine Research Center, Faculty of Medicine and Surgery, Autonomous University "Benito Juarez" of Oaxaca, Oaxaca 68020, Mexico
| | - María Teresa Hernández-Huerta
- National Council of Humanities, Sciences and Technologies (CONAHCYT), Faculty of Medicine and Surgery, Autonomous University "Benito Juarez" of Oaxaca, Oaxaca 68120, Mexico
| |
Collapse
|
28
|
Ping M, Li G, Li Q, Fang Y, Fan T, Wu J, Zhang R, Zhang L, Shen B, Guo J. The NRF2-CARM1 axis links glucose sensing to transcriptional and epigenetic regulation of the pentose phosphate pathway in gastric cancer. Cell Death Dis 2024; 15:670. [PMID: 39266534 PMCID: PMC11393079 DOI: 10.1038/s41419-024-07052-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 08/19/2024] [Accepted: 09/03/2024] [Indexed: 09/14/2024]
Abstract
Cancer cells autonomously alter metabolic pathways in response to dynamic nutrient conditions in the microenvironment to maintain cell survival and proliferation. A better understanding of these adaptive alterations may reveal the vulnerabilities of cancer cells. Here, we demonstrate that coactivator-associated arginine methyltransferase 1 (CARM1) is frequently overexpressed in gastric cancer and predicts poor prognosis of patients with this cancer. Gastric cancer cells sense a reduced extracellular glucose content, leading to activation of nuclear factor erythroid 2-related factor 2 (NRF2). Subsequently, NRF2 mediates the classic antioxidant pathway to eliminate the accumulation of reactive oxygen species induced by low glucose. We found that NRF2 binds to the CARM1 promoter, upregulating its expression and triggering CARM1-mediated hypermethylation of histone H3 methylated at R arginine 17 (H3R17me2) in the glucose-6-phosphate dehydrogenase gene body. The upregulation of this dehydrogenase, driven by the H3R17me2 modification, redirects glucose carbon flux toward the pentose phosphate pathway. This redirection contributes to nucleotide synthesis (yielding nucleotide precursors, such as ribose-5-phosphate) and redox homeostasis and ultimately facilitates cancer cell survival and growth. NRF2 or CARM1 knockdown results in decreased H3R17me2a accompanied by the reduction of glucose-6-phosphate dehydrogenase under low glucose conditions. Collectively, this study reveals a significant role of CARM1 in regulating the tumor metabolic switch and identifies CARM1 as a potential therapeutic target for gastric cancer treatment.
Collapse
Affiliation(s)
- Miaomiao Ping
- School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
| | - Guangyao Li
- Department of Gastrointestinal Surgery, The Second People's Hospital of Wuhu, Wuhu, China
| | - Qijiao Li
- School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
| | - Yang Fang
- School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
| | - Taotao Fan
- School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
| | - Jing Wu
- Department of Otorhinolaryngology, Head and Neck Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Ruiyi Zhang
- School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
| | - Lesha Zhang
- School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
| | - Bing Shen
- School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
| | - Jizheng Guo
- School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China.
| |
Collapse
|
29
|
Ogunleye AO, Gayen N, Rauth S, Marimuthu S, Nimmakayala RK, Alsafwani ZW, Cox JL, Batra SK, Ponnusamy MP. PAF1/HIF1α axis rewires the glycolytic metabolism to fuel aggressiveness of pancreatic cancer. Cancer Metab 2024; 12:26. [PMID: 39242538 PMCID: PMC11380429 DOI: 10.1186/s40170-024-00354-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 08/19/2024] [Indexed: 09/09/2024] Open
Abstract
BACKGROUND PAF1/PD2 deregulation contributes to tumorigenesis, drug resistance, and cancer stem cell maintenance in Pancreatic Cancer (PC). Recent studies demonstrate that metabolic reprogramming plays a role in PC progression, but the mechanism is poorly understood. Here, we focused on examining the role of PAF1/PD2 in the metabolic rewiring of PC. METHODS Cell lines were transfected with shRNAs to knockdown PAF1/PD2. Metabolic genes regulated by PAF1/PD2 were identified by qPCR/western blot, and metabolic assays were performed. Immunoprecipitations/ChIP were performed to identify PAF1/PD2 protein partners and confirm PAF1/HIF1α sub-complex binding to LDHA. RESULTS PAF1 and LDHA showed progressively increased expression in human pancreatic tumor sections. Aerobic glycolysis genes were downregulated in PAF1-depleted PC cells. Metabolic assays indicated a decreased lactate production and glucose uptake in knockdown cells. Furthermore, PAF1/PD2 depletion showed a reduced glycolytic rate and increased oxidative phosphorylation by ECAR and OCR analysis. Interestingly, we identified that HIF1α interacts and co-localizes with PAF1, specifically in PC cells. We also observed that the PAF1/PD2-HIF1α complex binds to the LDHA promoter to regulate its expression, reprogramming the metabolism to utilize the aerobic glycolysis pathway preferentially. CONCLUSION Overall, the results indicate that PAF1/PD2 rewires PC metabolism by interacting with HIF1α to regulate the expression of LDHA.
Collapse
Affiliation(s)
- Ayoola O Ogunleye
- Department of Biochemistry and Molecular Biology, Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Nebraska Medical Center, Omaha, NE, 985870, USA
| | - Neelanjana Gayen
- Department of Biochemistry and Molecular Biology, Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Nebraska Medical Center, Omaha, NE, 985870, USA
| | - Sanchita Rauth
- Department of Biochemistry and Molecular Biology, Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Nebraska Medical Center, Omaha, NE, 985870, USA
| | - Saravanakumar Marimuthu
- Department of Biochemistry and Molecular Biology, Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Nebraska Medical Center, Omaha, NE, 985870, USA
| | - Rama Krishna Nimmakayala
- Department of Biochemistry and Molecular Biology, Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Nebraska Medical Center, Omaha, NE, 985870, USA
| | - Zahraa W Alsafwani
- Department of Biochemistry and Molecular Biology, Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Nebraska Medical Center, Omaha, NE, 985870, USA
| | - Jesse L Cox
- Department of Pathology and Microbiology, University of Nebraska Medical Center at Omaha, Omaha, NE, USA
| | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Nebraska Medical Center, Omaha, NE, 985870, USA.
- Fred and Pamela Buffett Cancer Center, Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center at Omaha, Omaha, NE, USA.
| | - Moorthy P Ponnusamy
- Department of Biochemistry and Molecular Biology, Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Nebraska Medical Center, Omaha, NE, 985870, USA.
- Fred and Pamela Buffett Cancer Center, Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center at Omaha, Omaha, NE, USA.
| |
Collapse
|
30
|
Thakor P, Siddiqui MQ, Patel TR. Analysis of the interlink between glucose-6-phosphate dehydrogenase (G6PD) and lung cancer through multi-omics databases. Heliyon 2024; 10:e35158. [PMID: 39165939 PMCID: PMC11334843 DOI: 10.1016/j.heliyon.2024.e35158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/16/2024] [Accepted: 07/24/2024] [Indexed: 08/22/2024] Open
Abstract
Glucose-6-Phosphate Dehydrogenase (G6PD) is a crucial enzyme that executes the pentose phosphate pathway. Due to its critical nodal position in the metabolic network, it is associated with different forms of cancer tumorigeneses and progression. Nonetheless, its functional role and molecular mechanism in lung cancer remain unknown. The present study provides intricate information associated with G6PD and Lung Cancer. Varieties of public datasets were retrieved by us, including UALCAN, TCGA, cBioPortal, and the UCSC Xena browser. The data obtained were used to assess the expression of G6PD, its clinical features, epigenetic regulation, relationship with tumour infiltration, tumour mutation burden, microsatellite instability, tumour microenvironment, immune checkpoint genes, genomic alteration, and patient's overall survival rate. The present study revealed that the G6PD expression was correlated with the clinical features of lung cancer including disease stage, race, sex, age, smoking habits, and lymph node metastasis. Moreover, the expression profile of G6PD also imparts epigenetic changes by modulating the DNA promoter methylation activity. Methylation of promoters changes the expression of various transcription factors, genes leading to an influence on the immune system. These events linked with G6PD-related mutational gene alterations (FAM3A, LAG3, p53, KRAS). The entire circumstance influences the patient's overall survival rate and poor prognosis. Functional investigation using STRING, GO, and KEGG found that G6PD primarily engages in hallmark functions (metabolism, immunological responses, proliferation, apoptosis, p53, HIF-1, FOXO, PI3K-AKT signaling). This work provides a wide knowledge of G6PD's function in lung cancer, as well as a theoretical foundation for possible prognostic therapeutic markers.
Collapse
Affiliation(s)
- Parth Thakor
- Bapubhai Desaibhai Patel Institute of Paramedical Sciences, Charotar University of Science and Technology, CHARUSAT Campus, Changa, Gujarat, India
- Department of Chemistry and Biochemistry, Alberta RNA Research and Training Institute, University of Lethbridge, Lethbridge, AB, T1K 2E1, Canada
| | - M. Quadir Siddiqui
- Department of Chemistry and Biochemistry, Alberta RNA Research and Training Institute, University of Lethbridge, Lethbridge, AB, T1K 2E1, Canada
| | - Trushar R. Patel
- Department of Chemistry and Biochemistry, Alberta RNA Research and Training Institute, University of Lethbridge, Lethbridge, AB, T1K 2E1, Canada
- Department of Microbiology, Immunology & Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada
- Li Ka Shing Institute of Virology, University of Alberta, Edmonton, AB, T6G 2E1, Canada
| |
Collapse
|
31
|
Li Y, Cao Q, Hu Y, He B, Cao T, Tang Y, Zhou XP, Lan XP, Liu SQ. Advances in the interaction of glycolytic reprogramming with lactylation. Biomed Pharmacother 2024; 177:116982. [PMID: 38906019 DOI: 10.1016/j.biopha.2024.116982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/03/2024] [Accepted: 06/15/2024] [Indexed: 06/23/2024] Open
Abstract
Lactylation is a novel post-translational modification (PTM) involving proteins that is induced by lactate accumulation. Histone lysine lactylation alters chromatin spatial configuration, influencing gene transcription and regulating the expression of associated genes. This modification plays a crucial role as an epigenetic regulatory factor in the progression of various diseases. Glycolytic reprogramming is one of the most extensively studied forms of metabolic reprogramming, recognized as a key hallmark of cancer cells. It is characterized by an increase in glycolysis and the inhibition of the tricarboxylic acid (TCA) cycle, accompanied by significant lactate production and accumulation. The two processes are closely linked by lactate, which interacts in various physiological and pathological processes. On the one hand, lactylation levels generally correlate positively with the extent of glycolytic reprogramming, being directly influenced by the lactate concentration produced during glycolytic reprogramming. On the other hand, lactylation can also regulate glycolytic pathways by affecting the transcription and structural functions of essential glycolytic enzymes. This review comprehensively outlines the mechanisms of lactylation and glycolytic reprogramming and their interactions in tumor progression, immunity, and inflammation, with the aim of elucidating the relationship between glycolytic reprogramming and lactylation.
Collapse
Affiliation(s)
- Yue Li
- Department of Clinical Laboratory Medicine, Institution of microbiology and infectious diseases, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Qian Cao
- Department of Clinical Laboratory Medicine, Institution of microbiology and infectious diseases, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Yibao Hu
- Department of Clinical Laboratory Medicine, Institution of microbiology and infectious diseases, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Bisha He
- Department of Clinical Laboratory Medicine, Institution of microbiology and infectious diseases, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Ting Cao
- Department of Clinical Laboratory Medicine, Institution of microbiology and infectious diseases, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Yun Tang
- Department of Clinical Laboratory Medicine, Institution of microbiology and infectious diseases, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Xiang Ping Zhou
- Department of Clinical Laboratory Medicine, Institution of microbiology and infectious diseases, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Xiao Peng Lan
- Department of Clinical Laboratory Medicine, Institution of microbiology and infectious diseases, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Shuang Quan Liu
- Department of Clinical Laboratory Medicine, Institution of microbiology and infectious diseases, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China.
| |
Collapse
|
32
|
Varlı M, Kim E, Oh S, Pulat S, Zhou R, Gamage CDB, Gökalsın B, Sesal NC, Kim KK, Paik MJ, Kim H. Chrysophanol inhibits of colorectal cancer cell motility and energy metabolism by targeting the KITENIN/ErbB4 oncogenic complex. Cancer Cell Int 2024; 24:253. [PMID: 39030594 PMCID: PMC11264950 DOI: 10.1186/s12935-024-03434-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 07/04/2024] [Indexed: 07/21/2024] Open
Abstract
BACKGROUND Expression of the KITENIN/ErbB4 oncogenic complex is associated with metastasis of colorectal cancer to distant organs and lymph nodes and is linked with poor prognosis and poor survival. METHODS Here, we used in vitro and in silico methods to test the ability of chrysophanol, a molecule of natural origin, to suppress the progression of colorectal cancer by targeting the KITENIN/ErbB4 complex. RESULTS Chrysophanol binds to ErbB4, disrupting the ErbB4/KITENIN complex and causing autophagic degradation of KITENIN. We demonstrated that chrysophanol binds to ErbB4 according to a molecular docking model. Chrysophanol reversed KITENIN-mediated effects on cell motility, aerobic glycolysis, and expression of downstream effector genes. Moreover, under conditions of KITENIN overexpression, chrysophanol suppressed the production of onco-metabolites. CONCLUSION Chrysophanol suppresses oncogenic activities by targeting the KITENIN/ErbB4 complex.
Collapse
Affiliation(s)
- Mücahit Varlı
- College of Pharmacy, Sunchon National University, 255 Jungang-ro, Sunchon, Jeonnam, 57922, Republic of Korea
| | - Eunae Kim
- College of Pharmacy, Chosun University, 146 Chosundae-gil, Gwangju, 61452, Republic of Korea
| | - Songjin Oh
- College of Pharmacy, Sunchon National University, 255 Jungang-ro, Sunchon, Jeonnam, 57922, Republic of Korea
| | - Sultan Pulat
- College of Pharmacy, Sunchon National University, 255 Jungang-ro, Sunchon, Jeonnam, 57922, Republic of Korea
| | - Rui Zhou
- College of Pharmacy, Sunchon National University, 255 Jungang-ro, Sunchon, Jeonnam, 57922, Republic of Korea
| | - Chathurika D B Gamage
- College of Pharmacy, Sunchon National University, 255 Jungang-ro, Sunchon, Jeonnam, 57922, Republic of Korea
| | - Barış Gökalsın
- Faculty of Arts and Sciences, Department of Biology, Marmara University, Istanbul, Türkiye
| | - Nüzhet Cenk Sesal
- Faculty of Arts and Sciences, Department of Biology, Marmara University, Istanbul, Türkiye
| | - Kyung Keun Kim
- Department of Pharmacology, Chonnam National University Medical School, 160 Baekseoro, Gwangju, 61469, Republic of Korea
| | - Man-Jeong Paik
- College of Pharmacy, Sunchon National University, 255 Jungang-ro, Sunchon, Jeonnam, 57922, Republic of Korea
| | - Hangun Kim
- College of Pharmacy, Sunchon National University, 255 Jungang-ro, Sunchon, Jeonnam, 57922, Republic of Korea.
| |
Collapse
|
33
|
Xiong Y, Wang F, Mu H, Zhang A, Zhao Y, Han K, Zhang J, Zhang H, Wang Z, Ma J, Wei R, Luan X. hPMSCs prevent erythrocytes dysfunction caused by graft versus host disease via promoting GSH synthesis. Int Immunopharmacol 2024; 139:112689. [PMID: 39029234 DOI: 10.1016/j.intimp.2024.112689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 06/26/2024] [Accepted: 07/12/2024] [Indexed: 07/21/2024]
Abstract
BACKGROUND Oxidative stress is increased in allogeneic hematopoietic stem cell transplant (allo-HSCT) recipients and leads to the development of graft versus host disease (GVHD). Mesenchymal stromal cells (MSCs) can ameliorate GVHD by regulating the function of T cells. However, whether MSCs can modulate erythrocyte antioxidant metabolism and thus reduce GVHD is not known. METHODS Forty female BALB/c mice were randomly assigned to four groups: the control, GVHDhigh, hPMSC, and PBS groups. A hypoxanthine/xanthine oxidase system was used to steadily and gradually produce superoxide in an in vitro experiment. A scanning microscope was used to examine the ultrastructure of erythrocytes. Laser diffraction analyses were used to analyze erythrocyte deformability. Western blotting was used to measure the expression of the erythrocyte membrane skeleton proteins Band 3 and β-Spectrin. Corresponding kits were used to assess the levels of oxidative damage and the activity of antioxidant enzymes. RESULTS Morphological and deformability defects were significantly increased in erythrocytes from GVHD patients. Band 3 and β-Spectrin expression was also reduced in GVHD patients and model mice. Furthermore, we observed significantly increased oxidative stress-induce injury and decreased antioxidant capability in erythrocytes from both GVHD patients and model mice. Subsequent research showed that human placenta-derived MSC (hPMSC) therapy decreased the GVHD-induced redox imbalance in erythrocytes. Furthermore, our findings suggested that upregulating glucose metabolism promoted both the de novo synthesis and recycling of GSH, which is the primary mechanism by which hPMSCs mediate the increase in antioxidant capacity in erythrocytes. CONCLUSION Together, our findings suggest that hPMSCs can increase antioxidant capacity by increasing erythrocyte GSH production and thus ameliorate GVHD.
Collapse
Affiliation(s)
- Yanlian Xiong
- Department of Histology and Embryology, School of Basic Medicine, Binzhou Medical University, Yantai, PR China
| | - Feifei Wang
- Department of Anesthesiology, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, PR China
| | - Huanmei Mu
- Department of Immunology, School of Basic Medicine, Binzhou Medical University, Yantai, PR China
| | - Aiping Zhang
- Department of Immunology, School of Basic Medicine, Binzhou Medical University, Yantai, PR China
| | - Yaxuan Zhao
- Department of Immunology, School of Basic Medicine, Binzhou Medical University, Yantai, PR China
| | - Kaiyue Han
- Department of Immunology, School of Basic Medicine, Binzhou Medical University, Yantai, PR China
| | - Jiashen Zhang
- Department of Immunology, School of Basic Medicine, Binzhou Medical University, Yantai, PR China
| | - Hengchao Zhang
- Department of Immunology, School of Basic Medicine, Binzhou Medical University, Yantai, PR China
| | - Zhuoya Wang
- Department of Immunology, School of Basic Medicine, Binzhou Medical University, Yantai, PR China
| | - Junjie Ma
- Yuhuangding Hospital Affiliated to Qingdao University, Yantai, Shandong Province 264000, PR China
| | - Rongxia Wei
- Yuhuangding Hospital Affiliated to Qingdao University, Yantai, Shandong Province 264000, PR China.
| | - Xiying Luan
- Department of Immunology, School of Basic Medicine, Binzhou Medical University, Yantai, PR China.
| |
Collapse
|
34
|
Lan T, Arastu S, Lam J, Kim H, Wang W, Wang S, Bhatt V, Lopes EC, Hu Z, Sun M, Luo X, Ghergurovich JM, Su X, Rabinowitz JD, White E, Guo JY. Glucose-6-phosphate dehydrogenase maintains redox homeostasis and biosynthesis in LKB1-deficient KRAS-driven lung cancer. Nat Commun 2024; 15:5857. [PMID: 38997257 PMCID: PMC11245543 DOI: 10.1038/s41467-024-50157-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 06/28/2024] [Indexed: 07/14/2024] Open
Abstract
Cancer cells depend on nicotinamide adenine dinucleotide phosphate (NADPH) to combat oxidative stress and support reductive biosynthesis. One major NADPH production route is the oxidative pentose phosphate pathway (committed step: glucose-6-phosphate dehydrogenase, G6PD). Alternatives exist and can compensate in some tumors. Here, using genetically-engineered lung cancer mouse models, we show that G6PD ablation significantly suppresses KrasG12D/+;Lkb1-/- (KL) but not KrasG12D/+;P53-/- (KP) lung tumorigenesis. In vivo isotope tracing and metabolomics reveal that G6PD ablation significantly impairs NADPH generation, redox balance, and de novo lipogenesis in KL but not KP lung tumors. Mechanistically, in KL tumors, G6PD ablation activates p53, suppressing tumor growth. As tumors progress, G6PD-deficient KL tumors increase an alternative NADPH source from serine-driven one carbon metabolism, rendering associated tumor-derived cell lines sensitive to serine/glycine depletion. Thus, oncogenic driver mutations determine lung cancer dependence on G6PD, whose targeting is a potential therapeutic strategy for tumors harboring KRAS and LKB1 co-mutations.
Collapse
Affiliation(s)
- Taijin Lan
- Rutgers Cancer Institute, New Brunswick, NJ, 08901, USA
| | - Sara Arastu
- Rutgers Cancer Institute, New Brunswick, NJ, 08901, USA
| | - Jarrick Lam
- Rutgers Cancer Institute, New Brunswick, NJ, 08901, USA
| | - Hyungsin Kim
- Rutgers Cancer Institute, New Brunswick, NJ, 08901, USA
| | - Wenping Wang
- Rutgers Cancer Institute, New Brunswick, NJ, 08901, USA
| | - Samuel Wang
- Rutgers Cancer Institute, New Brunswick, NJ, 08901, USA
| | | | - Eduardo Cararo Lopes
- Rutgers Cancer Institute, New Brunswick, NJ, 08901, USA
- Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, NJ, 08854, USA
| | - Zhixian Hu
- Rutgers Cancer Institute, New Brunswick, NJ, 08901, USA
| | - Michael Sun
- Rutgers Cancer Institute, New Brunswick, NJ, 08901, USA
| | - Xuefei Luo
- Rutgers Cancer Institute, New Brunswick, NJ, 08901, USA
| | | | - Xiaoyang Su
- Rutgers Cancer Institute, New Brunswick, NJ, 08901, USA
- Department of Medicine, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, 08901, USA
| | - Joshua D Rabinowitz
- Rutgers Cancer Institute, New Brunswick, NJ, 08901, USA
- Department of Chemistry, Princeton University, Princeton, NJ, 08544, USA
- Ludwig Princeton Branch, Ludwig Institute for Cancer Research, Princeton University, Princeton, NJ, 08544, USA
- Lewis-Sigler Institute of Integrative Genomics, Princeton University, Princeton, NJ, 08544, USA
| | - Eileen White
- Rutgers Cancer Institute, New Brunswick, NJ, 08901, USA
- Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, NJ, 08854, USA
- Ludwig Princeton Branch, Ludwig Institute for Cancer Research, Princeton University, Princeton, NJ, 08544, USA
| | - Jessie Yanxiang Guo
- Rutgers Cancer Institute, New Brunswick, NJ, 08901, USA.
- Department of Medicine, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, 08901, USA.
- Department of Chemical Biology, Rutgers Ernest Mario School of Pharmacy, Piscataway, NJ, 08854, USA.
| |
Collapse
|
35
|
Liu X, Sun H, Zheng L, Zhang J, Su H, Li B, Wu Q, Liu Y, Xu Y, Song X, Yu Y. Adipose-derived miRNAs as potential biomarkers for predicting adulthood obesity and its complications: A systematic review and bioinformatic analysis. Obes Rev 2024; 25:e13748. [PMID: 38590187 DOI: 10.1111/obr.13748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 02/25/2024] [Accepted: 03/10/2024] [Indexed: 04/10/2024]
Abstract
Adipose tissue is the first and primary target organ of obesity and the main source of circulating miRNAs in patients with obesity. This systematic review aimed to analyze and summarize the generation and mechanisms of adipose-derived miRNAs and their role as early predictors of various obesity-related complications. Literature searches in the PubMed and Web of Science databases using terms related to miRNAs, obesity, and adipose tissue. Pre-miRNAs from the Human MicroRNA Disease Database, known to regulate obesity-related metabolic disorders, were combined for intersection processing. Validated miRNA targets were sorted through literature review, and enrichment analysis using the Kyoto Encyclopedia of Genes and Genomes via the KOBAS online tool, disease analysis, and miRNA transcription factor prediction using the TransmiR v. 2.0 database were also performed. Thirty miRNAs were identified using both obesity and adipose secretion as criteria. Seventy-nine functionally validated targets associated with 30 comorbidities of these miRNAs were identified, implicating pathways such as autophagy, p53 pathways, and inflammation. The miRNA precursors were analyzed to predict their transcription factors and explore their biosynthesis mechanisms. Our findings offer potential insights into the epigenetic changes related to adipose-driven obesity-related comorbidities.
Collapse
Affiliation(s)
- Xiyan Liu
- College of Basic Medical Science, Key Laboratory of Medical Cell Biology, Ministry of Education, Key Laboratory of Liaoning Province, China Medical University, Shenyang, Liaoning, China
- Health Sciences Institute, China Medical University, Shenyang, Liaoning, China
| | - Huayi Sun
- College of Basic Medical Science, Key Laboratory of Medical Cell Biology, Ministry of Education, Key Laboratory of Liaoning Province, China Medical University, Shenyang, Liaoning, China
- Department of Colorectal Oncology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Lixia Zheng
- College of Basic Medical Science, Key Laboratory of Medical Cell Biology, Ministry of Education, Key Laboratory of Liaoning Province, China Medical University, Shenyang, Liaoning, China
- Health Sciences Institute, China Medical University, Shenyang, Liaoning, China
| | - Jian Zhang
- Health Sciences Institute, China Medical University, Shenyang, Liaoning, China
- Health Sciences Institute, Key Laboratory of Obesity and Glucose/Lipid Associated Metabolic Diseases, China Medical University, Shenyang, Liaoning, China
| | - Han Su
- College of Basic Medical Science, Key Laboratory of Medical Cell Biology, Ministry of Education, Key Laboratory of Liaoning Province, China Medical University, Shenyang, Liaoning, China
- Health Sciences Institute, China Medical University, Shenyang, Liaoning, China
| | - Bingjie Li
- Health Sciences Institute, China Medical University, Shenyang, Liaoning, China
- Health Sciences Institute, Key Laboratory of Obesity and Glucose/Lipid Associated Metabolic Diseases, China Medical University, Shenyang, Liaoning, China
| | - Qianhui Wu
- Health Sciences Institute, China Medical University, Shenyang, Liaoning, China
- Health Sciences Institute, Key Laboratory of Obesity and Glucose/Lipid Associated Metabolic Diseases, China Medical University, Shenyang, Liaoning, China
| | - Yunchan Liu
- Health Sciences Institute, China Medical University, Shenyang, Liaoning, China
- Health Sciences Institute, Key Laboratory of Obesity and Glucose/Lipid Associated Metabolic Diseases, China Medical University, Shenyang, Liaoning, China
| | - Yingxi Xu
- Health Sciences Institute, China Medical University, Shenyang, Liaoning, China
- Department of Clinical Nutrition, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Xiaoyu Song
- College of Basic Medical Science, Key Laboratory of Medical Cell Biology, Ministry of Education, Key Laboratory of Liaoning Province, China Medical University, Shenyang, Liaoning, China
- Health Sciences Institute, China Medical University, Shenyang, Liaoning, China
| | - Yang Yu
- College of Basic Medical Science, Key Laboratory of Medical Cell Biology, Ministry of Education, Key Laboratory of Liaoning Province, China Medical University, Shenyang, Liaoning, China
- Health Sciences Institute, China Medical University, Shenyang, Liaoning, China
- Health Sciences Institute, Key Laboratory of Obesity and Glucose/Lipid Associated Metabolic Diseases, China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
36
|
D'Alessandro A, Keele GR, Hay A, Nemkov T, Earley EJ, Stephenson D, Vincent M, Deng X, Stone M, Dzieciatkowska M, Hansen KC, Kleinman S, Spitalnik SL, Roubinian NH, Norris PJ, Busch MP, Page GP, Stockwell BR, Churchill GA, Zimring JC. Ferroptosis regulates hemolysis in stored murine and human red blood cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.11.598512. [PMID: 38915523 PMCID: PMC11195277 DOI: 10.1101/2024.06.11.598512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Red blood cell (RBC) metabolism regulates hemolysis during aging in vivo and in the blood bank. Here, we leveraged a diversity outbred mouse population to map the genetic drivers of fresh/stored RBC metabolism and extravascular hemolysis upon storage and transfusion in 350 mice. We identify the ferrireductase Steap3 as a critical regulator of a ferroptosis-like process of lipid peroxidation. Steap3 polymorphisms were associated with RBC iron content, in vitro hemolysis, and in vivo extravascular hemolysis both in mice and 13,091 blood donors from the Recipient Epidemiology and Donor evaluation Study. Using metabolite Quantitative Trait Loci analyses, we identified a network of gene products (FADS1/2, EPHX2 and LPCAT3) - enriched in donors of African descent - associated with oxylipin metabolism in stored human RBCs and related to Steap3 or its transcriptional regulator, the tumor protein TP53. Genetic variants were associated with lower in vivo hemolysis in thousands of single-unit transfusion recipients. Highlights Steap3 regulates lipid peroxidation and extravascular hemolysis in 350 diversity outbred miceSteap3 SNPs are linked to RBC iron, hemolysis, vesiculation in 13,091 blood donorsmQTL analyses of oxylipins identified ferroptosis-related gene products FADS1/2, EPHX2, LPCAT3Ferroptosis markers are linked to hemoglobin increments in transfusion recipients. Graphical abstract
Collapse
|
37
|
Potapova EV, Zherebtsov EA, Shupletsov VV, Dremin VV, Kandurova KY, Mamoshin AV, Abramov AY, Dunaev AV. Detection of NADH and NADPH levels in vivo identifies shift of glucose metabolism in cancer to energy production. FEBS J 2024; 291:2674-2682. [PMID: 38311986 DOI: 10.1111/febs.17067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/15/2023] [Accepted: 01/17/2024] [Indexed: 02/06/2024]
Abstract
Profound changes in the metabolism of cancer cells have been known for almost 100 years, and many aspects of these changes have continued to be actively studied and discussed. Differences in the results of various studies can be explained by the diversity of tumours, which have differing processes of energy metabolism, and by limitations in the methods used. Here, using fluorescence lifetime needle optical biopsy in a hepatocellular carcinoma (HCC) mouse model and patients with HCC, we measured reduced nicotinamide adenine dinucleotide (NADH) and reduced nicotinamide adenine dinucleotide phosphate (NADPH) in control liver, and in HCC tumours and their adjacent regions. We found that NADH level (mostly responsible for energy metabolism) is increased in tumours but also in adjacent regions of the same liver. NADPH level is significantly decreased in the tumours of patients but increased in the HCC mouse model. However, in the ex vivo tumour slices of mouse HCC, reactive oxygen species production and glutathione level (both dependent on NADPH) were significantly suppressed. Thus, glucose-dependent NADH and NADPH production in tumours changed but with a more pronounced shift to energy production (NADH), rather than NADPH synthesis for redox balance.
Collapse
Affiliation(s)
- Elena V Potapova
- Research and Development Center of Biomedical Photonics, Orel State University, Russia
| | | | - Valery V Shupletsov
- Research and Development Center of Biomedical Photonics, Orel State University, Russia
| | - Viktor V Dremin
- Research and Development Center of Biomedical Photonics, Orel State University, Russia
- College of Engineering and Physical Sciences, Aston University, Birmingham, UK
| | - Ksenia Y Kandurova
- Research and Development Center of Biomedical Photonics, Orel State University, Russia
| | - Andrian V Mamoshin
- Research and Development Center of Biomedical Photonics, Orel State University, Russia
- Orel Regional Clinical Hospital, Russia
| | - Andrey Y Abramov
- Research and Development Center of Biomedical Photonics, Orel State University, Russia
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
| | - Andrey V Dunaev
- Research and Development Center of Biomedical Photonics, Orel State University, Russia
| |
Collapse
|
38
|
Montironi C, Chen Z, Derks IA, Cretenet G, Krap EA, Eldering E, Simon-Molas H. Metabolic signature and response to glutamine deprivation are independent of p53 status in B cell malignancies. iScience 2024; 27:109640. [PMID: 38680661 PMCID: PMC11053310 DOI: 10.1016/j.isci.2024.109640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 01/03/2024] [Accepted: 03/26/2024] [Indexed: 05/01/2024] Open
Abstract
The tumor suppressor p53 has been described to control various aspects of metabolic reprogramming in solid tumors, but in B cell malignancies that role is as yet unknown. We generated pairs of p53 functional and knockout (KO) clones from distinct B cell malignancies (acute lymphoblastic leukemia, chronic lymphocytic leukemia, diffuse large B cell lymphoma, and multiple myeloma). Metabolomics and isotope tracing showed that p53 loss did not drive a common metabolic signature. Instead, cell lines segregated according to cell of origin. Next, we focused on glutamine as a crucial energy source in the B cell tumor microenvironment. In both TP53 wild-type and KO cells, glutamine deprivation induced cell death through the integrated stress response, via CHOP/ATF4. Lastly, combining BH3 mimetic drugs with glutamine starvation emerged as a possibility to target resistant clones. In conclusion, our analyses do not support a common metabolic signature of p53 deficiency in B cell malignancies and suggest therapeutic options for exploration based on glutamine dependency.
Collapse
Affiliation(s)
- Chiara Montironi
- Amsterdam UMC Location University of Amsterdam, Department of Experimental Immunology, Amsterdam, the Netherlands
- Amsterdam Institute for Infection and Immunity, Cancer Immunology, Amsterdam, the Netherlands
- Cancer Center Amsterdam, Cancer Immunology, Amsterdam, the Netherlands
| | - Zhenghao Chen
- Amsterdam UMC Location University of Amsterdam, Department of Experimental Immunology, Amsterdam, the Netherlands
- Amsterdam Institute for Infection and Immunity, Cancer Immunology, Amsterdam, the Netherlands
- Cancer Center Amsterdam, Cancer Immunology, Amsterdam, the Netherlands
| | - Ingrid A.M. Derks
- Amsterdam UMC Location University of Amsterdam, Department of Experimental Immunology, Amsterdam, the Netherlands
- Amsterdam Institute for Infection and Immunity, Cancer Immunology, Amsterdam, the Netherlands
- Cancer Center Amsterdam, Cancer Immunology, Amsterdam, the Netherlands
| | - Gaspard Cretenet
- Amsterdam UMC Location University of Amsterdam, Department of Experimental Immunology, Amsterdam, the Netherlands
- Amsterdam Institute for Infection and Immunity, Cancer Immunology, Amsterdam, the Netherlands
- Cancer Center Amsterdam, Cancer Immunology, Amsterdam, the Netherlands
| | - Esmée A. Krap
- Amsterdam UMC Location University of Amsterdam, Department of Experimental Immunology, Amsterdam, the Netherlands
| | - Eric Eldering
- Amsterdam UMC Location University of Amsterdam, Department of Experimental Immunology, Amsterdam, the Netherlands
- Amsterdam Institute for Infection and Immunity, Cancer Immunology, Amsterdam, the Netherlands
- Cancer Center Amsterdam, Cancer Immunology, Amsterdam, the Netherlands
| | - Helga Simon-Molas
- Amsterdam UMC Location University of Amsterdam, Department of Experimental Immunology, Amsterdam, the Netherlands
- Amsterdam Institute for Infection and Immunity, Cancer Immunology, Amsterdam, the Netherlands
- Cancer Center Amsterdam, Cancer Immunology, Amsterdam, the Netherlands
- Amsterdam UMC Location University of Amsterdam, Department of Hematology, Amsterdam, the Netherlands
| |
Collapse
|
39
|
Peng M, Keppeke GD, Tsai LK, Chang CC, Liu JL, Sung LY. The IMPDH cytoophidium couples metabolism and fetal development in mice. Cell Mol Life Sci 2024; 81:210. [PMID: 38717553 PMCID: PMC11078715 DOI: 10.1007/s00018-024-05233-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 04/04/2024] [Accepted: 04/05/2024] [Indexed: 05/12/2024]
Abstract
The cytoophidium is an evolutionarily conserved subcellular structure formed by filamentous polymers of metabolic enzymes. In vertebrates, inosine monophosphate dehydrogenase (IMPDH), which catalyses the rate-limiting step in guanosine triphosphate (GTP) biosynthesis, is one of the best-known cytoophidium-forming enzymes. Formation of the cytoophidium has been proposed to alleviate the inhibition of IMPDH, thereby facilitating GTP production to support the rapid proliferation of certain cell types such as lymphocytes, cancer cells and pluripotent stem cells (PSCs). However, past studies lacked appropriate models to elucidate the significance of IMPDH cytoophidium under normal physiological conditions. In this study, we demonstrate that the presence of IMPDH cytoophidium in mouse PSCs correlates with their metabolic status rather than pluripotency. By introducing IMPDH2 Y12C point mutation through genome editing, we established mouse embryonic stem cell (ESC) lines incapable of forming IMPDH polymers and the cytoophidium. Our data indicate an important role of IMPDH cytoophidium in sustaining a positive feedback loop that couples nucleotide biosynthesis with upstream metabolic pathways. Additionally, we find that IMPDH2 Y12C mutation leads to decreased cell proliferation and increased DNA damage in teratomas, as well as impaired embryo development following blastocoel injection. Further analysis shows that IMPDH cytoophidium assembly in mouse embryonic development begins after implantation and gradually increases throughout fetal development. These findings provide insights into the regulation of IMPDH polymerisation in embryogenesis and its significance in coordinating cell metabolism and development.
Collapse
Affiliation(s)
- Min Peng
- Institute of Biotechnology, National Taiwan University, Taipei, 106, Taiwan
| | - Gerson D Keppeke
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
- Departamento de Ciencias Biomédicas, Facultad de Medicina, Universidad Católica del Norte, Coquimbo, Chile
| | - Li-Kuang Tsai
- Institute of Biotechnology, National Taiwan University, Taipei, 106, Taiwan
| | - Chia-Chun Chang
- Institute of Biotechnology, National Taiwan University, Taipei, 106, Taiwan.
| | - Ji-Long Liu
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, OX1 3PT, UK.
| | - Li-Ying Sung
- Institute of Biotechnology, National Taiwan University, Taipei, 106, Taiwan.
- Center for Developmental Biology and Regenerative Medicine, National Taiwan University, Taipei, 106, Taiwan.
- Center for Biotechnology, National Taiwan University, Taipei, 106, Taiwan.
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, 115, Taiwan.
| |
Collapse
|
40
|
Mohanty P, Pande B, Acharya R, Bhaskar LVKS, Verma HK. Unravelling the Triad of Lung Cancer, Drug Resistance, and Metabolic Pathways. Diseases 2024; 12:93. [PMID: 38785748 PMCID: PMC11119248 DOI: 10.3390/diseases12050093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/29/2024] [Accepted: 05/01/2024] [Indexed: 05/25/2024] Open
Abstract
Lung cancer, characterized by its heterogeneity, presents a significant challenge in therapeutic management, primarily due to the development of resistance to conventional drugs. This resistance is often compounded by the tumor's ability to reprogram its metabolic pathways, a survival strategy that enables cancer cells to thrive in adverse conditions. This review article explores the complex link between drug resistance and metabolic reprogramming in lung cancer, offering a detailed analysis of the molecular mechanisms and treatment strategies. It emphasizes the interplay between drug resistance and changes in metabolic pathways, crucial for developing effective lung cancer therapies. This review examines the impact of current treatments on metabolic pathways and the significance of considering metabolic factors to combat drug resistance. It highlights the different challenges and metabolic alterations in non-small-cell lung cancer and small-cell lung cancer, underlining the need for subtype-specific treatments. Key signaling pathways, including PI3K/AKT/mTOR, MAPK, and AMPK, have been discussed for their roles in promoting drug resistance and metabolic changes, alongside the complex regulatory networks involved. This review article evaluates emerging treatments targeting metabolism, such as metabolic inhibitors, dietary management, and combination therapies, assessing their potential and challenges. It concludes with insights into the role of precision medicine and metabolic biomarkers in crafting personalized lung cancer treatments, advocating for metabolic targeting as a promising approach to enhance treatment efficacy and overcome drug resistance. This review underscores ongoing advancements and hurdles in integrating metabolic considerations into lung cancer therapy strategies.
Collapse
Affiliation(s)
- Pratik Mohanty
- Department of Bioscience and Bioengineering, Indian Institute of Technology, Guwahati 781039, India;
| | - Babita Pande
- Department of Physiology, All India Institute of Medical Science, Raipur 492099, India;
| | - Rakesh Acharya
- Department of Zoology, Guru Ghasidas Vishwavidyalaya, Bilaspur 495009, India; (R.A.); (L.V.K.S.B.)
| | - L V K S Bhaskar
- Department of Zoology, Guru Ghasidas Vishwavidyalaya, Bilaspur 495009, India; (R.A.); (L.V.K.S.B.)
| | - Henu Kumar Verma
- Lung Health and Immunity, Helmholtz Zentrum Munich, IngolstädterLandstraße 1, 85764 Oberschleißheim, 85764 Munich, Bayren, Germany
| |
Collapse
|
41
|
Zhen Z, Ren J, Zhu J. The redox requirement and regulation during cell proliferation. Trends Endocrinol Metab 2024; 35:385-399. [PMID: 38262821 DOI: 10.1016/j.tem.2023.12.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/22/2023] [Accepted: 12/22/2023] [Indexed: 01/25/2024]
Abstract
The intracellular metabolic network comprises a variety of reduction-oxidation (redox) reactions that occur in a temporally and spatially distinct manner. In order to coordinate these redox processes, mammalian cells utilize a collection of electron-carrying molecules common to many redox reactions, including NAD, NADP, coenzyme Q (CoQ), and glutathione (GSH). This review considers the metabolic basis of redox regulation in the context of cell proliferation by analyzing how cells acquire and utilize electron carriers to maintain directional carbon flux, sustain reductive biosynthesis, and support antioxidant defense. Elucidating the redox requirement during cell proliferation can advance the understanding of human diseases such as cancer, and reveal effective therapeutic opportunities in the clinic.
Collapse
Affiliation(s)
- Zhuoran Zhen
- Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China
| | - Jiankun Ren
- Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China
| | - Jiajun Zhu
- Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China; Tsinghua-Peking Center for Life Sciences, Beijing, China.
| |
Collapse
|
42
|
Liu C, Wang G, Han W, Tian Q, Li M. Ferroptosis: a potential therapeutic target for stroke. Neural Regen Res 2024; 19:988-997. [PMID: 37862200 PMCID: PMC10749612 DOI: 10.4103/1673-5374.385284] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 07/05/2023] [Accepted: 08/03/2023] [Indexed: 10/22/2023] Open
Abstract
Ferroptosis is a form of regulated cell death characterized by massive iron accumulation and iron-dependent lipid peroxidation, differing from apoptosis, necroptosis, and autophagy in several aspects. Ferroptosis is regarded as a critical mechanism of a series of pathophysiological reactions after stroke because of iron overload caused by hemoglobin degradation and iron metabolism imbalance. In this review, we discuss ferroptosis-related metabolisms, important molecules directly or indirectly targeting iron metabolism and lipid peroxidation, and transcriptional regulation of ferroptosis, revealing the role of ferroptosis in the progression of stroke. We present updated progress in the intervention of ferroptosis as therapeutic strategies for stroke in vivo and in vitro and summarize the effects of ferroptosis inhibitors on stroke. Our review facilitates further understanding of ferroptosis pathogenesis in stroke, proposes new targets for the treatment of stroke, and suggests that more efforts should be made to investigate the mechanism of ferroptosis in stroke.
Collapse
Affiliation(s)
- Chengli Liu
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Guijun Wang
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Wenrui Han
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Qi Tian
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Mingchang Li
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| |
Collapse
|
43
|
Meng Q, Zhang Y, Sun H, Yang X, Hao S, Liu B, Zhou H, Wang Y, Xu ZX. Human papillomavirus-16 E6 activates the pentose phosphate pathway to promote cervical cancer cell proliferation by inhibiting G6PD lactylation. Redox Biol 2024; 71:103108. [PMID: 38457903 PMCID: PMC10937312 DOI: 10.1016/j.redox.2024.103108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 02/29/2024] [Indexed: 03/10/2024] Open
Abstract
High-risk human papillomaviruses (HPVs) are the causative agents of cervical cancer. Here, we report that HPV16 E6E7 promotes cervical cancer cell proliferation by activating the pentose phosphate pathway (PPP). We found that HPV16 E6 activates the PPP primarily by increasing glucose-6-phosphate dehydrogenase (G6PD) enzyme activity. Mechanistically, HPV16 E6 promoted G6PD dimer formation by inhibiting its lactylation. Importantly, we suggest that G6PD K45 was lactylated during G6PD-mediated antioxidant stress. In primary human keratinocytes and an HPV-negative cervical cancer C33A cells line ectopically expressing HPV16 E6, the transduction of G6PD K45A (unable to be lactylated) increased GSH and NADPH levels and, correspondingly, decreasing ROS levels. Conversely, the re-expression of G6PD K45T (mimicking constitutive lactylation) in HPV16-positive SiHa cells line inhibited cell proliferation. In vivo, the inhibition of G6PD enzyme activity with 6-aminonicotinamide (6-An) or the re-expression of G6PD K45T inhibited tumor proliferation. In conclusion, we have revealed a novel mechanism of HPV oncoprotein-mediated malignant transformation. These findings might provide effective strategies for treating cervical and HPV-associated cancers.
Collapse
Affiliation(s)
- Qingfei Meng
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, 130021, China
| | - Yanghe Zhang
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, 130021, China
| | - Huihui Sun
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, 130021, China
| | - Xiangzhe Yang
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, 130021, China
| | - Shiming Hao
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, 130021, China
| | - Bin Liu
- Department of Urology, The First Hospital of Jilin University, Changchun, 130021, China
| | - Honglan Zhou
- Department of Urology, The First Hospital of Jilin University, Changchun, 130021, China.
| | - Yishu Wang
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, 130021, China.
| | - Zhi-Xiang Xu
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, 130021, China; Department of Urology, The First Hospital of Jilin University, Changchun, 130021, China; School of Life Sciences, Henan University, Kaifeng, 475000, China.
| |
Collapse
|
44
|
Trejo-Solís C, Castillo-Rodríguez RA, Serrano-García N, Silva-Adaya D, Vargas-Cruz S, Chávez-Cortéz EG, Gallardo-Pérez JC, Zavala-Vega S, Cruz-Salgado A, Magaña-Maldonado R. Metabolic Roles of HIF1, c-Myc, and p53 in Glioma Cells. Metabolites 2024; 14:249. [PMID: 38786726 PMCID: PMC11122955 DOI: 10.3390/metabo14050249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 04/18/2024] [Accepted: 04/20/2024] [Indexed: 05/25/2024] Open
Abstract
The metabolic reprogramming that promotes tumorigenesis in glioblastoma is induced by dynamic alterations in the hypoxic tumor microenvironment, as well as in transcriptional and signaling networks, which result in changes in global genetic expression. The signaling pathways PI3K/AKT/mTOR and RAS/RAF/MEK/ERK stimulate cell metabolism, either directly or indirectly, by modulating the transcriptional factors p53, HIF1, and c-Myc. The overexpression of HIF1 and c-Myc, master regulators of cellular metabolism, is a key contributor to the synthesis of bioenergetic molecules that mediate glioma cell transformation, proliferation, survival, migration, and invasion by modifying the transcription levels of key gene groups involved in metabolism. Meanwhile, the tumor-suppressing protein p53, which negatively regulates HIF1 and c-Myc, is often lost in glioblastoma. Alterations in this triad of transcriptional factors induce a metabolic shift in glioma cells that allows them to adapt and survive changes such as mutations, hypoxia, acidosis, the presence of reactive oxygen species, and nutrient deprivation, by modulating the activity and expression of signaling molecules, enzymes, metabolites, transporters, and regulators involved in glycolysis and glutamine metabolism, the pentose phosphate cycle, the tricarboxylic acid cycle, and oxidative phosphorylation, as well as the synthesis and degradation of fatty acids and nucleic acids. This review summarizes our current knowledge on the role of HIF1, c-Myc, and p53 in the genic regulatory network for metabolism in glioma cells, as well as potential therapeutic inhibitors of these factors.
Collapse
Affiliation(s)
- Cristina Trejo-Solís
- Laboratorio Experimental de Enfermedades Neurodegenerativas, Departamento de Neurofisiología, Laboratorio Clínico y Banco de Sangre y Laboratorio de Reprogramación Celular, Instituto Nacional de Neurología y Neurocirugía, Ciudad de Mexico 14269, Mexico; (N.S.-G.); (D.S.-A.); (S.Z.-V.)
| | | | - Norma Serrano-García
- Laboratorio Experimental de Enfermedades Neurodegenerativas, Departamento de Neurofisiología, Laboratorio Clínico y Banco de Sangre y Laboratorio de Reprogramación Celular, Instituto Nacional de Neurología y Neurocirugía, Ciudad de Mexico 14269, Mexico; (N.S.-G.); (D.S.-A.); (S.Z.-V.)
| | - Daniela Silva-Adaya
- Laboratorio Experimental de Enfermedades Neurodegenerativas, Departamento de Neurofisiología, Laboratorio Clínico y Banco de Sangre y Laboratorio de Reprogramación Celular, Instituto Nacional de Neurología y Neurocirugía, Ciudad de Mexico 14269, Mexico; (N.S.-G.); (D.S.-A.); (S.Z.-V.)
- Centro de Investigación Sobre el Envejecimiento, Centro de Investigación y de Estudios Avanzados (CIE-CINVESTAV), Ciudad de Mexico 14330, Mexico
| | - Salvador Vargas-Cruz
- Departamento de Cirugía, Hospital Ángeles del Pedregal, Camino a Sta. Teresa, Ciudad de Mexico 10700, Mexico;
| | | | - Juan Carlos Gallardo-Pérez
- Departamento de Fisiopatología Cardio-Renal, Departamento de Bioquímica, Instituto Nacional de Cardiología, Ciudad de Mexico 14080, Mexico;
| | - Sergio Zavala-Vega
- Laboratorio Experimental de Enfermedades Neurodegenerativas, Departamento de Neurofisiología, Laboratorio Clínico y Banco de Sangre y Laboratorio de Reprogramación Celular, Instituto Nacional de Neurología y Neurocirugía, Ciudad de Mexico 14269, Mexico; (N.S.-G.); (D.S.-A.); (S.Z.-V.)
| | - Arturo Cruz-Salgado
- Centro de Investigación Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Cuernavaca 62100, Mexico;
| | - Roxana Magaña-Maldonado
- Laboratorio Experimental de Enfermedades Neurodegenerativas, Departamento de Neurofisiología, Laboratorio Clínico y Banco de Sangre y Laboratorio de Reprogramación Celular, Instituto Nacional de Neurología y Neurocirugía, Ciudad de Mexico 14269, Mexico; (N.S.-G.); (D.S.-A.); (S.Z.-V.)
| |
Collapse
|
45
|
Zhang T, Cao RJ, Niu JL, Chen ZH, Mu SQ, Cao T, Pang JX, Dong LH. G6PD maintains the VSMC synthetic phenotype and accelerates vascular neointimal hyperplasia by inhibiting the VDAC1-Bax-mediated mitochondrial apoptosis pathway. Cell Mol Biol Lett 2024; 29:47. [PMID: 38589823 PMCID: PMC11003121 DOI: 10.1186/s11658-024-00566-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 03/25/2024] [Indexed: 04/10/2024] Open
Abstract
BACKGROUND Glucose-6-phosphate dehydrogenase (G6PD) plays an important role in vascular smooth muscle cell (VSMC) phenotypic switching, which is an early pathogenic event in various vascular remodeling diseases (VRDs). However, the underlying mechanism is not fully understood. METHODS An IP‒LC‒MS/MS assay was conducted to identify new binding partners of G6PD involved in the regulation of VSMC phenotypic switching under platelet-derived growth factor-BB (PDGF-BB) stimulation. Co-IP, GST pull-down, and immunofluorescence colocalization were employed to clarify the interaction between G6PD and voltage-dependent anion-selective channel protein 1 (VDAC1). The molecular mechanisms involved were elucidated by examining the interaction between VDAC1 and apoptosis-related biomarkers, as well as the oligomerization state of VDAC1. RESULTS The G6PD level was significantly elevated and positively correlated with the synthetic characteristics of VSMCs induced by PDGF-BB. We identified VDAC1 as a novel G6PD-interacting molecule essential for apoptosis. Specifically, the G6PD-NTD region was found to predominantly contribute to this interaction. G6PD promotes VSMC survival and accelerates vascular neointimal hyperplasia by inhibiting VSMC apoptosis. Mechanistically, G6PD interacts with VDAC1 upon stimulation with PDGF-BB. By competing with Bax for VDAC1 binding, G6PD reduces VDAC1 oligomerization and counteracts VDAC1-Bax-mediated apoptosis, thereby accelerating neointimal hyperplasia. CONCLUSION Our study showed that the G6PD-VDAC1-Bax axis is a vital switch in VSMC apoptosis and is essential for VSMC phenotypic switching and neointimal hyperplasia, providing mechanistic insight into early VRDs.
Collapse
Affiliation(s)
- Ting Zhang
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Cardiovascular Medical Science Center, Key Laboratory of Vascular Biology of Hebei Province, Key Laboratory of Neural and Vascular Biology of Ministry of Education, Hebei Medical University, Shijiazhuang, 050017, China
- Department of Nuclear Medicine, The Fourth Hospital of Hebei Medical University, Shijiazhuang, 050011, China
| | - Rui-Jie Cao
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Cardiovascular Medical Science Center, Key Laboratory of Vascular Biology of Hebei Province, Key Laboratory of Neural and Vascular Biology of Ministry of Education, Hebei Medical University, Shijiazhuang, 050017, China
| | - Jiang-Ling Niu
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Cardiovascular Medical Science Center, Key Laboratory of Vascular Biology of Hebei Province, Key Laboratory of Neural and Vascular Biology of Ministry of Education, Hebei Medical University, Shijiazhuang, 050017, China
| | - Zhi-Huan Chen
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Cardiovascular Medical Science Center, Key Laboratory of Vascular Biology of Hebei Province, Key Laboratory of Neural and Vascular Biology of Ministry of Education, Hebei Medical University, Shijiazhuang, 050017, China
| | - Shi-Qing Mu
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Cardiovascular Medical Science Center, Key Laboratory of Vascular Biology of Hebei Province, Key Laboratory of Neural and Vascular Biology of Ministry of Education, Hebei Medical University, Shijiazhuang, 050017, China
| | - Tong Cao
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Cardiovascular Medical Science Center, Key Laboratory of Vascular Biology of Hebei Province, Key Laboratory of Neural and Vascular Biology of Ministry of Education, Hebei Medical University, Shijiazhuang, 050017, China
| | - Jie-Xin Pang
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Cardiovascular Medical Science Center, Key Laboratory of Vascular Biology of Hebei Province, Key Laboratory of Neural and Vascular Biology of Ministry of Education, Hebei Medical University, Shijiazhuang, 050017, China
| | - Li-Hua Dong
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Cardiovascular Medical Science Center, Key Laboratory of Vascular Biology of Hebei Province, Key Laboratory of Neural and Vascular Biology of Ministry of Education, Hebei Medical University, Shijiazhuang, 050017, China.
| |
Collapse
|
46
|
Zhang X, Ma H, Gao Y, Liang Y, Du Y, Hao S, Ni T. The Tumor Microenvironment: Signal Transduction. Biomolecules 2024; 14:438. [PMID: 38672455 PMCID: PMC11048169 DOI: 10.3390/biom14040438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/01/2024] [Accepted: 04/03/2024] [Indexed: 04/28/2024] Open
Abstract
In the challenging tumor microenvironment (TME), tumors coexist with diverse stromal cell types. During tumor progression and metastasis, a reciprocal interaction occurs between cancer cells and their environment. These interactions involve ongoing and evolving paracrine and proximal signaling. Intrinsic signal transduction in tumors drives processes such as malignant transformation, epithelial-mesenchymal transition, immune evasion, and tumor cell metastasis. In addition, cancer cells embedded in the tumor microenvironment undergo metabolic reprogramming. Their metabolites, serving as signaling molecules, engage in metabolic communication with diverse matrix components. These metabolites act as direct regulators of carcinogenic pathways, thereby activating signaling cascades that contribute to cancer progression. Hence, gaining insights into the intrinsic signal transduction of tumors and the signaling communication between tumor cells and various matrix components within the tumor microenvironment may reveal novel therapeutic targets. In this review, we initially examine the development of the tumor microenvironment. Subsequently, we delineate the oncogenic signaling pathways within tumor cells and elucidate the reciprocal communication between these pathways and the tumor microenvironment. Finally, we give an overview of the effect of signal transduction within the tumor microenvironment on tumor metabolism and tumor immunity.
Collapse
Affiliation(s)
- Xianhong Zhang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Institutes of Biomedical Sciences, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China; (X.Z.); (Y.G.); (Y.L.); (Y.D.)
| | - Haijun Ma
- Key Laboratory of Ministry of Education for Protection and Utilization of Special Biological Resources in Western China, School of Life Sciences, Ningxia University, Yinchuan 750021, China;
| | - Yue Gao
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Institutes of Biomedical Sciences, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China; (X.Z.); (Y.G.); (Y.L.); (Y.D.)
| | - Yabing Liang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Institutes of Biomedical Sciences, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China; (X.Z.); (Y.G.); (Y.L.); (Y.D.)
| | - Yitian Du
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Institutes of Biomedical Sciences, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China; (X.Z.); (Y.G.); (Y.L.); (Y.D.)
| | - Shuailin Hao
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Institutes of Biomedical Sciences, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China; (X.Z.); (Y.G.); (Y.L.); (Y.D.)
| | - Ting Ni
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Institutes of Biomedical Sciences, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China; (X.Z.); (Y.G.); (Y.L.); (Y.D.)
| |
Collapse
|
47
|
Thakkar AB, Subramanian RB, Thakkar SS, Thakkar VR, Thakor P. Biochanin A - A G6PD inhibitor: In silico and in vitro studies in non-small cell lung cancer cells (A549). Toxicol In Vitro 2024; 96:105785. [PMID: 38266663 DOI: 10.1016/j.tiv.2024.105785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 01/07/2024] [Accepted: 01/18/2024] [Indexed: 01/26/2024]
Abstract
Secondary metabolites from medicinal plants have a well-established therapeutic potential, with many of these chemicals having specialized medical uses. Isoflavonoids, a type of secondary metabolite, have little cytotoxicity against healthy human cells, making them interesting candidates for cancer treatment. Extensive research has been conducted to investigate the chemo-preventive benefits of flavonoids in treating various cancers. Biochanin A (BA), an isoflavonoid abundant in plants such as red clover, soy, peanuts, and chickpeas, was the subject of our present study. This study aimed to determine how BA affected glucose-6-phosphate dehydrogenase (G6PD) in human lung cancer cells. The study provides meaningful insight and a significant impact of BA on the association between metastasis, inflammation, and G6PD inhibition in A549 cells. Comprehensive in vitro tests revealed that BA has anti-inflammatory effects. Molecular docking experiments shed light on BA's high binding affinity for the G6PD receptor. BA substantially decreased the expression of G6PD and other inflammatory and metastasis-related markers. In conclusion, our findings highlight the potential of BA as a therapeutic agent in cancer treatment, specifically by targeting G6PD and related pathways. BA's varied effects, which range from anti-inflammatory capabilities to metastasis reduction, make it an appealing option for future investigation in the development of new cancer therapeutics.
Collapse
Affiliation(s)
- Anjali B Thakkar
- P. G. Department of Biosciences, Sardar Patel Maidan, Satellite Campus, Sardar Patel University, Bakrol-Vadtal Road, Bakrol, Anand, Gujarat, India; P. G. Department of Applied and Interdisciplinary Sciences (IICISST), Sardar Patel University, Vallabh Vidyanagar, Gujarat, India
| | - Ramalingam B Subramanian
- P. G. Department of Biosciences, Sardar Patel Maidan, Satellite Campus, Sardar Patel University, Bakrol-Vadtal Road, Bakrol, Anand, Gujarat, India
| | - Sampark S Thakkar
- AKASHGANGA, Shree Kamdhenu Electronics Pvt. Ltd., Vallabh Vidyanagar, Gujarat, India
| | - Vasudev R Thakkar
- P. G. Department of Biosciences, Sardar Patel Maidan, Satellite Campus, Sardar Patel University, Bakrol-Vadtal Road, Bakrol, Anand, Gujarat, India
| | - Parth Thakor
- Bapubhai Desaibhai Patel Institute of Paramedical Sciences, Charotar University of Science and Technology, Changa, Gujarat, India.
| |
Collapse
|
48
|
Karisola P, Nikkola V, Joronen H, Ylianttila L, Grönroos M, Partonen T, Snellman E, Alenius H. Narrow-band UVB radiation triggers diverse changes in the gene expression and induces the accumulation of M1 macrophages in human skin. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2024; 253:112887. [PMID: 38460430 DOI: 10.1016/j.jphotobiol.2024.112887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 02/22/2024] [Accepted: 03/05/2024] [Indexed: 03/11/2024]
Abstract
BACKGROUND The underlying molecular mechanisms that determine the biological effects of UVB radiation exposure on human skin are still only partially comprehended. OBJECTIVES Our goal is to examine the human skin transcriptome and related molecular mechanisms following a single exposure to UVB in the morning versus evening. METHODS We exposed 20 volunteer females to four-fold standard erythema doses (SED4) of narrow-band UVB (309-313 nm) in the morning or evening and studied skin transcriptome 24 h after the exposure. We performed enrichment analyses of gene pathways, predicted changes in skin cell composition using cellular deconvolution, and correlated cell proportions with gene expression. RESULTS In the skin transcriptome, UVB exposure yielded 1384 differentially expressed genes (DEGs) in the morning and 1295 DEGs in the evening, of which the most statistically significant DEGs enhanced proteasome and spliceosome pathways. Unexposed control samples showed difference by 321 DEGs in the morning vs evening, which was related to differences in genes associated with the circadian rhythm. After the UVB exposure, the fraction of proinflammatory M1 macrophages was significantly increased at both timepoints, and this increase was positively correlated with pathways on Myc targets and mTORC1 signaling. In the evening, the skin clinical erythema was more severe and had stronger positive correlation with the number of M1 macrophages than in the morning after UVB exposure. The fractions of myeloid and plasmacytoid dendritic cells and CD8 T cells were significantly decreased in the morning but not in the evening. CONCLUSIONS NB-UVB-exposure causes changes in skin transcriptome, inhibiting cell division, and promoting proteasome activity and repair responses, both in the morning and in the evening. Inflammatory M1 macrophages may drive the UV-induced skin responses by exacerbating inflammation and erythema. These findings highlight how the same UVB exposure influences skin responses differently in morning versus evening and presents a possible explanation to the differences in gene expression in the skin after UVB irradiation at these two timepoints.
Collapse
Affiliation(s)
- Piia Karisola
- Faculty of Medicine, Human Microbiome Research Program, University of Helsinki, Finland.
| | - Veera Nikkola
- Tampere University, Faculty of Medicine and Health Technology, Department of Dermatology and Venereology, Tampere, Finland
| | - Heli Joronen
- Tampere University, Faculty of Medicine and Health Technology, Department of Dermatology and Venereology, Tampere, Finland; Päijät-Häme Social and Health Care Group, Department of Dermatology and Allergology, Lahti, Finland.
| | - Lasse Ylianttila
- Radiation and Nuclear Safety Authority (STUK), Helsinki, Finland.
| | - Mari Grönroos
- Päijät-Häme Social and Health Care Group, Department of Dermatology and Allergology, Lahti, Finland.
| | - Timo Partonen
- Finnish Institute for Health and Welfare, Department of Public Health and Welfare, Finland.
| | - Erna Snellman
- Tampere University, Faculty of Medicine and Health Technology, Department of Dermatology and Venereology, Tampere, Finland.
| | - Harri Alenius
- Faculty of Medicine, Human Microbiome Research Program, University of Helsinki, Finland; Institute of Environmental Medicine, Karolinska Institute, Stockholm, Sweden.
| |
Collapse
|
49
|
Mao Q, Lin B, Zhang W, Zhang Y, Zhang Y, Cao Q, Xu M. Understanding the role of ursodeoxycholic acid and gut microbiome in non-alcoholic fatty liver disease: current evidence and perspectives. Front Pharmacol 2024; 15:1371574. [PMID: 38576492 PMCID: PMC10991717 DOI: 10.3389/fphar.2024.1371574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 03/05/2024] [Indexed: 04/06/2024] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the most common chronic liver disease, resulting in a huge medical burden worldwide. Accumulating evidence suggests that the gut microbiome and bile acids play pivotal roles during the development of NAFLD. Patients with NAFLD exhibit unique signatures of the intestinal microbiome marked by the priority of Gram-negative bacteria, decreased ratio of Firmicutes/Bacteroidetes (F/B), and increased Prevotella and Lachnospiraceae. The intestinal microbiota is involved in the metabolism of bile acids. Ursodeoxycholic acid (UDCA) is a key determinant in maintaining the dynamic communication between the host and gut microbiota. It generally shows surprising therapeutic potential in NAFLD with several mechanisms, such as improving cellular autophagy, apoptosis, and mitochondrial functions. This action is based on its direct or indirect effect, targeting the farnesoid X receptor (FXR) and various other nuclear receptors. This review aims to discuss the current studies on the involvement of the microbiome-UDCA interface in NAFLD therapy and provide prospective insights into future preventative and therapeutic approaches for NAFLD.
Collapse
Affiliation(s)
- Qingyi Mao
- Department of Gastroenterology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, China
- Inflammatory Bowel Disease Center, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Beibei Lin
- Department of Gastroenterology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, China
- Inflammatory Bowel Disease Center, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Wenluo Zhang
- Department of Gastroenterology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, China
- Inflammatory Bowel Disease Center, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Yu Zhang
- Department of Gastroenterology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, China
- Inflammatory Bowel Disease Center, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Yu Zhang
- Department of Gastroenterology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, China
- Inflammatory Bowel Disease Center, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, China
- Institute of Gastroenterology, Zhejiang University, Hangzhou, China
| | - Qian Cao
- Department of Gastroenterology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, China
- Inflammatory Bowel Disease Center, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, China
- Institute of Gastroenterology, Zhejiang University, Hangzhou, China
| | - Mengque Xu
- Department of Gastroenterology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, China
- Inflammatory Bowel Disease Center, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, China
- Institute of Gastroenterology, Zhejiang University, Hangzhou, China
| |
Collapse
|
50
|
Timofeev O, Giron P, Lawo S, Pichler M, Noeparast M. ERK pathway agonism for cancer therapy: evidence, insights, and a target discovery framework. NPJ Precis Oncol 2024; 8:70. [PMID: 38485987 PMCID: PMC10940698 DOI: 10.1038/s41698-024-00554-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 02/16/2024] [Indexed: 03/18/2024] Open
Abstract
At least 40% of human cancers are associated with aberrant ERK pathway activity (ERKp). Inhibitors targeting various effectors within the ERKp have been developed and explored for over two decades. Conversely, a substantial body of evidence suggests that both normal human cells and, notably to a greater extent, cancer cells exhibit susceptibility to hyperactivation of ERKp. However, this vulnerability of cancer cells remains relatively unexplored. In this review, we reexamine the evidence on the selective lethality of highly elevated ERKp activity in human cancer cells of varying backgrounds. We synthesize the insights proposed for harnessing this vulnerability of ERK-associated cancers for therapeutical approaches and contextualize these insights within established pharmacological cancer-targeting models. Moreover, we compile the intriguing preclinical findings of ERK pathway agonism in diverse cancer models. Lastly, we present a conceptual framework for target discovery regarding ERKp agonism, emphasizing the utilization of mutual exclusivity among oncogenes to develop novel targeted therapies for precision oncology.
Collapse
Affiliation(s)
- Oleg Timofeev
- Institute of Molecular Oncology, Member of the German Center for Lung Research (DZL), Philipps University, 35043, Marburg, Germany
| | - Philippe Giron
- Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Clinical Sciences, Research group Genetics, Reproduction and Development, Centre for Medical Genetics, Laarbeeklaan 101, 1090, Brussels, Belgium
| | - Steffen Lawo
- CRISPR Screening Core Facility, Max Planck Institute for Biology of Ageing, 50931, Cologne, Germany
| | - Martin Pichler
- Translational Oncology, II. Med Clinics Hematology and Oncology, 86156, Augsburg, Germany
| | - Maxim Noeparast
- Translational Oncology, II. Med Clinics Hematology and Oncology, 86156, Augsburg, Germany.
| |
Collapse
|