1
|
Li Y, Ma K, Wang H, Liu Z, Li Z. Identification of therapeutic targets in lung adenocarcinoma using Mendelian randomization and multi-omics. Discov Oncol 2025; 16:1028. [PMID: 40481979 PMCID: PMC12145347 DOI: 10.1007/s12672-025-02835-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Accepted: 05/27/2025] [Indexed: 06/11/2025] Open
Abstract
BACKGROUND Lung adenocarcinoma (LUAD) remains associated with limited effective pharmacological treatment options. This study aimed to identify potential therapeutic targets for LUAD through the integration and analysis of multi-omics datasets. METHODS A meta-analysis was conducted using two extensive proteomics datasets, the UK Biobank Proteomics Project (UKB-PPP) and the Fenland study, to identify disease-associated targets for LUAD through the Summary-Data-Based Mendelian Randomization method. Sensitivity analysis, including heterogeneity tests for dependent instruments, were conducted to validate the findings. The prognostic relevance of the identified candidate targets was assessed using transcriptomic data. Functional interactions were explored via protein-protein interaction network analysis, while single-cell analyses were employed to determine cell-specific expression patterns and differentiation trajectories. Potential side effects and therapeutic indications of these targets were evaluated using phenome-wide association studies and pharmacological data mining. RESULTS Following meta-analysis, a primary significant target, intercellular adhesion molecule 5 (ICAM5), along with potential targets FUT8 and KLK13, were identified as therapeutic candidates for LUAD. FUT8 demonstrated a positive association with LUAD risk (OR = 1.02, p = 0.049), while ICAM5 (OR = 0.88, p = 0.002) and KLK13 (OR = 0.85, p = 0.021) exhibited negative associations. ICAM5 was further identified as an independent prognostic factor for patient survival (HR: 0.788, 95% CI: 0.663-0.936, p = 0.007) and revealed significant diagnostic and prognostic utility in LUAD. ICAM5 expression correlated with various immune infiltration patterns, suggesting potential modulation of the tumor immune microenvironment. Single-cell analysis revealed that ICAM5 did not directly impact LUAD cell differentiation, though its downstream target, MUC1, may contribute to differentiation processes, particularly in KRAS-mutated LUAD. Furthermore, phenome-wide association studies did not reveal substantial evidence of adverse phenotypes linked to ICAM5, supporting its safety profile for drug development. CONCLUSION ICAM5 emerges as a promising biological marker with significant prognostic and therapeutic potential in LUAD.
Collapse
Affiliation(s)
- Yue Li
- Department of Respiratory Medicine, First Affiliated Hospital of Heilongjiang University of Chinese Medicine, No. 26 of Heping Road, Xiangfang District, Harbin, 150040, China
| | - Keru Ma
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Hao Wang
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Zongying Liu
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Zhuying Li
- Department of Respiratory Medicine, First Affiliated Hospital of Heilongjiang University of Chinese Medicine, No. 26 of Heping Road, Xiangfang District, Harbin, 150040, China.
| |
Collapse
|
2
|
Xie G, Okuda S, Gao JY, Wu T, Jeong J, Lu KP, Zhou XZ. The Central Role of Pin1 in Age-Related Cancer Signaling Pathways. Semin Cancer Biol 2025:S1044-579X(25)00072-0. [PMID: 40412492 DOI: 10.1016/j.semcancer.2025.05.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 04/05/2025] [Accepted: 05/13/2025] [Indexed: 05/27/2025]
Abstract
The prolyl-isomerase Pin1 is a unique enzyme that catalyzes cis-trans isomerization of phosphorylated Ser/Thr-Pro motifs. These motifs are present in many proteins, where isomerization of the typically rigid prolyl-peptide bond can lead to conformational changes, and subsequently regulate activity, stability, or localization. The specificity of Pin1 for phosphorylated motifs allows it to serve as a master regulator of proteins after phosphorylation, adding an additional layer of regulation to intricately control cellular signaling. As such, Pin1 plays an expansive role in numerous cancer and age-related signaling pathways, and is recognized as a major driver of cancer and promising therapeutic target. In this review, we discuss the role of Pin1 in regulation of age-related cancer signaling pathways, and we highlight the early development and current landscape of Pin1 inhibitors, and the prospect of Pin1 inhibition for cancer therapy.
Collapse
Affiliation(s)
- George Xie
- Departments of Biochemistry and Oncology, Schulich School of Medicine & Dentistry, Western University, London, ON N6A 5C1, Canada
| | - Sho Okuda
- Departments of Biochemistry and Oncology, Schulich School of Medicine & Dentistry, Western University, London, ON N6A 5C1, Canada
| | - Jing-Yan Gao
- Departments of Biochemistry and Oncology, Schulich School of Medicine & Dentistry, Western University, London, ON N6A 5C1, Canada; Department of Chemistry, Western University, London, ON N6A 5C1, Canada
| | - Timothy Wu
- Departments of Biochemistry and Oncology, Schulich School of Medicine & Dentistry, Western University, London, ON N6A 5C1, Canada
| | - Jessica Jeong
- Departments of Biochemistry and Oncology, Schulich School of Medicine & Dentistry, Western University, London, ON N6A 5C1, Canada
| | - Kun Ping Lu
- Departments of Biochemistry and Oncology, Schulich School of Medicine & Dentistry, Western University, London, ON N6A 5C1, Canada; Robarts Research Institute, Schulich School of Medicine & Dentistry, Western University, London, ON N6G 2V4, Canada.
| | - Xiao Zhen Zhou
- Departments of Biochemistry and Oncology, Schulich School of Medicine & Dentistry, Western University, London, ON N6A 5C1, Canada; Department of Pathology and Laboratory Medicine, Schulich School of Medicine & Dentistry, Western University, London, ON N6A 5C1, Canada; Lawson Health Research Institute, Western University, London, ON N6C 2R5, Canada.
| |
Collapse
|
3
|
Patel S, Jenkins E, Kusurkar RP, Lee S, Jiang W, Nevler A, McCoy M, Pishvaian MJ, Sears RC, Brody JR, Yeo CJ, Jain A. Targeting BARD1 suppresses a Myc-dependent transcriptional program and tumor growth in pancreatic ductal adenocarcinoma. Neoplasia 2025; 63:101152. [PMID: 40096771 PMCID: PMC11957605 DOI: 10.1016/j.neo.2025.101152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 03/06/2025] [Accepted: 03/06/2025] [Indexed: 03/19/2025]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) remains one of the deadliest cancers demanding better and more effective therapies. BARD1 or BRCA1-Associated -Ring Domain-1 plays a pivotal role in homologous recombination repair (HRR). However, its function and the underlying molecular mechanisms in PDAC are still not fully elucidated. Here, we demonstrate that BARD1 is overexpressed in PDAC and its genetic inhibition suppresses c-Myc and disrupts c-Myc dependent transcriptional program. Mechanistically, BARD1 stabilizes c-Myc through ubiquitin-proteasome system by regulating FBXW7. Importantly, targeting BARD1 using either siRNAs or CRISPR/Cas9 deletion blocks PDAC growth in vitro and in vivo, without any signs of toxicity to mice. Using a focused drug library of 477 DNA damage response compounds, we also found that BARD1 inhibition enhances therapeutic efficacy of several clinically relevant agents (fold changes ≥4), including PARPi, in HRR proficient PDAC cells. These data uncover BARD1 as an attractive therapeutic target for HRR proficient PDAC.
Collapse
Affiliation(s)
- Sohum Patel
- Department of Surgery, Jefferson Pancreas, Biliary and Related Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Eleanor Jenkins
- Department of Surgery, Jefferson Pancreas, Biliary and Related Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Rutuj P Kusurkar
- Department of Surgery, Jefferson Pancreas, Biliary and Related Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Sherry Lee
- Department of Pathology and Genomic Medicine, Thomas Jefferson University, Philadelphia, PA, USA
| | - Wei Jiang
- Department of Pathology and Genomic Medicine, Thomas Jefferson University, Philadelphia, PA, USA
| | - Avinoam Nevler
- Department of Surgery, Jefferson Pancreas, Biliary and Related Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Matthew McCoy
- Innovation Center for Biomedical Informatics & Lombardi Comprehensive Cancer Center, Washington, DC, USA
| | - Michael J Pishvaian
- Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Rosalie C Sears
- Department of Molecular and Medical Genetics, and Brenden-Colson Center for Pancreatic Care Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| | - Jonathan R Brody
- Department of Surgery, and Brenden-Colson Center for Pancreatic Care Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| | - Charles J Yeo
- Department of Surgery, Jefferson Pancreas, Biliary and Related Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Aditi Jain
- Department of Surgery, Jefferson Pancreas, Biliary and Related Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA.
| |
Collapse
|
4
|
Neale DA, Morris JC, Verrills NM, Ammit AJ. Understanding the regulatory landscape of protein phosphatase 2A (PP2A): Pharmacological modulators and potential therapeutics. Pharmacol Ther 2025; 269:108834. [PMID: 40023321 DOI: 10.1016/j.pharmthera.2025.108834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 01/20/2025] [Accepted: 02/20/2025] [Indexed: 03/04/2025]
Abstract
Protein phosphatase 2A (PP2A) is a ubiquitously expressed serine/threonine phosphatase with a diverse and integral role in cellular signalling pathways. Consequently, its dysfunction is frequently observed in disease states such as cancer, inflammation and Alzheimer's disease. A growing understanding of both PP2A and its endogenous regulatory proteins has presented numerous targets for therapeutic intervention. This provides important context for the dynamic control and dysregulation of PP2A function in disease states. Understanding the intricate regulation of PP2A signalling in disease has resulted in the development of novel pharmacological agents aimed at restoring cellular homeostasis. Herein we review the structure and function of PP2A together with pharmacological modulators, both endogenous (proteins) and exogenous (small molecules and peptides), with relevance to targeting PP2A as a future pharmacotherapeutic strategy.
Collapse
Affiliation(s)
- David A Neale
- School of Chemistry, UNSW Sydney, NSW 2052, Australia
| | | | - Nicole M Verrills
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, NSW 2308, Australia; Precision Medicine Program, Hunter Medical Research Institute, New Lambton, NSW 2305, Australia
| | - Alaina J Ammit
- Woolcock Emphysema Centre, Woolcock Institute of Medical Research, Macquarie University, NSW, Australia; School of Life Sciences, Faculty of Science, University of Technology Sydney, NSW, Australia.
| |
Collapse
|
5
|
Shao F, Wang R, Li X, Hu Y, Zhang Z, Cai J, Yang J, Feng X, Ren S, Huang Z, Xie Y. TTC36 promotes proliferation and drug resistance in hepatocellular carcinoma cells by inhibiting c-Myc degradation. Cell Death Dis 2025; 16:332. [PMID: 40274799 PMCID: PMC12022016 DOI: 10.1038/s41419-025-07663-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 04/08/2025] [Accepted: 04/11/2025] [Indexed: 04/26/2025]
Abstract
High c-Myc protein accumulation contributes to the proliferation, invasion, and drug resistance in multiple cancer cells, but the underlying mechanism about c-Myc accumulation remains not to be elucidated. Here, we demonstrate that TTC36 promotes c-Myc protein accumulation in hepatocellular carcinoma cells, thereby driving the proliferation and sorafenib resistance in hepatocellular carcinoma cells. Ttc36 depletion disrupts the interaction between SET and PPP2R1A, consequently activating PP2A. Activated PP2A directly dephosphorylates p-c-MycS62 and activates GSK3β, relying on AKT, leading increased phosphorylation of p-c-MycT58, finally promotes FBXW7-mediated polyubiquitination and degradation of c-Myc. Inhibitors targeting GSK3β and PP2A effectively reverse the sorafenib resistance promoted by TTC36. These findings highlight the crucial role of TTC36 in c-Myc accumulation-caused proliferation and sorafenib resistance in HCC, providing a promising combination strategy for treating patients with c-Myc protein accumulation in advanced HCC.
Collapse
Affiliation(s)
- Fengling Shao
- The Ministry of Education Key Laboratory of Laboratory Medical Diagnostics, the College of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Runzhi Wang
- The Ministry of Education Key Laboratory of Laboratory Medical Diagnostics, the College of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Xinyi Li
- The Ministry of Education Key Laboratory of Laboratory Medical Diagnostics, the College of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Yanxia Hu
- School of Life and Health Sciences, Hainan University, Haikou, China
| | - Zaikuan Zhang
- The Ministry of Education Key Laboratory of Laboratory Medical Diagnostics, the College of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Jing Cai
- College of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Jieru Yang
- The Ministry of Education Key Laboratory of Laboratory Medical Diagnostics, the College of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Xiaosong Feng
- The Ministry of Education Key Laboratory of Laboratory Medical Diagnostics, the College of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Suxia Ren
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, China.
| | - Zengyi Huang
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, China.
- Mitomedical laboratory of Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Rare Diseases in Infection and Immunity, Chongqing, China.
| | - Yajun Xie
- The Ministry of Education Key Laboratory of Laboratory Medical Diagnostics, the College of Laboratory Medicine, Chongqing Medical University, Chongqing, China.
| |
Collapse
|
6
|
Chen Y, Zhu H, Luo Y, Xie T, Hu Y, Yan Z, Ji W, Wang Y, Yin Q, Xian H. ALDOC promotes neuroblastoma progression and modulates sensitivity to chemotherapy drugs by enhancing aerobic glycolysis. Front Immunol 2025; 16:1573815. [PMID: 40313939 PMCID: PMC12043483 DOI: 10.3389/fimmu.2025.1573815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2025] [Accepted: 03/17/2025] [Indexed: 05/03/2025] Open
Abstract
Introduction Neuroblastoma (NB), a malignant extracranial solid tumor originating from the sympathetic nervous system, exhibits poor prognosis in high-risk cases, with a 5-year overall survival rate below 50%. Glycolysis has been implicated in NB pathogenesis, and targeting glycolysis-related pathways shows therapeutic potential. This study investigates the role of the glycolysis-associated gene ALDOC in NB pathogenesis and its impact on chemotherapy sensitivity. Methods Transcriptomic data from NB patients were analyzed to identify ALDOC as an independent risk factor for high-risk NB. Protein expression levels of ALDOC were assessed in NB cells versus normal cells using immunoblotting. Functional experiments, including proliferation and migration assays, were conducted in ALDOC-interfered NB cell lines. Glycolytic activity was evaluated by measuring glucose uptake, lactate production, and ATP generation. Additionally, the sensitivity of ALDOC-downregulated NB cells to cisplatin and cyclophosphamide was tested to explore its role in chemotherapy response. Results ALDOC was identified as a high-risk prognostic marker in NB, with elevated protein expression in NB cells compared to normal controls. Silencing ALDOC significantly inhibited NB cell proliferation and migration. Glycolytic activity was markedly reduced in ALDOC-downregulated cells, evidenced by decreased glucose uptake, lactate production, and ATP levels. Furthermore, ALDOC suppression enhanced NB cell sensitivity to cisplatin and cyclophosphamide, suggesting a glycolysis-dependent mechanism underlying chemotherapy resistance. Discussion Our findings highlight ALDOC as a critical driver of NB progression through glycolysis acceleration, with implications for therapeutic targeting. The observed increase in chemotherapy sensitivity upon ALDOC inhibition underscores its potential as a biomarker for treatment optimization. However, the complexity of glycolysis regulation, involving multiple genes and pathways, necessitates further mechanistic studies to clarify ALDOC's specific role. Despite this limitation, our work emphasizes the importance of aerobic glycolysis in NB pathogenesis and provides a foundation for developing novel therapeutic strategies targeting ALDOC or associated pathways. Future research should explore interactions between ALDOC and other glycolytic regulators to refine combinatorial treatment approaches.
Collapse
Affiliation(s)
- Yunpeng Chen
- School of Medicine, Nantong University, Nantong, China
| | - Haixia Zhu
- Cancer Research Center Nantong, Nantong Tumor Hospital, Nantong, Jiangsu, China
| | - Yishu Luo
- School of Medicine, Nantong University, Nantong, China
| | - Tianyue Xie
- Department of Endocrinology, Affiliated Hospital of Nantong University, Nantong, China
| | - Youyang Hu
- Department of Cardiothoracic Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Zhiwei Yan
- School of Medicine, Nantong University, Nantong, China
| | - Weichao Ji
- School of Medicine, Nantong University, Nantong, China
| | - YaXuan Wang
- Department of Urology, Nantong Tumor Hospital, Nantong, China
| | - Qiyou Yin
- Department of Paediatric Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Hua Xian
- Department of Paediatric Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| |
Collapse
|
7
|
Loycano MA, Pienta KJ, Amend SR. Temporal myc dynamics permit mitotic bypass, promoting polyploid phenotypes. Cancer Lett 2025; 613:217526. [PMID: 39909233 PMCID: PMC11924244 DOI: 10.1016/j.canlet.2025.217526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 01/29/2025] [Accepted: 02/02/2025] [Indexed: 02/07/2025]
Abstract
High Myc phenotypes are extensively documented in the hyperproliferative cell cycle of cancer cells, as well as non-proliferative endoreplication cycles engaged during normal development and stress response. Notably, endoreplication in cancer produces chemotherapy resistant polyploid cells, necessitating a clearer understanding of altered cell cycle regulation that uncouples DNA replication and mitotic cell division. The c-Myc oncogene is a well-established transcriptional regulator of cell cycle progression and has been extensively published as an essential driver of the G1/S transition. Beyond S phase, Myc transcriptionally activates the proteins that drive mitotic entry. Sustained activation of Myc through the cell cycle transcriptionally couples DNA replication and mitotic cell division. Based on the literature in this field, we propose a new model of temporal regulation of Myc activity that serves to either couple or uncouple these two processes, determining cell cycle fate - proliferation or polyploidy. The mitotic cell cycle requires two pulses of Myc activity - the first driving the G1/S transition and the second driving the G2/M transition. During mitosis, Myc activity must be silenced to achieve high-fidelity division. Absence of the second activity pulse during G2 results in the downregulation of the proteins essential for mitotic entry and permits premature activation of APC/C, inducing mitotic bypass. A subsequent rise of Myc activity following mitotic bypass permits genome re-replication, driving polyploid phenotypes. This model serves to provide a new level of understanding to the global regulation of S phase-mitosis coupling, as well as a new lens to view low Myc phenotypes.
Collapse
Affiliation(s)
- Michael A Loycano
- Cancer Ecology Center, James Buchanan Brady Urological Institute, Johns Hopkins Medical Institute, Baltimore, MD, USA; Cellular and Molecular Medicine Graduate Training Program, Johns Hopkins School of Medicine, Baltimore, MD, USA.
| | - Kenneth J Pienta
- Cancer Ecology Center, James Buchanan Brady Urological Institute, Johns Hopkins Medical Institute, Baltimore, MD, USA; Cellular and Molecular Medicine Graduate Training Program, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Sarah R Amend
- Cancer Ecology Center, James Buchanan Brady Urological Institute, Johns Hopkins Medical Institute, Baltimore, MD, USA; Cellular and Molecular Medicine Graduate Training Program, Johns Hopkins School of Medicine, Baltimore, MD, USA
| |
Collapse
|
8
|
Chen P, Lin L, Lin X, Liao K, Qiang J, Wang Z, Wu J, Li Y, Yang L, Yao N, Song H, Hong Y, Liu WH, Zhang Y, Chang X, Du D, Xiao C. A Csde1-Strap complex regulates plasma cell differentiation by coupling mRNA translation and decay. Nat Commun 2025; 16:2906. [PMID: 40133358 PMCID: PMC11937441 DOI: 10.1038/s41467-025-58212-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 03/13/2025] [Indexed: 03/27/2025] Open
Abstract
Upon encountering antigens, B cells may undergo multiple differentiation paths, including becoming plasma cells and memory B cells. Although it is well-known that transcription factors govern gene expression programs underpinning these fate decisions in transcriptional level, the role of post-transcriptional regulators, with a focus on RNA-binding proteins, in the fate determination are lesser known. Here we find by RNA interactome capture-coupled CRISPR/Cas9 functional screening that the Csde1-Strap complex plays an important role in plasma cell differentiation. Mechanistically, the Csde1-Strap complex establishes the expression kinetics of Bach2, a key regulator of plasma cell differentiation. Bach2 expression is rapidly induced to promote B cell expansion and then decreased to initiate plasma cell differentiation. The Csde1-Strap interaction is critical for their binding to Bach2 mRNA to couple its decay with translation to restrain the magnitude and duration of Bach2 protein expression. In the absence of Csde1 or Strap, Bach2 translation is de-coupled from mRNA decay, leading to elevated and prolonged expression of Bach2 protein and impaired plasma cell differentiation. This study thus establishes the functional RBP landscape in B cells and illustrates the fundamental importance of controlling protein expression kinetics in cell fate determination.
Collapse
Affiliation(s)
- Pengda Chen
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Lianghua Lin
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Xinyong Lin
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Kunyu Liao
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Jiali Qiang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Zhizhang Wang
- Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, China
| | - Jianfeng Wu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Yang Li
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Liang Yang
- Westlake Laboratory of Life Sciences and Biomedicine, Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang Province, China
| | - Nan Yao
- Westlake Laboratory of Life Sciences and Biomedicine, Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang Province, China
| | - Huilin Song
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Yazhen Hong
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Wen-Hsien Liu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian, China.
| | - Yaoyang Zhang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China.
| | - Xing Chang
- Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, China.
| | - Dan Du
- State Key Laboratory of Cellular Stress Biology, Department of Gastroenterology, Zhongshan Hospital of Xiamen University, School of Medicine, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian, China.
| | - Changchun Xiao
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian, China.
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA.
| |
Collapse
|
9
|
Cohn GM, Daniel CJ, Eng JR, Sun XX, Pelz C, Chin K, Smith A, Lopez CD, Brody JR, Dai MS, Sears RC. MYC Serine 62 phosphorylation promotes its binding to DNA double strand breaks to facilitate repair and cell survival under genotoxic stress. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.19.644227. [PMID: 40166231 PMCID: PMC11957152 DOI: 10.1101/2025.03.19.644227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Genomic instability is a hallmark of cancer, driving oncogenic mutations that enhance tumor aggressiveness and drug resistance. MYC, a master transcription factor that is deregulated in nearly all human tumors, paradoxically induces replication stress and associated DNA damage while also increasing expression of DNA repair factors and mediating resistance to DNA-damaging therapies. Emerging evidence supports a non-transcriptional role for MYC in preserving genomic integrity at sites of active transcription and protecting stalled replication forks under stress. Understanding how MYC's genotoxic and genoprotective functions diverge may reveal new therapeutic strategies for MYC-driven cancers. Here, we identify a non-canonical role of MYC in DNA damage response (DDR) through its direct association with DNA breaks. We show that phosphorylation at serine 62 (pS62-MYC) is crucial for the efficient recruitment of MYC to damage sites, its interaction with repair factors BRCA1 and RAD51, and effective DNA repair to support cell survival under stress. Mass spectrometry analysis with MYC-BioID2 during replication stress reveals a shift in MYC's interactome, maintaining DDR associations while losing transcriptional regulators. These findings establish pS62-MYC as a key regulator of genomic stability and a potential therapeutic target in cancers.
Collapse
Affiliation(s)
- Gabriel M. Cohn
- Department of Molecular and Medical Genetics, School of Medicine, Oregon Health and Science University, Portland, OR, USA
| | - Colin J. Daniel
- Department of Molecular and Medical Genetics, School of Medicine, Oregon Health and Science University, Portland, OR, USA
| | - Jennifer R. Eng
- Department of Molecular and Medical Genetics, School of Medicine, Oregon Health and Science University, Portland, OR, USA
| | - Xiao-Xin Sun
- Department of Molecular and Medical Genetics, School of Medicine, Oregon Health and Science University, Portland, OR, USA
| | - Carl Pelz
- Department of Molecular and Medical Genetics, School of Medicine, Oregon Health and Science University, Portland, OR, USA
- Brenden-Colson Center for Pancreatic Care, Oregon Health and Science University, Portland, OR, USA
| | - Koei Chin
- Center for Early Detection Advanced Research, Oregon Health and Science University, Portland, OR, USA
- Department of Biomedical Engineering, Oregon Health and Science University, Portland, OR, USA
| | - Alexander Smith
- Brenden-Colson Center for Pancreatic Care, Oregon Health and Science University, Portland, OR, USA
| | - Charles D. Lopez
- Brenden-Colson Center for Pancreatic Care, Oregon Health and Science University, Portland, OR, USA
- Department of Hematology and Oncology, Oregon Health and Science University, Portland, OR, USA
- Knight Cancer Institute, Oregon Health and Science University, Portland, OR, USA
| | - Jonathan R. Brody
- Brenden-Colson Center for Pancreatic Care, Oregon Health and Science University, Portland, OR, USA
- Knight Cancer Institute, Oregon Health and Science University, Portland, OR, USA
- Department of Surgery, Oregon Health and Science University, Portland, OR, USA
- Department of Cell, Developmental and Cancer Biology, Oregon Health and Science University, Portland, OR, USA
| | - Mu-shui Dai
- Department of Molecular and Medical Genetics, School of Medicine, Oregon Health and Science University, Portland, OR, USA
| | - Rosalie C. Sears
- Department of Molecular and Medical Genetics, School of Medicine, Oregon Health and Science University, Portland, OR, USA
- Brenden-Colson Center for Pancreatic Care, Oregon Health and Science University, Portland, OR, USA
- Knight Cancer Institute, Oregon Health and Science University, Portland, OR, USA
| |
Collapse
|
10
|
Wang X, Lee D, Xu H, Sui Y, Meisenhelder J, Hunter T. PIN1 Prolyl Isomerase Promotes Initiation and Progression of Bladder Cancer through the SREBP2-Mediated Cholesterol Biosynthesis Pathway. Cancer Discov 2025; 15:633-655. [PMID: 39808064 PMCID: PMC11875963 DOI: 10.1158/2159-8290.cd-24-0866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 10/02/2024] [Accepted: 12/06/2024] [Indexed: 01/16/2025]
Abstract
SIGNIFICANCE This study provides deeper insights into the regulatory role of the phospho-dependent prolyl isomerase PIN1 in bladder cancer. The identification of the link between PIN1 and SREBP2-mediated transcription and cholesterol biosynthesis offers the potential for developing novel therapeutic strategies for bladder cancer.
Collapse
Affiliation(s)
- Xue Wang
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Derrick Lee
- Division of Regenerative Medicine, Department of Medicine, University of California San Diego, San Diego, CA, USA
| | - Haibo Xu
- Key Laboratory of Medical Reprogramming Technology, Shenzhen Second People’s Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong, China
| | - Yuan Sui
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Jill Meisenhelder
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Tony Hunter
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| |
Collapse
|
11
|
Burke S, Chowdhury O, Rouault‐Pierre K. Low-risk MDS-A spotlight on precision medicine for SF3B1-mutated patients. Hemasphere 2025; 9:e70103. [PMID: 40124717 PMCID: PMC11926769 DOI: 10.1002/hem3.70103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 01/30/2025] [Accepted: 02/13/2025] [Indexed: 03/25/2025] Open
Abstract
A deep understanding of the biological mechanisms driving the pathogenesis of myelodysplastic neoplasms (MDS) is essential to develop comprehensive therapeutic approaches that will benefit patient's disease management and quality of life. In this review, we focus on MDS harboring mutations in the splicing factor SF3B1. Clones harboring this mutation arise from the most primitive hematopoietic compartment and expand throughout the entire myeloid lineage, exerting distinct effects at various stages of differentiation. Supportive care, particularly managing anemia, remains essential in SF3B1-mutated MDS. While SF3B1 mutations are frequently linked with ring sideroblasts and iron overload due to impaired erythropoiesis, the current therapeutic landscape fails to adequately address the underlying disease biology, particularly in transfusion-dependent patients, where further iron overload contributes to increased morbidity and mortality. Novel agents such as Luspatercept and Imetelstat have shown promise, but their availability remains restricted and their long-term efficacy is to be investigated. Spliceosome modulators have failed to deliver and inhibitors of inflammatory pathways, including TLR and NF-κB inhibitors, are still under investigation. This scarcity of effective and disease-modifying therapies highlights the unmet need for new approaches tailored to the molecular and genetic abnormalities in SF3B1-mutated MDS. Emerging strategies targeting metabolic mis-splicing (e.g., COASY) with vitamin B5, pyruvate kinase activators, and inhibitors of oncogenic pathways like MYC and BCL-2 represent potential future avenues for treatment, but their clinical utility remains to be fully explored. The current limitations in treatment underscore the urgency of developing novel, more effective therapies for patients with SF3B1-mutated MDS.
Collapse
Affiliation(s)
- Shoshana Burke
- Centre for Haemato‐OncologyBarts Cancer Institute, Queen Mary University of LondonLondonUK
| | - Onima Chowdhury
- Oxford University Hospitals NHS Foundation TrustOxfordUK
- Molecular Haematology Unit, Weatherall institute of Molecular Medicine NHR, Biomedical Research CentreUniversity of OxfordOxfordUK
| | - Kevin Rouault‐Pierre
- Centre for Haemato‐OncologyBarts Cancer Institute, Queen Mary University of LondonLondonUK
| |
Collapse
|
12
|
RAO YONG, CHEN XIAO, LI KAIYU, NIE MINHAI, LIU XUQIAN. Research progress on the role of decorin in the development of oral mucosal carcinogenesis. Oncol Res 2025; 33:577-590. [PMID: 40109852 PMCID: PMC11915041 DOI: 10.32604/or.2024.053119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 06/12/2024] [Indexed: 03/22/2025] Open
Abstract
Decorin (DCN) is primarily found in the connective tissues of various parts of the body, including the lungs, kidneys, bone tissue, aorta, and tendons. It is an important component of the extracellular matrix (ECM) and belongs to the class I small leucine-rich proteoglycans family. DCN is increasingly attracting attention due to its significant role in tumors, fibrotic diseases, and the regulation of vascular formation. Moreover, its anti-tumor properties have positioned it as a promising biomarker in the fight against cancer. Numerous studies have confirmed that DCN can exert inhibitory effects in various solid tumors, particularly in oral squamous cell carcinoma (OSCC), by activating its downstream pathways through binding with the epidermal growth factor receptor (EGFR) and mesenchymal-epithelial transition (MET) receptor, or by stabilizing and enhancing the expression of the tumor suppressor gene p53 to mediate apoptosis in cancer cells that have undergone mutation. The occurrence of OSCC is a continuous and dynamic process, encompassing the transition from normal mucosa to oral potentially malignant disorders (OPMDs), and further progressing from OPMDs to the malignant transformation into OSCC. We have found that DCN may exhibit a bidirectional effect in the progression of oral mucosal carcinogenesis, showing a trend of initial elevation followed by a decline, which decreases with the differentiation of OSCC. In OPMDs, DCN exhibits high expression and may be associated with malignant transformation, possibly linked to the increased expression of P53 in OPMDs. In OSCC, the expression of DCN is reduced, which can impact OSCC angiogenesis, and inhibit tumor cell proliferation, migration, and invasion capabilities, serving as a potential marker for predicting adverse prognosis in OSCC patients. This article reviews the current research status of DCN, covering its molecular structure, properties, and involvement in the onset and progression of oral mucosal carcinogenesis. It elucidates DCN's role in this process and aims to offer insights for future investigations into its mechanism of action in oral mucosal carcinogenesis and its potential application in the early diagnosis and treatment of OSCC.
Collapse
Affiliation(s)
- YONG RAO
- Department of Periodontics and Oral Mucosal Diseases, The Afliated Stomatology Hospital, Southwest Medical University, Luzhou, 646000, China
- Institute of Stomatology, Southwest Medical University, Luzhou, 646000, China
- Luzhou Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration, Luzhou, 646000, China
| | - XIAO CHEN
- Department of Oral Medical Technology, Sichuan College of Traditional Chinese Medicine, Mianyang, 621000, China
- Department of Orthodontics, Mianyang Stomatological Hospital, Mianyang, 621000, China
| | - KAIYU LI
- Department of Periodontics and Oral Mucosal Diseases, The Afliated Stomatology Hospital, Southwest Medical University, Luzhou, 646000, China
- Institute of Stomatology, Southwest Medical University, Luzhou, 646000, China
- Luzhou Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration, Luzhou, 646000, China
| | - MINHAI NIE
- Department of Periodontics and Oral Mucosal Diseases, The Afliated Stomatology Hospital, Southwest Medical University, Luzhou, 646000, China
- Institute of Stomatology, Southwest Medical University, Luzhou, 646000, China
- Luzhou Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration, Luzhou, 646000, China
| | - XUQIAN LIU
- Department of Basic Medicine of Stomatology, The Afliated Stomatology Hospital, Southwest Medical University, Luzhou, 646000, China
- Institute of Stomatology, Southwest Medical University, Luzhou, 646000, China
- Luzhou Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration, Luzhou, 646000, China
| |
Collapse
|
13
|
Shinzawa Y, Sasaki SI, Iwabuchi S, Hashimoto S, Kawada M, Hayakawa Y. Protein phosphatase 2A inhibitor modulates natural killer cell homeostasis in peripheral tissues. Biochem Biophys Res Commun 2024; 741:151020. [PMID: 39577078 DOI: 10.1016/j.bbrc.2024.151020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 11/18/2024] [Indexed: 11/24/2024]
Abstract
Although natural killer (NK) cell responses to tumor and viral infection have been studied, the mechanisms underlying NK cell homeostasis in vivo remain unclear. In this study, we demonstrate the pharmacological action of cytostatin, a protein phosphatase 2A (PP2A) specific inhibitor (PP2Ai), on NK cells in regulating NK cell homeostasis in the peripheral tissues. We found that PP2Ai treatment decreased NK cell percentages in the bone marrow and secondary lymphoid tissues while increasing NK cell percentages in peripheral tissues such as the lung and liver. In the peripheral tissues of PP2Ai-treated mice, Ki-67 expression and BrdU uptake in NK cells were upregulated, and an initial increase in the pre-mature CD11bhiCD27hi NK subset was observed, followed by an increase in the terminally differentiated mature CD11bhiCD27lo NK subset. In addition, bone marrow Ki-67+ NK cells predominantly expressed CX3CR1 in the PP2Ai-treated mice and were further mobilized to the peripheral tissues. Among various target molecules of PP2A, we found that the upregulation of c-Myc pathway and its phosphorylation, along with its downstream cyclin E expression and G1/S cell cycle transition in PP2Ai-treated mice NK cells. Our results suggest that PP2Ai modulates NK cell proliferation through c-Myc and cyclin E, leading to their maturation and trafficking from the bone marrow to the peripheral tissues.
Collapse
Affiliation(s)
- Yui Shinzawa
- Section of Host Defences, Institute of Natural Medicine, University of Toyama, 2630, Sugitani, Toyama-shi, Toyama 930-0194, Japan.
| | - So-Ichiro Sasaki
- Section of Host Defences, Institute of Natural Medicine, University of Toyama, 2630, Sugitani, Toyama-shi, Toyama 930-0194, Japan.
| | - Sadahiro Iwabuchi
- Department of Molecular Pathophysiology, Institute of Advanced Medicine, Wakayama Medical University, 811-1, Kimiidera, Wakayama-shi, Wakayama 641-8509, Japan.
| | - Shinichi Hashimoto
- Department of Molecular Pathophysiology, Institute of Advanced Medicine, Wakayama Medical University, 811-1, Kimiidera, Wakayama-shi, Wakayama 641-8509, Japan
| | - Manabu Kawada
- Laboratory of Oncology, Institute of Microbial Chemistry, 3-14-23, Kamiosaki, Shinagawa-ku, Tokyo 141-0021, Japan.
| | - Yoshihiro Hayakawa
- Section of Host Defences, Institute of Natural Medicine, University of Toyama, 2630, Sugitani, Toyama-shi, Toyama 930-0194, Japan.
| |
Collapse
|
14
|
Zheng L, Wang J, Han S, Zhong L, Liu Z, Li B, Zhang R, Zhou L, Zheng X, Liu Z, Zeng C, Li R, Zou Y, Wang L, Wu Y, Kang T. The KLF16/MYC feedback loop is a therapeutic target in bladder cancer. J Exp Clin Cancer Res 2024; 43:303. [PMID: 39551759 PMCID: PMC11571712 DOI: 10.1186/s13046-024-03224-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 11/04/2024] [Indexed: 11/19/2024] Open
Abstract
BACKGROUND Bladder cancer (BLCA) is a common malignancy characterized by dysregulated transcription and a lack of effective therapeutic targets. In this study, we aimed to identify and evaluate novel targets with clinical potential essential for tumor growth in BLCA. METHODS CRISPR-Cas9 screening was used to identify transcription factors essential for bladder cancer cell viability. The biological functions of KLF16 in bladder cancer were investigated both in vitro and in vivo. The regulatory mechanism between KLF16 and MYC was elucidated through a series of analyses, including RNA sequencing, quantitative polymerase chain reaction (qPCR), RNA immunoprecipitation, Western blotting, Mass spectrometry, Dual-luciferase reporter assays, Cleavage Under Targets and Tagmentation (CUT&Tag) sequencing, OptoDroplets assays, and RNA stability assay. The clinical relevance of KLF16 and MYC in bladder cancer was evaluated through analyses of public databases and immunohistochemistry. RESULTS Krüppel-like factor 16 (KLF16) was essential for BLCA cell viability. Elevated expression of KLF16 was observed in bladder cancer tissues, and higher expression levels of KLF16 were correlated with poor progression-free survival (PFS) and cancer-specific survival (CSS) probabilities in BLCA patients. Mechanistically, KLF16 mRNA competed with the mRNA of dual-specificity phosphatase 16 (DUSP16) for binding to the RNA-binding protein, WW domain binding protein 11 (WBP11), resulting in destabilization of the DUSP16 mRNA. This, in turn, led to activation of ERK1/2, which stabilized the MYC protein. Furthermore, KLF16 interacted with MYC to form nuclear condensates, thereby enhancing MYC's transcriptional activity. Additionally, MYC transcriptionally upregulated KLF16, creating a positive feedback loop between KLF16 and MYC that amplified their oncogenic functions. Targeting this loop with bromodomain inhibitors, such as OTX015 and ABBV-744, suppressed the transcription of both KLF16 and MYC, resulting in reduced BLCA cell viability and tumor growth, as well as increased sensitivity to chemotherapy. CONCLUSIONS Our study revealed the crucial role of the KLF16/MYC regulatory axis in modulating tumor growth and chemotherapy sensitivity in BLCA, suggesting that combining bromodomain inhibitors, such as OTX015 or ABBV-744, with DDP or gemcitabine could be a promising therapeutic intervention for BLCA patients.
Collapse
Affiliation(s)
- Lisi Zheng
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, 651 Dongfeng Road East, Guangzhou, 510060, People's Republic of China
| | - Jingxuan Wang
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, 651 Dongfeng Road East, Guangzhou, 510060, People's Republic of China
| | - Shan Han
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, 651 Dongfeng Road East, Guangzhou, 510060, People's Republic of China
| | - Li Zhong
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, 651 Dongfeng Road East, Guangzhou, 510060, People's Republic of China
- Center of Digestive Disease, Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, People's Republic of China
| | - Zefu Liu
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, 651 Dongfeng Road East, Guangzhou, 510060, People's Republic of China
- Department of Urology, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China
| | - Bin Li
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Ruhua Zhang
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, 651 Dongfeng Road East, Guangzhou, 510060, People's Republic of China
| | - Liwen Zhou
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, 651 Dongfeng Road East, Guangzhou, 510060, People's Republic of China
| | - Xianchong Zheng
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, 651 Dongfeng Road East, Guangzhou, 510060, People's Republic of China
| | - Zhenhua Liu
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, 651 Dongfeng Road East, Guangzhou, 510060, People's Republic of China
| | - Cuiling Zeng
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, 651 Dongfeng Road East, Guangzhou, 510060, People's Republic of China
| | - Ruonan Li
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, 651 Dongfeng Road East, Guangzhou, 510060, People's Republic of China
| | - Yezi Zou
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, 651 Dongfeng Road East, Guangzhou, 510060, People's Republic of China
| | - Liqin Wang
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, 651 Dongfeng Road East, Guangzhou, 510060, People's Republic of China.
| | - Yuanzhong Wu
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, 651 Dongfeng Road East, Guangzhou, 510060, People's Republic of China.
| | - Tiebang Kang
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, 651 Dongfeng Road East, Guangzhou, 510060, People's Republic of China.
| |
Collapse
|
15
|
Rejnowicz E, Batchelor M, Leen E, Ahangar MS, Burgess SG, Richards MW, Kalverda AP, Bayliss R. Exploring the dynamics and interactions of the N-myc transactivation domain through solution nuclear magnetic resonance spectroscopy. Biochem J 2024; 481:1535-1556. [PMID: 39370942 PMCID: PMC11555651 DOI: 10.1042/bcj20240248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 10/03/2024] [Accepted: 10/04/2024] [Indexed: 10/08/2024]
Abstract
Myc proteins are transcription factors crucial for cell proliferation. They have a C-terminal domain that mediates Max and DNA binding, and an N-terminal disordered region culminating in the transactivation domain (TAD). The TAD participates in many protein-protein interactions, notably with kinases that promote stability (Aurora-A) or degradation (ERK1, GSK3) via the ubiquitin-proteasome system. We probed the structure, dynamics and interactions of N-myc TAD using nuclear magnetic resonance (NMR) spectroscopy following its complete backbone assignment. Chemical shift analysis revealed that N-myc has two regions with clear helical propensity: Trp77-Glu86 and Ala122-Glu132. These regions also have more restricted ps-ns motions than the rest of the TAD, and, along with the phosphodegron, have comparatively high transverse (R2) 15N relaxation rates, indicative of slower timescale dynamics and/or chemical exchange. Collectively these features suggest differential propensities for structure and interaction, either internal or with binding partners, across the TAD. Solution studies on the interaction between N-myc and Aurora-A revealed a previously uncharacterised binding site. The specificity and kinetics of sequential phosphorylation of N-myc by ERK1 and GSK3 were characterised using NMR and resulted in no significant structural changes outside the phosphodegron. When the phosphodegron was doubly phosphorylated, N-myc formed a robust interaction with the Fbxw7-Skp1 complex, but mapping the interaction by NMR suggests a more extensive interface. Our study provides foundational insights into N-myc TAD dynamics and a backbone assignment that will underpin future work on the structure, dynamics, interactions and regulatory post-translational modifications of this key oncoprotein.
Collapse
Affiliation(s)
- Ewa Rejnowicz
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, U.K
| | - Matthew Batchelor
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, U.K
| | - Eoin Leen
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, U.K
| | - Mohd Syed Ahangar
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, U.K
| | - Selena G. Burgess
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, U.K
| | - Mark W. Richards
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, U.K
| | - Arnout P. Kalverda
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, U.K
| | - Richard Bayliss
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, U.K
| |
Collapse
|
16
|
Kim JS, Kehrl JH. Inhibition of WNK Kinases in NK Cells Disrupts Cellular Osmoregulation and Control of Tumor Metastasis. J Innate Immun 2024; 16:451-469. [PMID: 39265537 PMCID: PMC11521464 DOI: 10.1159/000540744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 08/01/2024] [Indexed: 09/14/2024] Open
Abstract
INTRODUCTION The serine/threonine with-no-lysine (WNK) kinase family function in blood pressure control, electrolyte homeostasis, and cellular osmoregulation. These kinases and their downstream effectors are considered promising therapeutic targets in hypertension and stroke. However, the role of WNK kinases in immune cells remains poorly understood. METHODS Using the small-molecule WNK kinase inhibitors WNK463 and WNK-IN-11, we investigated how WNK kinase inhibition affects natural killer (NK) cell physiology. RESULTS WNK kinase inhibition with WNK463 or WNK-IN-11 significantly decreased IL-2-activated NK cell volume, motility, and cytolytic activity. Treatment of NK cells with these inhibitors induced autophagy by activating AMPK and inhibiting mTOR signaling. Moreover, WNK kinase inhibition increased phosphorylation of Akt and c-Myc by misaligning activity of activating kinases and inhibitory phosphatases. Treatment of tumor-bearing mice with WNK463 impaired tumor metastasis control by adoptively transferred NK cells. CONCLUSION The catalytic activity of WNK kinases has a critical role of multiple aspects of NK cell physiology and their pharmacologic inhibition negatively impacts NK cell function.
Collapse
Affiliation(s)
- Ji Sung Kim
- B-Cell Molecular Immunology Section, Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - John H Kehrl
- B-Cell Molecular Immunology Section, Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
17
|
Casacuberta-Serra S, González-Larreategui Í, Capitán-Leo D, Soucek L. MYC and KRAS cooperation: from historical challenges to therapeutic opportunities in cancer. Signal Transduct Target Ther 2024; 9:205. [PMID: 39164274 PMCID: PMC11336233 DOI: 10.1038/s41392-024-01907-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 06/05/2024] [Accepted: 06/24/2024] [Indexed: 08/22/2024] Open
Abstract
RAS and MYC rank amongst the most commonly altered oncogenes in cancer, with RAS being the most frequently mutated and MYC the most amplified. The cooperative interplay between RAS and MYC constitutes a complex and multifaceted phenomenon, profoundly influencing tumor development. Together and individually, these two oncogenes regulate most, if not all, hallmarks of cancer, including cell death escape, replicative immortality, tumor-associated angiogenesis, cell invasion and metastasis, metabolic adaptation, and immune evasion. Due to their frequent alteration and role in tumorigenesis, MYC and RAS emerge as highly appealing targets in cancer therapy. However, due to their complex nature, both oncogenes have been long considered "undruggable" and, until recently, no drugs directly targeting them had reached the clinic. This review aims to shed light on their complex partnership, with special attention to their active collaboration in fostering an immunosuppressive milieu and driving immunotherapeutic resistance in cancer. Within this review, we also present an update on the different inhibitors targeting RAS and MYC currently undergoing clinical trials, along with their clinical outcomes and the different combination strategies being explored to overcome drug resistance. This recent clinical development suggests a paradigm shift in the long-standing belief of RAS and MYC "undruggability", hinting at a new era in their therapeutic targeting.
Collapse
Affiliation(s)
| | - Íñigo González-Larreategui
- Models of cancer therapies Laboratory, Vall d'Hebron Institute of Oncology, Cellex Centre, Hospital University Vall d'Hebron Campus, Barcelona, Spain
| | - Daniel Capitán-Leo
- Models of cancer therapies Laboratory, Vall d'Hebron Institute of Oncology, Cellex Centre, Hospital University Vall d'Hebron Campus, Barcelona, Spain
| | - Laura Soucek
- Peptomyc S.L., Barcelona, Spain.
- Models of cancer therapies Laboratory, Vall d'Hebron Institute of Oncology, Cellex Centre, Hospital University Vall d'Hebron Campus, Barcelona, Spain.
- Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain.
- Department of Biochemistry and Molecular Biology, Universitat Autonoma de Barcelona, Bellaterra, Spain.
| |
Collapse
|
18
|
Lahera A, Vela-Martín L, Fernández-Navarro P, Llamas P, López-Lorenzo JL, Cornago J, Santos J, Fernández-Piqueras J, Villa-Morales M. PIM1 is a potential therapeutic target for the leukemogenic effects mediated by JAK/STAT pathway mutations in T-ALL/LBL. NPJ Precis Oncol 2024; 8:152. [PMID: 39033228 PMCID: PMC11271448 DOI: 10.1038/s41698-024-00638-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 07/09/2024] [Indexed: 07/23/2024] Open
Abstract
Precursor T-cell neoplasms (T-ALL/LBL) are aggressive hematological malignancies that arise from the malignant transformation of immature thymocytes. Despite the JAK/STAT pathway is recurrently altered in these neoplasms, there are not pharmacological inhibitors officially approved for the treatment of T-ALL/LBL patients that present oncogenic JAK/STAT pathway mutations. In the effort to identify potential therapeutic targets for those patients, we followed an alternative approach and focused on their transcriptional profile. We combined the analysis of molecular data from T-ALL/LBL patients with the generation of hematopoietic cellular models to reveal that JAK/STAT pathway mutations are associated with an aberrant transcriptional profile. Specifically, we demonstrate that JAK/STAT pathway mutations induce the overexpression of the PIM1 gene. Moreover, we show that the pan-PIM inhibitor, PIM447, significantly reduces the leukemogenesis, as well as the aberrant activation of c-MYC and mTOR pathways in cells expressing different JAK/STAT pathway mutations, becoming a potential therapeutic opportunity for a relevant subset of T-ALL/LBL patients.
Collapse
Affiliation(s)
- Antonio Lahera
- Department of Biology, Universidad Autónoma de Madrid, Madrid, 28049, Spain.
- Department of Genome dynamics and function, Centro de Biología Molecular Severo Ochoa (CBM), Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), Madrid, 28049, Spain.
- Area of Genetics and Genomics, IIS Fundación Jiménez Díaz, Madrid, 28040, Spain.
| | - Laura Vela-Martín
- Department of Biology, Universidad Autónoma de Madrid, Madrid, 28049, Spain
- Department of Genome dynamics and function, Centro de Biología Molecular Severo Ochoa (CBM), Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), Madrid, 28049, Spain
- Area of Genetics and Genomics, IIS Fundación Jiménez Díaz, Madrid, 28040, Spain
| | - Pablo Fernández-Navarro
- Unit of Cancer and Environmental Epidemiology, Centro Nacional de Epidemiología, Instituto de Salud Carlos III, Madrid, 28029, Spain
- Consorcio de Investigación Biomédica de Epidemiología y Salud Pública (CIBERESP), Madrid, 28029, Spain
| | - Pilar Llamas
- Division of Hematology and Hemotherapy, Hospital Universitario Fundación Jiménez Díaz, Madrid, 28040, Spain
| | - José L López-Lorenzo
- Division of Hematology and Hemotherapy, Hospital Universitario Fundación Jiménez Díaz, Madrid, 28040, Spain
| | - Javier Cornago
- Division of Hematology and Hemotherapy, Hospital Universitario Fundación Jiménez Díaz, Madrid, 28040, Spain
| | - Javier Santos
- Department of Biology, Universidad Autónoma de Madrid, Madrid, 28049, Spain
- Department of Genome dynamics and function, Centro de Biología Molecular Severo Ochoa (CBM), Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), Madrid, 28049, Spain
- Area of Genetics and Genomics, IIS Fundación Jiménez Díaz, Madrid, 28040, Spain
- Institute for Molecular Biology-IUBM (Universidad Autónoma de Madrid) Madrid, Madrid, 28049, Spain
| | - José Fernández-Piqueras
- Department of Biology, Universidad Autónoma de Madrid, Madrid, 28049, Spain.
- Department of Genome dynamics and function, Centro de Biología Molecular Severo Ochoa (CBM), Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), Madrid, 28049, Spain.
- Area of Genetics and Genomics, IIS Fundación Jiménez Díaz, Madrid, 28040, Spain.
- Institute for Molecular Biology-IUBM (Universidad Autónoma de Madrid) Madrid, Madrid, 28049, Spain.
| | - María Villa-Morales
- Department of Biology, Universidad Autónoma de Madrid, Madrid, 28049, Spain.
- Department of Genome dynamics and function, Centro de Biología Molecular Severo Ochoa (CBM), Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), Madrid, 28049, Spain.
- Area of Genetics and Genomics, IIS Fundación Jiménez Díaz, Madrid, 28040, Spain.
- Institute for Molecular Biology-IUBM (Universidad Autónoma de Madrid) Madrid, Madrid, 28049, Spain.
| |
Collapse
|
19
|
Alderman C, Anderson R, Zhang L, Hughes CJ, Li X, Ebmeier C, Wagley ME, Ahn NG, Ford HL, Zhao R. Biochemical characterization of the Eya and PP2A-B55α interaction. J Biol Chem 2024; 300:107408. [PMID: 38796066 PMCID: PMC11328874 DOI: 10.1016/j.jbc.2024.107408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 04/22/2024] [Accepted: 05/09/2024] [Indexed: 05/28/2024] Open
Abstract
The eyes absent (Eya) proteins were first identified as co-activators of the six homeobox family of transcription factors and are critical in embryonic development. These proteins are also re-expressed in cancers after development is complete, where they drive tumor progression. We have previously shown that the Eya3 N-terminal domain (NTD) contains Ser/Thr phosphatase activity through an interaction with the protein phosphatase 2A (PP2A)-B55α holoenzyme and that this interaction increases the half-life of Myc through pT58 dephosphorylation. Here, we showed that Eya3 directly interacted with the NTD of Myc, recruiting PP2A-B55α to Myc. We also showed that Eya3 increased the Ser/Thr phosphatase activity of PP2A-B55α but not PP2A-B56α. Furthermore, we demonstrated that the NTD (∼250 amino acids) of Eya3 was completely disordered, and it used a 38-residue segment to interact with B55α. In addition, knockdown and phosphoproteomic analyses demonstrated that Eya3 and B55α affected highly similar phosphosite motifs with a preference for Ser/Thr followed by Pro, consistent with Eya3's apparent Ser/Thr phosphatase activity being mediated through its interaction with PP2A-B55α. Intriguingly, mutating this Pro to other amino acids in a Myc peptide dramatically increased dephosphorylation by PP2A. Not surprisingly, MycP59A, a naturally occurring mutation hotspot in several cancers, enhanced Eya3-PP2A-B55α-mediated dephosphorylation of pT58 on Myc, leading to increased Myc stability and cell proliferation, underscoring the critical role of this phosphosite in regulating Myc stability.
Collapse
Affiliation(s)
- Christopher Alderman
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA; Medical Scientist Training Program, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA; Molecular Biology Program, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Ryan Anderson
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Lingdi Zhang
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Connor J Hughes
- Medical Scientist Training Program, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA; Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Xueni Li
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Chris Ebmeier
- Department of Biochemistry, University of Colorado-Boulder, Boulder, Colorado, USA
| | - Marisa E Wagley
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Natalie G Ahn
- Department of Biochemistry, University of Colorado-Boulder, Boulder, Colorado, USA
| | - Heide L Ford
- Molecular Biology Program, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA; Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Rui Zhao
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA; Molecular Biology Program, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA.
| |
Collapse
|
20
|
Lu KP, Zhou XZ. Pin1-catalyzed conformational regulation after phosphorylation: A distinct checkpoint in cell signaling and drug discovery. Sci Signal 2024; 17:eadi8743. [PMID: 38889227 PMCID: PMC11409840 DOI: 10.1126/scisignal.adi8743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 05/30/2024] [Indexed: 06/20/2024]
Abstract
Protein phosphorylation is one of the most common mechanisms regulating cellular signaling pathways, and many kinases and phosphatases are proven drug targets. Upon phosphorylation, protein functions can be further regulated by the distinct isomerase Pin1 through cis-trans isomerization. Numerous protein targets and many important roles have now been elucidated for Pin1. However, no tools are available to detect or target cis and trans conformation events in cells. The development of Pin1 inhibitors and stereo- and phospho-specific antibodies has revealed that cis and trans conformations have distinct and often opposing cellular functions. Aberrant conformational changes due to the dysregulation of Pin1 can drive pathogenesis but can be effectively targeted in age-related diseases, including cancers and neurodegenerative disorders. Here, we review advances in understanding the roles of Pin1 signaling in health and disease and highlight conformational regulation as a distinct signal transduction checkpoint in disease development and treatment.
Collapse
Affiliation(s)
- Kun Ping Lu
- Departments of Biochemistry and Oncology, Schulich School of Medicine & Dentistry
- Robarts Research Institute, Schulich School of Medicine & Dentistry
| | - Xiao Zhen Zhou
- Departments of Biochemistry and Oncology, Schulich School of Medicine & Dentistry
- Department of Pathology and Laboratory Medicine, Schulich School of Medicine & Dentistry
- Lawson Health Research Institute, Western University, London, ON N6G 2V4, Canada
| |
Collapse
|
21
|
Thompson PE, Shortt J. Defeating MYC with drug combinations or dual-targeting drugs. Trends Pharmacol Sci 2024; 45:490-502. [PMID: 38782688 DOI: 10.1016/j.tips.2024.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/16/2024] [Accepted: 04/17/2024] [Indexed: 05/25/2024]
Abstract
Members of the MYC family of proteins are a major target for cancer drug discovery, but the development of drugs that block MYC-driven cancers has not yet been successful. Approaches to achieve success may include the development of combination therapies or dual-acting drugs that target MYC at multiple nodes. Such treatments hold the possibility of additive or synergistic activity, potentially reducing side effect profiles and the emergence of resistance. In this review, we examine the prominent MYC-related targets and highlight those that have been targeted in combination and/or dual-target approaches. Finally, we explore the challenges of combination and dual-target approaches from a drug development perspective.
Collapse
Affiliation(s)
- Philip E Thompson
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Faculty of Pharmacy and Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia.
| | - Jake Shortt
- Blood Cancer Therapeutics Laboratory, School of Clinical Sciences at Monash Health, Faculty of Medicine Nursing and Health Sciences, Monash University, Melbourne, Victoria 3168, Australia; Monash Hematology, Monash Health, Melbourne, Victoria 3168, Australia; Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria 3000, Australia
| |
Collapse
|
22
|
De Carli A, Kapelyukh Y, Kursawe J, Chaplain MAJ, Wolf CR, Hamis S. Simulating BRAFV600E-MEK-ERK signalling dynamics in response to vertical inhibition treatment strategies. NPJ Syst Biol Appl 2024; 10:51. [PMID: 38750040 PMCID: PMC11096323 DOI: 10.1038/s41540-024-00379-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 04/29/2024] [Indexed: 05/18/2024] Open
Abstract
In vertical inhibition treatment strategies, multiple components of an intracellular pathway are simultaneously inhibited. Vertical inhibition of the BRAFV600E-MEK-ERK signalling pathway is a standard of care for treating BRAFV600E-mutated melanoma where two targeted cancer drugs, a BRAFV600E-inhibitor, and a MEK inhibitor, are administered in combination. Targeted therapies have been linked to early onsets of drug resistance, and thus treatment strategies of higher complexities and lower doses have been proposed as alternatives to current clinical strategies. However, finding optimal complex, low-dose treatment strategies is a challenge, as it is possible to design more treatment strategies than are feasibly testable in experimental settings. To quantitatively address this challenge, we develop a mathematical model of BRAFV600E-MEK-ERK signalling dynamics in response to combinations of the BRAFV600E-inhibitor dabrafenib (DBF), the MEK inhibitor trametinib (TMT), and the ERK-inhibitor SCH772984 (SCH). From a model of the BRAFV600E-MEK-ERK pathway, and a set of molecular-level drug-protein interactions, we extract a system of chemical reactions that is parameterised by in vitro data and converted to a system of ordinary differential equations (ODEs) using the law of mass action. The ODEs are solved numerically to produce simulations of how pathway-component concentrations change over time in response to different treatment strategies, i.e., inhibitor combinations and doses. The model can thus be used to limit the search space for effective treatment strategies that target the BRAFV600E-MEK-ERK pathway and warrant further experimental investigation. The results demonstrate that DBF and DBF-TMT-SCH therapies show marked sensitivity to BRAFV600E concentrations in silico, whilst TMT and SCH monotherapies do not.
Collapse
Affiliation(s)
- Alice De Carli
- School of Mathematics and Statistics, University of St Andrews, St Andrews, Scotland, UK
| | - Yury Kapelyukh
- School of Medicine, Jacqui Wood Cancer Centre, Ninewells Hospital and Medical School, University of Dundee, Dundee, Scotland, UK
| | - Jochen Kursawe
- School of Mathematics and Statistics, University of St Andrews, St Andrews, Scotland, UK
| | - Mark A J Chaplain
- School of Mathematics and Statistics, University of St Andrews, St Andrews, Scotland, UK
| | - C Roland Wolf
- School of Medicine, Jacqui Wood Cancer Centre, Ninewells Hospital and Medical School, University of Dundee, Dundee, Scotland, UK
| | - Sara Hamis
- School of Mathematics and Statistics, University of St Andrews, St Andrews, Scotland, UK.
- Tampere Institute for Advanced Study, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland.
- Department of Information Technology, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
23
|
Stewart R, Sharma S, Wu T, Okuda S, Xie G, Zhou XZ, Shilton B, Lu KP. The role of the master cancer regulator Pin1 in the development and treatment of cancer. Front Cell Dev Biol 2024; 12:1343938. [PMID: 38745861 PMCID: PMC11091292 DOI: 10.3389/fcell.2024.1343938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 03/28/2024] [Indexed: 05/16/2024] Open
Abstract
This review examines the complex role of Pin1 in the development and treatment of cancer. Pin1 is the only peptidyl-prolyl isomerase (PPIase) that can recognize and isomerize phosphorylated Ser/Thr-Pro peptide bonds. Pin1 catalyzes a structural change in phosphorylated Ser/Thr-Pro motifs that can modulate protein function and thereby impact cell cycle regulation and tumorigenesis. The molecular mechanisms by which Pin1 contributes to oncogenesis are reviewed, including Pin1 overexpression and its correlation with poor cancer prognosis, and the contribution of Pin1 to aggressive tumor phenotypes involved in therapeutic resistance is discussed, with an emphasis on cancer stem cells, the epithelial-to-mesenchymal transition (EMT), and immunosuppression. The therapeutic potential of Pin1 inhibition in cancer is discussed, along with the promise and the difficulties in identifying potent, drug-like, small-molecule Pin1 inhibitors. The available evidence supports the efficacy of targeting Pin1 as a novel cancer therapeutic by analyzing the role of Pin1 in a complex network of cancer-driving pathways and illustrating the potential of synergistic drug combinations with Pin1 inhibitors for treating aggressive and drug-resistant tumors.
Collapse
Affiliation(s)
- Robert Stewart
- Department of Biochemistry, Western University, London, ON, Canada
| | - Shaunik Sharma
- Department of Biochemistry, Western University, London, ON, Canada
| | - Timothy Wu
- Department of Biochemistry, Western University, London, ON, Canada
| | - Sho Okuda
- Department of Biochemistry, Western University, London, ON, Canada
| | - George Xie
- Department of Biochemistry, Western University, London, ON, Canada
| | - Xiao Zhen Zhou
- Department of Biochemistry, Western University, London, ON, Canada
- Robarts Research Institute, Western University, London, ON, Canada
- Department of Pathology and Laboratory Medicine, Western University, London, ON, Canada
- Lawson Health Research Institute, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Brian Shilton
- Department of Biochemistry, Western University, London, ON, Canada
| | - Kun Ping Lu
- Department of Biochemistry, Western University, London, ON, Canada
- Robarts Research Institute, Western University, London, ON, Canada
- Lawson Health Research Institute, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
- Department of Oncology, Western University, London, ON, Canada
| |
Collapse
|
24
|
Qi Y, Li L, Wei Y, Ma F. PP2A as a potential therapeutic target for breast cancer: Current insights and future perspectives. Biomed Pharmacother 2024; 173:116398. [PMID: 38458011 DOI: 10.1016/j.biopha.2024.116398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 02/28/2024] [Accepted: 03/06/2024] [Indexed: 03/10/2024] Open
Abstract
Breast cancer has become the most prevalent malignancy worldwide; however, therapeutic efficacy is far from satisfactory. To alleviate the burden of this disease, it is imperative to discover novel mechanisms and treatment strategies. Protein phosphatase 2 A (PP2A) comprises a family of mammalian serine/threonine phosphatases that regulate many cellular processes. PP2A is dysregulated in several human diseases, including oncological pathologies, and plays a pivotal role in the initiation and progression of tumours. The role of PP2A as a tumour suppressor has been extensively studied, and its regulation can serve as a target for anticancer therapy. Recent studies have shown that PP2A is a tumour promotor. PP2A-mediated anticancer therapy may involve two opposing mechanisms: activation and inhibition. In general, the contradictory roles of PP2A should not be overlooked, and more work is needed to determine the molecular mechanism by which PP2A affects in tumours. In this review, the literature on the role of PP2A in tumours, especially in breast cancer, was analysed. This review describes relevant targets of breast cancer, such as cell cycle control, DNA damage responses, epidermal growth factor receptor, immune modulation and cell death resistance, which may lead to effective therapeutic strategies or influence drug development in breast cancer.
Collapse
Affiliation(s)
- Yalong Qi
- Department of Medical Oncology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Chaoyang District, Pan jia yuan nan Road 17, Beijing 100021, China
| | - Lixi Li
- Department of Medical Oncology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Chaoyang District, Pan jia yuan nan Road 17, Beijing 100021, China
| | - Yuhan Wei
- Department of Medical Oncology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Chaoyang District, Pan jia yuan nan Road 17, Beijing 100021, China
| | - Fei Ma
- Department of Medical Oncology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Chaoyang District, Pan jia yuan nan Road 17, Beijing 100021, China.
| |
Collapse
|
25
|
Kimura T, Doolittle WKL, Kruhlak M, Zhao L, Hwang E, Zhu X, Tang B, Wolcott KM, Cheng SY. Inhibition of MEK Signaling Attenuates Cancer Stem Cell Activity in Anaplastic Thyroid Cancer. Thyroid 2024; 34:484-495. [PMID: 38115586 PMCID: PMC10998707 DOI: 10.1089/thy.2023.0521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Background: Anaplastic thyroid cancer (ATC) is highly aggressive and has very limited treatment options. Recent studies suggest that cancer stem cell (CSC) activity in ATC could underlie this recurrence and resistance to treatment. The recent approval by the U.S. Food and Drug Administration of the combined treatment of BRAF and MEK inhibitors for ATC patients has shown some efficacy in patients harboring the BRAFV600E mutation. However, it was unknown whether the combined treatment could affect the CSC activity. This study explores the effects of the BRAF and MEK inhibitors on CSC activity in human ATC cells. Methods: Using three human ATC cells, THJ-11T, THJ-16T, and 8505C cells, we evaluated the effects of dabrafenib (a BRAF kinase inhibitor), trametinib (an MEK inhibitor), or a combined treatment of the two drugs on the CSC activity by tumorsphere formation, Aldefluor assays, expression profiles of key CSC markers, immunohistochemistry, and in vivo xenograft mouse models. Furthermore, we also used confocal imaging to directly visualize the effects on drugs on CSCs by the SORE6-mCherry reporter in cultured cells and xenograft tumor cells. Results: The BRAF inhibitor, dabrafenib, had weak efficacy, while the MEK inhibitor, trametinib, showed strong efficacy in attenuating the CSC activity, as evidenced by suppression of CSC marker expression, tumorsphere formation, and Aldefluor assays. Using ATC cells expressing a fluorescent CSC SORE6 reporter, we showed reduction of CSC activity in the rank order of combined > trametinib > dabrafenib through in vitro and in vivo xenograft models. Molecular analyses showed that suppression of CSC activity by these drugs was, in part, mediated by attenuation of the transcription by dampening the RNA polymerase II activity. Conclusions: Our analyses demonstrated the presence of CSCs in ATC cells. The inhibition of CSC activity by the MEK signaling could partially account for the efficacy of the combined treatment shown in ATC patients. However, our studies also showed that not all CSC activity was totally abolished, which may account for the recurrence observed in ATC patients. Our findings have provided new insights into the molecular basis of efficacy and limitations of these drugs in ATC patients.
Collapse
Affiliation(s)
- Takahito Kimura
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Woo Kyung Lee Doolittle
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Michael Kruhlak
- Laboratory of Cancer Biology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Li Zhao
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Eunmi Hwang
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Xuguang Zhu
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Binwu Tang
- Laboratory of Cancer Biology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Karen M. Wolcott
- Laboratory of Genome Integrity Flow Cytometry Core, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Sheue-yann Cheng
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
26
|
Chan KI, Zhang S, Li G, Xu Y, Cui L, Wang Y, Su H, Tan W, Zhong Z. MYC Oncogene: A Druggable Target for Treating Cancers with Natural Products. Aging Dis 2024; 15:640-697. [PMID: 37450923 PMCID: PMC10917530 DOI: 10.14336/ad.2023.0520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 05/20/2023] [Indexed: 07/18/2023] Open
Abstract
Various diseases, including cancers, age-associated disorders, and acute liver failure, have been linked to the oncogene, MYC. Animal testing and clinical trials have shown that sustained tumor volume reduction can be achieved when MYC is inactivated, and different combinations of therapeutic agents including MYC inhibitors are currently being developed. In this review, we first provide a summary of the multiple biological functions of the MYC oncoprotein in cancer treatment, highlighting that the equilibrium points of the MYC/MAX, MIZ1/MYC/MAX, and MAD (MNT)/MAX complexes have further potential in cancer treatment that could be used to restrain MYC oncogene expression and its functions in tumorigenesis. We also discuss the multifunctional capacity of MYC in various cellular cancer processes, including its influences on immune response, metabolism, cell cycle, apoptosis, autophagy, pyroptosis, metastasis, angiogenesis, multidrug resistance, and intestinal flora. Moreover, we summarize the MYC therapy patent landscape and emphasize the potential of MYC as a druggable target, using herbal medicine modulators. Finally, we describe pending challenges and future perspectives in biomedical research, involving the development of therapeutic approaches to modulate MYC or its targeted genes. Patients with cancers driven by MYC signaling may benefit from therapies targeting these pathways, which could delay cancerous growth and recover antitumor immune responses.
Collapse
Affiliation(s)
- Ka Iong Chan
- Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China
| | - Siyuan Zhang
- Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China
| | - Guodong Li
- Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China
| | - Yida Xu
- Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China
| | - Liao Cui
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, School of Pharmacy, Guangdong Medical University, Zhanjiang 524000, China
| | - Yitao Wang
- Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China
| | - Huanxing Su
- Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China
| | - Wen Tan
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Zhangfeng Zhong
- Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China
| |
Collapse
|
27
|
Khan S, Zuccato JA, Ignatchenko V, Singh O, Govindarajan M, Waas M, Mejia-Guerrero S, Gao A, Zadeh G, Kislinger T. Organelle resolved proteomics uncovers PLA2R1 as a novel cell surface marker required for chordoma growth. Acta Neuropathol Commun 2024; 12:39. [PMID: 38454495 PMCID: PMC10921702 DOI: 10.1186/s40478-024-01751-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 02/25/2024] [Indexed: 03/09/2024] Open
Abstract
Chordomas are clinically aggressive tumors with a high rate of disease progression despite maximal therapy. Given the limited therapeutic options available, there remains an urgent need for the development of novel therapies to improve clinical outcomes. Cell surface proteins are attractive therapeutic targets yet are challenging to profile with common methods. Four chordoma cell lines were analyzed by quantitative proteomics using a differential ultracentrifugation organellar fractionation approach. A subtractive proteomics strategy was applied to select proteins that are plasma membrane enriched. Systematic data integration prioritized PLA2R1 (secretory phospholipase A2 receptor-PLA2R1) as a chordoma-enriched surface protein. The expression profile of PLA2R1 was validated across chordoma cell lines, patient surgical tissue samples, and normal tissue lysates via immunoblotting. PLA2R1 expression was further validated by immunohistochemical analysis in a richly annotated cohort of 25-patient tissues. Immunohistochemistry analysis revealed that elevated expression of PLA2R1 is correlated with poor prognosis. Using siRNA- and CRISPR/Cas9-mediated knockdown of PLA2R1, we demonstrated significant inhibition of 2D, 3D and in vivo chordoma growth. PLA2R1 depletion resulted in cell cycle defects and metabolic rewiring via the MAPK signaling pathway, suggesting that PLA2R1 plays an essential role in chordoma biology. We have characterized the proteome of four chordoma cell lines and uncovered PLA2R1 as a novel cell-surface protein required for chordoma cell survival and association with patient outcome.
Collapse
Affiliation(s)
- Shahbaz Khan
- Princess Margaret Cancer Centre, Princess Margaret Cancer Research Tower, University Health Network, 101 College Street, Room 9-807, Toronto, ON, M5G 1L7, Canada
| | - Jeffrey A Zuccato
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Canada
| | - Vladimir Ignatchenko
- Princess Margaret Cancer Centre, Princess Margaret Cancer Research Tower, University Health Network, 101 College Street, Room 9-807, Toronto, ON, M5G 1L7, Canada
| | - Olivia Singh
- Princess Margaret Cancer Centre, Princess Margaret Cancer Research Tower, University Health Network, 101 College Street, Room 9-807, Toronto, ON, M5G 1L7, Canada
| | - Meinusha Govindarajan
- Princess Margaret Cancer Centre, Princess Margaret Cancer Research Tower, University Health Network, 101 College Street, Room 9-807, Toronto, ON, M5G 1L7, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | - Matthew Waas
- Princess Margaret Cancer Centre, Princess Margaret Cancer Research Tower, University Health Network, 101 College Street, Room 9-807, Toronto, ON, M5G 1L7, Canada
| | - Salvador Mejia-Guerrero
- Princess Margaret Cancer Centre, Princess Margaret Cancer Research Tower, University Health Network, 101 College Street, Room 9-807, Toronto, ON, M5G 1L7, Canada
| | - Andrew Gao
- Laboratory Medicine Program, University Health Network, Toronto, Canada
| | - Gelareh Zadeh
- Princess Margaret Cancer Centre, Princess Margaret Cancer Research Tower, University Health Network, 101 College Street, Room 9-807, Toronto, ON, M5G 1L7, Canada
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Canada
| | - Thomas Kislinger
- Princess Margaret Cancer Centre, Princess Margaret Cancer Research Tower, University Health Network, 101 College Street, Room 9-807, Toronto, ON, M5G 1L7, Canada.
- Department of Medical Biophysics, University of Toronto, Toronto, Canada.
| |
Collapse
|
28
|
Lee JK, Chatterjee A, Scarpa M, Bailey CM, Niyongere S, Singh P, Mustafa Ali MK, Kapoor S, Wang Y, Silvestri G, Baer MR. Pim Kinase Inhibitors Increase Gilteritinib Cytotoxicity in FLT3-ITD Acute Myeloid Leukemia Through GSK-3β Activation and c-Myc and Mcl-1 Proteasomal Degradation. CANCER RESEARCH COMMUNICATIONS 2024; 4:431-445. [PMID: 38284896 PMCID: PMC10870818 DOI: 10.1158/2767-9764.crc-23-0379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 12/12/2023] [Accepted: 01/24/2024] [Indexed: 01/30/2024]
Abstract
Acute myeloid leukemia (AML) with fms-like tyrosine kinase 3 internal tandem duplication (FLT3-ITD) has poor outcomes. FLT3-ITD drives constitutive and aberrant FLT3 signaling, activating STAT5 and upregulating the downstream oncogenic serine/threonine kinase Pim-1. FLT3 inhibitors are in clinical use, but with limited and transient efficacy. We previously showed that concurrent treatment with Pim and FLT3 inhibitors increases apoptosis induction in FLT3-ITD-expressing cells through posttranslational downregulation of Mcl-1. Here we further elucidate the mechanism of action of this dual targeting strategy. Cytotoxicity, apoptosis and protein expression and turnover were measured in FLT3-ITD-expressing cell lines and AML patient blasts treated with the FLT3 inhibitor gilteritinib and/or the Pim inhibitors AZD1208 or TP-3654. Pim inhibitor and gilteritinib cotreatment increased apoptosis induction, produced synergistic cytotoxicity, downregulated c-Myc protein expression, earlier than Mcl-1, increased turnover of both proteins, which was rescued by proteasome inhibition, and increased efficacy and prolonged survival in an in vivo model. Gilteritinib and Pim inhibitor cotreatment of Ba/F3-ITD cells infected with T58A c-Myc or S159A Mcl-1 plasmids, preventing phosphorylation at these sites, did not downregulate these proteins, increase their turnover or increase apoptosis induction. Moreover, concurrent treatment with gilteritinib and Pim inhibitors dephosphorylated (activated) the serine/threonine kinase glycogen synthase kinase-3β (GSK-3β), and GSK-3β inhibition prevented c-Myc and Mcl-1 downregulation and decreased apoptosis induction. The data are consistent with c-Myc T58 and Mcl-1 S159 phosphorylation by activated GSK-3β as the mechanism of action of gilteritinib and Pim inhibitor combination treatment, further supporting GSK-3β activation as a therapeutic strategy in FLT3-ITD AML. SIGNIFICANCE FLT3-ITD is present in 25% of in AML, with continued poor outcomes. Combining Pim kinase inhibitors with the FDA-approved FLT3 inhibitor gilteritinib increases cytotoxicity in vitro and in vivo through activation of GSK-3β, which phosphorylates and posttranslationally downregulates c-Myc and Mcl-1. The data support efficacy of GSK-3β activation in FLT3-ITD AML, and also support development of a clinical trial combining the Pim inhibitor TP-3654 with gilteritinib.
Collapse
Affiliation(s)
- Jonelle K. Lee
- University of Maryland Greenebaum Comprehensive Cancer Center, Baltimore, Maryland
| | - Aditi Chatterjee
- University of Maryland Greenebaum Comprehensive Cancer Center, Baltimore, Maryland
- Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland
| | - Mario Scarpa
- University of Maryland Greenebaum Comprehensive Cancer Center, Baltimore, Maryland
- Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland
| | - Christopher M. Bailey
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Sandrine Niyongere
- University of Maryland Greenebaum Comprehensive Cancer Center, Baltimore, Maryland
- Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland
| | - Prerna Singh
- University of Maryland Greenebaum Comprehensive Cancer Center, Baltimore, Maryland
| | - Moaath K. Mustafa Ali
- University of Maryland Greenebaum Comprehensive Cancer Center, Baltimore, Maryland
- Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland
| | - Shivani Kapoor
- University of Maryland Greenebaum Comprehensive Cancer Center, Baltimore, Maryland
| | - Yin Wang
- University of Maryland Greenebaum Comprehensive Cancer Center, Baltimore, Maryland
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Giovannino Silvestri
- University of Maryland Greenebaum Comprehensive Cancer Center, Baltimore, Maryland
- Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland
| | - Maria R. Baer
- University of Maryland Greenebaum Comprehensive Cancer Center, Baltimore, Maryland
- Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland
- Veterans Affairs Medical Center, Baltimore, Maryland
| |
Collapse
|
29
|
Atalay P, Ozpolat B. PIM3 Kinase: A Promising Novel Target in Solid Cancers. Cancers (Basel) 2024; 16:535. [PMID: 38339286 PMCID: PMC10854964 DOI: 10.3390/cancers16030535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 01/19/2024] [Accepted: 01/24/2024] [Indexed: 02/12/2024] Open
Abstract
PIM3 (provirus-integrating Moloney site 3) is a serine/threonine kinase and belongs to the PIM family (PIM1, PIM2, and PIM3). PIM3 is a proto-oncogene that is frequently overexpressed in cancers originating from endoderm-derived tissues, such as the liver, pancreas, colon, stomach, prostate, and breast cancer. PIM3 plays a critical role in activating multiple oncogenic signaling pathways promoting cancer cell proliferation, survival, invasion, tumor growth, metastasis, and progression, as well as chemo- and radiation therapy resistance and immunosuppressive microenvironment. Genetic inhibition of PIM3 expression suppresses in vitro cell proliferation and in vivo tumor growth and metastasis in mice with solid cancers, indicating that PIM3 is a potential therapeutic target. Although several pan-PIM inhibitors entered phase I clinical trials in hematological cancers, there are currently no FDA-approved inhibitors for the treatment of patients. This review provides an overview of recent developments and insights into the role of PIM3 in various cancers and its potential as a novel molecular target for cancer therapy. We also discuss the current status of PIM-targeted therapies in clinical trials.
Collapse
Affiliation(s)
- Pinar Atalay
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, USA;
| | - Bulent Ozpolat
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, USA;
- Methodist Neil Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
30
|
Wolin AR, Vincent MY, Hotz T, Purdy SC, Rosenbaum SR, Hughes CJ, Hsu JY, Oliphant MUJ, Armstrong B, Wessells V, Varella-Garcia M, Galbraith MD, Pierce A, Wang D, Venkataraman S, Danis E, Veo B, Serkova N, Espinosa JM, Gustafson DL, Vibhakar R, Ford HL. EYA2 tyrosine phosphatase inhibition reduces MYC and prevents medulloblastoma progression. Neuro Oncol 2023; 25:2287-2301. [PMID: 37486991 PMCID: PMC10708924 DOI: 10.1093/neuonc/noad128] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Indexed: 07/26/2023] Open
Abstract
BACKGROUND Medulloblastoma is the most common pediatric brain malignancy. Patients with the Group 3 subtype of medulloblastoma (MB) often exhibit MYC amplification and/or overexpression and have the poorest prognosis. While Group 3 MB is known to be highly dependent on MYC, direct targeting of MYC remains elusive. METHODS Patient gene expression data were used to identify highly expressed EYA2 in Group 3 MB samples, assess the correlation between EYA2 and MYC, and examine patient survival. Genetic and pharmacological studies were performed on EYA2 in Group 3 derived MB cell models to assess MYC regulation and viability in vitro and in vivo. RESULTS EYA2 is more highly expressed in Group 3 MB than other MB subgroups and is essential for Group 3 MB growth in vitro and in vivo. EYA2 regulates MYC expression and protein stability in Group 3 MB, resulting in global alterations of MYC transcription. Inhibition of EYA2 tyrosine phosphatase activity, using a novel small molecule inhibitor (NCGC00249987, or 9987), significantly decreases Group 3 MB MYC expression in both flank and intracranial growth in vivo. Human MB RNA-seq data show that EYA2 and MYC are significantly positively correlated, high EYA2 expression is significantly associated with a MYC transcriptional signature, and patients with high EYA2 and MYC expression have worse prognoses than those that do not express both genes at high levels. CONCLUSIONS Our data demonstrate that EYA2 is a critical regulator of MYC in Group 3 MB and suggest a novel therapeutic avenue to target this highly lethal disease.
Collapse
Affiliation(s)
- Arthur R Wolin
- Department of Pharmacology, University of Colorado Anschutz Medical Campus (AMC), Aurora, Colorado, USA
- Molecular Biology Graduate Program, University of Colorado AMC, Aurora, Colorado, USA
| | - Melanie Y Vincent
- Department of Pharmacology, University of Colorado Anschutz Medical Campus (AMC), Aurora, Colorado, USA
| | - Taylor Hotz
- Department of Pharmacology, University of Colorado Anschutz Medical Campus (AMC), Aurora, Colorado, USA
| | - Stephen C Purdy
- Department of Pharmacology, University of Colorado Anschutz Medical Campus (AMC), Aurora, Colorado, USA
- Cancer Biology Graduate Program, University of Colorado AMC, Aurora, Colorado, USA
| | - Sheera R Rosenbaum
- Department of Pharmacology, University of Colorado Anschutz Medical Campus (AMC), Aurora, Colorado, USA
| | - Connor J Hughes
- Department of Pharmacology, University of Colorado Anschutz Medical Campus (AMC), Aurora, Colorado, USA
- Pharmacology Graduate Program, University of Colorado AMC, Aurora, Colorado, USA
- Medical Scientist Training Program, University of Colorado AMC, Aurora, Colorado, USA
| | - Jessica Y Hsu
- Department of Pharmacology, University of Colorado Anschutz Medical Campus (AMC), Aurora, Colorado, USA
- Pharmacology Graduate Program, University of Colorado AMC, Aurora, Colorado, USA
| | - Michael U J Oliphant
- Department of Pharmacology, University of Colorado Anschutz Medical Campus (AMC), Aurora, Colorado, USA
- Integrated Physiology Graduate Program, University of Colorado AMC, Aurora, Colorado, USA
| | - Brock Armstrong
- Department of Pharmacology, University of Colorado Anschutz Medical Campus (AMC), Aurora, Colorado, USA
| | - Veronica Wessells
- Department of Medicine, Division of Medical Oncology, University of Colorado AMC, Aurora, Colorado, USA
| | - Marileila Varella-Garcia
- Department of Medicine, Division of Medical Oncology, University of Colorado AMC, Aurora, Colorado, USA
| | - Matthew D Galbraith
- Department of Pharmacology, University of Colorado Anschutz Medical Campus (AMC), Aurora, Colorado, USA
- Linda Crnic Institute for Down Syndrome, University of Colorado AMC, Aurora, Colorado, USA
| | - Angela Pierce
- Department of Pediatrics, Division of Hematology and Oncology, University of Colorado AMC, Aurora, Colorado, USA
| | - Dong Wang
- Department of Pediatrics, Division of Hematology and Oncology, University of Colorado AMC, Aurora, Colorado, USA
| | - Sujatha Venkataraman
- Department of Pediatrics, Division of Hematology and Oncology, University of Colorado AMC, Aurora, Colorado, USA
| | - Etienne Danis
- Department of Pharmacology, University of Colorado Anschutz Medical Campus (AMC), Aurora, Colorado, USA
| | - Bethany Veo
- Department of Pediatrics, Division of Hematology and Oncology, University of Colorado AMC, Aurora, Colorado, USA
| | - Natalie Serkova
- Department of Radiology, University of Colorado AMC, Aurora, Colorado, USA
| | - Joaquin M Espinosa
- Department of Pharmacology, University of Colorado Anschutz Medical Campus (AMC), Aurora, Colorado, USA
- Linda Crnic Institute for Down Syndrome, University of Colorado AMC, Aurora, Colorado, USA
| | - Daniel L Gustafson
- Clinical Sciences Department, Colorado State University, Fort Collins, Colorado, USA
| | - Rajeev Vibhakar
- Department of Pediatrics, Division of Hematology and Oncology, University of Colorado AMC, Aurora, Colorado, USA
| | - Heide L Ford
- Department of Pharmacology, University of Colorado Anschutz Medical Campus (AMC), Aurora, Colorado, USA
- Molecular Biology Graduate Program, University of Colorado AMC, Aurora, Colorado, USA
- Cancer Biology Graduate Program, University of Colorado AMC, Aurora, Colorado, USA
- Pharmacology Graduate Program, University of Colorado AMC, Aurora, Colorado, USA
- Medical Scientist Training Program, University of Colorado AMC, Aurora, Colorado, USA
- Integrated Physiology Graduate Program, University of Colorado AMC, Aurora, Colorado, USA
| |
Collapse
|
31
|
Di Mambro A, Arroyo-Berdugo Y, Fioretti T, Randles M, Cozzuto L, Rajeeve V, Cevenini A, Austin MJ, Esposito G, Ponomarenko J, Lucas CM, Cutillas P, Gribben J, Williams O, Calle Y, Patel B, Esposito MT. SET-PP2A complex as a new therapeutic target in KMT2A (MLL) rearranged AML. Oncogene 2023; 42:3670-3683. [PMID: 37891368 PMCID: PMC10709139 DOI: 10.1038/s41388-023-02840-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 09/07/2023] [Accepted: 09/13/2023] [Indexed: 10/29/2023]
Abstract
KMT2A-rearranged (KMT2A-R) is an aggressive and chemo-refractory acute leukemia which mostly affects children. Transcriptomics-based characterization and chemical interrogation identified kinases as key drivers of survival and drug resistance in KMT2A-R leukemia. In contrast, the contribution and regulation of phosphatases is unknown. In this study we uncover the essential role and underlying mechanisms of SET, the endogenous inhibitor of Ser/Thr phosphatase PP2A, in KMT2A-R-leukemia. Investigation of SET expression in acute myeloid leukemia (AML) samples demonstrated that SET is overexpressed, and elevated expression of SET is correlated with poor prognosis and with the expression of MEIS and HOXA genes in AML patients. Silencing SET specifically abolished the clonogenic ability of KMT2A-R leukemic cells and the transcription of KMT2A targets genes HOXA9 and HOXA10. Subsequent mechanistic investigations showed that SET interacts with both KMT2A wild type and fusion proteins, and it is recruited to the HOXA10 promoter. Pharmacological inhibition of SET by FTY720 disrupted SET-PP2A interaction leading to cell cycle arrest and increased sensitivity to chemotherapy in KMT2A-R-leukemic models. Phospho-proteomic analyses revealed that FTY720 reduced the activity of kinases regulated by PP2A, including ERK1, GSK3β, AURB and PLK1 and led to suppression of MYC, supporting the hypothesis of a feedback loop among PP2A, AURB, PLK1, MYC, and SET. Our findings illustrate that SET is a novel player in KMT2A-R leukemia and they provide evidence that SET antagonism could serve as a novel strategy to treat this aggressive leukemia.
Collapse
Affiliation(s)
| | | | - Tiziana Fioretti
- CEINGE Biotecnologie Avanzate, Via Gaetano Salvatore, Napoli, Italy
| | - Michael Randles
- Chester Centre for Leukaemia Research, Chester Medical School, University of Chester, Chester, UK
| | - Luca Cozzuto
- Centre Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | | | - Armando Cevenini
- CEINGE Biotecnologie Avanzate, Via Gaetano Salvatore, Napoli, Italy
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Via Pansini 5, 80131, Naples, Italy
| | - Michael J Austin
- Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Gabriella Esposito
- CEINGE Biotecnologie Avanzate, Via Gaetano Salvatore, Napoli, Italy
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Via Pansini 5, 80131, Naples, Italy
| | - Julia Ponomarenko
- Centre Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
- University Pompeu Fabra (UPF), Barcelona, Spain
| | - Claire M Lucas
- Chester Centre for Leukaemia Research, Chester Medical School, University of Chester, Chester, UK
| | - Pedro Cutillas
- Barts Cancer Institute, Queen Mary University of London, London, UK
| | - John Gribben
- Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Owen Williams
- Great Ormond Street Institute of Child Health London, UCL, London, UK
| | - Yolanda Calle
- School of Life and Health Sciences, University of Roehampton, London, UK
| | - Bela Patel
- Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Maria Teresa Esposito
- School of Life and Health Sciences, University of Roehampton, London, UK.
- School of Biosciences, University of Surrey, Guildford, UK.
| |
Collapse
|
32
|
Sun R, Lee EJ, Lee S, Kim G, Kim J. KPT6566 induces apoptotic cell death and suppresses the tumorigenicity of testicular germ cell tumors. Front Cell Dev Biol 2023; 11:1220179. [PMID: 38020885 PMCID: PMC10652286 DOI: 10.3389/fcell.2023.1220179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 10/19/2023] [Indexed: 12/01/2023] Open
Abstract
Testicular germ cell tumors (TGCTs) frequently affect adolescent and young adult males. Although TGCT is more responsive to cisplatin-based chemotherapy than other solid tumors, some patients are nonresponders, and following treatment, many patients continue to experience acute and long-term cytotoxic effects from cisplatin-based chemotherapy. Consequently, it is imperative to develop new therapeutic modalities for treatment-resistant TGCTs. Peptidyl-prolyl isomerase (Pin1) regulates the activity and stability of many cancer-associated target proteins. Prior findings suggest that Pin1 contributes to the pathogenesis of multiple human cancers. However, the specific function of Pin1 in TGCTs has not yet been elucidated. TGCT cell proliferation and viability were examined using cell cycle analysis and apoptosis assays following treatment with KPT6566, a potent, selective Pin1 inhibitor that covalently binds to the catalytic domain of Pin1. A xenograft mouse model was used to assess the effect of KPT6566 on tumor growth in vivo. KPT6566 effectively suppressed cell proliferation, colony formation, and ATP production in P19 and NCCIT cells. Further, KPT6566 induced apoptotic cell death by generating cellular reactive oxygen species and downregulating the embryonic transcription factors Oct-4 and Sox2. Finally, KPT6566 treatment significantly reduced tumor volume and mass in P19 cell xenografts. The Pin1 inhibitor KPT6566 has significant antiproliferative and antitumor effects in TGCT cells. These findings suggest that Pin1 inhibitors could be considered as a potential therapeutic approach for TGCTs.
Collapse
Affiliation(s)
| | | | | | | | - Jungho Kim
- Laboratory of Molecular and Cellular Biology, Department of Life Science, Sogang University, Seoul, Republic of Korea
| |
Collapse
|
33
|
Saunders H, Dias WB, Slawson C. Growing and dividing: how O-GlcNAcylation leads the way. J Biol Chem 2023; 299:105330. [PMID: 37820866 PMCID: PMC10641531 DOI: 10.1016/j.jbc.2023.105330] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 09/27/2023] [Accepted: 10/02/2023] [Indexed: 10/13/2023] Open
Abstract
Cell cycle errors can lead to mutations, chromosomal instability, or death; thus, the precise control of cell cycle progression is essential for viability. The nutrient-sensing posttranslational modification, O-GlcNAc, regulates the cell cycle allowing one central control point directing progression of the cell cycle. O-GlcNAc is a single N-acetylglucosamine sugar modification to intracellular proteins that is dynamically added and removed by O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA), respectively. These enzymes act as a rheostat to fine-tune protein function in response to a plethora of stimuli from nutrients to hormones. O-GlcNAc modulates mitogenic growth signaling, senses nutrient flux through the hexosamine biosynthetic pathway, and coordinates with other nutrient-sensing enzymes to progress cells through Gap phase 1 (G1). At the G1/S transition, O-GlcNAc modulates checkpoint control, while in S Phase, O-GlcNAcylation coordinates the replication fork. DNA replication errors activate O-GlcNAcylation to control the function of the tumor-suppressor p53 at Gap Phase 2 (G2). Finally, in mitosis (M phase), O-GlcNAc controls M phase progression and the organization of the mitotic spindle and midbody. Critical for M phase control is the interplay between OGT and OGA with mitotic kinases. Importantly, disruptions in OGT and OGA activity induce M phase defects and aneuploidy. These data point to an essential role for the O-GlcNAc rheostat in regulating cell division. In this review, we highlight O-GlcNAc nutrient sensing regulating G1, O-GlcNAc control of DNA replication and repair, and finally, O-GlcNAc organization of mitotic progression and spindle dynamics.
Collapse
Affiliation(s)
- Harmony Saunders
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Wagner B Dias
- Federal University of Rio De Janeiro, Rio De Janeiro, Brazil; Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Chad Slawson
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, Kansas, USA.
| |
Collapse
|
34
|
Pandkar MR, Sinha S, Samaiya A, Shukla S. Oncometabolite lactate enhances breast cancer progression by orchestrating histone lactylation-dependent c-Myc expression. Transl Oncol 2023; 37:101758. [PMID: 37572497 PMCID: PMC10425713 DOI: 10.1016/j.tranon.2023.101758] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/22/2023] [Accepted: 08/07/2023] [Indexed: 08/14/2023] Open
Abstract
Due to the enhanced glycolytic rate, cancer cells generate lactate copiously, subsequently promoting the lactylation of histones. While previous studies have explored the impact of histone lactylation in modulating gene expression, the precise role of this epigenetic modification in regulating oncogenes is largely unchartered. In this study, using breast cancer cell lines and their mutants exhibiting lactate-deficient metabolome, we have identified that an enhanced rate of aerobic glycolysis supports c-Myc expression via promoter-level histone lactylation. Interestingly, c-Myc further transcriptionally upregulates serine/arginine splicing factor 10 (SRSF10) to drive alternative splicing of MDM4 and Bcl-x in breast cancer cells. Moreover, our results reveal that restricting the activity of critical glycolytic enzymes affects the c-Myc-SRSF10 axis to subside the proliferation of breast cancer cells. Our findings provide novel insights into the mechanisms by which aerobic glycolysis influences alternative splicing processes that collectively contribute to breast tumorigenesis. Furthermore, we also envisage that chemotherapeutic interventions attenuating glycolytic rate can restrict breast cancer progression by impeding the c-Myc-SRSF10 axis.
Collapse
Affiliation(s)
- Madhura R Pandkar
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, Madhya Pradesh 462066, India. https://twitter.com/https://twitter.com/MadhuraPandkar
| | - Sommya Sinha
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, Madhya Pradesh 462066, India. https://twitter.com/https://twitter.com/sinha_sommya
| | - Atul Samaiya
- Department of Surgical Oncology, Bansal Hospital, Bhopal, Madhya Pradesh 462016, India
| | - Sanjeev Shukla
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, Madhya Pradesh 462066, India.
| |
Collapse
|
35
|
Thng DKH, Hooi L, Toh CCM, Lim JJ, Rajagopalan D, Syariff IQC, Tan ZM, Rashid MBMA, Zhou L, Kow AWC, Bonney GK, Goh BKP, Kam JH, Jha S, Dan YY, Chow PKH, Toh TB, Chow EK. Histone-lysine N-methyltransferase EHMT2 (G9a) inhibition mitigates tumorigenicity in Myc-driven liver cancer. Mol Oncol 2023; 17:2275-2294. [PMID: 36896891 PMCID: PMC10620125 DOI: 10.1002/1878-0261.13417] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 01/30/2023] [Accepted: 03/07/2023] [Indexed: 03/11/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the third deadliest and sixth most common cancer in the world. Histone-lysine N-methyltransferase EHMT2 (also known as G9a) is a histone methyltransferase frequently overexpressed in many cancer types, including HCC. We showed that Myc-driven liver tumours have a unique H3K9 methylation pattern with corresponding G9a overexpression. This phenomenon of increased G9a was further observed in our c-Myc-positive HCC patient-derived xenografts. More importantly, we showed that HCC patients with higher c-Myc and G9a expression levels portend a poorer survival with lower median survival months. We demonstrated that c-Myc interacts with G9a in HCC and cooperates to regulate c-Myc-dependent gene repression. In addition, G9a stabilises c-Myc to promote cancer development, contributing to the growth and invasive capacity in HCC. Furthermore, combination therapy between G9a and synthetic-lethal target of c-Myc, CDK9, demonstrates strong efficacy in patient-derived avatars of Myc-driven HCC. Our work suggests that targeting G9a could prove to be a potential therapeutic avenue for Myc-driven liver cancer. This will increase our understanding of the underlying epigenetic mechanisms of aggressive tumour initiation and lead to improved therapeutic and diagnostic options for Myc-driven hepatic tumours.
Collapse
Affiliation(s)
- Dexter Kai Hao Thng
- Cancer Science Institute of SingaporeNational University of SingaporeSingaporeSingapore
| | - Lissa Hooi
- Cancer Science Institute of SingaporeNational University of SingaporeSingaporeSingapore
- NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
| | - Clarissa Chin Min Toh
- Cancer Science Institute of SingaporeNational University of SingaporeSingaporeSingapore
| | - Jhin Jieh Lim
- Cancer Science Institute of SingaporeNational University of SingaporeSingaporeSingapore
| | - Deepa Rajagopalan
- Cancer Science Institute of SingaporeNational University of SingaporeSingaporeSingapore
| | - Imran Qamar Charles Syariff
- Department of Pharmacology, Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
| | - Zher Min Tan
- Department of Pharmacology, Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
| | | | - Lei Zhou
- Department of Medicine, Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
| | - Alfred Wei Chieh Kow
- Division of Hepatobiliary & Pancreatic Surgery, Department of Surgery, University Surgical ClusterNational University Health SystemSingaporeSingapore
| | - Glenn Kunnath Bonney
- Division of Hepatobiliary & Pancreatic Surgery, Department of Surgery, University Surgical ClusterNational University Health SystemSingaporeSingapore
| | - Brian Kim Poh Goh
- Department of Hepatopancreatobiliary (HPB) and Transplant SurgerySingapore General Hospital and National Cancer Centre SingaporeSingaporeSingapore
| | - Juinn Huar Kam
- Department of Hepatopancreatobiliary (HPB) and Transplant SurgerySingapore General Hospital and National Cancer Centre SingaporeSingaporeSingapore
| | - Sudhakar Jha
- Cancer Science Institute of SingaporeNational University of SingaporeSingaporeSingapore
- Department of Biochemistry, Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
- Department of Physiological Sciences, College of Veterinary MedicineOklahoma State UniversityStillwaterOKUSA
| | - Yock Young Dan
- Department of Medicine, Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
| | - Pierce Kah Hoe Chow
- Department of Hepatopancreatobiliary (HPB) and Transplant SurgerySingapore General Hospital and National Cancer Centre SingaporeSingaporeSingapore
- Academic Clinical Programme for SurgeryDuke‐NUS Medical SchoolSingaporeSingapore
| | - Tan Boon Toh
- The N.1 Institute for Health (N.1)National University of SingaporeSingaporeSingapore
- The Institute for Digital Medicine (WisDM), Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
| | - Edward Kai‐Hua Chow
- Cancer Science Institute of SingaporeNational University of SingaporeSingaporeSingapore
- NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
- Department of Pharmacology, Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
- The N.1 Institute for Health (N.1)National University of SingaporeSingaporeSingapore
- The Institute for Digital Medicine (WisDM), Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
| |
Collapse
|
36
|
Jha RK, Kouzine F, Levens D. MYC function and regulation in physiological perspective. Front Cell Dev Biol 2023; 11:1268275. [PMID: 37941901 PMCID: PMC10627926 DOI: 10.3389/fcell.2023.1268275] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 10/12/2023] [Indexed: 11/10/2023] Open
Abstract
MYC, a key member of the Myc-proto-oncogene family, is a universal transcription amplifier that regulates almost every physiological process in a cell including cell cycle, proliferation, metabolism, differentiation, and apoptosis. MYC interacts with several cofactors, chromatin modifiers, and regulators to direct gene expression. MYC levels are tightly regulated, and deregulation of MYC has been associated with numerous diseases including cancer. Understanding the comprehensive biology of MYC under physiological conditions is an utmost necessity to demark biological functions of MYC from its pathological functions. Here we review the recent advances in biological mechanisms, functions, and regulation of MYC. We also emphasize the role of MYC as a global transcription amplifier.
Collapse
Affiliation(s)
| | | | - David Levens
- Gene Regulation Section, Laboratory of Pathology, Center for Cancer Research, National Cancer Institute (NCI), Bethesda, MD, United States
| |
Collapse
|
37
|
Guillen-Quispe YN, Kim SJ, Saeidi S, Zhou T, Zheng J, Kim SH, Fang X, Chelakkot C, Rios-Castillo ME, Shin YK, Surh YJ. Oxygen-independent stabilization of HIF-2α in breast cancer through direct interaction with peptidyl-prolyl cis-trans isomerase NIMA-interacting 1. Free Radic Biol Med 2023; 207:296-307. [PMID: 37473874 DOI: 10.1016/j.freeradbiomed.2023.07.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/04/2023] [Accepted: 07/17/2023] [Indexed: 07/22/2023]
Abstract
Peptidyl-prolyl cis-trans isomerase NIMA-interacting 1 (Pin1) isomerizes the nearby proline (Pro) residue when it detects phosphorylated serine (Ser) or threonine (Thr) of target proteins, altering their structure, stability, function, and interaction with other proteins. Hypoxia-inducible factor 2α (HIF-2α), a transcription factor that transactivates many oncogenic genes under hypoxic conditions, harbours the pSer/Thr-Pro motif. We found for the first time that Pin1 binds to HIF-2α physically in normoxic as well as hypoxic conditions in human breast cancer cells. The level of ubiquitinated HIF-2α was significantly raised by Pin1 knockdown, while expression of its mRNA transcript was unaffected. In agreement with this observation, the cycloheximide chase assay demonstrated that Pin1 prolonged the stability of HIF-2α. Serine 672, 696, and 790 of HIF-2α were found to undergo phosphorylation. Of these, the main amino acid involved in the Pin1 binding and HIF-2α stabilization was identified as serine 790, located in the nuclear export signal region of HIF-2α. The tissue array with human breast cancer specimens showed elevated expression of HIF-2α as well as Pin1 compared to adjacent normal tissues. Knockdown of Pin1 or HIF-2α diminished breast cancer cell migration and colony formation. In conclusion, Pin1 stabilizes HIF-2α through direct interaction, which contributes to the growth of breast cancer.
Collapse
Affiliation(s)
- Yanymee N Guillen-Quispe
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, 08826, South Korea
| | - Su-Jung Kim
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, 08826, South Korea
| | - Soma Saeidi
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, 08826, South Korea
| | - Tianchi Zhou
- Centre for Inflammation Research, The Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, EH16 4TJ, United Kingdom; MRC Human Genetics Unit, Institute of Genetics and Cancer, The University of Edinburgh, Edinburgh, EH4 2XU, United Kingdom
| | - Jie Zheng
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, 08826, South Korea
| | - Seong Hoon Kim
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, 08826, South Korea
| | - Xizhu Fang
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, 08826, South Korea
| | - Chaithanya Chelakkot
- Laboratory of Molecular Pathology and Cancer Genomics, College of Pharmacy, Seoul National University, Seoul, 08826, South Korea
| | - Milton E Rios-Castillo
- School of Electronic Engineering, Faculty of Electronic and Electrical Engineering, National University of San Marcos, Lima, Peru
| | - Young Kee Shin
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, 08826, South Korea; Laboratory of Molecular Pathology and Cancer Genomics, College of Pharmacy, Seoul National University, Seoul, 08826, South Korea; Interdisciplinary Program in Bioinformatics, College of Natural Sciences, Seoul National University, Seoul, 41566, South Korea.
| | - Young-Joon Surh
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, 08826, South Korea; Cancer Research Institute, Seoul National University, Seoul, 08826, South Korea.
| |
Collapse
|
38
|
Xiao J, Chen X, Liu W, Qian W, Bulek K, Hong L, Miller-Little W, Li X, Liu C. TRAF4 is crucial for ST2+ memory Th2 cell expansion in IL-33-driven airway inflammation. JCI Insight 2023; 8:e169736. [PMID: 37607012 PMCID: PMC10561728 DOI: 10.1172/jci.insight.169736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 08/17/2023] [Indexed: 08/23/2023] Open
Abstract
Tumor necrosis factor receptor-associated factor 4 (TRAF4) is an important regulator of type 2 responses in the airway; however, the underlying cellular and molecular mechanisms remain elusive. Herein, we generated T cell-specific TRAF4-deficient (CD4-cre Traf4fl/fl) mice and investigated the role of TRAF4 in memory Th2 cells expressing IL-33 receptor (ST2, suppression of tumorigenicity 2) (ST2+ mTh2 cells) in IL-33-mediated type 2 airway inflammation. We found that in vitro-polarized TRAF4-deficient (CD4-cre Traf4fl/fl) ST2+ mTh2 cells exhibited decreased IL-33-induced proliferation as compared with TRAF4-sufficient (Traf4fl/fl) cells. Moreover, CD4-cre Traf4fl/fl mice showed less ST2+ mTh2 cell proliferation and eosinophilic infiltration in the lungs than Traf4fl/fl mice in the preclinical models of IL-33-mediated type 2 airway inflammation. Mechanistically, we discovered that TRAF4 was required for the activation of AKT/mTOR and ERK1/2 signaling pathways as well as the expression of transcription factor Myc and nutrient transporters (Slc2a1, Slc7a1, and Slc7a5), signature genes involved in T cell growth and proliferation, in ST2+ mTh2 cells stimulated by IL-33. Taken together, the current study reveals a role of TRAF4 in ST2+ mTh2 cells in IL-33-mediated type 2 pulmonary inflammation, opening up avenues for the development of new therapeutic strategies.
Collapse
Affiliation(s)
- Jianxin Xiao
- Inflammation and Immunity, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio, USA
| | - Xing Chen
- Inflammation and Immunity, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio, USA
| | - Weiwei Liu
- Inflammation and Immunity, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio, USA
| | - Wen Qian
- Inflammation and Immunity, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio, USA
| | - Katarzyna Bulek
- Inflammation and Immunity, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio, USA
| | - Lingzi Hong
- Inflammation and Immunity, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio, USA
| | - William Miller-Little
- Inflammation and Immunity, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio, USA
- Medical Scientist Training Program
- Department of Pathology, and
| | - Xiaoxia Li
- Inflammation and Immunity, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio, USA
| | - Caini Liu
- Inflammation and Immunity, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio, USA
- Department of Molecular Medicine, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| |
Collapse
|
39
|
Doha ZO, Sears RC. Unraveling MYC's Role in Orchestrating Tumor Intrinsic and Tumor Microenvironment Interactions Driving Tumorigenesis and Drug Resistance. PATHOPHYSIOLOGY 2023; 30:400-419. [PMID: 37755397 PMCID: PMC10537413 DOI: 10.3390/pathophysiology30030031] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 09/04/2023] [Accepted: 09/08/2023] [Indexed: 09/28/2023] Open
Abstract
The transcription factor MYC plays a pivotal role in regulating various cellular processes and has been implicated in tumorigenesis across multiple cancer types. MYC has emerged as a master regulator governing tumor intrinsic and tumor microenvironment interactions, supporting tumor progression and driving drug resistance. This review paper aims to provide an overview and discussion of the intricate mechanisms through which MYC influences tumorigenesis and therapeutic resistance in cancer. We delve into the signaling pathways and molecular networks orchestrated by MYC in the context of tumor intrinsic characteristics, such as proliferation, replication stress and DNA repair. Furthermore, we explore the impact of MYC on the tumor microenvironment, including immune evasion, angiogenesis and cancer-associated fibroblast remodeling. Understanding MYC's multifaceted role in driving drug resistance and tumor progression is crucial for developing targeted therapies and combination treatments that may effectively combat this devastating disease. Through an analysis of the current literature, this review's goal is to shed light on the complexities of MYC-driven oncogenesis and its potential as a promising therapeutic target.
Collapse
Affiliation(s)
- Zinab O. Doha
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, OR 97239, USA;
- Department of Medical Laboratories Technology, Taibah University, Al-Madinah 42353, Saudi Arabia
| | - Rosalie C. Sears
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, OR 97239, USA;
- Brenden-Colson Center for Pancreatic Care, Oregon Health & Science University, Portland, OR 97201, USA
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97201, USA
| |
Collapse
|
40
|
Deng Z, Richardson DR. The Myc Family and the Metastasis Suppressor NDRG1: Targeting Key Molecular Interactions with Innovative Therapeutics. Pharmacol Rev 2023; 75:1007-1035. [PMID: 37280098 DOI: 10.1124/pharmrev.122.000795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 03/07/2023] [Accepted: 05/01/2023] [Indexed: 06/08/2023] Open
Abstract
Cancer is a leading cause of death worldwide, resulting in ∼10 million deaths in 2020. Major oncogenic effectors are the Myc proto-oncogene family, which consists of three members including c-Myc, N-Myc, and L-Myc. As a pertinent example of the role of the Myc family in tumorigenesis, amplification of MYCN in childhood neuroblastoma strongly correlates with poor patient prognosis. Complexes between Myc oncoproteins and their partners such as hypoxia-inducible factor-1α and Myc-associated protein X (MAX) result in proliferation arrest and pro-proliferative effects, respectively. Interactions with other proteins are also important for N-Myc activity. For instance, the enhancer of zest homolog 2 (EZH2) binds directly to N-Myc to stabilize it by acting as a competitor against the ubiquitin ligase, SCFFBXW7, which prevents proteasomal degradation. Heat shock protein 90 may also be involved in N-Myc stabilization since it binds to EZH2 and prevents its degradation. N-Myc downstream-regulated gene 1 (NDRG1) is downregulated by N-Myc and participates in the regulation of cellular proliferation via associating with other proteins, such as glycogen synthase kinase-3β and low-density lipoprotein receptor-related protein 6. These molecular interactions provide a better understanding of the biologic roles of N-Myc and NDRG1, which can be potentially used as therapeutic targets. In addition to directly targeting these proteins, disrupting their key interactions may also be a promising strategy for anti-cancer drug development. This review examines the interactions between the Myc proteins and other molecules, with a special focus on the relationship between N-Myc and NDRG1 and possible therapeutic interventions. SIGNIFICANCE STATEMENT: Neuroblastoma is one of the most common childhood solid tumors, with a dismal five-year survival rate. This problem makes it imperative to discover new and more effective therapeutics. The molecular interactions between major oncogenic drivers of the Myc family and other key proteins; for example, the metastasis suppressor, NDRG1, may potentially be used as targets for anti-neuroblastoma drug development. In addition to directly targeting these proteins, disrupting their key molecular interactions may also be promising for drug discovery.
Collapse
Affiliation(s)
- Zhao Deng
- Centre for Cancer Cell Biology and Drug Discovery, Griffith Institute for Drug Discovery, Griffith University, Nathan, Australia (Z.D., D.R.R.), and Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Nagoya, Japan (D.R.R.)
| | - Des R Richardson
- Centre for Cancer Cell Biology and Drug Discovery, Griffith Institute for Drug Discovery, Griffith University, Nathan, Australia (Z.D., D.R.R.), and Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Nagoya, Japan (D.R.R.)
| |
Collapse
|
41
|
Yu H, Zaveri S, Sattar Z, Schaible M, Perez Gandara B, Uddin A, McGarvey LR, Ohlmeyer M, Geraghty P. Protein Phosphatase 2A as a Therapeutic Target in Pulmonary Diseases. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1552. [PMID: 37763671 PMCID: PMC10535831 DOI: 10.3390/medicina59091552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/22/2023] [Accepted: 08/24/2023] [Indexed: 09/29/2023]
Abstract
New disease targets and medicinal chemistry approaches are urgently needed to develop novel therapeutic strategies for treating pulmonary diseases. Emerging evidence suggests that reduced activity of protein phosphatase 2A (PP2A), a complex heterotrimeric enzyme that regulates dephosphorylation of serine and threonine residues from many proteins, is observed in multiple pulmonary diseases, including lung cancer, smoke-induced chronic obstructive pulmonary disease, alpha-1 antitrypsin deficiency, asthma, and idiopathic pulmonary fibrosis. Loss of PP2A responses is linked to many mechanisms associated with disease progressions, such as senescence, proliferation, inflammation, corticosteroid resistance, enhanced protease responses, and mRNA stability. Therefore, chemical restoration of PP2A may represent a novel treatment for these diseases. This review outlines the potential impact of reduced PP2A activity in pulmonary diseases, endogenous and exogenous inhibitors of PP2A, details the possible PP2A-dependent mechanisms observed in these conditions, and outlines potential therapeutic strategies for treatment. Substantial medicinal chemistry efforts are underway to develop therapeutics targeting PP2A activity. The development of specific activators of PP2A that selectively target PP2A holoenzymes could improve our understanding of the function of PP2A in pulmonary diseases. This may lead to the development of therapeutics for restoring normal PP2A responses within the lung.
Collapse
Affiliation(s)
- Howard Yu
- Department of Medicine, State University of New York Downstate Health Sciences University, 450 Clarkson Avenue, Brooklyn, NY 11203, USA; (H.Y.); (S.Z.); (Z.S.); (M.S.); (B.P.G.); (A.U.); (L.R.M.)
| | - Sahil Zaveri
- Department of Medicine, State University of New York Downstate Health Sciences University, 450 Clarkson Avenue, Brooklyn, NY 11203, USA; (H.Y.); (S.Z.); (Z.S.); (M.S.); (B.P.G.); (A.U.); (L.R.M.)
| | - Zeeshan Sattar
- Department of Medicine, State University of New York Downstate Health Sciences University, 450 Clarkson Avenue, Brooklyn, NY 11203, USA; (H.Y.); (S.Z.); (Z.S.); (M.S.); (B.P.G.); (A.U.); (L.R.M.)
| | - Michael Schaible
- Department of Medicine, State University of New York Downstate Health Sciences University, 450 Clarkson Avenue, Brooklyn, NY 11203, USA; (H.Y.); (S.Z.); (Z.S.); (M.S.); (B.P.G.); (A.U.); (L.R.M.)
| | - Brais Perez Gandara
- Department of Medicine, State University of New York Downstate Health Sciences University, 450 Clarkson Avenue, Brooklyn, NY 11203, USA; (H.Y.); (S.Z.); (Z.S.); (M.S.); (B.P.G.); (A.U.); (L.R.M.)
| | - Anwar Uddin
- Department of Medicine, State University of New York Downstate Health Sciences University, 450 Clarkson Avenue, Brooklyn, NY 11203, USA; (H.Y.); (S.Z.); (Z.S.); (M.S.); (B.P.G.); (A.U.); (L.R.M.)
| | - Lucas R. McGarvey
- Department of Medicine, State University of New York Downstate Health Sciences University, 450 Clarkson Avenue, Brooklyn, NY 11203, USA; (H.Y.); (S.Z.); (Z.S.); (M.S.); (B.P.G.); (A.U.); (L.R.M.)
| | | | - Patrick Geraghty
- Department of Medicine, State University of New York Downstate Health Sciences University, 450 Clarkson Avenue, Brooklyn, NY 11203, USA; (H.Y.); (S.Z.); (Z.S.); (M.S.); (B.P.G.); (A.U.); (L.R.M.)
| |
Collapse
|
42
|
Masaki T, Habara M, Hanaki S, Sato Y, Tomiyasu H, Miki Y, Shimada M. Calcineurin-mediated dephosphorylation enhances the stability and transactivation of c-Myc. Sci Rep 2023; 13:13116. [PMID: 37573463 PMCID: PMC10423207 DOI: 10.1038/s41598-023-40412-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 08/09/2023] [Indexed: 08/14/2023] Open
Abstract
c-Myc, a transcription factor, induces cell proliferation and is often aberrantly or highly expressed in cancers. However, molecular mechanisms underlying this aberrantly high expression remain unclear. Here, we found that intracellular Ca2+ concentration regulates c-Myc oncoprotein stability. We identified that calcineurin, a Ca2+-dependent protein phosphatase, is a positive regulator of c-Myc expression. Calcineurin depletion suppresses c-Myc targeted gene expression and c-Myc degradation. Calcineurin directly dephosphorylates Thr58 and Ser62 in c-Myc, which inhibit binding to the ubiquitin ligase Fbxw7. Mutations within the autoinhibitory domain of calcineurin, most frequently observed in cancer, may increase phosphatase activity, increasing c-Myc transcriptional activity in turn. Notably, calcineurin inhibition with FK506 decreased c-Myc expression with enhanced Thr58 and Ser62 phosphorylation in a mouse xenograft model. Thus, calcineurin can stabilize c-Myc, promoting tumor progression. Therefore, we propose that Ca2+ signaling dysfunction affects cancer-cell proliferation via increased c-Myc stability and that calcineurin inhibition could be a new therapeutic target of c-Myc-overexpressing cancers.
Collapse
Affiliation(s)
- Takahiro Masaki
- Department of Veterinary Biochemistry, Joint Faculty of Veterinary Science, Yamaguchi University, 1677-1 Yoshida, Yamaguchi, 753-8511, Japan
| | - Makoto Habara
- Department of Veterinary Biochemistry, Joint Faculty of Veterinary Science, Yamaguchi University, 1677-1 Yoshida, Yamaguchi, 753-8511, Japan
| | - Shunsuke Hanaki
- Department of Veterinary Biochemistry, Joint Faculty of Veterinary Science, Yamaguchi University, 1677-1 Yoshida, Yamaguchi, 753-8511, Japan
| | - Yuki Sato
- Department of Veterinary Biochemistry, Joint Faculty of Veterinary Science, Yamaguchi University, 1677-1 Yoshida, Yamaguchi, 753-8511, Japan
| | - Haruki Tomiyasu
- Department of Veterinary Biochemistry, Joint Faculty of Veterinary Science, Yamaguchi University, 1677-1 Yoshida, Yamaguchi, 753-8511, Japan
| | - Yosei Miki
- Department of Veterinary Biochemistry, Joint Faculty of Veterinary Science, Yamaguchi University, 1677-1 Yoshida, Yamaguchi, 753-8511, Japan
| | - Midori Shimada
- Department of Veterinary Biochemistry, Joint Faculty of Veterinary Science, Yamaguchi University, 1677-1 Yoshida, Yamaguchi, 753-8511, Japan.
| |
Collapse
|
43
|
Zhang J, Zhou W, Chen Y, Wang Y, Guo Z, Hu W, Li Y, Han X, Si S. Small molecules targeting Pin1 as potent anticancer drugs. Front Pharmacol 2023; 14:1073037. [PMID: 37050909 PMCID: PMC10083437 DOI: 10.3389/fphar.2023.1073037] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 03/08/2023] [Indexed: 03/29/2023] Open
Abstract
Background: Pin1 is a member of the evolutionarily conserved peptidyl-prolyl isomerase (PPIase) family of proteins. Following phosphorylation, Pin1-catalyzed prolyl-isomerization induces conformational changes, which serve to regulate the function of many phosphorylated proteins that play important roles during oncogenesis. Thus, the inhibition of Pin1 provides a unique means of disrupting oncogenic pathways and therefore represents an appealing target for novel anticancer therapies.Methods: As Pin1 is conserved between yeast and humans, we employed budding yeast to establish a high-throughput screening method for the primary screening of Pin1 inhibitors. This effort culminated in the identification of the compounds HWH8-33 and HWH8-36. Multifaceted approaches were taken to determine the inhibition profiles of these compounds against Pin1 activity in vitro and in vivo, including an isomerization assay, surface plasmon resonance (SPR) technology, virtual docking, MTT proliferation assay, western blotting, cell cycle analysis, apoptosis analysis, immunofluorescence analysis, wound healing, migration assay, and nude mouse assay.Results:In vitro, HWH8-33 and HWH8-36 could bind to purified Pin1 and inhibited its enzyme activity; showed inhibitory effects on cancer cell proliferation; led to G2/M phase arrest, dysregulated downstream protein expression, and apoptosis; and suppressed cancer cell migration. In vivo, HWH8-33 suppressed tumor growth in the xenograft mice after oral administration for 4 weeks, with no noticeable toxicity. Together, these results show the anticancer activity of HWH8-33 and HWH8-36 against Pin1 for the first time.Conclusion: In summary, we identified two hit compounds HWH8-33 and HWH8-36, which after further structure optimization have the potential to be developed as antitumor drugs.
Collapse
Affiliation(s)
- Jing Zhang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wenwen Zhou
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yunyu Chen
- Institute for Drug Screening and Evaluation, Wannan Medical College, Wuhu, China
| | - Yanchang Wang
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL, United States
| | - Zongru Guo
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wenhui Hu
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, The Fifth Affiliated Hospital, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Yan Li
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- *Correspondence: Yan Li, ; Xiaomin Han, ; Shuyi Si,
| | - Xiaomin Han
- China National Center for Food Safety Risk Assessment, Key Laboratory of Food Safety Risk Assessment, Ministry of Health, Beijing, China
- *Correspondence: Yan Li, ; Xiaomin Han, ; Shuyi Si,
| | - Shuyi Si
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- *Correspondence: Yan Li, ; Xiaomin Han, ; Shuyi Si,
| |
Collapse
|
44
|
Agrawal R, Natarajan KN. Oncogenic signaling pathways in pancreatic ductal adenocarcinoma. Adv Cancer Res 2023; 159:251-283. [PMID: 37268398 DOI: 10.1016/bs.acr.2023.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is the most common (∼90% cases) pancreatic neoplasm and one of the most lethal cancer among all malignances. PDAC harbor aberrant oncogenic signaling that may result from the multiple genetic and epigenetic alterations such as the mutation in driver genes (KRAS, CDKN2A, p53), genomic amplification of regulatory genes (MYC, IGF2BP2, ROIK3), deregulation of chromatin-modifying proteins (HDAC, WDR5) among others. A key event is the formation of Pancreatic Intraepithelial Neoplasia (PanIN) that often results from the activating mutation in KRAS. Mutated KRAS can direct a variety of signaling pathways and modulate downstream targets including MYC, which play an important role in cancer progression. In this review, we discuss recent literature shedding light on the origins of PDAC from the perspective of major oncogenic signaling pathways. We highlight how MYC directly and indirectly, with cooperation with KRAS, affect epigenetic reprogramming and metastasis. Additionally, we summarize the recent findings from single cell genomic approaches that highlight heterogeneity in PDAC and tumor microenvironment, and provide molecular avenues for PDAC treatment in the future.
Collapse
Affiliation(s)
- Rahul Agrawal
- DTU Bioengineering, Technical University of Denmark, Kongens Lyngby, Denmark
| | | |
Collapse
|
45
|
He Y, Su Y, Duan C, Wang S, He W, Zhang Y, An X, He M. Emerging role of aging in the progression of NAFLD to HCC. Ageing Res Rev 2023; 84:101833. [PMID: 36565959 DOI: 10.1016/j.arr.2022.101833] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 12/10/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022]
Abstract
With the aging of global population, the incidence of nonalcoholic fatty liver disease (NAFLD) has surged in recent decades. NAFLD is a multifactorial disease that follows a progressive course, ranging from simple fatty liver, nonalcoholic steatohepatitis (NASH) to liver cirrhosis and hepatocellular carcinoma (HCC). It is well established that aging induces pathological changes in liver and potentiates the occurrence and progression of NAFLD, HCC and other age-related liver diseases. Studies of senescent cells also indicate a pivotal engagement in the development of NAFLD via diverse mechanisms. Moreover, nicotinamide adenine dinucleotide (NAD+), silence information regulator protein family (sirtuins), and mechanistic target of rapamycin (mTOR) are three vital and broadly studied targets involved in aging process and NAFLD. Nevertheless, the crucial role of these aging-associated factors in aging-related NAFLD remains underestimated. Here, we reviewed the current research on the roles of aging, cellular senescence and three aging-related factors in the evolution of NAFLD to HCC, aiming at inspiring promising therapeutic targets for aging-related NAFLD and its progression.
Collapse
Affiliation(s)
- Yongyuan He
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Ministry of Education, Shanghai Frontiers Science Center of Cellular Homeostasis and Human Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yinghong Su
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Ministry of Education, Shanghai Frontiers Science Center of Cellular Homeostasis and Human Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chengcheng Duan
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Ministry of Education, Shanghai Frontiers Science Center of Cellular Homeostasis and Human Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Siyuan Wang
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Ministry of Education, Shanghai Frontiers Science Center of Cellular Homeostasis and Human Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wei He
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Ministry of Education, Shanghai Frontiers Science Center of Cellular Homeostasis and Human Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China; School of Basic Medicine, Kunming Medical University, China
| | - Yingting Zhang
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Ministry of Education, Shanghai Frontiers Science Center of Cellular Homeostasis and Human Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaofei An
- Department of Endocrinology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China.
| | - Ming He
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Ministry of Education, Shanghai Frontiers Science Center of Cellular Homeostasis and Human Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Department of Pathology, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China.
| |
Collapse
|
46
|
Bajpai S, Jin HR, Mucha B, Diehl JA. Ubiquitylation of unphosphorylated c-myc by novel E3 ligase SCF Fbxl8. Cancer Biol Ther 2022; 23:348-357. [PMID: 35438057 PMCID: PMC9037475 DOI: 10.1080/15384047.2022.2061279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 03/17/2022] [Accepted: 03/22/2022] [Indexed: 11/23/2022] Open
Abstract
Overexpression of c-myc via increased transcription or decreased protein degradation is common to many cancer etiologies. c-myc protein degradation is mediated by ubiquitin-dependent degradation, and this ubiquitylation is regulated by several E3 ligases. The primary regulator is Fbxw7, which binds to a phospho-degron within c-myc. Here, we identify a new E3 ligase for c-myc, Fbxl8 (F-box and Leucine Rich Repeat Protein 8), as an adaptor component of the SCF (Skp1-Cullin1-F-box protein) ubiquitin ligase complex, for selective c-myc degradation. SCFFbxl8 binds and ubiquitylates c-myc, independent of phosphorylation, revealing that it regulates a pool of c-myc distinct from SCFFbxw7. Loss of Fbxl8 increases c-myc protein levels, protein stability, and cell division, while overexpression of Fbxl8 reduces c-myc protein levels. Concurrent loss of Fbxl8 and Fbxw7 triggers a robust increase in c-myc protein levels consistent with targeting distinct pools of c-myc. This work highlights new mechanisms regulating c-myc degradation.
Collapse
Affiliation(s)
- Sagar Bajpai
- Department of Biochemistry and Molecular Biology, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA
| | - Hong Ri Jin
- Department of Biochemistry and Molecular Biology, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA
| | - Bartosz Mucha
- Department of Biochemistry and Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, USA
| | - J. Alan Diehl
- Department of Biochemistry and Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
47
|
The insulin and IGF signaling pathway sustains breast cancer stem cells by IRS2/PI3K-mediated regulation of MYC. Cell Rep 2022; 41:111759. [PMID: 36476848 PMCID: PMC9793643 DOI: 10.1016/j.celrep.2022.111759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 10/01/2022] [Accepted: 11/09/2022] [Indexed: 12/12/2022] Open
Abstract
Despite the strong association of the insulin/insulin-like growth factor (IGF) signaling (IIS) pathway with tumor initiation, recurrence, and metastasis, the mechanism by which this pathway regulates cancer progression is not well understood. Here, we report that IIS supports breast cancer stem cell (CSC) self-renewal in an IRS2-phosphatidylinositol 3-kinase (PI3K)-dependent manner that involves the activation and stabilization of MYC. IRS2-PI3K signaling enhances MYC expression through the inhibition of GSK3β activity and suppression of MYC phosphorylation on threonine 58, thus reducing proteasome-mediated degradation of MYC and sustaining active pS62-MYC function. A stable T58A-Myc mutant rescues CSC function in Irs2-/- cells, supporting the role of this MYC stabilization in IRS2-dependent CSC regulation. These findings establish a mechanistic connection between the IIS pathway and MYC and highlight a role for IRS2-dependent signaling in breast cancer progression.
Collapse
|
48
|
Orofiamma LA, Vural D, Antonescu CN. Control of cell metabolism by the epidermal growth factor receptor. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2022; 1869:119359. [PMID: 36089077 DOI: 10.1016/j.bbamcr.2022.119359] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 08/24/2022] [Accepted: 09/01/2022] [Indexed: 06/15/2023]
Abstract
The epidermal growth factor receptor (EGFR) triggers the activation of many intracellular signals that control cell proliferation, growth, survival, migration, and differentiation. Given its wide expression, EGFR has many functions in development and tissue homeostasis. Some of the cellular outcomes of EGFR signaling involve alterations of specific aspects of cellular metabolism, and alterations of cell metabolism are emerging as driving influences in many physiological and pathophysiological contexts. Here we review the mechanisms by which EGFR regulates cell metabolism, including by modulation of gene expression and protein function leading to control of glucose uptake, glycolysis, biosynthetic pathways branching from glucose metabolism, amino acid metabolism, lipogenesis, and mitochondrial function. We further examine how this regulation of cell metabolism by EGFR may contribute to cell proliferation and differentiation and how EGFR-driven control of metabolism can impact certain diseases and therapy outcomes.
Collapse
Affiliation(s)
- Laura A Orofiamma
- Department of Chemistry and Biology, Toronto Metropolitan University, Toronto, Ontario M5B 2K3, Canada; Graduate Program in Molecular Science, Toronto Metropolitan University, Toronto, Ontario M5B 2K3, Canada
| | - Dafne Vural
- Department of Chemistry and Biology, Toronto Metropolitan University, Toronto, Ontario M5B 2K3, Canada; Graduate Program in Molecular Science, Toronto Metropolitan University, Toronto, Ontario M5B 2K3, Canada
| | - Costin N Antonescu
- Department of Chemistry and Biology, Toronto Metropolitan University, Toronto, Ontario M5B 2K3, Canada; Graduate Program in Molecular Science, Toronto Metropolitan University, Toronto, Ontario M5B 2K3, Canada.
| |
Collapse
|
49
|
Peng Y, Liu J, Wang Z, Cui C, Zhang T, Zhang S, Gao P, Hou Z, Liu H, Guo J, Zhang J, Wen Y, Wei W, Zhang L, Liu J, Long J. Prostate-specific oncogene OTUD6A promotes prostatic tumorigenesis via deubiquitinating and stabilizing c-Myc. Cell Death Differ 2022; 29:1730-1743. [PMID: 35217790 PMCID: PMC9433443 DOI: 10.1038/s41418-022-00960-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 02/07/2022] [Accepted: 02/09/2022] [Indexed: 01/29/2023] Open
Abstract
MYC drives the tumorigenesis of human cancers, including prostate cancer (PrCa), thus deubiquitinase (DUB) that maintains high level of c-Myc oncoprotein is a rational therapeutic target. Several ubiquitin-specific protease (USP) family members of DUB have been reported to deubiquitinate c-Myc, but none of them is the physiological DUB for c-Myc in PrCa. By screening all the DUBs, here we reveal that OTUD6A is exclusively amplified and overexpressed in PrCa but not in other cancers, eliciting a prostatic-specific oncogenic role through deubiquitinating and stabilizing c-Myc oncoprotein. Moreover, genetic ablation of OTUD6A efficiently represses prostatic tumorigenesis of both human PrCa cells and the Hi-Myc transgenic PrCa mice, via reversing the metabolic remodeling caused by c-Myc overexpression in PrCa. These results indicate that OTUD6A is a physiological DUB for c-Myc in PrCa setting and specifically promotes prostatic tumorigenesis through stabilizing c-Myc oncoprotein, suggesting that OTUD6A could be a unique therapeutic target for Myc-driven PrCa.
Collapse
Affiliation(s)
- Yunhua Peng
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Jing Liu
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Zhen Wang
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Chunping Cui
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, 100850, Beijing, China
| | - Tiantian Zhang
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Shuangxi Zhang
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Peipei Gao
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Zhanwu Hou
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Huadong Liu
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Jianping Guo
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510275, Guangdong, China
| | - Jinfang Zhang
- Medical Research Institute, School of Medicine, Wuhan University, Wuhan, 430071, Hubei, China
| | - Yurong Wen
- Department of Talent Highland, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Wenyi Wei
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Lingqiang Zhang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, 100850, Beijing, China.
| | - Jiankang Liu
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China.
- University of Health and Rehabilitation Sciences, Qingdao, 266071, China.
| | - Jiangang Long
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China.
| |
Collapse
|
50
|
Chen Y, Qiu X, Wu D, Lu X, Li G, Tang Y, Jia C, Xiong Z, Wang T. PROZ Associated with Sorafenib Sensitivity May Serve as a Potential Target to Enhance the Efficacy of Combined Immunotherapy for Hepatocellular Carcinoma. Genes (Basel) 2022; 13:genes13091535. [PMID: 36140703 PMCID: PMC9498926 DOI: 10.3390/genes13091535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 08/18/2022] [Accepted: 08/20/2022] [Indexed: 11/30/2022] Open
Abstract
Targeted combined immunotherapy has significantly improved the prognosis of patients with advanced hepatocellular carcinoma and has now become the primary treatment for advanced hepatocellular carcinoma. However, some patients still have poor efficacy or are resistant to treatment. The further exploration of molecular markers related to efficacy or finding molecular targets to increase efficacy is an urgent problem that needs to be resolved. In this research, we found that PROZ was a gene related to KDR expression that had significantly low expression in cancer tissue by analyzing the differential genes of cancer tissue and adjacent tissue and the intersection of KDR-related genes in hepatocellular carcinoma. The correlation analysis of clinical data showed that the low expression of PROZ was significantly correlated with the poor prognosis of hepatocellular carcinoma, and further studies found that PROZ was closely related to the expression of p-ERK and VEGFR2 in hepatocellular carcinoma. In addition, intracellular detection also showed that the expression of p-ERK increased and VEGFR2 expression decreased after PROZ interference, and PROZ downregulation with increased p-ERK and decreased VEGFR2 was also detected in sorafenib-resistant strains. At the same time, our analysis found that PROZ was negatively correlated with genes related to immunotherapy efficacy such as CD8A, CD274 and GZMA, and was also negatively correlated with T-cell infiltration in tumor tissue. Conclusion: PROZ is a gene related to the prognosis of hepatocellular carcinoma and it is closely related to the efficacy of sorafenib and immunotherapy. It may serve as a potential molecular target to improve the efficacy of targeted combined immunotherapy.
Collapse
Affiliation(s)
- Yinkui Chen
- Department of Medical Oncology, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510630, China
| | - Xiusheng Qiu
- Vaccine Research Institute, The Third Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou 510630, China
| | - Donghao Wu
- Department of Medical Oncology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Xu Lu
- Department of Hepatic Surgery Liver Transplantation Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Guanghui Li
- Department of Hepatic Surgery Liver Transplantation Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Yongsheng Tang
- Department of Hepatic Surgery Liver Transplantation Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Changchang Jia
- Cell-Gene Therapy Translational Medicine Research Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Zhiyong Xiong
- Department of General Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
- Correspondence: (Z.X.); (T.W.); Tel.: +86-020-82179735 (Z.X.); +86-020-85252161 (T.W.)
| | - Tiantian Wang
- Department of Medical Oncology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
- Correspondence: (Z.X.); (T.W.); Tel.: +86-020-82179735 (Z.X.); +86-020-85252161 (T.W.)
| |
Collapse
|