1
|
Fang Z, Yu P, Zhu W. Development of mRNA rabies vaccines. Hum Vaccin Immunother 2024; 20:2382499. [PMID: 39069645 PMCID: PMC11290775 DOI: 10.1080/21645515.2024.2382499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 07/08/2024] [Accepted: 07/17/2024] [Indexed: 07/30/2024] Open
Abstract
Rabies, primarily transmitted to humans by dogs (accounting for 99% of cases). Once rabies occurs, its mortality rate is approximately 100%. Post-exposure prophylaxis (PEP) is critical for preventing the onset of rabies after exposure to rabid animals, and vaccination is a pivotal element of PEP. However, high costs and complex immunization protocols have led to poor adherence to rabies vaccinations. Consequently, there is an urgent need to develop new rabies vaccines that are safe, highly immunogenic, and cost-effective to improve compliance and effectively prevent rabies. In recent years, mRNA vaccines have made significant progress in the structural modification and optimization of delivery systems. Various mRNA vaccines are currently undergoing clinical trials, positioning them as viable alternatives to the traditional rabies vaccines. In this article, we discuss a novel mRNA rabies vaccine currently undergoing clinical and preclinical testing, and evaluate its potential to replace existing vaccines.
Collapse
Affiliation(s)
- Zixin Fang
- National Institute for Viral Disease Control and Prevention, China CDC, Key Laboratory of Biosafety, National Health Commission, Beijing, People’s Republic of China
| | - Pengcheng Yu
- National Institute for Viral Disease Control and Prevention, China CDC, Key Laboratory of Biosafety, National Health Commission, Beijing, People’s Republic of China
| | - Wuyang Zhu
- National Institute for Viral Disease Control and Prevention, China CDC, Key Laboratory of Biosafety, National Health Commission, Beijing, People’s Republic of China
| |
Collapse
|
2
|
Liu Y, Lam DMK, Luan M, Zheng W, Ai H. Recent development of oral vaccines (Review). Exp Ther Med 2024; 27:223. [PMID: 38590568 PMCID: PMC11000446 DOI: 10.3892/etm.2024.12511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 02/08/2024] [Indexed: 04/10/2024] Open
Abstract
Oral immunization can elicit an effective immune response and immune tolerance to specific antigens. When compared with the traditional injection route, delivering antigens via the gastrointestinal mucosa offers superior immune effects and compliance, as well as simplicity and convenience, making it a more optimal route for immunization. At present, various oral vaccine delivery systems exist. Certain modified bacteria, such as Salmonella, Escherichia coli and particularly Lactobacillus, are considered promising carriers for oral vaccines. These carriers can significantly enhance immunization efficiency by actively replicating in the intestinal tract following oral administration. The present review provided a discussion of the main mechanisms of oral immunity and the research progress made in the field of oral vaccines. Additionally, it introduced the advantages and disadvantages of the currently more commonly administered injectable COVID-19 vaccines, alongside the latest advancements in this area. Furthermore, recent developments in oral vaccines are summarized, and their potential benefits and side effects are discussed.
Collapse
Affiliation(s)
- Ying Liu
- Key Laboratory of Follicular Development and Reproductive Health in Liaoning Province, Jinzhou Medical University, Jinzhou, Liaoning 121000, P.R. China
| | | | - Mei Luan
- Department of Geriatric Medicine, Jinzhou Medical University, Jinzhou, Liaoning 121000, P.R. China
| | - Wenfu Zheng
- Chinese Academy of Sciences Key Lab for Biological Effects of Nanomaterials and Nanosafety, National Center for NanoScience and Technology, Beijing 100190, P.R. China
- University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Hao Ai
- Key Laboratory of Follicular Development and Reproductive Health in Liaoning Province, Jinzhou Medical University, Jinzhou, Liaoning 121000, P.R. China
| |
Collapse
|
3
|
Plant-Derived Recombinant Vaccines against Zoonotic Viruses. Life (Basel) 2022; 12:life12020156. [PMID: 35207444 PMCID: PMC8878793 DOI: 10.3390/life12020156] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/15/2022] [Accepted: 01/19/2022] [Indexed: 12/12/2022] Open
Abstract
Emerging and re-emerging zoonotic diseases cause serious illness with billions of cases, and millions of deaths. The most effective way to restrict the spread of zoonotic viruses among humans and animals and prevent disease is vaccination. Recombinant proteins produced in plants offer an alternative approach for the development of safe, effective, inexpensive candidate vaccines. Current strategies are focused on the production of highly immunogenic structural proteins, which mimic the organizations of the native virion but lack the viral genetic material. These include chimeric viral peptides, subunit virus proteins, and virus-like particles (VLPs). The latter, with their ability to self-assemble and thus resemble the form of virus particles, are gaining traction among plant-based candidate vaccines against many infectious diseases. In this review, we summarized the main zoonotic diseases and followed the progress in using plant expression systems for the production of recombinant proteins and VLPs used in the development of plant-based vaccines against zoonotic viruses.
Collapse
|
4
|
Producing Vaccines against Enveloped Viruses in Plants: Making the Impossible, Difficult. Vaccines (Basel) 2021; 9:vaccines9070780. [PMID: 34358196 PMCID: PMC8310165 DOI: 10.3390/vaccines9070780] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/07/2021] [Accepted: 07/08/2021] [Indexed: 12/13/2022] Open
Abstract
The past 30 years have seen the growth of plant molecular farming as an approach to the production of recombinant proteins for pharmaceutical and biotechnological uses. Much of this effort has focused on producing vaccine candidates against viral diseases, including those caused by enveloped viruses. These represent a particular challenge given the difficulties associated with expressing and purifying membrane-bound proteins and achieving correct assembly. Despite this, there have been notable successes both from a biochemical and a clinical perspective, with a number of clinical trials showing great promise. This review will explore the history and current status of plant-produced vaccine candidates against enveloped viruses to date, with a particular focus on virus-like particles (VLPs), which mimic authentic virus structures but do not contain infectious genetic material.
Collapse
|
5
|
Ghag SB, Adki VS, Ganapathi TR, Bapat VA. Plant Platforms for Efficient Heterologous Protein Production. BIOTECHNOL BIOPROC E 2021; 26:546-567. [PMID: 34393545 PMCID: PMC8346785 DOI: 10.1007/s12257-020-0374-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/14/2021] [Accepted: 01/16/2021] [Indexed: 02/07/2023]
Abstract
Production of recombinant proteins is primarily established in cultures of mammalian, insect and bacterial cells. Concurrently, concept of using plants to produce high-value pharmaceuticals such as vaccines, antibodies, and dietary proteins have received worldwide attention. Newer technologies for plant transformation such as plastid engineering, agroinfiltration, magnifection, and deconstructed viral vectors have been used to enhance the protein production in plants along with the inherent advantage of speed, scale, and cost of production in plant systems. Production of therapeutic proteins in plants has now a more pragmatic approach when several plant-produced vaccines and antibodies successfully completed Phase I clinical trials in humans and were further scheduled for regulatory approvals to manufacture clinical grade products on a large scale which are safe, efficacious, and meet the quality standards. The main thrust of this review is to summarize the data accumulated over the last two decades and recent development and achievements of the plant derived therapeutics. It also attempts to discuss different strategies employed to increase the production so as to make plants more competitive with the established production systems in this industry.
Collapse
Affiliation(s)
- Siddhesh B. Ghag
- School of Biological Sciences, UM-DAE Centre for Excellence in Basic Sciences, University of Mumbai campus, Kalina, Santacruz, Mumbai, 400098 India
| | - Vinayak S. Adki
- V. G. Shivdare College of Arts, Commerce and Science, Solapur, Maharashtra 413004 India
| | - Thumballi R. Ganapathi
- Plant Cell Culture Technology Section, Nuclear Agriculture & Biotechnology Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085 India
| | - Vishwas A. Bapat
- Department of Biotechnology, Shivaji University, Vidyanagar, Kolhapur, Maharashtra 416004 India
| |
Collapse
|
6
|
Fazeli L, Golkar P, Mirakhorli N, Jalali SAH, Mohammadinezhad R. Transient expression of the full-length glycoprotein from infectious hematopoietic necrosis virus in bean (Phaseolus vulgaris) leaves via agroinfiltration. Biotechnol Appl Biochem 2020; 68:648-658. [PMID: 32578912 DOI: 10.1002/bab.1975] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 06/20/2020] [Indexed: 11/07/2022]
Abstract
The glycoprotein of infectious hematopoietic necrosis virus (IHNV), the causative agent of acute disease in salmonids, is the only structural protein of the virus that can induce protective immunity in the fish host. Here, the reliability of bean (Phaseolus vulgaris) plant for the production of this viral protein was examined by the transient expression method. Using the syringe agroinfiltration method, leaves of bean plants were transformed with the expression construct encoding the full-length of IHNV glycoprotein (IHNV-G) gene. Furthermore, the transformation efficacy of two infiltration buffers including PBS-A (PBS+acetosyringone) and MMS-A (MES buffer + MgSO4 + sucrose + acetosyringone) was compared. The analysis of mRNA and dot-blot assay confirmed the transcription and translation of IHNV-G protein in bean leaves. Moreover, Western blotting verified the production of intact, full-length (∼57 kDa) IHNV-G protein in the agroinfiltrated plants. Of note, the production level of IHNV-G using MMS-A agroinfiltration buffer was approximately five times higher compared to PBS-A buffer (0.48 vs. 0.1% of total soluble protein), indicating the effect of infiltration buffer on the transient transformation efficiency. The recombinant protein was purified at the final yield of 0.35 μg/g of fresh leaf tissue, using nickel affinity chromatography. The present work is the first report describing the feasibility of the plant expression platform for the production of IHNV-G protein, which can be served as an oral vaccine against IHNV infection.
Collapse
Affiliation(s)
- Leila Fazeli
- Department of Plant Biotechnology, Faculty of Agriculture, Shahrekord University, Shahrekord, Iran
| | - Pooran Golkar
- Department of Natural Resources, Isfahan University of Technology, Isfahan, 84156-83111, Iran.,Research Institute for Biotechnology and Bioengineering, Isfahan University of Technology, Isfahan, 84156-83111, Iran
| | - Neda Mirakhorli
- Department of Plant Biotechnology, Faculty of Agriculture, Shahrekord University, Shahrekord, Iran
| | - Seyed Amir Hossein Jalali
- Department of Natural Resources, Isfahan University of Technology, Isfahan, 84156-83111, Iran.,Research Institute for Biotechnology and Bioengineering, Isfahan University of Technology, Isfahan, 84156-83111, Iran
| | - Rezvan Mohammadinezhad
- Research Institute for Biotechnology and Bioengineering, Isfahan University of Technology, Isfahan, 84156-83111, Iran
| |
Collapse
|
7
|
Pettongkhao S, Navet N, Schornack S, Tian M, Churngchow N. A secreted protein of 15 kDa plays an important role in Phytophthora palmivora development and pathogenicity. Sci Rep 2020; 10:2319. [PMID: 32047196 PMCID: PMC7012922 DOI: 10.1038/s41598-020-59007-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 01/16/2020] [Indexed: 01/03/2023] Open
Abstract
Phytophthora palmivora is a destructive oomycete plant pathogen with a wide host range. So far, little is known about the factors governing its infection structure development and pathogenicity. From the culture filtrate of a P. palmivora strain isolated from papaya, we identified a secreted glycoprotein of 15 kDa, designated as Ppal15kDa, using liquid chromatography tandem mass spectrometry. Two gene variants, Ppal15kDaA and Ppal15kDaB were amplified from a P. palmivora papaya isolate. Transient expression of both variants in Nicotiana benthamiana by agroinfiltration enhanced P. palmivora infection. Six Ppal15kDa mutants with diverse mutations were generated via CRISPR/Cas9-mediated gene editing. All mutants were compromised in infectivity on N. benthamiana and papaya. Two mutants with all Ppal15kDa copies mutated almost completely lost pathogenicity. The pathogenicity of the other four containing at least one wild-type copy of Ppal15kDa was compromised at varying levels. The mutants were also affected in development as they produced smaller sporangia, shorter germ tubes, and fewer appressoria. The affected levels in development corresponded to the levels of reduction in pathogenicity, suggesting that Ppal15kDa plays an important role in normal development of P. palmivora infection structures. Consistent with its role in infection structure development and pathogenicity, Ppal15kDa was found to be highly induced during appressorium formation. In addition, Ppal15kDa homologs are broadly present in Phytophthora spp., but none were characterized. Altogether, this study identified a novel component involved in development and pathogenicity of P. palmivora and possibly other Phytophthora spp. known to contain a Ppal15kDa homolog.
Collapse
Affiliation(s)
- Sittiporn Pettongkhao
- Department of Biochemistry, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla, 90112, Thailand.,Department of Plant and Environmental Protection Sciences, University of Hawaii at Manoa, Honolulu, HI, 96822, USA.,East-West Center, Honolulu, Hawaii, USA
| | - Natasha Navet
- Department of Plant and Environmental Protection Sciences, University of Hawaii at Manoa, Honolulu, HI, 96822, USA
| | | | - Miaoying Tian
- Department of Plant and Environmental Protection Sciences, University of Hawaii at Manoa, Honolulu, HI, 96822, USA.
| | - Nunta Churngchow
- Department of Biochemistry, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla, 90112, Thailand.
| |
Collapse
|
8
|
Bamogo PKA, Brugidou C, Sérémé D, Tiendrébéogo F, Djigma FW, Simpore J, Lacombe S. Virus-based pharmaceutical production in plants: an opportunity to reduce health problems in Africa. Virol J 2019; 16:167. [PMID: 31888686 PMCID: PMC6937724 DOI: 10.1186/s12985-019-1263-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 12/02/2019] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Developing African countries face health problems that they struggle to solve. The major causes of this situation are high therapeutic and logistical costs. Plant-made therapeutics are easy to produce due to the lack of the safety considerations associated with traditional fermenter-based expression platforms, such as mammalian cells. Plant biosystems are easy to scale up and inexpensive, and they do not require refrigeration or a sophisticated medical infrastructure. These advantages provide an opportunity for plant-made pharmaceuticals to counteract diseases for which medicines were previously inaccessible to people in countries with few resources. MAIN BODY The techniques needed for plant-based therapeutic production are currently available. Viral expression vectors based on plant viruses have greatly enhanced plant-made therapeutic production and have been exploited to produce a variety of proteins of industrial, pharmaceutical and agribusiness interest. Some neglected tropical diseases occurring exclusively in the developing world have found solutions through plant bioreactor technology. Plant viral expression vectors have been reported in the production of therapeutics against these diseases occurring exclusively in the third world, and some virus-derived antigens produced in plants exhibit appropriate antigenicity and immunogenicity. However, all advances in the use of plants as bioreactors have been made by companies in Europe and America. The developing world is still far from acquiring this technology, although plant viral expression vectors may provide crucial help to overcome neglected diseases. CONCLUSION Today, interest in these tools is rising, and viral amplicons made in and for Africa are in progress. This review describes the biotechnological advances in the field of plant bioreactors, highlights factors restricting access to this technology by those who need it most and proposes a solution to overcome these limitations.
Collapse
Affiliation(s)
- Pingdwende Kader Aziz Bamogo
- Interactions Plantes Microorganismes et Environnement (IPME), IRD, CIRAD, Université Montpellier, 911 Avenue Agropolis BP64501, 34394, Montpellier Cedex 5, France
- Laboratoire de Virologie et de Biotechnologies Végétales, Institut de L'Environnement et de Recherches Agricoles (INERA)/LMI Patho-Bios, 01BP476, Ouagadougou 01, Burkina Faso
- Laboratoire de Biologie Moléculaire et de Génétique (LABIOGENE), Ecole Doctorale Sciences et Technologie, Université Joseph Ki-Zerbo; Centre de Recherche Biomoléculaire Piétro Annigoni (CERBA), Ouagadougou 01, BP, 364, Burkina Faso
| | - Christophe Brugidou
- Interactions Plantes Microorganismes et Environnement (IPME), IRD, CIRAD, Université Montpellier, 911 Avenue Agropolis BP64501, 34394, Montpellier Cedex 5, France
- Laboratoire de Virologie et de Biotechnologies Végétales, Institut de L'Environnement et de Recherches Agricoles (INERA)/LMI Patho-Bios, 01BP476, Ouagadougou 01, Burkina Faso
| | - Drissa Sérémé
- Laboratoire de Virologie et de Biotechnologies Végétales, Institut de L'Environnement et de Recherches Agricoles (INERA)/LMI Patho-Bios, 01BP476, Ouagadougou 01, Burkina Faso
| | - Fidèle Tiendrébéogo
- Laboratoire de Virologie et de Biotechnologies Végétales, Institut de L'Environnement et de Recherches Agricoles (INERA)/LMI Patho-Bios, 01BP476, Ouagadougou 01, Burkina Faso
| | - Florencia Wendkuuni Djigma
- Laboratoire de Biologie Moléculaire et de Génétique (LABIOGENE), Ecole Doctorale Sciences et Technologie, Université Joseph Ki-Zerbo; Centre de Recherche Biomoléculaire Piétro Annigoni (CERBA), Ouagadougou 01, BP, 364, Burkina Faso
| | - Jacques Simpore
- Laboratoire de Biologie Moléculaire et de Génétique (LABIOGENE), Ecole Doctorale Sciences et Technologie, Université Joseph Ki-Zerbo; Centre de Recherche Biomoléculaire Piétro Annigoni (CERBA), Ouagadougou 01, BP, 364, Burkina Faso
| | - Séverine Lacombe
- Interactions Plantes Microorganismes et Environnement (IPME), IRD, CIRAD, Université Montpellier, 911 Avenue Agropolis BP64501, 34394, Montpellier Cedex 5, France.
- Laboratoire de Virologie et de Biotechnologies Végétales, Institut de L'Environnement et de Recherches Agricoles (INERA)/LMI Patho-Bios, 01BP476, Ouagadougou 01, Burkina Faso.
| |
Collapse
|
9
|
Fooks AR, Banyard AC, Ertl HCJ. New human rabies vaccines in the pipeline. Vaccine 2019; 37 Suppl 1:A140-A145. [PMID: 30153997 PMCID: PMC6863069 DOI: 10.1016/j.vaccine.2018.08.039] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 07/17/2018] [Accepted: 08/16/2018] [Indexed: 12/24/2022]
Abstract
Rabies remains endemic in more than 150 countries. In 99% of human cases, rabies virus is transmitted by dogs. The disease, which is nearly always fatal, is preventable by vaccines given either before and/or after exposure to a rabid animal. Numerous factors including the high cost of vaccines, the relative complexity of post-exposure vaccination protocols requiring multiple doses of vaccine, which in cases of severe exposure have to be combined with a rabies immune globulin, lack of access to health care, and insufficient surveillance contribute to the estimated 59,000 human deaths caused by rabies each year. New, less expensive and more immunogenic rabies vaccines are needed together with improved surveillance and dog rabies control to reduce the death toll of human rabies. Here, we discuss new rabies vaccines that are in clinical and pre-clinical testing and evaluate their potential to replace current vaccines.
Collapse
|
10
|
Singh A, Kaur G, Singh S, Singh N, Saxena G, Verma PC. Recombinant Plant Engineering for Immunotherapeutic Production. CURRENT MOLECULAR BIOLOGY REPORTS 2017; 3:306-316. [PMID: 32226727 PMCID: PMC7099902 DOI: 10.1007/s40610-017-0078-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
PURPOSE OF REVIEW The requirement for large quantities of therapeutic proteins has fueled a great interest in the production of recombinant proteins in plant bioreactors. The vaccines and bio-therapeutic protein production in plants hold the promise of significantly lowering the cost of manufacturing life-saving drugs. This review will reflect the current status and challenges that the molecular farming platform faces becoming a strategic solution for the development of low-cost bio-therapeutics for developing countries. RECENT FINDINGS Different plant parts have been successfully identified as suitable expression systems for the commercial production of therapeutic proteins for some human and animal diseases ranging from common cold to AIDS. The processed therapeutics from such sources are devoid of any toxic components. The large-scale cultivation of these transgenic plants would be possible anywhere in the world including developing countries, which lack sophisticated drug manufacturing units. A couple of such commercially generated products have already hit the market with success. Newer methods using suitable plant viruses and recombinant gene expression systems have already been devised for producing therapeutic proteins and peptides. SUMMARY Plants are promising bio-factories for therapeutic protein production because of their several advantages over the other expression systems especially the advanced mechanisms for protein synthesis and post-translational modification which are very much similar to animal cells. Plant biotechnologists are much attracted to the bio-farming because of its flexibility, scalability, low manufacturing cost, as well as the lack of risk of toxic or pathogenic contamination. A number of projects on bio-farming are designed and are at various developmental stages but have not yet become available to the pharmaceutical industry. Therefore, we need further advancement in the optimization of lab protocols for up-scaling the production of such therapeutics at commercial level with a promise to offer their best clinical use.
Collapse
Affiliation(s)
- Ankit Singh
- Department of Biosciences, Jamia Millia Islamia University, New Delhi, 110025 India
| | - Gurminder Kaur
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Sector 125, Noida, 201303 India
| | - Sanchita Singh
- Genetics and Plant Molecular Biology Division, CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, U.P 226001 India
| | - Neetu Singh
- Instrumentation Research Facility, Jawahar Lal Nehru University, New Delhi, 110067 India
| | - Gauri Saxena
- Department of Botany, University of Lucknow, Lucknow, 226001 India
| | - Praveen C. Verma
- Genetics and Plant Molecular Biology Division, CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, U.P 226001 India
| |
Collapse
|
11
|
Rabies vaccine development by expression of recombinant viral glycoprotein. Arch Virol 2016; 162:323-332. [PMID: 27796547 DOI: 10.1007/s00705-016-3128-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 10/24/2016] [Indexed: 10/20/2022]
Abstract
The rabies virus envelope glycoprotein (RVGP) is the main antigen of rabies virus and is the only viral component present in all new rabies vaccines being proposed. Many approaches have been taken since DNA recombinant technology became available to express an immunogenic recombinant rabies virus glycoprotein (rRVGP). These attempts are reviewed here, and the relevant results are discussed with respect to the general characteristics of the rRVGP, the expression system used, the expression levels achieved, the similarity of the rRVGP to the native glycoprotein, and the immunogenicity of the vaccine preparation. The most recent studies of rabies vaccine development have concentrated on in vivo expression of rRVGP by viral vector transduction, serving as the biotechnological basis for a new generation of rabies vaccines.
Collapse
|
12
|
Kim MY, Kim BY, Oh SM, Reljic R, Jang YS, Yang MS. Oral immunisation of mice with transgenic rice calli expressing cholera toxin B subunit fused to consensus dengue cEDIII antigen induces antibodies to all four dengue serotypes. PLANT MOLECULAR BIOLOGY 2016; 92:347-56. [PMID: 27566485 DOI: 10.1007/s11103-016-0517-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2016] [Accepted: 07/19/2016] [Indexed: 05/23/2023]
Abstract
Dengue virus (DENV) infection is an emerging global health threat. DENV consists of four distinct serotypes, necessitating a tetravalent vaccine. In this study, expression of consensus envelope protein domain III (cEDIII) fused to cholera toxin B subunit (CTB) in transgenic rice calli was improved using the luminal binding protein BiP at the N-terminus and the SEKDEL signal sequences at the C-terminus, targeting the recombinant protein to endoplasmic reticulum (ER). We found that the fusion protein showed higher levels of expression when compared to the fusion proteins using rice amylase 3D (RAmy3D) or CTB native signal sequence only. The CTB-cEDIII fusion protein was evaluated as an oral dengue vaccine candidate in mice. Serotype specific systemic IgG antibodies and specific IgA response in feces were detected and furthermore, T cell proliferation and high frequency antibody-secreting B cells were detected in the spleen. These results suggest the possible use of plant-based dengue tetravalent vaccine targeted to the mucosal immune system for induction of systemic and mucosal immune responses to DENV infection.
Collapse
Affiliation(s)
- Mi-Young Kim
- Department of Molecular Biology, Chonbuk National University, Jeonju, South Korea
- Institute for Infection and Immunity, St George's University of London, London, UK
| | - Byeong-Young Kim
- Department of Bioactive Material Sciences, Chonbuk National University, Jeonju, South Korea
| | - Sun-Mi Oh
- Department of Molecular Biology, Chonbuk National University, Jeonju, South Korea
| | - Rajko Reljic
- Institute for Infection and Immunity, St George's University of London, London, UK
| | - Yong-Suk Jang
- Department of Molecular Biology, Chonbuk National University, Jeonju, South Korea
- Department of Bioactive Material Sciences, Chonbuk National University, Jeonju, South Korea
- Research Center of Bioactive Materials, Chonbuk National University, Jeonju, South Korea
| | - Moon-Sik Yang
- Department of Molecular Biology, Chonbuk National University, Jeonju, South Korea.
- Department of Bioactive Material Sciences, Chonbuk National University, Jeonju, South Korea.
- Research Center of Bioactive Materials, Chonbuk National University, Jeonju, South Korea.
| |
Collapse
|
13
|
Ben Azoun S, Belhaj AE, Kallel H. Rabies virus glycoprotein enhanced expression in Pichia pastoris using the constitutive GAP promoter. Biochem Eng J 2016. [DOI: 10.1016/j.bej.2016.05.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
14
|
Current Developments and Future Prospects for Plant-Made Biopharmaceuticals Against Rabies. Mol Biotechnol 2016; 57:869-79. [PMID: 26163274 DOI: 10.1007/s12033-015-9880-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Rabies is a prevalent health problem in developing countries. Although vaccines and immunoglobulin treatments are available, their cost and multiple-dose treatments restrict availability. During the last two decades, plants have served as a low-cost platform for biopharmaceuticals production and have been applied to fight against rabies during the last two decades. Herein, I provide a description of the state of the art in the development of plant-made pharmaceuticals against rabies and identify key prospects for the field in terms of novel strategies, immunogen design, and therapeutic antibodies production.
Collapse
|
15
|
Expression of rabies glycoprotein and ricin toxin B chain (RGP-RTB) fusion protein in tomato hairy roots: a step towards oral vaccination for rabies. Mol Biotechnol 2015; 57:359-70. [PMID: 25519901 DOI: 10.1007/s12033-014-9829-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Transgenic hairy roots of Solanum lycopersicum were engineered to express a recombinant protein containing a fusion of rabies glycoprotein and ricin toxin B chain (rgp-rtxB) antigen under the control of constitutive CaMV35S promoter. Asialofetuin-mediated direct ELISA of transgenic hairy root extracts was performed using polyclonal anti-rabies antibodies (Ab1) and epitope-specific peptidal anti-RGP (Ab2) antibodies which confirmed the expression of functionally viable RGP-RTB fusion protein. Direct ELISA based on asialofetuin-binding activity was used to screen crude protein extracts from five transgenic hairy root lines. Expressions of RGP-RTB fusion protein in different tomato hairy root lines varied between 1.4 and 8 µg in per gram of tissue. Immunoblotting assay of RGP-RTB fusion protein from these lines showed a protein band on monomeric size of ~84 kDa after denaturation. Tomato hairy root line H03 showed highest level of RGP-RTB protein expression (1.14 %) and was used further in bench-top bioreactor for the optimization of scale-up process to produce large quantity of recombinant protein. Partially purified RGP-RTB fusion protein was able to induce the immune response in BALB/c mice after intra-mucosal immunization. In the present investigation, we have not only successfully scaled up the hairy root culture but also established the utility of this system to produce vaccine antigen which subsequently will reduce the total production cost for implementing rabies vaccination programs in developing nations. This study in a way aims to provide consolidated base for low-cost preparation of improved oral vaccine against rabies.
Collapse
|
16
|
Takeyama N, Kiyono H, Yuki Y. Plant-based vaccines for animals and humans: recent advances in technology and clinical trials. THERAPEUTIC ADVANCES IN VACCINES 2015; 3:139-54. [PMID: 26668752 DOI: 10.1177/2051013615613272] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
It has been about 30 years since the first plant engineering technology was established. Although the concept of plant-based pharmaceuticals or vaccines motivates us to develop practicable commercial products using plant engineering, there are some difficulties in reaching the final goal: to manufacture an approved product. At present, the only plant-made vaccine approved by the United States Department of Agriculture is a Newcastle disease vaccine for poultry that is produced in suspension-cultured tobacco cells. The progress toward commercialization of plant-based vaccines takes much effort and time, but several candidate vaccines for use in humans and animals are in clinical trials. This review discusses plant engineering technologies and regulations relevant to the development of plant-based vaccines and provides an overview of human and animal vaccines currently under clinical trials.
Collapse
Affiliation(s)
- Natsumi Takeyama
- Division of Mucosal Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Hiroshi Kiyono
- Division of Mucosal Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan International Research and Development Center for Mucosal Vaccines, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Yoshikazu Yuki
- Division of Mucosal Immunology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| |
Collapse
|
17
|
Starodubova ES, Preobrazhenskaia OV, Kuzmenko YV, Latanova AA, Yarygina EI, Karpov VL. Rabies vaccines: Current status and prospects for development. Mol Biol 2015. [DOI: 10.1134/s0026893315040172] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
18
|
Liew PS, Hair-Bejo M. Farming of Plant-Based Veterinary Vaccines and Their Applications for Disease Prevention in Animals. Adv Virol 2015; 2015:936940. [PMID: 26351454 PMCID: PMC4550766 DOI: 10.1155/2015/936940] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 07/26/2015] [Indexed: 12/21/2022] Open
Abstract
Plants have been studied for the production of pharmaceutical compounds for more than two decades now. Ever since the plant-made poultry vaccine against Newcastle disease virus made a breakthrough and went all the way to obtain regulatory approval, research to use plants for expression and delivery of vaccine proteins for animals was intensified. Indeed, in view of the high production costs of veterinary vaccines, plants represent attractive biofactories and offer many promising advantages in the production of recombinant vaccine proteins. Furthermore, the possibility of conducting immunogenicity and challenge studies in target animals has greatly exaggerated the progress. Although there are no edible plant-produced animal vaccines in the market, plant-based vaccine technology has great potentials. In this review, development, uses, and advantages of plant-based recombinant protein production in various expression platforms are discussed. In addition, examples of plant-based veterinary vaccines showing strong indication in terms of efficacy in animal disease prevention are also described.
Collapse
Affiliation(s)
- Pit Sze Liew
- Department of Veterinary Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400 Serdang, Malaysia
| | - Mohd Hair-Bejo
- Department of Veterinary Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400 Serdang, Malaysia
| |
Collapse
|
19
|
Zhang J, Jin Z, Sun T, Jiang Y, Han Q, Song Y, Chen Q, Xia X. Prokaryotic Expression, Purification, and Polyclonal Antibody Production of a Truncated Recombinant Rabies Virus L Protein. IRANIAN JOURNAL OF BIOTECHNOLOGY 2015; 13:18-24. [PMID: 28959286 DOI: 10.15171/ijb.1022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BACKGROUND Rabies virus (RABV) is a deadly neurotropic virus that causes the disease of rabies in humans and animals. L protein is one of the large structural protein of rabies virus, which displays multiple enzymatic activities, and is required for viral transcription and replication. OBJECTIVES A truncated L protein of Rabies virus is being cloned, expressed and purified to produce relevant polyclonal antibody. MATERIALS AND METHODS The gene fragment of L protein of RABV was subcloned into prokaryotic expression vector pET- 28a and transformed into E. coli Rosetta DE3 host strain. The recombinant L protein of RABV was expressed and characterized by SDS-PAGE and western blot analysis using anti-his tag antibody. Mice were immunized with the purified recombinant L protein, the reaction of the anti-serum was checked by immunofluorescence and dot-blot, respectively. RESULTS The results of PCR and sequencing confirmed that the fragment of L gene of RABV was successfully cloned into the expression vector. The expression of recombinant L protein fragment induced by IPTG was confirmed by the band of 43 kDa in SDS-PAGE and western blot. The antiserum of purified L protein immunized mice was reacted with RABV infected N2a cells and suckling mouse brain tissue lysates. CONCLUSIONS Our data showed that the recombinant L protein produced by pET-28a vector was very successful, and the purified L protein could efficiently induce the antibody response in mice. The antiserum could recognize the virus in RABV infected cells and tissue very well.
Collapse
Affiliation(s)
- Jinyang Zhang
- Research Center of Molecular Medicine of Yunnan Province, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, P.R. China
| | - Zian Jin
- Research Center of Molecular Medicine of Yunnan Province, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, P.R. China
| | - Tao Sun
- Research Center of Molecular Medicine of Yunnan Province, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, P.R. China
| | - Yan Jiang
- Research Center of Molecular Medicine of Yunnan Province, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, P.R. China
| | - Qinqin Han
- Research Center of Molecular Medicine of Yunnan Province, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, P.R. China
| | - Yuzhu Song
- Research Center of Molecular Medicine of Yunnan Province, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, P.R. China
| | - Qiang Chen
- Research Center of Molecular Medicine of Yunnan Province, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, P.R. China
| | - Xueshan Xia
- Research Center of Molecular Medicine of Yunnan Province, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, P.R. China
| |
Collapse
|
20
|
Permyakova NV, Uvarova EA, Deineko EV. State of research in the field of the creation of plant vaccines for veterinary use. RUSSIAN JOURNAL OF PLANT PHYSIOLOGY: A COMPREHENSIVE RUSSIAN JOURNAL ON MODERN PHYTOPHYSIOLOGY 2015; 62:23-38. [PMID: 32214753 PMCID: PMC7089518 DOI: 10.1134/s1021443715010100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Indexed: 06/08/2023]
Abstract
Transgenic plants as an alternative of costly systems of recombinant immunogenic protein expression are the source for the production of cheap and highly efficient biotherapeuticals of new generation, including plant vaccines. In the present review, possibilities of plant system application for the production of recombinant proteins for veterinary use are considered, the history of the "edible vaccine" concept is briefly summarized, advantages and disadvantages of various plant systems for the expression of recombinant immunogenic proteins are discussed. The list of recombinant plant vaccines for veterinary use, which are at different stages of clinical trials, is presented.
Collapse
Affiliation(s)
- N. V. Permyakova
- Institute of Cytology and Genetics, Rusian Academy of Sciences, Siberian Branch, pr. Lavrent’eva 10, Novosibirsk, 630090 Russia
| | - E. A. Uvarova
- Institute of Cytology and Genetics, Rusian Academy of Sciences, Siberian Branch, pr. Lavrent’eva 10, Novosibirsk, 630090 Russia
| | - E. V. Deineko
- Institute of Cytology and Genetics, Rusian Academy of Sciences, Siberian Branch, pr. Lavrent’eva 10, Novosibirsk, 630090 Russia
| |
Collapse
|
21
|
Kaur M, Garg R, Singh S, Bhatnagar R. Rabies vaccines: where do we stand, where are we heading? Expert Rev Vaccines 2014; 14:369-81. [PMID: 25348036 DOI: 10.1586/14760584.2015.973403] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Rabies being the most lethal zoonotic, vaccine-preventable viral disease with worldwide distribution of reservoir wild animals presents unique challenges for its diagnosis, management and control. Although vaccines available are highly effective, which had played the key role in controlling rabies in North America, western Europe and in a number of Asian and Latin American countries, the requirement of multiple doses along with boosters, associated cost to reduce the incidence in wild animals and prophylactic human vaccination has remained a major impediment towards achieving the same goals in poorer parts of the world such as sub-Saharan Africa and southeast Asia. Current efforts to contain rabies worldwide are directed towards the development of more safe, cheaper and efficacious vaccines along with anti-rabies antibodies for post-exposure prophylaxis. The work presented here provides an overview of the advances made towards controlling the human rabies, particularly in last 10 years, and future perspective.
Collapse
Affiliation(s)
- Manpreet Kaur
- BSL3 Laboratory, School of Biotechnology, Jawaharlal Nehru University, New Delhi - 110067, Delhi, India
| | | | | | | |
Collapse
|
22
|
Hilary Koprowski, MD: A Lifetime of Work. Monoclon Antib Immunodiagn Immunother 2014; 33:1-43. [DOI: 10.1089/mab.2014.kop.biblio] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
23
|
Guo C, Wang C, Luo S, Zhu S, Li H, Liu Y, Zhou L, Zhang P, Zhang X, Ding Y, Huang W, Wu K, Zhang Y, Rong W, Tian H. The adaptation of a CTN-1 rabies virus strain to high-titered growth in chick embryo cells for vaccine development. Virol J 2014; 11:85. [PMID: 24885666 PMCID: PMC4023167 DOI: 10.1186/1743-422x-11-85] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Accepted: 04/25/2014] [Indexed: 12/25/2022] Open
Abstract
Background Rabies virus is the causative agent of rabies, a central nervous system disease that is almost invariably fatal. Currently vaccination is the most effective strategy for preventing rabies, and vaccines are most commonly produced from cultured cells. Although the vaccine strains employed in China include CTN, aG, PM and PV, there are no reports of strains that are adapted to primary chick embryo cells for use in human rabies prevention in China. Results Rabies virus strain CTN-1 V was adapted to chick embryo cells by serial passage to obtain the CTNCEC25 strain. A virus growth curve demonstrated that the CTNCEC25 strain achieved high titers in chick embryo cells and was nonpathogenic to adult mice by intracerebral inoculation. A comparison of the structural protein genes of the CTNCEC25 strain and the CTN-1 V strain identified eight amino acid changes in the mature M, G and L proteins. The immunogenicity of the CTNCEC25 strain increased with the adaptation process in chick embryo cells and conferred high protective efficacy. The inactivated vaccine induced high antibody responses and provided full protection from an intramuscular challenge in adult mice. Conclusions This is the first description of a CTNCEC25 strain that was highly adapted to chick embryo cells, and both its in vitro and in vivo biological properties were characterized. Given the high immunogenicity and good propagation characteristics of the CTNCEC25 strain, it has excellent potential to be a candidate for development into a human rabies vaccine with high safety and quality characteristics for controlling rabies in China.
Collapse
Affiliation(s)
- Caiping Guo
- Shenzhen Weiguang Biological Products Co,, Ltd, Shenzhen 518107, Guangdong province, China.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Agarwal P, Garg V, Gautam T, Pillai B, Kanoria S, Burma PK. A study on the influence of different promoter and 5'UTR (URM) cassettes from Arabidopsis thaliana on the expression level of the reporter gene β glucuronidase in tobacco and cotton. Transgenic Res 2014; 23:351-63. [PMID: 24072400 DOI: 10.1007/s11248-013-9757-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2013] [Accepted: 09/18/2013] [Indexed: 10/26/2022]
Abstract
Several reports of promoters from plants, viral and artificial origin that confer high constitutive expression are known. Among these the CaMV 35S promoter is used extensively for transgene expression in plants. We identified candidate promoters from Arabidopsis based on their transcript levels (meta-analysis of available microarray control datasets) to test their activity in comparison to the CaMV 35S promoter. A set of 11 candidate genes were identified which showed high transcript levels in the aerial tissue (i.e. leaf, shoot, flower and stem). In the initial part of the study binary vectors were developed wherein the promoter and 5'UTR region of these candidate genes (Upstream Regulatory Module, URM) were cloned upstream to the reporter gene β glucuronidase (gus). The promoter strengths were tested in transformed callus of Nicotiana tabacum and Gossypium hirsutum. On the basis of the results obtained from the callus, the influence of the URM cassettes on transgene expression was tested in transgenic tobacco. The URM regions of the genes encoding a subunit of photosystem I (PHOTO) and geranyl geranyl reductase (GGR) in A. thaliana genome showed significantly high levels of GUS activity in comparison to the CaMV 35S promoter. Further, when the 5'UTRs of both the genes were placed downstream to the CaMV 35S promoter it led to a substantial increase in GUS activity in transgenic tobacco lines and cotton callus. The enhancement observed was even higher to that observed with the viral leader sequences like Ω and AMV, known translational enhancers. Our results indicate that the two URM cassettes or the 5'UTR regions of PHOTO and GGR when placed downstream to the CaMV 35S promoter can be used to drive high levels of transgene expression in dicotyledons.
Collapse
Affiliation(s)
- Parul Agarwal
- Department of Genetics, University of Delhi, South Campus, Benito Juarez Road, New Delhi, 110021, India
| | | | | | | | | | | |
Collapse
|
25
|
Ganapathy M, Perumal A, Mohan C, Palaniswamy H, Perumal K. Immunogenicity of Brugia malayi Abundant Larval Transcript-2, a potential filarial vaccine candidate expressed in tobacco. PLANT CELL REPORTS 2014; 33:179-88. [PMID: 24277081 DOI: 10.1007/s00299-013-1521-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Revised: 10/01/2013] [Accepted: 10/01/2013] [Indexed: 06/02/2023]
Abstract
KEY MESSAGE Transgenic tobacco plants with Bm ALT-2, a filarial vaccine candidate, were developed. The plant-produced antigen showed immunogenicity on par with the E.coli product. Transgenic tobacco plants were developed using Brugia malayi Abundant Larval Transcript-2 (Bm ALT-2), a major antigen produced from recombinant E.coli found to be experimentally successful as potential vaccine candidate against lymphatic filariasis. Results of experiments on the transformation and expression of the Bm ALT-2 in tobacco plant to produce plant-based vaccine are presented here. We have successfully transformed the tobacco plant with Bm ALT-2 and confirmed that the plants expressed the filarial protein by PCR analysis and Western blotting. The level of expression varied from 50 to 90 ng/μg of total soluble protein for ALT-2. Immunization of mice with plant-extracted protein indicated that the plant-produced protein had immunological characteristics similar to the E.coli-produced protein. Antibody titres produced by plant-produced recombinant ALT 2-immunized mice were on par with those immunized with recombinant protein produced by E.coli. Antibody isotype assay showed that plant-produced recombinant ALT-2 induced significant IgG1, whereas E.coli-produced recombinant ALT-2 induced IgG3. This result is a step forward towards the development of a model eukaryotic system for the production of recombinant filarial proteins, which can be utilized to produce therapeutic and diagnostic molecules against lymphatic filariasis, a neglected tropical infectious disease which has a negative impact on socioeconomic development. In addition, this is the first report of the immunogenicity of a plant-derived filarial antigen.
Collapse
Affiliation(s)
- Mathangi Ganapathy
- Centre for Biotechnology, Anna University, Guindy, Chennai, 600025, Tamil Nadu, India,
| | | | | | | | | |
Collapse
|
26
|
Abstract
As a central element of the extracellular matrix, collagen is intimately involved in tissue development, remodeling, and repair and confers high tensile strength to tissues. Numerous medical applications, particularly, wound healing, cell therapy, bone reconstruction, and cosmetic technologies, rely on its supportive and healing qualities. Its synthesis and assembly require a multitude of genes and post-translational modifications, where even minor deviations can be deleterious or even fatal. Historically, collagen was always extracted from animal and human cadaver sources, but bare risk of contamination and allergenicity and was subjected to harsh purification conditions resulting in irreversible modifications impeding its biofunctionality. In parallel, the highly complex and stringent post-translational processing of collagen, prerequisite of its viability and proper functioning, sets significant limitations on recombinant expression systems. A tobacco plant expression platform has been recruited to effectively express human collagen, along with three modifying enzymes, critical to collagen maturation. The plant extracted recombinant human collagen type I forms thermally stable helical structures, fibrillates, and demonstrates bioactivity resembling that of native collagen. Deployment of the highly versatile plant-based biofactory can be leveraged toward mass, rapid, and low-cost production of a wide variety of recombinant proteins. As in the case of collagen, proper planning can bypass plant-related limitations, to yield products structurally and functionally identical to their native counterparts.
Collapse
Affiliation(s)
- Oded Shoseyov
- The Robert H. Smith Faculty of Agriculture, Food and Environment, The Robert H. Smith Institute of Plant Science and Genetics, The Hebrew University of Jerusalem, Rehovot, Israel.
| | | | | |
Collapse
|
27
|
Guan ZJ, Guo B, Huo YL, Guan ZP, Dai JK, Wei YH. Recent advances and safety issues of transgenic plant-derived vaccines. Appl Microbiol Biotechnol 2013; 97:2817-40. [PMID: 23447052 PMCID: PMC7080054 DOI: 10.1007/s00253-012-4566-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Revised: 10/30/2012] [Accepted: 11/01/2012] [Indexed: 01/08/2023]
Abstract
Transgenic plant-derived vaccines comprise a new type of bioreactor that combines plant genetic engineering technology with an organism's immunological response. This combination can be considered as a bioreactor that is produced by introducing foreign genes into plants that elicit special immunogenicity when introduced into animals or human beings. In comparison with traditional vaccines, plant vaccines have some significant advantages, such as low cost, greater safety, and greater effectiveness. In a number of recent studies, antigen-specific proteins have been successfully expressed in various plant tissues and have even been tested in animals and human beings. Therefore, edible vaccines of transgenic plants have a bright future. This review begins with a discussion of the immune mechanism and expression systems for transgenic plant vaccines. Then, current advances in different transgenic plant vaccines will be analyzed, including vaccines against pathogenic viruses, bacteria, and eukaryotic parasites. In view of the low expression levels for antigens in plants, high-level expression strategies of foreign protein in transgenic plants are recommended. Finally, the existing safety problems in transgenic plant vaccines were put forward will be discussed along with a number of appropriate solutions that will hopefully lead to future clinical application of edible plant vaccines.
Collapse
Affiliation(s)
- Zheng-jun Guan
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Science, Northwest University, Xi’an, 710069 People’s Republic of China
- Department of Life Sciences, Yuncheng University, Yuncheng, Shanxi 044000 China
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093 China
| | - Bin Guo
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Science, Northwest University, Xi’an, 710069 People’s Republic of China
| | - Yan-lin Huo
- Centre of Biological and Chemical Exiperiment, Yuncheng University, Yuncheng, Shanxi 044000 China
| | - Zheng-ping Guan
- Department of Animal Science and Technology, Nanjing Agriculture University, Nanjing, Jiangshu 210095 China
| | - Jia-kun Dai
- Enzyme Engineering Institute of Shaanxi, Academy of Sciences, Xi’an, Shaanxi 710600 People’s Republic of China
| | - Ya-hui Wei
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Science, Northwest University, Xi’an, 710069 People’s Republic of China
| |
Collapse
|
28
|
Jacob SS, Cherian S, Sumithra TG, Raina OK, Sankar M. Edible vaccines against veterinary parasitic diseases--current status and future prospects. Vaccine 2013; 31:1879-85. [PMID: 23485715 DOI: 10.1016/j.vaccine.2013.02.022] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2013] [Revised: 02/02/2013] [Accepted: 02/11/2013] [Indexed: 12/17/2022]
Abstract
Protection of domestic animals against parasitic infections remains a major challenge in most of the developing countries, especially in the surge of drug resistant strains. In this circumstance vaccination seems to be the sole practical strategy to combat parasites. Most of the presently available live or killed parasitic vaccines possess many disadvantages. Thus, expression of parasitic antigens has seen a continued interest over the past few decades. However, only a limited success was achieved using bacterial, yeast, insect and mammalian expression systems. This is witnessed by an increasing number of reports on transgenic plant expression of previously reported and new antigens. Oral delivery of plant-made vaccines is particularly attractive due to their exceptional advantages. Moreover, the regulatory burden for veterinary vaccines is less compared to human vaccines. This led to an incredible investment in the field of transgenic plant vaccines for veterinary purpose. Plant based vaccine trials have been conducted to combat various significant parasitic diseases such as fasciolosis, schistosomosis, poultry coccidiosis, porcine cycticercosis and ascariosis. Besides, passive immunization by oral delivery of antibodies expressed in transgenic plants against poultry coccidiosis is an innovative strategy. These trials may pave way to the development of promising edible veterinary vaccines in the near future. As the existing data regarding edible parasitic vaccines are scattered, an attempt has been made to assemble the available literature.
Collapse
Affiliation(s)
- Siju S Jacob
- Division of Parasitology, Indian Veterinary Research Institute, Izatnagar 243122, UP, India.
| | | | | | | | | |
Collapse
|
29
|
Yang DK, Kim HH, Lee KW, Song JY. The present and future of rabies vaccine in animals. Clin Exp Vaccine Res 2013; 2:19-25. [PMID: 23596586 PMCID: PMC3623496 DOI: 10.7774/cevr.2013.2.1.19] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Revised: 10/31/2012] [Accepted: 11/05/2012] [Indexed: 11/15/2022] Open
Abstract
An effective strategy for preventing rabies consists of controlling rabies in the host reservoir with vaccination. Rabies vaccine has proven to be the most effective weapon for coping with this fatal viral zoonotic disease of warm-blooded animals, including human. Natural rabies infection of an individual is always associated with exposure to rabid animals, and the duration of clinical signs can vary from days to months. The incubation period for the disease depends on the site of the bite, severity of injury, and the amount of infecting virus at the time of exposure. The mortality of untreated cases in humans is 100%. Over the last 100 years, various rabies vaccines have been developed and used to prevent or control rabies in animals, such as modified live vaccine, inactivated rabies vaccine, and oral modified live vaccine. These have proved safe and efficacious worldwide. New-generation rabies vaccines, including recombinant rabies virus-based vaccines, vectored vaccines, DNA-based vaccines, and plant vaccines, have been explored to overcome the limitations of conventional rabies vaccines. This article discusses current and next-generation rabies vaccines in animals.
Collapse
Affiliation(s)
- Dong-Kun Yang
- Viral Disease Division, Animal, Plant and Fishery Quarantine Inspection Agency, Anyang, Korea
| | - Ha-Hyun Kim
- Viral Disease Division, Animal, Plant and Fishery Quarantine Inspection Agency, Anyang, Korea
| | - Kyung-Woo Lee
- Viral Disease Division, Animal, Plant and Fishery Quarantine Inspection Agency, Anyang, Korea
| | - Jae-Young Song
- Viral Disease Division, Animal, Plant and Fishery Quarantine Inspection Agency, Anyang, Korea
| |
Collapse
|
30
|
Abstract
The lyssaviruses are a diverse group of viruses capable of causing rabies, which is an invariably fatal encephalitic disease in both humans and animals. Currently, the lyssavirus genus consists of 12 species with 11 of these distinct species having been isolated from bats. The basis for the apparent geographical segregation of bat lyssavirus infection between the Old and New World is poorly understood. In the New World species of insectivorous, frugivorous, and hematophagous bats, all represent important reservoirs of rabies virus. In contrast, rabies virus has never been detected in Old World bat populations, despite being endemic in terrestrial mammals. Instead, both insectivorous and frugivorous bat species across the Old World appear to act as reservoirs for the non-rabies lyssaviruses. In this chapter, we describe the association of the different lyssaviruses with different bat species across the world, classifying bat species by their feeding behavior.
Collapse
Affiliation(s)
- Ashley C. Banyard
- Wildlife Zoonoses and Vector Borne Diseases Research Group, Department of Virology, Animal Health and Veterinary Laboratories Agency, Weybridge, New Haw, Addlestone, Surrey, KT15 3NB, UK
| | - David T.S. Hayman
- Wildlife Zoonoses and Vector Borne Diseases Research Group, Department of Virology, Animal Health and Veterinary Laboratories Agency, Weybridge, New Haw, Addlestone, Surrey, KT15 3NB, UK,Cambridge Infectious Diseases Consortium, Department of Veterinary Medicine, Madingley Road, Cambridge, CB3 0ES, UK,Department of Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - Conrad M. Freuling
- Institute of Molecular Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, D-17493 Greifswald - Insel Riems, Germany
| | - Thomas Müller
- Institute of Molecular Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, D-17493 Greifswald - Insel Riems, Germany
| | - Anthony R. Fooks
- Wildlife Zoonoses and Vector Borne Diseases Research Group, Department of Virology, Animal Health and Veterinary Laboratories Agency, Weybridge, New Haw, Addlestone, Surrey, KT15 3NB, UK,National Consortium for Zoonosis Research, University of Liverpool, Leahurst, Chester High Road, Neston, Wirral, CH64 7TE, UK
| | - Nicholas Johnson
- Wildlife Zoonoses and Vector Borne Diseases Research Group, Department of Virology, Animal Health and Veterinary Laboratories Agency, Weybridge, New Haw, Addlestone, Surrey, KT15 3NB, UK
| |
Collapse
|
31
|
Rosales-Mendoza S, Govea-Alonso DO, Monreal-Escalante E, Fragoso G, Sciutto E. Developing plant-based vaccines against neglected tropical diseases: where are we? Vaccine 2012; 31:40-8. [PMID: 23142588 DOI: 10.1016/j.vaccine.2012.10.094] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Revised: 10/09/2012] [Accepted: 10/25/2012] [Indexed: 10/27/2022]
Abstract
Neglected tropical diseases (NTDs) impair the lives of 1 billion people worldwide, and threaten the health of millions more. Although vaccine candidates have been proposed to prevent some NTDs, no vaccine is available at the market yet. Vaccines against NTDs should be low-cost and needle-free to reduce the logistic cost of their administration. Plant-based vaccines meet both requirements: plant systems allow antigen production at low cost, and also yield an optimal delivery vehicle that prevents or delays digestive hydrolysis of vaccine antigens. This review covers recent reports on the development of plant-based vaccines against NTDs. Efforts conducted by a number of research groups to develop vaccines as a mean to fight rabies, cysticercosis, dengue, and helminthiasis are emphasized. Future perspectives are identified, such as the need to develop vaccination models for more than ten pathologies through a plant-based biotechnological approach. Current limitations on the method are also noted, and molecular approaches that might allow us to address such limitations are discussed.
Collapse
Affiliation(s)
- Sergio Rosales-Mendoza
- Laboratorio de biofarmacéuticos recombinantes, Universidad Autónoma de San Luis Potosí, Av. Dr. Manuel Nava 6, SLP, 78210, Mexico.
| | | | | | | | | |
Collapse
|
32
|
Yadav DK, Ashraf S, Singh PK, Tuli R. Localization of rabies virus glycoprotein into the endoplasmic reticulum produces immunoprotective antigen. Protein J 2012; 31:447-56. [PMID: 22592449 DOI: 10.1007/s10930-012-9420-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Rabies virus surface glycoprotein (rabies G-protein) with (G+RS) and without (G-RS) endoplasmic reticulum retrieval signal was expressed and characterized in tobacco plants. Transgenically expressed rabies G-protein was estimated at 0.015-0.38 % of total leaf protein. The relative migration of the rabies G-protein on SDS-PAGE was at the position, as anticipated for the viral coat protein (~66 kDa). Immunolocalization by confocal microscopy established that immunoprotective G+RS expressed in tobacco was primarily confined to ER. G+RS showed binding to Con A lectin and was susceptible to N-glycosidase F activity similar to native rabies G-protein. However, the G-RS transgenically expressed in tobacco leaves was glycosylated differently and was resitant to N-glycosidase F. Immunological studies and Rapid Fluorescent Foci Inhibition Test (RFFIT) showed that G+RS was immunogenic and immunoprotective, whereas G-RS was moderately immunogenic but non-protective against live virus challenge. Hence, plants can express the antigenic component of rabies virus with suitable glycosylation, which is important to give protection against rabies virus infection.
Collapse
Affiliation(s)
- Dinesh K Yadav
- National Botanical Research Institute, Rana Pratap Marg, Lucknow 226001, India.
| | | | | | | |
Collapse
|
33
|
Loza-Rubio E, Rojas-Anaya E, López J, Olivera-Flores MT, Gómez-Lim M, Tapia-Pérez G. Induction of a protective immune response to rabies virus in sheep after oral immunization with transgenic maize, expressing the rabies virus glycoprotein. Vaccine 2012; 30:5551-6. [PMID: 22749836 DOI: 10.1016/j.vaccine.2012.06.039] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2011] [Revised: 06/08/2012] [Accepted: 06/13/2012] [Indexed: 11/19/2022]
Abstract
The introduction of exogenous genes into plants permits the development of a new generation of biological products, i.e., edible vaccines. Cereals, especially maize, have been the systems of choice for the expression of antigenic proteins because the proteins can be expressed at high levels in the kernel and stored for prolonged periods without excessive deterioration. The utilization of plant-derived antigens for oral delivery provides an alternative strategy for the control of pathogens in animals compared to the current vaccine administration methods, such as injection. However, there is some doubt about the efficacy of these types of vaccines in polygastric animals due to the features of their digestive system. Here, we report the efficacy of an edible vaccine against rabies evaluated in sheep. Kernels containing different doses of G protein (0.5, 1, 1.5 and 2mg) were given in a single dose by the oral route. Cumulative survival was better in groups that received 2mg of G protein and for the positive control (inactivated rabies vaccine); this observation was supported by the presence of neutralizing antibodies. Animals in the control group died after challenge. The degree of protection achieved for 2mg of G protein was comparable to that conferred by a commercial vaccine. In conclusion, this is the first study in which an orally administered edible vaccine showed efficacy in a polygastric model.
Collapse
Affiliation(s)
- Elizabeth Loza-Rubio
- Centro Nacional de Investigaciones en Microbiologia Animal (CENID-Microbiologia), INIFAP, Carretera México-Toluca, Km. 15.5, Colonia Palo Alto, CP 05110, México, DF, Mexico.
| | | | | | | | | | | |
Collapse
|
34
|
Abstract
Fusion systems are known to increase the expression of difficult to express recombinant proteins in soluble form to facilitate their purification. Rabies glycoprotein was also tough to express at sufficient level in soluble form in both E. coli and plant. The present work was aimed to over-express and purify this membrane protein from soluble extract of E. coli. Fusion of Small Ubiqutin like Modifier (SUMO) with rabies glycoprotein increased ~1.5 fold higher expression and ~3.0 fold solubility in comparison to non-fused in E. coli. The SUMO fusion also simplified the purification process. Previously engineered rabies glycoprotein gene in tobacco plants provides complete protection to mice, but the expression was very low for purification. Our finding demonstrated that the SUMO-fusion was useful for enhancing expression and solubility of the membrane protein and again proves to be a good alternative technology for applications in biomedical and pharmaceutical research.
Collapse
|
35
|
Sathish K, Sriraman R, Subramanian BM, Rao NH, Balaji K, Narasu ML, Srinivasan VA. Plant expressed EtMIC2 is an effective immunogen in conferring protection against chicken coccidiosis. Vaccine 2011; 29:9201-8. [PMID: 21986219 DOI: 10.1016/j.vaccine.2011.09.117] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2011] [Revised: 09/24/2011] [Accepted: 09/27/2011] [Indexed: 10/16/2022]
Abstract
Coccidiosis is an economically important disease affecting poultry industry and remains one of the major problems globally. Developing a cost effective sub-unit vaccine may help mitigate loss in the industry. Here, we report expressing one of the microneme proteins, EtMIC2 from Eimeria tenella in tobacco using Agrobacterium-mediated transient expression. The ability of plant expressed recombinant EtMIC2 in eliciting both humoral and cell-mediated immune responses were measured in the immunized birds. The protective efficacy in the vaccinated birds against a homologous challenge was also evaluated. Birds immunized with plant expressed EtMIC2 showed good sero-conversion, reduced oocyst output and increased weight gain when compared to control birds. Our data indicate that use of plant expressed recombinant EtMIC2 in birds was safe and had the potential in imparting partial protection in chickens against homologous challenge.
Collapse
MESH Headings
- Animals
- Antibodies, Protozoan/blood
- Antibodies, Protozoan/immunology
- Antigens, Protozoan/genetics
- Antigens, Protozoan/immunology
- Chickens/immunology
- Cloning, Molecular
- Coccidiosis/immunology
- Coccidiosis/prevention & control
- Coccidiosis/veterinary
- Eimeria tenella/immunology
- Immunity, Cellular
- Immunity, Humoral
- Immunization/veterinary
- Interferon-gamma/immunology
- Oocysts
- Plants, Genetically Modified/genetics
- Plants, Genetically Modified/immunology
- Poultry Diseases/immunology
- Poultry Diseases/prevention & control
- Protozoan Vaccines/immunology
- Recombinant Proteins/genetics
- Recombinant Proteins/immunology
- Nicotiana/genetics
- Nicotiana/immunology
- Vaccines, Subunit/immunology
- Weight Gain
Collapse
Affiliation(s)
- K Sathish
- Research & Development Centre, Indian Immunologicals Limited, Rakshapuram, Gachibowli, Hyderabad 500032, Andhra Pradesh, India
| | | | | | | | | | | | | |
Collapse
|
36
|
Ahmad P, Ashraf M, Younis M, Hu X, Kumar A, Akram NA, Al-Qurainy F. Role of transgenic plants in agriculture and biopharming. Biotechnol Adv 2011; 30:524-40. [PMID: 21959304 DOI: 10.1016/j.biotechadv.2011.09.006] [Citation(s) in RCA: 166] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2011] [Revised: 08/23/2011] [Accepted: 09/12/2011] [Indexed: 11/29/2022]
Abstract
At present, environmental degradation and the consistently growing population are two main problems on the planet earth. Fulfilling the needs of this growing population is quite difficult from the limited arable land available on the globe. Although there are legal, social and political barriers to the utilization of biotechnology, advances in this field have substantially improved agriculture and human life to a great extent. One of the vital tools of biotechnology is genetic engineering (GE) which is used to modify plants, animals and microorganisms according to desired needs. In fact, genetic engineering facilitates the transfer of desired characteristics into other plants which is not possible through conventional plant breeding. A variety of crops have been engineered for enhanced resistance to a multitude of stresses such as herbicides, insecticides, viruses and a combination of biotic and abiotic stresses in different crops including rice, mustard, maize, potato, tomato, etc. Apart from the use of GE in agriculture, it is being extensively employed to modify the plants for enhanced production of vaccines, hormones, etc. Vaccines against certain diseases are certainly available in the market, but most of them are very costly. Developing countries cannot afford the disease control through such cost-intensive vaccines. Alternatively, efforts are being made to produce edible vaccines which are cheap and have many advantages over the commercialized vaccines. Transgenic plants generated for this purpose are capable of expressing recombinant proteins including viral and bacterial antigens and antibodies. Common food plants like banana, tomato, rice, carrot, etc. have been used to produce vaccines against certain diseases like hepatitis B, cholera, HIV, etc. Thus, the up- and down-regulation of desired genes which are used for the modification of plants have a marked role in the improvement of genetic crops. In this review, we have comprehensively discussed the role of genetic engineering in generating transgenic lines/cultivars of different crops with improved nutrient quality, biofuel production, enhanced production of vaccines and antibodies, increased resistance against insects, herbicides, diseases and abiotic stresses as well as the safety measures for their commercialization.
Collapse
Affiliation(s)
- Parvaiz Ahmad
- Department of Botany, A.S. College, 190008, University of Kashmir, Srinagar, India.
| | | | | | | | | | | | | |
Collapse
|
37
|
Wang AX, Chen XL. [Current status and industrialization of transgenic tomatoes]. YI CHUAN = HEREDITAS 2011; 33:962-974. [PMID: 21951797 DOI: 10.3724/sp.j.1005.2011.00962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
In this review, the progress in transgenic tomato research, including disease and insect resistance, herbicide resistance, stress tolerance, long-term storage, quality improvement, and male sterility, were described. The recent researches on producing heterologous proteins using transgenic tomatoes were also reviewed. Furthermore, the industrialization status and problems of transgenic tomatoes were analyzed and the prospects of both research and industrialization in transgenic tomatoes were discussed.
Collapse
Affiliation(s)
- Ao-Xue Wang
- Northeast Agricultural University, College of Horticulture, Harbin 150030, China.
| | | |
Collapse
|
38
|
Transgenic peanut (Arachis hypogaea L.) expressing the urease subunit B gene of Helicobacter pylori. Curr Microbiol 2011; 63:387-91. [PMID: 21833666 DOI: 10.1007/s00284-011-9991-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2011] [Accepted: 07/28/2011] [Indexed: 01/04/2023]
Abstract
Helicobacter pylori (H. pylori) has been identified as the main pathogenic factors of chronic gastritis and peptic ulcer, and the Class I carcinogen of gastric cancer by WHO. Vaccine has become the most effective measure to prevent and cure H. pylori infection. The UreB is the most effective and common immunogen of all strains of H. pylori and may stimulate the immunoresponse protecting the human body against the challenge of H. pylori. UreB antigen gene was cloned into the binary vector pBI121 which contains a seed-specific promoter Oleosin of peanut and a kanamycin resistance gene, and then UreB gene was transformed into peanut embryo leaflets by Agrobacter-mediated method. The putative transgenic plants were examined for the presence of UreB in the nuclear genome of peanut plants by PCR analysis. Expression of UreB gene in plants was identified by RT-PCR and Western blot analysis. These results suggest that the UreB transgenic peanut can be potentially used as an edible vaccine for controlling H. pylori.
Collapse
|
39
|
Soria-Guerra RE, Rosales-Mendoza S, Moreno-Fierros L, López-Revilla R, Alpuche-Solís AG. Oral immunogenicity of tomato-derived sDPT polypeptide containing Corynebacterium diphtheriae, Bordetella pertussis and Clostridium tetani exotoxin epitopes. PLANT CELL REPORTS 2011; 30:417-424. [PMID: 21188384 DOI: 10.1007/s00299-010-0973-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2010] [Revised: 11/21/2010] [Accepted: 12/05/2010] [Indexed: 05/30/2023]
Abstract
DPT vaccine, designed to immunize against diphtheria, pertussis, and tetanus, has been shown to be effective in humans. Nevertheless, dissatisfaction with the whole-cell preparations is due to the reactogenicity, which has to lead to the development of new safer formulations. Previously, we described the expression in tomato of a plant-optimized synthetic gene encoding the recombinant polypeptide sDPT, containing mainly immunoprotective epitopes of the diphtheria, pertussis and tetanus exotoxins and two adjuvants. In this study, we examined whether the ingestion of tomato-derived sDPT protein induces specific antibodies in mice after three weekly doses scheme. A positive group immunized with DPT toxoids was included. Specific antibody levels were assessed in serum, gut and lung. Sera tested for IgG antibody response to pertussis, tetanus and diphtheria toxin showed responses to the foreign antigens; interestingly, the response to diphtheria epitope was similar to those observed in the positive group. We found higher IgG1 than IgG2a responses in serum. A modest IgG response was observed in the tracheopulmonary fluid. High response of IgA against tetanus toxin was evident in gut, which was statistically comparable to that obtained in the positive group. The levels of response in these groups were higher than those in mice that received wild-type tomato. These findings support the concept of using transgenic tomatoes expressing sDPT polypeptide as model for edible vaccine against diphtheria, pertussis, and tetanus.
Collapse
Affiliation(s)
- Ruth E Soria-Guerra
- División de Biología Molecular, IPICYT, Camino a la Presa San José 2055, 78216 San Luis Potosí, Mexico
| | | | | | | | | |
Collapse
|
40
|
Smith TG, Wu X, Franka R, E. Rupprecht C. Design of future rabies biologics and antiviral drugs. Adv Virus Res 2011; 79:345-63. [PMID: 21601054 DOI: 10.1016/b978-0-12-387040-7.00016-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
In recent years, no major paradigm shifts have occurred in the utilization of new products for the prevention and control of rabies. Development of new cost-effective rabies biologics and antiviral drugs is critical in continuing to prevent and reduce disease. Current rabies vaccines are highly effective but have developed largely based on technical improvements in the vaccine industry. In the future, alternative approaches for improved vaccines, including novel avirulent rabies virus (RABV) vectors, should be pursued. Any rabies vaccine that is effective without the need for rabies immune globulin (RIG) will contribute fundamentally to disease prevention by reducing the cost and complexity of postexposure prophylaxis (PEP). The lack of high quality, affordable RIG is a continuing problem. Virus-specific monoclonal antibodies (mAbs) will soon fulfill the PEP requirement for passive immunity, currently met with RIG. Several relevant strategies for mAb production, including use of transgenic mice, humanization of mouse mAbs, and generation of human immune libraries, are underway. As a result of successful PEP and pre-exposure prophylaxis in developed countries, until recently, no significant focused efforts have been devoted to RABV-specific antiviral agents. To date, combination therapy including broad spectrum antiviral agents has been successful in only one case, and reports of antiviral activity are often conflicting. Current antiviral strategies target either the nucleoprotein or phosphoprotein, but drugs targeting the viral polymerase should be considered. Considering the lag from creation of new concepts to experimental development and clinical trials, many years will likely elapse between today's ideas and tomorrow's practices.
Collapse
|
41
|
Khandelwal A, Renukaradhya GJ, Rajasekhar M, Sita GL, Shaila MS. Immune responses to hemagglutinin-neuraminidase protein of peste des petits ruminants virus expressed in transgenic peanut plants in sheep. Vet Immunol Immunopathol 2010; 140:291-6. [PMID: 21211855 DOI: 10.1016/j.vetimm.2010.12.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2010] [Revised: 11/28/2010] [Accepted: 12/08/2010] [Indexed: 10/18/2022]
Abstract
Peste des petits ruminants (PPR) is an acute, highly contagious disease of small ruminants caused by a morbillivirus, Peste des petits ruminants virus (PPRV). The disease is prevalent in equatorial Africa, the Middle East, and the Indian subcontinent. A live attenuated vaccine is in use in some of the countries and has been shown to provide protection for at least three years against PPR. However, the live attenuated vaccine is not robust in terms of thermotolerance. As a step towards development of a heat stable subunit vaccine, we have expressed a hemagglutinin-neuraminidase (HN) protein of PPRV in peanut plants (Arachis hypogea) in a biologically active form, possessing neuraminidase activity. Importantly, HN protein expressed in peanut plants retained its immunodominant epitopes in their natural conformation. The immunogenicity of the plant derived HN protein was analyzed in sheep upon oral immunization. Virus neutralizing antibody responses were elicited upon oral immunization of sheep in the absence of any mucosal adjuvant. In addition, anti-PPRV-HN specific cell-mediated immune responses were also detected in mucosally immunized sheep.
Collapse
Affiliation(s)
- Abha Khandelwal
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, India
| | | | | | | | | |
Collapse
|
42
|
Kim TG, Kim MY, Yang MS. Cholera toxin B subunit-domain III of dengue virus envelope glycoprotein E fusion protein production in transgenic plants. Protein Expr Purif 2010; 74:236-41. [PMID: 20691270 DOI: 10.1016/j.pep.2010.07.013] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2010] [Revised: 07/21/2010] [Accepted: 07/30/2010] [Indexed: 01/11/2023]
Abstract
Envelope glycoprotein E of the dengue virus, which plays a crucial role in its entry into host cells, has an immunogenic domain III (EIII, amino acids 297-394), which is capable of inducing neutralizing antibodies. However, mice immunized with EIII protein without adjuvant elicited low immune responses. To improve low immune responses, a DNA fragment, consisting of cholera toxin B subunit and EIII gene (CTB-EIII), was constructed and introduced into tobacco plant cells (Nicotiana tabacum L. cv. MD609) by Agrobacterium tumefaciens-mediated transformation methods. The integration and transcription of CTB-EIII fusion gene were confirmed in transgenic plants by genomic DNA PCR amplification and Northern blot analysis, respectively. The results of immunoblot analysis with anti-CTB and anti-dengue virus antibodies showed the expression of the CTB-EIII fusion protein in transgenic plant extracts. Based on the G(M1)-ELISA results, the CTB-EIII protein expressed in plants showed the biological activity for intestinal epithelial cell membrane glycolipid receptor, G(M1)-ganglioside, and its expression level was up to about 0.019% of total soluble protein in transgenic plant leaf tissues. The feasibility of using a plant-produced CTB-EIII fusion protein to generate immunogenicity against domain III will be tested in future animal experiments.
Collapse
Affiliation(s)
- Tae-Geum Kim
- Department of Molecular Biology, Chonbuk National University, Jeonju, Republic of Korea
| | | | | |
Collapse
|
43
|
Granell A, Fernández del-Carmen A, Orzáez D. In planta production of plant-derived and non-plant-derived adjuvants. Expert Rev Vaccines 2010; 9:843-58. [PMID: 20673009 DOI: 10.1586/erv.10.80] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Recombinant antigen production in plants is a safe and economically sound strategy for vaccine development, particularly for oral/mucosal vaccination, but subunit vaccines usually suffer from weak immunogenicity and require adjuvants that escort the antigens, target them to relevant sites and/or activate antigen-presenting cells for elicitation of protective immunity. Genetic fusions of antigens with bacterial adjuvants as the B subunit of the cholera toxin have been successful in inducing protective immunity of plant-made vaccines. In addition, several plant compounds, mainly plant defensive molecules as lectins and saponins, have shown strong adjuvant activities. The molecular diversity of the plant kingdom offers a vast source of non-bacterial compounds with adjuvant activity, which can be assayed in emerging plant manufacturing systems for the design of new plant vaccine formulations.
Collapse
Affiliation(s)
- Antonio Granell
- Instituto de Biología Molecular y Celular de Plantas, CSIC-Universidad Politécnica de Valencia, Spain
| | | | | |
Collapse
|
44
|
Lau JM, Korban SS. Transgenic apple expressing an antigenic protein of the human respiratory syncytial virus. JOURNAL OF PLANT PHYSIOLOGY 2010; 167:920-927. [PMID: 20307914 DOI: 10.1016/j.jplph.2010.02.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2009] [Revised: 02/20/2010] [Accepted: 02/20/2010] [Indexed: 05/29/2023]
Abstract
A gene coding for the human respiratory syncytial virus (RSV)-F protein, driven by the constitutively expressed CaMV 35S promoter, was introduced into leaf tissues of apple, Malusxdomestica Borkh. cv. Royal Gala, via Agrobacterium-mediated transformation. Two putative transgenic lines were identified, and the presence of the RSV-F gene was confirmed by polymerase chain reaction (PCR). A total of 25 plants from these different transgenic events were successfully rooted, acclimatized, and transferred to the greenhouse. Stable integration of the transgene was confirmed and transgene copy number was determined by DNA gel blot analysis. Expression of the npt-II selectable marker and RSV-F was determined using reverse-transcription polymerase chain reaction (RT-PCR). Furthermore, enzyme-linked immunosorbent assay (ELISA) revealed varying levels of protein expression of the RSV-F transgene, ranging from 0 to 20 microg/g tissue. This is a first step in an effort to assess the efficacy of using apple for developing a plant-based vaccine against RSV.
Collapse
Affiliation(s)
- Joann M Lau
- Department of Natural Resources and Environmental Sciences, University of Illinois at Urbana-Champaign, 1201 West Gregory Drive, Urbana, IL 61801, USA
| | | |
Collapse
|
45
|
Vegetables. BIOTECHNOLOGY IN AGRICULTURE AND FORESTRY 2010. [PMCID: PMC7121345 DOI: 10.1007/978-3-642-02391-0_25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The conscious promotion of health by an appropriate, balanced diet has become an important social request. Vegetable thereby possesses a special importance due to its high vitamin, mineral and dietary fibre content. Major progress has been made over the past few years in the transformation of vegetables. The expression of several genes has been inhibited by sense gene suppression, and new traits caused by new gene constructs are stably inherited. This chapter reviews advances in various traits such as disease resistance, abiotic stress tolerance, quality improvement, pharmaceutical and industrial application. Results are presented from most important vegetable families, like Solanaceae, Brassicaceae, Fabaceae, Cucurbitaceae, Asteraceae, Apiaceae, Chenopodiaceae and Liliaceae. Although many research trends in this report are positive, only a few transgenic vegetables have been released from confined into precommercial testing or into use.
Collapse
|
46
|
Abstract
Rabies, the most fatal of all infectious diseases, remains a major public health problem in developing countries, claiming the lives of an estimated 55,000 people each year. Most fatal rabies cases, with more than half of them in children, result from dog bites and occur among low-income families in Southeast Asia and Africa. Safe and efficacious vaccines are available to prevent rabies. However, they have to be given repeatedly, three times for pre-exposure vaccination and four to five times for post-exposure prophylaxis (PEP). In cases of severe exposure, a regimen of vaccine combined with a rabies immunoglobulin (RIG) preparation is required. The high incidence of fatal rabies is linked to a lack of knowledge on the appropriate treatment of bite wounds, lack of access to costly PEP, and failure to follow up with repeat immunizations. New, more immunogenic but less costly rabies virus vaccines are needed to reduce the toll of rabies on human lives. A preventative vaccine used for the immunization of children, especially those in high incidence countries, would be expected to lower fatality rates. Such a vaccine would have to be inexpensive, safe, and provide sustained protection, preferably after a single dose. Novel regimens are also needed for PEP to reduce the need for the already scarce and costly RIG and to reduce the number of vaccine doses to one or two. In this review, the pipeline of new rabies vaccines that are in pre-clinical testing is provided and an opinion on those that might be best suited as potential replacements for the currently used vaccines is offered.
Collapse
Affiliation(s)
- Hildegund C. J. Ertl
- The Wistar Institute, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
47
|
Gupta V, Mathur S, Solanke AU, Sharma MK, Kumar R, Vyas S, Khurana P, Khurana JP, Tyagi AK, Sharma AK. Genome analysis and genetic enhancement of tomato. Crit Rev Biotechnol 2009; 29:152-81. [PMID: 19319709 DOI: 10.1080/07388550802688870] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The Solanaceae is an important family of vegetable crops, ornamentals and medicinal plants. Tomato has served as a model member of this family largely because of its enriched cytogenetic, genetic, as well as physical, maps. Mapping has helped in cloning several genes of importance such as Pto, responsible for resistance against bacterial speck disease, Mi-1.2 for resistance against nematodes, and fw2.2 QTL for fruit weight. A high-throughput genome-sequencing program has been initiated by an international consortium of 10 countries. Since heterochromatin has been found to be concentrated near centromeres, the consortium is focusing on sequencing only the gene-rich euchromatic region. Genomes of the members of Solanaceae show a significant degree of synteny, suggesting that the tomato genome sequence would help in the cloning of genes for important traits from other Solanaceae members as well. ESTs from a large number of cDNA libraries have been sequenced, and microarray chips, in conjunction with wide array of ripening mutants, have contributed immensely to the understanding of the fruit-ripening phenomenon. Work on the analysis of the tomato proteome has also been initiated. Transgenic tomato plants with improved abiotic stress tolerance, disease resistance and insect resistance, have been developed. Attempts have also been made to develop tomato as a bioreactor for various pharmaceutical proteins. However, control of fruit quality and ripening remains an active and challenging area of research. Such efforts should pave the way to improve not only tomato, but also other solanaceous crops.
Collapse
Affiliation(s)
- Vikrant Gupta
- Interdisciplinary Centre for Plant Genomics, Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, India
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Abstract
It has been demonstrated that HIV-1 gp120 resembles several important properties of immunoglobulins allowing it strong influence on the human immune system, especially through induction of the deceptive imprinting and deregulation of the immune network. On the other hand there are many unanswered questions concerning properties and control of the genetically modified viruses and bacteria used as vectors in AIDS vaccines. This situation opens a serious question about the safety of vectored AIDS vaccine and the ethics of their trials in humans.
Collapse
Affiliation(s)
- Veljko Veljkovic
- Center for Multidisciplinary Research, Institute of Nuclear Sciences VINCA, Belgrade, Yugoslavia.
| | | | | |
Collapse
|
49
|
Abstract
Plant-derived biologicals for use in animal health are becoming an increasingly important target for research into alternative, improved methods for disease control. Although there are no commercial products on the market yet, the development and testing of oral, plant-based vaccines is now beyond the proof-of-principle stage. Vaccines, such as those developed for porcine transmissible gastroenteritis virus, have the potential to stimulate both mucosal and systemic, as well as, lactogenic immunity as has already been seen in target animal trials. Plants are a promising production system, but they must compete with existing vaccines and protein production platforms. In addition, regulatory hurdles will need to be overcome, and industry and public acceptance of the technology are important in establishing successful products.
Collapse
Affiliation(s)
- R W Hammond
- USDA-ARS, BARC-West, Rm.252, Bldg. 011, Beltsville, MD 20705, USA.
| | | |
Collapse
|
50
|
Kostrzak A, Cervantes Gonzalez M, Guetard D, Nagaraju DB, Wain-Hobson S, Tepfer D, Pniewski T, Sala M. Oral administration of low doses of plant-based HBsAg induced antigen-specific IgAs and IgGs in mice, without increasing levels of regulatory T cells. Vaccine 2009; 27:4798-807. [PMID: 19539581 DOI: 10.1016/j.vaccine.2009.05.092] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2009] [Revised: 05/26/2009] [Accepted: 05/28/2009] [Indexed: 10/20/2022]
Abstract
Plant-based oral vaccines run the risk of activating regulatory T cells (Tregs) and suppressing the antigen-specific immune response via oral tolerance. Mice humanized for two HLA alleles (HLA-A2.1 and HLA-DR1) were used to measure changes in Tregs and antigen-specific immune responses induced by the oral administration of tobacco (Nicotiana tabacum), expressing the hepatitis B surface antigen (HBsAg). Antigen-specific CD8+ T cell activation was not detected, but the plant-based oral immunization, without adjuvant, resulted in humoral responses comparable to those obtained by adjuvanted DNA immunization. Treg titers did not increase with DNA immunization. In contrast, with plant immunization, Tregs increased linearly to reach a plateau at high antigen doses. The highest humoral IgA and IgG responses correlated with the lowest plant antigen dose (0.5 ng), while for DNA immunization the best antibody responses were obtained at higher antigen doses. These experiments suggest that plant-based oral vaccines could be adjusted to minimize tolerance, while still inducing an immune response. Oral tolerance and adjuvant engineering in plants are discussed.
Collapse
Affiliation(s)
- Anna Kostrzak
- Institut Pasteur (IP), Unité de Rétrovirologie Moléculaire, CNRS URA 3015, Paris, France
| | | | | | | | | | | | | | | |
Collapse
|