1
|
Gao H, Sun M, Li A, Gu Q, Kang D, Feng Z, Li X, Wang X, Chen L, Yang H, Cong Y, Liu Z. Microbiota-derived IPA alleviates intestinal mucosal inflammation through upregulating Th1/Th17 cell apoptosis in inflammatory bowel disease. Gut Microbes 2025; 17:2467235. [PMID: 39956891 PMCID: PMC11834480 DOI: 10.1080/19490976.2025.2467235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 01/09/2025] [Accepted: 02/10/2025] [Indexed: 02/18/2025] Open
Abstract
The gut microbiota-derived metabolite indole-3-propionic acid (IPA) plays an important role in maintaining intestinal mucosal homeostasis, while the molecular mechanisms underlying IPA regulation on mucosal CD4+ T cell functions in inflammatory bowel disease (IBD) remain elusive. Here we investigated the roles of IPA in modulating mucosal CD4+ T cells and its therapeutic potential in treatment of human IBD. Leveraging metabolomics and microbial community analyses, we observed that the levels of IPA-producing microbiota (e.g. Peptostreptococcus, Clostridium, and Fournierella) and IPA were decreased, while the IPA-consuming microbiota (e.g. Parabacteroides, Erysipelatoclostridium, and Lachnoclostridium) were increased in the feces of IBD patients than those in healthy donors. Dextran sulfate sodium (DSS)-induced acute colitis and CD45RBhighCD4+ T cell transfer-induced chronic colitis models were then established in mice and treated orally with IPA to study its role in intestinal mucosal inflammation in vivo. We found that oral administration of IPA attenuated mucosal inflammation in both acute and chronic colitis models in mice, as characterized by increased body weight, and reduced levels of pro-inflammatory cytokines (e.g. TNF-α, IFN-γ, and IL-17A) and histological scores in the colon. We further utilized RNA sequencing, molecular docking simulations, and surface plasmon resonance analyses and identified that IPA exerts its biological effects by interacting with heat shock protein 70 (HSP70), leading to inducing Th1/Th17 cell apoptosis. Consistently, ectopic expression of HSP70 in CD4+ T cells conferred resistance to IPA-induced Th1/Th17 cell apoptosis. Therefore, these findings identify a previously unrecognized pathway by which IPA modulates intestinal inflammation and provide a promising avenue for the treatment of IBD.
Collapse
Affiliation(s)
- Han Gao
- Center for IBD Research and Department of Gastroenterology, The Shanghai Tenth People’s Hospital of Tongji University, Shanghai, China
| | - Mingming Sun
- Center for IBD Research and Department of Gastroenterology, The Shanghai Tenth People’s Hospital of Tongji University, Shanghai, China
| | - Ai Li
- Center for IBD Research and Department of Gastroenterology, The Shanghai Tenth People’s Hospital of Tongji University, Shanghai, China
| | - Qiaoyan Gu
- Department of Gastroenterology, Yanan University Affiliated Hospital, Yan’an, Shaanxi, China
| | - Dengfeng Kang
- Center for IBD Research and Department of Gastroenterology, The Shanghai Tenth People’s Hospital of Tongji University, Shanghai, China
| | - Zhongsheng Feng
- Center for IBD Research and Department of Gastroenterology, The Shanghai Tenth People’s Hospital of Tongji University, Shanghai, China
| | - Xiaoyu Li
- Center for IBD Research and Department of Gastroenterology, The Shanghai Tenth People’s Hospital of Tongji University, Shanghai, China
| | - Xuehong Wang
- Department of Gastroenterology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Liang Chen
- Center for IBD Research and Department of Gastroenterology, The Shanghai Tenth People’s Hospital of Tongji University, Shanghai, China
| | - Hong Yang
- Department of Gastroenterology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yingzi Cong
- Division of Gastroenterology and Hepatology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Center for Human Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Zhanju Liu
- Center for IBD Research and Department of Gastroenterology, The Shanghai Tenth People’s Hospital of Tongji University, Shanghai, China
| |
Collapse
|
2
|
Shin S, Chen S, Xie K, Duhun SA, Ortiz-Cerda T. Evaluating the anti-inflammatory and antioxidant efficacy of complementary and alternative medicines (CAM) used for management of inflammatory bowel disease: a comprehensive review. Redox Rep 2025; 30:2471737. [PMID: 40056427 DOI: 10.1080/13510002.2025.2471737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2025] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic autoimmune condition whose pathogenesis has not been fully elucidated, and current treatments are not definitive and often carry several side effects. The Complementary and Alternative Medicine (CAM) offers a new approach to conventional medicine. However, their clinical application and mechanisms remain limited.Objective: The aim of this review is to evaluate the anti-inflammatory, impact on microbiota and antioxidant efficacy of currently available CAM for IBD.Methods: The literature collection was obtained from Google Scholar, MEDLINE, PubMed and Web of Science (WOS). Studies in both human and animal models, published in English language between 2018 and 2024, were selected. Sixty-seven studies were included in the current review after inclusion and exclusion screening processes.Results: Mostly, studies showed significant anti-inflammatory, gut microbiota restoring, antioxidant effects of polyphenols, polysaccharides, emodin, short-chain fatty acids (SCFA; including butyrate, propionate and acetate), and probiotics although some contrasting results were noted. Current evidence shows that polyphenols exhibit the most consistent result in alleviating IBD pathophysiology, primarily due to their significant SCFA-elevating effect.Discussion: Future studies may focus on human studies, narrowing down on individual factors which may change natural product's metabolism. Further research studies are also essential to obtain therapeutic recommendations.
Collapse
Affiliation(s)
- Sia Shin
- Sydney Medical School, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
| | - Siqi Chen
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
| | - Kangzhe Xie
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
| | - Suehad Abou Duhun
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
| | - Tamara Ortiz-Cerda
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
- Departamento de Citología e Histología Normal y Patológica, Facultad de medicina, Universidad de Sevilla, Seville, Spain
| |
Collapse
|
3
|
Du W, Zou ZP, Ye BC, Zhou Y. Gut microbiota and associated metabolites: key players in high-fat diet-induced chronic diseases. Gut Microbes 2025; 17:2494703. [PMID: 40260760 DOI: 10.1080/19490976.2025.2494703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 02/26/2025] [Accepted: 04/11/2025] [Indexed: 04/24/2025] Open
Abstract
Excessive intake of dietary fats is strongly associated with an increased risk of various chronic diseases, such as obesity, diabetes, hepatic metabolic disorders, cardiovascular disease, chronic intestinal inflammation, and certain cancers. A significant portion of the adverse effects of high-fat diet on disease risk is mediated through modifications in the gut microbiota. Specifically, high-fat diets are linked to reduced microbial diversity, an overgrowth of gram-negative bacteria, an elevated Firmicutes-to-Bacteroidetes ratio, and alterations at various taxonomic levels. These microbial alterations influence the intestinal metabolism of small molecules, which subsequently increases intestinal permeability, exacerbates inflammatory responses, disrupts metabolic functions, and impairs signal transduction pathways in the host. Consequently, diet-induced changes in the gut microbiota play a crucial role in the initiation and progression of chronic diseases. This review explores the relationship between high-fat diets and gut microbiota, highlighting their roles and underlying mechanisms in the development of chronic metabolic diseases. Additionally, we propose probiotic interventions may serve as a promising adjunctive therapy to counteract the negative effects of high-fat diet-induced alterations in gut microbiota composition.
Collapse
Affiliation(s)
- Wei Du
- Laboratory of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Zhen-Ping Zou
- Laboratory of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Bang-Ce Ye
- Laboratory of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Ying Zhou
- Laboratory of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| |
Collapse
|
4
|
Sobolev PD, Burnakova NA, Revelsky AI, Zakharchenko VE, Beloborodova NV, Pautova AK. A sensitive method for the profiling of phenyl- and indole-containing metabolites in blood serum and cerebrospinal fluid samples of patients with severe brain damage using ultra-high-pressure liquid chromatography-tandem mass spectrometry. J Pharm Biomed Anal 2025; 260:116803. [PMID: 40086051 DOI: 10.1016/j.jpba.2025.116803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 02/19/2025] [Accepted: 03/05/2025] [Indexed: 03/16/2025]
Abstract
The metabolic profiling of biological fluids is important in understanding the various biochemical processes in the human body. The content of aromatic metabolites, including microbial ones, in the blood and cerebrospinal fluid, can provide essential information reflecting infectious processes, both systemic and in the central nervous system. A sensitive method with protein precipitation and sample concentration using ultra-high-pressure liquid chromatography-tandem mass spectrometry was proposed and subsequently validated to determine the number of aromatic metabolites of phenylalanine, tyrosine, and tryptophan in the blood serum and cerebrospinal fluid at 2.0-3.7 × 103 nmol/L. Reference values of 4-hydroxybenzoic, 3-(4-hydroxyphenyl)propionic, and indole-3-carboxylic acids were measured in the blood serum of healthy donors (n = 48). Profile of eleven phenyl- and indole-containing acids was revealed in the serum samples (n = 29) of the patients with long-term sequelae of severe brain damage and in the cerebrospinal fluid samples (n = 29) of the post-neurosurgical patients using different sample preparation methods to measure analytes in a wide (nmol/L and μmol/L) concentration range. Statistically significant differences in concentrations of most analytes were detected in serum samples of patients compared to healthy donors (p ≤ 0.03) and in concentrations of 3-phenyllactic, 3-(4-hydroxyphenyl)lactic, indole-3-lactic, and indole-3-carboxylic acids in cerebrospinal fluid samples of patients with signs of secondary bacterial meningitis compared to those without signs of secondary bacterial meningitis (p ≤ 0.027).
Collapse
Affiliation(s)
- Pavel D Sobolev
- Exacte Labs Bioanalytical Laboratory, 20-2 Nauchny proezd, Moscow 117246, Russia
| | - Natalia A Burnakova
- Exacte Labs Bioanalytical Laboratory, 20-2 Nauchny proezd, Moscow 117246, Russia
| | - Alexander I Revelsky
- Lomonosov Moscow State University, GSP-1, Leninskie gory, 1-3, Moscow 119991, Russia
| | - Vladislav E Zakharchenko
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, Petrovka str., 25-2, Moscow 107031, Russia
| | - Natalia V Beloborodova
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, Petrovka str., 25-2, Moscow 107031, Russia
| | - Alisa K Pautova
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, Petrovka str., 25-2, Moscow 107031, Russia.
| |
Collapse
|
5
|
Wu X, Yu Q, Hou Y, Zhang X, Ocholi SS, Wang L, Yan Z, Li J, Han L. Emodin-8-O-β-D-glucopyranoside alleviates cholestasis by maintaining intestinal homeostasis and regulating lipids and bile acids metabolism in mice. J Pharm Biomed Anal 2025; 258:116734. [PMID: 39933397 DOI: 10.1016/j.jpba.2025.116734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 01/12/2025] [Accepted: 02/03/2025] [Indexed: 02/13/2025]
Abstract
Cholestatic liver disease(CLD) is caused by impaired bile flow due to obstruction of the biliary tract, and long-term exposure to bile acids in the liver triggers inflammation, eventually leading to liver toxicity and liver fibrosis. Emodin-8-O-β-D-glucopyranoside(EG) is anthraquinone compound that is widely found in traditional Chinese medicine. It possessed antioxidative and anti-inflammatory activities. However, the effect of EG on cholestatic liver injury(CLI) has not been explored. In this study, Alpha-naphthyl isothiocyanate(ANIT)-induced CLI mice were used to investigate the anti-cholestasis and hepatoprotective effects of EG through serum biochemical index detection, non-targeted metabolomics, lipidomics, and intestinal flora 16S rRNA sequencing. The results suggested that EG restores homeostasis of the gut microbiome while regulating bile acids metabolism and lipid-related metabolic pathways to reduce liver damage in ANIT-induced cholestasis. This study provides a new perspective on the mechanism of EG, and help offer a more natural approach to managing liver damage.
Collapse
Affiliation(s)
- Xiaolin Wu
- State Key Laboratory of Component-based Chinese Medicine, Haihe Laboratory of Modern Chinese Medicine, Instrumental analysis & Research Center, Tianjin University of Traditional Chinese Medicine, No.10 Poyanghu Road, Jinghai District, Tianjin 301617, China
| | - Qiao Yu
- State Key Laboratory of Component-based Chinese Medicine, Haihe Laboratory of Modern Chinese Medicine, Instrumental analysis & Research Center, Tianjin University of Traditional Chinese Medicine, No.10 Poyanghu Road, Jinghai District, Tianjin 301617, China
| | - Yuzhao Hou
- State Key Laboratory of Component-based Chinese Medicine, Haihe Laboratory of Modern Chinese Medicine, Instrumental analysis & Research Center, Tianjin University of Traditional Chinese Medicine, No.10 Poyanghu Road, Jinghai District, Tianjin 301617, China
| | - Xuemei Zhang
- State Key Laboratory of Component-based Chinese Medicine, Haihe Laboratory of Modern Chinese Medicine, Instrumental analysis & Research Center, Tianjin University of Traditional Chinese Medicine, No.10 Poyanghu Road, Jinghai District, Tianjin 301617, China
| | - Simon Sani Ocholi
- State Key Laboratory of Component-based Chinese Medicine, Haihe Laboratory of Modern Chinese Medicine, Instrumental analysis & Research Center, Tianjin University of Traditional Chinese Medicine, No.10 Poyanghu Road, Jinghai District, Tianjin 301617, China
| | - Liming Wang
- State Key Laboratory of Component-based Chinese Medicine, Haihe Laboratory of Modern Chinese Medicine, Instrumental analysis & Research Center, Tianjin University of Traditional Chinese Medicine, No.10 Poyanghu Road, Jinghai District, Tianjin 301617, China
| | - Ziping Yan
- Tianjin Armed Police Corps Hospital, Tianjin 300162, China
| | - Jie Li
- Tianjin Key Laboratory of Clinical Multi-omics, Airport Economy Zone, Tianjin, China.
| | - Lifeng Han
- State Key Laboratory of Component-based Chinese Medicine, Haihe Laboratory of Modern Chinese Medicine, Instrumental analysis & Research Center, Tianjin University of Traditional Chinese Medicine, No.10 Poyanghu Road, Jinghai District, Tianjin 301617, China.
| |
Collapse
|
6
|
Wang W, Zhang K, Zhang K, Wu R, Tang Y, Li Y. Gut microbiota promotes cholesterol gallstone formation through the gut-metabolism-gene axis. Microb Pathog 2025; 203:107446. [PMID: 40118296 DOI: 10.1016/j.micpath.2025.107446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 02/17/2025] [Accepted: 02/28/2025] [Indexed: 03/23/2025]
Abstract
BACKGROUND Gallstone disease, arising from the interplay between host metabolism and gut microbiota, represents a significant health concern. Dysbiosis of the gut microbiome and disruptions in circadian rhythm contribute to the pathogenesis of gallstones. This study conducted a comprehensive analysis of gut microbiota and metabolites derived from stool and serum samples of 28 patients with cholesterol gallstones (CGS) and 19 healthy controls, employing methodologies such as 16S rRNA sequencing, metaproteomics, metabolomics, and host genetic analysis. Additionally, a retrospective cohort study was utilized to assess the efficacy of probiotics or ursodeoxycholic acid (UDCA) in preventing CGS formation post-bariatric surgery. RESULTS In CGS patients, gut microbiota diversity shifted, with harmful bacteria rising and beneficial ones declining. The altered microbiota primarily affected amino acid, lipid, nucleotide, and carbohydrate metabolism. Metabolic abnormalities were noted in amino acids, glucose, lipids, and bile acids with decreased levels of ursodeoxycholic, glycosodeoxycholic, and glycolithocholic acids, and increased glycohyodeoxycholic and allocholic acids. Glutamine and alanine levels dropped, while phenylalanine and tyrosine rosed. Animal studies confirmed gene changes in gallbladder tissues related to bile acid, energy, glucose, and lipid metabolism. Importantly, UDCA and probiotics effectively reduced CGS risk post-bariatric surgery, especially when combined. CONCLUSIONS Multi-omics can clarify CGS pathology, by focusing on the gut-metabolism-gene axis, paving the way for future studies on CGS prevention and treatment through gut microbiota or metabolic interventions.
Collapse
Affiliation(s)
- Wei Wang
- Department of Interventional, The Second Hospital of Shandong University, Shandong, 250033, China
| | - Kai Zhang
- Department of Hepatobiliary Surgery, Shandong Provincial Third Hospital, Shandong University, Shandong, 250033, China
| | - Kun Zhang
- Shanghai Biotree Biotech Co., Ltd., Shanghai, China
| | - Rui Wu
- Department of Hepatobiliary Surgery, Shandong Provincial Third Hospital, Shandong University, Shandong, 250033, China
| | - Yu Tang
- Department of Geriatrics, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.
| | - Yuliang Li
- Department of Interventional, The Second Hospital of Shandong University, Shandong, 250033, China.
| |
Collapse
|
7
|
Liu YL, Liu J. Gut microbiota plays a key role in the development of colorectal cancer. World J Gastroenterol 2025; 31:105420. [PMID: 40248382 PMCID: PMC12001189 DOI: 10.3748/wjg.v31.i14.105420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 03/05/2025] [Accepted: 03/10/2025] [Indexed: 04/11/2025] Open
Abstract
This letter addresses the recently published manuscript by Darnindro et al, which investigates the diversity and composition of colonic mucosal microbiota in Indonesian patients with and without colorectal cancer (CRC). Although the analysis revealed no statistically significant differences in alpha diversity between the CRC and non-CRC groups, the authors identified notable distinctions in the composition and diversity of colonic mucosal microbiota among patients with CRC compared to those without. At the genus level, a statistically significant difference in microbiota composition was documented between the two cohorts. Specifically, the genera Bacteroides, Campylobacter, Peptostreptococcus, and Parvimonas were found to be elevated in individuals with CRC, while Faecalibacterium, Haemophilus, and Phocaeicola were more prevalent in the non- CRC group.
Collapse
Affiliation(s)
- Ying-Ling Liu
- Department of Gastroenterology, The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, Anhui Province, China
| | - Jie Liu
- Department of Gastroenterology, The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, Anhui Province, China
| |
Collapse
|
8
|
Fu Y, Wang T, Ge X, Wen H, Fei Y, Li M, Luo Z. Orally-deliverable liposome-microgel complexes dynamically remodel intestinal environment to enhance probiotic ulcerative colitis therapy via TLR4 inhibition and tryptophan metabolic crosstalk. Biomaterials 2025; 321:123339. [PMID: 40233710 DOI: 10.1016/j.biomaterials.2025.123339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 03/21/2025] [Accepted: 04/10/2025] [Indexed: 04/17/2025]
Abstract
Probiotics emerges as a promising option for ulcerative colitis (UC) treatment, but its application remains challenging due to insufficient colon-targeted delivery efficiency and survival against the inflammation-associated intestinal oxidative stress. To address these issues, here we report a supramolecular liposome-microgel complex (SLMC) incorporated with Bacillus subtilis spores (BSSs) and dexamethasone (DEX) for orally-deliverable probiotic UC therapy. Specifically, BSSs and cholesterols were conjugated with gelatin via diselenide ligation to prepare microgels, followed by supramolecular complexation with UC-targeted DEX-loaded liposome via microfluidic engineering. The orally-administered SLMC efficiently accumulated in UC-affected colonic sites to release BSSs and DEX. DEX elicited rapid anti-inflammatory effect to reduce ROS generation, which cooperated with the ROS consumption by spore germination and diselenide cleavage to orchestrate an anaerobic intestinal microenvironment, thus promoting Bacillus subtilis colonization to restore gut homeostasis and initiate anti-inflammatory microbiota-macrophage metabolic crosstalk. Indeed, in vivo analysis showed that the SLMC treatment markedly inhibited pro-inflammatory TLR4-NF-κB signaling activities in mucosal macrophages through localized DEX delivery and boosting tryptophan metabolite production, leading to robust and durable UC abolishment. This study offers a practical approach for improving UC treatment in the clinic.
Collapse
Affiliation(s)
- Yuanyuan Fu
- School of Life Sciences, Chongqing University, Chongqing, 400044, China
| | - Ting Wang
- School of Life Sciences, Chongqing University, Chongqing, 400044, China
| | - Xinyue Ge
- School of Life Sciences, Chongqing University, Chongqing, 400044, China
| | - Hong Wen
- Department of General Surgery, Xinqiao Hospital, Army Medical University, No. 183 Xinqiao Road, Chongqing, 400037, China
| | - Yang Fei
- School of Life Sciences, Chongqing University, Chongqing, 400044, China
| | - Menghuan Li
- School of Life Sciences, Chongqing University, Chongqing, 400044, China.
| | - Zhong Luo
- School of Life Sciences, Chongqing University, Chongqing, 400044, China.
| |
Collapse
|
9
|
Wu H, Lv B, Zhi L, Shao Y, Liu X, Mitteregger M, Chakaroun R, Tremaroli V, Hazen SL, Wang R, Bergström G, Bäckhed F. Microbiome-metabolome dynamics associated with impaired glucose control and responses to lifestyle changes. Nat Med 2025:10.1038/s41591-025-03642-6. [PMID: 40200054 DOI: 10.1038/s41591-025-03642-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 03/05/2025] [Indexed: 04/10/2025]
Abstract
Type 2 diabetes (T2D) is a complex disease shaped by genetic and environmental factors, including the gut microbiome. Recent research revealed pathophysiological heterogeneity and distinct subgroups in both T2D and prediabetes, prompting exploration of personalized risk factors. Using metabolomics in two Swedish cohorts (n = 1,167), we identified over 500 blood metabolites associated with impaired glucose control, with approximately one-third linked to an altered gut microbiome. Our findings identified metabolic disruptions in microbiome-metabolome dynamics as potential mediators of compromised glucose homeostasis, as illustrated by the potential interactions between Hominifimenecus microfluidus and Blautia wexlerae via hippurate. Short-term lifestyle changes, for example, diet and exercise, modulated microbiome-associated metabolites in a lifestyle-specific manner. This study suggests that the microbiome-metabolome axis is a modifiable target for T2D management, with optimal health benefits achievable through a combination of lifestyle modifications.
Collapse
Affiliation(s)
- Hao Wu
- Center for Obesity and Hernia Surgery, Department of General Surgery, Huashan Hospital, and State Key Laboratory of Genetic Engineering, Fudan Microbiome Center, Human Phenome Institute, Fudan University, Shanghai, China.
| | - Bomin Lv
- Center for Obesity and Hernia Surgery, Department of General Surgery, Huashan Hospital, and State Key Laboratory of Genetic Engineering, Fudan Microbiome Center, Human Phenome Institute, Fudan University, Shanghai, China
| | - Luqian Zhi
- Center for Obesity and Hernia Surgery, Department of General Surgery, Huashan Hospital, and State Key Laboratory of Genetic Engineering, Fudan Microbiome Center, Human Phenome Institute, Fudan University, Shanghai, China
| | - Yikai Shao
- Center for Obesity and Hernia Surgery, Department of General Surgery, Huashan Hospital, and State Key Laboratory of Genetic Engineering, Fudan Microbiome Center, Human Phenome Institute, Fudan University, Shanghai, China
| | - Xinyan Liu
- Center for Obesity and Hernia Surgery, Department of General Surgery, Huashan Hospital, and State Key Laboratory of Genetic Engineering, Fudan Microbiome Center, Human Phenome Institute, Fudan University, Shanghai, China
| | - Matthias Mitteregger
- The Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Rima Chakaroun
- The Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Medical Department III - Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, Leipzig, Germany
| | - Valentina Tremaroli
- The Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Stanley L Hazen
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland, OH, USA
- Center for Microbiome and Human Health, Cleveland Clinic, Cleveland, OH, USA
- Department of Cardiovascular Medicine, Heart, Vascular and Thoracic Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Ru Wang
- School of Kinesiology, Key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai, China
| | - Göran Bergström
- The Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Clinical Physiology, Region Västra Götaland, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Fredrik Bäckhed
- The Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
- Department of Clinical Physiology, Region Västra Götaland, Sahlgrenska University Hospital, Gothenburg, Sweden.
| |
Collapse
|
10
|
Wang Y, Li Y, Lin Y, Cao C, Chen D, Huang X, Li C, Xu H, Lai H, Chen H, Zhou Y. Roles of the gut microbiota in hepatocellular carcinoma: from the gut dysbiosis to the intratumoral microbiota. Cell Death Discov 2025; 11:140. [PMID: 40185720 PMCID: PMC11971373 DOI: 10.1038/s41420-025-02413-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 02/23/2025] [Accepted: 03/18/2025] [Indexed: 04/07/2025] Open
Abstract
Hepatocellular carcinoma (HCC) is closely linked to alterations in the gut microbiota. This dysbiosis is characterized by significant changes in the microbial population, which correlate with the progression of HCC. Gut dysbiosis ultimately promotes HCC development in several ways: it damages the integrity of the gut-vascular barrier (GVB), alters the tumor microenvironment (TME), and even affects the intratumoral microbiota. Subsequently, intratumoral microbiota present a characteristic profile and play an essential role in HCC progression mainly by causing DNA damage, mediating tumor-related signaling pathways, altering the TME, promoting HCC metastasis, or through other mechanisms. Both gut microbiota and intratumoral microbiota have dual effects on HCC progression; a comprehensive understanding of their complex biological roles will provide a theoretical foundation for potential clinical applications in HCC treatment.
Collapse
Affiliation(s)
- Yiqin Wang
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, China
- Department of Gastroenterology and Hepatology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Yongqiang Li
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, China
- Department of Gastroenterology and Hepatology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Yong Lin
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, China
- Department of Gastroenterology and Hepatology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Chuangyu Cao
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, China
- Department of Gastroenterology and Hepatology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Dongcheng Chen
- Department of Gastroenterology and Hepatology, Baiyun Hospital of Guangzhou First People's Hospital (The Second People's Hospital of Baiyun District), Guangzhou, China
| | - Xianguang Huang
- Department of Gastroenterology and Hepatology, Baiyun Hospital of Guangzhou First People's Hospital (The Second People's Hospital of Baiyun District), Guangzhou, China
| | - Canhua Li
- Department of Gastroenterology and Hepatology, Baiyun Hospital of Guangzhou First People's Hospital (The Second People's Hospital of Baiyun District), Guangzhou, China
| | - Haoming Xu
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, China
- Department of Gastroenterology and Hepatology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Huasheng Lai
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, China
- Department of Gastroenterology and Hepatology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Huiting Chen
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, China.
- Department of Gastroenterology and Hepatology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China.
| | - Yongjian Zhou
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, China.
- Department of Gastroenterology and Hepatology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China.
| |
Collapse
|
11
|
Luo L, Zuo Y, Dai L. Metabolic rewiring and inter-organ crosstalk in diabetic HFpEF. Cardiovasc Diabetol 2025; 24:155. [PMID: 40186193 PMCID: PMC11971867 DOI: 10.1186/s12933-025-02707-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Accepted: 03/24/2025] [Indexed: 04/07/2025] Open
Abstract
Heart failure with preserved ejection fraction (HFpEF) represents a significant and growing clinical challenge. Initially, for an extended period, HFpEF was simply considered as a subset of heart failure, manifesting as haemodynamic disorders such as hypertension, myocardial hypertrophy, and diastolic dysfunction. However, the rising prevalence of obesity and diabetes has reshaped the HFpEF phenotype, with nearly 45% of cases coexisting with diabetes. Currently, it is recognized as a multi-system disorder that involves the heart, liver, kidneys, skeletal muscle, adipose tissue, along with immune and inflammatory signaling pathways. In this review, we summarize the landscape of metabolic rewiring and the crosstalk between the heart and other organs/systems (e.g., adipose, gut, liver and hematopoiesis system) in diabetic HFpEF for the first instance. A diverse array of metabolites and cytokines play pivotal roles in this intricate crosstalk process, with metabolic rewiring, chronic inflammatory responses, immune dysregulation, endothelial dysfunction, and myocardial fibrosis identified as the central mechanisms at the heart of this complex interplay. The liver-heart axis links nonalcoholic steatohepatitis and HFpEF through shared lipid accumulation, inflammation, and fibrosis pathways, while the gut-heart axis involves dysbiosis-driven metabolites (e.g., trimethylamine N-oxide, indole-3-propionic acid and short-chain fatty acids) impacting cardiac function and inflammation. Adipose-heart crosstalk highlights epicardial adipose tissue as a source of local inflammation and mechanical stress, whereas the hematopoietic system contributes via immune cell activation and cytokine release. We contend that, based on the viewpoints expounded in this review, breaking this inter-organ/system vicious cycle is the linchpin of treating diabetic HFpEF.
Collapse
Affiliation(s)
- Lingyun Luo
- Department of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
- Hubei Provincial Engineering Research Center of Vascular Interventional Therapy, Wuhan, 430030, Hubei, China
| | - Yuyue Zuo
- Department of Dermatology, Wuhan No. 1 Hospital, Wuhan, 430030, Hubei, China.
| | - Lei Dai
- Department of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.
- Hubei Provincial Engineering Research Center of Vascular Interventional Therapy, Wuhan, 430030, Hubei, China.
| |
Collapse
|
12
|
Liu A, Ma J, Liu Z, Qiu T, Zhao Q, Li G, Liang X, Li Q. "Shield" Armed Programmable Probiotics Harboring α-Aminoadipate Aminotransferase Gene Regulate Tryptophan Metabolism and Gut Microbiota to Alleviate the Inflammatory Bowel Disease. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:7920-7932. [PMID: 40116595 DOI: 10.1021/acs.jafc.4c13017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/23/2025]
Abstract
Current treatment of inflammatory bowel disease (IBD) relies on anti-inflammatory and immunosuppressive agents. However, this concept is considered outdated due to its restricted efficacy and unavoidable side effects. Herein, a polynorepinephrine-coated programmable probiotic expressing α-aminoadipate aminotransferase (NE-EcN-pA) was constructed to improve the levels of kynurenic acid and xanthurenic acid in the intestine by modulating the endogenous tryptophan metabolism. The NE layer could protect EcN-pA against the harsh environment of the gastrointestinal tract, enhancing its survival and colonization. In UC mice, oral administration of NE-EcN-pA effectively alleviated intestinal inflammation and restored the intestinal epithelial barrier owing to the activation of the aryl hydrocarbon receptor pathway. Furthermore, NE-EcN-pA promoted the diversity of intestinal flora, improved the imbalance of flora, and enhanced the content of short-chain fatty acids in the colon. Overall, NE-EcN-pA can regulate endogenous tryptophan metabolism and gut microbiota, showing promise in the treatment of gastrointestinal disorders.
Collapse
Affiliation(s)
- Aijiang Liu
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun 130012, China
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Jun Ma
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Zengguang Liu
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Tianyuan Qiu
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Qixuan Zhao
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Guangquan Li
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun 130012, China
| | - Xiao Liang
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Quanshun Li
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China
| |
Collapse
|
13
|
Ren P, Liu M, Wei B, Tang Q, Wang Y, Xue C. Fucoidan exerts antitumor effects by regulating gut microbiota and tryptophan metabolism. Int J Biol Macromol 2025; 300:140334. [PMID: 39870263 DOI: 10.1016/j.ijbiomac.2025.140334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 12/24/2024] [Accepted: 01/24/2025] [Indexed: 01/29/2025]
Abstract
Fucoidan, a water-soluble polysaccharide derived from marine organisms, has garnered significant attention for its ability to regulate gut microbiota and its anti-tumor properties. However, the existence of a correlation between the anti-tumor effect of fucoidan and its regulation of the gut microbiota remains unknown. In pursuit of this objective, we culled the gut microbiota of mice with broad-spectrum antibiotics to generate pseudo-sterile tumor-bearing mice. Subsequently, fecal microbial transplants were introduced into the pseudo-sterile tumor-bearing mice. The antitumor effects of fucoidan were found to be dependent on the gut microbiota. Fucoidan promoted the proliferation of Akkermansia, Bifidobacterium and Lactobacillus, which have immunomodulatory effects. Furthermore, through regulation of gut microbiota, fucoidan influenced the metabolic process of tryptophan and facilitated its conversion to indole-3-acetic acid. In addition, fucoidan decreased the kynurenine/tryptophan ratio in serum, increased the proportion of CD8+ T cells, and suppressed the expression level of IDO1 in tumor tissues. Our results confirm that fucoidan enhances anti-tumor immune responses and subsequently exhibits anti-tumor effects by modulating the gut microbiota. Our research contributes to the comprehension of the mechanism of anti-tumor effects of fucoidan and facilitates the development of fucoidan as a dietary supplement for cancer patients.
Collapse
Affiliation(s)
- Pengfei Ren
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, China
| | - Meng Liu
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, China
| | - Biqian Wei
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, China
| | - Qingjuan Tang
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, China.
| | - Yuming Wang
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, China
| | - Changhu Xue
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, China
| |
Collapse
|
14
|
Schütz B, Krause FF, Taudte RV, Zaiss MM, Luu M, Visekruna A. Modulation of Host Immunity by Microbiome-Derived Indole-3-Propionic Acid and Other Bacterial Metabolites. Eur J Immunol 2025; 55:e202451594. [PMID: 40170399 PMCID: PMC11962249 DOI: 10.1002/eji.202451594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 03/05/2025] [Accepted: 03/06/2025] [Indexed: 04/03/2025]
Abstract
In recent years, we have witnessed a rapidly growing interest in the intricate communications between intestinal microorganisms and the host immune system. Research on the human microbiome is evolving from merely descriptive and correlative studies to a deeper mechanistic understanding of the bidirectional interactions between gut microbiota and the mucosal immune system. Despite numerous challenges, it has become increasingly evident that an imbalance in gut microbiota composition, known as dysbiosis, is associated with the development and progression of various metabolic, immune, cancer, and neurodegenerative disorders. A growing body of evidence highlights the importance of small molecules produced by intestinal commensal bacteria, collectively referred to as gut microbial metabolites. These metabolites serve as crucial diffusible messengers, translating the microbial language to host cells. This review aims to explore the complex and not yet fully understood molecular mechanisms through which microbiota-derived metabolites influence the activity of the immune cells and shape immune reactions in the gut and other organs. Specifically, we will discuss recent research that reveals the close relationship between microbial indole-3-propionic acid (IPA) and mucosal immunity. Furthermore, we will emphasize the beneficial effects of IPA on intestinal inflammation and discuss its potential clinical implications.
Collapse
Affiliation(s)
- Burkhard Schütz
- Institute of Anatomy and Cell BiologyPhilipps‐University MarburgMarburgGermany
| | - Felix F. Krause
- Institute for Medical Microbiology and HygienePhilipps‐University MarburgMarburgGermany
| | - R. Verena Taudte
- Core Facility for MetabolomicsDepartment of MedicinePhilipps‐University MarburgMarburgGermany
| | - Mario M. Zaiss
- Department of Internal Medicine 3Rheumatology and ImmunologyFriedrich‐Alexander‐Universität Erlangen‐Nürnberg (FAU) and Universitätsklinikum ErlangenErlangenGermany
- Deutsches Zentrum Immuntherapie (DZI)Friedrich‐Alexander‐Universität Erlangen‐Nürnberg (FAU) and Universitätsklinikum ErlangenErlangenGermany
| | - Maik Luu
- Lehrstuhl für Zelluläre Immuntherapie, Medizinische Klinik und Poliklinik IIUniversitätsklinikum WürzburgWürzburgGermany
| | - Alexander Visekruna
- Institute for Medical Microbiology and HygienePhilipps‐University MarburgMarburgGermany
| |
Collapse
|
15
|
Mu X, Feng L, Wang Q, Li H, Zhou H, Yi W, Sun Y. Decreased gut microbiome-derived indole-3-propionic acid mediates the exacerbation of myocardial ischemia/reperfusion injury following depression via the brain-gut-heart axis. Redox Biol 2025; 81:103580. [PMID: 40058066 PMCID: PMC11930714 DOI: 10.1016/j.redox.2025.103580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 02/11/2025] [Accepted: 02/19/2025] [Indexed: 03/22/2025] Open
Abstract
Despite the increasing recognition of the interplay between depression and cardiovascular disease (CVD), the precise mechanisms by which depression contributes to the pathogenesis of cardiovascular disease remain inadequately understood. The involvement of gut microbiota and their metabolites to health and disease susceptibility has been gaining increasing attention. In this study, it was found that depression exacerbated cardiac injury, impaired cardiac function (EF%: P < 0.01; FS%: P < 0.05), hindered long-term survival (P < 0.01), and intensified adverse cardiac remodeling (WGA: P < 0.01; MASSON: P < 0.0001) after myocardial ischemia/reperfusion (MI/R) in mice. Then we found that mice receiving microbiota transplants from chronic social defeat stress (CSDS) mice exhibited worse cardiac function (EF%: P < 0.01; FS%: P < 0.01) than those receiving microbiota transplants from non-CSDS mice after MI/R injury. Moreover, impaired tryptophan metabolism due to alterations in gut microbiota composition and structure was observed in the CSDS mice. Mechanistically, we analyzed the metabolomics of fecal and serum samples from CSDS mice and identified indole-3-propionic acid (IPA) as a protective agent for cardiomyocytes against ferroptosis after MI/R via NRF2/System xc-/GPX4 axis, played a role in mediating the detrimental influence of depression on MI/R. Our findings provide new insights into the role of the gut microbiota and IPA in depression and CVD, forming the basis of intervention strategies aimed at mitigating the deterioration of cardiac function following MI/R in patients experiencing depression.
Collapse
Affiliation(s)
- Xingdou Mu
- Department of Geriatric, XiJing Hospital, Xi'an, Shaanxi, 710000, China
| | - Lele Feng
- Department of Cardiovascular Surgery, XiJing Hospital, Xi'an, Shaanxi, 710000, China
| | - Qiang Wang
- Department of Geriatric, XiJing Hospital, Xi'an, Shaanxi, 710000, China
| | - Hong Li
- Department of Geriatric, XiJing Hospital, Xi'an, Shaanxi, 710000, China
| | - Haitao Zhou
- Department of Geriatric, XiJing Hospital, Xi'an, Shaanxi, 710000, China
| | - Wei Yi
- Department of Cardiovascular Surgery, XiJing Hospital, Xi'an, Shaanxi, 710000, China.
| | - Yang Sun
- Department of Geriatric, XiJing Hospital, Xi'an, Shaanxi, 710000, China.
| |
Collapse
|
16
|
Qi Z, Zhou L, Dai S, Zhang P, Zhong H, Zhou W, Zhao X, Xu H, Zhao G, Wu H, Ge J. Intermittent fasting inhibits platelet activation and thrombosis through the intestinal metabolite indole-3-propionate. LIFE METABOLISM 2025; 4:loaf002. [PMID: 40078933 PMCID: PMC11897983 DOI: 10.1093/lifemeta/loaf002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 01/09/2025] [Accepted: 01/21/2025] [Indexed: 03/14/2025]
Abstract
Platelet hyperreactivity contributes significantly to thrombosis in acute myocardial infarction and stroke. While antiplatelet drugs are used, residual ischemic risk remains. Intermittent fasting (IF), a dietary pattern characterized by alternating periods of eating and fasting, has shown cardiovascular benefits, but its effect on platelet activation is unclear. This study demonstrates that IF inhibits platelet activation and thrombosis in both patients with coronary artery disease and apolipoprotein E (ApoE) knockout (ApoE -/- ) mice, by enhancing intestinal flora production of indole-3-propionic acid (IPA). Mechanistically, elevated IPA in plasma directly attenuates platelet activation by binding to the platelet pregnane X receptor (PXR) and suppressing downstream signaling pathways, including Src/Lyn/Syk and LAT/PLCγ/PKC/Ca2+. Importantly, IF alleviates myocardial and cerebral ischemia/reperfusion injury in ApoE -/- mice. These findings suggest that IF mitigates platelet activation and thrombosis risk in coronary atherosclerosis by enhancing intestinal flora production of IPA, which subsequently activates the platelet PXR-related signaling pathways.
Collapse
Affiliation(s)
- Zhiyong Qi
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, 180 Fenglin Road, Shanghai 200032, China
- National Clinical Research Center for Interventional Medicine, 180 Fenglin Road, Shanghai 200032, China
| | - Luning Zhou
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, 180 Fenglin Road, Shanghai 200032, China
- National Clinical Research Center for Interventional Medicine, 180 Fenglin Road, Shanghai 200032, China
| | - Shimo Dai
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, 180 Fenglin Road, Shanghai 200032, China
- National Clinical Research Center for Interventional Medicine, 180 Fenglin Road, Shanghai 200032, China
| | - Peng Zhang
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, 180 Fenglin Road, Shanghai 200032, China
- National Clinical Research Center for Interventional Medicine, 180 Fenglin Road, Shanghai 200032, China
| | - Haoxuan Zhong
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, 180 Fenglin Road, Shanghai 200032, China
- National Clinical Research Center for Interventional Medicine, 180 Fenglin Road, Shanghai 200032, China
| | - Wenxuan Zhou
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, 180 Fenglin Road, Shanghai 200032, China
- National Clinical Research Center for Interventional Medicine, 180 Fenglin Road, Shanghai 200032, China
| | - Xin Zhao
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, 180 Fenglin Road, Shanghai 200032, China
- National Clinical Research Center for Interventional Medicine, 180 Fenglin Road, Shanghai 200032, China
| | - Huajie Xu
- Department of Infectious Disease, Zhongshan Hospital, Fudan University, 180 Fenglin Road , Shanghai 200032, China
| | - Gang Zhao
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, 180 Fenglin Road, Shanghai 200032, China
- National Clinical Research Center for Interventional Medicine, 180 Fenglin Road, Shanghai 200032, China
| | - Hongyi Wu
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, 180 Fenglin Road, Shanghai 200032, China
- National Clinical Research Center for Interventional Medicine, 180 Fenglin Road, Shanghai 200032, China
| | - Junbo Ge
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, 180 Fenglin Road, Shanghai 200032, China
- National Clinical Research Center for Interventional Medicine, 180 Fenglin Road, Shanghai 200032, China
- Institutes of Biomedical Sciences, Fudan University, 131 Dong’an Road, Shanghai 200032, China
- Key Laboratory of Viral Heart Diseases, National Health Commission, 180 Fenglin Road, Shanghai 200032, China
| |
Collapse
|
17
|
Han Z, Fu J, Gong A, Ren W. Bacterial indole-3-propionic acid inhibits macrophage IL-1β production through targeting methionine metabolism. SCIENCE CHINA. LIFE SCIENCES 2025; 68:1118-1131. [PMID: 39825207 DOI: 10.1007/s11427-024-2789-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 11/20/2024] [Indexed: 01/20/2025]
Abstract
The gut microbiota plays key roles in host health by shaping the host immune responses through their metabolites, like indole derivatives from tryptophan. However, the direct role of these indole derivatives in macrophage fate decision and the underlying mechanism remains unknown. Here, we found that bacterial indole-3-propionic acid (IPA) downregulates interleukin-1beta (IL-1β) production in M1 macrophages through inhibition of nuclear factor-kappa B (NF-κB) signaling. Mechanistically, IPA binds specifically with methionine adenosyl-transferase 2A (MAT2A) to promote S-adenosylmethionine (SAM) synthesis, which facilitates the DNA methylation of ubiquitin-specific peptidase 16 (USP16, a deubiquitinase), and in turn promotes Toll-like receptor 4 (TLR4) ubiquitination and NF-κB inhibition. Furthermore, IPA administration attenuates sepsis in mouse models induced by lipopolysaccharides (LPS), showcasing its potential as a microbial-derived adjunct in alleviating inflammation. Collectively, our findings reveal a newly found microbial metabolite-immune system regulatory pathway mediated by IPA.
Collapse
Affiliation(s)
- Ziyi Han
- State Key Laboratory of Livestock and Poultry Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
- Animal Disease-resistant Nutrition, Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 625014, China
| | - Jian Fu
- State Key Laboratory of Livestock and Poultry Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Aiyan Gong
- China Institute of Veterinary Drug Control, Beijing, 100081, China
| | - Wenkai Ren
- State Key Laboratory of Livestock and Poultry Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
18
|
Ran Z, Mu BR, Wang DM, Xin-Huang, Ma QH, Lu MH. Parkinson's Disease and the Microbiota-Gut-Brain Axis: Metabolites, Mechanisms, and Innovative Therapeutic Strategies Targeting the Gut Microbiota. Mol Neurobiol 2025; 62:5273-5296. [PMID: 39531191 DOI: 10.1007/s12035-024-04584-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024]
Abstract
The human gut microbiota is diverse and abundant and plays important roles in regulating health by participating in metabolism and controlling physiological activities. The gut microbiota and its metabolites have been shown to affect the functioning of the gut and central nervous system through the microbiota-gut-brain axis. It is well established that microbiota play significant roles in the pathogenesis and progression of Parkinson's disease (PD). Disorders of the intestinal microbiota and altered metabolite levels are closely associated with PD. Here, the changes in intestinal microbiota and effects of metabolites in patients with PD are reviewed. Potential mechanisms underlying intestinal microbiota disorders in the pathogenesis of PD are briefly discussed. Additionally, we outline the current strategies for the treatment of PD that target the gut microbiota, emphasizing the development of promising novel strategies.
Collapse
Affiliation(s)
- Zhao Ran
- Chongqing Key Laboratory of Sichuan-Chongqing Co-Construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Ben-Rong Mu
- Chongqing Key Laboratory of Sichuan-Chongqing Co-Construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Dong-Mei Wang
- College of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Xin-Huang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, Institute of Neuroscience, Soochow University, Suzhou, 215021, China
| | - Quan-Hong Ma
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, Institute of Neuroscience, Soochow University, Suzhou, 215021, China.
| | - Mei-Hong Lu
- Chongqing Key Laboratory of Sichuan-Chongqing Co-Construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| |
Collapse
|
19
|
Caffrey EB, Perelman D, Ward CP, Sonnenburg ED, Gardner CD, Sonnenburg JL. Unpacking Food Fermentation: Clinically Relevant Tools for Fermented Food Identification and Consumption. Adv Nutr 2025:100412. [PMID: 40120687 DOI: 10.1016/j.advnut.2025.100412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 03/03/2025] [Accepted: 03/18/2025] [Indexed: 03/25/2025] Open
Abstract
Fermented foods have been consumed for millennia, valued for their extended shelf life, distinctive sensory properties, and potential health benefits. Emerging research suggests that fermented food consumption may contribute to gut microbiome diversity, immune modulation, and metabolic regulation; however, mechanistic insights and clinical validation remain limited. This review synthesizes current scientific evidence on the microbial and metabolite composition of fermented foods, their proposed health effects, and safety considerations for vulnerable populations. Additionally, we highlight the need for standardized definitions, serving sizes, and regulatory frameworks to enhance consumer transparency and research reproducibility. By providing a structured overview of existing data and knowledge gaps, this review establishes a foundation for integrating fermented foods into dietary recommendations and guiding future research directions.
Collapse
Affiliation(s)
- Elisa B Caffrey
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, United States
| | - Dalia Perelman
- Stanford Prevention Research Center, Department of Medicine, School of Medicine, Stanford University, Palo Alto, California, United States
| | - Catherine P Ward
- Stanford Prevention Research Center, Department of Medicine, School of Medicine, Stanford University, Palo Alto, California, United States
| | - Erica D Sonnenburg
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, United States
| | - Christopher D Gardner
- Stanford Prevention Research Center, Department of Medicine, School of Medicine, Stanford University, Palo Alto, California, United States.
| | - Justin L Sonnenburg
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, United States; Chan Zuckerberg Biohub, San Francisco, CA, United States; Center for Human Microbiome Studies, Stanford University School of Medicine, Stanford, CA, United States.
| |
Collapse
|
20
|
Liu J, Li F, Yang L, Luo S, Deng Y. Gut microbiota and its metabolites regulate insulin resistance: traditional Chinese medicine insights for T2DM. Front Microbiol 2025; 16:1554189. [PMID: 40177494 PMCID: PMC11963813 DOI: 10.3389/fmicb.2025.1554189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Accepted: 02/27/2025] [Indexed: 04/05/2025] Open
Abstract
The gut microbiota is closely associated with the onset and development of type 2 diabetes mellitus (T2DM), characterized by insulin resistance (IR) and chronic low-grade inflammation. However, despite the widespread use of first-line antidiabetic drugs, IR in diabetes and its complications continue to rise. The gut microbiota and its metabolic products may promote the development of T2DM by exacerbating IR. Therefore, regulating the gut microbiota has become a promising therapeutic strategy, with particular attention given to probiotics, prebiotics, synbiotics, and fecal microbiota transplantation. This review first examines the relationship between gut microbiota and IR in T2DM, summarizing the research progress of microbiota-based therapies in modulating IR. We then delve into how gut microbiota-related metabolic products contribute to IR. Finally, we summarize the research findings on the role of traditional Chinese medicine in regulating the gut microbiota and its metabolic products to improve IR. In conclusion, the gut microbiota and its metabolic products play a crucial role in the pathophysiological process of T2DM by modulating IR, offering new insights into potential therapeutic strategies for T2DM.
Collapse
Affiliation(s)
- Jing Liu
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Fuxing Li
- Ningxiang Traditional Chinese Medicine Hospital, Changsha, China
| | - Le Yang
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Shengping Luo
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Yihui Deng
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, China
| |
Collapse
|
21
|
Mao S, Zhang Z, Huang M, Zhang Z, Hong Y, Tan X, Gui F, Cao Y, Lian F, Chen R. Protective effects of indole-3-propionic acid against TCP-induced hearing loss in mice by mitigating oxidative stress and promoting neutrophil recruitment. Sci Rep 2025; 15:9434. [PMID: 40108188 PMCID: PMC11923075 DOI: 10.1038/s41598-025-90655-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Accepted: 02/14/2025] [Indexed: 03/22/2025] Open
Abstract
Sensorineural hearing loss (SNHL) poses a significant global health challenge with substantial socioeconomic and medical implications. The pathophysiology involves excessive reactive oxygen species (ROS) in the cochlea, inflammation, cellular apoptosis, etc. Tryptophan metabolite indole-3-propionic Acid (IPA), produced by gut microbiota, may offer therapeutic benefits by modulating inflammation, oxidative stress, and immune responses. However, the roles of IPA in protecting from treatment hearing loss in adult mice remain to be investigated. We previously validated that exposure to pesticide metabolite 3, 5, 6-Trichloro-2-pyridinol (TCP) caused hearing loss in mice. Herein, continuous administration of 40 mg/kg IPA for 21 days significantly attenuated the hearing threshold elevation in C57BL/6 mice exposed to 50 mg/kg TCP. IPA treatment reduced the loss of hair cells (HCs) and spiral ganglion neurons (SGNs), preserved nerve fibers, and reversed the damage to spiral ligaments (SL) and stria vascularis (SV). Similarly, IPA cotreatment decreased ROS accumulation in the cochlea and inhibited HC and SGN apoptosis. Transcriptomic analysis showed that IPA enhanced immune responses, particularly through neutrophil recruitment and the activation of regenerative signals like IFNγ. These findings underscore IPA's protective effects against TCP-induced hearing loss, highlighting the role of immune mechanisms in cochlear protection.
Collapse
Affiliation(s)
- Shuangshuang Mao
- School of Public Health, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China
| | - Zirui Zhang
- School of Public Health, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China
| | - Mao Huang
- School of Public Health, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China
- Ji'an County People's Hospital, Jiangxi, 343100, China
| | - Ziying Zhang
- School of Public Health, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China
| | - Yu Hong
- School of Public Health, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China
| | - Xiaohua Tan
- School of Public Health, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China
| | - Fei Gui
- School of Public Health, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China
| | - Yifei Cao
- School of Public Health, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China.
| | - Fuzhi Lian
- School of Public Health, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China.
| | - Rong Chen
- School of Public Health, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China.
| |
Collapse
|
22
|
Zhao CM, Long XZ, Wang KY, Tian SX, Li YR, Zhang WY. High-throughput untargeted metabolomic profiling of urinary biomarkers in acute myocarditis patients: a cross-sectional study. Sci Rep 2025; 15:9254. [PMID: 40102476 PMCID: PMC11920081 DOI: 10.1038/s41598-025-93655-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 03/07/2025] [Indexed: 03/20/2025] Open
Abstract
Acute myocarditis, characterized by inflammatory myocardial injury, significantly risks heart failure and sudden death. Despite its severity, specific biomarkers are lacking. This study applied metabolomic analysis to urine samples from 21 acute myocarditis patients and 21 controls using UPLC-MS/MS, revealing 728 increased and 820 decreased metabolites in patients. The affected pathways were predominantly related to the amino acid metabolism, lipid metabolism, carbohydrate metabolism, nucleotide metabolism, and others. We have validated 19 metabolites with an area under the receiver operating characteristic curve (AUC-ROC) greater than 0.7 and a high level of identification confidence. Potential biomarkers upregulated in acute myocarditis patients included phytosphingosine, N-acetylneuraminic acid, indolelactic acid, L-glutamic acid, 4-pyridoxic acid, N1-methyl-2-pyridone-5-carboxamide, palmitic acid, hydroxyphenyllactic acid, riboflavin, nicotinic acid, choline, N-formylkynurenine, guanine, and hypoxanthine. Conversely, sebacic acid, 4-vinylphenol sulfate, capryloylglycine, 4-ethylphenylsulfate, and azelaic acid were found to be decreased. Collectively, the metabolomic profiling has uncovered distinct metabolic signatures in patients with acute myocarditis. The amino acid metabolism appears to play a pivotal role in the pathogenesis of acute myocarditis, offering potential avenues for diagnostic and therapeutic development.
Collapse
Affiliation(s)
- Cui-Mei Zhao
- Department of Pharmacy, Zhongshan City People's Hospital, Zhongshan, 528400, China
- School of Pharmaceutical Sciences, Zunyi Medical University, Zunyi, 563000, China
| | - Xiu-Zhen Long
- Department of Pharmacy, Zhongshan City People's Hospital, Zhongshan, 528400, China
- School of Pharmaceutical Sciences, Zunyi Medical University, Zunyi, 563000, China
| | - Ke-Yi Wang
- Imaging Center, Zhongshan City People's Hospital, Zhongshan, 528400, China
| | - Shao-Xin Tian
- Department of Cardiology, Zhongshan City People's Hospital, Zhongshan, 528400, China
| | - Ying-Ran Li
- Department of Pharmacy, Zhongshan City People's Hospital, Zhongshan, 528400, China.
| | - Wen-Yuan Zhang
- Department of Pharmacy, Zhongshan City People's Hospital, Zhongshan, 528400, China.
- School of Pharmaceutical Sciences, Zunyi Medical University, Zunyi, 563000, China.
| |
Collapse
|
23
|
Jiang Z, He L, Li D, Zhuo L, Chen L, Shi RQ, Luo J, Feng Y, Liang Y, Li D, Congmei X, Fu Y, Chen YM, Zheng JS, Tao L. Human gut microbial aromatic amino acid and related metabolites prevent obesity through intestinal immune control. Nat Metab 2025:10.1038/s42255-025-01246-5. [PMID: 40087408 DOI: 10.1038/s42255-025-01246-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 02/14/2025] [Indexed: 03/17/2025]
Abstract
Obesity affects millions of people in the world. The gut microbiome influences body fat accumulation, but the mechanisms remain to be investigated. Here, we show an association between microbial aromatic amino acid metabolites in serum and body fat accumulation in a large Chinese longitudinal cohort. We next identify that 4-hydroxyphenylacetic acid (4HPAA) and its analogues effectively protect male mice from high-fat-diet-induced obesity. These metabolites act on intestinal mucosa to regulate the immune response and control lipid uptake, which protects against obesity. We further demonstrate that T cells and B cells are not vital for 4HPAA-mediated obesity prevention, and innate lymphoid cells have antagonistic roles. Together, these findings reveal specific microbial metabolites as pivotal molecules to prohibit obesity through immune control, establishing mechanisms of host modulation by gut microbial metabolites.
Collapse
Affiliation(s)
- Zengliang Jiang
- Research Center for Industries of the Future, School of Medicine, School of Life Sciences, Westlake University, Hangzhou, China
- Department of Epidemiology, Guangdong Provincial Key Laboratory of Food, Nutrition, and Health, School of Public Health, Sun Yat-sen University, Guangzhou, China
- Zhejiang Key Laboratory of Multi-Omics in Infection and Immunity, Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang University, Hangzhou, China
- Innovation Center of Yangtze River Delta, Jiaxing, Zhejiang, China
| | - Liuqing He
- Research Center for Industries of the Future, School of Medicine, School of Life Sciences, Westlake University, Hangzhou, China
- Zhejiang Key Laboratory of Multi-Omics in Infection and Immunity, Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
| | - Diyin Li
- Research Center for Industries of the Future, School of Medicine, School of Life Sciences, Westlake University, Hangzhou, China
- Zhejiang Key Laboratory of Multi-Omics in Infection and Immunity, Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
| | - Laibao Zhuo
- Department of Epidemiology, Guangdong Provincial Key Laboratory of Food, Nutrition, and Health, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Lingjun Chen
- Research Center for Industries of the Future, School of Medicine, School of Life Sciences, Westlake University, Hangzhou, China
- Zhejiang Key Laboratory of Multi-Omics in Infection and Immunity, Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, China
| | - Rui-Qi Shi
- Research Center for Industries of the Future, School of Medicine, School of Life Sciences, Westlake University, Hangzhou, China
- Zhejiang Key Laboratory of Multi-Omics in Infection and Immunity, Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
| | - Jianhua Luo
- Research Center for Industries of the Future, School of Medicine, School of Life Sciences, Westlake University, Hangzhou, China
- Zhejiang Key Laboratory of Multi-Omics in Infection and Immunity, Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
| | - Yuhui Feng
- Research Center for Industries of the Future, School of Medicine, School of Life Sciences, Westlake University, Hangzhou, China
- Zhejiang Key Laboratory of Multi-Omics in Infection and Immunity, Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
| | - Yuhui Liang
- Research Center for Industries of the Future, School of Medicine, School of Life Sciences, Westlake University, Hangzhou, China
- Zhejiang Key Laboratory of Multi-Omics in Infection and Immunity, Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, China
| | - Danyang Li
- Research Center for Industries of the Future, School of Medicine, School of Life Sciences, Westlake University, Hangzhou, China
- Zhejiang Key Laboratory of Multi-Omics in Infection and Immunity, Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
| | - Xiao Congmei
- Research Center for Industries of the Future, School of Medicine, School of Life Sciences, Westlake University, Hangzhou, China
- Zhejiang Key Laboratory of Multi-Omics in Infection and Immunity, Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, China
| | - Yuanqing Fu
- Research Center for Industries of the Future, School of Medicine, School of Life Sciences, Westlake University, Hangzhou, China
- Zhejiang Key Laboratory of Multi-Omics in Infection and Immunity, Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
| | - Yu-Ming Chen
- Department of Epidemiology, Guangdong Provincial Key Laboratory of Food, Nutrition, and Health, School of Public Health, Sun Yat-sen University, Guangzhou, China.
| | - Ju-Sheng Zheng
- Research Center for Industries of the Future, School of Medicine, School of Life Sciences, Westlake University, Hangzhou, China.
- Zhejiang Key Laboratory of Multi-Omics in Infection and Immunity, Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China.
- Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, China.
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, China.
| | - Liang Tao
- Research Center for Industries of the Future, School of Medicine, School of Life Sciences, Westlake University, Hangzhou, China.
- Zhejiang Key Laboratory of Multi-Omics in Infection and Immunity, Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China.
- Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, China.
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, China.
| |
Collapse
|
24
|
Dehghanizai AB, Stewart CJ, Thomas RH. The microbiome: what a neurologist needs to know. Pract Neurol 2025:pn-2024-004400. [PMID: 40081897 DOI: 10.1136/pn-2024-004400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/27/2025] [Indexed: 03/16/2025]
Abstract
The gastrointestinal tract is inhabited by trillions of micro-organisms that form the gut microbiome, which serves various functions that can influence neurological pathways. It can release metabolites that could affect the nervous system. The bidirectional communication between the intestine and the central nervous system is known as the gut-brain axis. This communication can be impacted by the microbiota in various direct and indirect ways. There has been a suggested connection between the microbiome and many neurological disorders, including epilepsy, Alzheimer's disease, Parkinson's disease and multiple sclerosis. This has been explored in human and animal studies. While no microbial biomarkers have been identified yet, alterations in several taxa have been suggested to be associated with disease states. The potential of the microbiome to modulate neurological function has sparked multiple clinical trials using gut-altering treatments, some with positive preliminary results.
Collapse
Affiliation(s)
- Anna B Dehghanizai
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | | | - Rhys H Thomas
- Neurology, Royal Victoria Infirmary, Newcastle upon Tyne, UK
- Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
25
|
Yang S, Liu H, Liu Y. Advances in intestinal epithelium and gut microbiota interaction. Front Microbiol 2025; 16:1499202. [PMID: 40104591 PMCID: PMC11914147 DOI: 10.3389/fmicb.2025.1499202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 02/17/2025] [Indexed: 03/20/2025] Open
Abstract
The intestinal epithelium represents a critical interface between the host and external environment, serving as the second largest surface area in the human body after the lungs. This dynamic barrier is sustained by specialized epithelial cell types and their complex interactions with the gut microbiota. This review comprehensively examines the recent advances in understanding the bidirectional communication between intestinal epithelial cells and the microbiome. We briefly highlight the role of various intestinal epithelial cell types, such as Paneth cells, goblet cells, and enteroendocrine cells, in maintaining intestinal homeostasis and barrier function. Gut microbiota-derived metabolites, particularly short-chain fatty acids and bile acids, influence epithelial cell function and intestinal barrier integrity. Additionally, we highlight emerging evidence of the sophisticated cooperation between different epithelial cell types, with special emphasis on the interaction between tuft cells and Paneth cells in maintaining microbial balance. Understanding these complex interactions has important implications for developing targeted therapeutic strategies for various gastrointestinal disorders, including inflammatory bowel disease, metabolic disorders, and colorectal cancer.
Collapse
Affiliation(s)
- Sen Yang
- Department of Pediatric Pulmonology and Immunology, West China Second University Hospital, Sichuan University, Chengdu, China
- Department of Pediatrics, The Fifth Peoples Hospital of Chengdu, Chengdu, China
| | - Hanmin Liu
- Department of Pediatric Pulmonology and Immunology, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
- NHC Key Laboratory of Chronobiology (Sichuan University), Chengdu, China
- The Joint Laboratory for Lung Development and Related Diseases of West China Second University Hospital, Sichuan University and School of Life Sciences of Fudan University, West China Institute of Women and Children's Health, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Yang Liu
- Department of Pediatric Pulmonology and Immunology, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
- NHC Key Laboratory of Chronobiology (Sichuan University), Chengdu, China
- The Joint Laboratory for Lung Development and Related Diseases of West China Second University Hospital, Sichuan University and School of Life Sciences of Fudan University, West China Institute of Women and Children's Health, West China Second University Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
26
|
Hatamnejad MR, Medzikovic L, Dehghanitafti A, Rahman B, Vadgama A, Eghbali M. Role of Gut Microbial Metabolites in Ischemic and Non-Ischemic Heart Failure. Int J Mol Sci 2025; 26:2242. [PMID: 40076864 PMCID: PMC11900495 DOI: 10.3390/ijms26052242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 02/25/2025] [Accepted: 02/26/2025] [Indexed: 03/14/2025] Open
Abstract
The effect of the gut microbiota extends beyond their habitant place from the gastrointestinal tract to distant organs, including the cardiovascular system. Research interest in the relationship between the heart and the gut microbiota has recently been emerging. The gut microbiota secretes metabolites, including Trimethylamine N-oxide (TMAO), short-chain fatty acids (SCFAs), bile acids (BAs), indole propionic acid (IPA), hydrogen sulfide (H2S), and phenylacetylglutamine (PAGln). In this review, we explore the accumulating evidence on the role of these secreted microbiota metabolites in the pathophysiology of ischemic and non-ischemic heart failure (HF) by summarizing current knowledge from clinical studies and experimental models. Elevated TMAO contributes to non-ischemic HF through TGF-ß/Smad signaling-mediated myocardial hypertrophy and fibrosis, impairments of mitochondrial energy production, DNA methylation pattern change, and intracellular calcium transport. Also, high-level TMAO can promote ischemic HF via inflammation, histone methylation-mediated vascular fibrosis, platelet hyperactivity, and thrombosis, as well as cholesterol accumulation and the activation of MAPK signaling. Reduced SCFAs upregulate Egr-1 protein, T-cell myocardial infiltration, and HDAC 5 and 6 activities, leading to non-ischemic HF, while reactive oxygen species production and the hyperactivation of caveolin-ACE axis result in ischemic HF. An altered BAs level worsens contractility, opens mitochondrial permeability transition pores inducing apoptosis, and enhances cholesterol accumulation, eventually exacerbating ischemic and non-ischemic HF. IPA, through the inhibition of nicotinamide N-methyl transferase expression and increased nicotinamide, NAD+/NADH, and SIRT3 levels, can ameliorate non-ischemic HF; meanwhile, H2S by suppressing Nox4 expression and mitochondrial ROS production by stimulating the PI3K/AKT pathway can also protect against non-ischemic HF. Furthermore, PAGln can affect sarcomere shortening ability and myocyte contraction. This emerging field of research opens new avenues for HF therapies by restoring gut microbiota through dietary interventions, prebiotics, probiotics, or fecal microbiota transplantation and as such normalizing circulating levels of TMAO, SCFA, BAs, IPA, H2S, and PAGln.
Collapse
Affiliation(s)
| | | | | | | | | | - Mansoureh Eghbali
- Division of Molecular Medicine, Department of Anesthesiology and Perioperative Medicine, David Geffen School of Medicine, University of California Los Angeles, BH-550 CHS, Los Angeles, CA 90095-7115, USA; (M.R.H.); (L.M.); (A.D.); (B.R.); (A.V.)
| |
Collapse
|
27
|
Li W, Tu J, Zheng J, Das A, Yan Q, Jiang X, Ding W, Bai X, Lai K, Yang S, Yang C, Zou J, Diwan AD, Zheng Z. Gut Microbiome and Metabolome Changes in Chronic Low Back Pain Patients With Vertebral Bone Marrow Lesions. JOR Spine 2025; 8:e70042. [PMID: 39877797 PMCID: PMC11772216 DOI: 10.1002/jsp2.70042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/26/2024] [Accepted: 12/13/2024] [Indexed: 01/31/2025] Open
Abstract
Background Chronic low back pain (LBP) is a significant global health concern, often linked to vertebral bone marrow lesions (BML), particularly fatty replacement (FR). This study aims to explore the relationship between the gut microbiome, serum metabolome, and FR in chronic LBP patients. Methods Serum metabolomic profiling and gut microbiome analysis were conducted in chronic LBP patients with and without FR (LBP + FR, n = 40; LBP, n = 40) and Healthy Controls (HC, n = 31). The study investigates alterations in branched-chain amino acids (BCAAs) levels and identifies key microbial species associated with BCAA metabolism. In vitro experiments elucidate the role of BCAAs in adipogenesis of bone marrow mesenchymal stem cells (BM-MSCs) via the SIRT4 pathway. Results Chronic LBP patients with FR exhibit depleted BCAA levels in their serum metabolome, along with alterations in the gut microbiome. Specific microbial species, including Ruminococcus gnavus, Roseburia hominis, and Lachnospiraceae bacterium 8 1 57FAA, are identified as influential in BCAA metabolism and BM-MSCs metabolism. In vitro experiments demonstrate the ability of BCAAs to induce BM-MSCs adipogenesis through SIRT4 pathway activation. Conclusion This study sheds light on the intricate relationship between the disturbed gut ecosystem, serum metabolites, and FR in chronic LBP. Dysbiosis in the gut microbiome may contribute to altered BCAA degradation, subsequently promoting BM-MSCs adipogenesis and FR. Understanding these interactions provides insights for targeted therapeutic strategies to mitigate chronic LBP associated with FR by restoring gut microbial balance and modulating serum metabolite profiles.
Collapse
Affiliation(s)
- Wentian Li
- Spine Labs, St. George and Sutherland Clinical SchoolUniversity of new South WalesKogarahAustralia
- Gulbali Institute, School of Agricultural, Environmental and Veterinary SciencesCharles Sturt UniversityWagga WaggaAustralia
| | - Ji Tu
- Spine Labs, St. George and Sutherland Clinical SchoolUniversity of new South WalesKogarahAustralia
- Nepean HospitalNepean Blue Mountains Local Health DistrictPenrithAustralia
| | - Jinjian Zheng
- Department of Spine Surgery, the First Affiliated HospitalSun Yat‐Sen UniversityGuangzhouChina
| | - Abhirup Das
- Spine Labs, St. George and Sutherland Clinical SchoolUniversity of new South WalesKogarahAustralia
| | - Qi Yan
- Department of Orthopedic SurgeryThe First Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Xiaotao Jiang
- UNSW Microbiome Research Centre, St George and Sutherland Clinical Campuses, School of Clinical Medicine, UNSW Medicine and HealthThe University of new South WalesSydneyAustralia
| | - Wenyuan Ding
- Department of Spinal SurgeryThe Third Hospital of Hebei Medical UniversityShijiazhuangChina
- Hebei Joint International Research Centre for Spinal DiseasesCenter for Innovation & Translational Medicine, the First Affiliated Hospital, Zhejiang University School of MedicineHangzhouChina
| | - Xupeng Bai
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, the First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
- Charles Perkins Centre and School of Medical SciencesUniversity of SydneySydneyAustralia
| | - Kaitao Lai
- Northcott Neuroscience LaboratoryANZAC Research Institute, Concord HospitalSydneyAustralia
- Tissue Engineering and Microfluidics Laboratory (TE&M)Australian Institute for Bioengineering and Nanotechnology (AIBN), the University of QueenslandSt LuciaAustralia
| | - Sidong Yang
- Department of Spinal SurgeryThe Third Hospital of Hebei Medical UniversityShijiazhuangChina
- Department of Orthopaedics, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Cao Yang
- Spine ServiceDepartment of Orthopaedic Surgery, St. George HospitalKogarahAustralia
| | - Jun Zou
- Department of Orthopedic SurgeryThe First Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Ashish D. Diwan
- Spine Labs, St. George and Sutherland Clinical SchoolUniversity of new South WalesKogarahAustralia
- Department of Orthopaedics, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Zhaomin Zheng
- Spine Labs, St. George and Sutherland Clinical SchoolUniversity of new South WalesKogarahAustralia
- Department of Spine Surgery, the First Affiliated HospitalSun Yat‐Sen UniversityGuangzhouChina
| |
Collapse
|
28
|
Lan F, Wang X, Zhou Q, Li X, Jin J, Zhang W, Wen C, Wu G, Li G, Yan Y, Yang N, Sun C. Deciphering the coordinated roles of the host genome, duodenal mucosal genes, and microbiota in regulating complex traits in chickens. MICROBIOME 2025; 13:62. [PMID: 40025569 PMCID: PMC11871680 DOI: 10.1186/s40168-025-02054-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 02/01/2025] [Indexed: 03/04/2025]
Abstract
BACKGROUND The complex interactions between host genetics and the gut microbiome are well documented. However, the specific impacts of gene expression patterns and microbial composition on each other remain to be further explored. RESULTS Here, we investigated this complex interplay in a sizable population of 705 hens, employing integrative analyses to examine the relationships among the host genome, mucosal gene expression, and gut microbiota. Specific microbial taxa, such as the cecal family Christensenellaceae, which showed a heritability of 0.365, were strongly correlated with host genomic variants. We proposed a novel concept of regulatability ( r b 2 ), which was derived from h2, to quantify the cumulative effects of gene expression on the given phenotypes. The duodenal mucosal transcriptome emerged as a potent influencer of duodenal microbial taxa, with much higher r b 2 values (0.17 ± 0.01, mean ± SE) than h2 values (0.02 ± 0.00). A comparative analysis of chickens and humans revealed similar average microbiability values of genes (0.18 vs. 0.20) and significant differences in average r b 2 values of microbes (0.17 vs. 0.04). Besides, cis ( h cis 2 ) and trans heritability ( h trans 2 ) were estimated to assess the effects of genetic variations inside and outside the cis window of the gene on its expression. Higher h trans 2 values than h cis 2 values and a greater prevalence of trans-regulated genes than cis-regulated genes underscored the significant role of loci outside the cis window in shaping gene expression levels. Furthermore, our exploration of the regulatory effects of duodenal mucosal genes and the microbiota on 18 complex traits enhanced our understanding of the regulatory mechanisms, in which the CHST14 gene and its regulatory relationships with Lactobacillus salivarius jointly facilitated the deposition of abdominal fat by modulating the concentration of bile salt hydrolase, and further triglycerides, total cholesterol, and free fatty acids absorption and metabolism. CONCLUSIONS Our findings highlighted a novel concept of r b 2 to quantify the phenotypic variance attributed to gene expression and emphasize the superior role of intestinal mucosal gene expressions over host genomic variations in elucidating host‒microbe interactions for complex traits. This understanding could assist in devising strategies to modulate host-microbe interactions, ultimately improving economic traits in chickens.
Collapse
Affiliation(s)
- Fangren Lan
- State Key Laboratory of Animal Biotech Breeding and Frontier Science Center of Molecular Design Breeding, China Agricultural University, Beijing, 100193, China
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, 100193, China
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Xiqiong Wang
- State Key Laboratory of Animal Biotech Breeding and Frontier Science Center of Molecular Design Breeding, China Agricultural University, Beijing, 100193, China
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, 100193, China
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Qianqian Zhou
- State Key Laboratory of Animal Biotech Breeding and Frontier Science Center of Molecular Design Breeding, China Agricultural University, Beijing, 100193, China
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, 100193, China
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Xiaochang Li
- State Key Laboratory of Animal Biotech Breeding and Frontier Science Center of Molecular Design Breeding, China Agricultural University, Beijing, 100193, China
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, 100193, China
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Jiaming Jin
- State Key Laboratory of Animal Biotech Breeding and Frontier Science Center of Molecular Design Breeding, China Agricultural University, Beijing, 100193, China
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, 100193, China
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Wenxin Zhang
- State Key Laboratory of Animal Biotech Breeding and Frontier Science Center of Molecular Design Breeding, China Agricultural University, Beijing, 100193, China
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, 100193, China
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Chaoliang Wen
- State Key Laboratory of Animal Biotech Breeding and Frontier Science Center of Molecular Design Breeding, China Agricultural University, Beijing, 100193, China
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, 100193, China
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Guiqin Wu
- Beijing Engineering Research Centre of Layer, Beijing, 101206, China
| | - Guangqi Li
- Beijing Engineering Research Centre of Layer, Beijing, 101206, China
| | - Yiyuan Yan
- Beijing Engineering Research Centre of Layer, Beijing, 101206, China
| | - Ning Yang
- State Key Laboratory of Animal Biotech Breeding and Frontier Science Center of Molecular Design Breeding, China Agricultural University, Beijing, 100193, China.
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, 100193, China.
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China.
| | - Congjiao Sun
- State Key Laboratory of Animal Biotech Breeding and Frontier Science Center of Molecular Design Breeding, China Agricultural University, Beijing, 100193, China.
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, 100193, China.
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
29
|
Baral T, Johnson AS, Unnikrishnan MK, Manu MK, Saravu K, Udyavara Kudru C, Abdulsalim S, Singh J, Mukhopadhyay C, Rao M, Miraj SS. Potential role of indole-3-propionic acid in tuberculosis: current perspectives and future prospects. Expert Opin Ther Targets 2025; 29:171-178. [PMID: 40160109 DOI: 10.1080/14728222.2025.2482548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 03/18/2025] [Indexed: 04/02/2025]
Abstract
INTRODUCTION Indole-3-propionic acid (IPA), a tryptophan catabolite derived from gut bacterial metabolism, has been identified as a functional link between the gut microbiome and tuberculosis. AREA COVERED IPA has gained ample attention over the past two decades on account of its multiple physiological roles, besides being both detectable and quantifiable. IPA is well studied across different health conditions, including cardiovascular and neurological conditions. IPA blocks tryptophan synthesis in Mycobacterium by binding to the allosteric tryptophan-binding site of TrpE, thereby threatening Mycobacterium survival due to tryptophan deficit. EXPERT OPINION Characterizing IPA would enable its use as a tool to investigate the pathophysiology of tuberculosis. Integrating 'OMICS' techniques (through next-generation sequencing) along with targeted microbial metabolomics may help explore the possible association of serum IPA levels with TB in patients. This will aid in identifying IPA-producing gut microbes and selecting probiotic strains as a microbiome-targeting adjunct therapy, eventually enhancing our understanding of the molecular dynamics of the pathophysiology of tuberculosis in the context of the microbiome.
Collapse
Affiliation(s)
- Tejaswini Baral
- Department of Pharmacy Practice, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Aieshel Serafin Johnson
- Department of Pharmacy Practice, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, India
| | | | - Mohan K Manu
- Department of Respiratory Medicine, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| | - Kavitha Saravu
- Department of Infectious Diseases, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| | | | - Suhaj Abdulsalim
- Department of Pharmacy Practice, College of Pharmacy, Qassim University, Buraidah, Saudi Arabia
| | - Jitendra Singh
- Department of Translational Medicine, All India Institute of Medical Sciences, Bhopal, India
| | - Chiranjay Mukhopadhyay
- Department of Microbiology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| | - Mahadev Rao
- Department of Pharmacy Practice, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Sonal Sekhar Miraj
- Department of Pharmacy Practice, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, India
| |
Collapse
|
30
|
Beaver LM, Jamieson PE, Wong CP, Hosseinikia M, Stevens JF, Ho E. Promotion of Healthy Aging Through the Nexus of Gut Microbiota and Dietary Phytochemicals. Adv Nutr 2025; 16:100376. [PMID: 39832641 PMCID: PMC11847308 DOI: 10.1016/j.advnut.2025.100376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 12/20/2024] [Accepted: 01/14/2025] [Indexed: 01/22/2025] Open
Abstract
Aging is associated with the decline of tissue and cellular functions, which can promote the development of age-related diseases like cancer, cardiovascular disease, neurodegeneration, and disorders of the musculoskeletal and immune systems. Healthspan is the length of time an individual is in good health and free from chronic diseases and disabilities associated with aging. Two modifiable factors that can influence healthspan, promote healthy aging, and prevent the development of age-related diseases, are diet and microbiota in the gastrointestinal tract (gut microbiota). This review will discuss how dietary phytochemicals and gut microbiota can work in concert to promote a healthy gut and healthy aging. First, an overview is provided of how the gut microbiota influences healthy aging through its impact on gut barrier integrity, immune function, mitochondria function, and oxidative stress. Next, the mechanisms by which phytochemicals effect gut health, inflammation, and nurture a diverse and healthy microbial composition are discussed. Lastly, we discuss how the gut microbiota can directly influence health by producing bioactive metabolites from phytochemicals in food like urolithin A, equol, hesperetin, and sulforaphane. These and other phytochemical-derived microbial metabolites that may promote healthspan are discussed. Importantly, an individual's capacity to produce health-promoting microbial metabolites from cruciferous vegetables, berries, nuts, citrus, and soy products will be dependent on the specific bacteria present in the individual's gut.
Collapse
Affiliation(s)
- Laura M Beaver
- Linus Pauling Institute, Oregon State University, Corvallis, OR, United States; School of Nutrition and Public Health, Oregon State University, Corvallis, OR, United States
| | - Paige E Jamieson
- Linus Pauling Institute, Oregon State University, Corvallis, OR, United States; School of Nutrition and Public Health, Oregon State University, Corvallis, OR, United States
| | - Carmen P Wong
- Linus Pauling Institute, Oregon State University, Corvallis, OR, United States; School of Nutrition and Public Health, Oregon State University, Corvallis, OR, United States
| | - Mahak Hosseinikia
- Linus Pauling Institute, Oregon State University, Corvallis, OR, United States; School of Nutrition and Public Health, Oregon State University, Corvallis, OR, United States
| | - Jan F Stevens
- Linus Pauling Institute, Oregon State University, Corvallis, OR, United States; Department of Pharmaceutical Sciences, Oregon State University, Corvallis, Oregon, United States
| | - Emily Ho
- Linus Pauling Institute, Oregon State University, Corvallis, OR, United States; School of Nutrition and Public Health, Oregon State University, Corvallis, OR, United States.
| |
Collapse
|
31
|
Zhou Q, Ali S, Shi X, Cao G, Feng J, Yang C, Zhang R. Protective impacts of bamboo leaf flavonoids in stressed broilers induced by diquat: Insight of antioxidant, immune response and intestinal barrier function. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2025; 20:158-170. [PMID: 39967701 PMCID: PMC11834062 DOI: 10.1016/j.aninu.2024.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 10/31/2024] [Accepted: 11/07/2024] [Indexed: 02/20/2025]
Abstract
This research explored the protective impact of bamboo leaf flavonoids (BLF) in diquat (DQ) stressed broilers; providing insight of antioxidant, immune response and intestinal barrier function. This experiment consisted of two parts. In the first, 240 chicks were allotted to 2 groups with 8 replicates and 15 chicks per replicate. Treatments consisted of a basic feed (control group, CON) and the basic feed plus 1000 mg/kg BLF (BLF group, BLF) for 28 d, respectively. Then, following the conclusion of the first part, 16 healthy broilers were selected from the CON group and the BLF group. They formed the second part of the experiment, and were allotted to 4 treatments with 8 broilers each: CON-no stress (CON-NS) group, CON-DQ group, BLF-NS group and the BLF-DQ group. Broilers were separately injected intraperitoneally with DQ solution at 40 mg/kg body weight or the same dose of phosphate buffer saline. The results revealed adding BLF to diet reduced the ratio of feed to weight gain of broilers compared to the basic feed group (P = 0.021). In comparison to the CON-NS group, BLF improved the levels of serum and jejunal mucosa total antioxidant capacity, immunoglobulin M, serum catalase, immunoglobulin A, interleukin 10, jejunal mucosa interleukin 4, cecal butyric acid, valeric acid, isobutyric acid, isovaleric acid, upregulated zonula occludens-1 (ZO-1), occludin (OCLN) and claudin-1 (CLDN1) expressions, and reduced the levels of jejunal mucosa malondialdehyde (MDA), interleukin 1β, interleukin 6 and serum diamine oxidase (P < 0.05). Diquat stress elevated the contents of serum MDA, D-lactate, jejunal mucosa tumor necrosis factor α, reactive oxygen species and unclassified_f_Lachnospiraceae relative abundance, downregulated ZO-1, OCLN and CLDN1 expressions, and reduced Sobs, Chao and Ace indices (P < 0.05). Compared with CON-NS group, the concentration of isovaleric acid in the BLF-DQ group was higher (P < 0.05). In conclusion, by establishing a DQ stress injury model, it was elucidated that BLF may enhance antioxidant capacity, strengthen immunity, regulate volatile fatty acid contents, improve intestinal morphology, microbiota and other intestinal barrier functions, so as to mitigate the injury induced by oxidative stress in broilers.
Collapse
Affiliation(s)
- Qilu Zhou
- College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang Agricultural and Forestry University, Hangzhou 311300, Zhejiang, China
| | - Sikandar Ali
- Zhejiang Vegamax Biotechnology Co., Ltd., Anji 313300, Zhejiang, China
| | - Xueyan Shi
- College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang Agricultural and Forestry University, Hangzhou 311300, Zhejiang, China
| | - Guangtian Cao
- College of Quality and Standardization, China Jiliang University, Hangzhou 310018, Zhejiang, China
| | - Jie Feng
- College of Animal Science, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Caimei Yang
- College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang Agricultural and Forestry University, Hangzhou 311300, Zhejiang, China
| | - Ruiqiang Zhang
- College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang Agricultural and Forestry University, Hangzhou 311300, Zhejiang, China
| |
Collapse
|
32
|
Ilha M, Sehgal R, Matilainen J, Rilla K, Kaminska D, Gandhi S, Männistö V, Ling C, Romeo S, Pajukanta P, Pirinen E, Virtanen KA, Pietiläinen KH, Vaittinen M, Pihlajamäki J. Indole-3-propionic acid promotes hepatic stellate cells inactivation. J Transl Med 2025; 23:253. [PMID: 40025530 PMCID: PMC11871697 DOI: 10.1186/s12967-025-06266-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 02/16/2025] [Indexed: 03/04/2025] Open
Abstract
BACKGROUND & AIMS We have previously reported that the serum levels of gut-derived tryptophan metabolite indole-3-propionic acid (IPA) are lower in individuals with liver fibrosis. Now, we explored the transcriptome and DNA methylome associated with serum IPA levels in human liver from obese individuals together with IPA effects on shifting the hepatic stellate cell (HSC) phenotype to inactivation in vitro. METHODS A total of 116 obese individuals without type 2 diabetes (T2D) (age 46.8 ± 9.3 years; BMI: 42.7 ± 5.0 kg/m2) from the Kuopio OBesity Surgery (KOBS) study undergoing bariatric surgery were included. Circulating IPA levels were measured using LC-MS, liver transcriptomics with total RNA-sequencing and DNA methylation with Infinium HumanMethylation450 BeadChip. Human hepatic stellate cells (LX-2) where used for in vitro experiments. RESULTS Serum IPA levels were associated with the expression of liver genes enriched for apoptosis, mitophagy and longevity pathways in the liver. AKT serine/threonine kinase 1 (AKT1) was the shared and topmost interactive gene from the liver transcript and DNA methylation profile. IPA treatment induced apoptosis, reduced mitochondrial respiration as well as modified cell morphology, and mitochondrial dynamics by modulating the expression of genes known to regulate fibrosis, apoptosis, and survival in LX-2 cells. CONCLUSION In conclusion, these data support that IPA has a plausible therapeutic effect and may induce apoptosis and the HSC phenotype towards the inactivation state, extending the possibilities to suppress hepatic fibrogenesis by interfering with HSC activation and mitochondrial metabolism.
Collapse
Affiliation(s)
- Mariana Ilha
- Institute of Public Health and Clinical Nutrition, Department of Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, USA
| | - Ratika Sehgal
- Institute of Public Health and Clinical Nutrition, Department of Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), 14558, Nuthetal, Germany
| | - Johanna Matilainen
- Institute of Biomedicine, School of Medicine, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| | - Kirsi Rilla
- Institute of Biomedicine, School of Medicine, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| | - Dorota Kaminska
- Institute of Public Health and Clinical Nutrition, Department of Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
- Department of Medicine, Division of Cardiology, UCLA, Los Angeles, CA, USA
| | - Shrey Gandhi
- Institute of Immunology, University of Münster, Münster, Germany
- Department of Genetic Epidemiology, Institute of Human Genetics, University of Münster, Münster, Germany
| | - Ville Männistö
- Departments of Medicine, University of Eastern Finland and Kuopio University Hospital, Kuopio, Finland
| | - Charlotte Ling
- Epigenetics and Diabetes Unit, Department of Clinical Sciences, Lund University Diabetes Centre, Scania University Hospital, Malmö, Sweden
| | - Stefano Romeo
- Department of Molecular and Clinical Medicine, University of Gothenburg, Göteborg, Sweden
| | - Päivi Pajukanta
- Department of Human Genetics, David Geffen School of Medicine at University of California Los Angeles (UCLA), Los Angeles, CA, USA
- Institute for Precision Health, School of Medicine, UCLA, Los Angeles, CA, USA
| | - Eija Pirinen
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Research Unit for Biomedicine and Internal Medicine, Faculty of Medicine, University of Oulu, Oulu, Finland
- Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland
- Biocenter Oulu, University of Oulu, Oulu, Finland
| | | | - Kirsi H Pietiläinen
- Obesity Research Unit, Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Obesity Center, Endocrinology, Abdominal Center, Helsinki University Central Hospital and University of Helsinki, Helsinki, Finland
| | - Maija Vaittinen
- Institute of Public Health and Clinical Nutrition, Department of Clinical Nutrition, University of Eastern Finland, Kuopio, Finland.
| | - Jussi Pihlajamäki
- Institute of Public Health and Clinical Nutrition, Department of Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
- Department of Medicine, Endocrinology and Clinical Nutrition, Kuopio University Hospital, Kuopio, Finland
| |
Collapse
|
33
|
Fu B, Zhao X, Khan M, Jiang Y, Li W, Mushtaq M, Danzeng B, Ni X, Azeem Z, Shao Q, Xue B, Ouyang Y. Cecum microbiota composition, fermentation characteristics, and immunometabolic biomarkers of Yunshang black goat fed varying dietary energy and protein levels. Front Microbiol 2025; 16:1523586. [PMID: 39967730 PMCID: PMC11832493 DOI: 10.3389/fmicb.2025.1523586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 01/13/2025] [Indexed: 02/20/2025] Open
Abstract
Introduction Ruminants including goats have diverse microcosms of microbiota involved in diet digestion, absorption, and assimilation. Moreover, it is well known that changes in dietary regimens including nutrient levels result in varied gut microbiota composition, and ultimately, the performance and health of these animals. Methods The current study examined the effects of varying dietary energy and protein levels on the cecal fermentation, immune biomarkers, and microbiota characteristics of 80 male Yunshan Black Goats (6 months, ~35.82 ± 2.79 kg), divided into four diets: 1) High Energy-High Protein (HEHP), 2) High Energy-Low Protein (HELP), 3) Low Energy-High Protein (LEHP), and 4) Low Energy-Low Protein (LELP). Twenty goats (five from each treatment group) were randomly slaughtered after a 50-day feeding trial, and cecal digesta and tissue were sampled for microbial analysis. Results The cecal content revealed that the high-energy groups (HEHP, HELP) had lower pH levels than the LEHP group (p < 0.05) and significantly higher valeric and isovaleric acid concentrations in HEHP. Although species richness (Chao1 index) remained consistent, the HEHP group showed higher diversity (Shannon and Simpson indices) than LEHP (p < 0.05). Dominant phyla included Bacteroidetes and Firmicutes; LEHP and LELP had significantly higher Bacteroidetes abundance than HELP, while HELP had higher Firmicutes abundance than LEHP (p < 0.05). Verrucomicrobia abundance was lower in LEHP than in HELP and LELP (p < 0.05). At the genus level, 311 genera were identified, with Clostridium, Prevotella, unidentified_BS11, and others showing significant variation. The HELP group had lower unidentified_BS11 than LEHP and LELP, and higher unidentified_Ruminococcaceae, Clostridium, and Lachnospiraceae than LEHP (p < 0.05). VFA metabolism, absorption, cytokine expression, and tight junction protein mRNA in cecal tissue were also analyzed. Genes like MCT-1 and SLC16A4, linked to VFA absorption, positively correlated with Paludibacter, which was associated with immune markers (TLR-3, TLR-4, IFN-γ) and Occludin expression. In contrast, VFA-related genes and tight junction proteins negatively correlated with unidentified Fibrobacterales, suggesting a microbial role in adaptive immunity. Conclusion This study demonstrated that dietary energy and protein levels significantly influenced cecal fermentation, immune biomarkers, and microbiota composition in Yunshan Black Goats.
Collapse
Affiliation(s)
- Binlong Fu
- Yunnan Animal Sciences and Veterinary Institute, Kunming, China
| | - Xiaoqi Zhao
- Yunnan Animal Sciences and Veterinary Institute, Kunming, China
| | - Muhammad Khan
- Yunnan Animal Sciences and Veterinary Institute, Kunming, China
| | - Yanting Jiang
- Yunnan Animal Sciences and Veterinary Institute, Kunming, China
| | - Weijuan Li
- Yunnan Animal Sciences and Veterinary Institute, Kunming, China
| | - Maida Mushtaq
- Yunnan Animal Sciences and Veterinary Institute, Kunming, China
| | - Baiji Danzeng
- Yunnan Animal Sciences and Veterinary Institute, Kunming, China
| | - Xiaojun Ni
- Yunnan Animal Sciences and Veterinary Institute, Kunming, China
| | - Zobia Azeem
- Department of Zoology, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Qingyong Shao
- Yunnan Animal Sciences and Veterinary Institute, Kunming, China
| | - Bai Xue
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Yina Ouyang
- Yunnan Animal Sciences and Veterinary Institute, Kunming, China
| |
Collapse
|
34
|
Lee J, Jang HR, Lee D, Lee Y, Lee HY. Gut Bacteria-Derived Tryptamine Ameliorates Diet-Induced Obesity and Insulin Resistance in Mice. Int J Mol Sci 2025; 26:1327. [PMID: 39941095 PMCID: PMC11818187 DOI: 10.3390/ijms26031327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 02/01/2025] [Accepted: 02/03/2025] [Indexed: 02/16/2025] Open
Abstract
Tryptophan is an essential amino acid that is metabolized in the intestine by gut bacteria into indole derivatives, including tryptamine. However, little is known about which bacterial tryptophan metabolites directly influence obesity. In this study, we identified tryptamine as a bacterial metabolite that significantly reduced fat mass following the intraperitoneal injection of five bacterial tryptophan end-products in a diet-induced obese mouse model. Interestingly, tryptamine, a serotonin analog, inhibited both lipogenesis and lipolysis in adipose tissue, which was further confirmed in a 3T3-L1 adipocyte cell culture study. Moreover, oral tryptamine supplementation markedly reduced fat mass and improved insulin sensitivity in a long-term, high-fat-diet, pair-feeding model. These studies demonstrate the therapeutic potential of tryptamine, a bacterial tryptophan metabolite, in ameliorating obesity and insulin resistance by directly regulating lipogenesis and lipolysis in white adipose tissue.
Collapse
Affiliation(s)
- Jongjun Lee
- Laboratory of Mitochondria and Metabolic Diseases, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21999, Republic of Korea; (J.L.); (H.-R.J.)
- Department of Health Sciences and Technology, Gachon Advanced Institute for Health Sciences & Technology, Gachon University, Incheon 21999, Republic of Korea
| | - Hye-Rim Jang
- Laboratory of Mitochondria and Metabolic Diseases, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21999, Republic of Korea; (J.L.); (H.-R.J.)
| | - Dongjin Lee
- Laboratory of Mitochondria and Metabolic Diseases, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21999, Republic of Korea; (J.L.); (H.-R.J.)
- Department of Health Sciences and Technology, Gachon Advanced Institute for Health Sciences & Technology, Gachon University, Incheon 21999, Republic of Korea
| | - Yeonmi Lee
- Laboratory of Mitochondria and Metabolic Diseases, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21999, Republic of Korea; (J.L.); (H.-R.J.)
| | - Hui-Young Lee
- Laboratory of Mitochondria and Metabolic Diseases, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21999, Republic of Korea; (J.L.); (H.-R.J.)
- Department of Health Sciences and Technology, Gachon Advanced Institute for Health Sciences & Technology, Gachon University, Incheon 21999, Republic of Korea
- Department of Molecular Medicine, Gachon University College of Medicine, Incheon 21936, Republic of Korea
| |
Collapse
|
35
|
Liu A, Li S, Dong X, Qin X, Li Z. Farfarae Flos Mitigates Cigarette Smoking-Induced Lung Inflammation by Regulating the Lysophosphatidylcholine Biosynthesis and Tryptophan Metabolism. Biomed Chromatogr 2025; 39:e6072. [PMID: 39775926 DOI: 10.1002/bmc.6072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 12/01/2024] [Accepted: 12/11/2024] [Indexed: 01/11/2025]
Abstract
An increased risk of developing respiratory diseases has been linked to exposure to cigarette smoking (CS). The flower buds of Tussilago farfara L., also known as Farfarae Flos (FF), can be used for the treatment of cough, bronchitis, and asthmatic disorders in China. In the present study, we used lung and fecal metabolomics, as well as the intestinal flora analysis, aimed to investigate the protective effect of FF against the CS exposure induced lung inflammation on mice. The results showed that FF administration could relieve the lung inflammation as demonstrated by lung index, interleukin-6 (IL-6), and interleukin-1β (IL-1β) levels, as well as the pulmonary pathological change. The lung metabolomics coupled with molecular docking showed that FF could alleviate lung inflammation by regulating lysophosphatidylcholine biosynthesis through the caffeoyl quinic acids distributed in the lung tissue. In addition, fecal metabolome coupled with 16S rRNA gene sequencing showed that FF could regulate the tryptophan metabolism by regulating the intestinal flora disorders. This study provided new insights of FF to relieve CS-induced pulmonary inflammation with the multimechanism.
Collapse
Affiliation(s)
- Aoqi Liu
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, China
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, China
| | - Siyao Li
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, China
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, China
| | - Xianlong Dong
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, China
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, China
| | - Xuemei Qin
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, China
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, China
| | - Zhenyu Li
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, China
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, China
| |
Collapse
|
36
|
Yuan Z, Hong J, Khan J, Lu J, Sanogo B, Wu Z, Sun X, Lin D. Stochastic processes govern gut bacterial community assembly in a Schistosoma mansoni-transmitting snail, Biomphalaria straminea. PLoS Negl Trop Dis 2025; 19:e0012828. [PMID: 39908240 DOI: 10.1371/journal.pntd.0012828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Accepted: 01/07/2025] [Indexed: 02/07/2025] Open
Abstract
BACKGROUND Studies have revealed extensive taxonomic classifications and patterns of gut microbial diversity in snails, with limited focus on community assembly processes. To better understand the balance between stochastic and deterministic processes in the snail gut microbial assembly and their associations with snail fitness, we used the freshwater snail Biomphalaria straminea as a model and analyzed the gut bacterial communities from 118 samples via high-throughput sequencing of the 16S rRNA gene. RESULTS This study reveals that Proteobacteria and Bacteroidota dominate the gut microbiota of B. straminea. Snails from different laboratory habitats exhibit similar gut bacterial diversity but significantly different community structures. The assembly of gut bacterial communities in both laboratory and wild samples is predominantly influenced by stochastic processes rather than deterministic processes, as evidenced by the neutral community model (NCM). Furthermore, during the snail invasion and adaptation to a new environment, stochastic processes are more crucial than deterministic ones in shaping the snail gut microbiota. This indicates that the interplay between stochastic and deterministic processes in the snail gut microbial assembly is associated with host fitness during snail adaptation to a new environment. Based on the null model analysis, we also found that stochastic processes (based on dispersal limitation, homogenizing dispersal, and undominated processes) play a larger role than deterministic (based on homogeneous selection and variable selection) in driving the snail gut bacterial community assembly. Furthermore, the significant difference in the proportions of dispersal limitation and undominated processes is linked to both adaptive and non-adaptive snails. CONCLUSIONS This study demonstrates that stochastic processes govern the assembly of the gut microbiota in B. straminea. Furthermore, snail adaptation is associated with the interplay between stochastic and deterministic processes in gut microbial composition. This study provides a better understanding of the dynamic patterns of the gut microbial community in freshwater gastropods and may contribute to the development of strategies for controlling intermediate hosts and schistosomiasis.
Collapse
Affiliation(s)
- Zhanhong Yuan
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Tropical Disease Control, Ministry of Education, Guangzhou, China
- Provincial Engineering Technology Research Center for Diseases-vectors Control, Chinese Atomic Energy Agency Center of Excellence on Nuclear Technology Applications for Insect Control, Guangzhou, China
| | - Jinni Hong
- Department of Traditional Chinese Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China
| | - Jehangir Khan
- Department of Zoology, Abdul Wali Khan University, Mardan, Pakistan
- Hainan General Hospital, Hainan Medical University, Haikou, China
| | - Jinghuang Lu
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Tropical Disease Control, Ministry of Education, Guangzhou, China
- Provincial Engineering Technology Research Center for Diseases-vectors Control, Chinese Atomic Energy Agency Center of Excellence on Nuclear Technology Applications for Insect Control, Guangzhou, China
| | - Benjamin Sanogo
- Laboratory of Parasitology, Institut National de Recherche en Sante Publique, Bamako, Mali
| | - Zhongdao Wu
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Tropical Disease Control, Ministry of Education, Guangzhou, China
- Provincial Engineering Technology Research Center for Diseases-vectors Control, Chinese Atomic Energy Agency Center of Excellence on Nuclear Technology Applications for Insect Control, Guangzhou, China
| | - Xi Sun
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Tropical Disease Control, Ministry of Education, Guangzhou, China
| | - Datao Lin
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Tropical Disease Control, Ministry of Education, Guangzhou, China
- Provincial Engineering Technology Research Center for Diseases-vectors Control, Chinese Atomic Energy Agency Center of Excellence on Nuclear Technology Applications for Insect Control, Guangzhou, China
| |
Collapse
|
37
|
Luu M, Krause FF, Monning H, Wempe A, Leister H, Mainieri L, Staudt S, Ziegler-Martin K, Mangold K, Kappelhoff N, Shaul YD, Göttig S, Plaza-Sirvent C, Schulte LN, Bekeredjian-Ding I, Schmitz I, Steinhoff U, Visekruna A. Dissecting the metabolic signaling pathways by which microbial molecules drive the differentiation of regulatory B cells. Mucosal Immunol 2025; 18:66-75. [PMID: 39265892 DOI: 10.1016/j.mucimm.2024.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 09/06/2024] [Accepted: 09/09/2024] [Indexed: 09/14/2024]
Abstract
The host-microbiome axis has been implicated in promoting anti-inflammatory immune responses. Yet, the underlying molecular mechanisms of commensal-mediated IL-10 production by regulatory B cells (Bregs) are not fully elucidated. Here, we demonstrate that bacterial CpG motifs trigger the signaling downstream of TLR9 promoting IκBNS-mediated expression of Blimp-1, a transcription regulator of IL-10. Surprisingly, this effect was counteracted by the NF-κB transcription factor c-Rel. A functional screen for intestinal bacterial species identified the commensal Clostridium sporogenes, secreting high amounts of short-chain fatty acids (SCFAs) and branched-chain fatty acids (BCFAs), as an amplifier of IL-10 production by promoting sustained mTOR signaling in B cells. Consequently, enhanced Breg functionality was achieved by combining CpG with the SCFA butyrate or the BCFA isovalerate thereby synergizing TLR- and mTOR-mediated pathways. Collectively, Bregs required two bacterial signals (butyrate and CpG) to elicit their full suppressive capacity and ameliorate T cell-mediated intestinal inflammation. Our study has dissected the molecular pathways induced by bacterial factors, which might contribute not only to better understanding of host-microbiome interactions, but also to exploration of new strategies for improvement of anti-inflammatory cellular therapy.
Collapse
Affiliation(s)
- Maik Luu
- Institute for Medical Microbiology and Hygiene, Philipps-University Marburg, Marburg, Germany; Lehrstuhl für Zelluläre Immuntherapie, Medizinische Klinik und Poliklinik II, Universitätsklinikum Würzburg, Würzburg, Germany.
| | - Felix F Krause
- Institute for Medical Microbiology and Hygiene, Philipps-University Marburg, Marburg, Germany
| | - Heide Monning
- Institute for Medical Microbiology and Hygiene, Philipps-University Marburg, Marburg, Germany
| | - Anne Wempe
- Institute for Medical Microbiology and Hygiene, Philipps-University Marburg, Marburg, Germany
| | - Hanna Leister
- Institute for Medical Microbiology and Hygiene, Philipps-University Marburg, Marburg, Germany
| | - Lisa Mainieri
- Institute for Medical Microbiology and Hygiene, Philipps-University Marburg, Marburg, Germany
| | - Sarah Staudt
- Lehrstuhl für Zelluläre Immuntherapie, Medizinische Klinik und Poliklinik II, Universitätsklinikum Würzburg, Würzburg, Germany
| | - Kai Ziegler-Martin
- Lehrstuhl für Zelluläre Immuntherapie, Medizinische Klinik und Poliklinik II, Universitätsklinikum Würzburg, Würzburg, Germany
| | - Kira Mangold
- Institute for Medical Microbiology and Hygiene, Philipps-University Marburg, Marburg, Germany; Lehrstuhl für Zelluläre Immuntherapie, Medizinische Klinik und Poliklinik II, Universitätsklinikum Würzburg, Würzburg, Germany
| | - Nora Kappelhoff
- Institute for Medical Microbiology and Hygiene, Philipps-University Marburg, Marburg, Germany
| | - Yoav D Shaul
- Department of Biochemistry and Molecular Biology, The Institute for Medical Research Israel-Canada, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Stephan Göttig
- Institute for Medical Microbiology and Infection Control, University Hospital, Goethe University, Frankfurt am Main, Germany
| | | | - Leon N Schulte
- Institute for Lung Research, Philipps-University Marburg, Marburg, Germany
| | | | - Ingo Schmitz
- Department of Molecular Immunology, Ruhr-University Bochum, Bochum, Germany
| | - Ulrich Steinhoff
- Institute for Medical Microbiology and Hygiene, Philipps-University Marburg, Marburg, Germany
| | - Alexander Visekruna
- Institute for Medical Microbiology and Hygiene, Philipps-University Marburg, Marburg, Germany.
| |
Collapse
|
38
|
Shin HK, Bang YJ. Aromatic Amino Acid Metabolites: Molecular Messengers Bridging Immune-Microbiota Communication. Immune Netw 2025; 25:e10. [PMID: 40078785 PMCID: PMC11896664 DOI: 10.4110/in.2025.25.e10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Revised: 02/05/2025] [Accepted: 02/05/2025] [Indexed: 03/14/2025] Open
Abstract
Aromatic amino acid (AAA) metabolites, derived from tryptophan, phenylalanine, and tyrosine through coordinated host and microbial metabolism, have emerged as critical modulators of immune function. We examine the complex journey of AAAs from dietary intake through intestinal absorption and metabolic transformation, highlighting the crucial role of host-microbe metabolic networks in generating diverse immunomodulatory compounds. This review provides a unique integrative perspective by mapping the molecular mechanisms through which these metabolites orchestrate immune responses. Through detailed analysis of metabolite-receptor and metabolite-transporter interactions, we reveal how specific molecular recognition drives cell type-specific immune responses. Our comprehensive examination of signaling networks-from membrane receptor engagement to nuclear receptor activation to post-translational modifications- demonstrates how the same metabolite can elicit distinct functional outcomes in different immune cell populations. The context-dependent nature of these molecular interactions presents both challenges and opportunities for therapeutic development, particularly in inflammatory conditions where metabolite signaling pathways are dysregulated. Understanding the complexity of these regulatory networks and remaining knowledge gaps is fundamental for advancing metabolite-based therapeutic strategies in immune-mediated disorders.
Collapse
Affiliation(s)
- Hyun-Ki Shin
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Ye-Ji Bang
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Korea
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul 03080, Korea
- Institute of Endemic Diseases, Seoul National University Medical Research Center, Seoul 03080, Korea
| |
Collapse
|
39
|
Carter MM, Zeng X, Ward CP, Landry M, Perelman D, Hennings T, Meng X, Weakley AM, Cabrera AV, Robinson JL, Nguyen T, Higginbottom S, Maecker HT, Sonnenburg ED, Fischbach MA, Gardner CD, Sonnenburg JL. A gut pathobiont regulates circulating glycine and host metabolism in a twin study comparing vegan and omnivorous diets. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2025.01.08.25320192. [PMID: 39830242 PMCID: PMC11741504 DOI: 10.1101/2025.01.08.25320192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Metabolic diseases including type 2 diabetes and obesity pose a significant global health burden. Plant-based diets, including vegan diets, are linked to favorable metabolic outcomes, yet the underlying mechanisms remain unclear. In a randomized trial involving 21 pairs of identical twins, we investigated the effects of vegan and omnivorous diets on the host metabolome, immune system, and gut microbiome. Vegan diets induced significant shifts in serum and stool metabolomes, cytokine profiles, and gut microbial composition. Despite lower dietary glycine intake, vegan diet subjects exhibited elevated serum glycine levels linked to reduced abundance of the gut pathobiont Bilophila wadsworthia. Functional studies demonstrated that B. wadsworthia metabolizes glycine via the glycine reductase pathway and modulates host glycine availability. Removing B. wadsworthia from a complex microbiota in mice elevated glycine levels and improved metabolic markers. These findings reveal a previously underappreciated mechanism by which diet regulates host metabolic status via the gut microbiota.
Collapse
Affiliation(s)
- Matthew M. Carter
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | - Xianfeng Zeng
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Catherine P. Ward
- Stanford Prevention Research Center, Department of Medicine, School of Medicine, Stanford University, Palo Alto, CA, USA
| | - Matthew Landry
- Department of Population Health and Disease Prevention, Joe C. Wen School of Population & Public Health, University of California, Irvine, Irvine, CA, USA
| | - Dalia Perelman
- Stanford Prevention Research Center, Department of Medicine, School of Medicine, Stanford University, Palo Alto, CA, USA
| | - Tayler Hennings
- Stanford Prevention Research Center, Department of Medicine, School of Medicine, Stanford University, Palo Alto, CA, USA
| | - Xiandong Meng
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Allison M. Weakley
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - Ashley V. Cabrera
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Jennifer L. Robinson
- Stanford Prevention Research Center, Department of Medicine, School of Medicine, Stanford University, Palo Alto, CA, USA
| | - Tran Nguyen
- Human Immune Monitoring Center, Institute for Immunity, Transplantation, and Infection, Stanford University, School of Medicine, Stanford, CA, USA
| | - Steven Higginbottom
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | - Holden T. Maecker
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
- Human Immune Monitoring Center, Institute for Immunity, Transplantation, and Infection, Stanford University, School of Medicine, Stanford, CA, USA
| | - Erica D. Sonnenburg
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | - Michael A. Fischbach
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Christopher D. Gardner
- Stanford Prevention Research Center, Department of Medicine, School of Medicine, Stanford University, Palo Alto, CA, USA
| | - Justin L. Sonnenburg
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
- Chan Zuckerberg Biohub, San Francisco, CA, USA
- Center for Human Microbiome Studies, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
40
|
Kim CH. Functional regulation of cytotoxic T cells by gut microbial metabolites. GUT MICROBES REPORTS 2025; 2:1-16. [PMID: 40115123 PMCID: PMC11922538 DOI: 10.1080/29933935.2025.2454002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 12/21/2024] [Accepted: 01/09/2025] [Indexed: 03/23/2025]
Abstract
Metabolites from gut microbes have a wide range of functions within the host body. One important function of these metabolites is to either positively or negatively control CD8+ cytotoxic T lymphocytes (CTLs), which can kill cancer and virus-infected cells. In healthy conditions, gut microbes produce a mixture of metabolites that promote CTL activity but also suppress excessive inflammatory responses. However, gut microbial dysbiosis occurs in patients with cancer, and this leads to changes in the production of gut microbial metabolites that can suppress CTL activity, promote inflammatory responses, and/or aid cancer growth. Decreased levels of CTL-promoting metabolites such as short-chain fatty acids, indole metabolites and polyamines but increased levels of CTL-suppressing metabolites, such as certain bile acids along with oncogenic metabolites, have been observed in patients with cancer. This review summarizes the altered production of major microbial metabolites in patients with cancer and discusses the impact of these changes on anti-cancer CTL responses.
Collapse
Affiliation(s)
- Chang H Kim
- Department of Pathology, University of Michigan School of Medicine, Ann Arbor, MI 48109; Mary H. Weiser Food Allergy Center, Center for Gastrointestinal Research, and Rogel Center for Cancer Research, University of Michigan School of Medicine, Ann Arbor, MI 48109
| |
Collapse
|
41
|
Ghannadzadeh Kermani Pour R, Kamali Zounouzi S, Farshbafnadi M, Rezaei N. The interplay between gut microbiota composition and dementia. Rev Neurosci 2025:revneuro-2024-0113. [PMID: 39829047 DOI: 10.1515/revneuro-2024-0113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 01/03/2025] [Indexed: 01/22/2025]
Abstract
Recently, researchers have been interested in the potential connection between gut microbiota composition and various neuropsychological disorders. Dementia significantly affects the socioeconomics of families. Gut microbiota is considered as a probable factor in its pathogenesis. Multiple bacterial metabolites such as short-chain fatty acids, lipopolysaccharides, and various neurotransmitters that are responsible for the incidence and progression of dementia can be produced by gut microbiota. Various bacterial species such as Bifidobacterium breve, Akkermansia muciniphila, Streptococcus thermophilus, Escherichia coli, Blautia hydrogenotrophica, etc. are implicated in the pathogenesis of dementia. Gut microbiota can be a great target for imitating or inhibiting their metabolites as an adjunctive therapy based on their role in its pathogenesis. Therefore, some diets can prevent or decelerate dementia by altering the gut microbiota composition. Moreover, probiotics can modulate gut microbiota composition by increasing beneficial bacteria and reducing detrimental species. These therapeutic modalities are considered novel methods that are probably safe and effective. They can enhance the efficacy of traditional medications and improve cognitive function.
Collapse
Affiliation(s)
| | - Sara Kamali Zounouzi
- School of Medicine, 48439 Tehran University of Medical Sciences , Tehran, 1416634793, Iran
| | - Melina Farshbafnadi
- School of Medicine, 48439 Tehran University of Medical Sciences , Tehran, 1416634793, Iran
- Universal Scientific Education and Research Network (USERN), Tehran, 1416634793, Iran
| | - Nima Rezaei
- Universal Scientific Education and Research Network (USERN), Tehran, 1416634793, Iran
- Research Center for Immunodeficiencies, Children's Medical Center, 48439 Tehran University of Medical Sciences , Tehran, 1416634793, Iran
- Department of Immunology, School of Medicine, 48439 Tehran University of Medical Sciences , Tehran, 1416634793, Iran
| |
Collapse
|
42
|
Xu H, Luo Y, An Y, Wu X. The mechanism of action of indole-3-propionic acid on bone metabolism. Food Funct 2025; 16:406-421. [PMID: 39764708 DOI: 10.1039/d4fo03783a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2025]
Abstract
Indole-3-propionic acid (IPA), a metabolite produced by gut microbiota through tryptophan metabolism, has recently been identified as playing a pivotal role in bone metabolism. IPA promotes osteoblast differentiation by upregulating mitochondrial transcription factor A (Tfam), contributing to increased bone density and supporting bone repair. Simultaneously, it inhibits the formation and activity of osteoclasts, reducing bone resorption, possibly through modulation of the nuclear factor-κB (NF-κB) pathway and downregulation of osteoclast-associated factors, thereby maintaining bone structural integrity. Additionally, IPA provides indirect protection to bone health by regulating host immune responses and inflammation via activation of receptors such as the Aryl hydrocarbon Receptor (AhR) and the Pregnane X Receptor (PXR). This review summarizes the roles and signaling pathways of IPA in bone metabolism and its impact on various bone metabolic disorders. Furthermore, we discuss the therapeutic potential and limitations of IPA in treating bone metabolic diseases, aiming to offer novel strategies for clinical management.
Collapse
Affiliation(s)
- Huimin Xu
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China.
| | - Yingzhe Luo
- Department of Oncology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Yi An
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China.
| | - Xi Wu
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China.
| |
Collapse
|
43
|
Ahmadi S, Sedaghat FR, Memar MY, Yekani M. Metabolomics in the Diagnosis of Bacterial Infections. Clin Chim Acta 2025; 565:120020. [PMID: 39489271 DOI: 10.1016/j.cca.2024.120020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 10/25/2024] [Accepted: 10/25/2024] [Indexed: 11/05/2024]
Abstract
One of the essential factors in the appropriate treatment of infections is accurate and timely laboratory diagnosis. The correct diagnosis of infections plays a vital role in determining desirable therapy and controlling the spread of pathogens. Traditional methods of infection diagnosis are limited by several factors such as insufficient sensitivity and specificity, being time-consuming and laborious, having a low ability to distinguish infection from non-infectious inflammatory conditions and a low potential to predict treatment outcomes. Therefore, it is necessary to find innovative strategies for detecting specific biomarkers in order to diagnose infections. The rapid advancement of metabolomics makes it possible to determine the pattern of metabolite changes in the both of pathogen and the host during an infection. Metabolomics is a method used to assess the levels and type of metabolites in an organism. Metabolites are of low-molecular-weight compounds produced as a result of metabolic processes and pathways within cells. Metabolomics provides valuable data to detect accurate biomarkers of specific biochemical features directly related to certain phenotypes or conditions. This study aimed to review the applications and progress of metabolomics as a biomarker for the diagnosis of bacterial infections.
Collapse
Affiliation(s)
- Somayeh Ahmadi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Bacteriology and Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Farzaneh Rafie Sedaghat
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Bacteriology and Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Yousef Memar
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Mina Yekani
- Department of Microbiology, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
44
|
Yan F, Wang X, Du Y, Zhao Z, Shi L, Cao T, Shen Y, Sun L, Liu X. Pumpkin Soluble Dietary Fiber instead of Insoluble One Ameliorates Hyperglycemia via the Gut Microbiota-Gut-Liver Axis in db/db Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:1293-1307. [PMID: 39811930 DOI: 10.1021/acs.jafc.4c08986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Pumpkin extract has been shown to alleviate hyperglycemic symptoms by improving glucose metabolism disorders. However, the specific active components responsible for its hypoglycemic effects and the underlying molecular mechanisms remain unclear. In this study, db/db mice underwent a 4-week dietary intervention with two pumpkin flours (PF1 and PF2), total dietary fiber (TDF), soluble dietary fiber (SDF), and insoluble dietary fiber (IDF), with acarbose serving as a positive control. Our results revealed that pumpkin components significantly altered the gut microbiota, characterized by a reduction in diabetes-related bacteria and an increase in short-chain fatty acid (SCFA)-producing bacteria, including Bacteroides, Akkermansia, and Lachnospiraceae_NK4A136 group. Additionally, pumpkin components significantly increased fecal SCFA levels and upregulated the expression of SCFA receptor GPR43, potentially promoting GLP-1 secretion. Notably, pumpkin components significantly reduced fasting blood glucose and serum insulin levels and inhibited gluconeogenesis. This effect may be ascribed to the inhibition of the cAMP/PKA/CREB signaling pathway coupled with the activation of the PI3K/AKT signaling pathway. Our research indicated that pumpkin flour and dietary fiber alleviated hyperglycemia through the gut-liver axis, with SDF contributing the most to the hypoglycemic effect. These findings suggest that pumpkin components may serve as an adjunct nutritional intervention to ameliorate hyperglycemia.
Collapse
Affiliation(s)
- Fanghua Yan
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100 Shaanxi, China
| | - Xinze Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100 Shaanxi, China
| | - Yue Du
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100 Shaanxi, China
| | - Zhongna Zhao
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100 Shaanxi, China
| | - Libing Shi
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100 Shaanxi, China
| | - Tengzheng Cao
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100 Shaanxi, China
| | - Yajun Shen
- Yulin Keshangying Food Co., Ltd, Yulin, 719000 Shaanxi, China
| | - Lijun Sun
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100 Shaanxi, China
| | - Xuebo Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100 Shaanxi, China
| |
Collapse
|
45
|
Ma B, Zhao Y, Liu L, Xu J, Hu Q, Feng S, Zhang L. Evaluation of In Vitro Production Capabilities of Indole Derivatives by Lactic Acid Bacteria. Microorganisms 2025; 13:150. [PMID: 39858919 PMCID: PMC11767884 DOI: 10.3390/microorganisms13010150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 01/08/2025] [Accepted: 01/10/2025] [Indexed: 01/27/2025] Open
Abstract
Lactic acid Bacteria (LAB) convert tryptophan to indole derivatives and induce protective IL-22 production in vivo. However, differences in metabolizing capabilities among LAB species have not been widely investigated. In the present study, we compared the capabilities of 186 LAB strains to produce four kinds of indole derivatives, including indole-3-carboxaldehyde (IAId), indole-3-lactic acid (ILA), indole-3-propanoic acid (IPA), and indole-3-acetic acid (IAA). These strains were isolated from fermented foods, dairy products, and the feces of healthy individuals, as well as from fish and shrimp from Shanxi and Jiangsu provinces. They represent 15 genera, including Bifidobacterium, Enterococcus, Lacticaseibacillus, Lactiplantibacillus, Lactobacillus, Lactococcus, Limosilactobacillus, Pediococcus, Streptococcus, Weissella, Latilactobacillus, Levilactobacillus, Ligilactobacillus, and Loigolactobacillus. The results indicate widespread IAId-producing capabilities in LAB strains, with positive rates of approximately 90% (106/117) and 100% (69/69) among strains from Shanxi and Jiangsu provinces, respectively. The concentrations of IAId ranged from 72.42 ng/mL to 423.14 ng/mL in all positive strains from Shanxi Province and from 169.39 ng/mL to 503.51 ng/mL in strains from Jiangsu Province. Intriguingly, we also observed specific ILA-producing capabilities in Lactiplantibacillus strains, with positive rates of 55.17% (16/29) and 80.95% (17/21) among strains isolated from Shanxi and Jiangsu provinces, respectively. The overall detection rates of ILA among all tested strains (including both Lactiplantibacillus and other genus strains) were 17.9% (21/117) and 26.1% (18/69). The concentrations of ILA in positive strains ranged from 12.22 ng/mL to 101.86 ng/mL and from 5.75 ng/mL to 62.96 ng/mL from Shanxi and Jiangsu provinces, respectively. IPA and IAA were not detected in any strains. Finally, these indole derivative-producing capabilities were not related to their geographical origins or isolation sources. The current study provides insights into the species- or genus-dependent capabilities for metabolizing indole derivatives. Defining the specific roles of LAB in indole derivative metabolism will uncover the exact physiological mechanisms and be helpful for functional strain screening.
Collapse
Affiliation(s)
- Bingyang Ma
- Institute of Food Sciences, Shanxi Normal University, Taiyuan 030031, China; (B.M.); (L.L.); (J.X.)
- College of Life Science, Shanxi Normal University, Taiyuan 030031, China;
| | - Yan Zhao
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222005, China;
- Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Liping Liu
- Institute of Food Sciences, Shanxi Normal University, Taiyuan 030031, China; (B.M.); (L.L.); (J.X.)
| | - Jianguo Xu
- Institute of Food Sciences, Shanxi Normal University, Taiyuan 030031, China; (B.M.); (L.L.); (J.X.)
| | - Qingping Hu
- College of Life Science, Shanxi Normal University, Taiyuan 030031, China;
| | - Saisai Feng
- Institute of Food Sciences, Shanxi Normal University, Taiyuan 030031, China; (B.M.); (L.L.); (J.X.)
| | - Liangliang Zhang
- Institute of Food Sciences, Shanxi Normal University, Taiyuan 030031, China; (B.M.); (L.L.); (J.X.)
| |
Collapse
|
46
|
Ahmad S, Mohammed M, Mekala LP, Chintalapati S, Chintalapati R. Proteomic and metabolic profiling reveals molecular phenotype associated with chemotrophic growth of Rubrivivax benzoatilyticus JA2 on L-tryptophan. Mol Omics 2025; 21:51-68. [PMID: 39607403 DOI: 10.1039/d4mo00170b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Rubrivivax benzoatilyticus strain JA2 is an anoxygenic phototrophic bacterium, able to grow under different growth modes. Particularly under chemotrophic conditions, it produces novel Trp-melanin, anthocyanin-like, and pyomelanin pigments. However, the underlying molecular adaptations of strain JA2 that lead to the formation of novel metabolites under chemotrophic conditions remain unexplored. The present study used iTRAQ-based global proteomic and metabolite profiling to unravel the biochemical processes operating under the L-tryptophan-fed chemotrophic state. Exometabolite profiling of L-tryptophan fed chemotrophic cultures revealed production of diverse indolic metabolites, many of which are hydroxyindole derivatives, along with unique pigmented metabolites. Proteomic profiling revealed a global shift in the proteome and detected 2411 proteins, corresponding to 61.8% proteins expressed. Proteins related to signalling, transcription-coupled translation, stress, membrane transport, and metabolism were highly differentially regulated. Extensive rewiring of amino acid, fatty acid, lipid, and energy metabolism was observed under L-tyrptophan fed chemotrophic conditions. Moreover, energy conservation and cell protection strategies such as efflux pumps involved in the efflux of aromatic compounds were activated. The study demonstrated a correlation between some of the detected indole derivatives and the up-regulation of proteins associated with L-tryptophan catabolism, indicating a possible role of aromatic mono/dioxygenases in the formation of hydroxyindole derivatives and pigments under chemotrophic conditions. The overall study revealed metabolic flexibility in utilizing aromatic compounds and molecular adaptations of strain JA2 under the chemotrophic state.
Collapse
Affiliation(s)
- Shabbir Ahmad
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad 500046, Telangana, India.
| | - Mujahid Mohammed
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad 500046, Telangana, India.
| | - Lakshmi Prasuna Mekala
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad 500046, Telangana, India.
| | - Sasikala Chintalapati
- Smart Microbiological Services (SMS), Rashtrapathi Road, Secunderabad 500 003, India
| | - Ramana Chintalapati
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad 500046, Telangana, India.
| |
Collapse
|
47
|
Wang X, Zhou XJ, Qiao X, Falchi M, Liu J, Zhang H. The evolving understanding of systemic mechanisms in organ-specific IgA nephropathy: a focus on gut-kidney crosstalk. Theranostics 2025; 15:656-681. [PMID: 39744688 PMCID: PMC11671385 DOI: 10.7150/thno.104631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 11/18/2024] [Indexed: 01/11/2025] Open
Abstract
The interplay between multiple organs, known as inter-organ crosstalk, represents a complex and essential research domain in understanding the mechanisms and therapies for kidney diseases. The kidneys not only interact pathologically with many other organs but also communicate with other systems through various signaling pathways. It is of paramount importance to comprehend these mechanisms for the development of more efficient therapeutic strategies. Despite extensive research in IgA nephropathy (IgAN), the most common kidney disease, the elaboration mechanism of IgAN remains challenging. Numerous studies suggest that alterations in the intestinal microbiome and its metabolites are pivotal in the progression of IgAN, opening new avenues for understanding its mechanisms. Interestingly, certain presumed probiotics, such as Akkermansia muciniphila, have been implicated in the onset of IgAN, making the exploration of gut microbiota in the context of IgAN pathogenesis even more intriguing. In this review, we summarize the status of gut microbiology studies of IgAN and explore the possible mechanisms and intervention prospects. Future research and treatment directions may increasingly emphasize systemic, multi-organ combined interventions to decelerate the advancement of kidney disease and enhance the overall prognosis of patients.
Collapse
Affiliation(s)
- Xin Wang
- Renal Division, Peking University First Hospital, Beijing, China
- Peking University Institute of Nephrology, Beijing, China
- Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China
- Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, China
- State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, China
| | - Xu-Jie Zhou
- Renal Division, Peking University First Hospital, Beijing, China
- Peking University Institute of Nephrology, Beijing, China
- Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China
- Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, China
- State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, China
| | - Xue Qiao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Mario Falchi
- Department of Twin Research and Genetic Epidemiology, King's College London, London, UK
| | - Jing Liu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, University of Chinese Academy of Science, Beijing, 100190, China
| | - Hong Zhang
- Renal Division, Peking University First Hospital, Beijing, China
- Peking University Institute of Nephrology, Beijing, China
- Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China
- Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, China
- State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, China
| |
Collapse
|
48
|
Aldehoff AS, Türkowsky D, Lohmann P, Homsi MN, Rolle-Kampczyk U, Ueberham E, Lehmann J, Bergen MV, Jehmlich N, Haange SB. Revealing novel protein interaction partners of glyphosate in Escherichia coli. ENVIRONMENT INTERNATIONAL 2025; 195:109243. [PMID: 39733591 DOI: 10.1016/j.envint.2024.109243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 11/20/2024] [Accepted: 12/24/2024] [Indexed: 12/31/2024]
Abstract
Despite all debates about its safe use, glyphosate remains the most widely applied active ingredient in herbicide products, with renewed approval in the European Union until 2033. Non-target organisms are commonly exposed to glyphosate as a matter of its mode of application, with its broader environmental and biological impacts remaining under investigation. Glyphosate displays structural similarity to phosphoenolpyruvate (PEP), thereby competitively inhibiting the 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS), crucial for the synthesis of aromatic amino acids in plants, fungi, bacteria, and archaea. Most microbes, including the gut bacterium Escherichia coli (E. coli), possess a glyphosate-sensitive class I EPSPS, making them vulnerable to glyphosate's effects. Yet, little is known about glyphosate's interactions with other bacterial proteins or its broader modes of action at the proteome level. Here, we employed a quantitative proteomics and thermal proteome profiling (TPP) approach to identify novel protein binding partners of glyphosate in the E. coli proteome. Glyphosate exposure significantly altered amino acid synthesizing pathways. The abundance of shikimate pathway proteins was increased, suggesting a compensatory mechanism. Extracellular riboflavin concentrations were elevated upon glyphosate exposure, while intracellular levels remained stable. Beyond the target enzyme EPSPS, thermal proteome profiling indicated an effect of glyphosate on the thermal stability of certain proteins, including AroH and ProA, indicating interactions. Similar to the competitive binding between PEP and glyphosate at EPSPS, one reason for the interaction of AroH and ProA with the herbicide could be a high structural similarity between their substrates and glyphosate. Overall, glyphosate induced metabolic disturbances in E. coli, extending beyond its primary target, thereby providing new insights into glyphosate's broader impact on microbial systems.
Collapse
Affiliation(s)
- Alix Sarah Aldehoff
- Department of Molecular Toxicology, Helmholtz-Centre for Environmental Research GmbH (UFZ), Leipzig, Germany
| | - Dominique Türkowsky
- Department of Molecular Toxicology, Helmholtz-Centre for Environmental Research GmbH (UFZ), Leipzig, Germany
| | - Patrick Lohmann
- Department of Molecular Toxicology, Helmholtz-Centre for Environmental Research GmbH (UFZ), Leipzig, Germany
| | - Masun Nabhan Homsi
- Department of Molecular Toxicology, Helmholtz-Centre for Environmental Research GmbH (UFZ), Leipzig, Germany
| | - Ulrike Rolle-Kampczyk
- Department of Molecular Toxicology, Helmholtz-Centre for Environmental Research GmbH (UFZ), Leipzig, Germany
| | - Elke Ueberham
- Fraunhofer Institute for Cell Therapy and Immunology IZI, Department Preclinical Development and Validation, Leipzig, Germany
| | - Jörg Lehmann
- Fraunhofer Institute for Cell Therapy and Immunology IZI, Department Preclinical Development and Validation, Leipzig, Germany; Fraunhofer Cluster of Excellence Immune-Mediated Diseases CIMD, Leipzig-Frankfurt-Hannover, Germany
| | - Martin von Bergen
- Department of Molecular Toxicology, Helmholtz-Centre for Environmental Research GmbH (UFZ), Leipzig, Germany; Institute of Biochemistry, Faculty of Biosciences, Pharmacy and Psychology, University of Leipzig, Leipzig, Germany; German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
| | - Nico Jehmlich
- Department of Molecular Toxicology, Helmholtz-Centre for Environmental Research GmbH (UFZ), Leipzig, Germany.
| | - Sven-Bastiaan Haange
- Department of Molecular Toxicology, Helmholtz-Centre for Environmental Research GmbH (UFZ), Leipzig, Germany
| |
Collapse
|
49
|
Nunzi E, Pariano M, Costantini C, Garaci E, Puccetti P, Romani L. Host-microbe serotonin metabolism. Trends Endocrinol Metab 2025; 36:83-95. [PMID: 39142913 DOI: 10.1016/j.tem.2024.07.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 07/16/2024] [Accepted: 07/18/2024] [Indexed: 08/16/2024]
Abstract
As a result of a long evolutionary history, serotonin plays a variety of physiological roles, including neurological, cardiovascular, gastrointestinal, and endocrine functions. While many of these activities can be accommodated within the serotoninergic activity, recent findings have revealed an unsuspected role of serotonin in orchestrating host and microbial dialogue at the tryptophan dining table, to the benefit of local and systemic homeostasis. Herein we review the dual role of serotonin at the host-microbe interface and discuss how unraveling the interconnections among the host and microbial pathways of tryptophan degradation may help to accommodate the versatility of serotonin in physiology and pathology.
Collapse
Affiliation(s)
- Emilia Nunzi
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Marilena Pariano
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Claudio Costantini
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | | | - Paolo Puccetti
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Luigina Romani
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy; Casa di cura San Raffaele, Sulmona, L'Aquila, Italy.
| |
Collapse
|
50
|
Grant ET, De Franco H, Desai MS. Non-SCFA microbial metabolites associated with fiber fermentation and host health. Trends Endocrinol Metab 2025; 36:70-82. [PMID: 38991905 DOI: 10.1016/j.tem.2024.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/13/2024] [Accepted: 06/14/2024] [Indexed: 07/13/2024]
Abstract
Dietary fiber is degraded by commensal gut microbes to yield host-beneficial short-chain fatty acids (SCFAs), but personalized responses to fiber supplementation highlight a role for other microbial metabolites in shaping host health. In this review we summarize recent findings from dietary fiber intervention studies describing health impacts attributed to microbial metabolites other than SCFAs, particularly secondary bile acids (2°BAs), aromatic amino acid derivatives, neurotransmitters, and B vitamins. We also discuss shifts in microbial metabolism occurring through altered maternal dietary fiber intake and agricultural practices, which warrant further investigation. To optimize the health benefits of dietary fibers, it is essential to survey a range of metabolites and adapt recommendations on a personalized basis, according to the different functional aspects of the microbiome.
Collapse
Affiliation(s)
- Erica T Grant
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
| | - Hélène De Franco
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg; Faculty of Science, Technology, and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Mahesh S Desai
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg.
| |
Collapse
|