1
|
Francesconi W, Olivera-Pasilio V, Berton F, Olson SL, Chudoba R, Monroy LM, Krabichler Q, Grinevich V, Dabrowska J. Vasopressin and oxytocin excite BNST neurons via oxytocin receptors, which reduce anxious arousal. Cell Rep 2025; 44:115768. [PMID: 40471787 DOI: 10.1016/j.celrep.2025.115768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 04/10/2025] [Accepted: 05/09/2025] [Indexed: 06/11/2025] Open
Abstract
Interoceptive signals dynamically interact with the environment to shape appropriate defensive behaviors. Hypothalamic hormones arginine-vasopressin (AVP) and oxytocin (OT) regulate physiological states, including water and electrolyte balance, circadian rhythmicity, and defensive behaviors. Both AVP and OT neurons project to the bed nucleus of stria terminalis (BNST), which expresses OT receptors (OTRs) and vasopressin receptors, and governs fear responses. However, understanding the integrated role of AVP and OT is complicated by their cross-reactivity and their mutual receptor promiscuity. Here, we provide evidence that the effects of neurohypophysial hormones on BNST excitability are driven by cell-type-specific receptor selectivity and input specificity. We show that OTR-expressing BNST neurons, excited by hypothalamic AVP and OT inputs via OTR, play a major role in regulating BNST excitability, overcoming threat avoidance, and reducing threat-elicited anxious arousal. Therefore, OTR-BNST neurons are perfectly suited to drive the dynamic interactions balancing external threat risk and physiological needs.
Collapse
Affiliation(s)
- Walter Francesconi
- Center for Neurobiology of Stress Resilience and Psychiatric Disorders, Discipline of Cellular and Molecular Pharmacology, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, IL 60064, USA
| | - Valentina Olivera-Pasilio
- Center for Neurobiology of Stress Resilience and Psychiatric Disorders, Discipline of Cellular and Molecular Pharmacology, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, IL 60064, USA; School of Graduate and Postdoctoral Studies, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, IL 60064, USA; Center for Psychiatric Neuroscience, Department of Psychiatry and Behavioral Sciences, Northwestern University, Chicago, IL 60611, USA
| | - Fulvia Berton
- Center for Neurobiology of Stress Resilience and Psychiatric Disorders, Discipline of Cellular and Molecular Pharmacology, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, IL 60064, USA
| | - Susan L Olson
- Center for Neurobiology of Stress Resilience and Psychiatric Disorders, Discipline of Cellular and Molecular Pharmacology, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, IL 60064, USA
| | - Rachel Chudoba
- Center for Neurobiology of Stress Resilience and Psychiatric Disorders, Discipline of Cellular and Molecular Pharmacology, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, IL 60064, USA; School of Graduate and Postdoctoral Studies, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, IL 60064, USA
| | - Lorena M Monroy
- Center for Neurobiology of Stress Resilience and Psychiatric Disorders, Discipline of Cellular and Molecular Pharmacology, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, IL 60064, USA; Neuroscience Program, Lake Forest College, Lake Forest, IL 60045, USA
| | - Quirin Krabichler
- Department of Neuropeptide Research in Psychiatry, German Center for Mental Health (DZPG), Medical Faculty Mannheim, Heidelberg University, 68159 Mannheim, Germany
| | - Valery Grinevich
- Department of Neuropeptide Research in Psychiatry, German Center for Mental Health (DZPG), Medical Faculty Mannheim, Heidelberg University, 68159 Mannheim, Germany
| | - Joanna Dabrowska
- Center for Neurobiology of Stress Resilience and Psychiatric Disorders, Discipline of Cellular and Molecular Pharmacology, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, IL 60064, USA; School of Graduate and Postdoctoral Studies, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, IL 60064, USA.
| |
Collapse
|
2
|
Xia J, Zou Y, Cui Y, Zhang S, Huo K, Liu W, Huang Z, Zhang Q, Qi Z, Liu W. Physical exercise activates a PVN-NAc oxytocin circuit to relieve stress-induced depressive-like behaviors. Proc Natl Acad Sci U S A 2025; 122:e2503675122. [PMID: 40392854 DOI: 10.1073/pnas.2503675122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Accepted: 04/21/2025] [Indexed: 05/22/2025] Open
Abstract
Physical exercise is known to reduce depression, but the underlying brain mechanisms remain unclear. Based on a chronic restraint stress model in mice, we showed that 4-wk treadmill exercise profoundly maintained normal neural activity in the nucleus accumbens (NAc), in association with the prevention of depressive-like behaviors. Microarray analysis conducted in the NAc revealed that the oxytocin (OT) receptor displayed the most significant differential expression, implying a crucial involvement of OT signaling in exercise-induced antidepressant effects. In vivo fiber photometry revealed disrupted OT release in the NAc and altered activity of OT neurons in the paraventricular nucleus (PVN) and their projections to the NAc in stressed mice, which were restored by exercise. Moreover, we found that stress-induced depressive-like behaviors were prevented by activation of the PVN-NAc OT circuit. Additional inhibition of the PVN-NAc OT circuit blocked the antidepressant effects of exercise in stressed mice. In summary, our findings reveal a critical role of the PVN-NAc OT circuit in regulating depressive-like behaviors, which is required for the antidepressant effects of exercise. This neural circuit mechanism provides an explanation for brain network adaptations upon exercise and also suggests a promising therapeutic target for depression.
Collapse
Affiliation(s)
- Jie Xia
- Department of Physical Education, Shanghai Jiao Tong University, Shanghai 200240, China
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai 200241, China
| | - Yong Zou
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai 200241, China
- College of Physical Education and Health, East China Normal University, Shanghai 200241, China
| | - Yuqing Cui
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai 200241, China
- College of Physical Education and Health, East China Normal University, Shanghai 200241, China
| | - Sen Zhang
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai 200241, China
- College of Physical Education and Health, East China Normal University, Shanghai 200241, China
| | - Konglin Huo
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Wenbin Liu
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai 200241, China
- College of Physical Education and Health, East China Normal University, Shanghai 200241, China
| | - Zhuochun Huang
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai 200241, China
- College of Physical Education and Health, East China Normal University, Shanghai 200241, China
| | - Qiang Zhang
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai 200241, China
- College of Physical Education and Health, East China Normal University, Shanghai 200241, China
| | - Zhengtang Qi
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai 200241, China
- College of Physical Education and Health, East China Normal University, Shanghai 200241, China
| | - Weina Liu
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai 200241, China
- College of Physical Education and Health, East China Normal University, Shanghai 200241, China
| |
Collapse
|
3
|
King LB, Walum H, Xiao Y, Caslin AY, Haddad FC, Young LJ, Johnson ZV. An oxytocin receptor gene polymorphism is associated with distinct neural responses to mating encounters in male prairie voles. Horm Behav 2025; 173:105761. [PMID: 40414117 DOI: 10.1016/j.yhbeh.2025.105761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Revised: 03/22/2025] [Accepted: 05/13/2025] [Indexed: 05/27/2025]
Abstract
Oxytocin is a conserved neuropeptide that regulates social and reproductive behaviors in diverse species. Genetic variation in Oxtr, the gene encoding the oxytocin receptor (OXTR), is associated with variation in social attachment behaviors in rodents and humans; however, it is unclear how genetic variation in Oxtr shapes the function of specific neural systems during social contexts. Here we address this question using the socially monogamous prairie vole (Microtus ochrogaster), a species that expresses an array of OXTR-dependent social behaviors and possesses Oxtr gene polymorphisms that predict individual variation in brain region-specific OXTR expression. We test the neural and behavioral effects of an Oxtr gene polymorphism that has previously been associated with brain region-specific OXTR expression and social attachment behaviors in male prairie voles. Our results suggest that, during brief mating encounters, Oxtr genotype is not associated with differences in mating behavior or in expression levels of the activity-dependent immediate early gene product FOS within brain regions, but it is associated with differences in correlated FOS expression patterns across brain regions.
Collapse
Affiliation(s)
- Lanikea B King
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA 30329, United States of America; Emory National Primate Research Center, Emory University, Atlanta, GA 30329, United States of America
| | - Hasse Walum
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA 30329, United States of America; Emory National Primate Research Center, Emory University, Atlanta, GA 30329, United States of America
| | - Yao Xiao
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA 30329, United States of America; Emory National Primate Research Center, Emory University, Atlanta, GA 30329, United States of America
| | - Asha Y Caslin
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA 30329, United States of America; Emory National Primate Research Center, Emory University, Atlanta, GA 30329, United States of America
| | - Fuad C Haddad
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA 30329, United States of America; Emory National Primate Research Center, Emory University, Atlanta, GA 30329, United States of America
| | - Larry J Young
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA 30329, United States of America; Emory National Primate Research Center, Emory University, Atlanta, GA 30329, United States of America
| | - Zachary V Johnson
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA 30329, United States of America; Emory National Primate Research Center, Emory University, Atlanta, GA 30329, United States of America.
| |
Collapse
|
4
|
Song SC, Froemke RC. Lateralized local circuit tuning in female mouse auditory cortex. Neurosci Res 2025:S0168-0102(25)00068-9. [PMID: 40189152 DOI: 10.1016/j.neures.2025.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2025] [Revised: 02/04/2025] [Accepted: 03/31/2025] [Indexed: 04/14/2025]
Abstract
Most offspring are born helpless, requiring intense caregiving from parents especially during the first few days of neonatal life. For many species, infant cries are a primary signal used by parents to provide caregiving. Previously we and others documented how maternal left auditory cortex rapidly becomes sensitized to pup calls over hours of parental experience, enabled by oxytocin. The speed and robustness of this maternal plasticity suggests cortical pre-tuning or initial bias for pup call stimulus features. Here we examine the circuit basis of left-lateralized tuning to vocalization features with whole-cell recordings in brain slices. We found that layer 2/3 pyramidal cells of female left auditory cortex show selective suppression of inhibitory inputs with repeated stimulation at the fundamental pup call rate (inter-stimulus interval ∼150 msec) in pup-naïve females and expanded with maternal experience. However, optogenetic stimulation of cortical inhibitory cells showed that inputs from somatostatin-positive and oxytocin-receptor-expressing interneurons were less suppressed at these rates. This suggested that disynaptic inhibition rather than monosynaptic depression was a major mechanism underlying pre-tuning of cortical excitatory neurons, confirmed with simulations. Thus cortical interneuron specializations can augment neuroplasticity mechanisms to ensure fast appropriate caregiving in response to infant cries.
Collapse
Affiliation(s)
- Soomin C Song
- Ion Laboratory, New York University Langone Health, New York, NY, USA; Department of Pathology, New York University Grossman School of Medicine, New York, NY, USA; Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, USA; Department of Otolaryngology, New York University Grossman School of Medicine, New York, NY, USA; Department of Neuroscience and Physiology, New York University Grossman School of Medicine, New York, NY, USA
| | - Robert C Froemke
- Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, USA; Department of Otolaryngology, New York University Grossman School of Medicine, New York, NY, USA; Department of Neuroscience and Physiology, New York University Grossman School of Medicine, New York, NY, USA; Center for Neural Science, New York University, New York, NY, USA.
| |
Collapse
|
5
|
Bair-Marshall CJ, Cassel NL, Agha AA, Bkhiet M, Froemke RC. Neural circuit plasticity transforms infant neglect into maternal care. RESEARCH SQUARE 2025:rs.3.rs-5983736. [PMID: 40060051 PMCID: PMC11888542 DOI: 10.21203/rs.3.rs-5983736/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/21/2025]
Abstract
Infants in distress evoke strong emotional responses in adults, which help to elicit caretaking behaviors from parents to ensure infant needs are met1-3. However, neonatal care can also be challenging, and interactions with infants can lead to stress and negative affect even in potential caregivers4-7. Child neglect and maltreatment rates in human populations make it important to understand the neural mechanisms of regulating negative emotions and stress in the parental brain8-10. Here we show how rapid plasticity in female mouse central amygdala (CeA) transforms infant aversion into attentiveness after initial pup experience. Projections from CeA to locus coeruleus (CeA→LC) were strongly activated upon initial pup contact leading to pup aversion. CeA→LC pup responses were reduced with parental experience and down-regulating CeA→LC activity led to less aversion. Oxytocin signaling in central amygdala was required to switch pup aversion to attention, inducing rapid long-term depression of excitatory inputs onto projection neurons. CeA→LC projectors released the stress hormone corticotropin-releasing factor onto LC neurons, modulating phasic firing to regulate attention. This circuit organization enables local CeA computations of pup valence to be broadcast throughout the brain by the LC central arousal system, leading to appropriate pup-directed behaviors depending on adult state.
Collapse
Affiliation(s)
- Chloe J Bair-Marshall
- Neuroscience Institute, New York University School of Medicine, New York, NY 10016 USA
- Department of Otolaryngology, New York University School of Medicine, New York, NY 10016, USA
- Department of Neuroscience and Physiology, New York University School of Medicine, New York, NY 10016, USA
- Center for Neural Science, New York University, New York, NY 10003, USA
| | - Naomi L Cassel
- Neuroscience Institute, New York University School of Medicine, New York, NY 10016 USA
- Department of Otolaryngology, New York University School of Medicine, New York, NY 10016, USA
- Department of Neuroscience and Physiology, New York University School of Medicine, New York, NY 10016, USA
- Center for Neural Science, New York University, New York, NY 10003, USA
- Barnard College, New York, NY 10027, USA
| | - Ayat A Agha
- Neuroscience Institute, New York University School of Medicine, New York, NY 10016 USA
- Department of Otolaryngology, New York University School of Medicine, New York, NY 10016, USA
- Department of Neuroscience and Physiology, New York University School of Medicine, New York, NY 10016, USA
- Center for Neural Science, New York University, New York, NY 10003, USA
| | - Malak Bkhiet
- Neuroscience Institute, New York University School of Medicine, New York, NY 10016 USA
- Department of Otolaryngology, New York University School of Medicine, New York, NY 10016, USA
- Department of Neuroscience and Physiology, New York University School of Medicine, New York, NY 10016, USA
- Center for Neural Science, New York University, New York, NY 10003, USA
- Barnard College, New York, NY 10027, USA
| | - Robert C Froemke
- Neuroscience Institute, New York University School of Medicine, New York, NY 10016 USA
- Department of Otolaryngology, New York University School of Medicine, New York, NY 10016, USA
- Department of Neuroscience and Physiology, New York University School of Medicine, New York, NY 10016, USA
- Center for Neural Science, New York University, New York, NY 10003, USA
| |
Collapse
|
6
|
Camerino C. The Dynamicity of the Oxytocin Receptor in the Brain May Trigger Sensory Deficits in Autism Spectrum Disorder. Curr Issues Mol Biol 2025; 47:61. [PMID: 39852176 PMCID: PMC11763978 DOI: 10.3390/cimb47010061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 01/09/2025] [Accepted: 01/10/2025] [Indexed: 01/26/2025] Open
Abstract
Sensory processing abnormalities have been noted since the first clinical description of autism in 1940. However, it was not until the release of the fifth edition of the Diagnostic and Statistical Manual of Mental Disorders (DSM-5) in 2013 that sensory challenges were considered as symptoms of autism spectrum disorder (ASD). Multisensory processing is of paramount importance in building a perceptual and cognitive representation of reality. For this reason, deficits in multisensory integration may be a characteristic of ASD. The neurohormone oxytocin (Oxt) is involved in the etiology of ASD, and there are several ongoing clinical trials regarding Oxt administration in ASD patients. Recent studies indicate that Oxt triggers muscle contraction modulating thermogenesis, while abnormal thermoregulation results in sensory deficits, as in ASD. Activation of the Oxt system through exposure to cold stress regulates the expression of oxytocin receptor (Oxtr) in the brain and circulating Oxt, and if this mechanism is pathologically disrupted, it can lead to sensory processing abnormalities since Oxt acts as a master gene that regulates thermogenesis. This review will describe the sensory deficits characteristic of ASD together with the recent theories regarding how the modulation of Oxt/Oxtr in the brain influences sensory processing in ASD.
Collapse
Affiliation(s)
- Claudia Camerino
- Department of Precision and Regenerative Medicine, School of Medicine, University of Bari Aldo Moro, P.za G. Cesare 11, 70100 Bari, Italy;
- Department of Physiology and Pharmacology “V. Erspamer”, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy
| |
Collapse
|
7
|
Sarahian N, Khodagholi F, Valian N, Ahmadiani A. Interplay of MeCP2/REST/Synaptophysin-BDNF and intranasal oxytocin influence on Aβ-induced memory and cognitive impairments. Behav Brain Res 2025; 476:115235. [PMID: 39236931 DOI: 10.1016/j.bbr.2024.115235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 09/01/2024] [Accepted: 09/01/2024] [Indexed: 09/07/2024]
Abstract
BACKGROUND Alzheimer's disease (AD) is linked to the accumulation of Aβ, increased tau hyperphosphorylation, persistent neuroinflammation, and a decline in neurotrophic factors, neurogenesis, and synaptic plasticity. Oxytocin (OT) has a significant impact on memory and learning. We examined the influence of intranasal (IN) OT on synaptic plasticity, neurogenesis, histone acetylation, and spatial and cognitive memories in rats. METHODS Aβ25-35 (5 µg/2.5 µl) was administered bilaterally in the CA1 of male Wistar rats for four consecutive days. After seven days of recovery, OT (2 µg/µl, 10 µl in each nostril) was administered IN for seven consecutive days. Working, spatial, and cognitive memories, and gene expression of neurogenesis- and synaptic plasticity-involved factors were measured in the hippocampus. Histone acetylation (H3K9 and H4K8) was also measured using western blotting. RESULTS IN administration of OT significantly improved working and spatial memory impairment induced by Aβ and increased the factors involved in synaptic plasticity (MeCP2, REST, synaptophysin, and BDNF) and neurogenesis (Ki67 and DCX). We also found an enhancement in the levels of H3K9ac and H4K8ac following OT administration. CONCLUSION These findings indicated that IN OT could improve hippocampus-related behaviors by increasing synaptic plasticity, stimulating neurogenesis, and chromatin plasticity.
Collapse
Affiliation(s)
- Nahid Sarahian
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Islamic Republic of Iran
| | - Fariba Khodagholi
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Islamic Republic of Iran
| | - Neda Valian
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Islamic Republic of Iran.
| | - Abolhassan Ahmadiani
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Islamic Republic of Iran.
| |
Collapse
|
8
|
Kaplan HS, Horvath PM, Rahman MM, Dulac C. The neurobiology of parenting and infant-evoked aggression. Physiol Rev 2025; 105:315-381. [PMID: 39146250 DOI: 10.1152/physrev.00036.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 07/19/2024] [Accepted: 08/09/2024] [Indexed: 08/17/2024] Open
Abstract
Parenting behavior comprises a variety of adult-infant and adult-adult interactions across multiple timescales. The state transition from nonparent to parent requires an extensive reorganization of individual priorities and physiology and is facilitated by combinatorial hormone action on specific cell types that are integrated throughout interconnected and brainwide neuronal circuits. In this review, we take a comprehensive approach to integrate historical and current literature on each of these topics across multiple species, with a focus on rodents. New and emerging molecular, circuit-based, and computational technologies have recently been used to address outstanding gaps in our current framework of knowledge on infant-directed behavior. This work is raising fundamental questions about the interplay between instinctive and learned components of parenting and the mutual regulation of affiliative versus agonistic infant-directed behaviors in health and disease. Whenever possible, we point to how these technologies have helped gain novel insights and opened new avenues of research into the neurobiology of parenting. We hope this review will serve as an introduction for those new to the field, a comprehensive resource for those already studying parenting, and a guidepost for designing future studies.
Collapse
Affiliation(s)
- Harris S Kaplan
- Department of Molecular and Cellular Biology, Howard Hughes Medical Institute, Center for Brain Science, Harvard University, Cambridge, Massachusetts, United States
| | - Patricia M Horvath
- Department of Molecular and Cellular Biology, Howard Hughes Medical Institute, Center for Brain Science, Harvard University, Cambridge, Massachusetts, United States
| | - Mohammed Mostafizur Rahman
- Department of Molecular and Cellular Biology, Howard Hughes Medical Institute, Center for Brain Science, Harvard University, Cambridge, Massachusetts, United States
| | - Catherine Dulac
- Department of Molecular and Cellular Biology, Howard Hughes Medical Institute, Center for Brain Science, Harvard University, Cambridge, Massachusetts, United States
| |
Collapse
|
9
|
Wang Y, Lin D. Stress and parental behaviors. Neurosci Res 2024:S0168-0102(24)00154-8. [PMID: 39674404 DOI: 10.1016/j.neures.2024.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 11/12/2024] [Accepted: 12/09/2024] [Indexed: 12/16/2024]
Abstract
In nearly all mammalian species, newborn pups are weak and vulnerable, relying heavily on care and protection from parents for survival. Thus, developmentally hardwired neural circuits are in place to ensure the timely expression of parental behaviors. Furthermore, several neurochemical systems, including estrogen, oxytocin, and dopamine, facilitate the emergence and expression of parental behaviors. However, stress can adversely affect these systems, impairing parental behaviors. In this review, we will summarize our current knowledge regarding the impact of stress on pup-directed behavior circuits that lead to infant neglect, abuse, and, in extreme cases, killing. We will discuss various stressors that influence parental behaviors at different life stages and how stress induces changes in the neurochemical systems that support parental care, ultimately leading to its poor performance.
Collapse
Affiliation(s)
- Yifan Wang
- Neuroscience Institute, New York University Langone Medical Center, New York, NY, USA.
| | - Dayu Lin
- Neuroscience Institute, New York University Langone Medical Center, New York, NY, USA; Department of Psychiatry, New York University Langone Medical Center, New York, NY, USA; Department of Neuroscience and physiology, New York University Langone Medical Center, New York, NY, USA.
| |
Collapse
|
10
|
Alaerts K, Moerkerke M, Daniels N, Zhang Q, Grazia R, Steyaert J, Prinsen J, Boets B. Chronic oxytocin improves neural decoupling at rest in children with autism: an exploratory RCT. J Child Psychol Psychiatry 2024; 65:1311-1326. [PMID: 38400592 DOI: 10.1111/jcpp.13966] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/17/2024] [Indexed: 02/25/2024]
Abstract
BACKGROUND Shifts in peak frequencies of oscillatory neural rhythms are put forward as a principal mechanism by which cross-frequency coupling/decoupling is implemented in the brain. During active neural processing, functional integration is facilitated through transitory formations of "harmonic" cross-frequency couplings, whereas "nonharmonic" decoupling among neural oscillatory rhythms is postulated to characterize the resting, default state of the brain, minimizing the occurrence of spurious, noisy, background couplings. METHODS Within this exploratory, randomized, placebo-controlled trial, we assessed whether the transient occurrence of nonharmonic and harmonic relationships between peak-frequencies in the alpha (8-14 Hz) and theta (4-8 Hz) bands is impacted by intranasal administration of oxytocin, a neuromodulator implicated in improving homeostasis and reducing stress/anxiety. To do so, resting-state electroencephalography was acquired before and after 4 weeks of oxytocin administration (12 IU twice-daily) in children with autism spectrum disorder (8-12 years, n = 33 oxytocin; n = 34 placebo). At the baseline, neural assessments of children with autism were compared with those of a matched cohort of children without autism (n = 40). RESULTS Compared to nonautistic peers, autistic children displayed a lower incidence of nonharmonic alpha-theta cross-frequency decoupling, indicating a higher incidence of spurious "noisy" coupling in their resting brain (p = .001). Dimensionally, increased neural coupling was associated with more social difficulties (p = .002) and lower activity of the parasympathetic "rest & digest" branch of the autonomic nervous system (p = .018), indexed with high-frequency heart-rate-variability. Notably, after oxytocin administration, the transient formation of nonharmonic cross-frequency configurations was increased in the cohort of autistic children (p < .001), indicating a beneficial effect of oxytocin on reducing spurious cross-frequency-interactions. Furthermore, parallel epigenetics changes of the oxytocin receptor gene indicated that the neural effects were likely mediated by changes in endogenous oxytocinergic signaling (p = .006). CONCLUSIONS Chronic oxytocin induced important homeostatic changes in the resting-state intrinsic neural frequency architecture, reflective of reduced noisy oscillatory couplings and improved signal-to-noise properties.
Collapse
Affiliation(s)
- Kaat Alaerts
- Research Group for Neurorehabilitation, Neuromodulation Laboratory, KU Leuven, Leuven, Belgium
- Leuven Autism Research (LAuRes), KU Leuven, Leuven, Belgium
| | - Matthijs Moerkerke
- Leuven Autism Research (LAuRes), KU Leuven, Leuven, Belgium
- Department of Neurosciences, Center for Developmental Psychiatry, KU Leuven, Leuven, Belgium
| | - Nicky Daniels
- Research Group for Neurorehabilitation, Neuromodulation Laboratory, KU Leuven, Leuven, Belgium
- Leuven Autism Research (LAuRes), KU Leuven, Leuven, Belgium
| | - Qianqian Zhang
- Research Group for Neurorehabilitation, Neuromodulation Laboratory, KU Leuven, Leuven, Belgium
- Leuven Autism Research (LAuRes), KU Leuven, Leuven, Belgium
| | - Ricchiuti Grazia
- Research Group for Neurorehabilitation, Neuromodulation Laboratory, KU Leuven, Leuven, Belgium
- Leuven Autism Research (LAuRes), KU Leuven, Leuven, Belgium
| | - Jean Steyaert
- Leuven Autism Research (LAuRes), KU Leuven, Leuven, Belgium
| | - Jellina Prinsen
- Research Group for Neurorehabilitation, Neuromodulation Laboratory, KU Leuven, Leuven, Belgium
- Leuven Autism Research (LAuRes), KU Leuven, Leuven, Belgium
| | - Bart Boets
- Leuven Autism Research (LAuRes), KU Leuven, Leuven, Belgium
- Department of Neurosciences, Center for Developmental Psychiatry, KU Leuven, Leuven, Belgium
| |
Collapse
|
11
|
Francesconi W, Olivera-Pasilio V, Berton F, Olson SL, Chudoba R, Monroy LM, Krabichler Q, Grinevich V, Dabrowska J. Like sisters but not twins - vasopressin and oxytocin excite BNST neurons via cell type-specific expression of oxytocin receptor to reduce anxious arousal. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.06.611656. [PMID: 39282380 PMCID: PMC11398521 DOI: 10.1101/2024.09.06.611656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
Interoceptive signals dynamically interact with the environment to shape appropriate defensive behaviors. Hypothalamic hormones arginine-vasopressin (AVP) and oxytocin (OT) regulate physiological states, including water and electrolyte balance, circadian rhythmicity, and defensive behaviors. Both AVP and OT neurons project to dorsolateral bed nucleus of stria terminalis (BNSTDL), which expresses oxytocin receptors (OTR) and vasopressin receptors and mediates fear responses. However, understanding the integrated role of neurohypophysial hormones is complicated by the cross-reactivity of AVP and OT and their mutual receptor promiscuity. Here, we provide evidence that the effects of neurohypophysial hormones on BNST excitability are driven by input specificity and cell type-specific receptor selectivity. We show that OTR-expressing BNSTDL neurons, excited by hypothalamic OT and AVP inputs via OTR, play a major role in regulating BNSTDL excitability, overcoming threat avoidance, and reducing threat-elicited anxious arousal. Therefore, OTR-BNSTDL neurons are perfectly suited to drive the dynamic interactions balancing external threat risk and physiological needs.
Collapse
Affiliation(s)
- Walter Francesconi
- Center for Neurobiology of Stress Resilience and Psychiatric Disorders, Discipline of Cellular and Molecular Pharmacology, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, IL, 60064, USA
| | - Valentina Olivera-Pasilio
- Center for Neurobiology of Stress Resilience and Psychiatric Disorders, Discipline of Cellular and Molecular Pharmacology, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, IL, 60064, USA
- School of Graduate and Postdoctoral Studies, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, IL, 60064, USA
- Center for Psychiatric Neuroscience, Department of Psychiatry and Behavioral Sciences, Northwestern University, Chicago, IL, 60611, USA
| | - Fulvia Berton
- Center for Neurobiology of Stress Resilience and Psychiatric Disorders, Discipline of Cellular and Molecular Pharmacology, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, IL, 60064, USA
| | - Susan L. Olson
- Center for Neurobiology of Stress Resilience and Psychiatric Disorders, Discipline of Cellular and Molecular Pharmacology, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, IL, 60064, USA
| | - Rachel Chudoba
- Center for Neurobiology of Stress Resilience and Psychiatric Disorders, Discipline of Cellular and Molecular Pharmacology, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, IL, 60064, USA
- School of Graduate and Postdoctoral Studies, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, IL, 60064, USA
| | - Lorena M. Monroy
- Center for Neurobiology of Stress Resilience and Psychiatric Disorders, Discipline of Cellular and Molecular Pharmacology, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, IL, 60064, USA
- Neuroscience Program, Lake Forest College, Lake Forest, IL, 60045, USA
| | - Quirin Krabichler
- Department of Neuropeptide Research in Psychiatry, German Center for Mental Health (DZPG), Medical Faculty Mannheim, Heidelberg University, 68159 Mannheim, Germany
| | - Valery Grinevich
- Department of Neuropeptide Research in Psychiatry, German Center for Mental Health (DZPG), Medical Faculty Mannheim, Heidelberg University, 68159 Mannheim, Germany
| | - Joanna Dabrowska
- Center for Neurobiology of Stress Resilience and Psychiatric Disorders, Discipline of Cellular and Molecular Pharmacology, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, IL, 60064, USA
- School of Graduate and Postdoctoral Studies, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, IL, 60064, USA
| |
Collapse
|
12
|
Bensing PC, Moye C, Leong KC. Oxytocin attenuates cocaine-associated place preference via the dorsal hippocampus in male and female rats. Physiol Behav 2024; 282:114599. [PMID: 38823754 DOI: 10.1016/j.physbeh.2024.114599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 02/23/2024] [Accepted: 05/29/2024] [Indexed: 06/03/2024]
Abstract
Cocaine addiction is the third largest cause of overdose-related deaths in the United States. Research investigating therapeutic targets for cocaine reward processes is key to combating this issue. The neuropeptide oxytocin (OXT) has been shown to reduce cocaine reward processes, though specific mechanisms are not understood. This study examines the effect of intra-dorsal hippocampal (DH) OXT on the expression of cocaine context associations using a conditioned place preference (CPP) paradigm. In this paradigm, one of two visually distinct chambers is paired with a drug. With repeated pairings, control animals display preference for the drug-associated context by spending more time in that context at test. In the present study, four conditioning days took place where male and female rats were injected with either cocaine or saline and placed into the corresponding chamber. On test day, rats received infusions of OXT or saline (VEH) into the DH and were allowed access to both chambers. The results show that while VEH-infused rats displayed cocaine CPP, OXT-infused rats did not prefer the cocaine-paired chamber. These findings implicate the DH as necessary in the mechanism by which OXT acts to block the expression of cocaine-context associations, providing insight into how OXT may exert its therapeutic effect in cocaine reward processes.
Collapse
Affiliation(s)
- Paige C Bensing
- Department of Psychology, Trinity University, San Antonio, Texas
| | - Chase Moye
- Department of Psychology, Trinity University, San Antonio, Texas
| | - Kah-Chung Leong
- Department of Psychology, Trinity University, San Antonio, Texas.
| |
Collapse
|
13
|
Wu MW, Kourdougli N, Portera-Cailliau C. Network state transitions during cortical development. Nat Rev Neurosci 2024; 25:535-552. [PMID: 38783147 PMCID: PMC11825063 DOI: 10.1038/s41583-024-00824-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/01/2024] [Indexed: 05/25/2024]
Abstract
Mammalian cortical networks are active before synaptogenesis begins in earnest, before neuronal migration is complete, and well before an animal opens its eyes and begins to actively explore its surroundings. This early activity undergoes several transformations during development. The most important of these is a transition from episodic synchronous network events, which are necessary for patterning the neocortex into functionally related modules, to desynchronized activity that is computationally more powerful and efficient. Network desynchronization is perhaps the most dramatic and abrupt developmental event in an otherwise slow and gradual process of brain maturation. In this Review, we summarize what is known about the phenomenology of developmental synchronous activity in the rodent neocortex and speculate on the mechanisms that drive its eventual desynchronization. We argue that desynchronization of network activity is a fundamental step through which the cortex transitions from passive, bottom-up detection of sensory stimuli to active sensory processing with top-down modulation.
Collapse
Affiliation(s)
- Michelle W Wu
- Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
- Neuroscience Interdepartmental Graduate Program, University of California Los Angeles, Los Angeles, CA, USA
- UCLA-Caltech Medical Scientist Training Program, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Nazim Kourdougli
- Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Carlos Portera-Cailliau
- Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA.
- Department of Neurobiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
14
|
Wolf D, Hartig R, Zhuo Y, Scheller MF, Articus M, Moor M, Grinevich V, Linster C, Russo E, Weber-Fahr W, Reinwald JR, Kelsch W. Oxytocin induces the formation of distinctive cortical representations and cognitions biased toward familiar mice. Nat Commun 2024; 15:6274. [PMID: 39054324 PMCID: PMC11272796 DOI: 10.1038/s41467-024-50113-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 06/28/2024] [Indexed: 07/27/2024] Open
Abstract
Social recognition is essential for the formation of social structures. Many times, recognition comes with lesser exploration of familiar animals. This lesser exploration has led to the assumption that recognition may be a habituation memory. The underlying memory mechanisms and the thereby acquired cortical representations of familiar mice have remained largely unknown, however. Here, we introduce an approach directly examining the recognition process from volatile body odors among male mice. We show that volatile body odors emitted by mice are sufficient to identify individuals and that more salience is assigned to familiar mice. Familiarity is encoded by reinforced population responses in two olfactory cortex hubs and communicated to other brain regions. The underlying oxytocin-induced plasticity promotes the separation of the cortical representations of familiar from other mice. In summary, neuronal encoding of familiar animals is distinct and utilizes the cortical representational space more broadly, promoting storage of complex social relationships.
Collapse
Affiliation(s)
- David Wolf
- Department of Psychiatry and Psychotherapy, University Medical Center, Johannes Gutenberg University, 55131, Mainz, Germany
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, 68159, Mannheim, Germany
| | - Renée Hartig
- Department of Psychiatry and Psychotherapy, University Medical Center, Johannes Gutenberg University, 55131, Mainz, Germany
| | - Yi Zhuo
- Department of Psychiatry and Psychotherapy, University Medical Center, Johannes Gutenberg University, 55131, Mainz, Germany
| | - Max F Scheller
- Department of Psychiatry and Psychotherapy, University Medical Center, Johannes Gutenberg University, 55131, Mainz, Germany
| | - Mirko Articus
- Department of Psychiatry and Psychotherapy, University Medical Center, Johannes Gutenberg University, 55131, Mainz, Germany
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, 68159, Mannheim, Germany
| | - Marcel Moor
- Department of Psychiatry and Psychotherapy, University Medical Center, Johannes Gutenberg University, 55131, Mainz, Germany
| | - Valery Grinevich
- Department of Neuropeptide Research in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, 68159, Mannheim, Germany
| | - Christiane Linster
- Computational Physiology Laboratory, Department of Neurobiology and Behavior, Cornell University, Ithaca, New York, NY, 14850, USA
| | - Eleonora Russo
- Department of Psychiatry and Psychotherapy, University Medical Center, Johannes Gutenberg University, 55131, Mainz, Germany
- The BioRobotics Institute, Department of Excellence in Robotics and AI, Scuola Superiore Sant'Anna, 56127, Pisa, Italy
| | - Wolfgang Weber-Fahr
- Department of Neuroimaging, Translational Imaging, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, 68159, Mannheim, Germany
| | - Jonathan R Reinwald
- Department of Psychiatry and Psychotherapy, University Medical Center, Johannes Gutenberg University, 55131, Mainz, Germany
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, 68159, Mannheim, Germany
- Department of Neuroimaging, Translational Imaging, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, 68159, Mannheim, Germany
| | - Wolfgang Kelsch
- Department of Psychiatry and Psychotherapy, University Medical Center, Johannes Gutenberg University, 55131, Mainz, Germany.
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, 68159, Mannheim, Germany.
| |
Collapse
|
15
|
Hadler MD, Alle H, Geiger JRP. Parvalbumin interneuron cell-to-network plasticity: mechanisms and therapeutic avenues. Trends Pharmacol Sci 2024; 45:586-601. [PMID: 38763836 DOI: 10.1016/j.tips.2024.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 04/16/2024] [Accepted: 04/16/2024] [Indexed: 05/21/2024]
Abstract
Alzheimer's disease (AD) and schizophrenia (SCZ) represent two major neuropathological conditions with a high disease burden. Despite their distinct etiologies, patients suffering from AD or SCZ share a common burden of disrupted memory functions unattended by current therapies. Recent preclinical analyses highlight cell-type-specific contributions of parvalbumin interneurons (PVIs), particularly the plasticity of their cellular excitability, towards intact neuronal network function (cell-to-network plasticity) and memory performance. Here we argue that deficits of PVI cell-to-network plasticity may underlie memory deficits in AD and SCZ, and we explore two therapeutic avenues: the targeting of PVI-specific neuromodulation, including by neuropeptides, and the recruitment of network synchrony in the gamma frequency range (40 Hz) by external stimulation. We finally propose that these approaches be merged under consideration of recent insights into human brain physiology.
Collapse
Affiliation(s)
- Michael D Hadler
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Charitéplatz 1, 10117 Berlin, Germany; Institute of Neurophysiology, Charité-Universitätsmedizin Berlin, Berlin, Germany.
| | - Henrik Alle
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Charitéplatz 1, 10117 Berlin, Germany; Institute of Neurophysiology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Jörg R P Geiger
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Charitéplatz 1, 10117 Berlin, Germany; Institute of Neurophysiology, Charité-Universitätsmedizin Berlin, Berlin, Germany.
| |
Collapse
|
16
|
George K, Hoang HT, Tibbs T, Nagaraja RY, Li G, Troyano-Rodriguez E, Ahmad M. Robust GRK2/3/6-dependent desensitization of oxytocin receptor in neurons. iScience 2024; 27:110047. [PMID: 38883814 PMCID: PMC11179071 DOI: 10.1016/j.isci.2024.110047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 02/22/2024] [Accepted: 05/17/2024] [Indexed: 06/18/2024] Open
Abstract
Oxytocin plays critical roles in the brain as a neuromodulator, regulating social and other affective behavior. However, the regulatory mechanisms controlling oxytocin receptor (OXTR) signaling in neurons remain unexplored. In this study, we have identified robust and rapid-onset desensitization of OXTR response in multiple regions of the mouse brain. Both cell autonomous spiking response and presynaptic activation undergo similar agonist-induced desensitization. G-protein-coupled receptor kinases (GRK) GRK2, GRK3, and GRK6 are recruited to the activated OXTR in neurons, followed by recruitment of β-arrestin-1 and -2. Neuronal OXTR desensitization was impaired by suppression of GRK2/3/6 kinase activity but remained unaltered with double knockout of β-arrestin-1 and -2. Additionally, we observed robust agonist-induced internalization of neuronal OXTR and its Rab5-dependent recruitment to early endosomes, which was impaired by GRK2/3/6 inhibition. This work defines distinctive aspects of the mechanisms governing OXTR desensitization and internalization in neurons compared to prior studies in heterologous cells.
Collapse
Affiliation(s)
- Kiran George
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Hanh T.M. Hoang
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Taryn Tibbs
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Raghavendra Y. Nagaraja
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Guangpu Li
- Department of Biochemistry and Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Eva Troyano-Rodriguez
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Mohiuddin Ahmad
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| |
Collapse
|
17
|
Zhang Y, Karadas M, Liu J, Gu X, Vöröslakos M, Li Y, Tsien RW, Buzsáki G. Interaction of acetylcholine and oxytocin neuromodulation in the hippocampus. Neuron 2024; 112:1862-1875.e5. [PMID: 38537642 PMCID: PMC11156550 DOI: 10.1016/j.neuron.2024.02.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 01/17/2024] [Accepted: 02/29/2024] [Indexed: 06/09/2024]
Abstract
A postulated role of subcortical neuromodulators is to control brain states. Mechanisms by which different neuromodulators compete or cooperate at various temporal scales remain an open question. We investigated the interaction of acetylcholine (ACh) and oxytocin (OXT) at slow and fast timescales during various brain states. Although these neuromodulators fluctuated in parallel during NREM packets, transitions from NREM to REM were characterized by a surge of ACh but a continued decrease of OXT. OXT signaling lagged behind ACh. High ACh was correlated with population synchrony and gamma oscillations during active waking, whereas minimum ACh predicts sharp-wave ripples (SPW-Rs). Optogenetic control of ACh and OXT neurons confirmed the active role of these neuromodulators in the observed correlations. Synchronous hippocampal activity consistently reduced OXT activity, whereas inactivation of the lateral septum-hypothalamus path attenuated this effect. Our findings demonstrate how cooperative actions of these neuromodulators allow target circuits to perform specific functions.
Collapse
Affiliation(s)
| | | | | | - Xinyi Gu
- Neuroscience Institute, New York, NY, USA
| | | | - Yulong Li
- School of Life Science, Peking University, Beijing, China
| | - Richard W Tsien
- Neuroscience Institute, New York, NY, USA; Department of Neurology, Langone Medical Center, New York University, New York, NY 10016, USA; Center for Neural Science, New York University, New York, NY 10003, USA
| | - György Buzsáki
- Neuroscience Institute, New York, NY, USA; Department of Neurology, Langone Medical Center, New York University, New York, NY 10016, USA; Center for Neural Science, New York University, New York, NY 10003, USA.
| |
Collapse
|
18
|
Li R, Zeng Q, Ji M, Zhang Y, Mao M, Feng S, Duan M, Zhou Z. Oxytocin ameliorates cognitive impairments by attenuating excitation/inhibition imbalance of neurotransmitters acting on parvalbumin interneurons in a mouse model of sepsis-associated encephalopathy. J Biomed Res 2024; 39:1-14. [PMID: 38808550 PMCID: PMC11982676 DOI: 10.7555/jbr.37.20230318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 04/30/2024] [Accepted: 05/06/2024] [Indexed: 05/30/2024] Open
Abstract
Inflammation plays a crucial role in the initiation and progression of sepsis, and it also induces alterations in brain neurotransmission, thereby contributing to the development of sepsis-associated encephalopathy (SAE). Parvalbumin (PV) interneurons are pivotal contributors to cognitive processes in various central dysfunctions including SAE. Oxytocin, known for its ability to augment the firing rate of gamma-aminobutyric acid (GABA)ergic interneurons and directly stimulate inhibitory interneurons to enhance the tonic inhibition of pyramidal neurons, has prompted an investigation into its potential effects on cognitive dysfunction in SAE. In the current study, we administered intranasal oxytocin to the SAE mice induced by lipopolysaccharide (LPS). Behavioral assessments, including open field, Y-maze, and fear conditioning, were used to evaluate cognitive performance. Golgi staining revealed hippocampal synaptic deterioration, local field potential recordings showed weakened gamma oscillations, and immunofluorescence analysis demonstrated decreased PV expression in the cornu ammonis 1 (CA1) region of the hippocampus following LPS treatment, which was alleviated by oxytocin. Furthermore, immunofluorescence staining of PV co-localization with vesicular glutamate transporter 1 or vesicular GABA transporter indicated a balanced excitation/inhibition effect of neurotransmitters on PV interneurons after oxytocin administration in the SAE mice, leading to improved cognitive function. In conclusion, cognitive function improved after oxytocin treatment. The number of PV neurons in the hippocampal CA1 region and the balance of excitatory/inhibitory synaptic transmission on PV interneurons, as well as changes in local field potential gamma oscillations in the hippocampal CA1 region, may represent its specific mechanisms.
Collapse
Affiliation(s)
- Renqi Li
- Department of Anesthesiology, Jinling Clinical Medical College of Nanjing Medical University, Nanjing, Jiangsu 210002, China
- Department of Anesthesiology, Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, Nanjing, Jiangsu 210004, China
| | - Qiuting Zeng
- Department of Anesthesiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, China
| | - Muhuo Ji
- Department of Anesthesiology, the Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu 210011, China
| | - Yue Zhang
- Department of Anesthesiology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu 210002, China
| | - Mingjie Mao
- Department of Anesthesiology, Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, Nanjing, Jiangsu 210004, China
| | - Shanwu Feng
- Department of Anesthesiology, Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, Nanjing, Jiangsu 210004, China
| | - Manlin Duan
- Department of Anesthesiology, Jinling Clinical Medical College of Nanjing Medical University, Nanjing, Jiangsu 210002, China
| | - Zhiqiang Zhou
- Department of Anesthesiology, Jinling Clinical Medical College of Nanjing Medical University, Nanjing, Jiangsu 210002, China
| |
Collapse
|
19
|
Davies C, Martins D, Dipasquale O, McCutcheon RA, De Micheli A, Ramella-Cravaro V, Provenzani U, Rutigliano G, Cappucciati M, Oliver D, Williams S, Zelaya F, Allen P, Murguia S, Taylor D, Shergill S, Morrison P, McGuire P, Paloyelis Y, Fusar-Poli P. Connectome dysfunction in patients at clinical high risk for psychosis and modulation by oxytocin. Mol Psychiatry 2024; 29:1241-1252. [PMID: 38243074 PMCID: PMC11189815 DOI: 10.1038/s41380-024-02406-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 12/20/2023] [Accepted: 01/02/2024] [Indexed: 01/21/2024]
Abstract
Abnormalities in functional brain networks (functional connectome) are increasingly implicated in people at Clinical High Risk for Psychosis (CHR-P). Intranasal oxytocin, a potential novel treatment for the CHR-P state, modulates network topology in healthy individuals. However, its connectomic effects in people at CHR-P remain unknown. Forty-seven men (30 CHR-P and 17 healthy controls) received acute challenges of both intranasal oxytocin 40 IU and placebo in two parallel randomised, double-blind, placebo-controlled cross-over studies which had similar but not identical designs. Multi-echo resting-state fMRI data was acquired at approximately 1 h post-dosing. Using a graph theoretical approach, the effects of group (CHR-P vs healthy control), treatment (oxytocin vs placebo) and respective interactions were tested on graph metrics describing the topology of the functional connectome. Group effects were observed in 12 regions (all pFDR < 0.05) most localised to the frontoparietal network. Treatment effects were found in 7 regions (all pFDR < 0.05) predominantly within the ventral attention network. Our major finding was that many effects of oxytocin on network topology differ across CHR-P and healthy individuals, with significant interaction effects observed in numerous subcortical regions strongly implicated in psychosis onset, such as the thalamus, pallidum and nucleus accumbens, and cortical regions which localised primarily to the default mode network (12 regions, all pFDR < 0.05). Collectively, our findings provide new insights on aberrant functional brain network organisation associated with psychosis risk and demonstrate, for the first time, that oxytocin modulates network topology in brain regions implicated in the pathophysiology of psychosis in a clinical status (CHR-P vs healthy control) specific manner.
Collapse
Affiliation(s)
- Cathy Davies
- Early Psychosis: Interventions & Clinical-detection (EPIC) Lab, Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK.
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK.
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK.
| | - Daniel Martins
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
- National Institute for Health Research (NIHR) Maudsley Biomedical Research Centre (BRC), South London and Maudsley NHS Foundation Trust, London, UK
- Department of Psychiatry, University Hospitals of Genève, Geneva, Switzerland
| | - Ottavia Dipasquale
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Robert A McCutcheon
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
- Department of Psychiatry, University of Oxford, Oxford, UK
| | - Andrea De Micheli
- Early Psychosis: Interventions & Clinical-detection (EPIC) Lab, Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
- Outreach And Support in South London (OASIS) Service, South London and Maudsley NHS Foundation Trust, London, UK
| | - Valentina Ramella-Cravaro
- Early Psychosis: Interventions & Clinical-detection (EPIC) Lab, Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Umberto Provenzani
- Early Psychosis: Interventions & Clinical-detection (EPIC) Lab, Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Grazia Rutigliano
- Early Psychosis: Interventions & Clinical-detection (EPIC) Lab, Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Marco Cappucciati
- Early Psychosis: Interventions & Clinical-detection (EPIC) Lab, Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Dominic Oliver
- Early Psychosis: Interventions & Clinical-detection (EPIC) Lab, Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
- Department of Psychiatry, University of Oxford, Oxford, UK
| | - Steve Williams
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Fernando Zelaya
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Paul Allen
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Silvia Murguia
- Tower Hamlets Early Detection Service, East London NHS Foundation Trust, London, UK
| | - David Taylor
- Institute of Pharmaceutical Science, King's College London, London, UK
| | - Sukhi Shergill
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
- Kent and Medway Medical School, Canterbury, UK
| | - Paul Morrison
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Philip McGuire
- Department of Psychiatry, University of Oxford, Oxford, UK
- NIHR Oxford Health Biomedical Research Centre, Oxford, UK
- Oxford Health NHS Foundation Trust, Oxford, UK
| | - Yannis Paloyelis
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Paolo Fusar-Poli
- Early Psychosis: Interventions & Clinical-detection (EPIC) Lab, Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
- National Institute for Health Research (NIHR) Maudsley Biomedical Research Centre (BRC), South London and Maudsley NHS Foundation Trust, London, UK
- Outreach And Support in South London (OASIS) Service, South London and Maudsley NHS Foundation Trust, London, UK
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| |
Collapse
|
20
|
Castagno AN, Spaiardi P, Trucco A, Maniezzi C, Raffin F, Mancini M, Nicois A, Cazzola J, Pedrinazzi M, Del Papa P, Pisani A, Talpo F, Biella GR. Oxytocin Modifies the Excitability and the Action Potential Shape of the Hippocampal CA1 GABAergic Interneurons. Int J Mol Sci 2024; 25:2613. [PMID: 38473860 DOI: 10.3390/ijms25052613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 02/19/2024] [Accepted: 02/20/2024] [Indexed: 03/14/2024] Open
Abstract
Oxytocin (OT) is a neuropeptide that modulates social-related behavior and cognition in the central nervous system of mammals. In the CA1 area of the hippocampus, the indirect effects of the OT on the pyramidal neurons and their role in information processing have been elucidated. However, limited data are available concerning the direct modulation exerted by OT on the CA1 interneurons (INs) expressing the oxytocin receptor (OTR). Here, we demonstrated that TGOT (Thr4,Gly7-oxytocin), a selective OTR agonist, affects not only the membrane potential and the firing frequency but also the neuronal excitability and the shape of the action potentials (APs) of these INs in mice. Furthermore, we constructed linear mixed-effects models (LMMs) to unravel the dependencies between the AP parameters and the firing frequency, also considering how TGOT can interact with them to strengthen or weaken these influences. Our analyses indicate that OT regulates the functionality of the CA1 GABAergic INs through different and independent mechanisms. Specifically, the increase in neuronal firing rate can be attributed to the depolarizing effect on the membrane potential and the related enhancement in cellular excitability by the peptide. In contrast, the significant changes in the AP shape are directly linked to oxytocinergic modulation. Importantly, these alterations in AP shape are not associated with the TGOT-induced increase in neuronal firing rate, being themselves critical for signal processing.
Collapse
Affiliation(s)
- Antonio Nicolas Castagno
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, 27100 Pavia, Italy
- Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy
- IRCCS Mondino Foundation, 27100 Pavia, Italy
| | - Paolo Spaiardi
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, 27100 Pavia, Italy
- INFN-Pavia Section, 27100 Pavia, Italy
| | - Arianna Trucco
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, 27100 Pavia, Italy
| | - Claudia Maniezzi
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126 Milano, Italy
| | - Francesca Raffin
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, 27100 Pavia, Italy
| | - Maria Mancini
- Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy
| | - Alessandro Nicois
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, 27100 Pavia, Italy
- Institute of Biomolecular Chemistry, Consiglio Nazionale delle Ricerche (CNR), 80078 Pozzuoli, Italy
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy
| | - Jessica Cazzola
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, 27100 Pavia, Italy
| | - Matilda Pedrinazzi
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, 27100 Pavia, Italy
| | - Paola Del Papa
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, 27100 Pavia, Italy
| | - Antonio Pisani
- Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy
- IRCCS Mondino Foundation, 27100 Pavia, Italy
| | - Francesca Talpo
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, 27100 Pavia, Italy
| | - Gerardo Rosario Biella
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, 27100 Pavia, Italy
- INFN-Pavia Section, 27100 Pavia, Italy
| |
Collapse
|
21
|
Fam J, Holmes N, Westbrook RF. Stimulating oxytocin receptors in the basolateral amygdala enhances stimulus processing: Differential and consistent effects for stimuli paired with fear versus sucrose in extinction and reversal learning. Psychoneuroendocrinology 2024; 160:106917. [PMID: 38071877 DOI: 10.1016/j.psyneuen.2023.106917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/24/2023] [Accepted: 11/28/2023] [Indexed: 01/02/2024]
Abstract
Oxytocin (OT) influences a range of social behaviors by enhancing the salience of social cues and regulating the expression of specific social behaviors (e.g., maternal care versus defensive aggression). We previously showed that stimulating OT receptors in the basolateral amygdala of rats also enhanced the salience of fear conditioned stimuli: relative to rats given vehicle infusions, rats infused with [Thr4,Gly7]-oxytocin (TGOT), a selective OT receptor agonist, showed greater discrimination between a cue predictive of danger, and one that signaled safety. In the present series of experiments using male rats, the effects of OT receptor activation in the basolateral amygdala on stimulus processing were examined further using conditioning protocols that consist of changes in stimulus-outcome contingencies (i.e., extinction and reversal), and with stimuli paired with aversive (i.e., foot shock) and appetitive (i.e., sucrose) outcomes. It was revealed that the effects of OTR stimulation diverge for aversive and appetitive learning - enhancing the former but not the latter. However, across both types of learning, OTR stimulation enhanced the detection of conditioned stimuli. Overall, these results are consistent with an emerging view of OT's effects on stimulus salience; facilitating the detection of meaningful stimuli while reducing responding to those that are irrelevant.
Collapse
Affiliation(s)
- Justine Fam
- School of Psychology, University of New South Wales, Australia.
| | - Nathan Holmes
- School of Psychology, University of New South Wales, Australia
| | | |
Collapse
|
22
|
Ngodup T, Irie T, Elkins SP, Trussell LO. The Na + leak channel NALCN controls spontaneous activity and mediates synaptic modulation by α2-adrenergic receptors in auditory neurons. eLife 2024; 12:RP89520. [PMID: 38197879 PMCID: PMC10945507 DOI: 10.7554/elife.89520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2024] Open
Abstract
Cartwheel interneurons of the dorsal cochlear nucleus (DCN) potently suppress multisensory signals that converge with primary auditory afferent input, and thus regulate auditory processing. Noradrenergic fibers from locus coeruleus project to the DCN, and α2-adrenergic receptors inhibit spontaneous spike activity but simultaneously enhance synaptic strength in cartwheel cells, a dual effect leading to enhanced signal-to-noise for inhibition. However, the ionic mechanism of this striking modulation is unknown. We generated a glycinergic neuron-specific knockout of the Na+ leak channel NALCN in mice and found that its presence was required for spontaneous firing in cartwheel cells. Activation of α2-adrenergic receptors inhibited both NALCN and spike generation, and this modulation was absent in the NALCN knockout. Moreover, α2-dependent enhancement of synaptic strength was also absent in the knockout. GABAB receptors mediated inhibition through NALCN as well, acting on the same population of channels as α2 receptors, suggesting close apposition of both receptor subtypes with NALCN. Thus, multiple neuromodulatory systems determine the impact of synaptic inhibition by suppressing the excitatory leak channel, NALCN.
Collapse
Affiliation(s)
- Tenzin Ngodup
- Oregon Hearing Research Center and Vollum Institute, Oregon Health & Science UniversityPortlandUnited States
| | - Tomohiko Irie
- Department of Physiology, Kitasato University School of MedicineSagamiharaJapan
| | - Seán P Elkins
- Oregon Hearing Research Center and Vollum Institute, Oregon Health & Science UniversityPortlandUnited States
| | - Laurence O Trussell
- Oregon Hearing Research Center and Vollum Institute, Oregon Health & Science UniversityPortlandUnited States
| |
Collapse
|
23
|
Ramos-Brossier M, Romeo-Guitart D, Lanté F, Boitez V, Mailliet F, Saha S, Rivagorda M, Siopi E, Nemazanyy I, Leroy C, Moriceau S, Beck-Cormier S, Codogno P, Buisson A, Beck L, Friedlander G, Oury F. Slc20a1 and Slc20a2 regulate neuronal plasticity and cognition independently of their phosphate transport ability. Cell Death Dis 2024; 15:20. [PMID: 38195526 PMCID: PMC10776841 DOI: 10.1038/s41419-023-06292-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 11/01/2023] [Accepted: 11/13/2023] [Indexed: 01/11/2024]
Abstract
In recent years, primary familial brain calcification (PFBC), a rare neurological disease characterized by a wide spectrum of cognitive disorders, has been associated to mutations in the sodium (Na)-Phosphate (Pi) co-transporter SLC20A2. However, the functional roles of the Na-Pi co-transporters in the brain remain still largely elusive. Here we show that Slc20a1 (PiT-1) and Slc20a2 (PiT-2) are the most abundant Na-Pi co-transporters expressed in the brain and are involved in the control of hippocampal-dependent learning and memory. We reveal that Slc20a1 and Slc20a2 are differentially distributed in the hippocampus and associated with independent gene clusters, suggesting that they influence cognition by different mechanisms. Accordingly, using a combination of molecular, electrophysiological and behavioral analyses, we show that while PiT-2 favors hippocampal neuronal branching and survival, PiT-1 promotes synaptic plasticity. The latter relies on a likely Otoferlin-dependent regulation of synaptic vesicle trafficking, which impacts the GABAergic system. These results provide the first demonstration that Na-Pi co-transporters play key albeit distinct roles in the hippocampus pertaining to the control of neuronal plasticity and cognition. These findings could provide the foundation for the development of novel effective therapies for PFBC and cognitive disorders.
Collapse
Affiliation(s)
- Mariana Ramos-Brossier
- Université Paris Cité, INSERM UMR-S1151, CNRS UMR-S8253, Institut Necker Enfants Malades, Team 8, F-75015, Paris, France.
| | - David Romeo-Guitart
- Université Paris Cité, INSERM UMR-S1151, CNRS UMR-S8253, Institut Necker Enfants Malades, Team 8, F-75015, Paris, France
| | - Fabien Lanté
- Univ. Grenoble Alpes, Inserm, U1216, Grenoble Institut Neurosciences, 38000, Grenoble, France
| | - Valérie Boitez
- Université Paris Cité, INSERM UMR-S1151, CNRS UMR-S8253, Institut Necker Enfants Malades, Team 8, F-75015, Paris, France
| | - François Mailliet
- Université Paris Cité, INSERM UMR-S1151, CNRS UMR-S8253, Institut Necker Enfants Malades, Team 8, F-75015, Paris, France
| | - Soham Saha
- Institut Pasteur, Perception & Memory Unit, F-75015, Paris, France
- MedInsights, 6 rue de l'église, F-02810, Veuilly la Poterie, France
| | - Manon Rivagorda
- Université Paris Cité, INSERM UMR-S1151, CNRS UMR-S8253, Institut Necker Enfants Malades, Team 8, F-75015, Paris, France
| | - Eleni Siopi
- Université Paris Cité, INSERM UMR-S1151, CNRS UMR-S8253, Institut Necker Enfants Malades, Team 8, F-75015, Paris, France
| | - Ivan Nemazanyy
- Platform for Metabolic Analyses, Structure Fédérative de Recherche Necker, INSERM US24/CNRS UAR, 3633, Paris, France
| | - Christine Leroy
- Université Paris Cité, INSERM UMR-S1151, CNRS UMR-S8253, Institut Necker Enfants Malades, Team 6, F-75015, Paris, France
| | - Stéphanie Moriceau
- Université Paris Cité, INSERM UMR-S1151, CNRS UMR-S8253, Institut Necker Enfants Malades, Team 8, F-75015, Paris, France
- Platform for Neurobehavioural and metabolism, Structure Fédérative de Recherche Necker, INSERM, US24/CNRS UAR, 3633, Paris, France
- Institute of Genetic Diseases, Imagine, 75015, Paris, France
| | - Sarah Beck-Cormier
- Nantes Université, CNRS, Inserm, l'Institut du Thorax, F-44000, Nantes, France
| | - Patrice Codogno
- Université Paris Cité, INSERM UMR-S1151, CNRS UMR-S8253, Institut Necker Enfants Malades, Team 6, F-75015, Paris, France
| | - Alain Buisson
- Univ. Grenoble Alpes, Inserm, U1216, Grenoble Institut Neurosciences, 38000, Grenoble, France
| | - Laurent Beck
- Nantes Université, CNRS, Inserm, l'Institut du Thorax, F-44000, Nantes, France.
| | - Gérard Friedlander
- Université Paris Cité, INSERM UMR-S1151, CNRS UMR-S8253, Institut Necker Enfants Malades, Team 6, F-75015, Paris, France.
| | - Franck Oury
- Université Paris Cité, INSERM UMR-S1151, CNRS UMR-S8253, Institut Necker Enfants Malades, Team 8, F-75015, Paris, France.
| |
Collapse
|
24
|
Buemann B. Does activation of oxytocinergic reward circuits postpone the decline of the aging brain? Front Psychol 2023; 14:1250745. [PMID: 38222845 PMCID: PMC10786160 DOI: 10.3389/fpsyg.2023.1250745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 10/20/2023] [Indexed: 01/16/2024] Open
Abstract
Oxytocin supports reproduction by promoting sexual- and nursing behavior. Moreover, it stimulates reproductive organs by different avenues. Oxytocin is released to the blood from terminals of oxytocinergic neurons which project from the hypothalamus to the pituitary gland. Concomitantly, the dendrites of these neurons discharge oxytocin into neighboring areas of the hypothalamus. At this location it affects other neuroendocrine systems by autocrine and paracrine mechanisms. Moreover, sensory processing, affective functions, and reward circuits are influenced by oxytocinergic neurons that reach different sites in the brain. In addition to its facilitating impact on various aspects of reproduction, oxytocin is revealed to possess significant anti-inflammatory, restoring, and tranquilizing properties. This has been demonstrated both in many in-vivo and in-vitro studies. The oxytocin system may therefore have the capacity to alleviate detrimental physiological- and mental stress reactions. Thus, high levels of endogenous oxytocin may counteract inadequate inflammation and malfunctioning of neurons and supportive cells in the brain. A persistent low-grade inflammation increasing with age-referred to as inflammaging-may lead to a cognitive decline but may also predispose to neurodegenerative diseases such as Alzheimer's and Parkinson. Interestingly, animal studies indicate that age-related destructive processes in the body can be postponed by techniques that preserve immune- and stem cell functions in the hypothalamus. It is argued in this article that sexual activity-by its stimulating impact on the oxytocinergic activity in many regions of the brain-has the capacity to delay the onset of age-related cerebral decay. This may also postpone frailty and age-associated diseases in the body. Finally, oxytocin possesses neuroplastic properties that may be applied to expand sexual reward. The release of oxytocin may therefore be further potentiated by learning processes that involves oxytocin itself. It may therefore be profitable to raise the consciousness about the potential health benefits of sexual activity particularly among the seniors.
Collapse
|
25
|
Janz P, Knoflach F, Bleicher K, Belli S, Biemans B, Schnider P, Ebeling M, Grundschober C, Benekareddy M. Selective oxytocin receptor activation prevents prefrontal circuit dysfunction and social behavioral alterations in response to chronic prefrontal cortex activation in male rats. Front Cell Neurosci 2023; 17:1286552. [PMID: 38145283 PMCID: PMC10745491 DOI: 10.3389/fncel.2023.1286552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 11/08/2023] [Indexed: 12/26/2023] Open
Abstract
Introduction Social behavioral changes are a hallmark of several neurodevelopmental and neuropsychiatric conditions, nevertheless the underlying neural substrates of such dysfunction remain poorly understood. Building evidence points to the prefrontal cortex (PFC) as one of the key brain regions that orchestrates social behavior. We used this concept with the aim to develop a translational rat model of social-circuit dysfunction, the chronic PFC activation model (CPA). Methods Chemogenetic designer receptor hM3Dq was used to induce chronic activation of the PFC over 10 days, and the behavioral and electrophysiological signatures of prolonged PFC hyperactivity were evaluated. To test the sensitivity of this model to pharmacological interventions on longer timescales, and validate its translational potential, the rats were treated with our novel highly selective oxytocin receptor (OXTR) agonist RO6958375, which is not activating the related vasopressin V1a receptor. Results CPA rats showed reduced sociability in the three-chamber sociability test, and a concomitant decrease in neuronal excitability and synaptic transmission within the PFC as measured by electrophysiological recordings in acute slice preparation. Sub-chronic treatment with a low dose of the novel OXTR agonist following CPA interferes with the emergence of PFC circuit dysfunction, abnormal social behavior and specific transcriptomic changes. Discussion These results demonstrate that sustained PFC hyperactivity modifies circuit characteristics and social behaviors in ways that can be modulated by selective OXTR activation and that this model may be used to understand the circuit recruitment of prosocial therapies in drug discovery.
Collapse
Affiliation(s)
- Philipp Janz
- Roche Pharma Research and Early Development, Neuroscience and Rare Diseases Discovery and Translational Area, Roche Innovation Center Basel, F. Hoffmann-La Roche AG, Basel, Switzerland
| | - Frederic Knoflach
- Roche Pharma Research and Early Development, Neuroscience and Rare Diseases Discovery and Translational Area, Roche Innovation Center Basel, F. Hoffmann-La Roche AG, Basel, Switzerland
| | - Konrad Bleicher
- Roche Pharma Research and Early Development, Therapeutic Modalities, Roche Innovation Center Basel, F. Hoffmann-La Roche AG, Basel, Switzerland
| | - Sara Belli
- Roche Pharma Research and Early Development, Pharmaceutical Science, Roche Innovation Center Basel, F. Hoffmann-La Roche AG, Basel, Switzerland
| | - Barbara Biemans
- Roche Pharma Research and Early Development, Neuroscience and Rare Diseases Discovery and Translational Area, Roche Innovation Center Basel, F. Hoffmann-La Roche AG, Basel, Switzerland
| | - Patrick Schnider
- Roche Pharma Research and Early Development, Therapeutic Modalities, Roche Innovation Center Basel, F. Hoffmann-La Roche AG, Basel, Switzerland
| | - Martin Ebeling
- Roche Pharma Research and Early Development, Pharmaceutical Science, Roche Innovation Center Basel, F. Hoffmann-La Roche AG, Basel, Switzerland
| | - Christophe Grundschober
- Roche Pharma Research and Early Development, Neuroscience and Rare Diseases Discovery and Translational Area, Roche Innovation Center Basel, F. Hoffmann-La Roche AG, Basel, Switzerland
| | - Madhurima Benekareddy
- Roche Pharma Research and Early Development, Neuroscience and Rare Diseases Discovery and Translational Area, Roche Innovation Center Basel, F. Hoffmann-La Roche AG, Basel, Switzerland
- Calico Life Sciences, South San Francisco, CA, United States
| |
Collapse
|
26
|
Ngodup T, Irie T, Elkins S, Trussell LO. The Na + leak channel NALCN controls spontaneous activity and mediates synaptic modulation by α2-adrenergic receptors in auditory neurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.23.546323. [PMID: 37987013 PMCID: PMC10659375 DOI: 10.1101/2023.06.23.546323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Cartwheel interneurons of the dorsal cochlear nucleus (DCN) potently suppress multisensory signals that converge with primary auditory afferent input, and thus regulate auditory processing. Noradrenergic fibers from locus coeruleus project to the DCN, and α2-adrenergic receptors inhibit spontaneous spike activity but simultaneously enhance synaptic strength in cartwheel cells, a dual effect leading to enhanced signal-to-noise for inhibition. However, the ionic mechanism of this striking modulation is unknown. We generated a glycinergic neuron-specific knockout of the Na+ leak channel NALCN, and found that its presence was required for spontaneous firing in cartwheel cells. Activation of α2-adrenergic receptors inhibited both NALCN and spike generation, and this modulation was absent in the NALCN knockout. Moreover, α2-dependent enhancement of synaptic strength was also absent in the knockout. GABAB receptors mediated inhibition through NALCN as well, acting on the same population of channels as α2 receptors, suggesting close apposition of both receptor subtypes with NALCN. Thus, multiple neuromodulatory systems determine the impact of synaptic inhibition by suppressing the excitatory leak channel, NALCN.
Collapse
Affiliation(s)
- Tenzin Ngodup
- Oregon Hearing Research Center and Vollum Institute, Oregon Health & Science University, Portland OR USA
| | - Tomohiko Irie
- Department of Physiology, Kitasato University School of Medicine, Sagamihara, Japan
| | - Sean Elkins
- Oregon Hearing Research Center and Vollum Institute, Oregon Health & Science University, Portland OR USA
| | - Laurence O Trussell
- Oregon Hearing Research Center and Vollum Institute, Oregon Health & Science University, Portland OR USA
| |
Collapse
|
27
|
Shimon-Raz O, Yeshurun Y, Ulmer-Yaniv A, Levinkron A, Salomon R, Feldman R. Attachment Reminders Trigger Widespread Synchrony across Multiple Brains. J Neurosci 2023; 43:7213-7225. [PMID: 37813569 PMCID: PMC10601370 DOI: 10.1523/jneurosci.0026-23.2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 08/15/2023] [Accepted: 09/04/2023] [Indexed: 10/17/2023] Open
Abstract
Infant stimuli elicit widespread neural and behavioral response in human adults, and such massive allocation of resources attests to the evolutionary significance of the primary attachment. Here, we examined whether attachment reminders also trigger cross-brain concordance and generate greater neural uniformity, as indicated by intersubject correlation. Human mothers were imaged twice in oxytocin/placebo administration design, and stimuli included four ecological videos of a standard unfamiliar mother and infant: two infant/mother alone (Alone) and two mother-infant dyadic contexts (Social). Theory-driven analysis measured cross-brain synchrony in preregistered nodes of the parental caregiving network (PCN), which integrates subcortical structures underpinning mammalian mothering with cortical areas implicated in simulation, mentalization, and emotion regulation, and data-driven analysis assessed brain-wide concordance using whole-brain parcellation. Results demonstrated widespread cross-brain synchrony in both the PCN and across the neuroaxis, from primary sensory/somatosensory areas, through insular-cingulate regions, to temporal and prefrontal cortices. The Social context yielded significantly more cross-brain concordance, with PCNs striatum, parahippocampal gyrus, superior temporal sulcus, ACC, and PFC displaying cross-brain synchrony only to mother-infant social cues. Moment-by-moment fluctuations in mother-infant social synchrony, ranging from episodes of low synchrony to tightly coordinated positive bouts, were tracked online by cross-brain concordance in the preregistered ACC. Findings indicate that social attachment stimuli, representing evolutionary-salient universal cues that require no verbal narrative, trigger substantial interbrain concordance and suggest that the mother-infant bond, an icon standing at the heart of human civilization, may function to glue brains into a unified experience and bind humans into social groups.SIGNIFICANCE STATEMENT Infant stimuli elicit widespread neural response in human adults, attesting to their evolutionary significance, but do they also trigger cross-brain concordance and induce neural uniformity among perceivers? We measured cross-brain synchrony to ecological mother-infant videos. We used theory-driven analysis, measuring cross-brain concordance in the parenting network, and data-driven analysis, assessing brain-wide concordance using whole-brain parcellation. Attachment cues triggered widespread cross-brain concordance in both the parenting network and across the neuroaxis. Moment-by-moment fluctuations in behavioral synchrony were tracked online by cross-brain variability in ACC. Attachment reminders bind humans' brains into a unitary experience and stimuli characterized by social synchrony enhance neural similarity among participants, describing one mechanism by which attachment bonds provide the neural template for the consolidation of social groups.
Collapse
Affiliation(s)
| | - Yaara Yeshurun
- School of Psychological Sciences, Tel Aviv University, Tel Aviv, 69978, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, 69978, Israel
| | | | - Ayelet Levinkron
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Roy Salomon
- Department of Cognitive Sciences, University of Haifa, Haifa, 3498838, Israel
| | | |
Collapse
|
28
|
Hung YC, Wu YJ, Chien ME, Lin YT, Tsai CF, Hsu KS. Loss of oxytocin receptors in hilar mossy cells impairs social discrimination. Neurobiol Dis 2023; 187:106311. [PMID: 37769745 DOI: 10.1016/j.nbd.2023.106311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 09/24/2023] [Accepted: 09/25/2023] [Indexed: 10/02/2023] Open
Abstract
Hippocampal oxytocin receptor (OXTR) signaling is crucial for discrimination of social stimuli to guide social recognition, but circuit mechanisms and cell types involved remain incompletely understood. Here, we report a role for OXTR-expressing hilar mossy cells (MCs) of the dentate gyrus in social stimulus discrimination by regulating granule cell (GC) activity. Using a Cre-loxP recombination approach, we found that ablation of Oxtr from MCs impairs discrimination of social, but not object, stimuli in adult male mice. Ablation of MC Oxtr increases spontaneous firing rate of GCs, synaptic excitation to inhibition ratio of MC-to-GC circuit, and GC firing when temporally associated with the lateral perforant path inputs. Using mouse hippocampal slices, we found that bath application of OXTR agonist [Thr4,Gly7]-oxytocin causes membrane depolarization and increases MC firing activity. Optogenetic activation of MC-to-GC circuit ameliorates social discrimination deficit in MC OXTR deficient mice. Together, our results uncover a previously unknown role of MC OXTR signaling for discrimination of social stimuli and delineate a MC-to-GC circuit responsible for social information processing.
Collapse
Affiliation(s)
- Yu-Chieh Hung
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
| | - Yi-Jen Wu
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan 70457, Taiwan; Department of Neurology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70403, Taiwan
| | - Miao-Er Chien
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan 70457, Taiwan
| | - Yu-Ting Lin
- Institute of Systems Neuroscience, College of Life Science, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Cheng-Fang Tsai
- Department of Physical Medicine and Rehabilitation, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi 60002, Taiwan; Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan.
| | - Kuei-Sen Hsu
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan; Department of Pharmacology, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan.
| |
Collapse
|
29
|
Althammer F. Heralding a new era of oxytocinergic research: New tools, new problems? J Neuroendocrinol 2023; 35:e13333. [PMID: 37621199 DOI: 10.1111/jne.13333] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 08/10/2023] [Accepted: 08/10/2023] [Indexed: 08/26/2023]
Abstract
According to classic neuroendocrinology, hypothalamic oxytocin cells can be categorized into parvo- and magnocellular neurons. However, research in the last decade provided ample evidence that this black-and-white model of oxytocin neurons is most likely oversimplified. Novel genetic, functional and morphological studies indicate that oxytocin neurons might be organized in functional modules and suggest the existence of five or more distinct oxytocinergic subpopulations. However, many of these novel, automated high-throughput techniques might be inherently biased and interpretation of acquired data needs to be approached with caution to enable drawing sound and reliable conclusions. In addition, the recent finding that astrocytes in various brain regions express functional oxytocin receptors represents a paradigm shift and challenges the view that oxytocin primarily acts as a direct peptidergic neurotransmitter. This review highlights the latest technical advances in oxytocinergic research, puts recent studies on the oxytocin system into context and formulates various provocative ideas based on novel findings that challenges various prevailing hypotheses and dogmas about oxytocinergic modulation.
Collapse
Affiliation(s)
- Ferdinand Althammer
- Institute of Human Genetics, Heidelberg University Hospital, Heidelberg, Germany
| |
Collapse
|
30
|
Shen LP, Li W, Pei LZ, Yin J, Xie ST, Li HZ, Yan C, Wang JJ, Zhang Q, Zhang XY, Zhu JN. Oxytocin Receptor in Cerebellar Purkinje Cells Does Not Engage in Autism-Related Behaviors. CEREBELLUM (LONDON, ENGLAND) 2023; 22:888-904. [PMID: 36040660 DOI: 10.1007/s12311-022-01466-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/22/2022] [Indexed: 06/15/2023]
Abstract
The classical motor center cerebellum is one of the most consistent structures of abnormality in autism spectrum disorders (ASD), and neuropeptide oxytocin is increasingly explored as a potential pharmacotherapy for ASD. However, whether oxytocin targets the cerebellum for therapeutic effects remains unclear. Here, we report a localization of oxytocin receptor (OXTR) in Purkinje cells (PCs) of cerebellar lobule Crus I, which is functionally connected with ASD-implicated circuits. OXTR activation neither affects firing activities, intrinsic excitability, and synaptic transmission of normal PCs nor improves abnormal intrinsic excitability and synaptic transmission of PCs in maternal immune activation (MIA) mouse model of autism. Furthermore, blockage of OXTR in Crus I in wild-type mice does not induce autistic-like social, stereotypic, cognitive, and anxiety-like behaviors. These results suggest that oxytocin signaling in Crus I PCs seems to be uninvolved in ASD pathophysiology, and contribute to understanding of targets and mechanisms of oxytocin in ASD treatment.
Collapse
Affiliation(s)
- Li-Ping Shen
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Physiology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Wei Li
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Physiology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Ling-Zhu Pei
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Physiology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Jun Yin
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Physiology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Shu-Tao Xie
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Physiology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Hong-Zhao Li
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Physiology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Chao Yan
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Physiology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Jian-Jun Wang
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Physiology, School of Life Sciences, Nanjing University, Nanjing, China
- Institute for Brain Sciences, Nanjing University, Nanjing, China
| | - Qipeng Zhang
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Physiology, School of Life Sciences, Nanjing University, Nanjing, China.
- Institute for Brain Sciences, Nanjing University, Nanjing, China.
| | - Xiao-Yang Zhang
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Physiology, School of Life Sciences, Nanjing University, Nanjing, China.
- Institute for Brain Sciences, Nanjing University, Nanjing, China.
| | - Jing-Ning Zhu
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Physiology, School of Life Sciences, Nanjing University, Nanjing, China.
- Institute for Brain Sciences, Nanjing University, Nanjing, China.
| |
Collapse
|
31
|
Hernández-Frausto M, Bilash OM, Masurkar AV, Basu J. Local and long-range GABAergic circuits in hippocampal area CA1 and their link to Alzheimer's disease. Front Neural Circuits 2023; 17:1223891. [PMID: 37841892 PMCID: PMC10570439 DOI: 10.3389/fncir.2023.1223891] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 09/08/2023] [Indexed: 10/17/2023] Open
Abstract
GABAergic inhibitory neurons are the principal source of inhibition in the brain. Traditionally, their role in maintaining the balance of excitation-inhibition has been emphasized. Beyond homeostatic functions, recent circuit mapping and functional manipulation studies have revealed a wide range of specific roles that GABAergic circuits play in dynamically tilting excitation-inhibition coupling across spatio-temporal scales. These span from gating of compartment- and input-specific signaling, gain modulation, shaping input-output functions and synaptic plasticity, to generating signal-to-noise contrast, defining temporal windows for integration and rate codes, as well as organizing neural assemblies, and coordinating inter-regional synchrony. GABAergic circuits are thus instrumental in controlling single-neuron computations and behaviorally-linked network activity. The activity dependent modulation of sensory and mnemonic information processing by GABAergic circuits is pivotal for the formation and maintenance of episodic memories in the hippocampus. Here, we present an overview of the local and long-range GABAergic circuits that modulate the dynamics of excitation-inhibition and disinhibition in the main output area of the hippocampus CA1, which is crucial for episodic memory. Specifically, we link recent findings pertaining to GABAergic neuron molecular markers, electrophysiological properties, and synaptic wiring with their function at the circuit level. Lastly, given that area CA1 is particularly impaired during early stages of Alzheimer's disease, we emphasize how these GABAergic circuits may contribute to and be involved in the pathophysiology.
Collapse
Affiliation(s)
- Melissa Hernández-Frausto
- Neuroscience Institute, New York University Langone Health, New York, NY, United States
- Department of Neuroscience and Physiology, New York University Grossman School of Medicine, New York, NY, United States
| | - Olesia M. Bilash
- Neuroscience Institute, New York University Langone Health, New York, NY, United States
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, United States
| | - Arjun V. Masurkar
- Neuroscience Institute, New York University Langone Health, New York, NY, United States
- Department of Neuroscience and Physiology, New York University Grossman School of Medicine, New York, NY, United States
- Center for Cognitive Neurology, Department of Neurology, New York University Grossman School of Medicine, New York, NY, United States
| | - Jayeeta Basu
- Neuroscience Institute, New York University Langone Health, New York, NY, United States
- Department of Neuroscience and Physiology, New York University Grossman School of Medicine, New York, NY, United States
- Department of Psychiatry, New York University Grossman School of Medicine, New York, NY, United States
- Center for Neural Science, New York University, New York, NY, United States
| |
Collapse
|
32
|
Layden A, Ma X, Johnson CA, He XJ, Buczynski SA, Banghart MR. A Biomimetic C-Terminal Extension Strategy for Photocaging Amidated Neuropeptides. J Am Chem Soc 2023; 145:19611-19621. [PMID: 37649440 PMCID: PMC10510324 DOI: 10.1021/jacs.3c03913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Indexed: 09/01/2023]
Abstract
Photoactivatable neuropeptides offer a robust stimulus-response relationship that can drive mechanistic studies into the physiological mechanisms of neuropeptidergic transmission. The majority of neuropeptides contain a C-terminal amide, which offers a potentially general site for installation of a C-terminal caging group. Here, we report a biomimetic caging strategy in which the neuropeptide C-terminus is extended via a photocleavable amino acid to mimic the proneuropeptides found in large dense-core vesicles. We explored this approach with four prominent neuropeptides: gastrin-releasing peptide (GRP), oxytocin (OT), substance P (SP), and cholecystokinin (CCK). C-terminus extension greatly reduced the activity of all four peptides at heterologously expressed receptors. In cell type-specific electrophysiological recordings from acute brain slices, subsecond flashes of ultraviolet light produced rapidly activating membrane currents via activation of endogenous G protein-coupled receptors. Subsequent mechanistic studies with caged CCK revealed a role for extracellular proteases in shaping the temporal dynamics of CCK signaling, and a striking switch-like, cell-autonomous anti-opioid effect of transient CCK signaling in hippocampal parvalbumin interneurons. These results suggest that C-terminus extension with a photocleavable linker may be a general strategy for photocaging amidated neuropeptides and demonstrate how photocaged neuropeptides can provide mechanistic insights into neuropeptide signaling that are inaccessible using conventional approaches.
Collapse
Affiliation(s)
| | | | - Caroline A. Johnson
- Department of Neurobiology,
School of Biological Sciences, University
of California San Diego, La Jolla, California 92093, United States
| | | | - Stanley A. Buczynski
- Department of Neurobiology,
School of Biological Sciences, University
of California San Diego, La Jolla, California 92093, United States
| | - Matthew R. Banghart
- Department of Neurobiology,
School of Biological Sciences, University
of California San Diego, La Jolla, California 92093, United States
| |
Collapse
|
33
|
Jin Y, Song D, Yan Y, Quan Z, Qing H. The Role of Oxytocin in Early-Life-Stress-Related Neuropsychiatric Disorders. Int J Mol Sci 2023; 24:10430. [PMID: 37445607 DOI: 10.3390/ijms241310430] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/16/2023] [Accepted: 06/19/2023] [Indexed: 07/15/2023] Open
Abstract
Early-life stress during critical periods of brain development can have long-term effects on physical and mental health. Oxytocin is a critical social regulator and anti-inflammatory hormone that modulates stress-related functions and social behaviors and alleviates diseases. Oxytocin-related neural systems show high plasticity in early postpartum and adolescent periods. Early-life stress can influence the oxytocin system long term by altering the expression and signaling of oxytocin receptors. Deficits in social behavior, emotional control, and stress responses may result, thus increasing the risk of anxiety, depression, and other stress-related neuropsychiatric diseases. Oxytocin is regarded as an important target for the treatment of stress-related neuropsychiatric disorders. Here, we describe the history of oxytocin and its role in neural circuits and related behaviors. We then review abnormalities in the oxytocin system in early-life stress and the functions of oxytocin in treating stress-related neuropsychiatric disorders.
Collapse
Affiliation(s)
- Yue Jin
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Da Song
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Yan Yan
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Zhenzhen Quan
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Hong Qing
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
34
|
Liu Y, Li A, Bair-Marshall C, Xu H, Jee HJ, Zhu E, Sun M, Zhang Q, Lefevre A, Chen ZS, Grinevich V, Froemke RC, Wang J. Oxytocin promotes prefrontal population activity via the PVN-PFC pathway to regulate pain. Neuron 2023; 111:1795-1811.e7. [PMID: 37023755 PMCID: PMC10272109 DOI: 10.1016/j.neuron.2023.03.014] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 09/02/2022] [Accepted: 03/08/2023] [Indexed: 04/08/2023]
Abstract
Neurons in the prefrontal cortex (PFC) can provide top-down regulation of sensory-affective experiences such as pain. Bottom-up modulation of sensory coding in the PFC, however, remains poorly understood. Here, we examined how oxytocin (OT) signaling from the hypothalamus regulates nociceptive coding in the PFC. In vivo time-lapse endoscopic calcium imaging in freely behaving rats showed that OT selectively enhanced population activity in the prelimbic PFC in response to nociceptive inputs. This population response resulted from the reduction of evoked GABAergic inhibition and manifested as elevated functional connectivity involving pain-responsive neurons. Direct inputs from OT-releasing neurons in the paraventricular nucleus (PVN) of the hypothalamus are crucial to maintaining this prefrontal nociceptive response. Activation of the prelimbic PFC by OT or direct optogenetic stimulation of oxytocinergic PVN projections reduced acute and chronic pain. These results suggest that oxytocinergic signaling in the PVN-PFC circuit constitutes a key mechanism to regulate cortical sensory processing.
Collapse
Affiliation(s)
- Yaling Liu
- Department of Anesthesiology, Perioperative Care and Pain Medicine, New York University Grossman School of Medicine, New York, NY, USA
| | - Anna Li
- Department of Anesthesiology, Perioperative Care and Pain Medicine, New York University Grossman School of Medicine, New York, NY, USA; Interdisciplinary Pain Research Program, New York University Langone Health, New York, NY, USA
| | - Chloe Bair-Marshall
- Skirball Institute for Biomolecular Medicine, New York University Grossman School of Medicine, New York, NY, USA; Department of Neuroscience and Physiology, New York University Grossman School of Medicine, New York, NY, USA; Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, USA; Department of Otolaryngology, New York University Grossman School of Medicine, New York, NY, USA
| | - Helen Xu
- Department of Anesthesiology, Perioperative Care and Pain Medicine, New York University Grossman School of Medicine, New York, NY, USA; Interdisciplinary Pain Research Program, New York University Langone Health, New York, NY, USA
| | - Hyun Jung Jee
- Department of Anesthesiology, Perioperative Care and Pain Medicine, New York University Grossman School of Medicine, New York, NY, USA; Interdisciplinary Pain Research Program, New York University Langone Health, New York, NY, USA
| | - Elaine Zhu
- Department of Anesthesiology, Perioperative Care and Pain Medicine, New York University Grossman School of Medicine, New York, NY, USA; Interdisciplinary Pain Research Program, New York University Langone Health, New York, NY, USA
| | - Mengqi Sun
- Department of Anesthesiology, Perioperative Care and Pain Medicine, New York University Grossman School of Medicine, New York, NY, USA
| | - Qiaosheng Zhang
- Department of Anesthesiology, Perioperative Care and Pain Medicine, New York University Grossman School of Medicine, New York, NY, USA; Interdisciplinary Pain Research Program, New York University Langone Health, New York, NY, USA
| | - Arthur Lefevre
- Department of Neuropeptide Research in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Zhe Sage Chen
- Department of Neuroscience and Physiology, New York University Grossman School of Medicine, New York, NY, USA; Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, USA; Department of Psychiatry, New York University Grossman School of Medicine, New York, NY, USA
| | - Valery Grinevich
- Department of Neuropeptide Research in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Robert C Froemke
- Skirball Institute for Biomolecular Medicine, New York University Grossman School of Medicine, New York, NY, USA; Department of Neuroscience and Physiology, New York University Grossman School of Medicine, New York, NY, USA; Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, USA; Department of Otolaryngology, New York University Grossman School of Medicine, New York, NY, USA
| | - Jing Wang
- Department of Anesthesiology, Perioperative Care and Pain Medicine, New York University Grossman School of Medicine, New York, NY, USA; Interdisciplinary Pain Research Program, New York University Langone Health, New York, NY, USA; Department of Neuroscience and Physiology, New York University Grossman School of Medicine, New York, NY, USA; Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, USA.
| |
Collapse
|
35
|
Chamberland S, Nebet ER, Valero M, Hanani M, Egger R, Larsen SB, Eyring KW, Buzsáki G, Tsien RW. Brief synaptic inhibition persistently interrupts firing of fast-spiking interneurons. Neuron 2023; 111:1264-1281.e5. [PMID: 36787751 PMCID: PMC10121938 DOI: 10.1016/j.neuron.2023.01.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 06/06/2022] [Accepted: 01/18/2023] [Indexed: 02/16/2023]
Abstract
Neurons perform input-output operations that integrate synaptic inputs with intrinsic electrical properties; these operations are generally constrained by the brevity of synaptic events. Here, we report that sustained firing of CA1 hippocampal fast-spiking parvalbumin-expressing interneurons (PV-INs) can be persistently interrupted for several hundred milliseconds following brief GABAAR-mediated inhibition in vitro and in vivo. A single presynaptic neuron could interrupt PV-IN firing, occasionally with a single action potential (AP), and reliably with AP bursts. Experiments and computational modeling reveal that the persistent interruption of firing maintains neurons in a depolarized, quiescent state through a cell-autonomous mechanism. Interrupted PV-INs are strikingly responsive to Schaffer collateral inputs. The persistent interruption of firing provides a disinhibitory circuit mechanism favoring spike generation in CA1 pyramidal cells. Overall, our results demonstrate that neuronal silencing can far outlast brief synaptic inhibition owing to the well-tuned interplay between neurotransmitter release and postsynaptic membrane dynamics, a phenomenon impacting microcircuit function.
Collapse
Affiliation(s)
- Simon Chamberland
- NYU Neuroscience Institute and Department of Neuroscience and Physiology, NYU Langone Medical Center, New York, NY 10016, USA.
| | - Erica R Nebet
- NYU Neuroscience Institute and Department of Neuroscience and Physiology, NYU Langone Medical Center, New York, NY 10016, USA
| | - Manuel Valero
- NYU Neuroscience Institute and Department of Neuroscience and Physiology, NYU Langone Medical Center, New York, NY 10016, USA
| | - Monica Hanani
- NYU Neuroscience Institute and Department of Neuroscience and Physiology, NYU Langone Medical Center, New York, NY 10016, USA
| | - Robert Egger
- NYU Neuroscience Institute and Department of Otolaryngology, NYU Langone Medical Center, New York, NY 10016, USA; Center for Neural Science, New York University, New York, NY 10003, USA
| | - Samantha B Larsen
- NYU Neuroscience Institute and Department of Neuroscience and Physiology, NYU Langone Medical Center, New York, NY 10016, USA
| | - Katherine W Eyring
- NYU Neuroscience Institute and Department of Neuroscience and Physiology, NYU Langone Medical Center, New York, NY 10016, USA
| | - György Buzsáki
- NYU Neuroscience Institute and Department of Neuroscience and Physiology, NYU Langone Medical Center, New York, NY 10016, USA; Center for Neural Science, New York University, New York, NY 10003, USA; Department of Neurology, Langone Medical Center, New York University, New York, NY, USA
| | - Richard W Tsien
- NYU Neuroscience Institute and Department of Neuroscience and Physiology, NYU Langone Medical Center, New York, NY 10016, USA; Center for Neural Science, New York University, New York, NY 10003, USA.
| |
Collapse
|
36
|
Baudon A, Clauss Creusot E, Charlet A. [Emergent role of astrocytes in oxytocin-mediated modulatory control of neuronal circuits and brain functions]. Biol Aujourdhui 2023; 216:155-165. [PMID: 36744981 DOI: 10.1051/jbio/2022022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Indexed: 02/07/2023]
Abstract
The neuropeptide oxytocin has been in the focus of scientists for decades due to its profound and pleiotropic effects on physiology, activity of neuronal circuits and behaviors. Until recently, it was believed that oxytocinergic action exclusively occurs through direct activation of neuronal oxytocin receptors. However, several studies demonstrated the existence and functional relevance of astroglial oxytocin receptors in various brain regions in the mouse and rat brain. Astrocytic signaling and activity are critical for many important physiological processes including metabolism, neurotransmitter clearance from the synaptic cleft and integrated brain functions. While it can be speculated that oxytocinergic action on astrocytes predominantly facilitates neuromodulation via the release of gliotransmitters, the precise role of astrocytic oxytocin receptors remains elusive. In this review, we discuss the latest studies on the interaction between the oxytocinergic system and astrocytes, and give details of underlying intracellular cascades.
Collapse
Affiliation(s)
- Angel Baudon
- Centre National de la Recherche Scientifique et Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, 8 allée du Général Rouvillois, 67000 Strasbourg, France
| | - Etienne Clauss Creusot
- Centre National de la Recherche Scientifique et Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, 8 allée du Général Rouvillois, 67000 Strasbourg, France
| | - Alexandre Charlet
- Centre National de la Recherche Scientifique et Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, 8 allée du Général Rouvillois, 67000 Strasbourg, France
| |
Collapse
|
37
|
Talpo F, Spaiardi P, Castagno AN, Maniezzi C, Raffin F, Terribile G, Sancini G, Pisani A, Biella GR. Neuromodulatory functions exerted by oxytocin on different populations of hippocampal neurons in rodents. Front Cell Neurosci 2023; 17:1082010. [PMID: 36816855 PMCID: PMC9932910 DOI: 10.3389/fncel.2023.1082010] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 01/16/2023] [Indexed: 02/05/2023] Open
Abstract
Oxytocin (OT) is a neuropeptide widely known for its peripheral hormonal effects (i.e., parturition and lactation) and central neuromodulatory functions, related especially to social behavior and social, spatial, and episodic memory. The hippocampus is a key structure for these functions, it is innervated by oxytocinergic fibers, and contains OT receptors (OTRs). The hippocampal OTR distribution is not homogeneous among its subregions and types of neuronal cells, reflecting the specificity of oxytocin's modulatory action. In this review, we describe the most recent discoveries in OT/OTR signaling in the hippocampus, focusing primarily on the electrophysiological oxytocinergic modulation of the OTR-expressing hippocampal neurons. We then look at the effect this modulation has on the balance of excitation/inhibition and synaptic plasticity in each hippocampal subregion. Additionally, we review OTR downstream signaling, which underlies the OT effects observed in different types of hippocampal neuron. Overall, this review comprehensively summarizes the advancements in unraveling the neuromodulatory functions exerted by OT on specific hippocampal networks.
Collapse
Affiliation(s)
- Francesca Talpo
- Department of Biology and Biotechnology “Lazzaro Spallanzani”, University of Pavia, Pavia, Italy
| | - Paolo Spaiardi
- Department of Biology and Biotechnology “Lazzaro Spallanzani”, University of Pavia, Pavia, Italy,Istituto Nazionale di Fisica Nucleare, Sezione di Pavia, Pavia, Italy
| | - Antonio Nicolas Castagno
- Department of Biology and Biotechnology “Lazzaro Spallanzani”, University of Pavia, Pavia, Italy
| | - Claudia Maniezzi
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Francesca Raffin
- Department of Biology and Biotechnology “Lazzaro Spallanzani”, University of Pavia, Pavia, Italy
| | - Giulia Terribile
- Department of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy
| | - Giulio Sancini
- Department of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy,Nanomedicine Center, Neuroscience Center, School of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy
| | - Antonio Pisani
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy,Neurological Institute Foundation Casimiro Mondino (IRCCS), Pavia, Italy
| | - Gerardo Rosario Biella
- Department of Biology and Biotechnology “Lazzaro Spallanzani”, University of Pavia, Pavia, Italy,Istituto Nazionale di Fisica Nucleare, Sezione di Pavia, Pavia, Italy,*Correspondence: Gerardo Rosario Biella,
| |
Collapse
|
38
|
Černotová D, Hrůzová K, Levčík D, Svoboda J, Stuchlík A. Linking Social Cognition, Parvalbumin Interneurons, and Oxytocin in Alzheimer's Disease: An Update. J Alzheimers Dis 2023; 96:861-875. [PMID: 37980658 PMCID: PMC10741376 DOI: 10.3233/jad-230333] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/11/2023] [Indexed: 11/21/2023]
Abstract
Finding a cure for Alzheimer's disease (AD) has been notoriously challenging for many decades. Therefore, the current focus is mainly on prevention, timely intervention, and slowing the progression in the earliest stages. A better understanding of underlying mechanisms at the beginning of the disease could aid in early diagnosis and intervention, including alleviating symptoms or slowing down the disease progression. Changes in social cognition and progressive parvalbumin (PV) interneuron dysfunction are among the earliest observable effects of AD. Various AD rodent models mimic these early alterations, but only a narrow field of study has considered their mutual relationship. In this review, we discuss current knowledge about PV interneuron dysfunction in AD and emphasize their importance in social cognition and memory. Next, we propose oxytocin (OT) as a potent modulator of PV interneurons and as a promising treatment for managing some of the early symptoms. We further discuss the supporting evidence on its beneficial effects on AD-related pathology. Clinical trials have employed the use of OT in various neuropsychiatric diseases with promising results, but little is known about its prospective impacts on AD. On the other hand, the modulatory effects of OT in specific structures and local circuits need to be clarified in future studies. This review highlights the connection between PV interneurons and social cognition impairment in the early stages of AD and considers OT as a promising therapeutic agent for addressing these early deficits.
Collapse
Affiliation(s)
- Daniela Černotová
- Laboratory of Neurophysiology of Memory, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
- Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Karolína Hrůzová
- Laboratory of Neurophysiology of Memory, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
- Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - David Levčík
- Laboratory of Neurophysiology of Memory, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Jan Svoboda
- Laboratory of Neurophysiology of Memory, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Aleš Stuchlík
- Laboratory of Neurophysiology of Memory, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
39
|
Coenjaerts M, Trimborn I, Adrovic B, Stoffel-Wagner B, Cahill L, Philipsen A, Hurlemann R, Scheele D. Exogenous estradiol and oxytocin modulate sex differences in hippocampal reactivity during the encoding of episodic memories. Neuroimage 2022; 264:119689. [PMID: 36349596 DOI: 10.1016/j.neuroimage.2022.119689] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/04/2022] [Accepted: 10/14/2022] [Indexed: 11/06/2022] Open
Abstract
Considerable evidence supports sex differences in episodic memory. The hormones estradiol and oxytocin both affect episodic memory and may contribute to these sex differences, but possible underlying hormonal interactions have not been tested in a sample involving both sexes. To this end, we conducted a randomized, placebo-controlled, parallel-group functional magnetic resonance imaging (fMRI) study including healthy free-cycling women (n = 111) and men (n = 115). The fMRI session was conducted under four experimental conditions: 1. transdermal estradiol (2 mg) and intranasal oxytocin (24 IU), 2. transdermal placebo and intranasal oxytocin, 3. transdermal estradiol and intranasal placebo, 4. transdermal placebo and intranasal placebo. Participants were scanned during the encoding of positive, neutral, and negative scenes. Recognition memory was tested three days following the scanning sessions without additional treatments. Under placebo, women showed a significantly better recognition memory and increased hippocampal responses to subsequently remembered items independent of the emotional valence compared to men. The separate treatments with either hormone significantly diminished this mnemonic sex difference and reversed the hippocampal activation pattern. However, the combined treatments produced no significant effect. Collectively, the results suggest that both hormones play a crucial role in modulating sex differences in episodic memory. Furthermore, possible antagonistic interactions between estradiol and oxytocin could explain previously observed opposing hormonal effects in women and men.
Collapse
Affiliation(s)
- Marie Coenjaerts
- Division of Medical Psychology, Department of Psychiatry and Psychotherapy, University Hospital Bonn, Bonn 53105, Germany.
| | - Isabelle Trimborn
- Division of Medical Psychology, Department of Psychiatry and Psychotherapy, University Hospital Bonn, Bonn 53105, Germany
| | - Berina Adrovic
- Division of Medical Psychology, Department of Psychiatry and Psychotherapy, University Hospital Bonn, Bonn 53105, Germany
| | - Birgit Stoffel-Wagner
- Institute for Clinical Chemistry and Clinical Pharmacology, University of Bonn, Bonn 53105, Germany
| | - Larry Cahill
- Department of Neurobiology and Behavior, University of California, Irvine, CA 92697-3800, United States
| | - Alexandra Philipsen
- Department of Psychiatry and Psychotherapy, University Hospital Bonn, Bonn 53105, Germany
| | - René Hurlemann
- Department of Psychiatry, School of Medicine & Health Sciences, University of Oldenburg, Oldenburg 26129, Germany; Research Center Neurosensory Science, University of Oldenburg, Oldenburg 26129, Germany
| | - Dirk Scheele
- Department of Social Neuroscience, Faculty of Psychology, Ruhr-University Bochum, Bochum 44780, Germany.
| |
Collapse
|
40
|
Triana-Del Rio R, Ranade S, Guardado J, LeDoux J, Klann E, Shrestha P. The modulation of emotional and social behaviors by oxytocin signaling in limbic network. Front Mol Neurosci 2022; 15:1002846. [PMID: 36466805 PMCID: PMC9714608 DOI: 10.3389/fnmol.2022.1002846] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 09/22/2022] [Indexed: 01/21/2024] Open
Abstract
Neuropeptides can exert volume modulation in neuronal networks, which account for a well-calibrated and fine-tuned regulation that depends on the sensory and behavioral contexts. For example, oxytocin (OT) and oxytocin receptor (OTR) trigger a signaling pattern encompassing intracellular cascades, synaptic plasticity, gene expression, and network regulation, that together function to increase the signal-to-noise ratio for sensory-dependent stress/threat and social responses. Activation of OTRs in emotional circuits within the limbic forebrain is necessary to acquire stress/threat responses. When emotional memories are retrieved, OTR-expressing cells act as gatekeepers of the threat response choice/discrimination. OT signaling has also been implicated in modulating social-exposure elicited responses in the neural circuits within the limbic forebrain. In this review, we describe the cellular and molecular mechanisms that underlie the neuromodulation by OT, and how OT signaling in specific neural circuits and cell populations mediate stress/threat and social behaviors. OT and downstream signaling cascades are heavily implicated in neuropsychiatric disorders characterized by emotional and social dysregulation. Thus, a mechanistic understanding of downstream cellular effects of OT in relevant cell types and neural circuits can help design effective intervention techniques for a variety of neuropsychiatric disorders.
Collapse
Affiliation(s)
| | - Sayali Ranade
- Department of Neurobiology and Behavior, School of Medicine, Stony Brook University, Stony Brook, NY, United States
| | - Jahel Guardado
- Center for Neural Science, New York University, New York, NY, United States
| | - Joseph LeDoux
- Center for Neural Science, New York University, New York, NY, United States
| | - Eric Klann
- Center for Neural Science, New York University, New York, NY, United States
| | - Prerana Shrestha
- Department of Neurobiology and Behavior, School of Medicine, Stony Brook University, Stony Brook, NY, United States
| |
Collapse
|
41
|
Inoue K, Ford CL, Horie K, Young LJ. Oxytocin receptors are widely distributed in the prairie vole (Microtus ochrogaster) brain: Relation to social behavior, genetic polymorphisms, and the dopamine system. J Comp Neurol 2022; 530:2881-2900. [PMID: 35763609 PMCID: PMC9474670 DOI: 10.1002/cne.25382] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 05/23/2022] [Accepted: 05/24/2022] [Indexed: 12/15/2022]
Abstract
Oxytocin regulates social behavior via direct modulation of neurons, regulation of neural network activity, and interaction with other neurotransmitter systems. The behavioral effects of oxytocin signaling are determined by the species-specific distribution of brain oxytocin receptors. The socially monogamous prairie vole has been a useful model organism for elucidating the role of oxytocin in social behaviors, including pair bonding, response to social loss, and consoling. However, there has been no comprehensive mapping of oxytocin receptor-expressing cells throughout the prairie vole brain. Here, we employed a highly sensitive in situ hybridization, RNAscope, to construct an exhaustive, brain-wide map of oxytocin receptor mRNA-expressing cells. We found that oxytocin receptor mRNA expression was widespread and diffused throughout the brain, with specific areas displaying a particularly robust expression. Comparing receptor binding with mRNA revealed that regions of the hippocampus and substantia nigra contained oxytocin receptor protein but lacked mRNA, indicating that oxytocin receptors can be transported to distal neuronal processes, consistent with presynaptic oxytocin receptor functions. In the nucleus accumbens, a region involved in oxytocin-dependent social bonding, oxytocin receptor mRNA expression was detected in both the D1 and D2 dopamine receptor-expressing subtypes of cells. Furthermore, natural genetic polymorphisms robustly influenced oxytocin receptor expression in both D1 and D2 receptor cell types in the nucleus accumbens. Collectively, our findings further elucidate the extent to which oxytocin signaling is capable of influencing brain-wide neural activity, responses to social stimuli, and social behavior. KEY POINTS: Oxytocin receptor mRNA is diffusely expressed throughout the brain, with strong expression concentrated in certain areas involved in social behavior. Oxytocin receptor mRNA expression and protein localization are misaligned in some areas, indicating that the receptor protein may be transported to distal processes. In the nucleus accumbens, oxytocin receptors are expressed on cells expressing both D1 and D2 dopamine receptor subtypes, and the majority of variation in oxytocin receptor expression between animals is attributable to polymorphisms in the oxytocin receptor gene.
Collapse
Affiliation(s)
- Kiyoshi Inoue
- Center for Translational Social Neuroscience, Silvio O. Conte Center for Oxytocin and Social Cognition, Emory National Primate Research Center, Emory University, Atlanta GA 30329, USA
| | - Charles L. Ford
- Center for Translational Social Neuroscience, Silvio O. Conte Center for Oxytocin and Social Cognition, Emory National Primate Research Center, Emory University, Atlanta GA 30329, USA
| | - Kengo Horie
- Center for Translational Social Neuroscience, Silvio O. Conte Center for Oxytocin and Social Cognition, Emory National Primate Research Center, Emory University, Atlanta GA 30329, USA
| | - Larry J. Young
- Center for Translational Social Neuroscience, Silvio O. Conte Center for Oxytocin and Social Cognition, Emory National Primate Research Center, Emory University, Atlanta GA 30329, USA
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta GA 30322, USA
| |
Collapse
|
42
|
Oxytocin-Modulated Ion Channel Ensemble Controls Depolarization, Integration and Burst Firing in CA2 Pyramidal Neurons. J Neurosci 2022; 42:7707-7720. [PMID: 36414006 PMCID: PMC9581561 DOI: 10.1523/jneurosci.0921-22.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 08/02/2022] [Accepted: 08/26/2022] [Indexed: 12/14/2022] Open
Abstract
Oxytocin (OXT) and OXT receptor (OXTR)-mediated signaling control excitability, firing patterns, and plasticity of hippocampal CA2 pyramidal neurons, which are pivotal in generation of brain oscillations and social memory. Nonetheless, the ionic mechanisms underlying OXTR-induced effects in CA2 neurons are not fully understood. Using slice physiology in a reporter mouse line and interleaved current-clamp and voltage-clamp experiments, we systematically identified the ion channels modulated by OXT signaling in CA2 pyramidal cells (PYRs) in mice of both sexes and explored how changes in channel conductance support altered electrical activity. Activation of OXTRs inhibits an outward potassium current mediated by inward rectifier potassium channels (I Kir) and thus favoring membrane depolarization. Concomitantly, OXT signaling also diminishes inward current mediated by hyperpolarization-activated cyclic-nucleotide-gated (HCN) channels (I h), providing a hyperpolarizing drive. The combined reduction in both I Kir and I h synergistically elevate the membrane resistance and favor dendritic integration while the membrane potential is restrained from quickly depolarizing from rest. As a result, the responsiveness of CA2 PYRs to synaptic inputs is highly sharpened during OXTR activation. Unexpectedly, OXTR signaling also strongly enhances a tetrodotoxin-resistant (TTX-R), voltage-gated sodium current that helps drive the membrane potential to spike threshold and thus promote rhythmic firing. This novel array of OXTR-stimulated ionic mechanisms operates in close coordination and underpins OXT-induced burst firing, a key step in CA2 PYRs' contribution to hippocampal information processing and broader influence on brain circuitry. Our study deepens our understanding of underpinnings of OXT-promoted social memory and general neuropeptidergic control of cognitive states.SIGNIFICANCE STATEMENT Oxytocin (OXT) plays key roles in reproduction, parenting and social and emotional behavior, and deficiency in OXT receptor (OXTR) signaling may contribute to neuropsychiatric disorders. We identified a novel array of OXTR-modulated ion channels that operate in close coordination to retune hippocampal CA2 pyramidal neurons, enhancing responsiveness to synaptic inputs and sculpting output. OXTR signaling inhibits both potassium conductance (I Kir) and mixed cation conductance (I h), engaging opposing influences on membrane potential, stabilizing it while synergistically elevating membrane resistance and electrotonic spread. OXT signaling also facilitates a tetrodotoxin-resistant (TTX-R) Na+ current, not previously described in hippocampus (HP), engaged on further depolarization. This TTX-R current lowers the spike threshold and supports rhythmic depolarization and burst firing, a potent driver of downstream circuitry.
Collapse
|
43
|
Alaerts K, Bernaerts S, Wenderoth N. Effects of single- and multiple-dose oxytocin treatment on amygdala low-frequency BOLD fluctuations and BOLD spectral dynamics in autism. Transl Psychiatry 2022; 12:393. [PMID: 36127337 PMCID: PMC9489696 DOI: 10.1038/s41398-022-02158-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 09/02/2022] [Accepted: 09/07/2022] [Indexed: 11/17/2022] Open
Abstract
Prior neuroimaging clinical trials investigating the neural effects of intranasal administration of the neuropeptide oxytocin demonstrated a key role of the amygdala in oxytocin's neuromodulatory effects. These studies mostly demonstrated the acute effects of single-dose administrations, examining task-dependent effects of oxytocin on brain activity elicited during explicit experimental tasks or stimuli presentations. The increased consideration of oxytocin as a potential ameliorating treatment in autism spectrum disorder (ASD) requires a better understanding of how multiple-dose oxytocin administration affects intrinsic, task-free, amygdala function. In this double-blind, randomized, placebo-controlled trial with between-subject design, 38 adult men with ASD underwent resting-state fMRI scanning before and after oxytocin or placebo treatment. Effects were assessed either after a single-dose administration, consisting of 24 international units, or after multiple-dose treatment, consisting of 4 weeks of once-daily nasal spray administrations. Compared to placebo, oxytocin induced a decrease in intrinsic resting-state BOLD signal amplitudes of the bilateral amygdala (fractional amplitudes of low-frequency fluctuations) and modulated cross-frequency interactions between adjacent BOLD frequency components. The right amygdala showed a pattern of reduced cross-frequency harmonicity, while the left amygdala showed a relative increase in harmonic cross-frequency interactions after oxytocin treatment. Notably, the direction and magnitude of BOLD spectral changes induced after a single-dose were qualitatively similar to treatment effects induced after multiple-dose treatment. Furthermore, the identified spectral changes in amygdalar BOLD amplitude and cross-frequency harmonicity were associated with improved feelings of tension, reflecting oxytocin's anxiolytic, stress-reducing neuromodulatory role. The observed effects of oxytocin on amygdalar BOLD spectral characteristics and associated behaviors contribute to a deeper mechanistic understanding of the intrinsic, task-free neuromodulatory dynamics that underlie single- and multiple-dose oxytocin treatment in ASD. European Clinical Trial Registry (Eudract 2014-000586-45).
Collapse
Affiliation(s)
- Kaat Alaerts
- Department of Rehabilitation Sciences, Group Biomedical Sciences, Neuromodulation Laboratory, Neurorehabilitation Research Group, University of Leuven, KU Leuven, Leuven, Belgium.
| | - Sylvie Bernaerts
- grid.5596.f0000 0001 0668 7884Department of Rehabilitation Sciences, Group Biomedical Sciences, Neuromodulation Laboratory, Neurorehabilitation Research Group, University of Leuven, KU Leuven, Leuven, Belgium
| | - Nicole Wenderoth
- grid.5801.c0000 0001 2156 2780Department of Health Sciences and Technology, Neural Control of Movement Lab, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
44
|
Borie AM, Young LJ, Liu RC. Sex-specific and social experience-dependent oxytocin-endocannabinoid interactions in the nucleus accumbens: implications for social behaviour. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210057. [PMID: 35858094 PMCID: PMC9272148 DOI: 10.1098/rstb.2021.0057] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 04/13/2022] [Indexed: 08/31/2023] Open
Abstract
Oxytocin modulates social behaviour across diverse vertebrate taxa, but the precise nature of its effects varies across species, individuals and lifetimes. Contributing to this variation is the fact that oxytocin's physiological effects are mediated through interaction with diverse neuromodulatory systems and can depend on the specifics of the local circuits it acts on. Furthermore, those effects can be influenced by both genetics and experience. Here we discuss this complexity through the lens of a specific neuromodulatory system, endocannabinoids, interacting with oxytocin in the nucleus accumbens to modulate prosocial behaviours in prairie voles. We provide a survey of current knowledge of oxytocin-endocannabinoid interactions in relation to social behaviour. We review in detail recent research in monogamous female prairie voles demonstrating that social experience, such as mating and pair bonding, can change how oxytocin modulates nucleus accumbens glutamatergic signalling through the recruitment of endocannabinoids to modulate prosocial behaviour toward the partner. We then discuss potential sex differences in experience-dependent modulation of the nucleus accumbens by oxytocin in voles based on new data in males. Finally, we propose that future oxytocin-based precision medicine therapies should consider how prior social experience interacts with sex and genetics to influence oxytocin actions. This article is part of the theme issue 'Interplays between oxytocin and other neuromodulators in shaping complex social behaviours'.
Collapse
Affiliation(s)
- Amélie M. Borie
- Center for Translational Social Neuroscience, Emory University, Atlanta, GA 30322, USA
- Silvio O. Conte Center for Oxytocin and Social Cognition, Emory University, Atlanta, GA 30322, USA
- Yerkes National Primate Research Center, Emory University, Atlanta, GA 30322, USA
- Department of Biology, Emory University, Atlanta, GA 30322, USA
| | - Larry J. Young
- Center for Translational Social Neuroscience, Emory University, Atlanta, GA 30322, USA
- Silvio O. Conte Center for Oxytocin and Social Cognition, Emory University, Atlanta, GA 30322, USA
- Yerkes National Primate Research Center, Emory University, Atlanta, GA 30322, USA
- Department of Psychiatry and Behavioral Science, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Robert C. Liu
- Center for Translational Social Neuroscience, Emory University, Atlanta, GA 30322, USA
- Silvio O. Conte Center for Oxytocin and Social Cognition, Emory University, Atlanta, GA 30322, USA
- Yerkes National Primate Research Center, Emory University, Atlanta, GA 30322, USA
- Department of Biology, Emory University, Atlanta, GA 30322, USA
| |
Collapse
|
45
|
Khazen T, Narattil NR, Ferreira G, Maroun M. Hippocampal oxytocin is involved in spatial memory and synaptic plasticity deficits following acute high-fat diet intake in juvenile rats. Cereb Cortex 2022; 33:3934-3943. [PMID: 35989314 DOI: 10.1093/cercor/bhac317] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 07/22/2022] [Accepted: 07/23/2022] [Indexed: 11/12/2022] Open
Abstract
The hippocampus undergoes maturation during juvenility, a period of increased vulnerability to environmental challenges. We recently found that acute high-fat diet (HFD) impaired hippocampal long-term potentiation (LTP) and hippocampal-dependent spatial memory. We also recently reported that similar HFD exposure affected prefrontal plasticity and social memory through decreased oxytocin levels in the prefrontal cortex. In the present study, we therefore evaluated whether hippocampal oxytocin levels are also affected by juvenile HFD and could mediate deficits of hippocampal LTP and spatial memory. We found that postweaning HFD decreased oxytocin levels in the CA1 of the dorsal hippocampus. Interestingly, systemic injection of high, but not low, dose of oxytocin rescued HFD-induced LTP impairment in CA1. Moreover, deficits in long-term object location memory (OLM) were prevented by systemic injection of both high and low dose of oxytocin as well as by intra-CA1 infusion of oxytocin receptor agonist. Finally, we found that blocking oxytocin receptors in CA1 impaired long-term OLM in control-fed juvenile rats. These results suggest that acute HFD intake lowers oxytocin levels in the CA1 that lead to CA1 plasticity impairment and spatial memory deficits in juveniles. Further, these results provide the first evidence for the regulatory role of oxytocin in spatial memory.
Collapse
Affiliation(s)
- Tala Khazen
- Sagol Department of Neurobiology, Faculty of Natural Sciences, and The Integrated Brain and Behavior Research Center (IBBRC), University of Haifa, Haifa 3498838, Israel
| | - Nisha Rajan Narattil
- Sagol Department of Neurobiology, Faculty of Natural Sciences, and The Integrated Brain and Behavior Research Center (IBBRC), University of Haifa, Haifa 3498838, Israel
| | - Guillaume Ferreira
- University of Bordeaux, INRAE, Nutrition and Integrative Neurobiology, UMR 1286, Bordeaux, 33076, France
| | - Mouna Maroun
- Sagol Department of Neurobiology, Faculty of Natural Sciences, and The Integrated Brain and Behavior Research Center (IBBRC), University of Haifa, Haifa 3498838, Israel
| |
Collapse
|
46
|
Oxytocin-based therapies for treatment of Prader-Willi and Schaaf-Yang syndromes: evidence, disappointments, and future research strategies. Transl Psychiatry 2022; 12:318. [PMID: 35941105 PMCID: PMC9360032 DOI: 10.1038/s41398-022-02054-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 06/23/2022] [Accepted: 07/01/2022] [Indexed: 11/09/2022] Open
Abstract
The prosocial neuropeptide oxytocin is being developed as a potential treatment for various neuropsychiatric disorders including autism spectrum disorder (ASD). Early studies using intranasal oxytocin in patients with ASD yielded encouraging results and for some time, scientists and affected families placed high hopes on the use of intranasal oxytocin for behavioral therapy in ASD. However, a recent Phase III trial obtained negative results using intranasal oxytocin for the treatment of behavioral symptoms in children with ASD. Given the frequently observed autism-like behavioral phenotypes in Prader-Willi and Schaaf-Yang syndromes, it is unclear whether oxytocin treatment represents a viable option to treat behavioral symptoms in these diseases. Here we review the latest findings on intranasal OT treatment, Prader-Willi and Schaaf-Yang syndromes, and propose novel research strategies for tailored oxytocin-based therapies for affected individuals. Finally, we propose the critical period theory, which could explain why oxytocin-based treatment seems to be most efficient in infants, but not adolescents.
Collapse
|
47
|
Buemann B. Oxytocin Release: A Remedy for Cerebral Inflammaging. Curr Aging Sci 2022; 15:218-228. [PMID: 35431008 DOI: 10.2174/1874609815666220414104832] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 12/22/2021] [Accepted: 02/11/2022] [Indexed: 06/14/2023]
Abstract
Oxytocin facilitates reproduction both by physiological and behavioral mechanisms. Oxytocinergic neurons emerging from the hypothalamus release oxytocin from the pituitary gland to the blood by axonal discharge to regulate reproductive organs. However, at the same time, oxytocin is secreted into neighboring areas of the hypothalamus from the dendrites of these neurons. Here, the peptide acts by autocrine and paracrine mechanisms to influence other neuroendocrine systems. Furthermore, oxytocinergic neurons project to many different locations in the brain, where they affect sensory processing, affective functions, and reward. Additional to its regulatory role, significant anti-inflammatory and restoring effects of oxytocin have been reported from many invivo and in-vitro studies. The pervasive property of the oxytocin system may enable it generally to dampen stress reactions both peripherally and centrally, and protect neurons and supportive cells from inadequate inflammation and malfunctioning. Animal experiments have documented the importance of preserving immune- and stem cell functions in the hypothalamus to impede age-related destructive processes of the body. Sexual reward has a profound stimulating impact on the oxytocinergic activity, and the present article therefore presents the hypothesis that frequent sexual activity and gratigying social experiance may postpone the onset of frailty and age-associated diseases by neural protection from the bursts of oxytocin. Furthermore, suggestions are given how the neuroplastic properties of oxytocin may be utilized to enhance sexual reward by learning processes in order to further reinforce the release of this peptide.
Collapse
Affiliation(s)
- Benjamin Buemann
- Retired. Copenhagen, Denmark. Previous Affiliation: Research Department of Human Nutrition, The Royal Veterinary and Agricultural University, Copenhagen, Denmark
| |
Collapse
|
48
|
Marazziti D, Diep PT, Carter S, Carbone MG. Oxytocin: An Old Hormone, A Novel Psychotropic Drug And Possible Use In Treating Psychiatric Disorders. Curr Med Chem 2022; 29:5615-5687. [PMID: 35894453 DOI: 10.2174/0929867329666220727120646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 03/17/2022] [Accepted: 04/19/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND Oxytocin is a nonapeptide synthesized in the paraventricular and supraoptic nuclei of the hypothalamus. Historically, this molecule has been involved as a key factor in the formation of infant attachment, maternal behavior and pair bonding and, more generally, in linking social signals with cognition, behaviors and reward. In the last decades, the whole oxytocin system has gained a growing interest as it was proposed to be implicated in etiopathogenesis of several neurodevelopmental and neuropsychiatric disorders. METHODS With the main goal of an in-depth understanding of the oxytocin role in the regulation of different functions and complex behaviors as well as its intriguing implications in different neuropsychiatric disorders, we performed a critical review of the current state of art. We carried out this work through PubMed database up to June 2021 with the search terms: 1) "oxytocin and neuropsychiatric disorders"; 2) "oxytocin and neurodevelopmental disorders"; 3) "oxytocin and anorexia"; 4) "oxytocin and eating disorders"; 5) "oxytocin and obsessive-compulsive disorder"; 6) "oxytocin and schizophrenia"; 7) "oxytocin and depression"; 8) "oxytocin and bipolar disorder"; 9) "oxytocin and psychosis"; 10) "oxytocin and anxiety"; 11) "oxytocin and personality disorder"; 12) "oxytocin and PTSD". RESULTS Biological, genetic, and epigenetic studies highlighted quality and quantity modifications in the expression of oxytocin peptide or in oxytocin receptor isoforms. These alterations would seem to be correlated with a higher risk of presenting several neuropsychiatric disorders belonging to different psychopathological spectra. Collaterally, the exogenous oxytocin administration has shown to ameliorate many neuropsychiatric clinical conditions. CONCLUSION Finally, we briefly analyzed the potential pharmacological use of oxytocin in patient with severe symptomatic SARS-CoV-2 infection due to its anti-inflammatory, anti-oxidative and immunoregulatory properties.
Collapse
Affiliation(s)
- Donatella Marazziti
- Department of Clinical and Experimental Medicine, Section of Psychiatry, University of Pisa, Italy.,Saint Camillus International University of Health and Medical Sciences, Rome, Italy
| | - Phuoc-Tan Diep
- Department of Histopathology, Royal Lancaster Infirmary, University Hospitals of Morecambe Bay NHS Foundation Trust, Lancaster, United Kingdom
| | - Sue Carter
- Director Kinsey Institute, Indiana University, Bloomington, IN, USA
| | - Manuel G Carbone
- Department of Medicine and Surgery, Division of Psychiatry, University of Insubria, 21100 Varese, Italy
| |
Collapse
|
49
|
Baudon A, Clauss Creusot E, Althammer F, Schaaf CP, Charlet A. Emerging role of astrocytes in oxytocin-mediated control of neural circuits and brain functions. Prog Neurobiol 2022; 217:102328. [PMID: 35870680 DOI: 10.1016/j.pneurobio.2022.102328] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 07/01/2022] [Accepted: 07/18/2022] [Indexed: 11/19/2022]
Abstract
The neuropeptide oxytocin has been in the focus of scientists for decades due to its profound and pleiotropic effects on physiology, activity of neuronal circuits and behaviors, among which sociality. Until recently, it was believed that oxytocinergic action exclusively occurs through direct activation of neuronal oxytocin receptors. However, several studies demonstrated the existence and functional relevance of astroglial oxytocin receptors in various brain regions in the mouse and rat brain. Astrocytic signaling and activity is critical for many important physiological processes including metabolism, neurotransmitter clearance from the synaptic cleft and integrated brain functions. While it can be speculated that oxytocinergic action on astrocytes predominantly facilitates neuromodulation via the release of specific gliotransmitters, the precise role of astrocytic oxytocin receptors remains elusive. In this review, we discuss the latest studies on the interaction between the oxytocinergic system and astrocytes, including detailed information about intracellular cascades, and speculate about future research directions on astrocytic oxytocin signaling.
Collapse
Affiliation(s)
- Angel Baudon
- Centre National de la Recherche Scientifique and University of Strasbourg, Institute of Cellular and Integrative Neuroscience, Strasbourg 67000 France
| | - Etienne Clauss Creusot
- Centre National de la Recherche Scientifique and University of Strasbourg, Institute of Cellular and Integrative Neuroscience, Strasbourg 67000 France
| | | | | | - Alexandre Charlet
- Centre National de la Recherche Scientifique and University of Strasbourg, Institute of Cellular and Integrative Neuroscience, Strasbourg 67000 France.
| |
Collapse
|
50
|
Biggs LM, Hammock EAD. Oxytocin via oxytocin receptor excites neurons in the endopiriform nucleus of juvenile mice. Sci Rep 2022; 12:11401. [PMID: 35794163 PMCID: PMC9259672 DOI: 10.1038/s41598-022-15390-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 06/23/2022] [Indexed: 11/09/2022] Open
Abstract
The neuropeptide oxytocin (OXT) modulates social behaviors across species and may play a developmental role for these behaviors and their mediating neural pathways. Despite having high, stable levels of OXT receptor (OXTR) ligand binding from birth, endopiriform nucleus (EPN) remains understudied. EPN integrates olfactory and gustatory input and has reciprocal connections with several limbic areas. Because the role of OXTR signaling in EPN is unknown, we sought to provide anatomical and electrophysiological information about OXTR signaling in mouse EPN neurons. Using in situ hybridization, we found that most EPN neurons co-express Oxtr mRNA and the marker for VGLUT1, a marker for glutamatergic cells. Based on high levels of OXTR ligand binding in EPN, we hypothesized that oxytocin application would modulate activity in these cells as measured by whole-cell patch-clamp electrophysiology. Bath application of OXT and an OXTR specific ligand (TGOT) increased the excitability of EPN neurons in wild-type, but not in OXTR-knockout (KO) tissue. These results show an effect of OXT on a mainly VGLUT1+ cell population within EPN. Given the robust, relatively stable OXTR expression in EPN throughout life, OXTR in this multi-sensory and limbic integration area may be important for modulating activity in response to an array of social or other salient stimuli throughout the lifespan and warrants further study.
Collapse
Affiliation(s)
- Lindsey M Biggs
- Program in Neuroscience, Department of Psychology, Florida State University, Tallahassee, FL, 32306, USA.
| | - Elizabeth A D Hammock
- Program in Neuroscience, Department of Psychology, Florida State University, Tallahassee, FL, 32306, USA.
| |
Collapse
|