1
|
McMahon C, Raddi MG, Mohan S, Santini V. New Approvals in Low- and Intermediate-Risk Myelodysplastic Syndromes. Am Soc Clin Oncol Educ Book 2025; 45:e473654. [PMID: 40334184 DOI: 10.1200/edbk-25-473654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2025]
Abstract
Recent advances in defining low- and intermediate-risk myelodysplastic syndromes (MDSs) have emphasized the critical role of molecular characterization using next-generation sequencing (NGS). Molecular profiling significantly enhances diagnostic precision, classification, and risk stratification, thereby informing therapeutic decisions, including the timing of hematopoietic stem-cell transplantation (HSCT). The Molecular International Prognostic Scoring System integrates clinical and molecular data, reclassifying and upstaging a substantial number of patients compared with previous prognostic systems, possibly allowing for more tailored therapeutic interventions. The novel therapeutic agents luspatercept and imetelstat have been particularly impactful. Luspatercept, which is effective in lower-risk (LR)-MDS, especially but not only in SF3B1-mutated cases, promotes late-stage erythroid maturation and transfusion independence (TI). Imetelstat, a telomerase inhibitor, induces TI while demonstrating disease-modifying effects as it significantly reduces mutation allele frequencies in patients who respond. These agents exemplify personalized medicine, emphasizing treatment selection and timing based on individual molecular and clinical features. Current research focuses on optimizing therapeutic strategies and exploring combination treatments to improve clinical outcomes.
Collapse
Affiliation(s)
| | - Marco G Raddi
- MDS Unit, Hematology, DMSC, University of Florence, AOUC, Florence, Italy
| | - Sanjay Mohan
- Vanderbilt University School of Medicine, Nashville, TN
| | - Valeria Santini
- MDS Unit, Hematology, DMSC, University of Florence, AOUC, Florence, Italy
| |
Collapse
|
2
|
Wang BK, Wang R, Zhuo FF, Wang JK, Huang YL, Tu PF, Zeng KW, Li J. Hydroxysafflor yellow A alleviates ischemic myocardial injury by targeting SF3A1 to improve mitochondrial energy metabolism. Eur J Pharmacol 2025; 1002:177789. [PMID: 40449648 DOI: 10.1016/j.ejphar.2025.177789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2025] [Revised: 05/09/2025] [Accepted: 05/28/2025] [Indexed: 06/03/2025]
Abstract
Myocardial ischemia/reperfusion injury (MIRI) significantly contributes to the increased mortality associated with cardiovascular diseases; however, there are no effective therapeutic agents. Hydroxysafflor yellow A (HSYA) is a natural small molecule that possesses potent anti-ischemic myocardial injury properties. However, precise molecular targets remain unclear. In this study, we identified splicing factor 3A subunit 1 (SF3A1) as a direct target of HSYA through thermal proteome profiling. SF3A1 participates in spliceosome assembly and it has been reported to mediate the alternative splicing of precursor messenger RNA. Based on this function, we used RNA sequencing to investigate the downstream mechanisms of SF3A1 and found that the most strongly correlated genes and pathways were associated with mitochondrial injury and energy metabolism. Furthermore, the results demonstrated that in MIRI, HSYA could clear the accumulation of reactive oxygen species, thereby restoring mitochondrial polarization and membrane potential. HSYA further drove oxidative phosphorylation in the electron transport chain and promoted ATP synthesis. Additionally, we silenced the SF3A1 gene and confirmed that SF3A1 played a regulatory role in mitochondrial energy metabolism and HSYA-mediated therapeutic effects. In vivo, HSYA also demonstrated significant therapeutic efficacy in acute myocardial mouse infarction models, with the ability to enhance mitochondrial energy metabolism in myocardial tissue. In summary, our research suggests that SF3A1, through the pharmacological targeting of mitochondrial energy metabolism, may emerge as a novel therapeutic target for MIRI. Moreover, specific modulation of SF3A1 by HSYA may provide a new perspective for designing cardiovascular protectants with novel mechanisms, facilitating the development of precise therapies for MIRI.
Collapse
Affiliation(s)
- Bo-Kai Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beiing 102488, PR China; Modern Research Center for Traditional Chinese Medicine, Beijing Institute of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, PR China
| | - Ran Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beiing 102488, PR China; Modern Research Center for Traditional Chinese Medicine, Beijing Institute of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, PR China
| | - Fang-Fang Zhuo
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, PR China
| | - Jing-Kang Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, PR China
| | - Yang-Li Huang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beiing 102488, PR China; Modern Research Center for Traditional Chinese Medicine, Beijing Institute of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, PR China
| | - Peng-Fei Tu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, PR China
| | - Ke-Wu Zeng
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, PR China.
| | - Jun Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beiing 102488, PR China; Modern Research Center for Traditional Chinese Medicine, Beijing Institute of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, PR China.
| |
Collapse
|
3
|
Kaminska D. Alternative Splicing Regulation in Metabolic Disorders. Obes Rev 2025:e13950. [PMID: 40425033 DOI: 10.1111/obr.13950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 03/20/2025] [Accepted: 05/08/2025] [Indexed: 05/29/2025]
Abstract
Alternative splicing (AS) is a fundamental mechanism for enhancing transcriptome diversity and regulating gene expression, crucial for various cellular processes and the development of complex traits. This review examines the role of AS in metabolic disorders, including obesity, weight loss, dyslipidemias, and metabolic syndrome. We explore the molecular mechanisms underlying AS regulation, focusing on the interplay between cis-acting elements and trans-acting factors, and the influence of RNA-binding proteins (RBPs). Advances in high-throughput sequencing and bioinformatics have unveiled the extensive landscape of AS events across different tissues and conditions, highlighting the importance of tissue-specific splicing in metabolic regulation. We discuss the impact of genetic variants on AS, with a particular emphasis on splicing quantitative trait loci (sQTLs) and their association with cardiometabolic traits. The review also covers the regulation of spliceosome components by phosphorylation, the role of m6A modification in AS, and the interaction between transcription and splicing. Additionally, we address the clinical relevance of AS, illustrating how splicing misregulation contributes to metabolic diseases and the potential for therapeutic interventions targeting splicing mechanisms. This comprehensive overview underscores the significance of AS in metabolic health and disease, advocating for further research to harness its therapeutic potential.
Collapse
Affiliation(s)
- Dorota Kaminska
- Department of Medicine, Division of Cardiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, USA
| |
Collapse
|
4
|
Khan S, Tang Y, Guo Y, Feng J, Wu H, Song Z, Zhang C, Qin F. Revealing the role of U2AF1 in splicing regulation and chimeric RNA dynamics. Sci Rep 2025; 15:16235. [PMID: 40346396 PMCID: PMC12064656 DOI: 10.1038/s41598-025-99865-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 04/23/2025] [Indexed: 05/11/2025] Open
Abstract
U2 small nuclear ribonucleoprotein auxiliary factor 1 (U2AF1) gene is a pivotal splicing factor frequently mutated in various malignancies, including myelodysplastic syndromes (MDS) and acute myeloid leukemia (AML). U2AF1 plays a critical role in the recognition and processing of 3' splice sites during pre-mRNA splicing, thereby contributing to the regulation of gene expression and the generation of protein diversity. However, how U2AF1 contributes to the formation and regulation of different categories of chimeric RNAs remains elusive. In this study, we aimed to elucidate the involvement of U2AF1 in chimeric RNA formation and its regulatory impact on different categories of chimeric RNA. Employing knockdown and overexpression strategies in leukemia and esophageal cancer cell lines, we conducted paired-end RNA sequencing following U2AF1 knockdown to assess transcriptomic alterations and their influence on alternative splicing patterns. Subsequently, we utilized the SOAPfuse algorithm to detect and characterize chimeric RNAs from the paired-end RNA sequencing data. Our findings unveiled significant changes in the landscape of chimeric RNA upon U2AF1 knockdown, highlighting its critical role in chimeric RNA formation. This study provides novel insights into how U2AF1 mediates chimeric RNA formation and regulates distinct categories of chimeric RNA within leukemia cell lines. Thereby highlighting its potential as a biomarker for leukemia and other malignancies, promising avenues for future diagnostic and therapeutic developments.
Collapse
Affiliation(s)
- Sangeen Khan
- Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Sciences, College of Medicine, Zhengzhou University, Zhengzhou, 450052, Henan, China
- Department of Microbiology and Immunology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Yue Tang
- Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Sciences, College of Medicine, Zhengzhou University, Zhengzhou, 450052, Henan, China
- Department of Microbiology and Immunology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Yangyang Guo
- Department of Microbiology and Immunology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450052, Henan, China
- Clinical Laboratory, Zhenjiang Center for Disease Control and Prevention, Zhenjiang, 212000, Jiangsu, China
| | - Jing Feng
- Department of Microbiology and Immunology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450052, Henan, China
- School of Medicine Laboratory, North Henan Medical University, Xinxiang, 453003, Henan, China
| | - Hui Wu
- Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Sciences, College of Medicine, Zhengzhou University, Zhengzhou, 450052, Henan, China
- Department of Microbiology and Immunology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Zhenguo Song
- Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Sciences, College of Medicine, Zhengzhou University, Zhengzhou, 450052, Henan, China
- Department of Microbiology and Immunology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450052, Henan, China
- Department of Pharmacy, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450008, Henan, China
| | - Chengjuan Zhang
- Center of Bio-Repository, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450008, Henan, China
| | - Fujun Qin
- Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Sciences, College of Medicine, Zhengzhou University, Zhengzhou, 450052, Henan, China.
- Department of Microbiology and Immunology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450052, Henan, China.
- State Key Laboratory of Metabolic Dysregulation & Prevention and Treatment of Esophageal Cancer, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450052, Henan, China.
- School of Medicine Laboratory, North Henan Medical University, Xinxiang, 453003, Henan, China.
| |
Collapse
|
5
|
Alberti MO, Srivatsan SN, Shao J, Fei DL, Zhu M, Pastrana CC, Grieb S, Graubert TA, Abdel-Wahab O, Walter MJ. U2af1 S34F and U2af1 Q157R myeloid neoplasm-associated hotspot mutations induce distinct hematopoietic phenotypes in mice. RESEARCH SQUARE 2025:rs.3.rs-6377810. [PMID: 40386435 PMCID: PMC12083641 DOI: 10.21203/rs.3.rs-6377810/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/26/2025]
Abstract
Recurrent somatic mutations in the spliceosome genes SF3B1, SRSF2, and U2AF1 are frequently identified in patients with myeloid neoplasms, such as myelodysplastic syndromes. We characterized the in vivo consequences of expressing two hotspot mutations in U2AF1 that code for the S34F and Q157R substitutions. Our results indicate that the two mutations induce distinct hematopoietic phenotypes in mice, suggesting that the U2AF1 S34F and U2AF1 Q157R mutations should not be conflated as they may impact disease pathogenesis differently in patients. Mice expressing U2af1 S34F have a more severe reduction in their blood and bone marrow cell counts and reduced stem cell repopulating ability, compared to mice expressing U2af1 Q157R. The expression and splicing of target genes are largely unique between the mutations, in both mouse and human samples, potentially driving the phenotypic differences induced by either mutation. The two mutations co-occur with different gene mutations in patients and are not equally represented across myeloid neoplasms, suggesting that multiple mechanisms likely drive U2AF1-mutant disease pathogenesis. Collectively, our results support that U2AF1 S34F and U2AF1 Q157R mutations induce distinct hematopoietic, gene expression, and RNA splicing phenotypes in vivo. Larger population studies will be needed to determine if these phenotypic changes translate into clinico-pathologic differences in patients warranting separate classification.
Collapse
Affiliation(s)
- Michael O Alberti
- Department of Pathology and Immunology, Washington University, St. Louis, MO; Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO
| | | | - Jin Shao
- Department of Medicine, Washington University, St. Louis, MO
| | - Dennis L Fei
- Department of Medicine, Meyer Cancer Center, Weill Cornell Medicine, New York, NY; Cancer Biology Section, Cancer Genetics Branch, National Human Genome Research Institute, Bethesda, MD
| | - Mengou Zhu
- Department of Medicine, Washington University, St. Louis, MO
| | | | - Sarah Grieb
- Department of Medicine, Washington University, St. Louis, MO
| | - Timothy A Graubert
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA
| | | | | |
Collapse
|
6
|
Alhabsi A, Ling Y, Crespi M, Reddy ASN, Mahfouz M. Alternative Splicing Dynamics in Plant Adaptive Responses to Stress. ANNUAL REVIEW OF PLANT BIOLOGY 2025; 76:687-717. [PMID: 39952682 DOI: 10.1146/annurev-arplant-083123-090055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2025]
Abstract
Plants thrive in dynamic environments by activating sophisticated molecular networks that fine-tune their responses to stress. A key component of these networks is gene regulation at multiple levels, including precursor messenger RNA (pre-mRNA) splicing, which shapes the transcriptome and proteome landscapes. Through the precise action of the spliceosome complex, noncoding introns are removed and coding exons are joined to produce spliced RNA transcripts. While constitutive splicing always generates the same messenger RNA (mRNA), alternative splicing (AS) produces multiple mRNA isoforms from a single pre-mRNA, enriching proteome diversity. Remarkably, 80% of multiexon genes in plants generate multiple isoforms, underscoring the importance of AS in shaping plant development and responses to abiotic and biotic stresses. Recent advances in CRISPR-Cas genome and transcriptome editing technologies offer revolutionary tools to dissect AS regulation at molecular levels, unveiling the functional significance of specific isoforms. In this review, we explore the intricate mechanisms of pre-mRNA splicing and AS in plants, with a focus on stress responses. Additionally, we examine how leveraging AS insights can unlock new opportunities to engineer stress-resilient crops, paving the way for sustainable agriculture in the face of global environmental challenges.
Collapse
Affiliation(s)
- Abdulrahman Alhabsi
- Laboratory for Genome Engineering and Synthetic Biology, Division of Biological Sciences, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia;
| | - Yu Ling
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, People's Republic of China
| | - Martin Crespi
- Institute of Plant Sciences Paris-Saclay (IPS2), Université Paris-Saclay, CNRS, INRAE, Gif sur Yvette, France
- Institute of Plant Sciences Paris-Saclay (IPS2), Universite Paris Cité, Gif sur Yvette, France
| | - Anireddy S N Reddy
- Department of Biology and Program in Cell and Molecular Biology, Colorado State University, Fort Collins, Colorado, USA
| | - Magdy Mahfouz
- Laboratory for Genome Engineering and Synthetic Biology, Division of Biological Sciences, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia;
| |
Collapse
|
7
|
Qiu H, Zhang C, Ma X, Li Y. Molecular insights and treatment innovations: Advancing outcomes in acute myeloid leukemia with myelodysplasia‑related changes (Review). Oncol Rep 2025; 53:54. [PMID: 40116086 DOI: 10.3892/or.2025.8887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 02/10/2025] [Indexed: 03/23/2025] Open
Abstract
Acute myeloid leukemia, myelodysplasia‑related (AML‑MR), a challenging and aggressive subtype of AML, is characterized by unique genetic abnormalities and molecular features, which contribute to its poor prognosis compared with other AML subtypes. The present review summarizes the current understanding of AML‑MR pathogenesis, highlighting notable advancements in genetic and cytogenetic insights. Critical mutations, such as those in the tumor antigen p53 and additional sex combs like 1 genes, and their role in disease progression and resistance to treatment, are explored. The review further investigates how clonal evolution and cellular microenvironment alterations drive AML‑MR transformation and impact patient outcomes. Despite the poor outlook typically associated with AML‑MR, developments in treatment approaches offer hope. The present review considers the efficacy of novel therapeutic agents, including CPX‑351, hypomethylating agents and targeted molecular therapies. Additionally, innovations in immunotherapy and allogeneic hematopoietic stem cell transplantation are discussed as promising avenues to improve patient survival rates. The challenges of treating AML‑MR, particularly in elderly and pretreated patients, underline the necessity for individualized treatment strategies that consider both the biological complexity of the disease and the overall health profile of the patient. The present review focuses on the mechanisms of AML‑MR transformation, highlighting factors that may offer a crucial theoretical foundation and pave the way for future applications in precision medicine. Future research directions include exploring novel targeted therapies and combination regimens to mitigate the transformation risks and enhance the quality of life of patients with AML‑MR.
Collapse
Affiliation(s)
- Hong Qiu
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, P.R. China
| | - Chaowei Zhang
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, P.R. China
| | - Xiaochen Ma
- Department of Public Health, Shandong Second Medical University, Weifang, Shandong 261053, P.R. China
| | - Ying Li
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, P.R. China
| |
Collapse
|
8
|
Liu Q, Xu F, Guo J, Xu F, Huang X, Chen J, Jin J, Zhou L, He Q, Wu D, Song L, Zhang Z, Guo C, Su J, Zhang Y, Yan M, Chang C, Li X, Wu L. Significance of Mutation Spots and Concurrent Gene Mutations on Prognosis and Clinical Outcomes in Myelodysplastic Syndromes With SF3B1 Mutation. Cancer Med 2025; 14:e70930. [PMID: 40342275 PMCID: PMC12060130 DOI: 10.1002/cam4.70930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 01/15/2025] [Accepted: 04/24/2025] [Indexed: 05/11/2025] Open
Abstract
PURPOSE To investigate the clinical characteristics and prognosis of mutation spots and concomitant gene mutations in myelodysplastic syndromes (MDS) with SF3B1 mutation (SF3B1mut). PATIENTS AND METHODS Patients diagnosed with MDS at Shanghai Jiao Tong University School of Medicine Affiliated Sixth People's Hospital from October 2008 to November 2023 were enrolled in this study. SF3B1mut was identified by next-generation sequencing (NGS). RESULTS One hundred and seven (8.7%) cases harbored the SF3B1 mutation. The most frequent SF3B1mut, noted in 47.66% of all patients, was the hotspot K700E. K666 and R625 were observed in 24.30% and 9.35%, respectively. Two less frequent mutation subtypes accounted for 5.61% of H662 and 4.67% of E622. Patients with the K666 mutation showed more severe thrombocytopenia (p = 0.032), significantly lower NK cell percentage (p = 0.001), and the Th1/Th2 ratio (p = 0.018) in the bone marrow (BM). The overall survival (OS) in patients with E622 and H662 mutations was significantly longer than that of patients with the R625 mutation (p = 0.045) and the K666 mutation (p = 0.010). Multi-variance analysis showed the SF3B1 mutation involving the K666 hotspot independently predicted overall survival in MDS (HR 2.094, p = 0.050). Notably, most (11/13, 84.6%) of concomitant TP53 mutations were mono-hit, which did not affect the survival of patients in our cohort. CONCLUSIONS SF3B1mut patients with specific mutation spots and concomitant gene mutations showed distinct clinical features and prognosis. Consequently, a comprehensive study of specific subtypes is of great significance for improving the prognosis of patients with SF3B1 mutations.
Collapse
Affiliation(s)
- Qi Liu
- Department of HematologyShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Fanhuan Xu
- Department of HematologyShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Juan Guo
- Department of HematologyShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Feng Xu
- Department of HematologyShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Xinhui Huang
- Department of HematologyShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Jianan Chen
- Department of HematologyShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Jiacheng Jin
- Department of HematologyShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Liyu Zhou
- Department of HematologyShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
- Department of HematologyShanghai Eighth People's HospitalShanghaiChina
| | - Qi He
- Department of HematologyShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Dong Wu
- Department of HematologyShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Luxi Song
- Department of HematologyShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Zheng Zhang
- Department of HematologyShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Cha Guo
- Department of HematologyShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Jiying Su
- Department of HematologyShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Yumei Zhang
- Department of HematologyShanghai Eighth People's HospitalShanghaiChina
| | - Meng Yan
- Department of HematologyShanghai Eighth People's HospitalShanghaiChina
| | - Chunkang Chang
- Department of HematologyShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Xiao Li
- Department of HematologyShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Lingyun Wu
- Department of HematologyShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
- Department of HematologyShanghai Eighth People's HospitalShanghaiChina
| |
Collapse
|
9
|
Yang ZH, Wu P, Zhang BX, Yang CR, Huang J, Wu L, Guo SH, Zhou Y, Mao Y, Yin Y, Wu X, Cheng P, Li B, Zhou R, Shen HM, Nie S, Cai ZY, Mo W. ZBP1 senses splicing aberration through Z-RNA to promote cell death. Mol Cell 2025; 85:1775-1789.e5. [PMID: 40267920 DOI: 10.1016/j.molcel.2025.03.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 01/29/2025] [Accepted: 03/27/2025] [Indexed: 04/25/2025]
Abstract
RNA splicing, a highly regulated process performed by the spliceosome, is essential for eukaryotic gene expression and cellular function. Numerous cellular stresses, including oncogenic insults, dysregulate RNA splicing, often provoking inflammatory responses and cell death. However, the molecular signals generated by splicing aberrations and the mechanism by which cells sense and respond to these signals remain poorly understood. Here, we demonstrate that spliceosome inhibition induces the widespread formation of left-handed Z-form double-stranded RNA (Z-RNA), predominantly derived from mis-spliced exonic and intronic RNA transcripts in the nucleus. These Z-RNAs are exported to the cytoplasm in a RanGTP-dependent manner. Cytosolic sensing of accumulated Z-RNA by the host sensor Z-DNA-binding protein 1 (ZBP1) initiates cell death, primarily through RIPK3-MLKL-dependent necroptosis. Together, these findings reveal a previously uncharacterized mechanism in which ZBP1-mediated detection of Z-RNA serves as a critical response to global RNA splicing perturbations, ultimately triggering inflammatory cell death.
Collapse
Affiliation(s)
- Zhang-Hua Yang
- Department of Psychiatry and Department of Immunology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Liangzhu Laboratory, Zhejiang University, Hangzhou 310058, China.
| | - Puqi Wu
- Department of Psychiatry and Department of Immunology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Liangzhu Laboratory, Zhejiang University, Hangzhou 310058, China; State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Bo-Xin Zhang
- Department of Psychiatry and Department of Immunology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Liangzhu Laboratory, Zhejiang University, Hangzhou 310058, China
| | - Cong-Rong Yang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Jia Huang
- Department of Psychiatry and Department of Immunology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Liangzhu Laboratory, Zhejiang University, Hangzhou 310058, China
| | - Lei Wu
- Department of Psychiatry and Department of Immunology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Liangzhu Laboratory, Zhejiang University, Hangzhou 310058, China
| | - Shuang-Hui Guo
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Yuenan Zhou
- Department of Psychiatry and Department of Immunology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Liangzhu Laboratory, Zhejiang University, Hangzhou 310058, China
| | - Yuanhui Mao
- Department of Psychiatry and Department of Immunology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Liangzhu Laboratory, Zhejiang University, Hangzhou 310058, China
| | - Yafei Yin
- Department of Psychiatry and Department of Immunology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Liangzhu Laboratory, Zhejiang University, Hangzhou 310058, China
| | - Xiurong Wu
- The First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310012, China
| | - Pu Cheng
- The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310009, China
| | - Baizhou Li
- Department of Pathology, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu 322000, China
| | - Rongbin Zhou
- Key Laboratory of Immune Response and Immunotherapy, Institute of Health and Medicine, Hefei Comprehensive National Science Center, Hefei 230026, China
| | - Han-Ming Shen
- Faculty of Health Sciences, Ministry of Education Frontiers Science Center for Precision Oncology, University of Macau, Macau 999078, China
| | - Sheng Nie
- Neurosurgery Department, the First Affiliated Hospital of Ningbo University, Ningbo 315000, China
| | - Zhi-Yu Cai
- Department of Psychiatry and Department of Immunology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Liangzhu Laboratory, Zhejiang University, Hangzhou 310058, China.
| | - Wei Mo
- Department of Psychiatry and Department of Immunology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Liangzhu Laboratory, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
10
|
George BM, Eleftheriou M, Yankova E, Perr J, Chai P, Nestola G, Almahayni K, Evans S, Damaskou A, Hemberger H, Lebedenko CG, Rak J, Yu Q, Bapcum E, Russell J, Bagri J, Volk RF, Spiekermann M, Stone RM, Giotopoulos G, Huntly BJP, Baxter J, Camargo F, Liu J, Zaro BW, Vassiliou GS, Möckl L, de la Rosa J, Flynn RA, Tzelepis K. Treatment of acute myeloid leukemia models by targeting a cell surface RNA-binding protein. Nat Biotechnol 2025:10.1038/s41587-025-02648-2. [PMID: 40269321 DOI: 10.1038/s41587-025-02648-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Accepted: 03/20/2025] [Indexed: 04/25/2025]
Abstract
Immunotherapies for acute myeloid leukemia (AML) and other cancers are limited by a lack of tumor-specific targets. Here we discover that RNA-binding proteins and glycosylated RNAs (glycoRNAs) form precisely organized nanodomains on cancer cell surfaces. We characterize nucleophosmin (NPM1) as an abundant cell surface protein (csNPM1) on a variety of tumor types. With a focus on AML, we observe csNPM1 on blasts and leukemic stem cells but not on normal hematopoietic stem cells. We develop a monoclonal antibody to target csNPM1, which exhibits robust anti-tumor activity in multiple syngeneic and xenograft models of AML, including patient-derived xenografts, without observable toxicity. We find that csNPM1 is expressed in a mutation-agnostic manner on primary AML cells and may therefore offer a general strategy for detecting and treating AML. Surface profiling and in vivo work also demonstrate csNPM1 as a target on solid tumors. Our data suggest that csNPM1 and its neighboring glycoRNA-cell surface RNA-binding protein (csRBP) clusters may serve as an alternative antigen class for therapeutic targeting or cell identification.
Collapse
Affiliation(s)
- Benson M George
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Maria Eleftheriou
- Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
- Milner Therapeutics Institute, University of Cambridge, Cambridge, UK
| | - Eliza Yankova
- Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
- Milner Therapeutics Institute, University of Cambridge, Cambridge, UK
| | - Jonathan Perr
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA
| | - Peiyuan Chai
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA
| | - Gianluca Nestola
- Department of Physics, Friedrich-Alexander University of Erlangen-Nuremberg, Erlangen, Germany
| | - Karim Almahayni
- Department of Physics, Friedrich-Alexander University of Erlangen-Nuremberg, Erlangen, Germany
- Max Planck Institute for the Science of Light, Erlangen, Germany
| | - Siân Evans
- Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
| | - Aristi Damaskou
- Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
| | - Helena Hemberger
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA
| | - Charlotta G Lebedenko
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA
| | - Justyna Rak
- Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
| | - Qi Yu
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA
| | - Ece Bapcum
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA
| | - James Russell
- Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
| | - Jaana Bagri
- Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
| | - Regan F Volk
- Department of Pharmaceutical Chemistry, Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, USA
| | | | - Richard M Stone
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - George Giotopoulos
- Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
| | - Brian J P Huntly
- Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
| | - Joanna Baxter
- Department of Haematology, University of Cambridge, Cambridge, UK
| | - Fernando Camargo
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA
| | - Jie Liu
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford, CA, USA
| | - Balyn W Zaro
- Department of Pharmaceutical Chemistry, Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, USA
| | - George S Vassiliou
- Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
| | - Leonhard Möckl
- Max Planck Institute for the Science of Light, Erlangen, Germany
- Faculty of Medicine 1, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Faculty of Sciences, Department of Physics, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Jorge de la Rosa
- Cambridge Institute for Therapeutic Immunology and Infectious Disease, University of Cambridge, Cambridge, UK
- Cambridge Institute of Science, Altos Labs, Cambridge, UK
| | - Ryan A Flynn
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA.
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA.
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA.
| | - Konstantinos Tzelepis
- Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK.
- Department of Haematology, University of Cambridge, Cambridge, UK.
- Milner Therapeutics Institute, University of Cambridge, Cambridge, UK.
- Wellcome Trust Sanger Institute, Hinxton, UK.
| |
Collapse
|
11
|
Kim WJ, Crosse EI, De Neef E, Etxeberria I, Sabio EY, Wang E, Bewersdorf JP, Lin KT, Lu SX, Belleville A, Fox N, Castro C, Zhang P, Fujino T, Lewis J, Rahman J, Zhang B, Winick JH, Lewis AM, Stanley RF, DeWolf S, Urben BM, Takizawa M, Krause T, Molina H, Chaligne R, Koppikar P, Molldrem J, Gigoux M, Merghoub T, Daniyan A, Chandran SS, Greenbaum BD, Klebanoff CA, Bradley RK, Abdel-Wahab O. Mis-splicing-derived neoantigens and cognate TCRs in splicing factor mutant leukemias. Cell 2025:S0092-8674(25)00399-X. [PMID: 40273911 DOI: 10.1016/j.cell.2025.03.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 02/06/2025] [Accepted: 03/28/2025] [Indexed: 04/26/2025]
Abstract
Mutations in RNA splicing factors are prevalent across cancers and generate recurrently mis-spliced mRNA isoforms. Here, we identified a series of bona fide neoantigens translated from highly stereotyped splicing alterations promoted by neomorphic, leukemia-associated somatic splicing machinery mutations. We utilized feature-barcoded peptide-major histocompatibility complex (MHC) dextramers to isolate neoantigen-reactive T cell receptors (TCRs) from healthy donors, patients with active myeloid malignancy, and following curative allogeneic stem cell transplant. Neoantigen-reactive CD8+ T cells were present in the blood of patients with active cancer and had a distinct phenotype from virus-reactive T cells with evidence of impaired cytotoxic function. T cells engineered with TCRs recognizing SRSF2 mutant-induced neoantigens arising from mis-splicing events in CLK3 and RHOT2 resulted in specific recognition and cytotoxicity of SRSF2-mutant leukemia. These data identify recurrent RNA mis-splicing events as sources of actionable public neoantigens in myeloid leukemias and provide proof of concept for genetically redirecting T cells to recognize these targets.
Collapse
Affiliation(s)
- Won Jun Kim
- Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center (MSK), New York, NY, USA
| | - Edie I Crosse
- Public Health Sciences and Basic Sciences Divisions, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Emma De Neef
- Public Health Sciences and Basic Sciences Divisions, Fred Hutchinson Cancer Center, Seattle, WA, USA; Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | | | - Erich Y Sabio
- Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center (MSK), New York, NY, USA
| | - Eric Wang
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | - Jan Philipp Bewersdorf
- Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center (MSK), New York, NY, USA
| | | | - Sydney X Lu
- Department of Medicine, Division of Hematology, Stanford University, Palo Alto, CA, USA
| | - Andrea Belleville
- Public Health Sciences and Basic Sciences Divisions, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Nina Fox
- Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center (MSK), New York, NY, USA
| | - Cynthia Castro
- Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center (MSK), New York, NY, USA
| | - Pu Zhang
- Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center (MSK), New York, NY, USA
| | - Takeshi Fujino
- Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center (MSK), New York, NY, USA
| | - Jennifer Lewis
- Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center (MSK), New York, NY, USA
| | - Jahan Rahman
- Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center (MSK), New York, NY, USA
| | - Beatrice Zhang
- Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center (MSK), New York, NY, USA
| | - Jacob H Winick
- Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center (MSK), New York, NY, USA
| | - Alexander M Lewis
- Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center (MSK), New York, NY, USA
| | - Robert F Stanley
- Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center (MSK), New York, NY, USA
| | - Susan DeWolf
- Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center (MSK), New York, NY, USA
| | | | - Meril Takizawa
- Single-cell Analytics Innovation Laboratory, MSK, New York, NY, USA
| | - Tobias Krause
- Single-cell Analytics Innovation Laboratory, MSK, New York, NY, USA
| | - Henrik Molina
- Proteomics Resource Center, Rockefeller University, New York, NY, USA
| | - Ronan Chaligne
- Single-cell Analytics Innovation Laboratory, MSK, New York, NY, USA
| | - Priya Koppikar
- Department of Hematopoietic Biology and Malignancy, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jeffrey Molldrem
- Department of Hematopoietic Biology and Malignancy, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Mathieu Gigoux
- Swim Across America and Ludwig Collaborative Laboratory, Department of Pharmacology, Sandra and Edward Meyer Cancer Center, Weill Cornell Medical Center, New York, NY, USA
| | - Taha Merghoub
- Swim Across America and Ludwig Collaborative Laboratory, Department of Pharmacology, Sandra and Edward Meyer Cancer Center, Weill Cornell Medical Center, New York, NY, USA
| | - Anthony Daniyan
- Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center (MSK), New York, NY, USA
| | | | - Benjamin D Greenbaum
- Computational Oncology, Department of Epidemiology and Biostatistics, MSK, New York, NY, USA
| | - Christopher A Klebanoff
- Human Oncology and Pathogenesis Program, MSK, New York, NY, USA; Parker Institute for Cancer Immunotherapy, New York, NY, USA.
| | - Robert K Bradley
- Public Health Sciences and Basic Sciences Divisions, Fred Hutchinson Cancer Center, Seattle, WA, USA; Department of Genome Sciences, University of Washington, Seattle, WA, USA.
| | - Omar Abdel-Wahab
- Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center (MSK), New York, NY, USA.
| |
Collapse
|
12
|
Ihlow J, Penter L, Vuong LG, Bischoff P, Obermayer B, Trinks A, Blau O, Behnke A, Conrad T, Morkel M, Wu CJ, Westermann J, Bullinger L, von Brünneck AC, Blüthgen N, Horst D, Praktiknjo SD. Diagnosing recipient- vs. donor-derived posttransplant myelodysplastic neoplasm via targeted single-cell mutational profiling. MED 2025; 6:100548. [PMID: 39644889 DOI: 10.1016/j.medj.2024.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 06/13/2024] [Accepted: 11/01/2024] [Indexed: 12/09/2024]
Abstract
BACKGROUND Distinguishing donor- vs. recipient-derived myelodysplastic neoplasm (MDS) after allogeneic hematopoietic stem cell transplantation (allo-HSCT) is challenging and has direct therapeutical implications. METHODS Here, we took a translational approach that we used in addition to conventional diagnostic techniques to resolve the origin of MDS in a 38-year-old patient with acquired aplastic anemia and evolving MDS after first allo-HSCT. Specifically, we used single-cell transcriptional profiling to differentiate between donor- and recipient-derived bone marrow cells and established a strategy that additionally allows identification of cells carrying the MDS-associated U2AF1S34Y variant. RESULTS The patient exhibited mixed donor chimerism combined with severely reduced erythropoiesis and dysplastic morphology within the granulocytic and megakaryocytic lineage along with the MDS-associated U2AF1S34Y mutation in the bone marrow. Single-cell transcriptional profiling together with targeted enrichment of the U2AF1S34Y-specific locus further revealed that, while the immune compartment was mainly populated by donor-derived cells, myelopoiesis was predominantly driven by the recipient. Additionally, concordant with recipient-derived MDS, we found that U2AF1S34Y-mutated cells were exclusively recipient derived with X but not Y chromosome-specific gene expression. CONCLUSION Our study highlights the clinical potential of integrating high-resolution single-cell techniques to resolve complex cases for personalized treatment decisions. FUNDING The study was funded by intramural resources of the Charité - Universitätsmedizin Berlin and the Berlin Institute of Health.
Collapse
Affiliation(s)
- Jana Ihlow
- Institute of Pathology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; Department of Hematology, Oncology and Cancer Immunology, Campus Virchow Clinic, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Livius Penter
- Department of Hematology, Oncology and Cancer Immunology, Campus Virchow Clinic, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany; Department of Medical Oncology, Dana-Faber Cancer Institute, Boston, MA, USA; Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Lam Giang Vuong
- Department of Hematology, Oncology and Cancer Immunology, Campus Virchow Clinic, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Philip Bischoff
- Institute of Pathology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany; German Cancer Consortium (DKTK) Partner Site Berlin, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Benedikt Obermayer
- Core Unit Bioinformatics, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Alexandra Trinks
- BIH Bioportal Single Cells, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Olga Blau
- Department of Hematology, Oncology and Cancer Immunology, Campus Virchow Clinic, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; Labor Berlin Charité Vivantes GmbH, Berlin, Germany
| | - Anke Behnke
- Institute of Pathology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Thomas Conrad
- Genomics Technology Platform, Berlin Institute of Health at Charité - Universitätsmedizin Berlin and Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Markus Morkel
- Institute of Pathology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; BIH Bioportal Single Cells, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Catherine J Wu
- Department of Medical Oncology, Dana-Faber Cancer Institute, Boston, MA, USA; Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Jörg Westermann
- Department of Hematology, Oncology and Cancer Immunology, Campus Virchow Clinic, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; Labor Berlin Charité Vivantes GmbH, Berlin, Germany
| | - Lars Bullinger
- Department of Hematology, Oncology and Cancer Immunology, Campus Virchow Clinic, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany; German Cancer Consortium (DKTK) Partner Site Berlin, German Cancer Research Center (DKFZ), Heidelberg, Germany; Labor Berlin Charité Vivantes GmbH, Berlin, Germany
| | - Ann-Christin von Brünneck
- Institute of Pathology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Nils Blüthgen
- Institute of Pathology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; German Cancer Consortium (DKTK) Partner Site Berlin, German Cancer Research Center (DKFZ), Heidelberg, Germany; Institute for Biology, Humboldt-Universität zu Berlin, Berlin, Germany
| | - David Horst
- Institute of Pathology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; German Cancer Consortium (DKTK) Partner Site Berlin, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Samantha D Praktiknjo
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany.
| |
Collapse
|
13
|
Jia Q, Sun X, Li H, Guo J, Niu K, Chan KM, Bernards R, Qin W, Jin H. Perturbation of mRNA splicing in liver cancer: insights, opportunities and challenges. Gut 2025; 74:840-852. [PMID: 39658264 DOI: 10.1136/gutjnl-2024-333127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 11/08/2024] [Indexed: 12/12/2024]
Abstract
Perturbation of mRNA splicing is commonly observed in human cancers and plays a role in various aspects of cancer hallmarks. Understanding the mechanisms and functions of alternative splicing (AS) not only enables us to explore the complex regulatory network involved in tumour initiation and progression but also reveals potential for RNA-based cancer treatment strategies. This review provides a comprehensive summary of the significance of AS in liver cancer, covering the regulatory mechanisms, cancer-related AS events, abnormal splicing regulators, as well as the interplay between AS and post-transcriptional and post-translational regulations. We present the current bioinformatic approaches and databases to detect and analyse AS in cancer, and discuss the implications and perspectives of AS in the treatment of liver cancer.
Collapse
Affiliation(s)
- Qi Jia
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoxiao Sun
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Haoyu Li
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jianglong Guo
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Kongyan Niu
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Kui Ming Chan
- Department of Biomedical Sciences, City University of Hong Kong, HKSAR, China
| | - René Bernards
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Division of Molecular Carcinogenesis, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, Noord-Holland, The Netherlands
| | - Wenxin Qin
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Haojie Jin
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
14
|
Damianov A, Lin CH, Zhang J, Manley JL, Black DL. Cancer-associated SF3B1 mutation K700E causes widespread changes in U2/branchpoint recognition without altering splicing. Proc Natl Acad Sci U S A 2025; 122:e2423776122. [PMID: 40138349 PMCID: PMC12002318 DOI: 10.1073/pnas.2423776122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Accepted: 02/21/2025] [Indexed: 03/29/2025] Open
Abstract
Myelodysplastic syndromes and other cancers are often associated with mutations in the U2 snRNP protein SF3B1. Common SF3B1 mutations, including K700E, disrupt SF3B1 interaction with the protein SUGP1 and induce aberrant activation of alternative 3' splice sites (ss), presumably resulting from aberrant U2/branch site (BS) recognition by the mutant spliceosome. Here, we apply a method of U2 IP-seq to profile BS binding across the transcriptome of K562 leukemia cells carrying the SF3B1 K700E mutation. For alternative 3' ss activated by K700E, we identify their associated BSs and show that they are indeed shifted from the WT sites. Unexpectedly, we also identify thousands of additional changes in BS binding in the mutant cells that do not alter splicing. These new BSs are usually very close to the natural sites, occur upstream or downstream, and either exhibit stronger base-pairing potential with U2 snRNA or are adjacent to stronger polypyrimidine tracts than the WT sites. The widespread imprecision in BS recognition induced by K700E with limited changes in 3' ss selection expands the physiological consequences of this oncogenic mutation.
Collapse
Affiliation(s)
- Andrey Damianov
- Department of Microbiology, Immunology, and Molecular Genetics, Molecular Biology Institute, David Geffen School of Medicine, University of California,Los Angeles, CA90095
| | - Chia-Ho Lin
- Department of Microbiology, Immunology, and Molecular Genetics, Molecular Biology Institute, David Geffen School of Medicine, University of California,Los Angeles, CA90095
| | - Jian Zhang
- Department of Biological Sciences, Columbia University, New York, NY10027
| | - James L. Manley
- Department of Biological Sciences, Columbia University, New York, NY10027
| | - Douglas L. Black
- Department of Microbiology, Immunology, and Molecular Genetics, Molecular Biology Institute, David Geffen School of Medicine, University of California,Los Angeles, CA90095
| |
Collapse
|
15
|
Walter DM, Cho K, Sivakumar S, Lee ITH, Dohlman AB, Shurberg E, Jiang KX, Gupta AA, Frampton GM, Meyerson M. U2AF1 mutations rescue deleterious exon skipping induced by KRAS mutations. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.21.644128. [PMID: 40196662 PMCID: PMC11974705 DOI: 10.1101/2025.03.21.644128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
The mechanisms by which somatic mutations of splicing factors, such as U2AF1S34F in lung adenocarcinoma, contribute to cancer pathogenesis are not well understood. Here, we used prime editing to modify the endogenous U2AF1 gene in lung adenocarcinoma cells and assessed the resulting impact on alternative splicing. These analyses identified KRAS as a key target modulated by U2AF1S34F. One specific KRAS mutation, G12S, generates a cryptic U2AF1 binding site that leads to skipping of KRAS exon 2 and generation of a non-functional KRAS transcript. Expression of the U2AF1S34F mutant reverts this exon skipping and restores KRAS function. Analysis of cancer genomes reveals that U2AF1S34F mutations are enriched in KRASG12S-mutant lung adenocarcinomas. A comprehensive analysis of splicing factor/oncogene mutation co-occurrence in cancer genomes also revealed significant co-enrichment of KRASQ61R and U2AF1I24T mutations. Experimentally, KRASQ61R mutation leads to KRAS exon 3 skipping, which in turn can be rescued by the expression of U2AF1I24T. Analysis of genomic and clinical patient data suggests that both U2AF1 mutations occur secondary to KRAS mutation and are associated with decreased overall patient survival. Our findings provide evidence that splicing factor mutations can rescue splicing defects caused by oncogenic mutations. More broadly, they demonstrate a dynamic process of cascading selection where mutational events are positively selected in cancer genomes as a consequence of earlier mutations.
Collapse
Affiliation(s)
- David M Walter
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
- Cancer Program, Broad Institute of Harvard and MIT, Cambridge, MA
- Department of Genetics, Harvard Medical School, Boston, MA
| | - Katherine Cho
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
- Cancer Program, Broad Institute of Harvard and MIT, Cambridge, MA
| | | | - Iris T-H Lee
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
- Cancer Program, Broad Institute of Harvard and MIT, Cambridge, MA
| | - Anders B Dohlman
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
- Cancer Program, Broad Institute of Harvard and MIT, Cambridge, MA
- Department of Genetics, Harvard Medical School, Boston, MA
| | - Ethan Shurberg
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
- Cancer Program, Broad Institute of Harvard and MIT, Cambridge, MA
| | - Kevin X Jiang
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
- Cancer Program, Broad Institute of Harvard and MIT, Cambridge, MA
| | - Akansha A Gupta
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
- Cancer Program, Broad Institute of Harvard and MIT, Cambridge, MA
| | | | - Matthew Meyerson
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
- Cancer Program, Broad Institute of Harvard and MIT, Cambridge, MA
- Department of Genetics, Harvard Medical School, Boston, MA
| |
Collapse
|
16
|
Sarchi M, Doulatov S. Understanding Human Oncogene Function and Cooperativity in Myeloid Malignancy Using iPSCs. Exp Hematol 2025; 143:104697. [PMID: 39674361 DOI: 10.1016/j.exphem.2024.104697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 12/05/2024] [Accepted: 12/07/2024] [Indexed: 12/16/2024]
Abstract
Myeloid malignancies are a spectrum of clonal disorders driven by genetic alterations that cooperatively confer aberrant self-renewal and differentiation of hematopoietic stem and progenitor cells (HSPCs). Induced pluripotent stem cells (iPSCs) can be differentiated into HSPCs and have been widely explored for modeling hematologic disorders and cell therapies. More recently, iPSC models have been applied to study the origins and pathophysiology of myeloid malignancies, motivated by the appreciation for the differences in human oncogene function and the need for genetically defined models that recapitulate leukemia development. In this review, we will provide a broad overview of the rationale, the challenges, practical aspects, history, and recent advances of iPSC models for modeling myeloid neoplasms. We will focus on the insights into the previously unknown aspects of human oncogene function and cooperativity gained through the use of these models. It is now safe to say that iPSC models are a mainstay of leukemia modeling "toolbox" alongside primary human cells from normal and patient sources.
Collapse
Affiliation(s)
- Martina Sarchi
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Sergei Doulatov
- Division of Hematology and Oncology, Department of Medicine, University of Washington, Seattle, WA; Department of Genome Sciences, University of Washington, Seattle, WA; Institute of Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA.
| |
Collapse
|
17
|
Guirguis AA. RNA methylation: where to from here for hematologic malignancies? Exp Hematol 2025; 143:104694. [PMID: 39647657 DOI: 10.1016/j.exphem.2024.104694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 11/28/2024] [Accepted: 11/29/2024] [Indexed: 12/10/2024]
Abstract
RNA methylation and the machinery that regulates or "reads" its expression has recently been implicated in the pathogenesis of acute myeloid leukemia (AML) and other hematologic malignancies. Modulation of these epigenetic marks has started to become a reality as several companies around the world seek to leverage this knowledge therapeutically in the clinic. Although the bases of observed activity in AML have been described by numerous groups, the exact context in which these therapies will ultimately be used remains to be properly determined. While context is likely to be of great importance here, a more "global" mechanism of action might allow for more widespread applicability to multiple disease subtypes. In other areas such as the myelodysplastic and other preleukemic syndromes, data remain sparse. Ongoing work is needed to determine whether therapeutic modulation of RNA modifications is a viable and biologically plausible approach in these cases. Regardless of the outcomes, this is an exciting era for "epitranscriptomics" as we navigate a pathway forward. Here, I describe the current knowledge around RNA methylation and hematologic malignancies at the end of 2024 including some of the relevant questions that are yet to be answered.
Collapse
Affiliation(s)
- Andrew Adel Guirguis
- Olivia Newton-John Cancer Research Institute, Heidelberg, Victoria, Australia; Department of Clinical Haematology, Austin Health, Heidelberg, Victoria, Australia; School of Cancer Medicine, La Trobe University, Melbourne, Victoria, Australia.
| |
Collapse
|
18
|
Norppa AJ, Shcherbii MV, Frilander MJ. Connecting genotype and phenotype in minor spliceosome diseases. RNA (NEW YORK, N.Y.) 2025; 31:284-299. [PMID: 39761998 PMCID: PMC11874965 DOI: 10.1261/rna.080337.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Minor spliceosome is responsible for recognizing and excising a specific subset of divergent introns during the pre-mRNA splicing process. Mutations in the unique snRNA and protein components of the minor spliceosome are increasingly being associated with a variety of germline and somatic human disorders, collectively termed as minor spliceosomopathies. Understanding the mechanistic basis of these diseases has been challenging due to limited functional information on many minor spliceosome components. However, recently published cryo-electron microscopy (cryo-EM) structures of various minor spliceosome assembly intermediates have marked a significant advancement in elucidating the roles of these components during splicing. These structural breakthroughs have not only enhanced our comprehension of the minor spliceosome's functionality but also shed light on how disease-associated mutations disrupt its functions. Consequently, research focus is now shifting toward investigating how these splicing defects translate into broader pathological processes within gene expression pathways. Here we outline the current structural and functional knowledge of the minor spliceosome, explore the mechanistic consequences of its mutations, and discuss emerging challenges in connecting molecular dysfunctions to clinical phenotypes.
Collapse
Affiliation(s)
- Antto J Norppa
- Institute of Biotechnology, 000014 University of Helsinki, Finland
| | | | | |
Collapse
|
19
|
Bak-Gordon P, Manley JL. SF3B1: from core splicing factor to oncogenic driver. RNA (NEW YORK, N.Y.) 2025; 31:314-332. [PMID: 39773890 PMCID: PMC11874996 DOI: 10.1261/rna.080368.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Accepted: 12/23/2024] [Indexed: 01/11/2025]
Abstract
Highly recurrent somatic mutations in the gene encoding the core splicing factor SF3B1 are drivers of multiple cancer types. SF3B1 is a scaffold protein that orchestrates multivalent protein-protein interactions within the spliceosome that are essential for recognizing the branchsite (BS) and selecting the 3' splice site during the earliest stage of pre-mRNA splicing. In this review, we first describe the molecular mechanism by which multiple oncogenic SF3B1 mutations disrupt splicing. This involves perturbation of an early spliceosomal trimeric protein complex necessary for accurate BS recognition in a subset of introns, which leads to activation of upstream branchpoints and selection of cryptic 3' splice sites. We next discuss how specific transcripts affected by aberrant splicing in SF3B1-mutant cells contribute to the initiation and progression of cancer. Finally, we highlight the prognostic value and disease phenotypes of different cancer-associated SF3B1 mutations, which is critical for developing new targeted therapeutics against SF3B1-mutant cancers still lacking in the clinic.
Collapse
Affiliation(s)
- Pedro Bak-Gordon
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| | - James L Manley
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| |
Collapse
|
20
|
Xing P, Bak-Gordon P, Xie J, Zhang J, Liu Z, Manley JL. SUGP1 loss is the sole driver of SF3B1 hotspot mutant missplicing in cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.17.638713. [PMID: 40027711 PMCID: PMC11870612 DOI: 10.1101/2025.02.17.638713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
SF3B1 is the most frequently mutated splicing factor in cancer. Mechanistically, such mutations cause missplicing by promoting aberrant 3' splice site usage; however, how this occurs remains controversial. To address this issue, we employed a computational screen of 600 splicing-related proteins to identify those whose reduced expression recapitulated mutant SF3B1 splicing dysregulation. Strikingly, our analysis revealed only two proteins whose loss reproduced this effect. Extending our previous findings, loss of the G-patch protein SUGP1 recapitulated almost all splicing defects induced by SF3B1 hotspot mutations. Unexpectedly, loss of the RNA helicase Aquarius (AQR) reproduced ~40% of these defects. However, we found that AQR knockdown caused significant SUGP1 missplicing and reduced protein levels, suggesting that AQR loss reproduced mutant SF3B1 splicing defects only indirectly. This study advances our understanding of missplicing caused by oncogenic SF3B1 mutations, and highlights the fundamental role of SUGP1 in this process.
Collapse
Affiliation(s)
- Peiqi Xing
- National Genomics Data Center, China National Center for Bioinformation, Beijing, 100101, China
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Pedro Bak-Gordon
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| | - Jindou Xie
- National Genomics Data Center, China National Center for Bioinformation, Beijing, 100101, China
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jian Zhang
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| | - Zhaoqi Liu
- National Genomics Data Center, China National Center for Bioinformation, Beijing, 100101, China
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - James L. Manley
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| |
Collapse
|
21
|
Li Y, Dong X, Xing H, Liu W, Gu R, Qiu S, Xu Y, Wei H, Wang M, Zheng G, Rao Q, Wang J. U2AF1 mutation causes an oxidative stress and DNA repair defect in hematopoietic and leukemic cells. Free Radic Biol Med 2025; 228:379-391. [PMID: 39814107 DOI: 10.1016/j.freeradbiomed.2025.01.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 01/07/2025] [Accepted: 01/12/2025] [Indexed: 01/18/2025]
Abstract
U2AF1 is a core component of spliceosome and controls cell-fate specific alternative splicing. U2AF1 mutations have been frequently identified in myelodysplastic syndromes (MDS) and acute myeloid leukemia (AML) patients, and mutations in U2AF1 are associated with poor prognosis in hematopoietic malignant diseases. Here, by forced expression of mutant U2AF1 (U2AF1 S34F) in hematopoietic and leukemic cell lines, we find that U2AF1 S34F causes increased reactive oxygen species (ROS) production. In hematopoietic cell line, a defect in mitochondrial function and DNA damage response deficiency are found in U2AF1 S34F expressing 32D cells. In leukemic cell line Molm13 cells, U2AF1 mutation leads to resistance to DNA damaging agents. Accumulation of DNA damage is also found in U2AF1 S34F expressing leukemic cells when treated with DNA damage agent. Finally, in our established hematopoietic-specific U2af1 S34F knock-in mice model, U2AF1 mutation leads to the development of myelodysplastic/myeloproliferative neoplasm (MDS/MPN) and causes DNA damage accumulation in hematopoietic cells. Our study provides evidence that U2AF1 mutation causes DNA damage response deficiency and DNA damage accumulation in hematopoietic cells, and suggests that mutant U2AF1 induced higher ROS production, resistance to DNA damaging agents and increased genomic instability may contribute to poor prognosis of AML patients with U2AF1 mutations.
Collapse
Affiliation(s)
- Yishuang Li
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Tianjin Key Laboratory of Cell Therapy for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300030, China; Tianjin Institutes of Health Science, Tianjin, 301617, China
| | - Xuanjia Dong
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Tianjin Key Laboratory of Cell Therapy for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300030, China; Tianjin Institutes of Health Science, Tianjin, 301617, China
| | - Haiyan Xing
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Tianjin Key Laboratory of Cell Therapy for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300030, China; Tianjin Institutes of Health Science, Tianjin, 301617, China
| | - Wenbing Liu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Tianjin Key Laboratory of Cell Therapy for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300030, China; Tianjin Institutes of Health Science, Tianjin, 301617, China
| | - Runxia Gu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Tianjin Key Laboratory of Cell Therapy for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300030, China; Tianjin Institutes of Health Science, Tianjin, 301617, China
| | - Shaowei Qiu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Tianjin Key Laboratory of Cell Therapy for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300030, China; Tianjin Institutes of Health Science, Tianjin, 301617, China
| | - Yingxi Xu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Tianjin Key Laboratory of Cell Therapy for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300030, China; Tianjin Institutes of Health Science, Tianjin, 301617, China
| | - Hui Wei
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Tianjin Key Laboratory of Cell Therapy for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300030, China; Tianjin Institutes of Health Science, Tianjin, 301617, China
| | - Min Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Tianjin Key Laboratory of Cell Therapy for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300030, China; Tianjin Institutes of Health Science, Tianjin, 301617, China
| | - Guoguang Zheng
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Tianjin Key Laboratory of Cell Therapy for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300030, China; Tianjin Institutes of Health Science, Tianjin, 301617, China
| | - Qing Rao
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Tianjin Key Laboratory of Cell Therapy for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300030, China; Tianjin Institutes of Health Science, Tianjin, 301617, China.
| | - Jianxiang Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Tianjin Key Laboratory of Cell Therapy for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300030, China; Tianjin Institutes of Health Science, Tianjin, 301617, China.
| |
Collapse
|
22
|
Suri P, Badalov A, Ruggiu M. Alternative Splicing as a Modulator of the Interferon-Gamma Pathway. Cancers (Basel) 2025; 17:594. [PMID: 40002189 PMCID: PMC11853465 DOI: 10.3390/cancers17040594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 01/31/2025] [Accepted: 02/08/2025] [Indexed: 02/27/2025] Open
Abstract
Interferon-gamma (IFN-γ) is a critical cytokine that plays a pivotal role in immune system regulation. It is a key mediator of both cellular defense mechanisms and antitumor immunity. As the sole member of the type II interferon family, IFN-γ modulates immune responses by activating macrophages, enhancing natural killer cell function, and regulating gene expression across multiple cellular processes. Alternative splicing is a post-transcriptional gene expression regulatory mechanism that generates multiple mature messenger RNAs from a single gene, dramatically increasing proteome diversity without the need of a proportional genome expansion. This process occurs in 90-95% of human genes, with alternative splicing events allowing for the production of diverse protein isoforms that can have distinct-or even opposing-functional properties. Alternative splicing plays a crucial role in cancer immunology, potentially generating tumor neoepitopes and modulating immune responses. However, how alternative splicing affects IFN-γ's activity is still poorly understood. This review explores how alternative splicing regulates the expression and function of both upstream regulators and downstream effectors of IFN-γ, revealing complex mechanisms of gene expression and immune response modulation. Key transcription factors and signaling molecules of the IFN-γ pathway are alternatively spliced, and alternative splicing can dramatically alter IFN-γ signaling, immune cell function, and response to environmental cues. Specific splice variants can enhance or inhibit IFN-γ-mediated immune responses, potentially influencing cancer immunotherapy, autoimmune conditions, and infectious disease outcomes. The emerging understanding of these splicing events offers promising therapeutic strategies for manipulating immune responses through targeted molecular interventions.
Collapse
Affiliation(s)
- Parul Suri
- College of Pharmacy and Health Sciences, St. John’s University, 8000 Utopia Parkway Queens, New York, NY 11439, USA;
| | - Ariana Badalov
- Laboratory of RNA Biology and Molecular Neuroscience, Department of Biological Sciences, St. John’s University, 8000 Utopia Parkway Queens, New York, NY 11439, USA;
| | - Matteo Ruggiu
- Laboratory of RNA Biology and Molecular Neuroscience, Department of Biological Sciences, St. John’s University, 8000 Utopia Parkway Queens, New York, NY 11439, USA;
| |
Collapse
|
23
|
Busarello E, Biancon G, Cimignolo I, Lauria F, Ibnat Z, Ramirez C, Tomè G, Ciuffreda M, Bucciarelli G, Pilli A, Marino SM, Bontempi V, Aass KR, VanOudenhove J, Mione MC, Standal T, Macchi P, Viero G, Halene S, Tebaldi T. Cell Marker Accordion: interpretable single-cell and spatial omics annotation in health and disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.03.08.584053. [PMID: 38559181 PMCID: PMC10979856 DOI: 10.1101/2024.03.08.584053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Single-cell technologies offer a unique opportunity to explore cellular heterogeneity in health and disease. However, reliable identification of cell types and states represents a bottleneck. Available databases and analysis tools employ dissimilar markers, leading to inconsistent annotations and poor interpretability. Furthermore, current tools focus mostly on physiological cell types, limiting their applicability to disease. We developed the Cell Marker Accordion, a user-friendly platform providing automatic annotation and unmatched biological interpretation of single-cell populations, based on consistency weighted markers. We validated our approach on multiple single-cell and spatial datasets from different human and murine tissues, improving annotation accuracy in all cases. Moreover, we show that the Cell Marker Accordion can identify disease-critical cells and pathological processes, extracting potential biomarkers in a wide variety of disease contexts. The breadth of these applications elevates the Cell Marker Accordion as a fast, flexible, faithful and standardized tool to annotate and interpret single-cell and spatial populations in studying physiology and disease.
Collapse
Affiliation(s)
- Emma Busarello
- Laboratory of RNA and Disease Data Science, Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Giulia Biancon
- Section of Hematology, Department of Internal Medicine, Yale Comprehensive Cancer Center, Yale University School of Medicine, New Haven, CT, USA
- Hematology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Ilaria Cimignolo
- Laboratory of RNA and Disease Data Science, Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Fabio Lauria
- Institute of Biophysics, CNR Unit at Trento, Italy
| | - Zuhairia Ibnat
- Laboratory of RNA and Disease Data Science, Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Christian Ramirez
- Laboratory of RNA and Disease Data Science, Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Gabriele Tomè
- Laboratory of RNA and Disease Data Science, Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
- Institute of Biophysics, CNR Unit at Trento, Italy
| | - Marianna Ciuffreda
- Laboratory of RNA and Disease Data Science, Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Giorgia Bucciarelli
- Laboratory of RNA and Disease Data Science, Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Alessandro Pilli
- Laboratory of RNA and Disease Data Science, Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Stefano Maria Marino
- Laboratory of RNA and Disease Data Science, Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Vittorio Bontempi
- Laboratory of Experimental Cancer Biology, Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Kristin R Aass
- Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Jennifer VanOudenhove
- Section of Hematology, Department of Internal Medicine, Yale Comprehensive Cancer Center, Yale University School of Medicine, New Haven, CT, USA
| | - Maria Caterina Mione
- Laboratory of Experimental Cancer Biology, Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Therese Standal
- Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Paolo Macchi
- Laboratory of Molecular and Cellular Neurobiology, Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | | | - Stephanie Halene
- Section of Hematology, Department of Internal Medicine, Yale Comprehensive Cancer Center, Yale University School of Medicine, New Haven, CT, USA
| | - Toma Tebaldi
- Laboratory of RNA and Disease Data Science, Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
- Section of Hematology, Department of Internal Medicine, Yale Comprehensive Cancer Center, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
24
|
Amorello AN, Chandrashekar Reddy G, Melillo B, Cravatt BF, Ghosh AK, Jurica MS. SF3B1 thermostability as an assay for splicing inhibitor interactions. J Biol Chem 2025; 301:108135. [PMID: 39725033 PMCID: PMC11791315 DOI: 10.1016/j.jbc.2024.108135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 11/16/2024] [Accepted: 12/19/2024] [Indexed: 12/28/2024] Open
Abstract
The spliceosome protein, SF3B1, is associated with U2 snRNP during early spliceosome assembly for pre-mRNA splicing. Frequent somatic mutations in SF3B1 observed in cancer necessitates the characterization of its role in identifying the branchpoint adenosine of introns. Remarkably, SF3B1 is the target of three distinct natural product drugs, each identified by their potent anti-tumor properties. Structural studies indicate that SF3B1 conformational flexibility is functionally important, and suggest that drug binding blocks the transition to a closed state of SF3B1 required for the next stage of spliceosome assembly. This model is confounded, however, by the antagonistic property of an inactive herboxidiene analog. In this study, we established an assay for evaluating the thermostability of SF3B1 present in the nuclear extract preparations employed for in vitro splicing studies, to investigate inhibitor interactions with SF3B1 in a functional context. We show that both active and antagonistic analogs of natural product inhibitors affect SF3B1 thermostability, consistent with binding alone being insufficient to impair SF3B1 function. Surprisingly, SF3B1 thermostability differs among nuclear extract preparations, likely reflecting its conformational status. We also investigated a synthetic SF3B1 ligand, WX-02-23, and found that it increases SF3B1 thermostability and interferes with in vitro splicing by a mechanism that strongly resembles the activity of natural product inhibitors. We propose that altered SF3B1 thermostability can serve as an indicator of inhibitor binding to complement functional assays of their general effect on splicing. It may also provide a means to investigate the factors that influence SF3B1 conformation.
Collapse
Affiliation(s)
- Angela N Amorello
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, California, USA
| | - Guddeti Chandrashekar Reddy
- Department of Chemistry and Department of Medicinal Chemistry, Purdue University, West Lafayette, Indiana, USA
| | - Bruno Melillo
- Department of Chemistry, Scripps Research, La Jolla, California, USA
| | | | - Arun K Ghosh
- Department of Chemistry and Department of Medicinal Chemistry, Purdue University, West Lafayette, Indiana, USA
| | - Melissa S Jurica
- Department of Molecular Cell and Developmental Biology, University of California, Santa Cruz, California, USA; Center for Molecular Biology of RNA, University of California, Santa Cruz, California, USA.
| |
Collapse
|
25
|
Pinheiro RF, Goes JVC, Sampaio LR, Germano de Oliveira RT, Lima SCS, Furtado CLM, de Paula Borges D, Costa MB, da Silva Monte C, Minete NF, Magalhães SMM, Ribeiro Junior HL. The Ataxia-telangiectasia mutated (ATM) is the most important gene for repairing the DNA in Myelodysplastic Neoplasm. DNA Repair (Amst) 2025; 146:103803. [PMID: 39874624 DOI: 10.1016/j.dnarep.2024.103803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 12/16/2024] [Accepted: 12/18/2024] [Indexed: 01/30/2025]
Abstract
Myelodysplastic Neoplasm (MDS) is a cancer associated with aging, often leading to acute myeloid leukemia (AML). One of its hallmarks is hypermethylation, particularly in genes responsible for DNA repair. This study aimed to evaluate the methylation and mutation status of DNA repair genes (single-strand - XPA, XPC, XPG, CSA, CSB and double-strand - ATM, BRCA1, BRCA2, LIG4, RAD51) in MDS across three patient cohorts (Cohort A-56, Cohort B-100, Cohort C-76), using methods like pyrosequencing, real-time PCR, immunohistochemistry, and mutation screening. Results showed that XPA had higher methylation in low-risk MDS compared to high-risk MDS. For double-strand repair genes, ATM displayed higher methylation in patients who transformed to AML (p = 0.016). ATM gene expression was downregulated in MDS compared to controls (p = 0.042). When patients were classified according to the WHO 2022 guidelines, ATM expression progressively decreased from low-risk subtypes (e.g., Hypoplastic MDS) to high-risk MDS and AML. Patients who transformed to AML had a higher 5mC/5hmC ratio compared to those who didn't (p = 0.045). Additionally, poor cytogenetic risk patients had higher tissue methylation scores than those with good risk (p = 0.035). Analysis using the cBioPortal platform identified ATM as the most frequently mutated DNA repair gene, with various mutations, such as frameshift and missense, most of which were classified as oncogenic. The findings suggest that ATM is frequently silenced or downregulated in MDS due to methylation or mutations, contributing to the progression to AML. This highlights ATM's potential role in the disease's advancement and as a target for future therapeutic strategies.
Collapse
Affiliation(s)
- Ronald Feitosa Pinheiro
- Cancer Cytogenomic Laboratory, Center for Research and Drug Development (NPDM), Federal University of Ceara, Fortaleza, Ceara, Brazil; Post-Graduate Program in Medical Science, Federal University of Ceara, Fortaleza, Ceara, Brazil; Post-Graduate Program of Pathology, Federal University of Ceara, Fortaleza, Ceara, Fortaleza, Ceara, Brazil.
| | - João Vitor Caetano Goes
- Cancer Cytogenomic Laboratory, Center for Research and Drug Development (NPDM), Federal University of Ceara, Fortaleza, Ceara, Brazil; Post-Graduate Program of Pathology, Federal University of Ceara, Fortaleza, Ceara, Fortaleza, Ceara, Brazil
| | - Leticia Rodrigues Sampaio
- Cancer Cytogenomic Laboratory, Center for Research and Drug Development (NPDM), Federal University of Ceara, Fortaleza, Ceara, Brazil; Post-Graduate Program in Medical Science, Federal University of Ceara, Fortaleza, Ceara, Brazil
| | - Roberta Taiane Germano de Oliveira
- Cancer Cytogenomic Laboratory, Center for Research and Drug Development (NPDM), Federal University of Ceara, Fortaleza, Ceara, Brazil; Post-Graduate Program in Medical Science, Federal University of Ceara, Fortaleza, Ceara, Brazil
| | | | - Cristiana Libardi Miranda Furtado
- Graduate Program in Medical Science, Experimental Biology Center, University of Fortaleza, Fortaleza, Ceará, Brazil; Post-Graduate Program of Translational Medicine, Federal University of Ceara, Fortaleza, Ceara, Brazil
| | - Daniela de Paula Borges
- Cancer Cytogenomic Laboratory, Center for Research and Drug Development (NPDM), Federal University of Ceara, Fortaleza, Ceara, Brazil; Post-Graduate Program in Medical Science, Federal University of Ceara, Fortaleza, Ceara, Brazil
| | - Marilia Braga Costa
- Cancer Cytogenomic Laboratory, Center for Research and Drug Development (NPDM), Federal University of Ceara, Fortaleza, Ceara, Brazil; Post-Graduate Program in Medical Science, Federal University of Ceara, Fortaleza, Ceara, Brazil
| | - Cristiane da Silva Monte
- Cancer Cytogenomic Laboratory, Center for Research and Drug Development (NPDM), Federal University of Ceara, Fortaleza, Ceara, Brazil; Post-Graduate Program in Medical Science, Federal University of Ceara, Fortaleza, Ceara, Brazil
| | - Natalia Feitosa Minete
- Cancer Cytogenomic Laboratory, Center for Research and Drug Development (NPDM), Federal University of Ceara, Fortaleza, Ceara, Brazil; Post-Graduate Program in Medical Science, Federal University of Ceara, Fortaleza, Ceara, Brazil
| | - Silvia Maria Meira Magalhães
- Cancer Cytogenomic Laboratory, Center for Research and Drug Development (NPDM), Federal University of Ceara, Fortaleza, Ceara, Brazil
| | - Howard Lopes Ribeiro Junior
- Cancer Cytogenomic Laboratory, Center for Research and Drug Development (NPDM), Federal University of Ceara, Fortaleza, Ceara, Brazil; Post-Graduate Program in Medical Science, Federal University of Ceara, Fortaleza, Ceara, Brazil; Post-Graduate Program of Pathology, Federal University of Ceara, Fortaleza, Ceara, Fortaleza, Ceara, Brazil; Post-Graduate Program of Translational Medicine, Federal University of Ceara, Fortaleza, Ceara, Brazil
| |
Collapse
|
26
|
Huang MF, Fisher ME, Phan TTT, Zhao R, Lee DF. Decoding cancer etiology with cellular reprogramming. Curr Opin Genet Dev 2025; 90:102301. [PMID: 39721322 PMCID: PMC11830421 DOI: 10.1016/j.gde.2024.102301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 11/30/2024] [Accepted: 12/06/2024] [Indexed: 12/28/2024]
Abstract
Cancer research remains clinically unmet in many areas due to limited access to patient samples and the lack of reliable model systems that truly reflect human cancer biology. The emergence of patient-derived induced pluripotent stem cells and engineered human pluripotent stem cells (hPSCs) has helped overcome these challenges, offering a versatile alternative platform for advancing cancer research. These hPSCs are already proving to be valuable models for studying specific cancer driver mutations, offering insights into cancer origins, pathogenesis, tumor heterogeneity, clonal evolution, and facilitating drug discovery and testing. This article reviews recent progress in utilizing hPSCs for clinically relevant cancer models and highlights efforts to deepen our understanding of fundamental cancer biology.
Collapse
Affiliation(s)
- Mo-Fan Huang
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| | - Megan E Fisher
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| | - Trinh T T Phan
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA. https://twitter.com/@trinhttphan
| | - Ruiying Zhao
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Dung-Fang Lee
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, Houston, TX 77030, USA; Center for Precision Health, McWilliams School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA.
| |
Collapse
|
27
|
Scott KA, Kojima H, Ropek N, Warren CD, Zhang TL, Hogg SJ, Sanford H, Webster C, Zhang X, Rahman J, Melillo B, Cravatt BF, Lyu J, Abdel-Wahab O, Vinogradova EV. Covalent targeting of splicing in T cells. Cell Chem Biol 2025; 32:201-218.e17. [PMID: 39591969 PMCID: PMC12068509 DOI: 10.1016/j.chembiol.2024.10.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 10/21/2024] [Accepted: 10/24/2024] [Indexed: 11/28/2024]
Abstract
Despite significant interest in therapeutic targeting of splicing, few chemical probes are available for the proteins involved in splicing. Here, we show that elaborated stereoisomeric acrylamide EV96 and its analogues lead to a selective T cell state-dependent loss of interleukin 2-inducible T cell kinase (ITK) by targeting one of the core splicing factors SF3B1. Mechanistic investigations suggest that the state-dependency stems from a combination of differential protein turnover rates and extensive ITK mRNA alternative splicing. We further introduce the most comprehensive list to date of proteins involved in splicing and leverage cysteine- and protein-directed activity-based protein profiling with electrophilic scout fragments to demonstrate covalent ligandability for many classes of splicing factors and splicing regulators in T cells. Taken together, our findings show how chemical perturbation of splicing can lead to immune state-dependent changes in protein expression and provide evidence for the broad potential to target splicing factors with covalent chemistry.
Collapse
Affiliation(s)
- Kevin A Scott
- Department of Chemical Immunology and Proteomics, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Hiroyuki Kojima
- Department of Chemical Immunology and Proteomics, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Nathalie Ropek
- Department of Chemical Immunology and Proteomics, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Charles D Warren
- Department of Pharmacology, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA; Tri-Institutional PhD Program in Chemical Biology, New York, NY 10021, USA
| | - Tiffany L Zhang
- Department of Chemical Immunology and Proteomics, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA; Tri-Institutional PhD Program in Chemical Biology, New York, NY 10021, USA
| | - Simon J Hogg
- Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Henry Sanford
- Department of Chemical Immunology and Proteomics, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Caroline Webster
- Department of Chemical Immunology and Proteomics, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Xiaoyu Zhang
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Jahan Rahman
- Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Bruno Melillo
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037, USA; Chemical Biology and Therapeutics Science Program, Broad Institute, Cambridge, MA 02142, USA
| | - Benjamin F Cravatt
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Jiankun Lyu
- The Evnin Family Laboratory of Computational Molecular Discovery, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Omar Abdel-Wahab
- Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Ekaterina V Vinogradova
- Department of Chemical Immunology and Proteomics, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA.
| |
Collapse
|
28
|
Tzaban S, Stern O, Zisman E, Eisenberg G, Klein S, Frankenburg S, Lotem M. Alternative splicing of modulatory immune receptors in T lymphocytes: a newly identified and targetable mechanism for anticancer immunotherapy. Front Immunol 2025; 15:1490035. [PMID: 39845971 PMCID: PMC11752881 DOI: 10.3389/fimmu.2024.1490035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 11/25/2024] [Indexed: 01/24/2025] Open
Abstract
Alternative splicing (AS) is a mechanism that generates translational diversity within a genome. Equally important is the dynamic adaptability of the splicing machinery, which can give preference to one isoform over others encoded by a single gene. These isoform preferences change in response to the cell's state and function. Particularly significant is the impact of physiological alternative splicing in T lymphocytes, where specific isoforms can enhance or reduce the cells' reactivity to stimuli. This process makes splicing isoforms defining features of cell states, exemplified by CD45 splice isoforms, which characterize the transition from naïve to memory states. Two developments have accelerated the use of AS dynamics for therapeutic interventions: advancements in long-read RNA sequencing and progress in nucleic acid chemical modifications. Improved oligonucleotide stability has enabled their use in directing splicing to specific sites or modifying sequences to enhance or silence particular splicing events. This review highlights immune regulatory splicing patterns with potential significance for enhancing anticancer immunotherapy.
Collapse
Affiliation(s)
- Shay Tzaban
- The Lautenberg Center for Immunology and Cancer Research, The Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Ori Stern
- The Lautenberg Center for Immunology and Cancer Research, The Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Elad Zisman
- The Lautenberg Center for Immunology and Cancer Research, The Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Galit Eisenberg
- The Lautenberg Center for Immunology and Cancer Research, The Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
- Center for Melanoma and Cancer Immunotherapy, Sharett Institute of Oncology, Jerusalem, Israel
| | - Shiri Klein
- The Lautenberg Center for Immunology and Cancer Research, The Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
- Center for Melanoma and Cancer Immunotherapy, Sharett Institute of Oncology, Jerusalem, Israel
| | - Shoshana Frankenburg
- The Lautenberg Center for Immunology and Cancer Research, The Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Michal Lotem
- The Lautenberg Center for Immunology and Cancer Research, The Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
- Center for Melanoma and Cancer Immunotherapy, Sharett Institute of Oncology, Jerusalem, Israel
- Hadassah Cancer Research Institute, Hadassah Hebrew University Medical Center, Jerusalem, Israel
| |
Collapse
|
29
|
Castruccio Castracani C, Breda L, Papp TE, Guerra A, Radaelli E, Assenmacher CA, Finesso G, Mui BL, Tam YK, Fontana S, Riganti C, Fiorito V, Petrillo S, Tolosano E, Parhiz H, Rivella S. An erythroid-specific lentiviral vector improves anemia and iron metabolism in a new model of XLSA. Blood 2025; 145:98-113. [PMID: 39656107 PMCID: PMC11738033 DOI: 10.1182/blood.2024025846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 08/14/2024] [Indexed: 01/03/2025] Open
Abstract
ABSTRACT X-linked sideroblastic anemia (XLSA) is a congenital anemia caused by mutations in ALAS2, a gene responsible for heme synthesis. Treatments are limited to pyridoxine supplements and blood transfusions, offering no definitive cure except for allogeneic hematopoietic stem cell transplantation, only accessible to a subset of patients. The absence of a suitable animal model has hindered the development of gene therapy research for this disease. We engineered a conditional Alas2-knockout (KO) mouse model using tamoxifen administration or treatment with lipid nanoparticles carrying Cre-mRNA and conjugated to an anti-CD117 antibody. Alas2-KOBM animals displayed a severe anemic phenotype characterized by ineffective erythropoiesis (IE), leading to low numbers of red blood cells, hemoglobin, and hematocrit. In particular, erythropoiesis in these animals showed expansion of polychromatic erythroid cells, characterized by reduced oxidative phosphorylation, mitochondria's function, and activity of key tricarboxylic acid cycle enzymes. In contrast, glycolysis was increased in the unsuccessful attempt to extend cell survival despite mitochondrial dysfunction. The IE was associated with marked splenomegaly and low hepcidin levels, leading to iron accumulation in the liver, spleen, and bone marrow and the formation of ring sideroblasts. To investigate the potential of a gene therapy approach for XLSA, we developed a lentiviral vector (X-ALAS2-LV) to direct ALAS2 expression in erythroid cells. Infusion of bone marrow (BM) cells with 0.6 to 1.4 copies of the X-ALAS2-LV in Alas2-KOBM mice improved complete blood cell levels, tissue iron accumulation, and survival rates. These findings suggest our vector could be curative in patients with XLSA.
Collapse
Affiliation(s)
| | - Laura Breda
- Department of Pediatrics, Hematology, The Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Tyler E. Papp
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Amaliris Guerra
- Department of Pediatrics, Hematology, The Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Enrico Radaelli
- Comparative Pathology Core, Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA
| | - Charles-Antoine Assenmacher
- Comparative Pathology Core, Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA
| | - Giovanni Finesso
- Comparative Pathology Core, Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA
| | - Barbara L. Mui
- Acuitas Therapeutics, Vancouver, British Columbia, Canada
| | - Ying K. Tam
- Acuitas Therapeutics, Vancouver, British Columbia, Canada
| | - Simona Fontana
- Department of Oncology, University of Torino, Torino, Italy
| | - Chiara Riganti
- Department of Oncology, University of Torino, Torino, Italy
| | - Veronica Fiorito
- Department of Biotechnology and Health Sciences and Molecular Biotechnology Center "Guido Tarone," University of Torino, Torino, Italy
| | - Sara Petrillo
- Department of Biotechnology and Health Sciences and Molecular Biotechnology Center "Guido Tarone," University of Torino, Torino, Italy
| | - Emanuela Tolosano
- Department of Biotechnology and Health Sciences and Molecular Biotechnology Center "Guido Tarone," University of Torino, Torino, Italy
| | - Hamideh Parhiz
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Stefano Rivella
- Department of Pediatrics, Hematology, The Children’s Hospital of Philadelphia, Philadelphia, PA
- University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics–The Children's Hospital of Philadelphia, Philadelphia, PA
- Penn Center for Musculoskeletal Disorders, The Children's Hospital of Philadelphia, Philadelphia, PA
- Penn Institute for RNA Innovation, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
30
|
Chaudhary P, Chaudhary S, Patel F, Patel S, Patel D, Patel L, Trivedi N, Vaishnani T, Jajodia E, Ahmad F, Arora N. Significance of Somatic Mutation Profiling in CML Beyond BCR-ABL: A Retrospective Study of the Indian Population. Indian J Hematol Blood Transfus 2025; 41:10-22. [PMID: 39917513 PMCID: PMC11794774 DOI: 10.1007/s12288-024-01808-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 06/13/2024] [Indexed: 02/09/2025] Open
Abstract
Somatic mutation and fusion detection in acute myeloid leukemia to determine disease subtype and treatment regime is a common practice, but it's not yet employed in chronic myeloid leukemia (CML). CML is still monitored by routine quantitative determination of the BCR-ABL fusion transcript and treated with tyrosine kinase inhibitors (TKIs). Despite the availability of the three generations of TKIs, resistance and progression in CML pathogenesis suggest a strong role for somatic mutations. The present study aimed to identify the role of somatic mutation profiling in CML patients in disease management. 196 CML patient samples were used in this investigation, comprising 26 CML-BP, 8 CML-AP, and 162 CML-CP samples. Following cytogenetic analysis for confirmation, each sample was sequenced utilizing the Ion Torrent platform by a targeted panel. Of the 196 CML samples, 81 (41.33%) had 125 variations affecting 27 genes, while 115 (58.67%) harboured no mutations. The study revealed that ASXL1 (31.2%), ABL1 (14.4%), and TET2 (8.8%) were the most frequently altered genes. These genes are recognized indicators of CML disease. Few samples found with mutated GATA2, IDH1, NRAS, SETBP1, WT1, PHF6, KIT, etc. and fusions like RUNX1(5)-MECOM (2) and CBFB- MYH11 are indicative of disease progression. The outcome of this study suggests that mutational profiling of CML patients can help in the prognostication of disease. Based on the results of the study, the authors have also provided possible future risk stratification and diagnosis workflow for CML disease. Supplementary Information The online version contains supplementary material available at 10.1007/s12288-024-01808-9.
Collapse
Affiliation(s)
- Pooja Chaudhary
- Unipath Specialty Laboratory Ltd., Ahmedabad, Gujarat 380015 India
| | | | - Falguni Patel
- Department of Biotechnology and Microbiology, Shri M.M.Patel Institute of Science and Research, Kadi Sarva Vishwavidyalaya, Gandhinagar, Gujarat 382015 India
| | - Shiv Patel
- Unipath Specialty Laboratory Ltd., Ahmedabad, Gujarat 380015 India
| | - Dhiren Patel
- Unipath Specialty Laboratory Ltd., Ahmedabad, Gujarat 380015 India
| | - Lokesh Patel
- Unipath Specialty Laboratory Ltd., Ahmedabad, Gujarat 380015 India
| | - Nikha Trivedi
- Unipath Specialty Laboratory Ltd., Ahmedabad, Gujarat 380015 India
| | - Toral Vaishnani
- Unipath Specialty Laboratory Ltd., Ahmedabad, Gujarat 380015 India
| | - Ekta Jajodia
- Unipath Specialty Laboratory Ltd., Ahmedabad, Gujarat 380015 India
| | - Firoz Ahmad
- Unipath Specialty Laboratory Ltd., Ahmedabad, Gujarat 380015 India
| | - Neeraj Arora
- Unipath Specialty Laboratory Ltd., Ahmedabad, Gujarat 380015 India
| |
Collapse
|
31
|
Rombaut D, Sandmann S, Tekath T, Crouch S, de Graaf AO, Smith A, Painter D, Kosmider O, Tobiasson M, Lennartsson A, van der Reijden BA, Park S, D'Aveni M, Slama B, Clappier E, Fenaux P, Adès L, van de Loosdrecht A, Langemeijer S, Symeonidis A, Čermák J, Preudhomme C, Savic A, Germing U, Stauder R, Bowen D, van Marrewijk C, Bernard E, de Witte T, Varghese J, Hellström‐Lindberg E, Dugas M, Martens J, Malcovati L, Jansen JH, Fontenay M, MDS‐RIGHT consortium. Somatic mutations and DNA methylation identify a subgroup of poor prognosis within lower-risk myelodysplastic syndromes. Hemasphere 2025; 9:e70073. [PMID: 39850648 PMCID: PMC11754767 DOI: 10.1002/hem3.70073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 11/18/2024] [Accepted: 12/08/2024] [Indexed: 01/25/2025] Open
Abstract
Lower risk (LR) myelodysplastic syndromes (MDS) are heterogeneous hematopoietic stem and progenitor disorders caused by the accumulation of somatic mutations in various genes including epigenetic regulators that may produce convergent DNA methylation patterns driving specific gene expression profiles. The integration of genomic, epigenomic, and transcriptomic profiling has the potential to spotlight distinct LR-MDS categories on the basis of pathophysiological mechanisms. We performed a comprehensive study of somatic mutations and DNA methylation in a large and clinically well-annotated cohort of treatment-naive patients with LR-MDS at diagnosis from the EUMDS registry (ClinicalTrials.gov.NCT00600860). Unsupervised clustering analyses identified six clusters based on genetic profiling that concentrate into four clusters on the basis of genome-wide methylation profiling with significant overlap between the two clustering modes. The four methylation clusters showed distinct clinical and genetic features and distinct methylation landscape. All clusters shared hypermethylated enhancers enriched in binding motifs for ETS and bZIP (C/EBP) transcription factor families, involved in the regulation of myeloid cell differentiation. By contrast, one cluster gathering patients with early leukemic evolution exhibited a specific pattern of hypermethylated promoters and, distinctly from other clusters, the upregulation of AP-1 complex members FOS/FOSL2 together with the absence of hypermethylation of their binding motif at target gene enhancers, which is of relevance for leukemic initiation. Among MDS patients with lower-risk IPSS-M, this cluster displayed a significantly inferior overall survival (p < 0.0001). Our study showed that genetic and DNA methylation features of LR-MDS at early stages may refine risk stratification, therefore offering the frame for a precocious therapeutic intervention.
Collapse
Affiliation(s)
- David Rombaut
- Université Paris Cité, Institut Cochin, INSERM U1016, CNRS UMR8104Assistance Publique‐Hôpitaux de Paris.Centre, Laboratory of Hematology, Hôpital CochinParisFrance
| | - Sarah Sandmann
- Institute of Medical InformaticsUniversity of MünsterMünsterGermany
| | - Tobias Tekath
- Institute of Medical InformaticsUniversity of MünsterMünsterGermany
| | - Simon Crouch
- Epidemiology and Cancer Statistics Group, Department of Health SciencesUniversity of YorkYorkUK
| | - Aniek O. de Graaf
- Department of Laboratory Medicine, Laboratory of HematologyRadboud University Medical CenterNijmegenThe Netherlands
| | - Alexandra Smith
- Epidemiology and Cancer Statistics Group, Department of Health SciencesUniversity of YorkYorkUK
| | - Daniel Painter
- Epidemiology and Cancer Statistics Group, Department of Health SciencesUniversity of YorkYorkUK
| | - Olivier Kosmider
- Université Paris Cité, Institut Cochin, INSERM U1016, CNRS UMR8104Assistance Publique‐Hôpitaux de Paris.Centre, Laboratory of Hematology, Hôpital CochinParisFrance
| | - Magnus Tobiasson
- Center for Hematology and Regenerative Medicine, Department of Medicine Huddinge, Karolinska InstituteKarolinska University HospitalStockholmSweden
| | | | - Bert A. van der Reijden
- Department of Laboratory Medicine, Laboratory of HematologyRadboud University Medical CenterNijmegenThe Netherlands
| | - Sophie Park
- Department of HematologyUniversité de Grenoble‐Alpes, CHUGrenobleFrance
| | - Maud D'Aveni
- Service d'Hématologie CliniqueUniversity Hospital of Nancy and University of LorraineNancyFrance
| | - Borhane Slama
- Service d'onco‐hématologie, Centre Hospitalier Général d'AvignonAvignonFrance
| | - Emmanuelle Clappier
- Université Paris Cité, Assistance Publique des Hôpitaux de Paris.Nord, Laboratoire d'Hématologie, Hôpital Saint‐LouisParisFrance
| | - Pierre Fenaux
- Université Paris Cité, Assistance Publique des Hôpitaux de Paris.Nord, Service d'Hématologie Senior, Hôpital Saint‐LouisParisFrance
| | - Lionel Adès
- Université Paris Cité, Assistance Publique des Hôpitaux de Paris.Nord, Service d'Hématologie Senior, Hôpital Saint‐LouisParisFrance
| | | | - Saskia Langemeijer
- Department of HematologyRadboud University Medical CenterNijmegenThe Netherlands
| | - Argiris Symeonidis
- Hematology Division, Department of Internal MedicineUniversity of PatrasPatrasGreece
| | - Jaroslav Čermák
- Department of Clinical HematologyInstitute of Hematology and Blood TransfusionPragueCzech Republic
| | - Claude Preudhomme
- Laboratoire d'hématologieCentre Hospitalier Régional UniversitaireLilleFrance
| | - Aleksandar Savic
- Clinic of Hematology, Clinical Center of VojvodinaFaculty of Medicine, University of Novi SadNovi SadSerbia
| | - Ulrich Germing
- Department of Hematology, Oncology and Clinical ImmunologyHeinrich‐Heine‐University, Medical FacultyDüsseldorfGermany
| | - Reinhard Stauder
- Department of Internal Medicine V (Haematology and Oncology), Comprehensive Cancer Center InnsbruckMedical University of InnsbruckInnsbruckAustria
| | - David Bowen
- St. James's Institute of OncologyLeeds Teaching HospitalsLeedsUK
| | - Corine van Marrewijk
- Department of HematologyRadboud University Medical CenterNijmegenThe Netherlands
| | - Elsa Bernard
- Department of Computational BiologyInstitut Gustave Roussy, INSERM U981VillejuifFrance
| | - Theo de Witte
- Department of Tumor Immunology, Radboud Institute of Molecular Life SciencesRadboud University Medical CenterNijmegenThe Netherlands
| | - Julian Varghese
- Institute of Medical InformaticsUniversity of MünsterMünsterGermany
| | - Eva Hellström‐Lindberg
- Center for Hematology and Regenerative Medicine, Department of Medicine Huddinge, Karolinska InstituteKarolinska University HospitalStockholmSweden
| | - Martin Dugas
- Institute of Medical InformaticsUniversity of HeidelbergHeidelbergGermany
| | - Joost Martens
- Department of Molecular BiologyFaculty of Science, Radboud UniversityNijmegenThe Netherlands
| | - Luca Malcovati
- Department of Molecular Medicine and Department of Hematology OncologyUniversity of Pavia and Fondazione IRCCS Policlinico S. MatteoPaviaItaly
| | - Joop H. Jansen
- Department of Laboratory Medicine, Laboratory of HematologyRadboud University Medical CenterNijmegenThe Netherlands
| | - Michaela Fontenay
- Université Paris Cité, Institut Cochin, INSERM U1016, CNRS UMR8104Assistance Publique‐Hôpitaux de Paris.Centre, Laboratory of Hematology, Hôpital CochinParisFrance
| | | |
Collapse
|
32
|
Chour M, Porteu F, Depil S, Alcazer V. Endogenous retroelements in hematological malignancies: From epigenetic dysregulation to therapeutic targeting. Am J Hematol 2025; 100:116-130. [PMID: 39387681 PMCID: PMC11625990 DOI: 10.1002/ajh.27501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 09/30/2024] [Accepted: 10/02/2024] [Indexed: 10/15/2024]
Abstract
Endogenous retroelements (EREs), which comprise half of the human genome, play a pivotal role in genome dynamics. Some EREs retained the ability to encode proteins, although most degenerated or served as a source for novel genes and regulatory elements during evolution. Despite ERE repression mechanisms developed to maintain genome stability, widespread pervasive ERE activation is observed in cancer including hematological malignancies. Challenging the perception of noncoding DNA as "junk," EREs are underestimated contributors to cancer driver mechanisms as well as antitumoral immunity by providing innate immune ligands and tumor antigens. This review highlights recent progress in understanding ERE co-option events in cancer and focuses on the controversial debate surrounding their causal role in shaping malignant phenotype. We provide insights into the rapidly evolving landscape of ERE research in hematological malignancies and their clinical implications in these cancers.
Collapse
Affiliation(s)
- Mohamed Chour
- Département de Biologie, Master Biosciences‐SantéÉcole Normale Supérieure de LyonLyonFrance
- Centre International de Recherche en InfectiologieINSERM U1111 CNRS UMR530LyonFrance
| | - Françoise Porteu
- Institut Gustave RoussyINSERM U1287 Université Paris SaclayVillejuifFrance
| | - Stéphane Depil
- Centre de Recherche en Cancérologie de LyonUMR INSERM U1052 CNRS 5286 Université Claude Bernard Lyon 1 Centre Léon BérardLyonFrance
- ErVimmuneLyonFrance
- Centre Léon BérardLyonFrance
- Université Claude Bernard Lyon 1LyonFrance
| | - Vincent Alcazer
- Centre International de Recherche en InfectiologieINSERM U1111 CNRS UMR530LyonFrance
- Université Claude Bernard Lyon 1LyonFrance
- Service d'hématologie CliniqueCentre Hospitalier Lyon Sud, Hospices Civils de LyonPierre‐BéniteFrance
| |
Collapse
|
33
|
Pellagatti A, Boultwood J. Hyperactivation of NF-κB signaling in splicing factor mutant myelodysplastic syndromes and therapeutic approaches. Adv Biol Regul 2025; 95:101055. [PMID: 39406588 DOI: 10.1016/j.jbior.2024.101055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 10/01/2024] [Accepted: 10/08/2024] [Indexed: 02/19/2025]
Abstract
The transcription factor NF-κB plays a critical role in the control of innate and adaptive immunity and inflammation. Several recent studies have demonstrated that the mutation of different splicing factor genes, including SF3B1, SRSF2 and U2AF1, in myelodysplastic syndromes (MDS) and acute myeloid leukemia (AML) result in hyperactive NF-κB signaling through the aberrant splicing of different target genes. The presence of U2AF1 and SF3B1 mutations in the bone marrow cells of MDS and AML patients induces oncogenic isoforms of the target gene IRAK4, leading to hyperactivation of NF-κB signaling and an increase in the fitness of leukemic stem and progenitor cells (LSPCs). The potent IRAK4 inhibitor CA-4948 has shown efficacy in both pre-clinical studies and MDS clinical trials, with splicing factor mutant patients showing the higher response rates. Emerging data has, however, revealed that co-targeting of IRAK4 and its paralog IRAK1 is required to maximally suppress LSPC function in vitro and in vivo by inducing cellular differentiation. These findings provide a link between the presence of the commonly mutated splicing factor genes and activation of innate immune signaling pathways in myeloid malignancies and have important implications for targeted therapy in these disorders.
Collapse
Affiliation(s)
- Andrea Pellagatti
- Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, Oxford, UK.
| | - Jacqueline Boultwood
- Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, Oxford, UK.
| |
Collapse
|
34
|
Rosenberg-Mogilevsky A, Siegfried Z, Karni R. Generation of tumor neoantigens by RNA splicing perturbation. Trends Cancer 2025; 11:12-24. [PMID: 39578174 DOI: 10.1016/j.trecan.2024.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 10/16/2024] [Accepted: 10/23/2024] [Indexed: 11/24/2024]
Abstract
Immunotherapy has revolutionized cancer treatment, but the limited availability of tumor-specific neoantigens still remains a challenge. The potential of alternative mRNA splicing-derived neoantigens as a source of new immunotherapy targets has gained significant attention. Tumors exhibit unique splicing changes and splicing factor mutations which are prevalent in various cancers and play a crucial role in neoantigen production. We present advances in splicing modulation approaches, including small-molecule drugs, decoy and splice-switching antisense oligonucleotides (SSOs), CRISPR, small interfering RNAs (siRNAs), and nonsense-mediated RNA decay (NMD) inhibition, that can be adapted to enhance antitumor immune responses. Finally, we explore the clinical implications of these approaches, highlighting their potential to transform cancer immunotherapy and broaden its efficacy.
Collapse
Affiliation(s)
- Adi Rosenberg-Mogilevsky
- Department of Biochemistry and Molecular Biology, Institute for Medical Research Israel-Canada (IMRIC), Hebrew University and Hadassah Medical School, Jerusalem, Israel
| | - Zahava Siegfried
- Department of Biochemistry and Molecular Biology, Institute for Medical Research Israel-Canada (IMRIC), Hebrew University and Hadassah Medical School, Jerusalem, Israel
| | - Rotem Karni
- Department of Biochemistry and Molecular Biology, Institute for Medical Research Israel-Canada (IMRIC), Hebrew University and Hadassah Medical School, Jerusalem, Israel.
| |
Collapse
|
35
|
Wang Y, Feng W, Wang F, Min J. [Research progress of iron metabolism and ferroptosis in myeloid neoplasms]. Zhejiang Da Xue Xue Bao Yi Xue Ban 2024; 53:735-746. [PMID: 39608794 PMCID: PMC11736352 DOI: 10.3724/zdxbyxb-2024-0211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Accepted: 08/05/2024] [Indexed: 11/30/2024]
Abstract
It is reported that iron metabolism and ferroptosis can influence the occurrence and development of myeloid tumors, which can serve as therapeutic targets. Dysregulation of iron metabolism is present in a variety of myeloid neoplasms. The prognosis of acute myeloid leukemia is related to differential expression of molecules related to iron metabolism. The prognosis of myelodysplastic syndrome patients with iron overload is poor. Myeloproliferative neoplasms are often characterized by the coexistence of iron deficiency and erythrocytosis, which can be treated by targeting hepcidin. Myeloid tumor cells are susceptible to oxidative damage caused by the accumulation of reactive oxygen species and are sensitive to ferroptosis. Ferroptosis has anti-tumor effect in acute myeloid leukemia and myelodysplastic syndrome. Targeting ferroptosis can reverse imatinib resistance in chronic myeloid leukemia. This article reviews the characteristics of iron metabolism in the development and progression of myeloid neoplasms, as well as the mechanism of ferroptosis, to provide a basis for the development of new therapeutic strategies.
Collapse
Affiliation(s)
- Yudi Wang
- Department of Hematology, Shaoxing People's Hospital, Shaoxing 312000, Zhejiang Province, China.
- Institute of Translational Medicine, Zhejiang University, Hangzhou 310058, China.
| | - Weiying Feng
- Department of Hematology, Shaoxing People's Hospital, Shaoxing 312000, Zhejiang Province, China
| | - Fudi Wang
- School of Public Health, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Junxia Min
- Institute of Translational Medicine, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
36
|
Pawar AS, Somers P, Alex A, George SS, Antony C, Verner R, White-Brown SK, Khera M, Mendoza-Figueroa MS, Liu KF, Morrissette JJD, Paralkar VR. Leukemia-mutated proteins PHF6 and PHIP form a chromatin complex that represses acute myeloid leukemia stemness. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.29.625909. [PMID: 39677666 PMCID: PMC11642813 DOI: 10.1101/2024.11.29.625909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Myeloid leukemias are heterogeneous cancers with diverse mutations, sometimes in genes with unclear roles and unknown functional partners. PHF6 and PHIP are two poorly-understood chromatin-binding proteins recurrently mutated in acute myeloid leukemia (AML). PHF6 mutations are associated with poorer outcomes, while PHIP was recently identified as the most common selective mutation in Black patients in AML. Here, we show that PHF6 is a transcriptional repressor that suppresses a stemness gene network, and that PHF6 missense mutations, classified by current clinical algorithms as variants of unknown significance, produce unstable or non-functional protein. We present multiple lines of evidence converging on a critical mechanistic connection between PHF6 and PHIP. We show that PHIP loss phenocopies PHF6 loss, and that PHF6 requires PHIP to occupy chromatin and exert its downstream transcriptional program. Our work unifies PHF6 and PHIP, two disparate leukemia-mutated proteins, into a common functional complex that suppresses AML stemness.
Collapse
Affiliation(s)
- Aishwarya S Pawar
- Division of Hematology and Oncology, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
- Biomedical Graduate Studies, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Patrick Somers
- Division of Hematology and Oncology, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Aleena Alex
- Division of Hematology and Oncology, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Subin S George
- Institute for Biomedical Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Charles Antony
- Division of Hematology and Oncology, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Roman Verner
- Division of Hematology and Oncology, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Sanese K White-Brown
- Center for Personalized Diagnostics, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Mohit Khera
- Division of Hematology and Oncology, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - María Saraí Mendoza-Figueroa
- Department of Biochemistry & Biophysics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Kathy Fange Liu
- Department of Biochemistry & Biophysics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Jennifer J D Morrissette
- Center for Personalized Diagnostics, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Vikram R Paralkar
- Division of Hematology and Oncology, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
- Abramson Family Cancer Research Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| |
Collapse
|
37
|
Naro C, Ruta V, Sette C. Splicing dysregulation: hallmark and therapeutic opportunity in pancreatic cancer. Trends Mol Med 2024:S1471-4914(24)00308-3. [PMID: 39648052 DOI: 10.1016/j.molmed.2024.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 11/12/2024] [Accepted: 11/13/2024] [Indexed: 12/10/2024]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is an aggressive cancer characterized by dismal prognosis. Late diagnosis, resistance to chemotherapy, and lack of efficacious targeted therapies render PDAC almost untreatable. Dysregulation of splicing, the process that excises the introns from nascent transcripts, is emerging as a hallmark of PDAC and a possible vulnerability of this devastating cancer. Splicing factors are deregulated in PDAC and contribute to all steps of tumorigenesis, from inflammation-related early events to metastasis and acquisition of chemoresistance. At the same time, splicing dysregulation offers a therapeutic opportunity to target cancer-specific vulnerabilities. We discuss mounting evidence that splicing plays a key role in PDAC and the opportunities that this essential process offers for developing new targeted therapies.
Collapse
Affiliation(s)
- Chiara Naro
- Department of Neuroscience, Section of Human Anatomy, Catholic University of the Sacred Heart, 00168 Rome, Italy; Gemelli Science and Technology Park (GSTeP) Organoids Research Core Facility, Fondazione Policlinico A. Gemelli, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 00168 Rome, Italy
| | - Veronica Ruta
- Department of Neuroscience, Section of Human Anatomy, Catholic University of the Sacred Heart, 00168 Rome, Italy
| | - Claudio Sette
- Department of Neuroscience, Section of Human Anatomy, Catholic University of the Sacred Heart, 00168 Rome, Italy; Gemelli Science and Technology Park (GSTeP) Organoids Research Core Facility, Fondazione Policlinico A. Gemelli, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 00168 Rome, Italy.
| |
Collapse
|
38
|
Liu G, Zhao B, Shi Y, Wan Y. Cancer-associated SF3B1 mutations inhibit mRNA nuclear export by disrupting SF3B1-THOC5 interactions. J Biochem 2024; 176:437-448. [PMID: 39259498 DOI: 10.1093/jb/mvae061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 08/31/2024] [Accepted: 09/04/2024] [Indexed: 09/13/2024] Open
Abstract
Mutations in SF3B1 are common in many types of cancer, promoting cancer progression through aberrant RNA splicing. Recently, mRNA nuclear export has been reported to be defective in cells with the SF3B1 K700E mutation. However, the mechanism remains unclear. Our study reveals that the K700E mutation in SF3B1 attenuates its interaction with THOC5, an essential component of the mRNA nuclear export complex THO. Furthermore, the SF3B1 mutation caused reduced binding of THOC5 with some mRNA and inhibited the nuclear export of these mRNAs. Interestingly, overexpression of THOC5 restores the nuclear export of these mRNAs in cells with the SF3B1 K700E mutation. Importantly, other types of cancer-associated SF3B1 mutations also inhibited mRNA nuclear export similarly, suggesting that it is common for cancer-associated SF3B1 mutations to inhibit mRNA nuclear export. Our research highlights the critical role of the THOC5-SF3B1 interaction in the regulation of mRNA nuclear export and provides valuable insights into the impact of SF3B1 mutations on mRNA nuclear export.
Collapse
Affiliation(s)
- Gang Liu
- China-Japan Union Hospital of Jilin University, No. 126, Xiantai Street, Changchun, Jilin 130033, China
| | - Bo Zhao
- China-Japan Union Hospital of Jilin University, No. 126, Xiantai Street, Changchun, Jilin 130033, China
| | - Yueru Shi
- China-Japan Union Hospital of Jilin University, No. 126, Xiantai Street, Changchun, Jilin 130033, China
| | - Youzhong Wan
- China-Japan Union Hospital of Jilin University, No. 126, Xiantai Street, Changchun, Jilin 130033, China
| |
Collapse
|
39
|
Yacout M, Katamesh B, Jabban Y, He R, Viswanatha D, Jevremovic D, Greipp P, Bessonen K, Palmer J, Foran J, Saliba A, Hefazi-Torghabeh M, Begna K, Hogan W, Patnaik M, Shah M, Alkhateeb H, Al-Kali A. Characterisation and prognostic impact Of ZRSR2 mutations in myeloid neoplasms. Leukemia 2024; 38:2727-2730. [PMID: 39313565 PMCID: PMC11588644 DOI: 10.1038/s41375-024-02374-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 07/31/2024] [Accepted: 08/05/2024] [Indexed: 09/25/2024]
Affiliation(s)
- Mahmoud Yacout
- Division of Hematology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Bahga Katamesh
- Division of Hematology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Yazan Jabban
- Division of Hematology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Rong He
- Division of Hematopathology, Mayo Clinic, Rochester, MN, 55905, USA
| | - David Viswanatha
- Division of Hematopathology, Mayo Clinic, Rochester, MN, 55905, USA
| | | | - Patricia Greipp
- Division of Hematopathology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Kurt Bessonen
- Division of Molecular Hematology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Jeanne Palmer
- Division of Hematology, Mayo Clinic, Scottsdale, AZ, 85259, USA
| | - James Foran
- Division of Hematology, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Antoine Saliba
- Division of Hematology, Mayo Clinic, Rochester, MN, 55905, USA
| | | | - Kebede Begna
- Division of Hematology, Mayo Clinic, Rochester, MN, 55905, USA
| | - William Hogan
- Division of Hematology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Mrinal Patnaik
- Division of Hematology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Mithun Shah
- Division of Hematology, Mayo Clinic, Rochester, MN, 55905, USA
| | | | - Aref Al-Kali
- Division of Hematology, Mayo Clinic, Rochester, MN, 55905, USA.
| |
Collapse
|
40
|
Boussi L, Biswas J, Abdel-Wahab O, Stein E. Therapeutic strategies targeting aberrant RNA splicing in myeloid malignancies. Br J Haematol 2024; 205:2153-2162. [PMID: 39406457 DOI: 10.1111/bjh.19826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 09/30/2024] [Indexed: 12/14/2024]
Abstract
In recent years, large-scale sequencing efforts have identified targetable driver mutations in haematopoietic stem cells. These efforts have led to the development and approval of nine novel agents for relapsed or refractory acute myelogenous leukaemia (R/R AML). However, despite an expansion in targeted therapies, achieving a durable remission in AML and high-risk myelodysplastic syndrome (HR-MDS) remains a significant challenge, and there is an urgent need for new effective treatments. Modulation of aberrant RNA splicing has emerged as a novel therapeutic approach in myeloid diseases. Aberrant splicing drives dysregulated gene expression that promotes tumourigenesis through increased proliferation and metastatic potential, immune evasion, decreased apoptosis, and chemotherapy resistance. Mutations in spliceosomal components have been identified in numerous cancer subtypes, with mutations in RNA binding proteins SF3B1, SRSF2, U2AF1, and ZRSR2 occurring frequently in AML and in up to 60% of patients with MDS, as well as in chronic myelomonocytic leukaemia and in 10% of patients with chronic lymphocytic leukaemia. In this review, we explore therapeutic strategies targeting aberrant splicing and the potential of these approaches to drive clinical responses.
Collapse
Affiliation(s)
- Leora Boussi
- Leukemia Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Jeetayu Biswas
- Leukemia Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
- Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Omar Abdel-Wahab
- Leukemia Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
- Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Eytan Stein
- Leukemia Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| |
Collapse
|
41
|
Tran Quang V, Wagner-Ballon O, Sloma I. Predicting which subsets of patients with myelodysplastic neoplasms are more likely to progress to overt chronic myelomonocytic leukemia. Leuk Lymphoma 2024; 65:1766-1776. [PMID: 39004904 DOI: 10.1080/10428194.2024.2378816] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/03/2024] [Accepted: 07/07/2024] [Indexed: 07/16/2024]
Abstract
The boundary between myelodysplastic syndromes (MDS) and chronic myelomonocytic leukemia (CMML) has been revised in the latest World Health Organization classification of myeloid malignancies. These changes were motivated by the description of a subgroup of MDS patients identified as oligomonocytic chronic myelomonocytic leukemia (OM-CMML) at risk of evolving into overt CMML. Various studies will be reviewed describing the clinical and biological features of MDS patients evolving to CMML. The efforts to discover biomarkers enabling the identification of these patients at the time of MDS diagnosis will be discussed. Finally, the molecular landscape of these patients will be presented with a specific focus on the biallelic inactivation of TET2 in light of its functional impact on hematopoietic stem cells, granule-monocytic differentiation, and its tight interplay with inflammation.
Collapse
Affiliation(s)
- Violaine Tran Quang
- Univ Paris Est Créteil, INSERM, IMRB, Créteil, France
- AP-HP, Hôpital Henri Mondor, Hematology and Immunology Department, Créteil, France
| | - Orianne Wagner-Ballon
- Univ Paris Est Créteil, INSERM, IMRB, Créteil, France
- AP-HP, Hôpital Henri Mondor, Hematology and Immunology Department, Créteil, France
| | - Ivan Sloma
- Univ Paris Est Créteil, INSERM, IMRB, Créteil, France
- AP-HP, Hôpital Henri Mondor, Hematology and Immunology Department, Créteil, France
| |
Collapse
|
42
|
Tseng CC, Obeng EA. RNA splicing as a therapeutic target in myelodysplastic syndromes. Semin Hematol 2024; 61:431-441. [PMID: 39542752 DOI: 10.1053/j.seminhematol.2024.10.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 10/18/2024] [Indexed: 11/17/2024]
Abstract
Myelodysplastic syndromes (MDS) represent a heterogeneous group of hematological disorders and are more commonly found in people over the age of 60. MDS patients exhibit peripheral blood cytopenias and carry an increased risk of disease progression to acute myeloid leukemia (AML). Splicing factor mutations (including genes SF3B1, SRSF2, U2AF1, and ZRSR2) are early events identified in more than 50% of MDS cases. These mutations cause aberrant pre-mRNA splicing and impact MDS pathophysiology. Emerging evidence shows that splicing factor-mutant cells are more sensitive to perturbations targeting the spliceosome, aberrantly spliced genes and/or their regulated molecular pathways. This review summarizes current therapeutic strategies and ongoing efforts targeting splicing factor mutations for the treatment of MDS.
Collapse
Affiliation(s)
- Chun-Chih Tseng
- Division of Molecular Oncology, Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN
| | - Esther A Obeng
- Division of Molecular Oncology, Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN.
| |
Collapse
|
43
|
Bao Y, Teng S, Zhai H, Zhang Y, Xu Y, Li C, Chen Z, Ren F, Wang Y. SE-lncRNAs in Cancer: Classification, Subcellular Localisation, Function and Corresponding TFs. J Cell Mol Med 2024; 28:e70296. [PMID: 39690143 DOI: 10.1111/jcmm.70296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 11/22/2024] [Accepted: 12/04/2024] [Indexed: 12/19/2024] Open
Abstract
Emerging evidence highlights certain long noncoding RNAs (lncRNAs) transcribed from or interacting with super-enhancer (SE) regulatory elements. These lncRNAs, known as SE-lncRNAs, are strongly linked to cancer and regulate cancer progression through multiple interactions with downstream targets. The expression of SE-lncRNAs is controlled by various transcription factors (TFs), and dysregulation of these TFs can contribute to cancer development. In this review, we discuss the characteristics, classification and subcellular distribution of SE-lncRNAs and summarise the role of key TFs in the transcription and regulation of SE-lncRNAs. Moreover, we examine the distinct functions and potential mechanisms of SE-lncRNAs in cancer progression.
Collapse
Affiliation(s)
- Yuxin Bao
- Fourth Department of Orthopaedic Surgery, Central Hospital Affiliated To Shenyang Medical College, Shenyang, Liaoning, P. R. China
| | - Songling Teng
- Department of Hand Surgery, Central Hospital Affiliated To Shenyang Medical College, Shenyang, Liaoning, P. R. China
| | - Hanjie Zhai
- Fourth Department of Orthopaedic Surgery, Central Hospital Affiliated To Shenyang Medical College, Shenyang, Liaoning, P. R. China
| | - Yuanzhuang Zhang
- Fourth Department of Orthopaedic Surgery, Central Hospital Affiliated To Shenyang Medical College, Shenyang, Liaoning, P. R. China
| | - Yeqiu Xu
- Fourth Department of Orthopaedic Surgery, Central Hospital Affiliated To Shenyang Medical College, Shenyang, Liaoning, P. R. China
| | - Chenghao Li
- Fourth Department of Orthopaedic Surgery, Central Hospital Affiliated To Shenyang Medical College, Shenyang, Liaoning, P. R. China
| | - Zhenjun Chen
- Department of Neurosurgery, Central Hospital Affiliated To Shenyang Medical College, Shenyang, Liaoning, P. R. China
| | - Fu Ren
- Department of Anatomy, School of Basic Medicine, Shenyang Medical College, Shenyang, Liaoning, P. R. China
| | - Yong Wang
- Fourth Department of Orthopaedic Surgery, Central Hospital Affiliated To Shenyang Medical College, Shenyang, Liaoning, P. R. China
| |
Collapse
|
44
|
Maul-Newby HM, Halene S. Splicing the Difference: Harnessing the Complexity of the Transcriptome in Hematopoiesis. Exp Hematol 2024; 140:104655. [PMID: 39393608 PMCID: PMC11732257 DOI: 10.1016/j.exphem.2024.104655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/30/2024] [Accepted: 10/02/2024] [Indexed: 10/13/2024]
Abstract
Alternative splicing has long been recognized as a powerful tool to expand the diversity of the transcriptome and the proteome. The study of hematopoiesis, from hematopoietic stem cell maintenance and differentiation into committed progenitors to maturation into functional blood cells, has led the field of stem cell research and cellular differentiation for decades. The importance of aberrant splicing due to mutations in cis has been exemplified in thalassemias, resulting from aberrant expression of β-globin. The simultaneous development of increasingly sophisticated technologies, in particular the combination of multicolor flow cytometric cell sorting with bulk and single-cell sequencing, has provided sophisticated insights into the complex regulation of the blood system. The recognition that mutations in key splicing factors drive myeloid malignancies, in particular myelodysplastic syndromes, has galvanized research into alternative splicing in hematopoiesis and its diseases. In this review, we will update the audience on the exciting novel technologies, highlight alternative splicing events and their regulators with essential functions in hematopoiesis, and provide a high-level overview how splicing factor mutations contribute to hematologic malignancies.
Collapse
Affiliation(s)
- Hannah M Maul-Newby
- Section of Hematology, Department of Internal Medicine, Yale Comprehensive Cancer Center, Yale University School of Medicine, New Haven, Connecticut
| | - Stephanie Halene
- Section of Hematology, Department of Internal Medicine, Yale Comprehensive Cancer Center, Yale University School of Medicine, New Haven, Connecticut.
| |
Collapse
|
45
|
Anczukow O, Allain FHT, Angarola BL, Black DL, Brooks AN, Cheng C, Conesa A, Crosse EI, Eyras E, Guccione E, Lu SX, Neugebauer KM, Sehgal P, Song X, Tothova Z, Valcárcel J, Weeks KM, Yeo GW, Thomas-Tikhonenko A. Steering research on mRNA splicing in cancer towards clinical translation. Nat Rev Cancer 2024; 24:887-905. [PMID: 39384951 DOI: 10.1038/s41568-024-00750-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/27/2024] [Indexed: 10/11/2024]
Abstract
Splicing factors are affected by recurrent somatic mutations and copy number variations in several types of haematologic and solid malignancies, which is often seen as prima facie evidence that splicing aberrations can drive cancer initiation and progression. However, numerous spliceosome components also 'moonlight' in DNA repair and other cellular processes, making their precise role in cancer difficult to pinpoint. Still, few would deny that dysregulated mRNA splicing is a pervasive feature of most cancers. Correctly interpreting these molecular fingerprints can reveal novel tumour vulnerabilities and untapped therapeutic opportunities. Yet multiple technological challenges, lingering misconceptions, and outstanding questions hinder clinical translation. To start with, the general landscape of splicing aberrations in cancer is not well defined, due to limitations of short-read RNA sequencing not adept at resolving complete mRNA isoforms, as well as the shallow read depth inherent in long-read RNA-sequencing, especially at single-cell level. Although individual cancer-associated isoforms are known to contribute to cancer progression, widespread splicing alterations could be an equally important and, perhaps, more readily actionable feature of human cancers. This is to say that in addition to 'repairing' mis-spliced transcripts, possible therapeutic avenues include exacerbating splicing aberration with small-molecule spliceosome inhibitors, targeting recurrent splicing aberrations with synthetic lethal approaches, and training the immune system to recognize splicing-derived neoantigens.
Collapse
Affiliation(s)
- Olga Anczukow
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA.
| | - Frédéric H-T Allain
- Department of Biology, Eidgenössische Technische Hochschule (ETH), Zürich, Switzerland
| | | | - Douglas L Black
- Department of Microbiology, Immunology, and Molecular Genetics, University of California Los Angeles, Los Angeles, CA, USA
| | - Angela N Brooks
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, CA, USA
| | - Chonghui Cheng
- Department of Molecular and Human Genetics, Lester & Sue Breast Center, Baylor College of Medicine, Houston, TX, USA
| | - Ana Conesa
- Institute for Integrative Systems Biology, Spanish National Research Council, Paterna, Spain
| | - Edie I Crosse
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Eduardo Eyras
- Shine-Dalgarno Centre for RNA Innovation, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Ernesto Guccione
- Department of Oncological Sciences, Mount Sinai School of Medicine, New York, NY, USA
| | - Sydney X Lu
- Department of Medicine, Stanford Medical School, Palo Alto, CA, USA
| | - Karla M Neugebauer
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT, USA
| | - Priyanka Sehgal
- Division of Cancer Pathobiology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Xiao Song
- Department of Neurology, Northwestern University, Chicago, IL, USA
| | - Zuzana Tothova
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Juan Valcárcel
- Centre for Genomic Regulation, Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain
| | - Kevin M Weeks
- Department of Chemistry, University of North Carolina, Chapel Hill, NC, USA
| | - Gene W Yeo
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
| | - Andrei Thomas-Tikhonenko
- Division of Cancer Pathobiology, Children's Hospital of Philadelphia, Philadelphia, PA, USA.
- Department of Pathology & Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
46
|
Nishimura T, Velaga R, Masuda N, Kawaguchi K, Kawaguchi S, Takada M, Maeshima Y, Tanaka S, Kikawa Y, Kadoya T, Bando H, Nakamura R, Yamamoto Y, Ueno T, Yasojima H, Ishiguro H, Morita S, Ohno S, Haga H, Matsuda F, Ogawa S, Toi M. Genomic and transcriptomic profiling of pre- and postneoadjuvant chemotherapy triple negative breast cancer tumors. Cancer Sci 2024; 115:3928-3942. [PMID: 39375938 PMCID: PMC11611771 DOI: 10.1111/cas.16339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 08/08/2024] [Accepted: 08/30/2024] [Indexed: 10/09/2024] Open
Abstract
Our understanding of neoadjuvant treatment with microtubule inhibitors (MTIs) for triple negative breast cancer (TNBC) remains limited. To advance our understanding of the role of breast cancer driver genes' mutational status with pathological complete response (pCR; ypT0/isypN0) prediction and to identify distinct gene sets for MTIs like eribulin and paclitaxel, we carried out targeted genomic (n = 50) and whole transcriptomic profiling (n = 64) of TNBC tumor samples from the Japan Breast Cancer Research Group 22 (JBCRG-22) clinical trial. Lower PIK3CA, PTEN, and HRAS mutations were found in homologous recombination deficiency (HRD)-high (HRD score ≥ 42) tumors with higher pCR rates. When HRD-high tumors were stratified by tumor BRCA mutation status, the pCR rates in BRCA2-mutated tumors were higher (83% vs. 36%). Transcriptomic profiling of TP53-positive tumors identified downregulation of FGFR2 (false discovery rate p value = 2.07e-7), which was also the only common gene between HRD-high and -low tumors with pCR/quasi-pCR treated with paclitaxel and eribulin combined with carboplatin, respectively. Differential enrichment analysis of the HRD-high group posttreatment tumors revealed significant correlation (p = 0.006) of the glycan degradation pathway. FGFR2 expression and the differentially enriched pathways play a role in the response and resistance to MTIs containing carboplatin treatment in TNBC patients.
Collapse
Affiliation(s)
- Tomomi Nishimura
- Department of Next‐generation Clinical Genomic Medicine, Graduate School of MedicineKyoto UniversityKyotoJapan
| | - Ravi Velaga
- Department of Breast and Endocrine SurgeryNagoya University Graduate School of MedicineNagoyaJapan
| | - Norikazu Masuda
- Department of Breast and Endocrine SurgeryNagoya University Graduate School of MedicineNagoyaJapan
| | - Kosuke Kawaguchi
- Department of Breast SurgeryKyoto University Hospital, Kyoto UniversityKyotoJapan
| | - Shuji Kawaguchi
- Center for Genomic Medicine, Graduate School of MedicineKyoto UniversityKyotoJapan
| | - Masahiro Takada
- Department of Breast SurgeryKyoto University Hospital, Kyoto UniversityKyotoJapan
| | - Yurina Maeshima
- Department of Breast SurgeryKyoto University Hospital, Kyoto UniversityKyotoJapan
| | - Sunao Tanaka
- Department of Breast SurgeryKyoto University Hospital, Kyoto UniversityKyotoJapan
| | - Yuichiro Kikawa
- Department of Breast SurgeryKobe City Medical Center General HospitalKobeJapan
- Department of Breast SurgeryKansai Medical University HospitalHirakataJapan
| | | | - Hiroko Bando
- Breast and Endocrine Surgery, Faculty of MedicineUniversity of TsukubaTsukubaJapan
| | | | - Yutaka Yamamoto
- Department of Breast and Endocrine SurgeryKumamoto University, Graduate School of Medical SciencesKumamotoJapan
| | - Takayuki Ueno
- Breast Oncology CenterThe Cancer Institute Hospital of JFCRTokyoJapan
| | - Hiroyuki Yasojima
- Department of Surgery, Breast OncologyNHO Osaka National HospitalOsakaJapan
| | - Hiroshi Ishiguro
- Breast Oncology ServiceSaitama Medical University International Medical CenterSaitamaJapan
| | - Satoshi Morita
- Department of Biomedical Statistics and BioinformaticsKyoto University Graduate School of MedicineKyotoJapan
| | - Shinji Ohno
- Breast Oncology CenterThe Cancer Institute Hospital of JFCRTokyoJapan
- Social Medical Corporation HakuaikaiSagara HospitalKagoshimaJapan
| | - Hironori Haga
- Diagnostic PathologyKyoto University HospitalKyotoJapan
| | - Fumihiko Matsuda
- Center for Genomic Medicine (Human Biosciences), Graduate School of MedicineKyoto UniversityKyotoJapan
| | - Seishi Ogawa
- Department of Pathology and Tumor BiologyInstitute for the Advanced Study of Human Biology (WPI‐ASHBi), Kyoto University, Graduate School of MedicineKyotoJapan
- Department of Molecular HematologyKarolinska InstituteStockholmSweden
| | - Masakazu Toi
- Tokyo Metropolitan Cancer and Infectious Disease CenterKomagome HospitalBunkyo‐kuTokyoJapan
| |
Collapse
|
47
|
Wagner RE, Arnetzl L, Britto-Borges T, Heit-Mondrzyk A, Bakr A, Sollier E, Gkatza NA, Panten J, Delaunay S, Sohn D, Schmezer P, Odom DT, Müller-Decker K, Plass C, Dieterich C, Lutsik P, Bornelöv S, Frye M. SRSF2 safeguards efficient transcription of DNA damage and repair genes. Cell Rep 2024; 43:114869. [PMID: 39446588 DOI: 10.1016/j.celrep.2024.114869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 09/12/2024] [Accepted: 09/27/2024] [Indexed: 10/26/2024] Open
Abstract
The serine-/arginine-rich splicing factor 2 (SRSF2) plays pivotal roles in pre-mRNA processing and gene transcription. Recurrent mutations, particularly a proline-to-histidine substitution at position 95 (P95H), are common in neoplastic diseases. Here, we assess SRSF2's diverse functions in squamous cell carcinoma. We show that SRSF2 deletion or homozygous P95H mutation both cause extensive DNA damage leading to cell-cycle arrest. Mechanistically, SRSF2 regulates efficient bi-directional transcription of DNA replication and repair genes, independent from its function in splicing. Further, SRSF2 haploinsufficiency induces DNA damage without halting the cell cycle. Exposing mouse skin to tumor-promoting carcinogens enhances the clonal expansion of heterozygous Srsf2 P95H epidermal cells but unexpectedly inhibits tumor formation. To survive carcinogen treatment, Srsf2 P95H+/- cells undergo substantial transcriptional rewiring and restore bi-directional gene expression. Thus, our study underscores SRSF2's importance in regulating transcription to orchestrate the cell cycle and the DNA damage response.
Collapse
Affiliation(s)
- Rebecca E Wagner
- Division of Mechanisms Regulating Gene Expression, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; Faculty of Biosciences, Heidelberg University, 69117 Heidelberg, Germany
| | - Leonie Arnetzl
- Division of Mechanisms Regulating Gene Expression, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Thiago Britto-Borges
- Section of Bioinformatics and Systems Cardiology, Department of Internal Medicine III and Klaus Tschira Institute for Integrative Computational Cardiology, Heidelberg University Hospital, 69120 Heidelberg, Germany; German Centre for Cardiovascular Research (DZHK), Partner site Heidelberg/Mannheim, 69120 Heidelberg, Germany
| | - Anke Heit-Mondrzyk
- Division of Mechanisms Regulating Gene Expression, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Ali Bakr
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Etienne Sollier
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | | | - Jasper Panten
- Faculty of Biosciences, Heidelberg University, 69117 Heidelberg, Germany; Division of Regulatory Genomics and Cancer Evolution, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Sylvain Delaunay
- Division of Mechanisms Regulating Gene Expression, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Daniela Sohn
- Division of Mechanisms Regulating Gene Expression, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Peter Schmezer
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Duncan T Odom
- Division of Regulatory Genomics and Cancer Evolution, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Karin Müller-Decker
- Division of Mechanisms Regulating Gene Expression, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Christoph Plass
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Christoph Dieterich
- Section of Bioinformatics and Systems Cardiology, Department of Internal Medicine III and Klaus Tschira Institute for Integrative Computational Cardiology, Heidelberg University Hospital, 69120 Heidelberg, Germany; German Centre for Cardiovascular Research (DZHK), Partner site Heidelberg/Mannheim, 69120 Heidelberg, Germany
| | - Pavlo Lutsik
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; Department of Oncology, KU Leuven, 3000 Leuven, Belgium
| | - Susanne Bornelöv
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, CB2 0RE Cambridge, UK
| | - Michaela Frye
- Division of Mechanisms Regulating Gene Expression, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany.
| |
Collapse
|
48
|
Damianov A, Lin CH, Zhang J, Manley JL, Black DL. Cancer-associated SF3B1 mutation K700E causes widespread changes in U2/branchpoint recognition without altering splicing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.18.624191. [PMID: 39605567 PMCID: PMC11601671 DOI: 10.1101/2024.11.18.624191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Myelodysplastic syndromes and other cancers are often associated with mutations in the U2 snRNP protein SF3B1. Common SF3B1 mutations, including K700E, disrupt SF3B1 interaction with the protein SUGP1 and induce aberrant activation of cryptic 3' splice sites (ss), presumably resulting from aberrant U2/branch site (BS) recognition by the mutant spliceosome. Here, we apply the new method of U2 IP-seq to profile BS binding across the transcriptome of K562 leukemia cells carrying the SF3B1 K700E mutation. For cryptic 3' ss activated by K700E, we identify their associated BSs and show that they are indeed shifted from the WT sites. Unexpectedly, we also identify thousands of additional changes in BS binding in the mutant cells that do not alter 3' ss choice. These new BS are usually very close to the natural sites, occur upstream or downstream, and either exhibit stronger base-pairing potential with U2 snRNA or are adjacent to stronger polypyrimidine tracts than the WT sites. The widespread imprecision in BS recognition induced by K700E with limited changes in 3' ss selection supports a positive role for SUGP1 in early BS choice and expands the physiological consequences of this oncogenic mutation.
Collapse
Affiliation(s)
- Andrey Damianov
- Department of Microbiology, Immunology, and Molecular Genetics, Molecular Biology Institute, David Geffen School of Medicine, UCLA, Los Angeles, CA
| | - Chia-Ho Lin
- Department of Microbiology, Immunology, and Molecular Genetics, Molecular Biology Institute, David Geffen School of Medicine, UCLA, Los Angeles, CA
| | - Jian Zhang
- Department of Biological Sciences, Columbia University, New York, NY
| | - James L Manley
- Department of Biological Sciences, Columbia University, New York, NY
| | - Douglas L Black
- Department of Microbiology, Immunology, and Molecular Genetics, Molecular Biology Institute, David Geffen School of Medicine, UCLA, Los Angeles, CA
| |
Collapse
|
49
|
Biswas J, Boussi L, Stein E, Abdel-Wahab O. Aberrant pre-mRNA processing in cancer. J Exp Med 2024; 221:e20230891. [PMID: 39316554 PMCID: PMC11448470 DOI: 10.1084/jem.20230891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/29/2024] [Accepted: 08/26/2024] [Indexed: 09/26/2024] Open
Abstract
Dysregulation of the flow of information from genomic DNA to RNA to protein occurs within all cancer types. In this review, we described the current state of understanding of how RNA processing is dysregulated in cancer with a focus on mutations in the RNA splicing factor machinery that are highly prevalent in hematologic malignancies. We discuss the downstream effects of these mutations highlighting both individual genes as well as common pathways that they perturb. We highlight examples of how alterations in RNA processing have been harnessed for therapeutic intent as well as to promote the selective toxicity of cancer cells.
Collapse
Affiliation(s)
- Jeetayu Biswas
- Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Medicine, Leukemia Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Leora Boussi
- Department of Medicine, Leukemia Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Eytan Stein
- Department of Medicine, Leukemia Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Omar Abdel-Wahab
- Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Medicine, Leukemia Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
50
|
Bidikian A, Bewersdorf JP, Shallis RM, Getz TM, Stempel JM, Kewan T, Stahl M, Zeidan AM. Targeted therapies for myelodysplastic syndromes/neoplasms (MDS): current landscape and future directions. Expert Rev Anticancer Ther 2024; 24:1131-1146. [PMID: 39367718 DOI: 10.1080/14737140.2024.2414071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/01/2024] [Accepted: 10/04/2024] [Indexed: 10/06/2024]
Abstract
INTRODUCTION Myelodysplastic syndromes/neoplasms (MDS) are a heterogeneous group of hematologic malignancies that are stratified into high-risk (HR-MDS) and low-risk (LR-MDS) categories. Until recently, LR-MDS has been typically managed by supportive measures and erythropoiesis-stimulating agents (ESAs); whereas management of HR-MDS typically included hypomethylating agents and allogeneic hematopoietic stem cell transplant. However, the limited rates and durations of response observed with these interventions prompted the search for targeted therapies to improve the outcomes among patients with MDS. AREAS COVERED Here, we review the current landscape of targeted therapies in MDS. These include pyruvate kinase and hypoxia-inducible factor (HIF) activators; TGF-beta, telomerase, BCL2 and isocitrate dehydrogenase (IDH) inhibitors; as well as novel approaches targeting inflammation, pyroptosis, immune evasion, and RNA splicing machinery. EXPERT OPINION This review highlights the progress and challenges in MDS treatment. Despite some promising results, many therapies remain in early development or have faced setbacks, emphasizing the need for a more comprehensive understanding of the disease's pathobiology. Continued research into targeted therapies, homogenous clinical trial designs, as well as increased incorporation of molecular prognostic tools and artificial intelligence into trial design are essential for developing effective treatments for MDS and improving patient outcomes.
Collapse
Affiliation(s)
- Aram Bidikian
- Department of Internal Medicine, Section of Hematology, Yale School of Medicine and Yale New Haven Hospital, New Haven, CT, USA
| | - Jan P Bewersdorf
- Department of Internal Medicine, Section of Hematology, Yale School of Medicine and Yale New Haven Hospital, New Haven, CT, USA
| | - Rory M Shallis
- Department of Internal Medicine, Section of Hematology, Yale School of Medicine and Yale New Haven Hospital, New Haven, CT, USA
| | - Ted M Getz
- Department of Internal Medicine, Section of Hematology, Yale School of Medicine and Yale New Haven Hospital, New Haven, CT, USA
| | - Jessica M Stempel
- Department of Internal Medicine, Section of Hematology, Yale School of Medicine and Yale New Haven Hospital, New Haven, CT, USA
| | - Tariq Kewan
- Department of Internal Medicine, Section of Hematology, Yale School of Medicine and Yale New Haven Hospital, New Haven, CT, USA
| | - Maximilian Stahl
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Amer M Zeidan
- Department of Internal Medicine, Section of Hematology, Yale School of Medicine and Yale New Haven Hospital, New Haven, CT, USA
| |
Collapse
|