1
|
Zheng M, Yang Z, Shi L, Zhao L, Liu K, Tang N. The role of lncRNAs in AKI and CKD: Molecular mechanisms, biomarkers, and potential therapeutic targets. Genes Dis 2025; 12:101509. [PMID: 40083322 PMCID: PMC11904545 DOI: 10.1016/j.gendis.2024.101509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 02/04/2024] [Accepted: 11/02/2024] [Indexed: 03/16/2025] Open
Abstract
Exosomes, a type of extracellular vesicle, are commonly found in different body fluids and are rich in nucleic acids (circRNA, lncRNAs, miRNAs, mRNAs, tRNAs, etc.), proteins, and lipids. They are involved in intercellular communication. lncRNAs are responsible for the modulation of gene expression, thus affecting the pathological process of kidney injury. This review summarizes the latest knowledge on the roles of exosome lncRNAs and circulating lncRNAs in the pathogenesis, biomarker discovery, and treatment of chronic kidney disease, renal fibrosis, and acute kidney injury, providing an overview of novel regulatory approaches and lncRNA delivery systems.
Collapse
Affiliation(s)
- Minhui Zheng
- Shanghai Innostar Bio-Technology Co., Ltd., China State Institute of Pharmaceutical Industry, Shanghai 201203, China
| | - Zixuan Yang
- Shanghai Innostar Bio-Technology Co., Ltd., China State Institute of Pharmaceutical Industry, Shanghai 201203, China
| | - Lei Shi
- Shanghai Innostar Bio-Technology Co., Ltd., China State Institute of Pharmaceutical Industry, Shanghai 201203, China
| | - Liyuan Zhao
- Anhui University of Traditional Chinese Medicine, Hefei, Anhui 230000, China
- Yangtze Delta Drug Advanced Research Institute, Yangtze Delta Pharmaceutical College, Nantong, Jiangsu 226133, China
| | - Kelan Liu
- Intensive Care Unit, Liyang People's Hospital, Liyang, Jiangsu 213300, China
| | - Naping Tang
- Shanghai Innostar Bio-Technology Co., Ltd., China State Institute of Pharmaceutical Industry, Shanghai 201203, China
| |
Collapse
|
2
|
Vijayaraghavan M, Gadad SS, Dhandayuthapani S. Long non-coding RNA transcripts in Mycobacterium tuberculosis-host interactions. Noncoding RNA Res 2025; 11:281-293. [PMID: 39926616 PMCID: PMC11803167 DOI: 10.1016/j.ncrna.2024.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 10/24/2024] [Accepted: 12/08/2024] [Indexed: 02/11/2025] Open
Abstract
Tuberculosis (TB) persists as a significant health threat, affecting millions of people all over the world. Despite years of control measures, the elimination of TB has become a difficult task as morbidity and mortality rates remain unaffected for several years. Developing new diagnostics and therapeutics is paramount to keeping TB under control. However, it largely depends upon understanding the pathogenic mechanisms of Mycobacterium tuberculosis (Mtb), the causative agent of TB. Mtb is an intracellular pathogen capable of subverting the defensive functions of the immune cells, and it can survive and multiply within humans' mononuclear phagocytes. Emerging evidence indicates that long non-coding RNAs (lncRNAs), a class of RNA molecules with limited coding potential, are critical players in this intricate game as they regulate gene expression at transcriptional and post-transcriptional levels and also by chromatin modification. Moreover, they have been shown to regulate cellular processes by controlling the function of other molecules, such as DNA, RNA, and protein, through binding with them. Recent studies have shown that lncRNAs are differentially regulated in the tissues of TB patients and cells infected in vitro with Mtb. Some dysregulated lncRNAs are associated with essential roles in modulating immune response, apoptosis, and autophagy in the host cells, adding a new dimension to TB pathogenesis. In this article, we provide a comprehensive review of the recent literature in this field and the impact of lncRNAs in unraveling pathogenic mechanisms in TB. We also discuss how the studies involving lncRNAs provide insight into TB pathogenesis, especially Mtb-host interactions.
Collapse
Affiliation(s)
- Mahalakshmi Vijayaraghavan
- Center of Emphasis in Cancer, Department of Molecular and Translational Medicine, Texas Tech University Health Sciences Center El Paso, Texas-79905, USA
| | - Shrikanth S. Gadad
- Center of Emphasis in Cancer, Department of Molecular and Translational Medicine, Texas Tech University Health Sciences Center El Paso, Texas-79905, USA
- Frederick L. Francis Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center El Paso, Texas-79905, USA
- Mays Cancer Center, UT Health San Antonio MD Anderson Cancer Center, San Antonio, TX 78229, USA
| | - Subramanian Dhandayuthapani
- Center of Emphasis in Infectious Diseases, Department of Molecular and Translational Medicine, Texas Tech University Health Sciences Center El Paso, Texas-79905, USA
- Frederick L. Francis Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center El Paso, Texas-79905, USA
| |
Collapse
|
3
|
Yu X, Su N, Luo J, Zhang D, Zhang H, Duan M, Shi N. Long noncoding RNA USP30-AS1 promotes influenza A virus replication by enhancing PHB1 function. Vet Microbiol 2025; 303:110444. [PMID: 40020267 DOI: 10.1016/j.vetmic.2025.110444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 02/25/2025] [Accepted: 02/25/2025] [Indexed: 03/16/2025]
Abstract
Long noncoding RNAs (lncRNAs) are important regulators of gene expression. Although evidence accumulated over the past decade shows that lncRNAs have key roles in the interaction between viruses and hosts, the functions of the majority of differentially expressed lncRNAs in response to viral infections remain uncharacterized so far. In this study, we have identified that USP30 antisense RNA 1 (USP30-AS1), a host antisense lncRNA, is hijacked by influenza A virus (IAV) to assist its replication. We show that USP30-AS1 is IAV-induced via the Janus protein tyrosine kinase-signal transducer and the activator of transcription (JAK-STAT) signaling pathway. Functionally, ectopic expression of USP30-AS1 significantly promotes IAV replication. Conversely, silencing USP30-AS1 suppresses IAV replication. Mechanistically, USP30-AS1 directly binds prohibitin 1 (PHB1) and modulates its protein stability and function. On the one hand, the binding of USP30-AS1 sequesters PHB1 away from the E3 ubiquitin ligase, tripartite motif containing 21 (TRIM21), thereby protecting the protein stability of PHB1. On the other hand, USP30-AS1 serves as a molecular scaffold for enhancing the interaction between PHB1 and interferon regulatory factor 3 (IRF3), which in turn impedes the nuclear import of IRF3. Therefore, our data unveil an important role of USP30-AS1 in promoting viral replication by modulating PHB1 stability and functions, providing a new insight into the role of lncRNAs in the interplay between IAV and host.
Collapse
Affiliation(s)
- Xiuhua Yu
- Department of Pediatric Respiration, Children's Medical Center, The First Hospital of Jilin University, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, Jilin Province, China
| | - Ning Su
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, Jilin Province, China
| | - Jinna Luo
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, Jilin Province, China
| | - Daining Zhang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, Jilin Province, China
| | - Hansi Zhang
- College of Basic Medical Sciences, Jilin University, Changchun, Jilin Province, China
| | - Ming Duan
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, Jilin Province, China.
| | - Ning Shi
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, Jilin Province, China.
| |
Collapse
|
4
|
Tani H. Metabolic labeling of RNA using ribonucleoside analogs enables the evaluation of RNA synthesis and degradation rates. ANAL SCI 2025; 41:345-351. [PMID: 39699752 DOI: 10.1007/s44211-024-00704-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 12/09/2024] [Indexed: 12/20/2024]
Abstract
Long noncoding RNAs (lncRNAs) are transcripts exceeding 200 nucleotides that do not encode proteins. Despite lacking protein-coding capabilities, lncRNAs play crucial roles in cellular processes, including gene-expression modulation and structural maintenance. The study of lncRNAs has evolved significantly since 2009, with advancements in analytical methodologies providing new insights into their functions and dynamics. Key developments include BRIC-Seq, SLAM-Seq, TUC-Seq, TimeLapse-seq, and Dyrec-Seq. These methodologies have enabled researchers to investigate lncRNA behavior under various conditions, including cellular stress responses and complex biologic systems. Future challenges include developing comprehensive techniques for identifying lncRNA-interacting proteins and advancing in vivo methodologies using model organisms. As the field progresses, integrating these technologies will enhance our understanding of lncRNA biology, potentially leading to novel therapeutic strategies and deeper insights into gene-regulation mechanisms.
Collapse
Affiliation(s)
- Hidenori Tani
- Department of Health Pharmacy, Yokohama University of Pharmacy, 601 Matano, Totsuka, Yokohama, 245-0066, Japan.
| |
Collapse
|
5
|
Dai C, Qianjiang H, Fu R, Yang H, Shi A, Luo H. Epigenetic and epitranscriptomic role of lncRNA in carcinogenesis (Review). Int J Oncol 2025; 66:29. [PMID: 40017127 PMCID: PMC11900940 DOI: 10.3892/ijo.2025.5735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Accepted: 02/13/2025] [Indexed: 03/01/2025] Open
Abstract
Long non‑coding RNAs (lncRNAs) are key players in the regulation of gene expression by mediating epigenetic and epitranscriptomic modification. Dysregulation of lncRNAs is implicated in tumor initiation, progression and metastasis. lncRNAs modulate chromatin structure and gene transcription by recruiting epigenetic regulators, including DNA‑ or histone‑modifying enzymes. Additionally, lncRNAs mediate chromatin remodeling and enhancer‑promoter long‑range chromatin interactions to control oncogene expression by recruiting chromatin organization‑associated proteins, thereby promoting carcinogenesis. Furthermore, lncRNAs aberrantly induce oncogene expression by mediating epitranscriptomic modifications, including RNA methylation and RNA editing. The present study aimed to summarize the regulatory mechanisms of lncRNAs in cancer to unravel the complex interplay between lncRNAs and epigenetic/epitranscriptomic regulators in carcinogenesis. The present review aimed to provide a novel perspective on the epigenetic and epitranscriptomic roles of lncRNAs in carcinogenesis to facilitate identification of potential biomarkers and therapeutic targets for cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Chunfei Dai
- Zhejiang Cancer Hospital, The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Hangzhou Institute of Medicine, The Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, P.R. China
- College of Pharmacy, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P.R. China
| | - Haoyue Qianjiang
- Zhejiang Cancer Hospital, The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Hangzhou Institute of Medicine, The Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, P.R. China
- College of Pharmacy, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P.R. China
| | - Ruishuang Fu
- Zhejiang Cancer Hospital, The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Hangzhou Institute of Medicine, The Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, P.R. China
| | - Huimin Yang
- Zhejiang Cancer Hospital, The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Hangzhou Institute of Medicine, The Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, P.R. China
| | - Aiqin Shi
- Xianghu Laboratory, Hangzhou, Zhejiang 311231, P.R. China
| | - Huacheng Luo
- Zhejiang Cancer Hospital, The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Hangzhou Institute of Medicine, The Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, P.R. China
| |
Collapse
|
6
|
Lai X, Zhang Y, Li M, Yu S, Wang S, Zhang S, Niu H, Chen L, Lan X, Zhang J, Chen S. HGF/c-Met Promotes Breast Cancer Tamoxifen Resistance Through the EZH2/HOTAIR-miR-141/200a Feedback Signaling Pathway. Mol Carcinog 2025; 64:769-783. [PMID: 39853766 DOI: 10.1002/mc.23878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 12/05/2024] [Accepted: 12/20/2024] [Indexed: 01/26/2025]
Abstract
Tamoxifen is one of the most frequently used endocrine medications for the treatment of estrogen receptor-positive (ER + ) breast cancer (BC). Unfortunately, tamoxifen resistance (TR) brings more challenges to the clinical treatment, and the mechanisms of TR have not yet been fully clarified. HGF/c-Met is closely associated with cancer metastasis, but whether it is involved in TR remains unclear. In our study, we found that the activation of HGF/c-Met was crucial for TR maintenance. Synergistic interaction with HOTAIR and EZH2 accelerated HGF expression by repressing miR-141/200a. Additionally, HGF/c-Met activated NF-κB, forming a positive feedback loop of EZH2/HOTAIR-miR-141/200a-HGF/c-Met-NF-κB. Our findings indicated that HGF/c-Met functioned as an important biomarker for TR, and HGF/c-Met inhibition provided a novel approach to TR treatment.
Collapse
Affiliation(s)
- Xiaofeng Lai
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, China
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Department of Biochemistry and Molecular Biology, The Fourth Military Medical University, Xi'an, China
- Department of Clinical Laboratory Medicine, Fuzhou General Clinical Medical School (The 900TH Hospital), Fujian Medical University, Fuzhou, China
- Fujian Key Laboratory of Aptamers Technology, Affiliated Dongfang Hospital of School of Medicine, Xiamen University, Fuzhou, China
| | - Yuan Zhang
- Department of Oncology, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Mengyang Li
- The Faculty of Hepatopancreatobiliary Surgery, The First Medical Center, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Shentong Yu
- Department of Pathology, 900TH Hospital of Joint Logistics Support Force, Fuzhou, China
| | - Shuiliang Wang
- Department of Clinical Laboratory Medicine, Fuzhou General Clinical Medical School (The 900TH Hospital), Fujian Medical University, Fuzhou, China
- Fujian Key Laboratory of Aptamers Technology, Affiliated Dongfang Hospital of School of Medicine, Xiamen University, Fuzhou, China
| | - Shenghang Zhang
- Department of Clinical Laboratory Medicine, Fuzhou General Clinical Medical School (The 900TH Hospital), Fujian Medical University, Fuzhou, China
- Fujian Key Laboratory of Aptamers Technology, Affiliated Dongfang Hospital of School of Medicine, Xiamen University, Fuzhou, China
| | - Huimin Niu
- Department of Clinical Laboratory Medicine, Fuzhou General Clinical Medical School (The 900TH Hospital), Fujian Medical University, Fuzhou, China
- Fujian Key Laboratory of Aptamers Technology, Affiliated Dongfang Hospital of School of Medicine, Xiamen University, Fuzhou, China
| | - Li Chen
- Department of Clinical Laboratory Medicine, Fuzhou General Clinical Medical School (The 900TH Hospital), Fujian Medical University, Fuzhou, China
- Fujian Key Laboratory of Aptamers Technology, Affiliated Dongfang Hospital of School of Medicine, Xiamen University, Fuzhou, China
| | - Xiaopeng Lan
- Department of Clinical Laboratory Medicine, Fuzhou General Clinical Medical School (The 900TH Hospital), Fujian Medical University, Fuzhou, China
- Fujian Key Laboratory of Aptamers Technology, Affiliated Dongfang Hospital of School of Medicine, Xiamen University, Fuzhou, China
| | - Jian Zhang
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Department of Biochemistry and Molecular Biology, The Fourth Military Medical University, Xi'an, China
| | - Suning Chen
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
7
|
Saadh MJ, Hussain QM, Alazzawi TS, Fahdil AA, Athab ZH, Yarmukhamedov B, Al-Nuaimi AMA, Alsaikhan F, Farhood B. MicroRNA as Key Players in Hepatocellular Carcinoma: Insights into Their Role in Metastasis. Biochem Genet 2025; 63:1014-1062. [PMID: 39103713 DOI: 10.1007/s10528-024-10897-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 07/29/2024] [Indexed: 08/07/2024]
Abstract
Liver cancer or hepatocellular carcinoma (HCC) remains the most common cancer in global epidemiology. Both the frequency and fatality of this malignancy have shown an upward trend over recent decades. Liver cancer is a significant concern due to its propensity for both intrahepatic and extrahepatic metastasis. Liver cancer metastasis is a multifaceted process characterized by cell detachment from the bulk tumor, modulation of cellular motility and invasiveness, enhanced proliferation, avoidance of the immune system, and spread either via lymphatic or blood vessels. MicroRNAs (miRNAs) are small non-coding ribonucleic acids (RNAs) playing a crucial function in the intricate mechanisms of tumor metastasis. A number of miRNAs can either increase or reduce metastasis via several mechanisms, such as control of motility, proliferation, attack by the immune system, cancer stem cell properties, altering the microenvironment, and the epithelial-mesenchymal transition (EMT). Besides, two other types of non-coding RNAs, such as long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs) can competitively bind to endogenous miRNAs. This competition results in the impaired ability of the miRNAs to inhibit the expression of the specific messenger RNAs (mRNAs) that are targeted. Increasing evidence has shown that the regulatory axis comprising circRNA/lncRNA-miRNA-mRNA is correlated with the regulation of HCC metastasis. This review seeks to present a thorough summary of recent research on miRNAs in HCC, and their roles in the cellular processes of EMT, invasion and migration, as well as the metastasis of malignant cells. Finally, we discuss the function of the lncRNA/circRNA-miRNA-mRNA network as a crucial modulator of carcinogenesis and the regulation of signaling pathways or genes that are relevant to the metastasis of HCC. These findings have the potential to offer valuable insight into the discovery of novel therapeutic approaches for management of liver cancer metastasis.
Collapse
Affiliation(s)
- Mohamed J Saadh
- Faculty of Pharmacy, Middle East University, Amman, 11831, Jordan
| | | | - Tuqa S Alazzawi
- College of Dentist, National University of Science and Technology, Nasiriyah, Dhi Qar, Iraq
| | - Ali A Fahdil
- Medical Technical College, Al-Farahidi University, Baghdad, Iraq
| | - Zainab H Athab
- Department of Pharmacy, Al-Zahrawi University College, Karbala, Iraq
| | - Bekhzod Yarmukhamedov
- Department of Public Health and Healthcare management, Samarkand State Medical University, 18 Amir Temur Street, Samarkand, Uzbekistan
| | | | - Fahad Alsaikhan
- College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj, Saudi Arabia.
- School of Pharmacy, Ibn Sina National College for Medical Studies, Jeddah, Saudi Arabia.
| | - Bagher Farhood
- Department of Medical Physics and Radiology, Faculty of Paramedical Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
8
|
Chen S, Zhou Z, Mo J, Yang X, Pan Y, Liu R, Jallow MB, Zhang F, Wu Y. Identification of lncRNA expression profiles associated with ovarian development and ageing process in mice. J Appl Genet 2025:10.1007/s13353-025-00960-w. [PMID: 40133750 DOI: 10.1007/s13353-025-00960-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 02/27/2025] [Accepted: 03/11/2025] [Indexed: 03/27/2025]
Abstract
Long non-coding RNA (lncRNA) participates in various biological processes, however, neither the expression profile nor the biological role of lncRNAs in mammalian ovaries has been fully studied. In this work, the lncRNA transcriptomic analysis of postnatal mice ovaries was performed by using bulk RNA sequencing in C57BL/6 mice. A total of 5302 lncRNAs were found in mouse ovaries, and 1836 lncRNAs were differentially expressed during the development and ageing process, of which targets were enriched in the developmental process, reproduction, etc. Developmental stage specific lncRNAs showed functions in system development, inflammatory response, myeloid leukocyte activation, etc. Moreover, a co-expression network analysis based on reproduction-related genes reveals lncRNAs that may regulate multiple mRNA targets in ovaries, including Neat1, Gm11613 and Gm43915. Two cis-acting lncRNAs, Ptgs2os and Gm14705, showed correlated expression pattern with their potential targets Ptgs2 and Aff2 respectively, and these lncRNA-mRNA pairs were conserved in mice and humans. WGCNA further identified 10 co-expressed modules with distinct expression patterns associated with ovarian development and ageing. Taken together, our results reveal a transcriptomic profile of mouse ovaries over the reproductive lifespan, providing insights into the molecular mechanisms of ovarian development and ageing.
Collapse
Affiliation(s)
- Siyuan Chen
- School of Life Sciences, Fudan University, Shanghai, 200433, China
| | - Zixue Zhou
- School of Life Sciences, Fudan University, Shanghai, 200433, China
- Zhangjiang Fudan International Innovation Center, Human Phenome Institute, Fudan University, Shanghai, 201203, China
| | - Jitong Mo
- School of Life Sciences, Fudan University, Shanghai, 200433, China
| | - Xi Yang
- School of Life Sciences, Fudan University, Shanghai, 200433, China
| | - Yuncheng Pan
- School of Life Sciences, Fudan University, Shanghai, 200433, China
| | - Renbin Liu
- School of Life Sciences, Fudan University, Shanghai, 200433, China
| | | | - Feng Zhang
- School of Life Sciences, Fudan University, Shanghai, 200433, China.
- Zhangjiang Fudan International Innovation Center, Human Phenome Institute, Fudan University, Shanghai, 201203, China.
| | - Yanhua Wu
- School of Life Sciences, Fudan University, Shanghai, 200433, China.
- National Demonstration Center for Experimental Biology Education, School of Life Sciences, Fudan University, Shanghai, 200433, China.
| |
Collapse
|
9
|
Mondal S, Liu PY, Seneviratne J, De Weck A, Venkat P, Mayoh C, Wu J, Maag J, Chen J, Wong M, Bartonicek N, Khoo P, Jin L, Ludlow LE, Ziegler DS, Trahair T, Mestdagh P, Cheung BB, Li J, Dinger ME, Street I, Zhang XD, Marshall GM, Liu T. The Super Enhancer-Driven Long Noncoding RNA PRKCQ-AS1 Promotes Neuroblastoma Tumorigenesis by Interacting With MSI2 Protein and Is Targetable by Small Molecule Compounds. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2412520. [PMID: 40103284 DOI: 10.1002/advs.202412520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 01/24/2025] [Indexed: 03/20/2025]
Abstract
Tumorigenic drivers of MYCN gene nonamplified neuroblastoma remain largely uncharacterized. Long noncoding RNAs (lncRNAs) regulate tumorigenesis, however, there is little literature on therapeutic targeting of lncRNAs with small molecule compounds. Here PRKCQ-AS1 is identified as the lncRNA most overexpressed in MYCN nonamplified, compared with MYCN-amplified, neuroblastoma cell lines. PRKCQ-AS1 expression is controlled by super-enhancers, and PRKCQ-AS1 RNA bound to MSI2 protein. RNA immunoprecipitation and sequencing identified BMX mRNA as the transcript most significantly disrupted from binding to MSI2 protein, after PRKCQ-AS1 knockdown. PRKCQ-AS1 or MSI2 knockdown reduces, while its overexpression enhances, BMX mRNA stability and expression, ERK protein phosphorylation and MYCN nonamplified neuroblastoma cell proliferation. PRKCQ-AS1 knockdown significantly suppresses neuroblastoma progression in mice. In human neuroblastoma tissues, high levels of PRKCQ-AS1 and MSI2 expression correlate with poor patient outcomes, independent of current prognostic markers. AlphaScreen of a compound library identifies NSC617570 as an efficient inhibitor of PRKCQ-AS1 RNA and MSI2 protein interaction, and NSC617570 reduces BMX expression, ERK protein phosphorylation, neuroblastoma cell proliferation in vitro and tumor progression in mice. The study demonstrates that PRKCQ-AS1 RNA interacts with MSI2 protein to induce neuroblastoma tumorigenesis, and that targeting PRKCQ-AS1 and MSI2 interaction with small molecule compounds is an effective anticancer strategy.
Collapse
Affiliation(s)
- Sujanna Mondal
- Children's Cancer Institute Australia and UNSW Centre for Childhood Cancer Research, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Pei Y Liu
- Children's Cancer Institute Australia and UNSW Centre for Childhood Cancer Research, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Janith Seneviratne
- Children's Cancer Institute Australia and UNSW Centre for Childhood Cancer Research, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Antoine De Weck
- Children's Cancer Institute Australia and UNSW Centre for Childhood Cancer Research, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Pooja Venkat
- Children's Cancer Institute Australia and UNSW Centre for Childhood Cancer Research, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Chelsea Mayoh
- Children's Cancer Institute Australia and UNSW Centre for Childhood Cancer Research, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Jing Wu
- Children's Cancer Institute Australia and UNSW Centre for Childhood Cancer Research, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Jesper Maag
- Garvan Institute of Medical Research, Genome Informatics, Genomics & Epigenetics Division, 384 Victoria St., Darlinghurst, NSW, 2010, Australia
| | - Jingwei Chen
- Children's Cancer Institute Australia and UNSW Centre for Childhood Cancer Research, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Matthew Wong
- Children's Cancer Institute Australia and UNSW Centre for Childhood Cancer Research, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Nenad Bartonicek
- Garvan Institute of Medical Research, Genome Informatics, Genomics & Epigenetics Division, 384 Victoria St., Darlinghurst, NSW, 2010, Australia
| | - Poh Khoo
- Children's Cancer Institute Australia and UNSW Centre for Childhood Cancer Research, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Lei Jin
- School of Medicine and Public Health, University of Newcastle, Callaghan, NSW, 2308, Australia
- Translational Research Institute, Henan Provincial People's Hospital, Tianjian Laboratory of Advanced Biomedical Science, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Louise E Ludlow
- Murdoch Children's Research Institute, The Royal Children's Hospital & Department of Paediatrics, University of Melbourne, Melbourne, Australia
| | - David S Ziegler
- Children's Cancer Institute Australia and UNSW Centre for Childhood Cancer Research, University of New South Wales, Sydney, NSW, 2052, Australia
- Kids Cancer Centre, Sydney Children's Hospital, High Street, Randwick, NSW, 2031, Australia
| | - Toby Trahair
- Children's Cancer Institute Australia and UNSW Centre for Childhood Cancer Research, University of New South Wales, Sydney, NSW, 2052, Australia
- Kids Cancer Centre, Sydney Children's Hospital, High Street, Randwick, NSW, 2031, Australia
| | - Pieter Mestdagh
- Center for Medical Genetics Ghent, Ghent University, Ghent, Belgium
| | - Belamy B Cheung
- Children's Cancer Institute Australia and UNSW Centre for Childhood Cancer Research, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Jinyan Li
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Marcel E Dinger
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Sydney, NSW, Australia
| | - Ian Street
- Children's Cancer Institute Australia and UNSW Centre for Childhood Cancer Research, University of New South Wales, Sydney, NSW, 2052, Australia
- School of Clinical Medicine, UNSW Medicine & Health, UNSW Sydney, Kensington, NSW, Australia
| | - Xu D Zhang
- Translational Research Institute, Henan Provincial People's Hospital, Tianjian Laboratory of Advanced Biomedical Science, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
- School of Medicine and Public Health, Priority Research Centre for Cancer Research, University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Glenn M Marshall
- Children's Cancer Institute Australia and UNSW Centre for Childhood Cancer Research, University of New South Wales, Sydney, NSW, 2052, Australia
- Kids Cancer Centre, Sydney Children's Hospital, High Street, Randwick, NSW, 2031, Australia
| | - Tao Liu
- Children's Cancer Institute Australia and UNSW Centre for Childhood Cancer Research, University of New South Wales, Sydney, NSW, 2052, Australia
| |
Collapse
|
10
|
Wasson CW, Perez Barreiro E, Del Galdo F, Riobo-Del Galdo NA. Lysine Demethylase 1 Has Demethylase-Dependent and Non-Canonical Functions in Myofibroblast Activation in Systemic Sclerosis. Cells 2025; 14:433. [PMID: 40136682 PMCID: PMC11941053 DOI: 10.3390/cells14060433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 02/28/2025] [Accepted: 03/11/2025] [Indexed: 03/27/2025] Open
Abstract
Systemic sclerosis (SSc) is an autoimmune disease of unknown aetiology characterised by vasculopathy with progressive fibrosis of the skin and internal organs. Tissue fibrosis is driven by activated fibroblasts (myofibroblasts) with exacerbated contractile and secretory properties. We previously reported that the long non-coding RNA HOTAIR is a key driver of SSc fibroblast activation. HOTAIR interacts with the chromatin modifiers, the polycomb repressor complex (PRC2) and coREST complex, promoting expression of pro-fibrotic genes. In this study, we show that acute activation of dermal fibroblasts from healthy subjects or SSc patients with transforming growth factor-β and other fibrotic stimuli requires the activity of the lysine-specific demethylase 1 (LSD1) subunit of the co-REST complex. Unexpectedly, LSD1 catalytic activity plays a minor role in fibrotic gene expression in HOTAIR-overexpressing fibroblasts and in maintenance of the stable myofibroblast phenotype of SSc fibroblasts. However, silencing of LSD1 in SSc fibroblasts has a profound effect on pro-fibrotic gene expression, supporting a non-canonical scaffolding function. Our study shows for the first time an essential non-canonical role for LSD1 in pro-fibrotic gene expression in SSc; however, given that this function is insensitive to LSD1 inhibitors, the therapeutic opportunities will depend on future identification of a targetable mediator.
Collapse
Affiliation(s)
- Christopher W. Wasson
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, Faculty of Medicine and Health, University of Leeds, Leeds LS2 9JT, UK; (C.W.W.); (F.D.G.)
| | - Esther Perez Barreiro
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK;
| | - Francesco Del Galdo
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, Faculty of Medicine and Health, University of Leeds, Leeds LS2 9JT, UK; (C.W.W.); (F.D.G.)
- Scleroderma Programme, NIHR Leeds Musculoskeletal Biomedical Research Centre, Leeds LS7 4SA, UK
| | - Natalia A. Riobo-Del Galdo
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK;
- Leeds Institute of Medical Research, Faculty of Medicine and Health, University of Leeds, Leeds LS2 9JT, UK
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
| |
Collapse
|
11
|
Cortellesi E, Savini I, Veneziano M, Gambacurta A, Catani MV, Gasperi V. Decoding the Epigenome of Breast Cancer. Int J Mol Sci 2025; 26:2605. [PMID: 40141248 PMCID: PMC11942310 DOI: 10.3390/ijms26062605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 03/06/2025] [Accepted: 03/12/2025] [Indexed: 03/28/2025] Open
Abstract
Breast cancer (BC) is the most prevalent malignancy among women, characterized by extensive heterogeneity stemming from molecular and genetic alterations. This review explores the intricate epigenetic landscape of BC, highlighting the significant role of epigenetic modifications-particularly DNA methylation, histone modifications, and the influence of non-coding RNAs-in the initiation, progression, and prognosis of the disease. Epigenetic alterations drive crucial processes, including gene expression regulation, cell differentiation, and tumor microenvironment interactions, contributing to tumorigenesis and metastatic potential. Notably, aberrations in DNA methylation patterns, including global hypomethylation and hypermethylation of CpG islands, have been associated with distinct BC subtypes, with implications for early detection and risk assessment. Furthermore, histone modifications, such as acetylation and methylation, affect cancer cell plasticity and aggressiveness by profoundly influencing chromatin dynamics and gene transcription. Finally, non-coding RNAs contribute by modulating epigenetic machinery and gene expression. Despite advances in our knowledge, clinical application of epigenetic therapies in BC is still challenging, often yielding limited efficacy when used alone. However, combining epi-drugs with established treatments shows promise for enhancing therapeutic outcomes. This review underscores the importance of integrating epigenetic insights into personalized BC treatment strategies, emphasizing the potential of epigenetic biomarkers for improving diagnosis, prognosis, and therapeutic response in affected patients.
Collapse
Affiliation(s)
- Elisa Cortellesi
- Department of Experimental Medicine, Tor Vergata University of Rome, 00133 Rome, Italy; (E.C.); (I.S.); (M.V.); (A.G.); (M.V.C.)
| | - Isabella Savini
- Department of Experimental Medicine, Tor Vergata University of Rome, 00133 Rome, Italy; (E.C.); (I.S.); (M.V.); (A.G.); (M.V.C.)
| | - Matteo Veneziano
- Department of Experimental Medicine, Tor Vergata University of Rome, 00133 Rome, Italy; (E.C.); (I.S.); (M.V.); (A.G.); (M.V.C.)
| | - Alessandra Gambacurta
- Department of Experimental Medicine, Tor Vergata University of Rome, 00133 Rome, Italy; (E.C.); (I.S.); (M.V.); (A.G.); (M.V.C.)
- NAST Centre (Nanoscience & Nanotechnology & Innovative Instrumentation), Tor Vergata University of Rome, 00133 Rome, Italy
| | - Maria Valeria Catani
- Department of Experimental Medicine, Tor Vergata University of Rome, 00133 Rome, Italy; (E.C.); (I.S.); (M.V.); (A.G.); (M.V.C.)
| | - Valeria Gasperi
- Department of Experimental Medicine, Tor Vergata University of Rome, 00133 Rome, Italy; (E.C.); (I.S.); (M.V.); (A.G.); (M.V.C.)
| |
Collapse
|
12
|
Zwamel AH, Ahmad AT, Altalbawy FMA, Malathi H, Singh A, Jabir MS, Aminov Z, Lal M, Kumar A, Jawad SF. Exosomal RNAs and EZH2: unraveling the molecular dialogue driving tumor progression. Med Oncol 2025; 42:103. [PMID: 40075013 DOI: 10.1007/s12032-025-02648-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Accepted: 02/24/2025] [Indexed: 03/14/2025]
Abstract
The EZH2 gene encodes an enzyme that is part of the epigenetic factor Polycomb Repressive Complex 2 (PRC2). In order to control gene expression, PRC2 mainly modifies chromatin structure. In this complex process, EZH2 methylates histone proteins, which in turn suppresses further RNA transcriptions. As a result, EZH2 dysregulations can occasionally induce abnormal gene expression patterns, which can aid in the development and progression of cancer. Non-coding RNAs significantly impact the expression of EZH2 through epigenetic mechanisms. Meanwhile, normal and cancerous cells frequently release vesicles into the extracellular matrix, also known as exosomes, that occasionally carry RNA molecules from their origin cells, including messenger RNAs, microRNAs, and other non-coding RNAs. Thus exosomes are granted the ability to regulate numerous physiological functions and act as crucial messengers between cells by influencing gene expression in the recipient cell. We conducted this review to focus on EZH2's substantial biological role and the mechanisms that regulate it, driven by the desire to understand the possible impact of exosomal RNAs on EZH2 expression.
Collapse
Affiliation(s)
- Ahmed Hussein Zwamel
- Medical Laboratory Technique College, The Islamic University, Najaf, Iraq
- Medical Laboratory Technique College, The Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
- Medical Laboratory Technique College, The Islamic University of Babylon, Babylon, Iraq
| | | | - Farag M A Altalbawy
- Department of Chemistry, University College of Duba, University of Tabuk, Tabuk, Saudi Arabia.
| | - H Malathi
- Department of Biotechnology and Genetics, School of Sciences, JAIN (Deemed to Be University), Bengaluru, Karnataka, India
| | - Amandeep Singh
- Chandigarh Pharmacy College, Chandigarh Group of Colleges, Jhanjeri, Mohali, 140307, Punjab, India
| | - Majid S Jabir
- Department of Applied Sciences, University of Technology, Baghdad, Iraq
| | - Zafar Aminov
- Department of Public Health and Healthcare Management, Samarkand State Medical University, Samarkand, Uzbekistan
| | - Madan Lal
- Department of Medicine, National Institute of Medical Sciences, NIMS University, Rajasthan, Jaipur, India
| | - Abhinav Kumar
- Department of Nuclear and Renewable Energy, Ural Federal University Named after the First President of Russia Boris Yeltsin, Ekaterinburg 620002, Russia
- Department of Technical Sciences, Western Caspian University, Baku, Azerbaijan
- Department of Mechanical Engineering, Karpagam Academy of Higher Education, Coimbatore, 641021, India
| | - Sabrean F Jawad
- Department of Pharmacy, Al-Mustaqbal University College, Babylon, Iraq
| |
Collapse
|
13
|
Hsu CY, Jamal A, Kamal MA, Ahmad F, Bokov DO, Mustafa YF, Saud A, Kulsum SN, Jawad MA, Gabble BC. Pathological roles of lncRNA HOTAIR in liver cancer: An updated review. Gene 2025; 940:149180. [PMID: 39708931 DOI: 10.1016/j.gene.2024.149180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 12/07/2024] [Accepted: 12/16/2024] [Indexed: 12/23/2024]
Abstract
Liver cancer ranks as the sixth most prevalent form of cancer and stands as the fourth leading cause of cancer-related fatalities on a global scale. The two primary types of liver cancer are hepatocellular carcinoma (HCC) and intrahepatic cholangiocarcinoma (ICC). While ICC originates from the bile ducts, HCC develops from hepatocytes, which are the primary functional cells of the liver. In cases where liver cancer is detected in its early stages, it can be effectively treated through locoregional interventions such as surgical resection, Radiofrequency Ablation, Transarterial chemoembolization, or liver transplantation. However, HCC is typically diagnosed at advanced stages, rendering these treatment options ineffective due to the unresectable nature of the tumor. LncRNAs, a novel class of RNA molecules and epigenetic regulators, have emerged as key players in the development and advancement of different types of tumors. They exert their influence by regulating the expression of downstream genes in cancer-related signaling pathways, thereby promoting the proliferation, migration, and invasion of tumor cells. Additionally, these transcripts have the ability to modify the activity and expression of tumor suppressors and oncogenes, further contributing to tumorigenesis. Recently, growing numbers of experiments have demonstrated the elevated expression of HOX antisense intergenic RNA (HOTAIR), a spliced and poly-adenylated lncRNA, in liver cancers and its association with cancer patient's prognosis and overall survival, as well as tumor cells' growth, metastasis, and resistance to therapies. This updated review will summarize molecular pathways by which lncRNA HOTAIR promotes liver cancer development, and highlight its diagnostic and therapeutic potential, though.
Collapse
Affiliation(s)
- Chou-Yi Hsu
- Thunderbird School of Global Management, Arizona State University Tempe Campus, Phoenix, AZ 85004, USA
| | - Azfar Jamal
- Department of Biology, College of Science Al-Zulfi, Majmaah University, Al-Majmaah 11952, Saudi Arabia; Health and Basic Science Research Centre, Majmaah University, Al-Majmaah 11952, Saudi Arabia
| | - Mohammad Azhar Kamal
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj 11942, Saudi Arabia
| | - Fuzail Ahmad
- Respiratory Care Department, College of Applied Sciences, Almaarefa University, Diriya, Riyadh 13713, Saudi Arabia
| | - Dmitry Olegovich Bokov
- Institute of Pharmacy named after A.P. Nelyubin, Sechenov First Moscow State Medical University, 8 Trubetskaya St., bldg. 2, Moscow 119991, Russian Federation; Laboratory of Food Chemistry, Federal Research Center of Nutrition, Biotechnology and Food Safety, 2/14 Ustyinsky pr., Moscow 109240, Russian Federation
| | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul 41001, Iraq
| | | | - Syeda Nazia Kulsum
- Department of Basic Medical Sciences, College of Medicine, Majmaah University, Al-Majmaah 11952, Saudi Arabia.
| | | | - Baneen C Gabble
- Medical Laboratory Technique College, the Islamic University, Najaf, Iraq; Medical Laboratory Technique College, the Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq; Medical Laboratory Technique College, the Islamic University of Babylon, Babylon, Iraq
| |
Collapse
|
14
|
Liu Q. Role of exercise on the reduction of cancer development: a mechanistic review from the lncRNA point of view. Clin Exp Med 2025; 25:77. [PMID: 40063304 PMCID: PMC11893680 DOI: 10.1007/s10238-025-01618-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Accepted: 02/26/2025] [Indexed: 03/14/2025]
Abstract
More research has been done on the correlation between exercise and cancer, which has revealed several ways that physical activity decreases the risk of developing the disease. The developing function of lncRNAs as an important molecular link between exercise and cancer suppression is the main topic of this review. According to recent research, regular physical exercise also alters the expression levels of several lncRNAs, which are generally elevated in cancer. A complex network of interactions that may provide protective effects against carcinogenesis is suggested by the contribution of these lncRNAs in various cellular processes, such as epigenetic alterations, proliferation, and apoptosis regulation. We offer a comprehensive summary of the existing information regarding specific lncRNAs that are influenced by physical activity and could potentially impact cancer-related processes. We also go over the difficulties in interpreting these alterations, taking into account the fact that several lncRNAs have a dual function in promoting and preventing cancer in various physiological settings. To understand the complex impacts of exercise-induced lncRNA regulation in cancer biology, more study is required. The critique strongly highlights the possibility of lncRNAs serving as both indicators and treatment prospects for cancer-preventive strategies.
Collapse
Affiliation(s)
- Qi Liu
- Nanchang Institute of Technology, Nanchang, 330044, China.
| |
Collapse
|
15
|
Sun C, Zhou C, Daneshvar K, Ben Saad A, Kratkiewicz AJ, Toles BJ, Arghiani N, Hess A, Chen JY, Pondick JV, York SR, Li W, Moran SP, Gentile SD, Rahman RU, Li Z, Zhou P, Sparks RP, Habboub T, Kim BM, Choi MY, Affo S, Schwabe RF, Popov YV, Mullen AC. Conserved long noncoding RNA TILAM promotes liver fibrosis through interaction with PML in HSCs. Hepatology 2025; 81:853-869. [PMID: 38563629 PMCID: PMC11825499 DOI: 10.1097/hep.0000000000000822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 02/01/2024] [Indexed: 04/04/2024]
Abstract
BACKGROUND AND AIMS Fibrosis is the common end point for all forms of chronic liver injury, and the progression of fibrosis leads to the development of end-stage liver disease. Activation of HSCs and their transdifferentiation into myofibroblasts results in the accumulation of extracellular matrix proteins that form the fibrotic scar. Long noncoding RNAs regulate the activity of HSCs and provide targets for fibrotic therapies. APPROACH AND RESULTS We identified long noncoding RNA TILAM located near COL1A1 , expressed in HSCs, and induced with liver fibrosis in humans and mice. Loss-of-function studies in human HSCs and human liver organoids revealed that TILAM regulates the expression of COL1A1 and other extracellular matrix genes. To determine the role of TILAM in vivo, we annotated the mouse ortholog ( Tilam ), generated Tilam- deficient green fluorescent protein-reporter mice, and challenged these mice in 2 different models of liver fibrosis. Single-cell data and analysis of single-data and analysis of Tilam-deficient reporter mice revealed that Tilam is induced in murine HSCs with the development of fibrosis in vivo. Tilam -deficient reporter mice revealed that Tilam is induced in murine HSCs with the development of fibrosis in vivo. Furthermore, loss of Tilam expression attenuated the development of fibrosis in the setting of in vivo liver injury. Finally, we found that TILAM interacts with promyelocytic leukemia nuclear body scaffold protein to regulate a feedback loop by which TGF-β2 reinforces TILAM expression and nuclear localization of promyelocytic leukemia nuclear body scaffold protein to promote the fibrotic activity of HSCs. CONCLUSIONS TILAM is activated in HSCs with liver injury and interacts with promyelocytic leukemia nuclear body scaffold protein to drive the development of fibrosis. Depletion of TILAM may serve as a therapeutic approach to combat the development of end-stage liver disease.
Collapse
Affiliation(s)
- Cheng Sun
- Department of Medicine, Division of Gastroenterology, Chan Medical School, University of Massachusetts, Worcester, Massachusetts, USA
| | - Chan Zhou
- Department of Population and Quantitative Health Sciences, Chan Medical School, University of Massachusetts, Worcester, Massachusetts USA
| | - Kaveh Daneshvar
- Department of Medicine, Division of Gastroenterology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Amel Ben Saad
- Department of Medicine, Division of Gastroenterology, Chan Medical School, University of Massachusetts, Worcester, Massachusetts, USA
| | - Arcadia J. Kratkiewicz
- Department of Medicine, Division of Gastroenterology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Benjamin J. Toles
- Department of Medicine, Division of Gastroenterology, Chan Medical School, University of Massachusetts, Worcester, Massachusetts, USA
| | - Nahid Arghiani
- Department of Medicine, Division of Gastroenterology, Chan Medical School, University of Massachusetts, Worcester, Massachusetts, USA
| | - Anja Hess
- Department of Medicine, Division of Gastroenterology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Jennifer Y. Chen
- Department of Medicine, Liver Center, University of California, San Francisco, California, USA
| | - Joshua V. Pondick
- Department of Medicine, Division of Gastroenterology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Samuel R. York
- Department of Medicine, Division of Gastroenterology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Wenyang Li
- Department of Medicine, Division of Gastroenterology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Sean P. Moran
- Department of Medicine, Division of Gastroenterology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Stefan D. Gentile
- Department of Medicine, Division of Gastroenterology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Broad Institute, Cambridge, Massachusetts, USA
| | - Raza Ur Rahman
- Department of Medicine, Division of Gastroenterology, Chan Medical School, University of Massachusetts, Worcester, Massachusetts, USA
- Broad Institute, Cambridge, Massachusetts, USA
| | - Zixiu Li
- Department of Population and Quantitative Health Sciences, Chan Medical School, University of Massachusetts, Worcester, Massachusetts USA
| | - Peng Zhou
- Department of Population and Quantitative Health Sciences, Chan Medical School, University of Massachusetts, Worcester, Massachusetts USA
| | - Robert P. Sparks
- Department of Medicine, Division of Gastroenterology, Chan Medical School, University of Massachusetts, Worcester, Massachusetts, USA
| | - Tim Habboub
- Department of Medicine, Division of Gastroenterology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Byeong-Moo Kim
- Department of Medicine, Division of Gastroenterology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Michael Y. Choi
- Department of Medicine, Division of Gastroenterology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Silvia Affo
- Department of Liver, Digestive System, and Metabolism, Institut d’Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | - Robert F. Schwabe
- Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, New York, USA
| | - Yury V. Popov
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Alan C. Mullen
- Department of Medicine, Division of Gastroenterology, Chan Medical School, University of Massachusetts, Worcester, Massachusetts, USA
- Broad Institute, Cambridge, Massachusetts, USA
| |
Collapse
|
16
|
Toms L, FitzPatrick L, Auckland P. Super-resolution microscopy as a drug discovery tool. SLAS DISCOVERY : ADVANCING LIFE SCIENCES R & D 2025; 31:100209. [PMID: 39824440 DOI: 10.1016/j.slasd.2025.100209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 01/02/2025] [Indexed: 01/20/2025]
Abstract
At the turn of the century a fundamental resolution barrier in fluorescence microscopy known as the diffraction limit was broken, giving rise to the field of super-resolution microscopy. Subsequent nanoscopic investigation with visible light revolutionised our understanding of how previously unknown molecular features give rise to the emergent behaviour of cells. It transpires that the devil is in these fine molecular details, and essential nanoscale processes were found everywhere researchers chose to look. Now, after nearly two decades, super-resolution microscopy has begun to address previously unmet challenges in the study of human disease and is poised to become a pivotal tool in drug discovery.
Collapse
Affiliation(s)
- Lauren Toms
- Medicines Discovery Catapult, Block 35, Mereside, Alderley Park, Macclesfield, Cheshire SK10 4ZF, United Kingdom.
| | - Lorna FitzPatrick
- Medicines Discovery Catapult, Block 35, Mereside, Alderley Park, Macclesfield, Cheshire SK10 4ZF, United Kingdom
| | - Philip Auckland
- Medicines Discovery Catapult, Block 35, Mereside, Alderley Park, Macclesfield, Cheshire SK10 4ZF, United Kingdom.
| |
Collapse
|
17
|
Kwon JY, Vera RE, Fernandez-Zapico ME. The multi-faceted roles of cancer-associated fibroblasts in pancreatic cancer. Cell Signal 2025; 127:111584. [PMID: 39756502 PMCID: PMC11807759 DOI: 10.1016/j.cellsig.2024.111584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 12/13/2024] [Accepted: 12/28/2024] [Indexed: 01/07/2025]
Abstract
The tumor microenvironment (TME) has been linked with the pathogenesis of pancreatic ductal adenocarcinoma (PDAC), the most common histological subtype of pancreatic cancer. A central component of the TME are cancer-associated fibroblasts (CAFs), which can either suppress or promote tumor growth in a context-dependent manner. In this review, we will discuss the multi-faceted roles of CAFs in tumor-stroma interactions influencing cancer initiation, progression and therapeutic response.
Collapse
Affiliation(s)
- John Y Kwon
- Schulze Center for Novel Therapeutics, Division of Oncology Research, Rochester, MN 55901, USA.
| | - Renzo E Vera
- Schulze Center for Novel Therapeutics, Division of Oncology Research, Rochester, MN 55901, USA.
| | | |
Collapse
|
18
|
Pan Y, Liu Q, Li Q, Ren Z. Mechanistic insights into Uc001kfo-induced hepatocellular carcinoma metastasis. Discov Oncol 2025; 16:260. [PMID: 40025303 PMCID: PMC11872824 DOI: 10.1007/s12672-025-02000-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 02/19/2025] [Indexed: 03/04/2025] Open
Abstract
BACKGROUND Previous studies have identified the long non-coding RNA (lncRNA) Uc001kfo as significantly upregulated in hepatocellular carcinoma (HCC) tissues, particularly in advanced stages, compared to adjacent non-cancerous tissues. This study aims to further explore the molecular mechanisms by which Uc001kfo promotes HCC metastasis, focusing on its regulation of α-SMA expression. METHODS The study investigate the effects of Uc001kfo on proliferation, migration, and invasion in HCC cells using in vitro assays. Additionally, we also explored the molecular mechanism by which Uc001kfo indirectly regulates α-SMA gene transcription through its targeting of Sp1. Finally, we conducted preliminary validation in mice model to assess the potential for Uc001kfo-targeted silencing to inhibit HCC cell invasion and metastasis. RESULTS The results of the study demonstrate that the Uc001kfo/Sp1/α-SMA pathway plays a role in regulating HCC metastasis. Uc001kfo inhibits the degradation of Sp1 protein, thereby promoting Sp1 binding to the α-SMA promoter and enhancing its transcription. Consequently, silencing Uc001kfo can indirectly suppress α-SMA expression, effectively inhibiting HCC cell proliferation, invasion, and migration in vitro, as well as liver metastasis in mice through the spleen. CONCLUSION Uc001kfo plays a critical role in promoting HCC metastasis, making it a potential a promising therapeutic target for inhibiting tumor progression and metastasis in HCC.
Collapse
Affiliation(s)
- Yanfeng Pan
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshe East Road, Wulibao Street, Zhengzhou, Henan, China.
| | - Qin Liu
- Department of Laboratory Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Qingqing Li
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshe East Road, Wulibao Street, Zhengzhou, Henan, China
| | - Zhenjun Ren
- Department of Emergency, The Shanghai Deji Hospital, 378# Gulang Road, Shanghai, China.
| |
Collapse
|
19
|
Hu W, Yue Y, Yan R, Guan L, Li M. An ensemble deep learning framework for multi-class LncRNA subcellular localization with innovative encoding strategy. BMC Biol 2025; 23:47. [PMID: 39984880 PMCID: PMC11846348 DOI: 10.1186/s12915-025-02148-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 02/03/2025] [Indexed: 02/23/2025] Open
Abstract
BACKGROUND Long non-coding RNA (LncRNA) play pivotal roles in various cellular processes, and elucidating their subcellular localization can offer crucial insights into their functional significance. Accurate prediction of lncRNA subcellular localization is of paramount importance. Despite numerous computational methods developed for this purpose, existing approaches still encounter challenges stemming from the complexity of data representation and the difficulty in capturing nucleotide distribution information within sequences. RESULTS In this study, we propose a novel deep learning-based model, termed MGBLncLoc, which incorporates a unique multi-class encoding technique known as generalized encoding based on the Distribution Density of Multi-Class Nucleotide Groups (MCD-ND). This encoding approach enables more precise reflection of nucleotide distributions, distinguishing between constant and discriminative regions within sequences, thereby enhancing prediction performance. Additionally, our deep learning model integrates advanced neural network modules, including Multi-Dconv Head Transposed Attention, Gated-Dconv Feed-forward Network, Convolutional Neural Network, and Bidirectional Gated Recurrent Unit, to comprehensively exploit sequence features of lncRNA. CONCLUSIONS Comparative analysis against commonly used sequence feature encoding methods and existing prediction models validates the effectiveness of MGBLncLoc, demonstrating superior performance. This research offers novel insights and effective solutions for predicting lncRNA subcellular localization, thereby providing valuable support for related biological investigations.
Collapse
Affiliation(s)
- Wenxing Hu
- College of Physics and Electronic Information, Gannan Normal University, Ganzhou, Jiangxi, 341000, China
| | - Yan Yue
- College of Physics and Electronic Information, Gannan Normal University, Ganzhou, Jiangxi, 341000, China
| | - Ruomei Yan
- College of Physics and Electronic Information, Gannan Normal University, Ganzhou, Jiangxi, 341000, China
| | - Lixin Guan
- College of Physics and Electronic Information, Gannan Normal University, Ganzhou, Jiangxi, 341000, China
| | - Mengshan Li
- College of Physics and Electronic Information, Gannan Normal University, Ganzhou, Jiangxi, 341000, China.
| |
Collapse
|
20
|
Jiang W, Yin F, Bian X, Wang Z, Zhang C. The mechanism study of LncRNA AC012181.2 targeting HERPUD1 protein in regulating stromal stem cells participating in metabolic reprogramming for gastric cancer metastasis. Int Immunopharmacol 2025; 148:113978. [PMID: 39879832 DOI: 10.1016/j.intimp.2024.113978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 12/24/2024] [Accepted: 12/28/2024] [Indexed: 01/31/2025]
Abstract
OBJECTIVE To investigate the role of long non-coding RNAs (lncRNAs) in the metabolic reprogramming of gastric cancer through their regulation of mesenchymal stem cells (MSCs) and HERPUD1 protein targets, aiming to elucidate mechanisms that could lead to novel therapeutic strategies. METHOD The RNA-seq was performed on BGC and hMSC-BGC cells to perform LncRNA screening. And we employed cell culture techniques using hMSC-BM and BGC823 cells, treated with various genetic interventions including siRNA and overexpression vectors. Techniques such as cell viability assays, quantitative PCR (qPCR), Western blotting, RNA pull-down and RNA-FISH were utilized to validate the interaction between lncRNA AC012181.2 and HERPUD1 protein. Flow cytometry were utilized to analyze the impacts of lncRNA AC012181.2 on gene and protein expression related to cancer metabolism. Additionally, a tumorigenic model in nude mice was used to observe the in vivo effects. RESULT Modulation of AC012181.2 in MSCs significantly affected the proliferation, migration, and invasion capabilities of BGC823 gastric cancer cells. Knockdown of AC012181.2 resulted in reduced tumor growth in mouse models, along with changes in key gene and protein expression levels associated with cancer metabolism. Overexpression of AC012181.2 showed the opposite effect, enhancing tumor growth and altering cellular behaviors and molecular expressions in favor of cancer progression. CONCLUSION The lncRNA AC012181.2 is crucial for gastric cancer metabolic reprogramming by regulating HERPUD1 Protein. Targeting it offers a promising avenue to impact the tumor microenvironment and develop novel gastric cancer therapies.
Collapse
Affiliation(s)
- Weidong Jiang
- Department of Hepatobiliary and Pancreatic Surgery, The Second Hospital of Jilin University, No.4026, Yatai Street, Nanguan District, Changchun 130000, China
| | - Fangying Yin
- Department of Pediatrics, The Third Norman Bethune Hospital of Jilin University, Xiantai Street, NO.126, Changchun 130033, China
| | - Xuming Bian
- Department of Hepatobiliary and Pancreatic Surgery, The Second Hospital of Jilin University, No.4026, Yatai Street, Nanguan District, Changchun 130000, China
| | - Zhenxiao Wang
- Department of Hepatobiliary and Pancreatic Surgery, The Second Hospital of Jilin University, No.4026, Yatai Street, Nanguan District, Changchun 130000, China
| | - Chaohe Zhang
- Department of Tumor Hematology, The Second Hospital of Jilin University, No.4026, Yatai Street, Nanguan District, Changchun 130000, China.
| |
Collapse
|
21
|
Shi M, Zhang R, Lyu H, Xiao S, Guo D, Zhang Q, Chen XZ, Tang J, Zhou C. Long non-coding RNAs: Emerging regulators of invasion and metastasis in pancreatic cancer. J Adv Res 2025:S2090-1232(25)00073-6. [PMID: 39933650 DOI: 10.1016/j.jare.2025.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 01/20/2025] [Accepted: 02/03/2025] [Indexed: 02/13/2025] Open
Abstract
BACKGROUND The invasion and metastasis of pancreatic cancer (PC) are key factors contributing to disease progression and poor prognosis. This process is primarily driven by EMT, which has been the focus of recent studies highlighting the role of long non-coding RNAs (lncRNAs) as crucial regulators of EMT. However, the mechanisms by which lncRNAs influence invasive metastasis are multifaceted, extending beyond EMT regulation alone. AIM OF REVIEW This review primarily aims to characterize lncRNAs affecting invasion and metastasis in pancreatic cancer. We summarize the regulatory roles of lncRNAs across multiple molecular pathways and highlight their translational potential, considering the implications for clinical applications in diagnostics and therapeutics. KEY SCIENTIFIC CONCEPTS OF REVIEW The review focuses on three principal scientific themes. First, we primarily summarize lncRNAs orchestrate various signaling pathways, such as TGF-β/Smad, Wnt/β-catenin, and Notch, to regulate molecular changes associated with EMT, thereby enhancing cellular motility and invasivenes. Second, we summarize the effects of lncRNAs on autophagy and ferroptosis and discuss the role of exosomal lncRNAs in the tumor microenvironment to regulate the behavior of neighboring cells and promote cancer cell invasion. Third, we emphasize the effects of RNA modifications (such as m6A and m5C methylation) on stabilizing lncRNAs and enhancing their capacity to mediate invasive metastasis in PC. Lastly, we discuss the translational potential of these findings, emphasizing the inherent challenges in using lncRNAs as clinical biomarkers and therapeutic targets, while proposing prospective research strategies.
Collapse
Affiliation(s)
- Mengmeng Shi
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China
| | - Rui Zhang
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China
| | - Hao Lyu
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China
| | - Shuai Xiao
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China
| | - Dong Guo
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China
| | - Qi Zhang
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China
| | - Xing-Zhen Chen
- Membrane Protein Disease Research Group, Department of Physiology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G2R3, Canada
| | - Jingfeng Tang
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China.
| | - Cefan Zhou
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China.
| |
Collapse
|
22
|
Saberiyan M, Ghasemi N, Jafari N, Sadeghi M, Ghaderi A, Mousavi P. Investigate of LOC101928988 Regulatory Effect on the DAPK2 Transcription in Breast Tumors. Cancer Rep (Hoboken) 2025; 8:e70115. [PMID: 39971705 PMCID: PMC11839281 DOI: 10.1002/cnr2.70115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 11/24/2024] [Accepted: 12/24/2024] [Indexed: 02/21/2025] Open
Abstract
BACKGROUND The World Health Organization has mentioned breast cancer holds the highest incidence rate among all types of cancer globally. Death-associated protein kinase 2 (DAPK2) is a serine/threonine kinase linked to various forms of malignancy, such as breast cancer. This protein assumes a pivotal function in a multitude of cellular mechanisms, including apoptosis, autophagy, and cell migration. AIMS This study aimed to study the LOC101928988 regulatory effect on the DAPK2 expression in breast cancer. METHODS In this study, 38 paired tumoral and normal tissues were selected from patients. Quantitative real-time PCR was used to analyze the expression of DAPK2 and LOC101928988. The interactions of DAPK2 and its intermediate elements with LOC101928988 were predicted by docking analysis. RESULTS The expression of DAPK2 and LOC101928988 was downregulated in tumor tissues compared to the control group. Further analysis revealed a significant positive correlation between DAPK2 and LOC101928988 levels in tumoral and adjacent normal tissues. A comparison of gene expression between different grades, stages, and HER2 statuses showed significant findings. ROC curve analysis of DAPK2 and LOC101928988 expression revealed 77% and 72% AUC for BC tissue, respectively. CONCLUSIONS Overall, our results suggest that alterations in the levels of DAPK2 and LOC101928988 may be involved in tumor initiation and progression in breast cancer. It has also been reported that LOC101928988 probably has a role in regulating DAPK2 expression through interaction with transcription factors.
Collapse
Affiliation(s)
- Mohammadreza Saberiyan
- Student Research CommitteeHormozgan University of Medical SciencesBandar AbbasIran
- Department of Medical Genetics, Faculty of MedicineHormozgan University of Medical SciencesBandar AbbasIran
| | - Nazila Ghasemi
- Department of Biology, Jahrom BranchIslamic Azad UniversityJahromIran
| | - Negar Jafari
- Department of Cardiology, School of MedicineUrmia University of Medical SciencesUrmiaIran
| | - Mahboubeh Sadeghi
- Student Research CommitteeHormozgan University of Medical SciencesBandar AbbasIran
| | - Abbas Ghaderi
- Shiraz Institute for Cancer Research, School of MedicineShiraz University of Medical SciencesShirazIran
- Department of Immunology, School of MedicineShiraz University of Medical SciencesShirazIran
| | - Pegah Mousavi
- Molecular Medicine Research CenterHormozgan Health Institute, Hormozgan University of Medical SciencesBandar AbbasIran
| |
Collapse
|
23
|
Sethi SC, Singh R, Sahay O, Barik GK, Kalita B. Unveiling the hidden gem: A review of long non-coding RNA NBAT-1 as an emerging tumor suppressor and prognostic biomarker in cancer. Cell Signal 2025; 126:111525. [PMID: 39592019 DOI: 10.1016/j.cellsig.2024.111525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 11/09/2024] [Accepted: 11/20/2024] [Indexed: 11/28/2024]
Abstract
Previously considered junk or non-functional, long non-coding RNAs (lncRNAs) have emerged over the past few decades as pivotal components in both physiological and pathological processes, including cancer. Neuroblastoma-associated transcript-1 (NBAT-1) was initially discovered a decade ago as a risk-associated tumor suppressor lncRNA in neuroblastoma (NB). Subsequent studies have consistently demonstrated that NBAT-1 serves as a dedicated tumor suppressor in many cancers. NBAT-1 is significantly downregulated in cancer, which is closely linked to higher histological grades, increased metastasis, and poor survival in cancer patients suggesting NBAT-1's potential as a prognostic biomarker. In this review, we delve into the current body of literature, elucidating the tumor-suppressive roles of NBAT-1 and the underlying regulatory mechanisms in the context of human malignancies. Additionally, we shed light on the mechanisms contributing to the diminished expression of NBAT-1 and its potential as both a prognostic biomarker and a promising therapeutic target in cancer.
Collapse
Affiliation(s)
- Subhash Chandra Sethi
- Genetics Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Ragini Singh
- Genetics Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Osheen Sahay
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Ganesh Kumar Barik
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA.
| | - Bhargab Kalita
- Amrita Research Center, Amrita Vishwa Vidyapeetham, Amrita Hospital, Mata Amritanandamayi Marg, Faridabad 121002, India.
| |
Collapse
|
24
|
Shen Y, Li J, Zhao Z, Chen X. Progress on long non-coding RNAs in calcific aortic valve disease. Front Cardiovasc Med 2025; 12:1522544. [PMID: 39898106 PMCID: PMC11782120 DOI: 10.3389/fcvm.2025.1522544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 01/02/2025] [Indexed: 02/04/2025] Open
Abstract
Calcific aortic valve disease (CAVD) is a common cardiovascular condition in the elderly population. The aortic valve, influenced by factors such as endothelial dysfunction, inflammation, oxidative stress, lipid metabolism disorders, calcium deposition, and extracellular matrix remodeling, undergoes fibrosis and calcification, ultimately leading to stenosis. In recent years, long non-coding RNAs (lncRNAs) have emerged as significant regulators of gene expression, playing crucial roles in the occurrence and progression of various diseases. Research has shown that lncRNAs participate in the pathological process underlying CAVD by regulating osteogenic differentiation and inflammatory response of valve interstitial cells. Specifically, lncRNAs, such as H19, MALAT1, and TUG1, are closely associated with CAVD. Some lncRNAs can act as miRNA sponges, form complex regulatory networks, and modulate the expression of calcification-related genes. In brief, this review discusses the mechanisms and potential therapeutic targets of lncRNAs in CAVD.
Collapse
Affiliation(s)
- Yan Shen
- Department of Cardiology, The First Affiliated Hospital of Ningbo University, Ningbo, China
| | - Jiahui Li
- Department of Cardiology, The First Affiliated Hospital of Ningbo University, Ningbo, China
| | - Zehao Zhao
- Department of Cardiology, The Second Affiliated Hospital of Zhejiang University, Hangzhou, China
| | - Xiaomin Chen
- Department of Cardiology, The First Affiliated Hospital of Ningbo University, Ningbo, China
| |
Collapse
|
25
|
Li J, Xu S, Liu Z, Yang L, Ming Z, Zhang R, Zhao W, Peng H, Quinn JJ, Wu M, Geng Y, Zhang Y, He J, Chen M, Li N, Shao NY, Ma Q. A noncanonical role of roX RNAs in autosomal epigenetic repression. Nat Commun 2025; 16:155. [PMID: 39747148 PMCID: PMC11696496 DOI: 10.1038/s41467-024-55711-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 12/19/2024] [Indexed: 01/04/2025] Open
Abstract
Long noncoding RNAs known as roX (RNA on the X) are crucial for male development in Drosophila, as their loss leads to male lethality from the late larval stages. While roX RNAs are recognized for their role in sex-chromosome dosage compensation, ensuring balanced expression of X-linked genes in both sexes, their potential influence on autosomal gene regulation remains unexplored. Here, using an integrative multi-omics approach, we show that roX RNAs not only govern the X chromosome but also target genes on autosomes that lack male-specific lethal (MSL) complex occupancy, together with Polycomb repressive complexes (PRCs). We observed that roX RNAs colocalize with MSL proteins on the X chromosome and PRC components on autosomes. Intriguingly, loss of roX function reduces X-chromosomal H4K16ac levels and autosomal H3K27me3 levels. Correspondingly, X-linked genes display reduced expression, whereas many autosomal genes exhibit elevated expression upon roX loss. Our findings propose a dual role for roX RNAs: activators of X-linked genes and repressors of autosomal genes, achieved through interactions with MSL and PRC complexes, respectively. This study uncovers the unconventional epigenetic repressive function of roX RNAs with PRC interaction.
Collapse
Affiliation(s)
- Jianjian Li
- Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Faculty of Synthetic Biology, Shenzhen University of Advanced Technology, Shenzhen, China
| | - Shuyang Xu
- Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Zicong Liu
- Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Liuyi Yang
- Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Zhe Ming
- Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Faculty of Health Sciences, University of Macau, Macau, Macau SAR, China
| | - Rui Zhang
- Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Wenjuan Zhao
- Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Huipai Peng
- Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Jeffrey J Quinn
- Center for Personal Dynamic Regulomes and Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Manyin Wu
- Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Yushan Geng
- Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Yuying Zhang
- Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Jiazhi He
- Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Minghai Chen
- Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Nan Li
- Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Ning-Yi Shao
- Faculty of Health Sciences, University of Macau, Macau, Macau SAR, China
| | - Qing Ma
- Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
| |
Collapse
|
26
|
Zhao C, Li X, Pan X, Xu J, Jiang R, Li Y. LINC02532 by Mediating miR-541-3p/HMGA1 Axis Exerts a Tumor Promoter in Breast cancer. Mol Biotechnol 2025; 67:196-208. [PMID: 38030946 DOI: 10.1007/s12033-023-00995-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 11/13/2023] [Indexed: 12/01/2023]
Abstract
The newly discovered LINC02532 is abnormally expressed in a variety of cancers and promotes cancer progression. The research proposed to discover the biological and molecular mechanisms of LINC02532 in breast cancer (BCa). In the resected BCa tissue samples and adjacent normal tissues, LINC02532, miR-541-3p, and High Mobility Group A1 (HMGA1) levels were determined. Cell function experiments were carried out on the premise of cell transfection with relevant plasmids. Based on that, the influence of LINC02532, miR-541-3p, and HMGA1 on MCF-7 cell activities (proliferation, migration, invasion, cell cycle, and apoptosis) was determined, as well as on EMT. Additionally, animal experiments were allowed to support cell experimental conclusions on LINC02532. Finally, the mechanistic network of LINC02532, miR-541-3p, and HMGA1 was identified. It was BCa tissues highly expressing LINC02532 and HMGA1, while lowly expressing miR-541-3p. Functionally, LINC02532 depletion repressed the activities and EMT process of MCF-7 cells. Silencing LINC02532 delayed tumor growth in mice. In terms of mechanism, LINC02532 mainly existed in the cytoplasm and could mediate HMGA1 expression by absorbing miR-541-3p. The findings offer new insights into the molecular mechanisms of LINC02532 in BCa and, more importantly, new strategies for the clinical treatment of BCa.
Collapse
Affiliation(s)
- ChunMing Zhao
- Department of Geriatrics, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan City, 250021, Shandong Province, China
| | - Xiao Li
- Department of Oncology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, No.324, Jingwu Road, Jinan City, 250021, Shandong Province, China
| | - XueQiang Pan
- Department of Oncology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, No.324, Jingwu Road, Jinan City, 250021, Shandong Province, China
| | - JiaWen Xu
- Department of Pathology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan City, 250021, Shandong Province, China
| | - Rui Jiang
- Department of Oncology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, No.324, Jingwu Road, Jinan City, 250021, Shandong Province, China.
| | - YuYang Li
- Department of Thyroid and Breast Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, No.324, Jingwu Road, Jinan City, 250021, Shandong Province, China.
| |
Collapse
|
27
|
Hashimoto K, Ochiya T, Shimomura A. Liquid biopsy using non-coding RNAs and extracellular vesicles for breast cancer management. Breast Cancer 2025; 32:16-25. [PMID: 38512533 DOI: 10.1007/s12282-024-01562-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 02/24/2024] [Indexed: 03/23/2024]
Abstract
This article examines liquid biopsy using non-coding RNAs and extracellular vesicles in detail. Liquid biopsy is emerging as a prominent non-invasive diagnostic tool in the treatment of breast cancer. We will elucidate the roles of these molecules in early detection, monitoring treatment effectiveness, and prognostic assessment of breast cancer. Additionally, the clinical significance of these molecules will be discussed. We aim to delve into the distinct characteristics of these molecules and their possible roles in breast cancer management, with an anticipation of their contribution to future diagnostic and therapeutic advancements.
Collapse
Affiliation(s)
- Kazuki Hashimoto
- Department of Breast Surgical Oncology, National Center for Global Health and Medicine, 1-21-1 Toyama, Shinjuku-Ku, Tokyo, 162-8655, Japan
| | - Takahiro Ochiya
- Department of Molecular and Cellular Medicine, Institute of Medical Science, Tokyo Medical University, 6-7-1 Nishishinjuku, Shinjuku-Ku, Tokyo, 160-0023, Japan
| | - Akihiko Shimomura
- Department of Breast and Medical Oncology, National Center for Global Health and Medicine, 1-21-1 Toyama, Shinjuku-Ku, Tokyo, 162-8655, Japan.
| |
Collapse
|
28
|
Li P, Liu ZP. Structure-Based Prediction of lncRNA-Protein Interactions by Deep Learning. Methods Mol Biol 2025; 2883:363-376. [PMID: 39702717 DOI: 10.1007/978-1-0716-4290-0_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
The interactions between long noncoding RNA (lncRNA) and protein play crucial roles in various biological processes. Computational methods are essential for predicting lncRNA-protein interactions and deciphering their mechanisms. In this chapter, we aim to introduce the fundamental framework for predicting lncRNA-protein interactions based on three-dimensional structure information. With the increasing availability of lncRNA and protein molecular tertiary structures, the feasibility of using deep learning methods for automatic representation and learning has become evident. This chapter outlines the key steps in predicting lncRNA-protein interactions using deep learning, including three common non-Euclidean data representations for lncRNA and proteins, as well as neural networks tailored to these specific data characteristics. We also highlight the advantages and challenges of structure-based prediction of lncRNA-protein interactions with geometric deep learning methods.
Collapse
Affiliation(s)
- Pengpai Li
- Department of Biomedical Engineering, School of Control Science and Engineering, Shandong University, Jinan, Shandong, China
| | - Zhi-Ping Liu
- Department of Biomedical Engineering, School of Control Science and Engineering, Shandong University, Jinan, Shandong, China.
| |
Collapse
|
29
|
Wu XM, Mai YX, Wen YF, Li ZP, Sun YX, Chen JJ, Meng F, Pang FX, Li HM, Pan Y, Zhang JF, Pan XH. Silence of HOTAIR promotes osteogenic differentiation and accelerates distraction osteogenesis by mediating FTO ubiquitination. J Orthop Translat 2025; 50:248-256. [PMID: 39895868 PMCID: PMC11786163 DOI: 10.1016/j.jot.2024.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 11/04/2024] [Accepted: 12/09/2024] [Indexed: 02/04/2025] Open
Abstract
Background Distraction osteogenesis(DO) is a valuable bone regeneration technique, yet its prolonged consolidation phase often entails pain, high costs, infection risks, and lifestyle disruptions. Finding adjunctive approaches to shorten treatment duration is thus of clinical significance. Long noncoding RNAs have been demonstrated to play pivotal roles in regulating bone formation, and homeobox transcript antisense intergenic RNA(HOTAIR) was also reported to regulate osteogenesis and bone formation. However, its role in DO remains unclear. Methods The effects of HOTAIR on osteogenesis were examined in rat bone marrow-derived mesenchymal stem cells(BMSCs) by asssessing ALP activity, calcification, and osteogenic gene expression with HOTAIR knockdown or overexpression. Using a tibial DO model, HOTAIR-stably silenced BMSCs or control cells were locally injected into the percutaneous distraction gap, and the effects were evaluated by micro-CT, dual-energy X-ray examination, mechanical testing, hematoxylin and eosin staining, and immunohistochemistry. Results In the present study, it was found that HOTAIR silence promoted while its overexpression suppressed the osteogenic differentiation of BMSCs. The Mechanistic study revealed that HOTAIR physically interacted with FTO, and disrupted FTO ubiquitination and degradation, leading to FTO up-regulation and suppressing osteogenesis. Using DO animal model, HOTAIR-silenced BMSCs stimulated new bone formation and accelerated DO healing in vivo. Conclusion Silence of HOTAIR enhanced osteogenesis in BMSCs and facilitated DO healing by recruiting FTO and inducing its degradation. Translational potential The findings generated from this study suggest that inhibitor of HOTAIR may be developed as a promising strategy for DO patients.
Collapse
Affiliation(s)
- Xiao-min Wu
- Department of Orthopaedics and Traumatology, The Second Affiliated Hospital of Shenzhen University, The Second School of Clinical Medicine, Southern Medical University, The Clinical Medical College of Guangdong Medical University, People's Hospital of Shenzhen Baoan District, Shenzhen, 518101, PR China
| | - Yong-xin Mai
- Cancer Center, Shenzhen Hospital (Futian) of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, 518000, PR China
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, PR China
| | - Yong-fa Wen
- Department of Orthopaedics and Traumatology, The Second Affiliated Hospital of Shenzhen University, The Second School of Clinical Medicine, Southern Medical University, The Clinical Medical College of Guangdong Medical University, People's Hospital of Shenzhen Baoan District, Shenzhen, 518101, PR China
| | - Zhi-peng Li
- Cancer Center, Shenzhen Hospital (Futian) of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, 518000, PR China
| | - Yu-xin Sun
- Department of Orthopaedics and Traumatology, The Second Affiliated Hospital of Shenzhen University, The Second School of Clinical Medicine, Southern Medical University, The Clinical Medical College of Guangdong Medical University, People's Hospital of Shenzhen Baoan District, Shenzhen, 518101, PR China
| | - Jun-jing Chen
- Department of Orthopaedics and Traumatology, The Second Affiliated Hospital of Shenzhen University, The Second School of Clinical Medicine, Southern Medical University, The Clinical Medical College of Guangdong Medical University, People's Hospital of Shenzhen Baoan District, Shenzhen, 518101, PR China
| | - Fengzhen Meng
- Department of Orthopaedics and Traumatology, The Second Affiliated Hospital of Shenzhen University, The Second School of Clinical Medicine, Southern Medical University, The Clinical Medical College of Guangdong Medical University, People's Hospital of Shenzhen Baoan District, Shenzhen, 518101, PR China
| | - feng-xiang Pang
- Cancer Center, Shenzhen Hospital (Futian) of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, 518000, PR China
| | - Huai-ming Li
- Department of Orthopaedics and Traumatology, The Second Affiliated Hospital of Shenzhen University, The Second School of Clinical Medicine, Southern Medical University, The Clinical Medical College of Guangdong Medical University, People's Hospital of Shenzhen Baoan District, Shenzhen, 518101, PR China
| | - Yu Pan
- Department of Orthopaedics and Traumatology, The Second Affiliated Hospital of Shenzhen University, The Second School of Clinical Medicine, Southern Medical University, The Clinical Medical College of Guangdong Medical University, People's Hospital of Shenzhen Baoan District, Shenzhen, 518101, PR China
| | - Jin-fang Zhang
- Cancer Center, Shenzhen Hospital (Futian) of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, 518000, PR China
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, PR China
| | - Xiao-hua Pan
- Department of Orthopaedics and Traumatology, The Second Affiliated Hospital of Shenzhen University, The Second School of Clinical Medicine, Southern Medical University, The Clinical Medical College of Guangdong Medical University, People's Hospital of Shenzhen Baoan District, Shenzhen, 518101, PR China
| |
Collapse
|
30
|
Beňačka R, Szabóová D, Guľašová Z, Hertelyová Z. Non-Coding RNAs in Breast Cancer: Diagnostic and Therapeutic Implications. Int J Mol Sci 2024; 26:127. [PMID: 39795985 PMCID: PMC11719911 DOI: 10.3390/ijms26010127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 12/18/2024] [Accepted: 12/23/2024] [Indexed: 01/13/2025] Open
Abstract
Breast cancer (BC) is one of the most prevalent forms of cancer globally, and has recently become the leading cause of cancer-related mortality in women. BC is a heterogeneous disease comprising various histopathological and molecular subtypes with differing levels of malignancy, and each patient has an individual prognosis. Etiology and pathogenesis are complex and involve a considerable number of genetic alterations and dozens of alterations in non-coding RNA expression. Non-coding RNAs are part of an abundant family of single-stranded RNA molecules acting as key regulators in DNA replication, mRNA processing and translation, cell differentiation, growth, and overall genomic stability. In the context of breast cancer, non-coding RNAs are involved in cell cycle control and tumor cell migration and invasion, as well as treatment resistance. Alterations in non-coding RNA expression may contribute to the development and progression of breast cancer, making them promising biomarkers and targets for novel therapeutic approaches. Currently, the use of non-coding RNAs has not yet been applied to routine practice; however, their potential has been very well studied. The present review is a literature overview of current knowledge and its objective is to delineate the function of diverse classes of non-coding RNAs in breast cancer, with a particular emphasis on their potential utility as diagnostic and prognostic markers or as therapeutic targets and tools.
Collapse
Affiliation(s)
- Roman Beňačka
- Department of Pathophysiology, Medical Faculty, Pavol Jozef Šafarik University, 04011 Košice, Slovakia;
| | - Daniela Szabóová
- Department of Pathophysiology, Medical Faculty, Pavol Jozef Šafarik University, 04011 Košice, Slovakia;
| | - Zuzana Guľašová
- Center of Clinical and Preclinical Research MEDIPARK, Pavol Jozef Šafarik University, 04011 Košice, Slovakia; (Z.G.); (Z.H.)
| | - Zdenka Hertelyová
- Center of Clinical and Preclinical Research MEDIPARK, Pavol Jozef Šafarik University, 04011 Košice, Slovakia; (Z.G.); (Z.H.)
| |
Collapse
|
31
|
Casari G, Romaldi B, Scirè A, Minnelli C, Marzioni D, Ferretti G, Armeni T. Epigenetic Properties of Compounds Contained in Functional Foods Against Cancer. Biomolecules 2024; 15:15. [PMID: 39858410 PMCID: PMC11762081 DOI: 10.3390/biom15010015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/18/2024] [Accepted: 12/23/2024] [Indexed: 01/27/2025] Open
Abstract
Epigenetics encompasses reversible and heritable genomic changes in histones, DNA expression, and non-coding RNAs that occur without modifying the nucleotide DNA sequence. These changes play a critical role in modulating cell function in both healthy and pathological conditions. Dysregulated epigenetic mechanisms are implicated in various diseases, including cardiovascular disorders, neurodegenerative diseases, obesity, and mainly cancer. Therefore, to develop innovative therapeutic strategies, research for compounds able to modulate the complex epigenetic landscape of cancer is rapidly surging. Dietary phytochemicals, mostly flavonoids but also tetraterpenoids, organosulfur compounds, and isothiocyanates, represent biologically active molecules found in vegetables, fruits, medicinal plants, and beverages. These natural organic compounds exhibit epigenetic modulatory properties by influencing the activity of epigenetics key enzymes, such as DNA methyltransferases, histone acetyltransferases and deacetylases, and histone methyltransferases and demethylases. Due to the reversibility of the modifications that they induce, their minimal adverse effects, and their potent epigenetic regulatory activity, dietary phytochemicals hold significant promise as antitumor agents and warrant further investigation. This review aims to consolidate current data on the diverse epigenetic effects of the six major flavonoid subclasses, as well as other natural compounds, in the context of cancer. The goal is to identify new therapeutic epigenetic targets for drug development, whether as stand-alone treatments or in combination with conventional antitumor approaches.
Collapse
Affiliation(s)
- Giulia Casari
- Department of Clinical and Specialist Sciences (DISCO), Università Politecnica delle Marche, 60131 Ancona, Italy; (G.C.); (B.R.); (G.F.)
| | - Brenda Romaldi
- Department of Clinical and Specialist Sciences (DISCO), Università Politecnica delle Marche, 60131 Ancona, Italy; (G.C.); (B.R.); (G.F.)
| | - Andrea Scirè
- Department of Life and Environmental Sciences (DISVA), Università Politecnica delle Marche, 60131 Ancona, Italy; (A.S.); (C.M.)
| | - Cristina Minnelli
- Department of Life and Environmental Sciences (DISVA), Università Politecnica delle Marche, 60131 Ancona, Italy; (A.S.); (C.M.)
| | - Daniela Marzioni
- Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, 60131 Ancona, Italy;
| | - Gianna Ferretti
- Department of Clinical and Specialist Sciences (DISCO), Università Politecnica delle Marche, 60131 Ancona, Italy; (G.C.); (B.R.); (G.F.)
| | - Tatiana Armeni
- Department of Clinical and Specialist Sciences (DISCO), Università Politecnica delle Marche, 60131 Ancona, Italy; (G.C.); (B.R.); (G.F.)
| |
Collapse
|
32
|
Nazari M, Babakhanzadeh E, Mollazadeh A, Ahmadzade M, Mohammadi Soleimani E, Hajimaqsoudi E. HOTAIR in cancer: diagnostic, prognostic, and therapeutic perspectives. Cancer Cell Int 2024; 24:415. [PMID: 39702144 DOI: 10.1186/s12935-024-03612-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 12/11/2024] [Indexed: 12/21/2024] Open
Abstract
The long non-coding RNA HOTAIR is overexpressed in many cancers and is associated with several cancer-promoting effects, including increased cell proliferation, migration and treatment resistance. HOTAIR levels correlate with tumor stage, lymph node metastasis and overall survival in patients with various types of cancer. This highlights the potential uses of HOTAIR, including early cancer detection, predicting patient outcome, identifying high-risk individuals and assisting in therapy selection and monitoring. The aim of this review is to provide a comprehensive summary of the research progress, molecular mechanisms and clinical significance of HOTAIR in various human cancers. In addition, the clinical applications of HOTAIR, such as targeted therapy, radiotherapy, chemotherapy and immunotherapy, are discussed, and relevant information on the potential future advances of HOTAIR in cancer research is provided.
Collapse
Affiliation(s)
- Majid Nazari
- Department of Medical Genetics, Shahid Sadoughi University of Medical Sciences, P.O. Box 64155-65117, Tehran, Yazd, Iran.
| | - Emad Babakhanzadeh
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Arghavan Mollazadeh
- Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, IL, 60115, USA
| | - Mohadese Ahmadzade
- Department of Urology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Elnaz Hajimaqsoudi
- Department of Medical Genetics, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| |
Collapse
|
33
|
Pooresmaeil F, Azadi S, Hasannejad-Asl B, Takamoli S, Bolhassani A. Pivotal Role of miRNA-lncRNA Interactions in Human Diseases. Mol Biotechnol 2024:10.1007/s12033-024-01343-y. [PMID: 39673006 DOI: 10.1007/s12033-024-01343-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 11/25/2024] [Indexed: 12/15/2024]
Abstract
New technologies have shown that most of the genome comprises transcripts that cannot code for proteins and are referred to as non-coding RNAs (ncRNAs). Some ncRNAs, like long non-coding RNAs (lncRNAs) and microRNAs (miRNAs), are of substantial interest because of their critical function in controlling genes and numerous biological activities. The expression levels and function of miRNAs and lncRNAs are rigorously monitored throughout developmental processes and the maintenance of physiological homeostasis. Due to their critical roles, any dysregulation or changes in their expression can significantly influence the pathogenesis of various human diseases. The interactions between miRNAs and lncRNAs have been found to influence gene expression in various ways. These interactions significantly influence the understanding of disease etiology, cellular processes, and potential therapeutic targets. Different experimental and in silico methods can be used to investigate miRNA-lncRNA interactions. By aiding the elucidation of miRNA-lncRNA interactions and deepening the understanding of post-transcriptional gene regulation, researchers can open a new window for designing hypotheses, conducting experiments, and discovering methods for diagnosing and treating complex human diseases. This review briefly summarizes miRNA and lncRNA functions, discusses their interaction mechanisms, and examines the experimental and computational methods used to study these interactions. Additionally, we highlight significant studies on lncRNA and miRNA interactions in various diseases from 2000 to 2024, using the academic research databases such as PubMed, Google Scholar, ScienceDirect, and Scopus.
Collapse
Affiliation(s)
- Farkhondeh Pooresmaeil
- Department of Medical Biotechnology, School of Allied Medicine, Iran University of Medical Science, Tehran, Iran
- Department of Hepatitis & AIDS, Pasteur Institute of Iran, Tehran, Iran
| | - Sareh Azadi
- Department of Medical Biotechnology, School of Allied Medicine, Iran University of Medical Science, Tehran, Iran
| | - Behnam Hasannejad-Asl
- Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti, University of Medical Sciences, Tehran, Iran
| | - Shahla Takamoli
- Department of Biology, Faculty of Science, University of Guilan, Rasht, Iran
| | - Azam Bolhassani
- Department of Hepatitis & AIDS, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
34
|
Alnefaie GO. A review of the complex interplay between chemoresistance and lncRNAs in lung cancer. J Transl Med 2024; 22:1109. [PMID: 39639388 PMCID: PMC11619437 DOI: 10.1186/s12967-024-05877-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 11/11/2024] [Indexed: 12/07/2024] Open
Abstract
Lung Cancer (LC) is characterized by chemoresistance, which poses a significant clinical challenge and results in a poor prognosis for patients. Long non-coding RNAs (lncRNAs) have recently gained recognition as crucial mediators of chemoresistance in LC. Through the regulation of key cellular processes, these molecules play important roles in the progression of LC and response to therapy. The mechanisms by which lncRNAs affect chemoresistance include the modulation of gene expression, chromatin structure, microRNA interactions, and signaling pathways. Exosomes have emerged as key mediators of lncRNA-driven chemoresistance, facilitating the transfer of resistance-associated lncRNAs between cancer cells and contributing to tumor development. Consequently, exosomal lncRNAs may serve as biomarkers and therapeutic targets for the treatment of LC. Therapeutic strategies targeting lncRNAs offer novel approaches to circumvent chemoresistance. Different approaches, including RNA interference (RNAi) and antisense oligonucleotides (ASOs), are available to degrade lncRNAs or alter their function. ASO-based therapies are effective at reducing lncRNA expression levels, increasing chemotherapy sensitivity, and improving clinical outcomes. The use of these strategies can facilitate the development of targeted interventions designed to disrupt lncRNA-mediated mechanisms of chemoresistance. An important aspect of this review is the discussion of the complex relationship between lncRNAs and drug resistance in LC, particularly through exosomal pathways, and the development of innovative therapeutic strategies to enhance drug efficacy by targeting lncRNAs. The development of new pathways and interventions for treating LC holds promise in overcoming this resistance.
Collapse
Affiliation(s)
- Ghaliah Obaid Alnefaie
- Department of Pathology, College of Medicine, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia.
| |
Collapse
|
35
|
Gu P, Ding W, Zhu W, Shen L, Zhang L, Wang W, Wang R, Wang W, Wang Y, Yan B, Sun X. MIR4435-2HG: A novel biomarker for triple-negative breast cancer diagnosis and prognosis, activating cancer-associated fibroblasts and driving tumor invasion through EMT associated with JNK/c-Jun and p38 MAPK signaling pathway activation. Int Immunopharmacol 2024; 142:113191. [PMID: 39317050 DOI: 10.1016/j.intimp.2024.113191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 08/29/2024] [Accepted: 09/14/2024] [Indexed: 09/26/2024]
Abstract
BACKGROUND Breast cancer has the highest incidence rate and causes the most fatalities among all female cancers worldwide. Triple-negative breast cancer (TNBC) is known for its strong invasiveness and higher rates of recurrence. In this research, we aimed to identify MIR4435-2HG as a promising long non-coding RNA (lncRNA) biomarker and therapeutic target for TNBC. METHODS Utilizing clinicopathological information and transcriptome data from The Cancer Genome Atlas (TCGA) database, we assessed the clinical relevance of MIR4435-2HG in breast cancer through univariate and multivariate COX regression, receiver operating characteristic (ROC) analysis, as well as Kaplan-Meier survival analysis. To investigate the biological role of MIR4435-2HG in TNBC, we conducted gene set enrichment analysis (GSEA), as well as Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses. Additionally, we constructed and validated a nomogram to predict disease-free survival (DFS). Both the R package "pRRophetic" and the Tumor Immune Dysfunction and Exclusion (TIDE) algorithm were employed to forecast the sensitivity to different therapeutics between the high- and low-MIR4435-2HG groups. We employed single-cell RNA sequencing analysis and tumor microenvironment infiltration analysis to investigate the potential involvement of MIR4435-2HG in the TNBC tumor microenvironment. Cellular biological behaviors were assessed utilizing CCK-8, transwell assays, and wound-healing assays. Furthermore, we performed RNA-seq, qRT-PCR, and western blotting analyses to elucidate and confirm the specific mechanisms underlying the role of MIR4435-2HG in TNBC. RESULTS In our study, we have identified MIR4435-2HG as a significant diagnostic and prognostic factor for TNBC. We observed that MIR4435-2HG is widely expressed and might have a significant impact on the reshaping of the TNBC tumor microenvironment. Patients with TNBC in the high-MIR4435-2HG group may show reduced sensitivity to cisplatin, doxorubicin, and gemcitabine and have an increased propensity for immune escape. Knockdown of MIR4435-2HG inhibits cancer-associated fibroblasts (CAFs) activation. Notably, MIR4435-2HG predominantly enhances the migratory and invasive capabilities of TNBC cells through the epithelial-mesenchymal transition (EMT) process. Mechanistically, we validated that MIR4435-2HG activates the JNK/c-Jun and p38 non-classical MAPK signaling pathway in TNBC cells. CONCLUSIONS Our findings highlight the significant potential of MIR4435-2HG as a highly promising biomarker for TNBC. Targeting MIR4435-2HG could represent an appealing therapeutic approach for TNBC.
Collapse
Affiliation(s)
- Peng Gu
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai 201620, China
| | - Wentao Ding
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai 201620, China
| | - Wenting Zhu
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai 201620, China
| | - Ling Shen
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai 201620, China; Clinical Medical School, Shanghai General Hospital of Nanjing Medical University, Shanghai 211166, China
| | - Lei Zhang
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai 201620, China; Clinical Medical School, Shanghai General Hospital of Nanjing Medical University, Shanghai 211166, China
| | - Wei Wang
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai 201620, China
| | - Ruitao Wang
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai 201620, China
| | - Wenhao Wang
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai 201620, China
| | - Yanhao Wang
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, 270 Dongan Road, Shanghai 200032, China
| | - Bin Yan
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai 201620, China.
| | - Xing Sun
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai 201620, China.
| |
Collapse
|
36
|
Xu P, Yuan Z, Lu X, Zhou P, Qiu D, Qiao Z, Zhou Z, Guan L, Jia Y, He X, Sun L, Wan Y, Wang M, Yu Y. RAG-seq: NSR-primed and Transposase Tagmentation-mediated Strand-specific Total RNA Sequencing in Single Cells. GENOMICS, PROTEOMICS & BIOINFORMATICS 2024; 22:qzae072. [PMID: 39388199 DOI: 10.1093/gpbjnl/qzae072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 09/24/2024] [Accepted: 09/30/2024] [Indexed: 10/15/2024]
Abstract
Single-cell RNA sequencing (scRNA-seq) has transformed our understanding of cellular diversity with unprecedented resolution. However, many current methods are limited in capturing full-length transcripts and discerning strand orientation. Here, we present RAG-seq, an innovative strand-specific total RNA sequencing technique that combines not-so-random (NSR) primers with Tn5 transposase-mediated tagmentation. RAG-seq overcomes previous limitations by delivering comprehensive transcript coverage and maintaining strand orientation, which are essential for accurate quantification of overlapping genes and detection of antisense transcripts. Through optimized reverse transcription with oligo-dT primers, rRNA depletion via Depletion of Abundant Sequences by Hybridization (DASH), and linear amplification, RAG-seq enhances sensitivity and reproducibility, especially for low-input samples and single cells. Application to mouse oocytes and early embryos highlights RAG-seq's superior performance in identifying stage-specific antisense transcripts, shedding light on their regulatory roles during early development. This advancement represents a significant leap in transcriptome analysis within complex biological contexts.
Collapse
Affiliation(s)
- Ping Xu
- China-Japan Union Hospital of Jilin University, Jilin University, Changchun 130033, China
- School of Life Sciences, Jilin University, Changchun 130012, China
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China
| | - Zhiheng Yuan
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China
| | - Xiaohua Lu
- Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Peng Zhou
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China
| | - Ding Qiu
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China
| | - Zhenghao Qiao
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China
| | - Zhongcheng Zhou
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China
| | - Li Guan
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China
| | - Yongkang Jia
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China
| | - Xuan He
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China
| | - Ling Sun
- Center for Reproductive Medicine, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China
| | - Youzhong Wan
- China-Japan Union Hospital of Jilin University, Jilin University, Changchun 130033, China
| | - Ming Wang
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China
| | - Yang Yu
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China
- Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
37
|
Rosales-Reynoso MA, Juárez-Vázquez CI, García-Sánchez IN, Palacios-Ramírez A, Godínez-Rodríguez MY, Tovar-Jácome CDJ, Tapia-Leyva CA, Robledo-López GE, García-Ortiz JE, Salas-González E, Alcaraz-Wong AA, Gallegos-Arreola MP. Investigation of HOTAIR rs12826786, rs920778 and rs4759314 Variants With Breast Cancer Susceptibility and Clinicopathological Characteristics in a Mexican Population. Clin Breast Cancer 2024:S1526-8209(24)00335-5. [PMID: 39725583 DOI: 10.1016/j.clbc.2024.11.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 11/22/2024] [Accepted: 11/28/2024] [Indexed: 12/28/2024]
Abstract
BACKGROUND Breast cancer (BC) is a multifactorial disease of unknown etiology whose major risk factors are genetic alterations of cell proliferation and migration pathways. HOX transcript antisense RNA gene (HOTAIR) is a long noncoding RNA (lncRNA) related to cell proliferation, progression, invasion, metastasis, and poor survival of multiple cancers, including BC. Controversial results have emerged on the association between breast cancer risk in multiple ethnicities. This study explores the association of rs12826786, rs920778, and rs4759314 variants in the HOTAIR gene in BC patients. METHODS DNA of peripheral blood samples was obtained from 588 women (289 patients and 299 control females). Genotypes were identified using polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) methodology. The association was calculated using the odds ratio (OR) test. p-values were adjusted by the Bonferroni test (0.016). RESULTS The rs12826786 (C > T), rs920778 (T > C), and rs4759314 (A > G) variants were associated with BC and with TNM stage, histologic type, and histologic molecular subtype (P = .001). Likewise, the haplotype C-T-G in the HOTAIR gene (rs12826786-rs920778-rs4759314) was significantly related to BC (OR = 5.44, 95% CI, 2.22-13.32, P = .001). CONCLUSION The results suggest that rs12826786, rs920778, and rs4759314 variants in HOTAIR significantly influence breast cancer risk.
Collapse
Affiliation(s)
- Mónica Alejandra Rosales-Reynoso
- División de Medicina Molecular, Centro de Investigación Biomédica de Occidente, Centro Médico Nacional de Occidente, Instituto Mexicano del Seguro Social, Guadalajara, Jalisco, México.
| | - Clara Ibet Juárez-Vázquez
- Dirección Académica Aparatos y Sistemas I. Facultad de Medicina. Decanato Ciencias de la Salud, Universidad Autónoma de Guadalajara, Zapopan, Jalisco, México
| | - Isabel Nohemí García-Sánchez
- División de Medicina Molecular, Centro de Investigación Biomédica de Occidente, Centro Médico Nacional de Occidente, Instituto Mexicano del Seguro Social, Guadalajara, Jalisco, México
| | - Alejandra Palacios-Ramírez
- Servicio de Ginecología Oncológica, Unidad Médica de Alta Especialidad, Hospital de Ginecología y Obstetricia. Centro Médico Nacional de Occidente, Instituto Mexicano del Seguro Social, Guadalajara, Jalisco, México
| | - Miriam Yadira Godínez-Rodríguez
- División de Medicina Molecular, Centro de Investigación Biomédica de Occidente, Centro Médico Nacional de Occidente, Instituto Mexicano del Seguro Social, Guadalajara, Jalisco, México
| | - César de Jesús Tovar-Jácome
- División de Medicina Molecular, Centro de Investigación Biomédica de Occidente, Centro Médico Nacional de Occidente, Instituto Mexicano del Seguro Social, Guadalajara, Jalisco, México
| | - Claudia Azucena Tapia-Leyva
- División de Medicina Molecular, Centro de Investigación Biomédica de Occidente, Centro Médico Nacional de Occidente, Instituto Mexicano del Seguro Social, Guadalajara, Jalisco, México
| | - Gerardo Emmanuel Robledo-López
- División de Medicina Molecular, Centro de Investigación Biomédica de Occidente, Centro Médico Nacional de Occidente, Instituto Mexicano del Seguro Social, Guadalajara, Jalisco, México
| | - José Elías García-Ortiz
- División de Genética, Centro de Investigación Biomédica de Occidente, Centro Médico Nacional de Occidente, Instituto Mexicano del Seguro Social, Guadalajara, Jalisco, México
| | - Efraín Salas-González
- Servicio de Oncología Médica, Unidad Médica de Alta Especialidad, Hospital de Ginecología y Obstetricia. Centro Médico Nacional de Occidente, Instituto Mexicano del Seguro Social, Guadalajara, Jalisco, México
| | - Aldo Antonio Alcaraz-Wong
- Servicio de Patología, Hospital de Especialidades, Centro Médico Nacional de Occidente, Instituto Mexicano del Seguro Social, Guadalajara, Jalisco, México
| | - Martha Patricia Gallegos-Arreola
- Servicio de Oncología Médica, Unidad Médica de Alta Especialidad, Hospital de Ginecología y Obstetricia. Centro Médico Nacional de Occidente, Instituto Mexicano del Seguro Social, Guadalajara, Jalisco, México
| |
Collapse
|
38
|
Elimam H, Alhamshry NAA, Hatawsh A, Elfar N, Moussa R, Radwan AF, Abd-Elmawla MA, Elkashlan AM, Zaki MB, Abdel-Reheim MA, Mohammed OA, Doghish AS. Natural products and long noncoding RNA signatures in gallbladder cancer: a review focuses on pathogenesis, diagnosis, and drug resistance. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:9549-9571. [PMID: 39028332 DOI: 10.1007/s00210-024-03279-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 07/02/2024] [Indexed: 07/20/2024]
Abstract
Gallbladder cancer (GBC) is an aggressive and lethal malignancy with a poor prognosis. Long noncoding RNAs (lncRNAs) and natural products have emerged as key orchestrators of cancer pathogenesis through widespread dysregulation across GBC transcriptomes. Functional studies have revealed that lncRNAs interact with oncoproteins and tumor suppressors to control proliferation, invasion, metastasis, angiogenesis, stemness, and drug resistance. Curcumin, baicalein, oleanolic acid, shikonin, oxymatrine, arctigenin, liensinine, fangchinoline, and dioscin are a few examples of natural compounds that have demonstrated promising anticancer activities against GBC through the regulation of important signaling pathways. The lncRNAs, i.e., SNHG6, Linc00261, GALM, OIP5-AS1, FOXD2-AS1, MINCR, DGCR5, MEG3, GATA6-AS, TUG1, and DILC, are key players in regulating the aforementioned processes. For example, the lncRNAs FOXD2-AS1, DILC, and HOTAIR activate oncogenes such as DNMT1, Wnt/β-catenin, BMI1, and c-Myc, whereas MEG3 and GATA6-AS suppress the tumor proteins NF-κB, EZH2, and miR-421. Clinically, specific lncRNAs can serve as diagnostic or prognostic biomarkers based on overexpression correlating with advanced TNM stage, metastasis, chemoresistance, and poor survival. Therapeutically, targeting aberrant lncRNAs with siRNA or antisense oligos disrupts their oncogenic signaling and inhibits GBC progression. Overall, dysfunctional lncRNA regulatory circuits offer multiple avenues for precision medicine approaches to improve early GBC detection and overcome this deadly cancer. They have the potential to serve as novel biomarkers as they are detectable in bodily fluids and tissues. These findings enhance gallbladder treatments, mitigating resistance to chemo- and radiotherapy.
Collapse
Affiliation(s)
- Hanan Elimam
- Department of Biochemistry, Faculty of Pharmacy, University of Sadat City, Sadat City, 32897, Egypt.
| | - Nora A A Alhamshry
- Department of Biochemistry, Faculty of Pharmacy, University of Sadat City, Sadat City, 32897, Egypt
| | - Abdulrahman Hatawsh
- Biotechnology School, 26th of July Corridor, Sheikh Zayed City, Nile University, Giza, 12588, Egypt
| | - Nourhan Elfar
- School of Life and Medical Sciences, University of Hertfordshire Hosted by Global Academic Foundation, New Administrative Capital, Cairo, 11578, Egypt
- Egyptian Drug Authority (EDA), Ministry of Health and Population, Cairo, 11567, Egypt
| | - Rewan Moussa
- Faculty of Medicine, Helwan University, Cairo, 11795, Egypt
| | - Abdullah F Radwan
- Department of Biochemistry, Faculty of Pharmacy, Egyptian Russian University, Cairo, 11829, Egypt
| | - Mai A Abd-Elmawla
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Akram M Elkashlan
- Department of Biochemistry, Faculty of Pharmacy, University of Sadat City, Sadat City, 32897, Egypt
| | - Mohamed Bakr Zaki
- Department of Biochemistry, Faculty of Pharmacy, University of Sadat City, Sadat City, 32897, Egypt
| | - Mustafa Ahmed Abdel-Reheim
- Department of Pharmaceutical Sciences, College of Pharmacy, Shaqra University, 11961, Shaqra, Saudi Arabia.
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni Suef, 62521, Egypt.
| | - Osama A Mohammed
- Department of Pharmacology, College of Medicine, University of Bisha, 61922, Bisha, Saudi Arabia
| | - Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo, 11829, Egypt
- Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231, Cairo, Egypt
| |
Collapse
|
39
|
Gao L, Li S, Chang HS, Kim YJ. Sequencing CURLY LEAF-associated RNAs in Arabidopsis revealed prevalent intergenic RNAs from the nuclear mitochondrial sequence. Mol Cells 2024; 47:100131. [PMID: 39427743 PMCID: PMC11605418 DOI: 10.1016/j.mocell.2024.100131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/29/2024] [Accepted: 10/15/2024] [Indexed: 10/22/2024] Open
Abstract
Polycomb group (PcG) proteins play key roles in development by repressing thousands of targets through histone modifications. However, how PcG is recruited to specific targets is poorly understood. In Arabidopsis, certain noncoding RNAs are necessary for recruiting the PcG protein CURLY LEAF (CLF) to its target sites. However, RNAs associated with CLF have not been analyzed on a genomic scale; thus, it is unknown whether long noncoding RNA (lncRNA)-mediated PcG recruitment is a widespread mechanism. Here, we systematically searched for CLF-associated RNAs by RNA immunoprecipitation followed by deep sequencing. We identified 1,299 genic and 138 intergenic regions that produced CLF-associated mRNAs and putative lncRNAs, respectively. The genes producing CLF-associated RNAs are depleted in PcG targets, carry active chromatin marks, and are highly expressed, suggesting that CLF may have a nonspecific or promiscuous RNA-binding affinity, similar to animal PcG proteins. Notably, a significant portion of the CLF-associated lncRNAs is derived from the nuclear mitochondrial sequence, which is extensively marked by H3K27me3. These findings indicate that, while CLF-RNA interactions are widespread, they may not always correlate with PcG target sites, highlighting the complexity of PcG recruitment mechanisms in Arabidopsis.
Collapse
Affiliation(s)
- Lei Gao
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China; Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Shengben Li
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China; Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing 210095, China
| | - Hyun Suh Chang
- Department of Systems Biology, Yonsei University, Seoul 03722, Republic of Korea
| | - Yun Ju Kim
- Department of Systems Biology, Yonsei University, Seoul 03722, Republic of Korea.
| |
Collapse
|
40
|
Kadian LK, Verma D, Lohani N, Yadav R, Ranga S, Gulshan G, Pal S, Kumari K, Chauhan SS. Long non-coding RNAs in cancer: multifaceted roles and potential targets for immunotherapy. Mol Cell Biochem 2024; 479:3229-3254. [PMID: 38413478 DOI: 10.1007/s11010-024-04933-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 01/05/2024] [Indexed: 02/29/2024]
Abstract
Cancer remains a major global health concern with high mortality rates mainly due to late diagnosis and poor prognosis. Long non-coding RNAs (lncRNAs) are emerging as key regulators of gene expression in human cancer, functioning through various mechanisms including as competing endogenous RNAs (ceRNAs) and indirectly regulating miRNA expression. LncRNAs have been found to have both oncogenic and tumor-suppressive roles in cancer, with the former promoting cancer cell proliferation, migration, invasion, and poor prognosis. Recent research has shown that lncRNAs are expressed in various immune cells and are involved in cancer cell immune escape and the modulation of the tumor microenvironment, thus highlighting their potential as targets for cancer immunotherapy. Targeting lncRNAs in cancer or immune cells could enhance the anti-tumor immune response and improve cancer immunotherapy outcomes. However, further research is required to fully understand the functional roles of lncRNAs in cancer and the immune system and their potential as targets for cancer immunotherapy. This review offers a comprehensive examination of the multifaceted roles of lncRNAs in human cancers, with a focus on their potential as targets for cancer immunotherapy. By exploring the intricate mechanisms underlying lncRNA-mediated regulation of cancer cell proliferation, invasion, and immune evasion, we provide insights into the diverse therapeutic applications of these molecules.
Collapse
Affiliation(s)
- Lokesh K Kadian
- Dept of Biochemistry, All India Institute of Medical Sciences, New Delhi, 110029, India
- Dept of Dermatology, Indiana University School of Medicine, Indianapolis, 46202, USA
| | - Deepika Verma
- Dept of Biochemistry, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Neelam Lohani
- Dept of Biochemistry, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Ritu Yadav
- Dept of Genetics, MD University, Rohtak, 124001, India
| | - Shalu Ranga
- Dept of Genetics, MD University, Rohtak, 124001, India
| | - Gulshan Gulshan
- Department of Biosciences and Bioengineering, IIT Bombay, Mumbai, Maharashtra, India
| | - Sanghapriya Pal
- Dept of Biochemistry, Maulana Azad Medical College and Associated Hospital, New Delhi, 110002, India
| | - Kiran Kumari
- Dept of Forensic Science, Lovely Professional University, Jalandhar, Punjab, 144411, India
| | - Shyam S Chauhan
- Dept of Biochemistry, All India Institute of Medical Sciences, New Delhi, 110029, India.
| |
Collapse
|
41
|
Tasnim A, Sumaiya AA, Noman AA, Tahsin A, Saba AA, Ahmed R, Yasmin T, Nabi AHMN. A Comparative Meta-Analysis on the Association of lncRNAs MALAT1, HOTAIR, and AFAP1-AS1 With the Risk of Developing Lymph Node Metastasis in Lung Cancer. Cancer Rep (Hoboken) 2024; 7:e70091. [PMID: 39725668 DOI: 10.1002/cnr2.70091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 11/21/2024] [Accepted: 12/03/2024] [Indexed: 12/28/2024] Open
Abstract
BACKGROUND Numerous studies have demonstrated the significance of long noncoding RNA (lncRNA) in the development of cancer metastasis. The expression levels of many lncRNAs are elevated in metastatic lung cancer patients compared to non-metastatic lung cancer patients. OBJECTIVES The primary objective of the study was to investigate the association between the expression levels of three lncRNAs (MALAT1, HOTAIR, and AFAP1-AS1) and lymph node metastasis (LNM) of lung cancer. METHODS Cell Press, PubMed, SpringerLink, Web of Science, and Google Scholar were explored to perform the literature search. After screening 1862 articles, 66 English-language articles were selected based on the inclusion and exclusion criteria. From those articles, 17 publications comprising 1622 lung cancer patients were chosen for statistical analyses as well as quality assessment tests. RESULTS Forest plot analysis revealed that there was a significant difference in the incidence of LNM between the high and low MALAT1 expression groups (OR = 3.21, 95% CI: 1.34-7.67; random effects model). Significant differences were also observed in the incidence of LNM between patients with high and low HOTAIR expression levels (OR = 4.17, 95% CI: 1.47-11.82; random effects model). The expression level of AFAP1-AS1 was found to be significantly associated with LNM in lung cancer (OR = 2.31, 95% CI: 1.39-3.85, random effects model). Additional analysis from GEPIA and GEO databases revealed that the expression levels of these lncRNAs vary according to the type of tumor tissue, organ of metastasis, and cancer stage. However, these databases show that the result for AFAP1-AS1 is the most aligned with the meta-analysis's findings. Furthermore, several quality assessment tests showed that the AFAP1-AS1 studies are more reliable compared to the studies of other lncRNAs. CONCLUSION This study suggested that LNM in lung cancer patients is associated mostly with an elevated AFAP1-AS1 lncRNA level among the pool of three lncRNAs analyzed. Before these results can be implemented in a clinical setting, it is essential to conduct further validation and undertake comprehensive analysis to ensure robustness and reliability.
Collapse
Affiliation(s)
- Anha Tasnim
- Laboratory of Population Genetics, Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, Bangladesh
| | - Afra Anjum Sumaiya
- Laboratory of Population Genetics, Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, Bangladesh
| | - Abdullah Al Noman
- Laboratory of Population Genetics, Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, Bangladesh
| | - Anika Tahsin
- Laboratory of Population Genetics, Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, Bangladesh
| | - Abdullah Al Saba
- Laboratory of Population Genetics, Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, Bangladesh
| | - Rubaiat Ahmed
- Laboratory of Population Genetics, Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, Bangladesh
| | - Tahirah Yasmin
- Laboratory of Population Genetics, Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, Bangladesh
| | - A H M Nurun Nabi
- Laboratory of Population Genetics, Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, Bangladesh
| |
Collapse
|
42
|
Chen Y, Dai J, Chen P, Dai Q, Chen Y, Li Y, Lu M, Qin S, Wang Q. Long non-coding RNAs-sphingolipid metabolism nexus: Potential targets for cancer treatment. Pharmacol Res 2024; 210:107539. [PMID: 39647803 DOI: 10.1016/j.phrs.2024.107539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/26/2024] [Accepted: 12/04/2024] [Indexed: 12/10/2024]
Abstract
Long non-coding RNAs (lncRNAs) have emerged as pivotal regulators of cancer pathogenesis, influencing various cellular processes and contributing to tumorigenesis. Sphingolipid metabolism has garnered interest as a potential target for cancer therapy owing to its considerable diagnostic and prognostic value. Recent studies have demonstrated that lncRNAs regulate tumor-associated metabolic reprogramming via sphingolipid metabolism. However, the precise nature of the interactions between lncRNAs and sphingolipid metabolism remains unclear. This review summarizes the key roles of lncRNAs and sphingolipid metabolism in tumorigenesis. We emphasize that the interaction between lncRNAs and sphingolipid metabolism influences their impact on both cancer prognosis and drug resistance. These findings suggest that lncRNA-sphingolipid metabolism interaction holds great potential as a newl target for cancer treatment.
Collapse
Affiliation(s)
- Yan Chen
- Department of Pharmacy, Center for Translational Research in Cancer, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China; Department of Respiratory Critical Care, The Affiliated Hospital of Southwest Medical University, Luzhou, China.
| | - Jing Dai
- School of pharmacy, Chengdu Medical college, Chengdu, China.
| | - Peng Chen
- Department of Pharmacy, Center for Translational Research in Cancer, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China.
| | - Quan Dai
- Department of Ultrasound, Center for Translational Research in Cancer, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China.
| | - Ya Chen
- Department of Pharmacy, Center for Translational Research in Cancer, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China.
| | - Yuying Li
- Department of Respiratory Critical Care, The Affiliated Hospital of Southwest Medical University, Luzhou, China.
| | - Man Lu
- Department of Ultrasound, Center for Translational Research in Cancer, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China.
| | - Shugang Qin
- Department of Exerimental Research, Center for Translational Research in Cancer, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China.
| | - Qiuju Wang
- Department of Experimental Research, Sichuan Cancer Hospital & Institute, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, 610041, China.
| |
Collapse
|
43
|
Ballesio F, Pepe G, Ausiello G, Novelletto A, Helmer-Citterich M, Gherardini PF. Human lncRNAs harbor conserved modules embedded in different sequence contexts. Noncoding RNA Res 2024; 9:1257-1270. [PMID: 39040814 PMCID: PMC11261117 DOI: 10.1016/j.ncrna.2024.06.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 06/11/2024] [Accepted: 06/19/2024] [Indexed: 07/24/2024] Open
Abstract
We analyzed the structure of human long non-coding RNA (lncRNAs) genes to investigate whether the non-coding transcriptome is organized in modular domains, as is the case for protein-coding genes. To this aim, we compared all known human lncRNA exons and identified 340 pairs of exons with high sequence and/or secondary structure similarity but embedded in a dissimilar sequence context. We grouped these pairs in 106 clusters based on their reciprocal similarities. These shared modules are highly conserved between humans and the four great ape species, display evidence of purifying selection and likely arose as a result of recent segmental duplications. Our analysis contributes to the understanding of the mechanisms driving the evolution of the non-coding genome and suggests additional strategies towards deciphering the functional complexity of this class of molecules.
Collapse
Affiliation(s)
- Francesco Ballesio
- PhD Program in Cellular and Molecular Biology, Department of Biology, University of Rome “Tor Vergata”, Rome, Italy
| | - Gerardo Pepe
- Department of Biology, University of Rome “Tor Vergata”, Rome, Italy
| | - Gabriele Ausiello
- Department of Biology, University of Rome “Tor Vergata”, Rome, Italy
| | - Andrea Novelletto
- Department of Biology, University of Rome “Tor Vergata”, Rome, Italy
| | | | | |
Collapse
|
44
|
Nishiyama H, Niinuma T, Kitajima H, Ishiguro K, Yamamoto E, Sudo G, Sasaki H, Yorozu A, Aoki H, Toyota M, Kai M, Suzuki H. HOXA11-As Promotes Lymph Node Metastasis Through Regulation of IFNL and HMGB Family Genes in Pancreatic Cancer. Int J Mol Sci 2024; 25:12920. [PMID: 39684631 DOI: 10.3390/ijms252312920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 11/26/2024] [Accepted: 11/28/2024] [Indexed: 12/18/2024] Open
Abstract
Recent studies have shown that long noncoding RNAs (lncRNAs) play pivotal roles in the development and progression of cancer. In the present study, we aimed to identify lncRNAs associated with lymph node metastasis in pancreatic ductal adenocarcinoma (PDAC). We analyzed data from The Cancer Genome Atlas (TCGA) database to screen for genes overexpressed in primary PDAC tumors with lymph node metastasis. Our screen revealed 740 genes potentially associated with lymph node metastasis, among which were multiple lncRNA genes located in the HOXA locus, including HOXA11-AS. Elevated expression of HOXA11-AS was associated with more advanced tumor stages and shorter overall survival in PDAC patients. HOXA11-AS knockdown suppressed proliferation and migration of PDAC cells. RNA-sequencing analysis revealed that HOXA11-AS knockdown upregulated interferon lambda (IFNL) family genes and downregulated high-mobility group box (HMGB) family genes in PDAC cells. Moreover, HMGB3 knockdown suppressed proliferation and migration by PDAC cells. These results suggest that HOXA11-AS contributes to PDAC progression, at least in part, through regulation of IFNL and HMGB family genes and that HOXA11 AS is a potential therapeutic target in PDAC.
Collapse
Affiliation(s)
- Hayato Nishiyama
- Department of Molecular Biology, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan
| | - Takeshi Niinuma
- Department of Molecular Biology, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan
| | - Hiroshi Kitajima
- Department of Molecular Biology, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan
| | - Kazuya Ishiguro
- Department of Molecular Biology, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan
| | - Eiichiro Yamamoto
- Department of Molecular Biology, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan
| | - Gota Sudo
- Department of Gastroenterology and Hepatology, Sapporo Medical University School of Medicine, Sapporo 060-8543, Japan
| | - Hajime Sasaki
- Department of Gastroenterology and Hepatology, Sapporo Medical University School of Medicine, Sapporo 060-8543, Japan
| | - Akira Yorozu
- Department of Molecular Biology, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan
- Department of Otolaryngology-Head and Neck Surgery, Sapporo Medical University School of Medicine, Sapporo 060-8543, Japan
| | - Hironori Aoki
- Department of Molecular Biology, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan
| | - Mutsumi Toyota
- Department of Molecular Biology, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan
| | - Masahiro Kai
- Department of Molecular Biology, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan
| | - Hiromu Suzuki
- Department of Molecular Biology, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan
| |
Collapse
|
45
|
John A, Almulla N, Elboughdiri N, Gacem A, Yadav KK, Abass AM, Alam MW, Wani AW, Bashir SM, Rab SO, Kumar A, Wani AK. Non-coding RNAs in Cancer: Mechanistic insights and therapeutic implications. Pathol Res Pract 2024; 266:155745. [PMID: 39637712 DOI: 10.1016/j.prp.2024.155745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 11/23/2024] [Accepted: 11/27/2024] [Indexed: 12/07/2024]
Abstract
Non-coding RNAs have gathered significant attention for their unique roles in biological regulation. Across a broad spectrum of developmental processes and diseases, particularly in human malignancies, ncRNAs play pivotal roles in regulatory mechanisms. MicroRNAs, long noncoding RNAs, and small nucleolar RNAs stand out among the diverse forms of ncRNAs that have been implicated in cancer. MiRNAs, classified as short non-coding RNAs, modulate gene expression by binding to messenger RNA molecules, thereby inhibiting their translation. Altered miRNA expression has been associated with the onset and progression of various malignancies, including lung, breast, and prostate cancer. In contrast, lncRNAs, characterized as longer ncRNAs, exert control over gene expression through various mechanisms, such as chromatin remodelling and gene silencing. This review offers a comprehensive examination of the numerous ncRNAs that have emerged as crucial regulators of gene expression, playing implicated roles in the initiation and progression of diverse cancers.
Collapse
Affiliation(s)
- Arjumand John
- School of Bioengineering and Biosciences, Lovely Professional University, Jalandhar, Punjab 144411, India
| | - Nuha Almulla
- Department of Biology, Adham University College, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Noureddine Elboughdiri
- Chemical Engineering Department, College of Engineering, University of Ha'il, P.O. Box 2440, Ha'il 81441, Saudi Arabia
| | - Amel Gacem
- Department of Physics, Faculty of Sciences, University 20 Aout, Skikda 1955, Algeria
| | - Krishna Kumar Yadav
- Department of VLSI Microelectronics, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai - 602105, Tamil Nadu, India; Environmental and Atmospheric Sciences Research Group, Scientific Research Center, Al-Ayen University, Thi-Qar, Nasiriyah 64001, Iraq
| | - Anass M Abass
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka 72388, Saudi Arabia
| | - Mir Waqas Alam
- Department of Physics, College of Science, King Faisal University, Al Ahsa 31982, Saudi Arabia.
| | - Ab Waheed Wani
- Department of Horticulture, School of Agriculture, Lovely Professional University, Jalandhar, Punjab 144411, India
| | - Showkeen Muzamil Bashir
- Biochemistry & Molecular Biology Lab, Division of Veterinary Biochemistry, Faculty of Veterinary Sciences and Animal Husbandry, Sher-e-Kashmir University of Agricultural Sciences and Technology, Srinagar, Jammu and Kashmir 190006, India
| | - Safia Obaidur Rab
- Central Labs, King Khalid University, AlQura'a, P.O. Box 960, Abha, Saudi Arabia; Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Abhinav Kumar
- Department of Nuclear and Renewable Energy, Ural Federal University Named after the First President of Russia Boris Yeltsin, Ekaterinburg 620002, Russia; Department of Technical Sciences, Western Caspian University, Baku, Azerbaijan; Department of Mechanical Engineering, Karpagam Academy of Higher Education, Coimbatore 641021, India
| | - Atif Khurshid Wani
- School of Bioengineering and Biosciences, Lovely Professional University, Jalandhar, Punjab 144411, India.
| |
Collapse
|
46
|
Shi H, Wang P, Wang J, Chen L, Qin Y, Lv J. Global lncRNA expression signature in pre-metastatic lung and their regulatory effects in pulmonary metastasis. Front Immunol 2024; 15:1506561. [PMID: 39676873 PMCID: PMC11638156 DOI: 10.3389/fimmu.2024.1506561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Accepted: 11/13/2024] [Indexed: 12/17/2024] Open
Abstract
Background Lung metastasis has garnered significant attention due to its prevalent occurrence. Pre-metastatic niche (PMN) establishment is a critical prerequisite for the onset of lung metastasis. Emerging evidence indicates that long noncoding RNAs (lncRNAs) play pivotal roles in the metastatic cascade to the lungs. However, the relationship between lncRNA expression profiles and the formation of PMN remains uncharacterized. This study aims to explore the expression profiles and potential roles of lncRNAs in the context of pre-metastatic lung microenvironment. Methods RNA sequencing was utilized to elucidate the lncRNA landscape in pre-metastatic lung of murine models. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were performed to infer the prospective functions of the differentially expressed lncRNAs. Among these, lncRNA Gm5144-202 in alveolar macrophages (AMs) was further scrutinized for its role in driving M2 macrophage polarization, facilitating the formation of PMN, and orchestrating the apoptosis, proliferation, and migration of tumor cells in vitro. Results A total of 232 lncRNAs exhibited differential expression in pre-metastatic murine lungs compared to normal controls, predominantly enriching pathways such as PI3K-Akt signaling, calcium signaling, neuroactive ligand-receptor interaction, and NF-κB signaling. Notably, lncRNA Gm5144-202 exhibited the most pronounced difference, with elevated level in alveolar macrophages (AMs) during the pre-metastatic phase. Silencing of lncRNA Gm5144-202 impeded the polarization of M2-like macrophages, suppressed the expression of factors critical for the formation of the PMN, and inhibited tumor cell invasion. Conclusions Our research delineated the lncRNA expression profiles in pre-metastatic pulmonary tissues and identified, for the first time, the pivotal role of lncRNA Gm5144-202 in modulating M2 macrophage polarization and tumor cell invasiveness. Consequently, targeting lncRNA Gm5144-202 holds substantial promise for translational applications aimed at mitigating pulmonary metastasis.
Collapse
Affiliation(s)
- Huifang Shi
- Clinical Laboratory, The Rizhao People’s Hospital Affiliated to Jining Medical University, Rizhao, Shandong, China
| | - Peng Wang
- Clinical Laboratory, Rizhao Center for Disease Control and Prevention, Rizhao, Shandong, China
| | - Jiaan Wang
- Blood Transfusion Department, The Rizhao People’s Hospital Affiliated to Jining Medical University, Rizhao, Shandong, China
| | - Lei Chen
- Clinical Laboratory, The Rizhao People’s Hospital Affiliated to Jining Medical University, Rizhao, Shandong, China
| | - Yan Qin
- Clinical Laboratory, The Rizhao People’s Hospital Affiliated to Jining Medical University, Rizhao, Shandong, China
| | - Jie Lv
- Clinical Laboratory, The Rizhao People’s Hospital Affiliated to Jining Medical University, Rizhao, Shandong, China
| |
Collapse
|
47
|
Dakal TC, Philip RR, Bhushan R, Sonar PV, Rajagopal S, Kumar A. Genetic and epigenetic regulation of non-coding RNAs: Implications in cancer metastasis, stemness and drug resistance. Pathol Res Pract 2024; 266:155728. [PMID: 39657397 DOI: 10.1016/j.prp.2024.155728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 11/11/2024] [Accepted: 11/17/2024] [Indexed: 12/12/2024]
Abstract
Cancer stem cells (CSCs) have a crucial function in the initiation, advancement, and resistance to therapy of tumors. Recent findings indicate that non-coding RNAs (ncRNAs), such as microRNAs (miRNAs) and long non-coding RNAs (lncRNAs), play a complex role in controlling the features of cancer stem cells (CSCs). Non-coding RNAs (ncRNAs) play a crucial role in controlling important characteristics of stem cells, such as their ability to renew themselves, differentiate into distinct cell types, and resist therapy. This article provides an overview of the current understanding of the complex relationship between non-coding RNAs (ncRNAs), namely microRNAs (miRNAs) and long non-coding RNAs (lncRNAs), and cancer stem cells (CSCs). Particular microRNAs (miRNAs) and long non-coding RNAs (lncRNAs) are involved in regulating important signaling pathways like as Wnt, Notch, and Hedgehog, which control stem cell-like characteristics. The miR-34, miR-200, and let-7 families specifically aim at inhibiting the process of self-renewal and epithelial-to-mesenchymal transition. On the other hand, long non-coding RNAs (lncRNAs) such as H19, HOTAIR, and MALAT1 play a role in modifying the epigenetic landscape, hence enhancing the characteristics of stemness. This article also offers a thorough examination of the role of non-coding RNAs (ncRNAs) in regulating cancer stemness, emphasizing their impact on crucial biochemical pathways, epigenetic changes, and therapeutic implications. Comprehending the interaction between non-coding RNAs (ncRNAs) and cancer stem cells (CSCs) provides fresh perspectives on possible focused treatments for fighting aggressive and resistant malignancies. Gaining a comprehensive understanding of the connection between non-coding RNA (ncRNA) and cancer stem cells (CSC) offers valuable insights for the development of novel and precise treatments to combat aggressive cancers that are resistant to conventional therapies. In addition, the combination of ncRNA therapies with conventional methods like as chemotherapy or epigenetic medicines could result in synergistic effects. Nevertheless, there are still obstacles to overcome in terms of delivery, effectiveness, and safety. In summary, the interaction between non-coding RNA and cancer stemness shows potential as a targeted treatment approach in the field of precision oncology. This calls for additional investigation and use in clinical settings.
Collapse
Affiliation(s)
- Tikam Chand Dakal
- Genome and Computational Biology Lab, Department of Biotechnology, Mohanlal Sukhadia University, Udaipur, Rajasthan 313001, India.
| | - Reya Rene Philip
- Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, Chennai, India
| | - Ravi Bhushan
- Department of Zoology, M.S. College, Motihari, Bihar 845401, India
| | | | - Senthilkumar Rajagopal
- Department of Biotechnology, School of Applied Sciences, REVA University, Bengaluru, Karnataka, India
| | - Abhishek Kumar
- Institute of Bioinformatics, International Technology Park, Bangalore 560066, India; Manipal Academy of Higher Education (MAHE), Manipal, Karnataka 576104, India.
| |
Collapse
|
48
|
Nadhan R, Isidoro C, Song YS, Dhanasekaran DN. LncRNAs and the cancer epigenome: Mechanisms and therapeutic potential. Cancer Lett 2024; 605:217297. [PMID: 39424260 DOI: 10.1016/j.canlet.2024.217297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 09/30/2024] [Accepted: 10/08/2024] [Indexed: 10/21/2024]
Abstract
Long non-coding RNAs (lncRNAs) have emerged as critical regulators of epigenome, modulating gene expression through DNA methylation, histone modification, and/or chromosome remodeling. Dysregulated lncRNAs act as oncogenes or tumor suppressors, driving tumor progression by shaping the cancer epigenome. By interacting with the writers, readers, and erasers of the epigenetic script, lncRNAs induce epigenetic modifications that bring about changes in cancer cell proliferation, apoptosis, epithelial-mesenchymal transition, migration, invasion, metastasis, cancer stemness and chemoresistance. This review analyzes and discusses the multifaceted role of lncRNAs in cancer pathobiology, from cancer genesis and progression through metastasis and therapy resistance. It also explores the therapeutic potential of targeting lncRNAs through innovative diagnostic, prognostic, and therapeutic strategies. Understanding the dynamic interplay between lncRNAs and epigenome is crucial for developing personalized therapeutic strategies, offering new avenues for precision cancer medicine.
Collapse
Affiliation(s)
- Revathy Nadhan
- Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
| | - Ciro Isidoro
- Laboratory of Molecular Pathology and NanoBioImaging, Department of Health Sciences, Università del Piemonte Orientale, Novara, Italy.
| | - Yong Sang Song
- Department of Obstetrics and Gynecology, Cancer Research Institute, College of Medicine, Seoul National University, Seoul, 151-921, South Korea.
| | - Danny N Dhanasekaran
- Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Department of Cell Biology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
| |
Collapse
|
49
|
Li YY, Qian FC, Zhang GR, Li XC, Zhou LW, Yu ZM, Liu W, Wang QY, Li CQ. FunlncModel: integrating multi-omic features from upstream and downstream regulatory networks into a machine learning framework to identify functional lncRNAs. Brief Bioinform 2024; 26:bbae623. [PMID: 39602828 PMCID: PMC11601888 DOI: 10.1093/bib/bbae623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/26/2024] [Accepted: 11/14/2024] [Indexed: 11/29/2024] Open
Abstract
Accumulating evidence indicates that long noncoding RNAs (lncRNAs) play important roles in molecular and cellular biology. Although many algorithms have been developed to reveal their associations with complex diseases by using downstream targets, the upstream (epi)genetic regulatory information has not been sufficiently leveraged to predict the function of lncRNAs in various biological processes. Therefore, we present FunlncModel, a machine learning-based interpretable computational framework, which aims to screen out functional lncRNAs by integrating a large number of (epi)genetic features and functional genomic features from their upstream/downstream multi-omic regulatory networks. We adopted the random forest method to mine nearly 60 features in three categories from >2000 datasets across 11 data types, including transcription factors (TFs), histone modifications, typical enhancers, super-enhancers, methylation sites, and mRNAs. FunlncModel outperformed alternative methods for classification performance in human embryonic stem cell (hESC) (0.95 Area Under Curve (AUROC) and 0.97 Area Under the Precision-Recall Curve (AUPRC)). It could not only infer the most known lncRNAs that influence the states of stem cells, but also discover novel high-confidence functional lncRNAs. We extensively validated FunlncModel's efficacy by up to 27 cancer-related functional prediction tasks, which involved multiple cancer cell growth processes and cancer hallmarks. Meanwhile, we have also found that (epi)genetic regulatory features, such as TFs and histone modifications, serve as strong predictors for revealing the function of lncRNAs. Overall, FunlncModel is a strong and stable prediction model for identifying functional lncRNAs in specific cellular contexts. FunlncModel is available as a web server at https://bio.liclab.net/FunlncModel/.
Collapse
Affiliation(s)
- Yan-Yu Li
- The First Affiliated Hospital & National Health Commission Key Laboratory of Birth Defect Research and Prevention, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
- Hunan Provincial Key Laboratory of Multi-omics and Artificial Intelligence of Cardiovascular Diseases, University of South China, Hengyang, Hunan, 421001, China
- School of Computer, University of South China, Hengyang, Hunan, 421001, China
- Institute of Biochemistry and Molecular Biology, Hengyang Medical College, University of South China, Hengyang, Hunan, 421001, China
| | - Feng-Cui Qian
- The First Affiliated Hospital & National Health Commission Key Laboratory of Birth Defect Research and Prevention, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
- Hunan Provincial Key Laboratory of Multi-omics and Artificial Intelligence of Cardiovascular Diseases, University of South China, Hengyang, Hunan, 421001, China
- School of Computer, University of South China, Hengyang, Hunan, 421001, China
- Institute of Biochemistry and Molecular Biology, Hengyang Medical College, University of South China, Hengyang, Hunan, 421001, China
| | - Guo-Rui Zhang
- Institute of Biochemistry and Molecular Biology, Hengyang Medical College, University of South China, Hengyang, Hunan, 421001, China
| | - Xue-Cang Li
- School of Medical Informatics, Daqing Campus, Harbin Medical University, Daqing, 163000, China
| | - Li-Wei Zhou
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Zheng-Min Yu
- School of Computer, University of South China, Hengyang, Hunan, 421001, China
| | - Wei Liu
- College of Science, Heilongjiang Institute of Technology, Harbin, Heilongjiang, 150000, China
| | - Qiu-Yu Wang
- The First Affiliated Hospital & National Health Commission Key Laboratory of Birth Defect Research and Prevention, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
- Hunan Provincial Key Laboratory of Multi-omics and Artificial Intelligence of Cardiovascular Diseases, University of South China, Hengyang, Hunan, 421001, China
- School of Computer, University of South China, Hengyang, Hunan, 421001, China
- Institute of Biochemistry and Molecular Biology, Hengyang Medical College, University of South China, Hengyang, Hunan, 421001, China
| | - Chun-Quan Li
- The First Affiliated Hospital & National Health Commission Key Laboratory of Birth Defect Research and Prevention, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
- Hunan Provincial Key Laboratory of Multi-omics and Artificial Intelligence of Cardiovascular Diseases, University of South China, Hengyang, Hunan, 421001, China
- Key Laboratory of Rare Pediatric Diseases, Ministry of Education, University of South China, Hengyang, Hunan, 421001, China
- School of Computer, University of South China, Hengyang, Hunan, 421001, China
- Institute of Biochemistry and Molecular Biology, Hengyang Medical College, University of South China, Hengyang, Hunan, 421001, China
| |
Collapse
|
50
|
Tsai CC, Wang CY, Chang HH, Chang PTS, Chang CH, Chu TY, Hsu PC, Kuo CY. Diagnostics and Therapy for Malignant Tumors. Biomedicines 2024; 12:2659. [PMID: 39767566 PMCID: PMC11726849 DOI: 10.3390/biomedicines12122659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/20/2024] [Accepted: 11/20/2024] [Indexed: 01/03/2025] Open
Abstract
Malignant tumors remain one of the most significant global health challenges and contribute to high mortality rates across various cancer types. The complex nature of these tumors requires multifaceted diagnostic and therapeutic approaches. This review explores current advancements in diagnostic methods, including molecular imaging, biomarkers, and liquid biopsies. It also delves into the evolution of therapeutic strategies, including surgery, chemotherapy, radiation therapy, and novel targeted therapies such as immunotherapy and gene therapy. Although significant progress has been made in the understanding of cancer biology, the future of oncology lies in the integration of precision medicine, improved diagnostic tools, and personalized therapeutic approaches that address tumor heterogeneity. This review aims to provide a comprehensive overview of the current state of cancer diagnostics and treatments while highlighting emerging trends and challenges that lie ahead.
Collapse
Affiliation(s)
- Chung-Che Tsai
- Department of Research, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 231, Taiwan; (C.-C.T.); (C.-H.C.); (T.Y.C.)
| | - Chun-Yu Wang
- Department of Dentistry, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 231, Taiwan;
| | - Hsu-Hung Chang
- Division of Nephrology, Department of Internal Medicine, Sijhih Cathay General Hospital, New Taipei City 221, Taiwan;
| | | | - Chuan-Hsin Chang
- Department of Research, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 231, Taiwan; (C.-C.T.); (C.-H.C.); (T.Y.C.)
| | - Tin Yi Chu
- Department of Research, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 231, Taiwan; (C.-C.T.); (C.-H.C.); (T.Y.C.)
| | - Po-Chih Hsu
- Department of Dentistry, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 231, Taiwan;
- Institute of Oral Medicine and Materials, College of Medicine, Tzu Chi University, Hualien 970, Taiwan
| | - Chan-Yen Kuo
- Department of Research, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 231, Taiwan; (C.-C.T.); (C.-H.C.); (T.Y.C.)
| |
Collapse
|