1
|
Sommer F, Bernardes JP, Best L, Sommer N, Hamm J, Messner B, López-Agudelo VA, Fazio A, Marinos G, Kadibalban AS, Ito G, Falk-Paulsen M, Kaleta C, Rosenstiel P. Life-long microbiome rejuvenation improves intestinal barrier function and inflammaging in mice. MICROBIOME 2025; 13:91. [PMID: 40176137 PMCID: PMC11963433 DOI: 10.1186/s40168-025-02089-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 03/10/2025] [Indexed: 04/04/2025]
Abstract
BACKGROUND Alterations in the composition and function of the intestinal microbiota have been observed in organismal aging across a broad spectrum of animal phyla. Recent findings, which have been derived mostly in simple animal models, have even established a causal relationship between age-related microbial shifts and lifespan, suggesting microbiota-directed interventions as a potential tool to decelerate aging processes. To test whether a life-long microbiome rejuvenation strategy could delay or even prevent aging in non-ruminant mammals, we performed recurrent fecal microbial transfer (FMT) in mice throughout life. Transfer material was either derived from 8-week-old mice (young microbiome, yMB) or from animals of the same age as the recipients (isochronic microbiome, iMB) as control. Motor coordination and strength were analyzed by rotarod and grip strength tests, intestinal barrier function by serum LAL assay, transcriptional responses by single-cell RNA sequencing, and fecal microbial community properties by 16S rRNA gene profiling and metagenomics. RESULTS Colonization with yMB improved coordination and intestinal permeability compared to iMB. yMB encoded fewer pro-inflammatory factors and altered metabolic pathways favoring oxidative phosphorylation. Ecological interactions among bacteria in yMB were more antagonistic than in iMB implying more stable microbiome communities. Single-cell RNA sequencing analysis of intestinal mucosa revealed a salient shift of cellular phenotypes in the yMB group with markedly increased ATP synthesis and mitochondrial pathways as well as a decrease of age-dependent mesenchymal hallmark transcripts in enterocytes and TA cells, but reduced inflammatory signaling in macrophages. CONCLUSIONS Taken together, we demonstrate that life-long and repeated transfer of microbiota material from young mice improved age-related processes including coordinative ability (rotarod), intestinal permeability, and both metabolic and inflammatory profiles mainly of macrophages but also of other immune cells. Video Abstract.
Collapse
Affiliation(s)
- Felix Sommer
- Institute of Clinical Molecular Biology, Christian-Albrechts-University and University Hospital Schleswig-Holstein, Kiel, 24105, Germany
| | - Joana P Bernardes
- Institute of Clinical Molecular Biology, Christian-Albrechts-University and University Hospital Schleswig-Holstein, Kiel, 24105, Germany
| | - Lena Best
- Institute of Experimental Medicine, Christian-Albrechts-University and University Hospital Schleswig-Holstein, Kiel, 24105, Germany
| | - Nina Sommer
- Institute of Clinical Molecular Biology, Christian-Albrechts-University and University Hospital Schleswig-Holstein, Kiel, 24105, Germany
| | - Jacob Hamm
- Institute of Clinical Molecular Biology, Christian-Albrechts-University and University Hospital Schleswig-Holstein, Kiel, 24105, Germany
- Department of Gastroenterology, Gastrointestinal Oncology and Endocrinology, University Medical Center, Göttingen, Germany
| | - Berith Messner
- Institute of Clinical Molecular Biology, Christian-Albrechts-University and University Hospital Schleswig-Holstein, Kiel, 24105, Germany
| | - Víctor A López-Agudelo
- Institute of Clinical Molecular Biology, Christian-Albrechts-University and University Hospital Schleswig-Holstein, Kiel, 24105, Germany
| | - Antonella Fazio
- Institute of Clinical Molecular Biology, Christian-Albrechts-University and University Hospital Schleswig-Holstein, Kiel, 24105, Germany
- Department of Medicine I, University Medical Center Hamburg-Eppendorf, Hamburg, 20246, Germany
| | - Georgios Marinos
- Institute of Experimental Medicine, Christian-Albrechts-University and University Hospital Schleswig-Holstein, Kiel, 24105, Germany
- CAU Innovation Gmbh, Christian-Albrechts-University, Kiel, 24118, Germany
| | - A Samer Kadibalban
- Institute of Experimental Medicine, Christian-Albrechts-University and University Hospital Schleswig-Holstein, Kiel, 24105, Germany
| | - Go Ito
- Institute of Clinical Molecular Biology, Christian-Albrechts-University and University Hospital Schleswig-Holstein, Kiel, 24105, Germany
- Department of Gastroenterology and Hepatology, Institute of Science Tokyo, Tokyo, Japan
- The Center for Personalized Medicine for Healthy Aging, Institute of Science Tokyo, Tokyo, Japan
| | - Maren Falk-Paulsen
- Institute of Clinical Molecular Biology, Christian-Albrechts-University and University Hospital Schleswig-Holstein, Kiel, 24105, Germany
| | - Christoph Kaleta
- Institute of Experimental Medicine, Christian-Albrechts-University and University Hospital Schleswig-Holstein, Kiel, 24105, Germany
| | - Philip Rosenstiel
- Institute of Clinical Molecular Biology, Christian-Albrechts-University and University Hospital Schleswig-Holstein, Kiel, 24105, Germany.
| |
Collapse
|
2
|
Farzi A, Tatzl E, Kashofer K, Trajanoski S, Herbert MK, Holzer P. Antibiotic-induced decrease of bacterial load in guinea pig intestine reduces α 2-adrenoceptor expression and activity in peristaltic motor inhibition. Br J Pharmacol 2025. [PMID: 39987671 DOI: 10.1111/bph.70001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 11/13/2024] [Accepted: 12/23/2024] [Indexed: 02/25/2025] Open
Abstract
BACKGROUND AND PURPOSE The use of analgosedatives in critically ill patients carries the risk of impairing gastrointestinal (GI) propulsion and could thereby lead to sepsis. The gut microbiota can influence GI motility, but whether GI microbial dysbiosis modifies GI peristalsis impairment by analgosedative drugs has not yet been analysed. This question was addressed in the guinea pig small intestine following a decrease of bacterial load by antibiotic pretreatment. EXPERIMENTAL APPROACH Guinea pigs were enorally (within the mouth) pretreated with meropenem, neomycin and vancomycin, and antibiotic-induced decrease of bacterial load was confirmed by 16S rDNA sequencing. Peristalsis in the isolated guinea pig small intestine was evaluated by determining the pressure threshold at which a peristaltic wave is triggered. The expression of factors that may be relevant to communication between GI microbiota and the motor system was examined at the mRNA (quantitative (q)PCR]) and/or protein (enzyme-linked immunosorbent assay [ELISA]) level. KEY RESULTS Antibiotic treatment disturbed the small intestinal microbiome as shown by decrease of bacterial load and reduced alpha diversity. Microbial dysbiosis did not affect peristalsis at baseline but blunted the ability of α2 agonists to inhibit peristalsis, while the anti-peristaltic effects of sufentanil, midazolam, neostigmine and propofol were inconsistently affected. These functional alterations were complemented by a decreased expression of α2-adrenoceptors, toll-like receptors (TRL) 3, 4 & 7, IFN-γ and iNOS. CONCLUSION AND IMPLICATIONS Antibiotic-induced decrease of bacterial load in the small intestine selectively blunts the ability of α2 agonists to impair peristalsis. This effect is explained by decreased α2-adrenoceptor expression, which may arise from TLR down-regulation in the dysbiotic gut.
Collapse
Affiliation(s)
- Aitak Farzi
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
| | - Eva Tatzl
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
- Department of Anaesthesiology and Intensive Care Medicine, Medical University of Graz, Graz, Austria
| | - Karl Kashofer
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Graz, Austria
| | - Slave Trajanoski
- Core Facility Computational Bioanalytics, Center for Medical Research, Medical University of Graz, Graz, Austria
| | - Michael K Herbert
- Department of Anaesthesiology and Intensive Care Medicine, Medical University of Graz, Graz, Austria
| | - Peter Holzer
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
| |
Collapse
|
3
|
Wu S, Chen H, Yu R, Li H, Zhao J, Stanton C, Paul Ross R, Chen W, Yang B. Human milk oligosaccharides 2'-fucosyllactose and 3-fucosyllactose attenuate ovalbumin-induced food allergy through immunoregulation and gut microbiota modulation. Food Funct 2025; 16:1267-1283. [PMID: 39918321 DOI: 10.1039/d4fo04638b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2025]
Abstract
The prebiotic properties of human milk oligosaccharides (HMOs) and emerging evidence of immunomodulatory effects suggest their potential therapeutic value in allergy management. 2'-Fucosyllactose (2'-FL) has been reported to alleviate food allergies, while the effect of other fucosylated HMOs on food allergy remains unclear. In this study, we assess the effect of two HMOs, 2'-FL and 3-fucosyllactose (3-FL), on symptomatology and immunological responses in an ovalbumin (OVA)-sensitized mouse model of food allergy as well as their influence on gut microbiota. The assessment of allergic symptoms, specific immunoglobulin E (IgE), and related gene expression levels in sensitized mice indicated that 3-FL was as effective as 2'-FL in alleviating food allergy. 2'-FL and 3-FL significantly decreased serum levels of OVA-specific IgE, mouse mast cell protease (mMCP-1) and IL-4 while increasing the levels of IFN-γ. Additionally, 2'-FL and 3-FL down-regulated gene expression of allergy-related cytokines in the small intestine and improved intestinal barrier damage. Furthermore, both 2'-FL and 3-FL treatment positively influenced the gut microbial profiles, in particular by enhancing the proportion of beneficial bacteria such as Lactobacillus and Bifidobacterium and decreasing the percentage of Turicibacter and Lachnospiraceae NK4A136 group, thereby modulating the immune system. Therefore, this study can provide insights into 2'-FL and 3-FL to alleviate OVA-induced allergy.
Collapse
Affiliation(s)
- Siya Wu
- State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China.
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Haiqin Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China.
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Renqiang Yu
- Department of Neonatology, Affiliated Women's Hospital of Jiangnan University, Wuxi 214002, China.
| | - Huizhen Li
- State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China.
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China.
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- International Joint Research Laboratory for Maternal-Infant Microbiota and Health, Jiangnan University, Wuxi 214122, China
| | - Catherine Stanton
- International Joint Research Laboratory for Maternal-Infant Microbiota and Health, Jiangnan University, Wuxi 214122, China
- APC Microbiome Ireland, University College Cork, T12 K8AF Cork, Ireland
- Teagasc Food Research Centre, Moorepark, Fermoy, P61 C996 Co. Cork, Ireland
| | - R Paul Ross
- International Joint Research Laboratory for Maternal-Infant Microbiota and Health, Jiangnan University, Wuxi 214122, China
- APC Microbiome Ireland, University College Cork, T12 K8AF Cork, Ireland
| | - Wei Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China.
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Bo Yang
- State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China.
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- International Joint Research Laboratory for Maternal-Infant Microbiota and Health, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
4
|
Toyomane K, Kimura Y, Fukagawa T, Yamagishi T, Watanabe K, Akutsu T, Asahi A, Kubota S, Sekiguchi K. Metagenomic sequencing of CRISPRs as a new marker to aid in personal identification with low-biomass samples. mSystems 2024; 9:e0103824. [PMID: 39470190 PMCID: PMC11575304 DOI: 10.1128/msystems.01038-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 09/26/2024] [Indexed: 10/30/2024] Open
Abstract
The high specificity of the human skin microbiome is expected to provide a new marker for personal identification. Metagenomic sequencing of clustered regularly interspaced short palindromic repeats (CRISPRs), which we call metaCRISPR typing, was shown to achieve personal identification accurately. However, the intra-individual variability observed in previous studies, which may be due to poor DNA yields from skin samples, has resulted in non-reproducible results. Furthermore, whether metaCRISPR typing can assist in the forensic human DNA analysis of low-biomass samples, from which the information obtained is insufficient, is unknown. In the present study, we sequenced serially diluted control streptococcal CRISPRs cloned into plasmids to determine the minimum copy number required to obtain reproducible results from metaCRISPR typing. We found that at least 102 copies of CRISPRs are necessary to obtain reproducible results. We then analyzed the skin swab samples using both metaCRISPR typing and human DNA typing. When the DNA extracted from the skin swabs was diluted, no information was obtained from six out of eight samples by human DNA typing. On the other hand, beta diversity indices of spacer sequences compared with reference samples were below 0.8 for three out of six samples, for which no information was obtained from human DNA analysis, indicating that the spacers observed in these samples were similar to those in the references. These results indicate that metaCRISPR typing may contribute to the identification of individuals from whom the samples were obtained, even in cases where human DNA yields are insufficient to perform human DNA analysis.IMPORTANCEPrevious studies have developed new personal identification methods utilizing personal differences in the skin microbiome. However, intra-individual diversity of skin microbiome may preclude the application of microbiome-based personal identification. Moreover, no study has compared microbiome-based personal identification and practical human DNA analysis. Here, we revealed that the results of metaCRISPR typing, a previously developed microbiome-based personal identification method, are stable if the copy number of the marker gene is sufficient. We then analyzed the skin swab samples using both metaCRISPR typing and human DNA analysis. Our results indicate that metaCRISPR typing may provide additional information for personal identification using low-biomass samples that cannot be used for conventional human DNA analysis.
Collapse
Affiliation(s)
- Kochi Toyomane
- National Research Institute of Police Science, Kashiwa, Chiba, Japan
| | - Yuri Kimura
- National Research Institute of Police Science, Kashiwa, Chiba, Japan
| | - Takashi Fukagawa
- National Research Institute of Police Science, Kashiwa, Chiba, Japan
| | | | - Ken Watanabe
- National Research Institute of Police Science, Kashiwa, Chiba, Japan
| | - Tomoko Akutsu
- National Research Institute of Police Science, Kashiwa, Chiba, Japan
| | - Ai Asahi
- National Research Institute of Police Science, Kashiwa, Chiba, Japan
| | - Satoshi Kubota
- National Research Institute of Police Science, Kashiwa, Chiba, Japan
| | | |
Collapse
|
5
|
Khalil M, Di Ciaula A, Mahdi L, Jaber N, Di Palo DM, Graziani A, Baffy G, Portincasa P. Unraveling the Role of the Human Gut Microbiome in Health and Diseases. Microorganisms 2024; 12:2333. [PMID: 39597722 PMCID: PMC11596745 DOI: 10.3390/microorganisms12112333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 11/12/2024] [Accepted: 11/14/2024] [Indexed: 11/29/2024] Open
Abstract
The human gut is a complex ecosystem that supports billions of living species, including bacteria, viruses, archaea, phages, fungi, and unicellular eukaryotes. Bacteria give genes and enzymes for microbial and host-produced compounds, establishing a symbiotic link between the external environment and the host at both the gut and systemic levels. The gut microbiome, which is primarily made up of commensal bacteria, is critical for maintaining the healthy host's immune system, aiding digestion, synthesizing essential nutrients, and protecting against pathogenic bacteria, as well as influencing endocrine, neural, humoral, and immunological functions and metabolic pathways. Qualitative, quantitative, and/or topographic shifts can alter the gut microbiome, resulting in dysbiosis and microbial dysfunction, which can contribute to a variety of noncommunicable illnesses, including hypertension, cardiovascular disease, obesity, diabetes, inflammatory bowel disease, cancer, and irritable bowel syndrome. While most evidence to date is observational and does not establish direct causation, ongoing clinical trials and advanced genomic techniques are steadily enhancing our understanding of these intricate interactions. This review will explore key aspects of the relationship between gut microbiota, eubiosis, and dysbiosis in human health and disease, highlighting emerging strategies for microbiome engineering as potential therapeutic approaches for various conditions.
Collapse
Affiliation(s)
- Mohamad Khalil
- Clinica Medica “A. Murri”, Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), Medical School, University of Bari Aldo Moro, 70124 Bari, Italy; (M.K.); (A.D.C.); (L.M.); (N.J.)
| | - Agostino Di Ciaula
- Clinica Medica “A. Murri”, Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), Medical School, University of Bari Aldo Moro, 70124 Bari, Italy; (M.K.); (A.D.C.); (L.M.); (N.J.)
| | - Laura Mahdi
- Clinica Medica “A. Murri”, Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), Medical School, University of Bari Aldo Moro, 70124 Bari, Italy; (M.K.); (A.D.C.); (L.M.); (N.J.)
| | - Nour Jaber
- Clinica Medica “A. Murri”, Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), Medical School, University of Bari Aldo Moro, 70124 Bari, Italy; (M.K.); (A.D.C.); (L.M.); (N.J.)
| | - Domenica Maria Di Palo
- Division of Hygiene, Department of Interdisciplinary Medicine, University of Bari Aldo Moro, Piazza Giulio Cesare 11, 70124 Bari, Italy;
| | - Annarita Graziani
- Institut AllergoSan Pharmazeutische Produkte Forschungs- und Vertriebs GmbH, 8055 Graz, Austria;
| | - Gyorgy Baffy
- Division of Gastroenterology, Hepatology and Endoscopy, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02130, USA;
- Section of Gastroenterology, Department of Medicine, VA Boston Healthcare System, Boston, MA 02130, USA
| | - Piero Portincasa
- Clinica Medica “A. Murri”, Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), Medical School, University of Bari Aldo Moro, 70124 Bari, Italy; (M.K.); (A.D.C.); (L.M.); (N.J.)
| |
Collapse
|
6
|
Kato R, Yamamoto T, Ogata H, Miyata K, Hayashi S, Gershon MD, Kadowaki M. Indigenous gut microbiota constitutively drive release of ciliary neurotrophic factor from mucosal enteric glia to maintain the homeostasis of enteric neural circuits. Front Immunol 2024; 15:1372670. [PMID: 39606241 PMCID: PMC11598343 DOI: 10.3389/fimmu.2024.1372670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 10/09/2024] [Indexed: 11/29/2024] Open
Abstract
It has recently become clear that the gut microbiota influence intestinal motility, intestinal barrier function, and mucosal immune function; therefore, the gut microbiota are deeply involved in the maintenance of intestinal homeostasis. The effects of the gut microbiota on the enteric nervous system (ENS) in the adult intestine, however, remain poorly understood. In the current study, we investigated the effects of the gut microbiota on the ENS. Male C57BL/6 SPF mice at 12 weeks of age were given a cocktail of four antibiotics (ABX) orally to induce dysbiosis (ABX mice). As early as six hours after ABX administration, the weight of the cecum of ABX mice increased to be significantly greater than that of vehicle-treated animals; moreover, ABX-induced dysbiosis reduced the density of enteric nerve fibers (marked by tubulin-β3 immunoreactivity) in the lamina propria of the proximal colon to approximately 60% that of control. TAK242, a TLR4 antagonist, significantly lowered the nerve fiber density in the lamina propria of the proximal colonic mucosa to approximately 60% that of vehicle-treated SPF mice. We thus developed and tested the hypothesis that mucosal glia expressing TLR4 are activated by enteric bacteria and release neurotrophic factors that contribute to the maintenance of enteric neural circuits. Neurotrophic factors in the mucosa of the SPF mouse proximal colon were examined immunohistochemically. Ciliary neurotrophic factor (CNTF) was abundantly expressed in the lamina propria; most of the CNTF immunoreactivity was observed in mucosal glia (marked by S100β immunoreactivity). Administration of CNTF (subcutaneously, 0.3 mg/kg, 3 doses, 2 hours apart) to ABX mice significantly increased mucosal nerve fiber density in the ABX mouse proximal colon to nearly control levels. The effect of CNTF on enteric mucosal nerve fibers was examined in isolated preparations of proximal colon of ABX mice. As it did in vivo, exposure to CNTF in vitro significantly increased enteric mucosal nerve fiber density in the ABX-treated colon. In conclusion, our evidence suggests that gut microbiota constitutively activate TLR4 signaling in enteric mucosal glia, which secrete CNTF in response. The resulting bacterial-driven glial release of CNTF helps to maintain the integrity of enteric mucosal nerve fibers.
Collapse
Affiliation(s)
- Ryo Kato
- Division of Gastrointestinal Pathophysiology, University of Toyama, Toyama, Japan
| | - Takeshi Yamamoto
- Division of Gastrointestinal Pathophysiology, University of Toyama, Toyama, Japan
| | - Hanako Ogata
- Division of Gastrointestinal Pathophysiology, University of Toyama, Toyama, Japan
| | - Kana Miyata
- Division of Gastrointestinal Pathophysiology, University of Toyama, Toyama, Japan
| | - Shusaku Hayashi
- Division of Gastrointestinal Pathophysiology, University of Toyama, Toyama, Japan
| | - Michael D. Gershon
- Departments of Pathology and Cell Biology, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, United States
| | - Makoto Kadowaki
- Division of Gastrointestinal Pathophysiology, University of Toyama, Toyama, Japan
| |
Collapse
|
7
|
Li Y, Liu X, Sun X, Li H, Wang S, Tian W, Xiang C, Zhang X, Zheng J, Wang H, Zhang L, Cao L, Wong CCL, Liu Z. Gut dysbiosis impairs intestinal renewal and lipid absorption in Scarb2 deficiency-associated neurodegeneration. Protein Cell 2024; 15:818-839. [PMID: 38635907 PMCID: PMC11528516 DOI: 10.1093/procel/pwae016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 03/05/2024] [Indexed: 04/20/2024] Open
Abstract
Scavenger receptor class B, member 2 (SCARB2) is linked to Gaucher disease and Parkinson's disease. Deficiency in the SCARB2 gene causes progressive myoclonus epilepsy (PME), a rare group of inherited neurodegenerative diseases characterized by myoclonus. We found that Scarb2 deficiency in mice leads to age-dependent dietary lipid malabsorption, accompanied with vitamin E deficiency. Our investigation revealed that Scarb2 deficiency is associated with gut dysbiosis and an altered bile acid pool, leading to hyperactivation of FXR in intestine. Hyperactivation of FXR impairs epithelium renewal and lipid absorption. Patients with SCARB2 mutations have a severe reduction in their vitamin E levels and cannot absorb dietary vitamin E. Finally, inhibiting FXR or supplementing vitamin E ameliorates the neuromotor impairment and neuropathy in Scarb2 knockout mice. These data indicate that gastrointestinal dysfunction is associated with SCARB2 deficiency-related neurodegeneration, and SCARB2-associated neurodegeneration can be improved by addressing the nutrition deficits and gastrointestinal issues.
Collapse
Affiliation(s)
- Yinghui Li
- Institute for Immunology and School of Basic Medicine, Tsinghua University, Beijing 100084, China
- Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- Institute of Biophysics, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xingchen Liu
- Institute for Immunology and School of Basic Medicine, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Xue Sun
- First School of Clinical Medicine, Peking University First Hospital, Peking University, Beijing 100034, China
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, United States
| | - Hui Li
- Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- Institute of Biophysics, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shige Wang
- Department of Neurology, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai 200233, China
| | - Wotu Tian
- Department of Neurology, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai 200233, China
| | - Chen Xiang
- Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- Institute of Biophysics, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xuyuan Zhang
- Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Jiajia Zheng
- Department of Laboratory Medicine, Peking University Third Hospital, Beijing, 100191, China
| | - Haifang Wang
- Clinical Stem Cell Research Center, Peking University Third Hospital, Beijing 100191, China
| | - Liguo Zhang
- Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Li Cao
- Department of Neurology, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai 200233, China
| | - Catherine C L Wong
- Department of Medical Research Center, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
- Tsinghua University-Peking University Joint Center for Life Sciences, Peking University, Beijing 100084, China
| | - Zhihua Liu
- Institute for Immunology and School of Basic Medicine, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China
| |
Collapse
|
8
|
Réthi-Nagy Z, Juhász S. Microbiome's Universe: Impact on health, disease and cancer treatment. J Biotechnol 2024; 392:161-179. [PMID: 39009231 DOI: 10.1016/j.jbiotec.2024.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/27/2024] [Accepted: 07/07/2024] [Indexed: 07/17/2024]
Abstract
The human microbiome is a diverse ecosystem of microorganisms that reside in the body and influence various aspects of health and well-being. Recent advances in sequencing technology have brought to light microbial communities in organs and tissues that were previously considered sterile. The gut microbiota plays an important role in host physiology, including metabolic functions and immune modulation. Disruptions in the balance of the microbiome, known as dysbiosis, have been linked to diseases such as cancer, inflammatory bowel disease and metabolic disorders. In addition, the administration of antibiotics can lead to dysbiosis by disrupting the structure and function of the gut microbial community. Targeting strategies are the key to rebalancing the microbiome and fighting disease, including cancer, through interventions such as probiotics, fecal microbiota transplantation (FMT), and bacteria-based therapies. Future research must focus on understanding the complex interactions between diet, the microbiome and cancer in order to optimize personalized interventions. Multidisciplinary collaborations are essential if we are going to translate microbiome research into clinical practice. This will revolutionize approaches to cancer prevention and treatment.
Collapse
Affiliation(s)
- Zsuzsánna Réthi-Nagy
- Hungarian Centre of Excellence for Molecular Medicine, Cancer Microbiome Core Group, Budapesti út 9, Szeged H-6728, Hungary
| | - Szilvia Juhász
- Hungarian Centre of Excellence for Molecular Medicine, Cancer Microbiome Core Group, Budapesti út 9, Szeged H-6728, Hungary.
| |
Collapse
|
9
|
Deng MS, Huang STZ, Xu YN, Shao L, Wang ZG, Chen LJ, Huang WH. In vivo pharmacokinetics of ginsenoside compound K mediated by gut microbiota. PLoS One 2024; 19:e0307286. [PMID: 39178246 PMCID: PMC11343376 DOI: 10.1371/journal.pone.0307286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 07/03/2024] [Indexed: 08/25/2024] Open
Abstract
Ginsenoside Compound K (GCK) is the main metabolite of natural protopanaxadiol ginsenosides with diverse pharmacological effects. Gut microbiota contributes to the biotransformation of GCK, while the effect of gut microbiota on the pharmacokinetics of GCK in vivo remains unclear. To illustrate the role of gut microbiota in GCK metabolism in vivo, a systematic investigation of the pharmacokinetics of GCK in specific pathogen free (SPF) and pseudo-germ-free (pseudo-GF) rats were conducted. Pseudo-GF rats were treated with non-absorbable antibiotics. Liquid chromatography tandem mass spectrometry (LC-MS/MS) was validated for the quantification of GCK in rat plasma. Compared with SPF rats, the plasma concentration of GCK significantly increased after the gut microbiota depleted. The results showed that GCK absorption slowed down, Tmax delayed by 3.5 h, AUC0-11 increased by 1.3 times, CLz/F decreased by 0.6 times in pseudo-GF rats, and Cmax was 1.6 times higher than that of normal rats. The data indicated that gut microbiota played an important role in the pharmacokinetics of GCK in vivo.
Collapse
Affiliation(s)
- Ming-Si Deng
- Department of Stomatology, the Third Xiangya Hospital of Central South University, Central South University, Changsha, China
- Department of Orthodontics, Changsha Stomatological Hospital, Hunan University of Chinese Medicine, Changsha, China
| | - Su-tian-zi Huang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China
| | - Ya-Ni Xu
- Department of Orthodontics, Changsha Stomatological Hospital, Hunan University of Chinese Medicine, Changsha, China
| | - Li Shao
- Department of Pharmacognosy, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Zheng-Guang Wang
- Department of Spinal Surgery, the Third Xiangya Hospital of Central South University, Central South University, Changsha, China
| | - Liang-Jian Chen
- Department of Stomatology, the Third Xiangya Hospital of Central South University, Central South University, Changsha, China
| | - Wei-Hua Huang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China
- FuRong Laboratory, Changsha, Hunan, China
| |
Collapse
|
10
|
Taguer M, Xiao J, Crawford R, Shi H, Cheng MP, Citron M, Hannigan GD, Kasper SH. Spatial recovery of the murine gut microbiota after antibiotics perturbation. mBio 2024; 15:e0070724. [PMID: 38832780 PMCID: PMC11253616 DOI: 10.1128/mbio.00707-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 03/31/2024] [Indexed: 06/05/2024] Open
Abstract
Bacterial communities are highly complex, with interaction networks dictating ecosystem function. Bacterial interactions are constrained by the spatial organization of these microbial communities, yet studying the spatial organization of microbial communities at the single-cell level has been technically challenging. Here, we use the recently developed high-phylogenetic-resolution microbiota mapping by fluorescence in situ hybridization technology to image the gut microbiota at the species and single-cell level. We simultaneously image 63 different bacterial species to spatially characterize the perturbation and recovery of the gut microbiota to ampicillin and vancomycin in the cecum and distal colon of mice. To decipher the biology in this complex imaging data, we developed an analytical framework to characterize the spatial changes of the gut microbiota to a perturbation. The three-tiered analytical approach includes image-level diversity, pairwise colocalization analysis, and hypothesis-driven neighborhood analysis. Through this workflow, we identify biogeographic and antibiotic-based differences in the spatial organization of the gut microbiota. We demonstrate that the cecal microbiota has increased micrometer-scale diversity than the colon at baseline and recovers better from perturbation. Also, we identify potential foundation and keystone species that have high baseline neighborhood richness and that are associated with recovery from antibiotics. Through this workflow, we add a spatial layer to the characterization of bacterial communities and progress toward a better understanding of bacterial interactions leading to improved microbiome modulation strategies. IMPORTANCE Antibiotics have broad off-target effects on the gut microbiome. When the microbial community is unable to recover from antibiotics, it can lead to increased susceptibility to gastrointestinal infections and increased risk of immunological and metabolic diseases. In this study, we work to better understand how the gut microbiota recovers from antibiotics by employing a recent technology to image the entire bacterial community at once. Through this approach, we characterize the spatial changes in the gut microbiota after treatment with model antibiotics in both the cecum and colon of mice. We find antibiotic- and biogeographic-dependent spatial changes between bacterial species and that many of these spatial colocalizations do not recover to baseline levels even 35 days after antibiotic administration.
Collapse
Affiliation(s)
- M. Taguer
- Discovery Immunology, MRL, Merck & Co., Inc., Cambridge, Massachusetts, USA
| | - J. Xiao
- Infectious Diseases and Vaccine Research, MRL, Merck & Co., Inc., West Point, Pennsylvania, USA
| | - R. Crawford
- Informatics Technology, MRL, Merck & Co., Inc., West Point, Pennsylvania, USA
| | - H. Shi
- Kanvas Biosciences, Inc., Monmouth Junction, New Jersey, USA
| | - M. P. Cheng
- Kanvas Biosciences, Inc., Monmouth Junction, New Jersey, USA
| | - M. Citron
- Infectious Diseases and Vaccine Research, MRL, Merck & Co., Inc., West Point, Pennsylvania, USA
| | - G. D. Hannigan
- Informatics Technology, MRL, Merck & Co., Inc., Cambridge, Massachusetts, USA
| | - S. H. Kasper
- Discovery Immunology, MRL, Merck & Co., Inc., Cambridge, Massachusetts, USA
| |
Collapse
|
11
|
Wang Y, Xiao J, Wei S, Su Y, Yang X, Su S, Lan L, Chen X, Huang T, Shan Q. Protective effect of zinc gluconate on intestinal mucosal barrier injury in antibiotics and LPS-induced mice. Front Microbiol 2024; 15:1407091. [PMID: 38855764 PMCID: PMC11157515 DOI: 10.3389/fmicb.2024.1407091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 05/07/2024] [Indexed: 06/11/2024] Open
Abstract
Objective The aim of the study is to investigate the function and mechanism of Zinc Gluconate (ZG) on intestinal mucosal barrier damage in antibiotics and Lipopolysaccharide (LPS)-induced mice. Methods We established a composite mouse model by inducing intestinal mucosal barrier damage using antibiotics and LPS. The animals were divided into five groups: Control (normal and model) and experimental (low, medium, and high-dose ZG treatments). We evaluated the intestinal mucosal barrier using various methods, including monitoring body weight and fecal changes, assessing pathological damage and ultrastructure of the mouse ileum, analyzing expression levels of tight junction (TJ)-related proteins and genes, confirming the TLR4/NF-κB signaling pathway, and examining the structure of the intestinal flora. Results In mice, the dual induction of antibiotics and LPS led to weight loss, fecal abnormalities, disruption of ileocecal mucosal structure, increased intestinal barrier permeability, and disorganization of the microbiota structure. ZG restored body weight, alleviated diarrheal symptoms and pathological damage, and maintained the structural integrity of intestinal epithelial cells (IECs). Additionally, ZG reduced intestinal mucosal permeability by upregulating TJ-associated proteins (ZO-1, Occludin, Claudin-1, and JAM-A) and downregulating MLCK, thereby repairing intestinal mucosal barrier damage induced by dual induction of antibiotics and LPS. Moreover, ZG suppressed the TLR4/NF-κB signaling pathway, demonstrating anti-inflammatory properties and preserving barrier integrity. Furthermore, ZG restored gut microbiota diversity and richness, evidenced by increased Shannon and Observed features indices, and decreased Simpson's index. ZG also modulated the relative abundance of beneficial human gut bacteria (Bacteroidetes, Firmicutes, Verrucomicrobia, Parabacteroides, Lactobacillus, and Akkermansia) and harmful bacteria (Proteobacteria and Enterobacter), repairing the damage induced by dual administration of antibiotics and LPS. Conclusion ZG attenuates the dual induction of antibiotics and LPS-induced intestinal barrier damage and also protects the intestinal barrier function in mice.
Collapse
Affiliation(s)
- Yongcai Wang
- Department of Pediatrics, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Dazhou Central Hospital, Dazhou, China
| | - Juan Xiao
- Department of Pediatrics, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Sumei Wei
- Department of Pediatrics, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Ying Su
- Department of Pediatrics, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Xia Yang
- Department of Pediatrics, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Shiqi Su
- Department of Pediatrics, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Liancheng Lan
- Department of Pediatrics, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Xiuqi Chen
- Department of Pediatrics, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Ting Huang
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, China
| | - Qingwen Shan
- Department of Pediatrics, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
12
|
de Kroon RR, Frerichs NM, Struys EA, de Boer NK, de Meij TGJ, Niemarkt HJ. The Potential of Fecal Volatile Organic Compound Analysis for the Early Diagnosis of Late-Onset Sepsis in Preterm Infants: A Narrative Review. SENSORS (BASEL, SWITZERLAND) 2024; 24:3162. [PMID: 38794014 PMCID: PMC11124895 DOI: 10.3390/s24103162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/01/2024] [Accepted: 05/10/2024] [Indexed: 05/26/2024]
Abstract
Early diagnosis and treatment of late-onset sepsis (LOS) is crucial for survival, but challenging. Intestinal microbiota and metabolome alterations precede the clinical onset of LOS, and the preterm gut is considered an important source of bacterial pathogens. Fecal volatile organic compounds (VOCs), formed by physiologic and pathophysiologic metabolic processes in the preterm gut, reflect a complex interplay between the human host, the environment, and microbiota. Disease-associated fecal VOCs can be detected with an array of devices with various potential for the development of a point-of-care test (POCT) for preclinical LOS detection. While characteristic VOCs for common LOS pathogens have been described, their VOC profiles often overlap with other pathogens due to similarities in metabolic pathways, hampering the construction of species-specific profiles. Clinical studies have, however, successfully discriminated LOS patients from healthy individuals using fecal VOC analysis with the highest predictive value for Gram-negative pathogens. This review discusses the current advancements in the development of a non-invasive fecal VOC-based POCT for early diagnosis of LOS, which may potentially provide opportunities for early intervention and targeted treatment and could improve clinical neonatal outcomes. Identification of confounding variables impacting VOC synthesis, selection of an optimal detection device, and development of standardized sampling protocols will allow for the development of a novel POCT in the near future.
Collapse
Affiliation(s)
- Rimke R. de Kroon
- Department of Pediatric Gastroenterology, Emma Children’s Hospital, Amsterdam Gastroenterology Endocrinology Metabolism Research Institute, Amsterdam University Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
- Amsterdam Reproduction and Development Research Institute, Amsterdam University Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Nina M. Frerichs
- Department of Pediatric Gastroenterology, Emma Children’s Hospital, Amsterdam Gastroenterology Endocrinology Metabolism Research Institute, Amsterdam University Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
- Amsterdam Reproduction and Development Research Institute, Amsterdam University Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Eduard A. Struys
- Department of Laboratory Medicine, Amsterdam University Medical Center, Location AMC, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Nanne K. de Boer
- Department of Gastroenterology and Hepatology, Amsterdam Gastroenterology Endocrinology Metabolism Research Institute, Amsterdam University Medical Center, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
| | - Tim G. J. de Meij
- Department of Pediatric Gastroenterology, Emma Children’s Hospital, Amsterdam Gastroenterology Endocrinology Metabolism Research Institute, Amsterdam University Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Hendrik J. Niemarkt
- Department of Neonatology, Maxima Medisch Centrum, De Run 4600, 5504 DB Veldhoven, The Netherlands
- Department of Electrical Engineering, TU Eindhoven, Eindhoven University of Technology, Postbus 513, 5600 MB Eindhoven, The Netherlands
| |
Collapse
|
13
|
Tosi M, Coloretti I, Meschiari M, De Biasi S, Girardis M, Busani S. The Interplay between Antibiotics and the Host Immune Response in Sepsis: From Basic Mechanisms to Clinical Considerations: A Comprehensive Narrative Review. Antibiotics (Basel) 2024; 13:406. [PMID: 38786135 PMCID: PMC11117367 DOI: 10.3390/antibiotics13050406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 04/23/2024] [Accepted: 04/26/2024] [Indexed: 05/25/2024] Open
Abstract
Sepsis poses a significant global health challenge due to immune system dysregulation. This narrative review explores the complex relationship between antibiotics and the immune system, aiming to clarify the involved mechanisms and their clinical impacts. From pre-clinical studies, antibiotics exhibit various immunomodulatory effects, including the regulation of pro-inflammatory cytokine production, interaction with Toll-Like Receptors, modulation of the P38/Pmk-1 Pathway, inhibition of Matrix Metalloproteinases, blockade of nitric oxide synthase, and regulation of caspase-induced apoptosis. Additionally, antibiotic-induced alterations to the microbiome are associated with changes in systemic immunity, affecting cellular and humoral responses. The adjunctive use of antibiotics in sepsis patients, particularly macrolides, has attracted attention due to their immune-regulatory effects. However, there are limited data comparing different types of macrolides. More robust evidence comes from studies on community-acquired pneumonia, especially in severe cases with a hyper-inflammatory response. While studies on septic shock have shown mixed results regarding mortality rates and immune response modulation, conflicting findings are also observed with macrolides in acute respiratory distress syndrome. In conclusion, there is a pressing need to tailor antibiotic therapy based on the patient's immune profile to optimize outcomes in sepsis management.
Collapse
Affiliation(s)
- Martina Tosi
- Anesthesia and Intensive Care Medicine, Policlinico di Modena, University of Modena and Reggio Emilia, 41124 Modena, Italy; (M.T.); (I.C.); (M.G.)
| | - Irene Coloretti
- Anesthesia and Intensive Care Medicine, Policlinico di Modena, University of Modena and Reggio Emilia, 41124 Modena, Italy; (M.T.); (I.C.); (M.G.)
| | | | - Sara De Biasi
- Department of Medical and Surgical Sciences for Children & Adults, University of Modena, and Reggio Emilia, 41125 Modena, Italy;
| | - Massimo Girardis
- Anesthesia and Intensive Care Medicine, Policlinico di Modena, University of Modena and Reggio Emilia, 41124 Modena, Italy; (M.T.); (I.C.); (M.G.)
| | - Stefano Busani
- Anesthesia and Intensive Care Medicine, Policlinico di Modena, University of Modena and Reggio Emilia, 41124 Modena, Italy; (M.T.); (I.C.); (M.G.)
| |
Collapse
|
14
|
Xiao H, Fang LT, Tang AZ, Chen HL, Xu ML, Wei XS, Pang GD, Li CQ. Mycobacterium vaccae alleviates allergic airway inflammation and airway hyper-responsiveness in asthmatic mice by altering intestinal microbiota. Immunology 2024; 171:595-608. [PMID: 38205925 DOI: 10.1111/imm.13750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 12/29/2023] [Indexed: 01/12/2024] Open
Abstract
Host immunity can influence the composition of the gut microbiota and consequently affect disease progression. Previously, we reported that a Mycobacterium vaccae vaccine could ameliorate allergic inflammation in asthmatic mice by regulating inflammatory immune processes. Here, we investigated the anti-inflammatory effects of M. vaccae on allergic asthma via gut microbiota modulation. An ovalbumin (OVA)-induced asthmatic murine model was established and treated with M. vaccae. Gut microbiota profiles were determined in 18 BALB/c mice using 16S rDNA gene sequencing and metabolomic profiling was performed using liquid chromatography quadrupole time-of-flight mass spectrometry. Mycobacterium vaccae alleviated airway hyper-reactivity and inflammatory infiltration in mice with OVA-induced allergic asthma. The microbiota of asthmatic mice is disrupted and that this can be reversed with M. vaccae. Additionally, a total of 24 differential metabolites were screened, and the abundance of PI(14:1(9Z)/18:0), a glycerophospholipid, was found to be correlated with macrophage numbers (r = 0.52, p = 0.039). These metabolites may affect chemokine (such as macrophage chemoattractant protein-1) concentrations in the serum, and ultimately affect pulmonary macrophage recruitment. Our data demonstrated that M. vaccae might alleviate airway inflammation and hyper-responsiveness in asthmatic mice by reversing imbalances in gut microbiota. These novel mechanistic insights are expected to pave the way for novel asthma therapeutic strategies.
Collapse
Affiliation(s)
- Huan Xiao
- Department of Emergency, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Li-Ting Fang
- Department of Emergency, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - An-Zhou Tang
- Department of Otorhinolaryngology Head and Neck Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Hong-Liu Chen
- Department of Emergency, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Mei-Li Xu
- Department of Emergency, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Xiao-Shua Wei
- Department of Emergency, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Guo-Dong Pang
- Department of Emergency, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Chao-Qian Li
- Department of Emergency, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
15
|
Dai J, Jiang M, Wang X, Lang T, Wan L, Wang J. Human-derived bacterial strains mitigate colitis via modulating gut microbiota and repairing intestinal barrier function in mice. BMC Microbiol 2024; 24:96. [PMID: 38521930 PMCID: PMC10960398 DOI: 10.1186/s12866-024-03216-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 02/07/2024] [Indexed: 03/25/2024] Open
Abstract
BACKGROUND Unbalanced gut microbiota is considered as a pivotal etiological factor in colitis. Nevertheless, the precise influence of the endogenous gut microbiota composition on the therapeutic efficacy of probiotics in colitis remains largely unexplored. RESULTS In this study, we isolated bacteria from fecal samples of a healthy donor and a patient with ulcerative colitis in remission. Subsequently, we identified three bacterial strains that exhibited a notable ability to ameliorate dextran sulfate sodium (DSS)-induced colitis, as evidenced by increased colon length, reduced disease activity index, and improved histological score. Further analysis revealed that each of Pediococcus acidilactici CGMCC NO.17,943, Enterococcus faecium CGMCC NO.17,944 and Escherichia coli CGMCC NO.17,945 significantly attenuated inflammatory responses and restored gut barrier dysfunction in mice. Mechanistically, bacterial 16S rRNA gene sequencing indicated that these three strains partially restored the overall structure of the gut microbiota disrupted by DSS. Specially, they promoted the growth of Faecalibaculum and Lactobacillus murinus, which were positively correlated with gut barrier function, while suppressing Odoribacter, Rikenella, Oscillibacter and Parasutterella, which were related to inflammation. Additionally, these strains modulated the composition of short chain fatty acids (SCFAs) in the cecal content, leading to an increase in acetate and a decrease in butyrate. Furthermore, the expression of metabolites related receptors, such as receptor G Protein-coupled receptor (GPR) 43, were also affected. Notably, the depletion of endogenous gut microbiota using broad-spectrum antibiotics completely abrogated these protective effects. CONCLUSIONS Our findings suggest that selected human-derived bacterial strains alleviate experimental colitis and intestinal barrier dysfunction through mediating resident gut microbiota and their metabolites in mice. This study provides valuable insights into the potential therapeutic application of probiotics in the treatment of colitis.
Collapse
Affiliation(s)
- Juanjuan Dai
- Department of Intensive Care Unit, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P.R. China
| | - Mingjie Jiang
- Department of Head and Neck Surgery, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P.R. China
| | - Xiaoxin Wang
- Shanghai Key Laboratory of Pancreatic Diseases, Institute of Translational Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tao Lang
- Shanghai Key Laboratory of Pancreatic Diseases, Institute of Translational Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Leilei Wan
- Department of Stomatology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Jingjing Wang
- Shanghai Key Laboratory of Pancreatic Diseases, Institute of Translational Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
16
|
Tang F, Deng M, Xu C, Yang R, Ji X, Hao M, Wang Y, Tian M, Geng Y, Miao J. Unraveling the microbial puzzle: exploring the intricate role of gut microbiota in endometriosis pathogenesis. Front Cell Infect Microbiol 2024; 14:1328419. [PMID: 38435309 PMCID: PMC10904627 DOI: 10.3389/fcimb.2024.1328419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 01/29/2024] [Indexed: 03/05/2024] Open
Abstract
Endometriosis (EMs) is a prevalent gynecological disorder characterized by the growth of uterine tissue outside the uterine cavity, causing debilitating symptoms and infertility. Despite its prevalence, the exact mechanisms behind EMs development remain incompletely understood. This article presents a comprehensive overview of the relationship between gut microbiota imbalance and EMs pathogenesis. Recent research indicates that gut microbiota plays a pivotal role in various aspects of EMs, including immune regulation, generation of inflammatory factors, angiopoietin release, hormonal regulation, and endotoxin production. Dysbiosis of gut microbiota can disrupt immune responses, leading to inflammation and impaired immune clearance of endometrial fragments, resulting in the development of endometriotic lesions. The dysregulated microbiota can contribute to the release of lipopolysaccharide (LPS), triggering chronic inflammation and promoting ectopic endometrial adhesion, invasion, and angiogenesis. Furthermore, gut microbiota involvement in estrogen metabolism affects estrogen levels, which are directly related to EMs development. The review also highlights the potential of gut microbiota as a diagnostic tool and therapeutic target for EMs. Interventions such as fecal microbiota transplantation (FMT) and the use of gut microbiota preparations have demonstrated promising effects in reducing EMs symptoms. Despite the progress made, further research is needed to unravel the intricate interactions between gut microbiota and EMs, paving the way for more effective prevention and treatment strategies for this challenging condition.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Jinwei Miao
- Department of Gynecologic Oncology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, China
| |
Collapse
|
17
|
Aghighi F, Salami M. What we need to know about the germ-free animal models. AIMS Microbiol 2024; 10:107-147. [PMID: 38525038 PMCID: PMC10955174 DOI: 10.3934/microbiol.2024007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 01/30/2024] [Accepted: 02/01/2024] [Indexed: 03/26/2024] Open
Abstract
The gut microbiota (GM), as a forgotten organ, refers to the microbial community that resides in the gastrointestinal tract and plays a critical role in a variety of physiological activities in different body organs. The GM affects its targets through neurological, metabolic, immune, and endocrine pathways. The GM is a dynamic system for which exogenous and endogenous factors have negative or positive effects on its density and composition. Since the mid-twentieth century, laboratory animals are known as the major tools for preclinical research; however, each model has its own limitations. So far, two main models have been used to explore the effects of the GM under normal and abnormal conditions: the isolated germ-free and antibiotic-treated models. Both methods have strengths and weaknesses. In many fields of host-microbe interactions, research on these animal models are known as appropriate experimental subjects that enable investigators to directly assess the role of the microbiota on all features of physiology. These animal models present biological model systems to either study outcomes of the absence of microbes, or to verify the effects of colonization with specific and known microbial species. This paper reviews these current approaches and gives advantages and disadvantages of both models.
Collapse
Affiliation(s)
| | - Mahmoud Salami
- Physiology Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, I. R. Iran
| |
Collapse
|
18
|
Satheesh Babu AK, Petersen C, Paz HA, Iglesias-Carres L, Li Y, Zhong Y, Neilson AP, Wankhade UD, Anandh Babu PV. Gut Microbiota Depletion Using Antibiotics to Investigate Diet-Derived Microbial Metabolites: An Efficient Strategy. Mol Nutr Food Res 2024; 68:e2300386. [PMID: 38054624 DOI: 10.1002/mnfr.202300386] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 09/07/2023] [Indexed: 12/07/2023]
Abstract
SCOPE Gut microbiota depletion using antibiotics in drinking water is a valuable tool to investigate the role of gut microbes and microbial metabolites in health and disease. However, there are challenges associated with this model. Animals avoid drinking water because of the antibiotic bitterness, which affects their metabolic health. The present study develops an efficient strategy to deplete gut microbes without affecting metabolic parameters. METHODS AND RESULTS Male C57BL/6J mice (7 weeks old) are fed a control (C) or high-fat (HF) diet. Subgroups of C and HF mice receive an antibiotic cocktail in drinking water (CA and HA). The antibiotic dosage is gradually increased so that the animals adapt to the taste of antibiotics. Metabolic parameters, gut microbiome, and microbial metabolites are assessed after 12 weeks treatment. Culture methods and 16s rRNA amplification confirm the depletion of gut microbes in antibiotic groups (CA and HA). Further, antibiotic treatment does not alter metabolic parameters (body weight, body fat, lean body mass, blood glucose, and glucose/insulin tolerance), whereas it suppresses the production of diet-derived microbial metabolites (trimethylamine and trimethylamine-N-oxide). CONCLUSION This strategy effectively depletes gut microbes and suppresses the production of microbial metabolites in mice without affecting their metabolic health.
Collapse
Affiliation(s)
| | - Chrissa Petersen
- Department of Nutrition and Integrative Physiology, College of Health, University of Utah, Salt Lake City, UT, 84112, USA
| | - Henry A Paz
- Arkansas Children's Nutrition Center, University of Arkansas for Medical Sciences, Little Rock, 72205, AR, USA
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
| | - Lisard Iglesias-Carres
- Plants for Human Health Institute, Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Kannapolis, NC, 28081, USA
| | - Ying Li
- Department of Nutrition and Integrative Physiology, College of Health, University of Utah, Salt Lake City, UT, 84112, USA
| | - Ying Zhong
- Arkansas Children's Nutrition Center, University of Arkansas for Medical Sciences, Little Rock, 72205, AR, USA
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
| | - Andrew P Neilson
- Plants for Human Health Institute, Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Kannapolis, NC, 28081, USA
| | - Umesh D Wankhade
- Arkansas Children's Nutrition Center, University of Arkansas for Medical Sciences, Little Rock, 72205, AR, USA
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
| | - Pon Velayutham Anandh Babu
- Department of Nutrition and Integrative Physiology, College of Health, University of Utah, Salt Lake City, UT, 84112, USA
| |
Collapse
|
19
|
Arifuzzaman M, Collins N, Guo CJ, Artis D. Nutritional regulation of microbiota-derived metabolites: Implications for immunity and inflammation. Immunity 2024; 57:14-27. [PMID: 38198849 PMCID: PMC10795735 DOI: 10.1016/j.immuni.2023.12.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/11/2023] [Accepted: 12/12/2023] [Indexed: 01/12/2024]
Abstract
Nutrition profoundly shapes immunity and inflammation across the lifespan of mammals, from pre- and post-natal periods to later life. Emerging insights into diet-microbiota interactions indicate that nutrition has a dominant influence on the composition-and metabolic output-of the intestinal microbiota, which in turn has major consequences for host immunity and inflammation. Here, we discuss recent findings that support the concept that dietary effects on microbiota-derived metabolites potently alter immune responses in health and disease. We discuss how specific dietary components and metabolites can be either pro-inflammatory or anti-inflammatory in a context- and tissue-dependent manner during infection, chronic inflammation, and cancer. Together, these studies emphasize the influence of diet-microbiota crosstalk on immune regulation that will have a significant impact on precision nutrition approaches and therapeutic interventions for managing inflammation, infection, and cancer immunotherapy.
Collapse
Affiliation(s)
- Mohammad Arifuzzaman
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Division of Gastroenterology and Hepatology, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA; Friedman Center for Nutrition and Inflammation, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA.
| | - Nicholas Collins
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Division of Gastroenterology and Hepatology, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA; Friedman Center for Nutrition and Inflammation, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA
| | - Chun-Jun Guo
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Division of Gastroenterology and Hepatology, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA; Friedman Center for Nutrition and Inflammation, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA
| | - David Artis
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Division of Gastroenterology and Hepatology, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA; Friedman Center for Nutrition and Inflammation, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA; Allen Discovery Center for Neuroimmune Interactions, New York, NY 10021, USA.
| |
Collapse
|
20
|
Alvarado-Peña N, Galeana-Cadena D, Gómez-García IA, Mainero XS, Silva-Herzog E. The microbiome and the gut-lung axis in tuberculosis: interplay in the course of disease and treatment. Front Microbiol 2023; 14:1237998. [PMID: 38029121 PMCID: PMC10643882 DOI: 10.3389/fmicb.2023.1237998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 10/09/2023] [Indexed: 12/01/2023] Open
Abstract
Tuberculosis is a chronic infectious disease caused by Mycobacterium tuberculosis (MTB) that remains a significant global health challenge. The extensive use of antibiotics in tuberculosis treatment, disrupts the delicate balance of the microbiota in various organs, including the gastrointestinal and respiratory systems. This gut-lung axis involves dynamic interactions among immune cells, microbiota, and signaling molecules from both organs. The alterations of the microbiome resulting from anti-TB treatment can significantly influence the course of tuberculosis, impacting aspects such as complete healing, reinfection, and relapse. This review aims to provide a comprehensive understanding of the gut-lung axis in the context of tuberculosis, with a specific focus on the impact of anti-TB treatment on the microbiome.
Collapse
Affiliation(s)
- Néstor Alvarado-Peña
- Clínica de Tuberculosis, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosío Villegas”, México City, Mexico
| | - David Galeana-Cadena
- Laboratorio de Inmunobiología y Genética, Instituto Nacional de Enfermedades Respiratorias, México City, Mexico
| | - Itzel Alejandra Gómez-García
- Laboratorio de Inmunobiología y Genética, Instituto Nacional de Enfermedades Respiratorias, México City, Mexico
- Tecnológico de Monterrey, Escuela de Medicina y Ciencias de la Salud, México City, Mexico
| | - Xavier Soberón Mainero
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Eugenia Silva-Herzog
- Laboratorio de Vinculación Científica, Facultad de Medicina-Universidad Nacional Autonoma de México-Instituto Nacional de Medicina Genomica, México City, Mexico
| |
Collapse
|
21
|
Bellés A, Abad I, Sánchez L, Grasa L. Whey and Buttermilk-Based Formulas Modulate Gut Microbiota in Mice with Antibiotic-Induced Dysbiosis. Mol Nutr Food Res 2023; 67:e2300248. [PMID: 37654048 DOI: 10.1002/mnfr.202300248] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 07/10/2023] [Indexed: 09/02/2023]
Abstract
SCOPE Diet is one of the main factors that modifies intestinal microbiota composition. The search for foods that can reverse situations of intestinal dysbiosis such as that induced by antibiotics is of great interest. Buttermilk and whey are the main by-products produced by the dairy industry containing bioactive compounds. The aim of this study is to investigate the ability of whey and buttermilk-based formulas supplemented with lactoferrin and milk fat globule membrane (MFGM) to modulate the effects of clindamycin on mouse intestinal microbiota. METHODS AND RESULTS Male C57BL/6 mice are treated with saline (control), clindamycin (Clin), a formula containing whey (F1) or buttermilk (F2), Clin+F1 or Clin+F2, and their fecal microbiota profiles are analyzed by sequencing of 16S rRNA gene using the MinION device. Clin induces alterations in both the composition and metabolic functions of the mice intestinal microbiota. The treatment with F1 or F2 reverses the effects of clindamycin, restoring the levels of Rikenellaceae and Lactobacillaceae families and certain pathways related to short-chain fatty acids production and tetrahydrofolate biosynthesis. CONCLUSION Whey and buttermilk supplemented with lactoferrin and MFGM may be a bioactive formula for functional foods to prevent or restore microbiota alterations induced by antibiotic administration.
Collapse
Affiliation(s)
- Andrea Bellés
- Departamento de Farmacología, Fisiología y Medicina Legal y Forense, Facultad de Veterinaria, Universidad de Zaragoza, Zaragoza, 50013, Spain
- Instituto Agroalimentario de Aragón IA2 (UNIZAR-CITA), Zaragoza, 50013, Spain
| | - Inés Abad
- Instituto Agroalimentario de Aragón IA2 (UNIZAR-CITA), Zaragoza, 50013, Spain
- Departamento de Producción Animal y Tecnología de los Alimentos, Facultad de Veterinaria, Universidad de Zaragoza, Zaragoza, 50013, Spain
| | - Lourdes Sánchez
- Instituto Agroalimentario de Aragón IA2 (UNIZAR-CITA), Zaragoza, 50013, Spain
- Departamento de Producción Animal y Tecnología de los Alimentos, Facultad de Veterinaria, Universidad de Zaragoza, Zaragoza, 50013, Spain
| | - Laura Grasa
- Departamento de Farmacología, Fisiología y Medicina Legal y Forense, Facultad de Veterinaria, Universidad de Zaragoza, Zaragoza, 50013, Spain
- Instituto Agroalimentario de Aragón IA2 (UNIZAR-CITA), Zaragoza, 50013, Spain
- Instituto de Investigación Sanitaria de Aragón (IIS Aragón), Zaragoza, 50009, Spain
| |
Collapse
|
22
|
Takahashi H, Fujii T, Yamakawa S, Yamada C, Fujiki K, Kondo N, Funasaka K, Hirooka Y, Tochio T. Combined oral intake of short and long fructans alters the gut microbiota in food allergy model mice and contributes to food allergy prevention. BMC Microbiol 2023; 23:266. [PMID: 37737162 PMCID: PMC10515425 DOI: 10.1186/s12866-023-03021-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 09/14/2023] [Indexed: 09/23/2023] Open
Abstract
BACKGROUND It has become clear that the intestinal microbiota plays a role in food allergies. The objective of this study was to assess the food allergy-preventive effects of combined intake of a short fructan (1-kestose [Kes]) and a long fructan (inulin ([Inu]) in an ovalbumin (OVA)-induced food allergy mouse model. RESULTS Oral administration of fructans lowered the allergenic symptom score and alleviated the decreases in rectal temperature and total IgA levels and increases in OVA-specific IgE and IgA levels induced by high-dose OVA challenge, and in particular, combined intake of Kes and Inu significantly suppressed the changes in all these parameters. The expression of the pro-inflammatory cytokine IL-4, which was increased in the allergy model group, was significantly suppressed by fructan administration, and the expression of the anti-inflammatory cytokine IL-10 was significantly increased upon Kes administration. 16 S rRNA amplicon sequencing of the gut microbiota and beta diversity analysis revealed that fructan administration may induce gut microbiota resistance to food allergy sensitization, rather than returning the gut microbiota to a non-sensitized state. The relative abundances of the genera Parabacteroides B 862,066 and Alloprevotella, which were significantly reduced by food allergy sensitization, were restored by fructan administration. In Parabacteroides, the relative abundances of Parabacteroides distasonis, Parabacteroides goldsteinii, and their fructan-degrading glycoside hydrolase family 32 gene copy numbers were increased upon Kes or Inu administration. The concentrations of short-chain fatty acids (acetate and propionate) and lactate were increased by fructan administration, especially significantly in the Kes + Inu, Kes, and Inu-fed (Inu, Kes + Inu) groups. CONCLUSION Combined intake of Kes and Inu suppressed allergy scores more effectively than single intake, suggesting that Kes and Inu have different allergy-preventive mechanisms. This indicates that the combined intake of these short and long fructans may have an allergy-preventive benefit.
Collapse
Affiliation(s)
- Hideaki Takahashi
- Graduate School of Nutritional Sciences, Nagoya University of Arts and Sciences, Nisshin, Aichi, Japan
| | - Tadashi Fujii
- Department of Gastroenterology and Hepatology, Fujita Health University, Toyoake, Aichi, Japan.
- Department of Medical Research on Prebiotics and Probiotics, Fujita Health University, Toyoake, Aichi, Japan.
| | - Saki Yamakawa
- Department of Gastroenterology and Hepatology, Fujita Health University, Toyoake, Aichi, Japan
- Research and Development Division, Itochu Sugar Co., Ltd., Hekinan, Aichi, Japan
- WELLNEO SUGAR Co., Ltd., Tokyo, Japan
| | - Chikako Yamada
- Graduate School of Nutritional Sciences, Nagoya University of Arts and Sciences, Nisshin, Aichi, Japan
| | - Kotoyo Fujiki
- Graduate School of Nutritional Sciences, Nagoya University of Arts and Sciences, Nisshin, Aichi, Japan
| | - Nobuhiro Kondo
- Department of Gastroenterology and Hepatology, Fujita Health University, Toyoake, Aichi, Japan
- Research and Development Division, Itochu Sugar Co., Ltd., Hekinan, Aichi, Japan
- WELLNEO SUGAR Co., Ltd., Tokyo, Japan
| | - Kohei Funasaka
- Department of Gastroenterology and Hepatology, Fujita Health University, Toyoake, Aichi, Japan
| | - Yoshiki Hirooka
- Department of Gastroenterology and Hepatology, Fujita Health University, Toyoake, Aichi, Japan
- Department of Medical Research on Prebiotics and Probiotics, Fujita Health University, Toyoake, Aichi, Japan
| | - Takumi Tochio
- Department of Gastroenterology and Hepatology, Fujita Health University, Toyoake, Aichi, Japan
- Department of Medical Research on Prebiotics and Probiotics, Fujita Health University, Toyoake, Aichi, Japan
| |
Collapse
|
23
|
Zhang Y, Aldamarany WAS, Deng L, Zhong G. Carbohydrate supplementation retains intestinal barrier and ameliorates bacterial translocation in an antibiotic-induced mouse model. Food Funct 2023; 14:8186-8200. [PMID: 37599609 DOI: 10.1039/d3fo01343j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2023]
Abstract
Bacterial translocation (BT), with antibiotic use as an inducer, is associated with increased risk of developing multiple inflammatory disorders, and is closely associated with intestinal barrier integrity. Deacetylated konjac glucomannan (DKGM) and konjac oligo-glucomannan (KOGM) are two of the most widely used derivatives in the food industry. They are structurally and physiologically distinct from konjac glucomannan (KGM), and previous studies have confirmed their prebiotic effects. But whether they play a role in antibiotic-induced BT is unknown. Here, we applied an antibiotic cocktail (Abx) to a mouse model and investigated whether and how KGM and its derivatives function in BT and inflammation response amelioration during and after antibiotics, and which intervention plan is more effective. The results showed that KGM and its derivatives all inhibited BT. The colon tissue lesions caused by BT were largely alleviated, and short-chain fatty acid (SCFA) production was highly improved with the supplementation of carbohydrates. The prolonged intervention plan using KGM and its derivatives was more efficient than intervention only during the Abx administration period. Among the three dietary fibers, KGM behaved best, while DKGM and KOGM behaved equivalently. Additionally, KGM and its derivatives all reduced the inflammatory response accompanying BT, but DKGM may have a direct inhibitory efficacy in inflammation other than that through IL-10, unlike KGM or KOGM.
Collapse
Affiliation(s)
- Yuan Zhang
- College of Food Science, Southwest University, Chongqing, 400715, China.
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Southwest University, Chongqing, 400715, China
| | - Waleed A S Aldamarany
- College of Food Science, Southwest University, Chongqing, 400715, China.
- Food Science and Technology Department, Faculty of Agriculture, Al-Azhar University (Assiut Branch), Assiut 71524, Egypt
| | - Liling Deng
- Chongqing Key Laboratory of High Active Traditional Chinese Drug Delivery System, Chongqing Engineering Research Center of Pharmaceutical Sciences, Chongqing Medical and Pharmaceutical College, Chongqing 401331, China
| | - Geng Zhong
- College of Food Science, Southwest University, Chongqing, 400715, China.
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Southwest University, Chongqing, 400715, China
| |
Collapse
|
24
|
Liu Y, Chan MTV, Chan FKL, Wu WKK, Ng SC, Zhang L. Lower gut abundance of Eubacterium rectale is linked to COVID-19 mortality. Front Cell Infect Microbiol 2023; 13:1249069. [PMID: 37743871 PMCID: PMC10512258 DOI: 10.3389/fcimb.2023.1249069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 08/18/2023] [Indexed: 09/26/2023] Open
Abstract
Introduction Emerging preclinical and clinical studies suggest that altered gut microbiome composition and functions are associated with coronavirus 2019 (COVID- 19) severity and its long-term complications. We hypothesize that COVID-19 outcome is associated with gut microbiome status in population-based settings. Methods Gut metagenomic data of the adult population consisting of 2871 subjects from 16 countries were obtained from ExperimentHub through R, while the dynamic death data of COVID-19 patients between January 22, 2020 and December 8, 2020 in each country was acquired from Johns Hopkins Coronavirus Resource Center. An adjusted stable mortality rate (SMR) was used to represent these countries' mortality and correlated with the mean relative abundance (mRA) of healthy adult gut microbiome species. Results After excluding bacterial species with low prevalence (prevalence <0.2 in the included countries), the β-diversity was significantly higher in the countries with high SMR when compared with those with median or low SMR (p <0.001). We then identified the mRA of two butyrate producers, Eubacterium rectale and Roseburia intestinalis, that were negatively correlated with SMR during the study period. And the reduction of these species was associated with severer COVID-19 manifestation. Conclusion Population-based microbiome signatures with the stable mortality rate of COVID-19 in different countries suggest that altered gut microbiome composition and functions are associated with mortality of COVID-19.
Collapse
Affiliation(s)
- Yingzhi Liu
- Microbiota I-Center (MagIC), Hong Kong, Hong Kong SAR, China
- Department of Anaesthesia and Intensive Care and Peter Hung Pain Research Institute, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Matthew T. V. Chan
- Department of Anaesthesia and Intensive Care and Peter Hung Pain Research Institute, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Francis K. L. Chan
- Microbiota I-Center (MagIC), Hong Kong, Hong Kong SAR, China
- Centre for Gut Microbiota Research, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - William K. K. Wu
- Department of Anaesthesia and Intensive Care and Peter Hung Pain Research Institute, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
- Centre for Gut Microbiota Research, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
- State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Siew C. Ng
- Microbiota I-Center (MagIC), Hong Kong, Hong Kong SAR, China
- State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
- Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Lin Zhang
- Microbiota I-Center (MagIC), Hong Kong, Hong Kong SAR, China
- Department of Anaesthesia and Intensive Care and Peter Hung Pain Research Institute, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
- Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| |
Collapse
|
25
|
Shang L, Yang F, Wei Y, Dai Z, Chen Q, Zeng X, Qiao S, Yu H. Multi-Omics Analysis Reveals the Gut Microbiota Characteristics of Diarrheal Piglets Treated with Gentamicin. Antibiotics (Basel) 2023; 12:1349. [PMID: 37760646 PMCID: PMC10525804 DOI: 10.3390/antibiotics12091349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/03/2023] [Accepted: 08/17/2023] [Indexed: 09/29/2023] Open
Abstract
The involvement of alterations in gut microbiota composition due to the use of antibiotics has been widely observed. However, a clear picture of the influences of gentamicin, which is employed for the treatment of bacterial diarrhea in animal production, are largely unknown. Here, we addressed this problem using piglet models susceptible to enterotoxigenic Escherichia coli (ETEC) F4, which were treated with gentamicin. Gentamicin significantly alleviated diarrhea and intestinal injury. Through 16s RNS sequencing, it was found that gentamicin increased species richness but decreased community evenness. Additionally, clear clustering was observed between the gentamicin-treated group and the other groups. More importantly, with the establishment of a completely different microbial structure, a novel metabolite composition profile was formed. KEGG database annotation revealed that arachidonic acid metabolism and vancomycin resistance were the most significantly downregulated and upregulated pathways after gentamicin treatment, respectively. Meanwhile, we identified seven possible targets of gentamicin closely related to these two functional pathways through a comprehensive analysis. Taken together, these findings demonstrate that gentamicin therapy for diarrhea is associated with the downregulation of arachidonic acid metabolism. During this process, intestinal microbiota dysbiosis is induced, leading to increased levels of the vancomycin resistance pathway. An improved understanding of the roles of these processes will advance the conception and realization of new therapeutic and preventive strategies.
Collapse
Affiliation(s)
- Lijun Shang
- State Key Laboratory of Animal Nutrition and Feeding, Ministry of Agriculture and Rural Affairs Feed Industry Centre, China Agricultural University, Beijing 100193, China; (L.S.); (F.Y.); (Z.D.); (Q.C.); (X.Z.); (S.Q.)
- Beijing Bio-Feed Additives Key Laboratory, Beijing 100193, China
| | - Fengjuan Yang
- State Key Laboratory of Animal Nutrition and Feeding, Ministry of Agriculture and Rural Affairs Feed Industry Centre, China Agricultural University, Beijing 100193, China; (L.S.); (F.Y.); (Z.D.); (Q.C.); (X.Z.); (S.Q.)
- Beijing Bio-Feed Additives Key Laboratory, Beijing 100193, China
| | - Yushu Wei
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai’an 271000, China;
| | - Ziqi Dai
- State Key Laboratory of Animal Nutrition and Feeding, Ministry of Agriculture and Rural Affairs Feed Industry Centre, China Agricultural University, Beijing 100193, China; (L.S.); (F.Y.); (Z.D.); (Q.C.); (X.Z.); (S.Q.)
- Beijing Bio-Feed Additives Key Laboratory, Beijing 100193, China
| | - Qingyun Chen
- State Key Laboratory of Animal Nutrition and Feeding, Ministry of Agriculture and Rural Affairs Feed Industry Centre, China Agricultural University, Beijing 100193, China; (L.S.); (F.Y.); (Z.D.); (Q.C.); (X.Z.); (S.Q.)
- Beijing Bio-Feed Additives Key Laboratory, Beijing 100193, China
| | - Xiangfang Zeng
- State Key Laboratory of Animal Nutrition and Feeding, Ministry of Agriculture and Rural Affairs Feed Industry Centre, China Agricultural University, Beijing 100193, China; (L.S.); (F.Y.); (Z.D.); (Q.C.); (X.Z.); (S.Q.)
- Beijing Bio-Feed Additives Key Laboratory, Beijing 100193, China
| | - Shiyan Qiao
- State Key Laboratory of Animal Nutrition and Feeding, Ministry of Agriculture and Rural Affairs Feed Industry Centre, China Agricultural University, Beijing 100193, China; (L.S.); (F.Y.); (Z.D.); (Q.C.); (X.Z.); (S.Q.)
- Beijing Bio-Feed Additives Key Laboratory, Beijing 100193, China
| | - Haitao Yu
- State Key Laboratory of Animal Nutrition and Feeding, Ministry of Agriculture and Rural Affairs Feed Industry Centre, China Agricultural University, Beijing 100193, China; (L.S.); (F.Y.); (Z.D.); (Q.C.); (X.Z.); (S.Q.)
- Beijing Bio-Feed Additives Key Laboratory, Beijing 100193, China
| |
Collapse
|
26
|
Dowden RA, Wisniewski PJ, Longoria CR, Oydanich M, McNulty T, Rodriguez E, Zhang J, Cavallo M, Guers JJ, Vatner DE, Vatner SF, Campbell SC. Microbiota Mediate Enhanced Exercise Capacity Induced by Exercise Training. Med Sci Sports Exerc 2023; 55:1392-1400. [PMID: 36924325 PMCID: PMC10363229 DOI: 10.1249/mss.0000000000003170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
PURPOSE We investigated the effects of gut microbes, and the mechanisms mediating the enhanced exercise performance induced by exercise training, i.e., skeletal muscle blood flow, and mitochondrial biogenesis and oxidative function in male mice. METHODS All mice received a graded exercise test before (PRE) and after exercise training via forced treadmill running at 60% to 70% of maximal running capacity 5 d·wk -1 for 5 wk (POST). To examine the role of the gut microbes, the graded exercise was repeated after 7 d of access to antibiotic (ABX)-treated water, used to eliminate gut microbes. Peripheral blood flow, mitochondrial oxidative capacity, and markers of mitochondrial biogenesis were collected at each time point. RESULTS Exercise training led to increases of 60% ± 13% in maximal running distance and 63% ± 11% work to exhaustion ( P < 0.001). These increases were abolished after ABX ( P < 0.001). Exercise training increased hindlimb blood flow and markers of mitochondrial biogenesis and oxidative function, including AMP-activated protein kinase, sirtuin-1, PGC-1α citrate synthase, complex IV, and nitric oxide, all of which were also abolished by ABX treatment. CONCLUSIONS Our results support the concept that gut microbiota mediate enhanced exercise capacity after exercise training and the mechanisms responsible, i.e., hindlimb blood flow, mitochondrial biogenesis, and metabolic profile. Finally, results of this study emphasize the need to fully examine the impact of prescribing ABX to athletes during their training regimens and how this may affect their performance.
Collapse
Affiliation(s)
- Robert A. Dowden
- Department of Kinesiology and Health, Rutgers University, New Brunswick, NJ
- Rutgers Center for Lipid Research Rutgers University, New Brunswick, NJ
- The Center for Nutrition, Microbiome & Health Rutgers University, New Brunswick, NJ
| | - Paul J. Wisniewski
- Department of Kinesiology and Health, Rutgers University, New Brunswick, NJ
- Rutgers Center for Lipid Research Rutgers University, New Brunswick, NJ
- The Center for Nutrition, Microbiome & Health Rutgers University, New Brunswick, NJ
| | - Candace R. Longoria
- Department of Kinesiology and Health, Rutgers University, New Brunswick, NJ
- Rutgers Center for Lipid Research Rutgers University, New Brunswick, NJ
- The Center for Nutrition, Microbiome & Health Rutgers University, New Brunswick, NJ
| | - Marko Oydanich
- Department of Cell Biology & Molecular Medicine, Rutgers New Jersey Medical School, Newark, NJ
| | - Tara McNulty
- Department of Cell Biology & Molecular Medicine, Rutgers New Jersey Medical School, Newark, NJ
| | - Esther Rodriguez
- Department of Cell Biology & Molecular Medicine, Rutgers New Jersey Medical School, Newark, NJ
| | - Jie Zhang
- Department of Cell Biology & Molecular Medicine, Rutgers New Jersey Medical School, Newark, NJ
| | - Mark Cavallo
- Department of Cell Biology & Molecular Medicine, Rutgers New Jersey Medical School, Newark, NJ
| | - John J. Guers
- Department of Biology, Behavioral Neuroscience and Health Science, Rider University, Lawrenceville, NJ
| | - Dorothy E. Vatner
- Department of Cell Biology & Molecular Medicine, Rutgers New Jersey Medical School, Newark, NJ
| | - Stephen F. Vatner
- Department of Cell Biology & Molecular Medicine, Rutgers New Jersey Medical School, Newark, NJ
| | - Sara C. Campbell
- Department of Kinesiology and Health, Rutgers University, New Brunswick, NJ
- Rutgers Center for Lipid Research Rutgers University, New Brunswick, NJ
- The Center for Nutrition, Microbiome & Health Rutgers University, New Brunswick, NJ
| |
Collapse
|
27
|
Alfuzaie R. The Link Between Gastrointestinal Microbiome and Ocular Disorders. Clin Ophthalmol 2023; 17:2133-2140. [PMID: 37521153 PMCID: PMC10386868 DOI: 10.2147/opth.s415425] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 07/18/2023] [Indexed: 08/01/2023] Open
Abstract
The gut-eye axis has been hypothesized to be a factor in many eye pathologies. This review examines papers from PubMed about this topic. Bacterial commensals could either be protective by regulating the immune system or prove to be damaging to the gut mucosal wall and incite an inflammatory process. The balance between the two appears to be crucial in maintaining eye health. Imbalances have been implicated in ophthalmologic conditions. The use of probiotics, dietary modifications, antibiotics, and faecal microbiota transplant in mice with pathologies such as those encountered in our practice appears to reverse disease course or at least prevent its progression. Clinical trials are currently underway to investigate their clinical significance in diseased patients.
Collapse
|
28
|
Ahmad Sophien AN, Jusop AS, Tye GJ, Tan YF, Wan Kamarul Zaman WS, Nordin F. Intestinal stem cells and gut microbiota therapeutics: hype or hope? Front Med (Lausanne) 2023; 10:1195374. [PMID: 37547615 PMCID: PMC10400779 DOI: 10.3389/fmed.2023.1195374] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 07/10/2023] [Indexed: 08/08/2023] Open
Abstract
The vital role of the intestines as the main site for the digestion and absorption of nutrients for the body continues subconsciously throughout one's lifetime, but underneath all the complex processes lie the intestinal stem cells and the gut microbiota that work together to maintain the intestinal epithelium. Intestinal stem cells (ISC) are multipotent stem cells from which all intestinal epithelial cells originate, and the gut microbiota refers to the abundant collection of various microorganisms that reside in the gastrointestinal tract. Both reside in the intestines and have many mechanisms and pathways in place with the ultimate goal of co-managing human gastrointestinal tract homeostasis. Based on the abundance of research that is focused on either of these two topics, this suggests that there are many methods by which both players affect one another. Therefore, this review aims to address the relationship between ISC and the gut microbiota in the context of regenerative medicine. Understanding the principles behind both aspects is therefore essential in further studies in the field of regenerative medicine by making use of the underlying designed mechanisms.
Collapse
Affiliation(s)
- Ahmad Naqiuddin Ahmad Sophien
- Centre for Tissue Engineering and Regenerative Medicine (CTERM), Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Amirah Syamimi Jusop
- Centre for Tissue Engineering and Regenerative Medicine (CTERM), Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Gee Jun Tye
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Gelugor, Malaysia
| | - Yuen-Fen Tan
- PPUKM-MAKNA Cancer Center, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
- M. Kandiah Faculty of Medicine and Health Sciences (MK FMHS), Universiti Tunku Abdul Rahman, Kajang, Malaysia
| | - Wan Safwani Wan Kamarul Zaman
- Department of Biomedical Engineering, Faculty of Engineering, Universiti Malaya, Kuala Lumpur, Malaysia
- Centre for Innovation in Medical Engineering (CIME), Department of Biomedical Engineering, Faculty of Engineering, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Fazlina Nordin
- Centre for Tissue Engineering and Regenerative Medicine (CTERM), Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| |
Collapse
|
29
|
Chen YH, Yeung F, Lacey KA, Zaldana K, Lin JD, Bee GCW, McCauley C, Barre RS, Liang SH, Hansen CB, Downie AE, Tio K, Weiser JN, Torres VJ, Bennett RJ, Loke P, Graham AL, Cadwell K. Rewilding of laboratory mice enhances granulopoiesis and immunity through intestinal fungal colonization. Sci Immunol 2023; 8:eadd6910. [PMID: 37352372 PMCID: PMC10350741 DOI: 10.1126/sciimmunol.add6910] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 05/31/2023] [Indexed: 06/25/2023]
Abstract
The paucity of blood granulocyte populations such as neutrophils in laboratory mice is a notable difference between this model organism and humans, but the cause of this species-specific difference is unclear. We previously demonstrated that laboratory mice released into a seminatural environment, referred to as rewilding, display an increase in blood granulocytes that is associated with expansion of fungi in the gut microbiota. Here, we find that tonic signals from fungal colonization induce sustained granulopoiesis through a mechanism distinct from emergency granulopoiesis, leading to a prolonged expansion of circulating neutrophils that promotes immunity. Fungal colonization after either rewilding or oral inoculation of laboratory mice with Candida albicans induced persistent expansion of myeloid progenitors in the bone marrow. This increase in granulopoiesis conferred greater long-term protection from bloodstream infection by gram-positive bacteria than by the trained immune response evoked by transient exposure to the fungal cell wall component β-glucan. Consequently, introducing fungi into laboratory mice may restore aspects of leukocyte development and provide a better model for humans and free-living mammals that are constantly exposed to environmental fungi.
Collapse
Affiliation(s)
- Ying-Han Chen
- Kimmel Center for Biology and Medicine at the Skirball Institute
| | - Frank Yeung
- Kimmel Center for Biology and Medicine at the Skirball Institute
| | - Keenan A. Lacey
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Kimberly Zaldana
- Kimmel Center for Biology and Medicine at the Skirball Institute
| | - Jian-Da Lin
- Department of Biochemical Science and Technology, College of Life Science, National Taiwan University, Taipei City, Taiwan
| | - Gavyn Chern Wei Bee
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Caroline McCauley
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Ramya S. Barre
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, New Jersey, USA
| | - Shen-Huan Liang
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI, USA
| | - Christina B. Hansen
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, New Jersey, USA
| | - Alexander E Downie
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, New Jersey, USA
| | - Kyle Tio
- Kimmel Center for Biology and Medicine at the Skirball Institute
| | - Jeffrey N. Weiser
- Antimicrobial-Resistant Pathogens Program
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Victor J Torres
- Antimicrobial-Resistant Pathogens Program
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Richard J. Bennett
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI, USA
| | - P’ng Loke
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Andrea L. Graham
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, New Jersey, USA
| | - Ken Cadwell
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104
| |
Collapse
|
30
|
Hidalgo-Villeda F, Million M, Defoort C, Vannier T, Svilar L, Lagier M, Wagner C, Arroyo-Portilla C, Chasson L, Luciani C, Bossi V, Gorvel JP, Lelouard H, Tomas J. Prolonged dysbiosis and altered immunity under nutritional intervention in a physiological mouse model of severe acute malnutrition. iScience 2023; 26:106910. [PMID: 37378323 PMCID: PMC10291336 DOI: 10.1016/j.isci.2023.106910] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 04/03/2023] [Accepted: 05/12/2023] [Indexed: 06/29/2023] Open
Abstract
Severe acute malnutrition (SAM) is a multifactorial disease affecting millions of children worldwide. It is associated with changes in intestinal physiology, microbiota, and mucosal immunity, emphasizing the need for multidisciplinary studies to unravel its full pathogenesis. We established an experimental model in which weanling mice fed a high-deficiency diet mimic key anthropometric and physiological features of SAM in children. This diet alters the intestinal microbiota (less segmented filamentous bacteria, spatial proximity to epithelium), metabolism (decreased butyrate), and immune cell populations (depletion of LysoDC in Peyer's patches and intestinal Th17 cells). A nutritional intervention leads to a fast zoometric and intestinal physiology recovery but to an incomplete restoration of the intestinal microbiota, metabolism, and immune system. Altogether, we provide a preclinical model of SAM and have identified key markers to target with future interventions during the education of the immune system to improve SAM whole defects.
Collapse
Affiliation(s)
- Fanny Hidalgo-Villeda
- Aix Marseille University, CNRS, INSERM, CIML, Turing Centre for Living Systems, Marseille, France
- Escuela de Microbiología, Facultad de Ciencias, Universidad Nacional Autónoma de Honduras, Tegucigalpa, Honduras
- IHU-Méditerranée Infection, Marseille, France
| | - Matthieu Million
- IHU-Méditerranée Infection, Marseille, France
- Ap-HM, Marseille, France
| | - Catherine Defoort
- C2VN, INRA, INSERM, Aix Marseille University, CriBioM, Marseille, France
| | - Thomas Vannier
- Aix Marseille University, CNRS, INSERM, CIML, Turing Centre for Living Systems, Marseille, France
| | - Ljubica Svilar
- C2VN, INRA, INSERM, Aix Marseille University, CriBioM, Marseille, France
| | - Margaux Lagier
- Aix Marseille University, CNRS, INSERM, CIML, Turing Centre for Living Systems, Marseille, France
| | - Camille Wagner
- Aix Marseille University, CNRS, INSERM, CIML, Turing Centre for Living Systems, Marseille, France
| | - Cynthia Arroyo-Portilla
- Aix Marseille University, CNRS, INSERM, CIML, Turing Centre for Living Systems, Marseille, France
- Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | - Lionel Chasson
- Aix Marseille University, CNRS, INSERM, CIML, Turing Centre for Living Systems, Marseille, France
| | - Cécilia Luciani
- Aix Marseille University, CNRS, INSERM, CIML, Turing Centre for Living Systems, Marseille, France
| | | | - Jean-Pierre Gorvel
- Aix Marseille University, CNRS, INSERM, CIML, Turing Centre for Living Systems, Marseille, France
| | - Hugues Lelouard
- Aix Marseille University, CNRS, INSERM, CIML, Turing Centre for Living Systems, Marseille, France
| | - Julie Tomas
- Aix Marseille University, CNRS, INSERM, CIML, Turing Centre for Living Systems, Marseille, France
| |
Collapse
|
31
|
Pandey U, Tambat S, Aich P. Postnatal 14D is the Key Window for Mice Intestinal Development- An Insight from Age-Dependent Antibiotic-Mediated Gut Microbial Dysbiosis Study. Adv Biol (Weinh) 2023:e2300089. [PMID: 37178322 DOI: 10.1002/adbi.202300089] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/13/2023] [Indexed: 05/15/2023]
Abstract
The postnatal period is one of the critical windows for the structure-function development of the gastrointestinal tract and associated mucosal immunity. Along with other constituent members, recent studies suggest the contribution of gut microbiota in maintaining host health, immunity, and development. Although the gut microbiota's role in maintaining barrier integrity is known, its function in early life development still needs to be better understood. To understand the details of gut microbiota's effects on intestinal integrity, epithelium development, and immune profile, the route of antibiotic-mediated perturbation is taken. Mice on days 7(P7D), 14(P14D), 21(P21D) and 28(P28D) are sacrificed and 16S rRNA metagenomic analysis is performed. The barrier integrity, tight junction proteins (TJPs) expression, intestinal epithelial cell (IEC) markers, and inflammatory cytokines are analyzed. Results reveal a postnatal age-related impact of gut microbiota perturbation, with a gradual increase in the relative abundance of Proteobacteria and a reduction in Bacteroidetes and Firmicutes. Significant barrier integrity disruption, reduced TJPs and IECs marker expression, and increased systemic inflammation at P14D of AVNM-treated mice are found. Moreover, the microbiota transplantation shows recolonization of Verrucomicrobia, proving a causal role in barrier functions. The investigation reveals P14D as a critical period for neonatal intestinal development, regulated by specific microbiota composition.
Collapse
Affiliation(s)
- Uday Pandey
- School of Biological Sciences, National Institute of Science Education and Research (NISER), P.O. Jatni, Khurda, Odisha, 752050, India
- Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai, 400094, India
| | - Subodh Tambat
- Department of Life Sciences and Healthcare, Persistent Systems Limited, Pune, Maharashtra, 411004, India
| | - Palok Aich
- School of Biological Sciences, National Institute of Science Education and Research (NISER), P.O. Jatni, Khurda, Odisha, 752050, India
- Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai, 400094, India
| |
Collapse
|
32
|
Liu Y, Feng Y, Yang X, Lv Z, Li P, Zhang M, Wei F, Jin X, Hu Y, Guo Y, Liu D. Mining chicken ileal microbiota for immunomodulatory microorganisms. THE ISME JOURNAL 2023; 17:758-774. [PMID: 36849630 PMCID: PMC10119185 DOI: 10.1038/s41396-023-01387-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 02/10/2023] [Accepted: 02/15/2023] [Indexed: 03/01/2023]
Abstract
The gut microbiota makes important contributions to host immune system development and resistance to pathogen infections, especially during early life. However, studies addressing the immunomodulatory functions of gut microbial individuals or populations are limited. In this study, we explore the systemic impact of the ileal microbiota on immune cell development and function of chickens and identify the members of the microbiota involved in immune system modulation. We initially used a time-series design with six time points to prove that ileal microbiota at different succession stages is intimately connected to immune cell maturation. Antibiotics perturbed the microbiota succession and negatively affected immune development, whereas early exposure to the ileal commensal microbiota from more mature birds promoted immune cell development and facilitated pathogen elimination after Salmonella Typhimurium infection, illustrating that early colonization of gut microbiota is an important driver of immune development. Five bacterial strains, Blautia coccoides, Bacteroides xylanisolvens, Fournierella sp002159185, Romboutsia lituseburensis, and Megamonas funiformis, which are closely related to the immune system development of broiler chickens, were then screened out and validated for their immunomodulatory properties. Our results provide insight into poultry immune system-microbiota interactions and also establish a foundation for targeted immunological interventions aiming to combat infectious diseases and promote poultry health and production.
Collapse
Affiliation(s)
- Yan Liu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, 100193, Beijing, China
| | - Yuqing Feng
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, 100193, Beijing, China
| | - Xinyue Yang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, 100193, Beijing, China
| | - Zhengtian Lv
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, 100193, Beijing, China
| | - Peng Li
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, 100193, Beijing, China
| | - Meihong Zhang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, 100193, Beijing, China
| | - Fuxiao Wei
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, 100193, Beijing, China
| | - Xiaolu Jin
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, 100193, Beijing, China
| | - Yongfei Hu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, 100193, Beijing, China
| | - Yuming Guo
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, 100193, Beijing, China
| | - Dan Liu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, 100193, Beijing, China.
| |
Collapse
|
33
|
Maciel-Fiuza MF, Muller GC, Campos DMS, do Socorro Silva Costa P, Peruzzo J, Bonamigo RR, Veit T, Vianna FSL. Role of gut microbiota in infectious and inflammatory diseases. Front Microbiol 2023; 14:1098386. [PMID: 37051522 PMCID: PMC10083300 DOI: 10.3389/fmicb.2023.1098386] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 03/06/2023] [Indexed: 03/29/2023] Open
Abstract
Thousands of microorganisms compose the human gut microbiota, fighting pathogens in infectious diseases and inhibiting or inducing inflammation in different immunological contexts. The gut microbiome is a dynamic and complex ecosystem that helps in the proliferation, growth, and differentiation of epithelial and immune cells to maintain intestinal homeostasis. Disorders that cause alteration of this microbiota lead to an imbalance in the host’s immune regulation. Growing evidence supports that the gut microbial community is associated with the development and progression of different infectious and inflammatory diseases. Therefore, understanding the interaction between intestinal microbiota and the modulation of the host’s immune system is fundamental to understanding the mechanisms involved in different pathologies, as well as for the search of new treatments. Here we review the main gut bacteria capable of impacting the immune response in different pathologies and we discuss the mechanisms by which this interaction between the immune system and the microbiota can alter disease outcomes.
Collapse
Affiliation(s)
- Miriãn Ferrão Maciel-Fiuza
- Postgraduate Program in Genetics and Molecular Biology, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, Brazil
- Instituto Nacional de Genética Médica Populacional, Porto Alegre, Brazil
- Genomics Medicine Laboratory, Center of Experimental Research, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
- Laboratory of Immunobiology and Immunogenetics, Department of Genetics, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, Brazil
| | - Guilherme Cerutti Muller
- Postgraduate Program in Genetics and Molecular Biology, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, Brazil
| | - Daniel Marques Stuart Campos
- Genomics Medicine Laboratory, Center of Experimental Research, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
- Laboratory of Immunobiology and Immunogenetics, Department of Genetics, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, Brazil
| | - Perpétua do Socorro Silva Costa
- Postgraduate Program in Genetics and Molecular Biology, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, Brazil
- Instituto Nacional de Genética Médica Populacional, Porto Alegre, Brazil
- Department of Nursing, Universidade Federal do Maranhão, Imperatriz, Brazil
| | - Juliano Peruzzo
- Dermatology Service of Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
- Postgraduate Program in Medicine, Medical Sciences, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, Brazil
| | - Renan Rangel Bonamigo
- Dermatology Service of Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
- Postgraduate Program in Medicine, Medical Sciences, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, Brazil
- Postgraduate Program in Pathology, Universidade Federal De Ciências Da Saúde de Porto Alegre, Porto Alegre, Brazil
| | - Tiago Veit
- Laboratory of Immunobiology and Immunogenetics, Department of Genetics, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, Brazil
- Department of Microbiology, Immunology and Parasitology, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Fernanda Sales Luiz Vianna
- Postgraduate Program in Genetics and Molecular Biology, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, Brazil
- Instituto Nacional de Genética Médica Populacional, Porto Alegre, Brazil
- Genomics Medicine Laboratory, Center of Experimental Research, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
- Laboratory of Immunobiology and Immunogenetics, Department of Genetics, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, Brazil
- Postgraduate Program in Medicine, Medical Sciences, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, Brazil
- *Correspondence: Fernanda Sales Luiz Vianna,
| |
Collapse
|
34
|
Liu X, Qiu X, Yang Y, Wang J, Wang Q, Liu J, Yang F, Liu Z, Qi R. Alteration of gut microbiome and metabolome by Clostridium butyricum can repair the intestinal dysbiosis caused by antibiotics in mice. iScience 2023; 26:106190. [PMID: 36895644 PMCID: PMC9988658 DOI: 10.1016/j.isci.2023.106190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 11/24/2022] [Accepted: 02/07/2023] [Indexed: 02/15/2023] Open
Abstract
This study evaluated the repair effects of Clostridium butyricum (CBX 2021) on the antibiotic (ABX)-induced intestinal dysbiosis in mice by the multi-omics method. Results showed that ABX eliminated more than 90% of cecal bacteria and also exerted adverse effects on the intestinal structure and overall health in mice after 10 days of the treatment. Of interest, supplementing CBX 2021 in the mice for the next 10 days colonized more butyrate-producing bacteria and accelerated butyrate production compared with the mice by natural recovery. The reconstruction of intestinal microbiota efficiently promoted the improvement of the damaged gut morphology and physical barrier in the mice. In addition, CBX 2021 significantly reduced the content of disease-related metabolites and meanwhile promoted carbohydrate digestion and absorption in mice followed the microbiome alternation. In conclusion, CBX 2021 can repair the intestinal ecology of mice damaged by the antibiotics through reconstructing gut microbiota and optimizing metabolic functions.
Collapse
Affiliation(s)
- Xin Liu
- Chongqing Academy of Animal Science, Chongqing 402460, China.,College of Animal Science and Technology, Southwest University, Chongqing 402460, China
| | - Xiaoyu Qiu
- Chongqing Academy of Animal Science, Chongqing 402460, China.,National Pig Technology Innovation Center, Chongqing 402460, China
| | - Yong Yang
- College of Life Sciences, Southwest University of Science and Technology, Mianyang 621000, China
| | - Jing Wang
- Chongqing Academy of Animal Science, Chongqing 402460, China.,National Pig Technology Innovation Center, Chongqing 402460, China
| | - Qi Wang
- Chongqing Academy of Animal Science, Chongqing 402460, China.,National Pig Technology Innovation Center, Chongqing 402460, China
| | - Jingbo Liu
- College of Life Sciences, Southwest University of Science and Technology, Mianyang 621000, China
| | - Feiyun Yang
- Chongqing Academy of Animal Science, Chongqing 402460, China.,National Pig Technology Innovation Center, Chongqing 402460, China
| | - Zuohua Liu
- Chongqing Academy of Animal Science, Chongqing 402460, China.,National Pig Technology Innovation Center, Chongqing 402460, China
| | - Renli Qi
- Chongqing Academy of Animal Science, Chongqing 402460, China.,National Pig Technology Innovation Center, Chongqing 402460, China
| |
Collapse
|
35
|
The Dysbiosis Triggered by First-Line Tuberculosis Antibiotics Fails to Reduce Their Bioavailability. mBio 2023; 14:e0035323. [PMID: 36877010 PMCID: PMC10127996 DOI: 10.1128/mbio.00353-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023] Open
Abstract
Antituberculosis therapy (ATT) causes a rapid and distinct alteration in the composition of the intestinal microbiota that is long lasting in both mice and humans. This observation raised the question of whether such antibiotic-induced changes in the microbiome might affect the absorption or gut metabolism of the tuberculosis (TB) drugs themselves. To address this issue, we utilized a murine model of antibiotic-induced dysbiosis to assay the bioavailability of rifampicin, moxifloxacin, pyrazinamide, and isoniazid in mouse plasma over a period of 12 h following individual oral administration. We found that 4-week pretreatment with a regimen of isoniazid, rifampicin, and pyrazinamide (HRZ), a drug combination used clinically for ATT, failed to reduce the exposure of any of the four antibiotics assayed. Nevertheless, mice that received a pretreatment cocktail of the broad-spectrum antibiotics vancomycin, ampicllin, neomycin, and metronidazole (VANM), which are known to deplete the intestinal microbiota, displayed a significant decrease in the plasma concentration of rifampicin and moxifloxacin during the assay period, an observation that was validated in germfree animals. In contrast, no major effects were observed when similarly pretreated mice were exposed to pyrazinamide or isoniazid. Thus, the data from this animal model study indicate that the dysbiosis induced by HRZ does not reduce the bioavailability of the drugs themselves. Nevertheless, our observations suggest that more extreme alterations of the microbiota, such as those occurring in patients on broad-spectrum antibiotics, could directly or indirectly affect the exposure of important TB drugs and thereby potentially influencing treatment outcome. IMPORTANCE Previous studies have shown that treatment of Mycobacterium tuberculosis infection with first-line antibiotics results in a long-lasting disruption of the host microbiota. Since the microbiome has been shown to influence the host availability of other drugs, we employed a mouse model to ask whether the dysbiosis resulting from either tuberculosis (TB) chemotherapy or a more aggressive course of broad-spectrum antibiotics might influence the pharmacokinetics of the TB antibiotics themselves. While drug exposure was not reduced in animals previously described as exhibiting the dysbiosis triggered by conventional TB chemotherapy, we found that mice with other alterations in the microbiome, such as those triggered by more intensive antibiotic treatment, displayed decreased availability of rifampicin and moxifloxacin, which in turn could impact their efficacy. The above findings are relevant not only to TB but also to other bacterial infections treated with these two broader spectrum antibiotics.
Collapse
|
36
|
Han B, Zhang X, Wang L, Yuan W. Dysbiosis of Gut Microbiota Contributes to Uremic Cardiomyopathy via Induction of IFNγ-Producing CD4 + T Cells Expansion. Microbiol Spectr 2023; 11:e0310122. [PMID: 36788674 PMCID: PMC9927280 DOI: 10.1128/spectrum.03101-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 11/18/2022] [Indexed: 12/23/2022] Open
Abstract
Uremic cardiomyopathy (UCM) correlates with chronic kidney disease (CKD)-induced morbidity and mortality. Gut microbiota has been involved in the pathogenesis of certain cardiovascular disease, but the role of gut microbiota in the pathogenesis of UCM remains unknown. Here, we performed a case-control study to compare the gut microbiota of patients with CKD and healthy controls by 16S rRNA (rRNA) gene sequencing. To test the causative relationship between gut microbiota and UCM, we performed fecal microbiota transplantation (FMT) in 5/6th nephrectomy model of CKD. We found that opportunistic pathogens, particularly Klebsiella pneumoniae (K. pneumoniae), are markedly enriched in patients with CKD. FMT from CKD patients aggravated diastolic dysfunction in the mouse model. The diastolic dysfunction was associated with microbiome-dependent increases in heart-infiltrating IFNγ+ CD4+ T cells. Monocolonization with K. pneumoniae increased cardiac IFNγ+ CD4+ T cells infiltration and promoted UCM development of the mouse model. A probiotic Bifidobacterium animalis decreased the relative abundance of K. pneumoniae, reduced levels of cardiac IFNγ+ CD4+ T cells and ameliorated the severity of diastolic dysfunction in the mice. Thus, the aberrant gut microbiota in CKD patients, especially K. pneumoniae, contributed to UCM pathogenesis through the induction of heart-infiltrating IFNγ+ CD4+ T cells expansion, proposing that a Gut Microbiota-Gut-Kidney-Heart axis could play a critical role in elucidating the etiology of UCM, and suggesting that modulation of the gut bacteria may serve as a promising target for the amelioration of UCM. IMPORTANCE Uremic cardiomyopathy (UCM) correlates tightly with increased mortality in patients with chronic kidney disease (CKD), yet the pathogenesis of UCM remains incompletely understood, limiting therapeutic approaches. Our study proposed that a Gut Microbiota-Gut-Kidney-Heart axis could play a critical role in understanding etiology of UCM. There is a major need in future clinical trials of patients with CKD to explore if modulation of gut microbiota by fecal microbiota transplantation (FMT), probiotics or antibiotics can alleviate cardiac dysfunction, reduce mortality, and improve life quality.
Collapse
Affiliation(s)
- Bin Han
- Department of Nephrology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xiaoqian Zhang
- Department of Nephrology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Ling Wang
- Department of Nephrology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Weijie Yuan
- Department of Nephrology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
37
|
Advances in Lactobacillus Restoration for β-Lactam Antibiotic-Induced Dysbiosis: A System Review in Intestinal Microbiota and Immune Homeostasis. Microorganisms 2023; 11:microorganisms11010179. [PMID: 36677471 PMCID: PMC9861108 DOI: 10.3390/microorganisms11010179] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/28/2022] [Accepted: 12/29/2022] [Indexed: 01/13/2023] Open
Abstract
A balanced gut microbiota and their metabolites are necessary for the maintenance of the host's health. The antibiotic-induced dysbiosis can cause the disturbance of the microbial community, influence the immune homeostasis and induce susceptibility to metabolic- or immune-mediated disorders and diseases. The Lactobacillus and their metabolites or components affect the function of the host's immune system and result in microbiota-mediated restoration. Recent data have indicated that, by altering the composition and functions of gut microbiota, antibiotic exposure can also lead to a number of specific pathologies, hence, understanding the potential mechanisms of the interactions between gut microbiota dysbiosis and immunological homeostasis is very important. The Lactobacillus strategies for detecting the associations between the restoration of the relatively imbalanced microbiome and gut diseases are provided in this discussion. In this review, we discuss the recently discovered connections between microbial communities and metabolites in the Lactobacillus treatment of β-lactam antibiotic-induced dysbiosis, and establish the relationship between commensal bacteria and host immunity under this imbalanced homeostasis of the gut microbiota.
Collapse
|
38
|
Matzaras R, Nikopoulou A, Protonotariou E, Christaki E. Gut Microbiota Modulation and Prevention of Dysbiosis as an Alternative Approach to Antimicrobial Resistance: A Narrative Review. THE YALE JOURNAL OF BIOLOGY AND MEDICINE 2022; 95:479-494. [PMID: 36568836 PMCID: PMC9765331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Background: The importance of gut microbiota in human health is being increasingly studied. Imbalances in gut microbiota have been associated with infection, inflammation, and obesity. Antibiotic use is the most common and significant cause of major alterations in the composition and function of the gut microbiota and can result in colonization with multidrug-resistant bacteria. Methods: The purpose of this review is to present existing evidence on how microbiota modulation and prevention of gut dysbiosis can serve as tools to combat antimicrobial resistance. Results: While the spread of antibiotic-resistant pathogens requires antibiotics with novel mechanisms of action, the number of newly discovered antimicrobial classes remains very low. For this reason, the application of alternative modalities to combat antimicrobial resistance is necessary. Diet, probiotics/prebiotics, selective oropharyngeal or digestive decontamination, and especially fecal microbiota transplantation (FMT) are under investigation with FMT being the most studied. But, as prevention is better than cure, the implementation of antimicrobial stewardship programs and strict infection control measures along with newly developed chelating agents could also play a crucial role in decreasing colonization with multidrug resistant organisms. Conclusion: New alternative tools to fight antimicrobial resistance via gut microbiota modulation, seem to be effective and should remain the focus of further research and development.
Collapse
Affiliation(s)
- Rafail Matzaras
- Infectious Diseases Unit, Department of Medicine,
University General Hospital of Ioannina, University of Ioannina, Ioannina,
Greece
| | - Anna Nikopoulou
- Department of Internal Medicine, G. Papanikolaou
General Hospital of Thessaloniki, Thessaloniki, Greece
| | - Efthimia Protonotariou
- Department of Microbiology, AHEPA University Hospital,
Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Eirini Christaki
- Infectious Diseases Unit, Department of Medicine,
University General Hospital of Ioannina, University of Ioannina, Ioannina,
Greece,To whom all correspondence should be addressed:
Eirini Christaki, University General Hospital of Ioannina, St. Niarchou,
Ioannina, Greece; ; ORCID:
https://www.orcid.org/0000-0002-8152-6367
| |
Collapse
|
39
|
Zhang W, Lyu M, Bessman NJ, Xie Z, Arifuzzaman M, Yano H, Parkhurst CN, Chu C, Zhou L, Putzel GG, Li TT, Jin WB, Zhou J, Hu H, Tsou AM, Guo CJ, Artis D. Gut-innervating nociceptors regulate the intestinal microbiota to promote tissue protection. Cell 2022; 185:4170-4189.e20. [PMID: 36240781 PMCID: PMC9617796 DOI: 10.1016/j.cell.2022.09.008] [Citation(s) in RCA: 81] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/14/2022] [Accepted: 08/29/2022] [Indexed: 11/06/2022]
Abstract
Nociceptive pain is a hallmark of many chronic inflammatory conditions including inflammatory bowel diseases (IBDs); however, whether pain-sensing neurons influence intestinal inflammation remains poorly defined. Employing chemogenetic silencing, adenoviral-mediated colon-specific silencing, and pharmacological ablation of TRPV1+ nociceptors, we observed more severe inflammation and defective tissue-protective reparative processes in a murine model of intestinal damage and inflammation. Disrupted nociception led to significant alterations in the intestinal microbiota and a transmissible dysbiosis, while mono-colonization of germ-free mice with Gram+Clostridium spp. promoted intestinal tissue protection through a nociceptor-dependent pathway. Mechanistically, disruption of nociception resulted in decreased levels of substance P, and therapeutic delivery of substance P promoted tissue-protective effects exerted by TRPV1+ nociceptors in a microbiota-dependent manner. Finally, dysregulated nociceptor gene expression was observed in intestinal biopsies from IBD patients. Collectively, these findings indicate an evolutionarily conserved functional link between nociception, the intestinal microbiota, and the restoration of intestinal homeostasis.
Collapse
Affiliation(s)
- Wen Zhang
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Joan and Sanford I. Weill Department of Medicine, Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA
| | - Mengze Lyu
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Joan and Sanford I. Weill Department of Medicine, Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA
| | - Nicholas J Bessman
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Joan and Sanford I. Weill Department of Medicine, Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA
| | - Zili Xie
- Department of Anesthesiology, The Center for the Study of Itch, Washington University School of Medicine, St. Louis, MO, USA
| | - Mohammad Arifuzzaman
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Joan and Sanford I. Weill Department of Medicine, Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA
| | - Hiroshi Yano
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Joan and Sanford I. Weill Department of Medicine, Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA
| | - Christopher N Parkhurst
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Joan and Sanford I. Weill Department of Medicine, Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA
| | - Coco Chu
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Joan and Sanford I. Weill Department of Medicine, Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA
| | - Lei Zhou
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Joan and Sanford I. Weill Department of Medicine, Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA
| | - Gregory G Putzel
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Joan and Sanford I. Weill Department of Medicine, Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA
| | - Ting-Ting Li
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Joan and Sanford I. Weill Department of Medicine, Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA
| | - Wen-Bing Jin
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Joan and Sanford I. Weill Department of Medicine, Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA
| | - Jordan Zhou
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Joan and Sanford I. Weill Department of Medicine, Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA
| | - Hongzhen Hu
- Department of Anesthesiology, The Center for the Study of Itch, Washington University School of Medicine, St. Louis, MO, USA
| | - Amy M Tsou
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Joan and Sanford I. Weill Department of Medicine, Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA; Friedman Center for Nutrition and Inflammation, Joan and Sanford I. Weill Department of Medicine, Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA; Division of Pediatric Gastroenterology, Hepatology and Nutrition, Weill Cornell Medical College, New York, NY, USA
| | - Chun-Jun Guo
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Joan and Sanford I. Weill Department of Medicine, Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA; Friedman Center for Nutrition and Inflammation, Joan and Sanford I. Weill Department of Medicine, Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA
| | - David Artis
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Joan and Sanford I. Weill Department of Medicine, Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA; Friedman Center for Nutrition and Inflammation, Joan and Sanford I. Weill Department of Medicine, Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA.
| |
Collapse
|
40
|
Kou W, Lin YY, Su F, Xiang Y, Qiao H, Wu X, Hou XM. The influence of pharmaceutical care in patients with advanced non-small-cell lung cancer receiving combination cytotoxic chemotherapy and PD-1/PD-L1 inhibitors. Front Pharmacol 2022; 13:910722. [DOI: 10.3389/fphar.2022.910722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 09/26/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Immune checkpoint inhibitors combined chemotherapy (ICIC) are widely used for various types of lung cancer in the past decade. However, ICIC related adverse events (AEs) are more serious than immune-related adverse events (irAE) or cytotoxic chemotherapy alone.Objective: This prospective interventional study aimed to evaluate the impact of the pharmaceutical care program in reducing adverse events and analyze pharmacy interventions in patients with NSCLC who receive ICIC therapies.Method: NSCLC patients were enrolled in this study, the pharmaceutical care program was introduced after patients received the second cycle ICIC therapies, and were followed by the pharmacist for 6 months after hospital discharge. The percentages of adverse events between patients in and after the first two cycles were analyzed and compared.Results: After the first two treatment cycles, the clinical pharmacist proposed 67 interventions in 30 patients. The most frequent types of intervention were drug discontinuation (40.3%, 27/67) followed by drug modification (14.9%, 10/67). There were significant decreases in AEs after the second cycle with respect to nausea (≥grade-2, 14% vs. 28.3%, p = 0.039), constipation (≥grade-2, 8.8% vs. 21.7%, p = 0.039), diarrhea (≥grade-2, 6% vs. 16.7%, p = 0.031), and myelosuppression (≥grade-2, 15.8% vs. 30.0%, p = 0.022).Conclusion: Provision of pharmaceutical care for NSCLC patients receiving ICIC therapies can optimize drug therapy and reduce adverse events.
Collapse
|
41
|
Afzaal M, Saeed F, Shah YA, Hussain M, Rabail R, Socol CT, Hassoun A, Pateiro M, Lorenzo JM, Rusu AV, Aadil RM. Human gut microbiota in health and disease: Unveiling the relationship. Front Microbiol 2022; 13:999001. [PMID: 36225386 PMCID: PMC9549250 DOI: 10.3389/fmicb.2022.999001] [Citation(s) in RCA: 194] [Impact Index Per Article: 64.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 08/31/2022] [Indexed: 12/04/2022] Open
Abstract
The human gut possesses millions of microbes that define a complex microbial community. The gut microbiota has been characterized as a vital organ forming its multidirectional connecting axis with other organs. This gut microbiota axis is responsible for host-microbe interactions and works by communicating with the neural, endocrinal, humoral, immunological, and metabolic pathways. The human gut microorganisms (mostly non-pathogenic) have symbiotic host relationships and are usually associated with the host’s immunity to defend against pathogenic invasion. The dysbiosis of the gut microbiota is therefore linked to various human diseases, such as anxiety, depression, hypertension, cardiovascular diseases, obesity, diabetes, inflammatory bowel disease, and cancer. The mechanism leading to the disease development has a crucial correlation with gut microbiota, metabolic products, and host immune response in humans. The understanding of mechanisms over gut microbiota exerts its positive or harmful impacts remains largely undefined. However, many recent clinical studies conducted worldwide are demonstrating the relation of specific microbial species and eubiosis in health and disease. A comprehensive understanding of gut microbiota interactions, its role in health and disease, and recent updates on the subject are the striking topics of the current review. We have also addressed the daunting challenges that must be brought under control to maintain health and treat diseases.
Collapse
Affiliation(s)
- Muhammad Afzaal
- Department of Food Science, Government College University Faisalabad, Faisalabad, Pakistan
- *Correspondence: Muhammad Afzaal,
| | - Farhan Saeed
- Department of Food Science, Government College University Faisalabad, Faisalabad, Pakistan
| | - Yasir Abbas Shah
- Department of Food Science, Government College University Faisalabad, Faisalabad, Pakistan
| | - Muzzamal Hussain
- Department of Food Science, Government College University Faisalabad, Faisalabad, Pakistan
| | - Roshina Rabail
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan
| | | | - Abdo Hassoun
- Sustainable AgriFoodtech Innovation & Research (SAFIR), Arras, France
- Syrian Academic Expertise (SAE), Gaziantep, Turkey
| | - Mirian Pateiro
- Centro Tecnológico de la Carne de Galicia, Ourense, Spain
| | - José M. Lorenzo
- Centro Tecnológico de la Carne de Galicia, Ourense, Spain
- Área de Tecnoloxía dos Alimentos, Faculdade de Ciências de Ourense, Universidade de Vigo, Ourense, Spain
| | - Alexandru Vasile Rusu
- Life Science Institute, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Cluj-Napoca, Romania
- Faculty of Animal Science and Biotechnology, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Cluj-Napoca, Romania
| | - Rana Muhammad Aadil
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan
- Rana Muhammad Aadil,
| |
Collapse
|
42
|
Leroy R, Bourgeois J, Verleye L, Toma S. Should systemic antibiotics be prescribed in periodontal abscesses and pericoronitis? A systematic review of the literature. Eur J Oral Sci 2022; 130:e12884. [PMID: 35781706 DOI: 10.1111/eos.12884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 06/09/2022] [Indexed: 11/28/2022]
Abstract
This study assessed whether systemic antibiotics are beneficial or harmful in patients who present with an acute periodontal abscess or pericoronitis, with or without systemic involvement, and, if antibiotics are beneficial, which type, dosage, and duration are the most effective. Medline, Embase, and the Cochrane Library were screened from 1948 up to 1 April 2022 for systematic reviews, randomised clinical trials (RCTs), and other studies. Dedicated websites were consulted for systematic reviews, clinical practice guidelines, and health technology assessments on the topic. Outcomes of interest comprised tooth survival, swelling, pain, tooth mobility, periodontal probing depth, suppuration, adverse effects, quality of life measurements, and medication required for pain relief. Overall, five guidelines, seven systematic reviews, 15 RCTs, and 34 other studies were identified and selected for full-text assessment, but none of them fulfilled the inclusion criteria. At present there is no single randomised or non-randomised controlled trial assessing the harms and clinical effectiveness of systemic antibiotics in adults with a periodontal abscess or pericoronitis.
Collapse
Affiliation(s)
- Roos Leroy
- Belgian Health Care Knowledge Centre (KCE), Brussels, Belgium
| | | | - Leen Verleye
- Belgian Health Care Knowledge Centre (KCE), Brussels, Belgium
| | - Selena Toma
- Department of Periodontology, Institut de Recherche Experimentale et Clinique (IREC), Cliniques universitaires Saint-Luc, Brussels, Belgium
| |
Collapse
|
43
|
Al-Qadami G, Verma G, Van Sebille Y, Le H, Hewson I, Bateman E, Wardill H, Bowen J. Antibiotic-Induced Gut Microbiota Depletion Accelerates the Recovery of Radiation-Induced Oral Mucositis in Rats. Int J Radiat Oncol Biol Phys 2022; 113:845-858. [PMID: 35398457 DOI: 10.1016/j.ijrobp.2022.03.036] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 03/06/2022] [Accepted: 03/30/2022] [Indexed: 11/16/2022]
Abstract
PURPOSE Due to its pivotal role in the modulation of immune and inflammatory responses, the gut microbiota has emerged as a key modulator of cancer treatment-induced gastrointestinal mucositis. However, it is not clear yet how it affects radiation therapy-induced oral mucositis (OM). As such, this study aimed to explore the gut microbiota's role in the pathogenesis of radiation-induced OM in rats. METHODS AND MATERIALS Male Sprague Dawley rats were treated with 20 Gy x-ray radiation (Rx) delivered to the snout, with or without antibiotic-induced microbiota depletion (AIMD). OM severity was assessed, and tongue tissues were collected on day 9 and 15 postradiation for tissue injury and inflammatory markers assessment. RESULTS AIMD+Rx had a significantly shorter duration of severe OM compared with Rx alone group. Macroscopically, the tongue ulcer-like area was smaller in AIMD+Rx compared with the Rx group. Microscopically, a smaller percentage of the mucosal ulcer was observed in the dorsal tongue of AIMD+Rx compared with the Rx group. AIMD+Rx also had significantly lower levels of interleukin 6, interleukin 1 beta, and toll like receptor 4 in the tongue tissues than the Rx group. CONCLUSIONS The gut microbiota plays a role in OM pathogenesis, mainly in the recovery phase, through the modulation of proinflammatory pathways. Future microbiota-targeted interventions may improve OM in clinical settings.
Collapse
Affiliation(s)
| | - Gunjan Verma
- Adelaide Dental School, University of Adelaide, Adelaide
| | | | - Hien Le
- Department of Radiation Oncology, Royal Adelaide Hospital, Adelaide
| | | | - Emma Bateman
- School of Biomedicine, University of Adelaide, Adelaide
| | - Hannah Wardill
- School of Biomedicine, University of Adelaide, Adelaide; Precision Medicine Theme (Cancer), South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Joanne Bowen
- School of Biomedicine, University of Adelaide, Adelaide
| |
Collapse
|
44
|
Sofouli GA, Kanellopoulou A, Vervenioti A, Dimitriou G, Gkentzi D. Predictive Scores for Late-Onset Neonatal Sepsis as an Early Diagnostic and Antimicrobial Stewardship Tool: What Have We Done So Far? Antibiotics (Basel) 2022; 11:antibiotics11070928. [PMID: 35884182 PMCID: PMC9311949 DOI: 10.3390/antibiotics11070928] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 07/01/2022] [Accepted: 07/09/2022] [Indexed: 12/04/2022] Open
Abstract
Background: Late-onset neonatal sepsis (LOS) represents a significant cause of morbidity and mortality worldwide, and early diagnosis remains a challenge. Various ‘sepsis scores’ have been developed to improve early identification. The aim of the current review is to summarize the current knowledge on the utility of predictive scores in LOS as a tool for early sepsis recognition, as well as an antimicrobial stewardship tool. Methods: The following research question was developed: Can we diagnose LOS with accuracy in neonates using a predictive score? A systematic search was performed in the PubMed database from 1982 (first predictive score published) to December 2021. Results: Some (1352) articles were identified—out of which, 16 were included in the review. Eight were original scores, five were validations of already existing scores and two were mixed. Predictive models were developed by combining a variety of clinical, laboratory and other variables. The majority were found to assist in early diagnosis, but almost all had a limited diagnostic accuracy. Conclusions: There is an increasing need worldwide for a simple and accurate score to promptly predict LOS. Combinations of the selected parameters may be helpful, but until now, a single score has not been proven to be comprehensive.
Collapse
|
45
|
Ashour Z, Shahin R, Ali-Eldin Z, El-Shayeb M, El-Tayeb T, Bakr S. Potential impact of gut Lactobacillus acidophilus and Bifidobacterium bifidum on hepatic histopathological changes in non-cirrhotic hepatitis C virus patients with different viral load. Gut Pathog 2022; 14:25. [PMID: 35706051 PMCID: PMC9199141 DOI: 10.1186/s13099-022-00501-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 05/16/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Composition of gut microbiota has recently been suggested as a key factor persuading the pathogenesis of numerous human diseases including hepatic cirrhosis. OBJECTIVE To evaluate the potential impact of Lactobacillus acidophilus and Bifidobacterium bifidum microbiota on the progression of hepatic histopathological changes among patients with non-cirrhotic chronic hepatitis C (HCV) infection with different viral load. Additionally, to assess fecal composition of Lactobacillus acidophilus ATCC-4356 and Bifidobacterium bifidum ATCC-11863 microbiota genotypes MATERIAL AND METHODS: This study was carried out on 40 non-cirrhotic chronically infected HCV patients, and 10 healthy-controls. Liver biopsy and HCV genomic viral load were assessed for all patients after full clinical examination. Lactobacillus acidophilus ATCC-4356 and Bifidobacterium bifidum ATCC-11863 microbiota were assessed in all fecal samples using PCR assay, after counting total lactic acid bacteria. RESULTS There was a significantly higher difference between the count of both total lactic acid and Lactobacillus acidophilus of healthy controls compared to patients (P-value < 0.001). Though the count of total lactic acid bacteria, and Lactobacillus acidophilus were higher in the cases with early stage of fibrosis (score ≤ 1) compared to those with score > 1, there were no statistically significant differences with both the serum level of hepatitis C viremia (P = 0.850 and 0.977 respectively) and the score of fibrosis (P = 0.246 and 0.260 respectively). Genotypic analysis for the composition of the studied microbiota revealed that diversity was higher in healthy controls compared to patients. CONCLUSIONS The progression of hepatic fibrosis in HCV chronically infected patients seems to be plausible based on finding the altered Lactobacillus acidophilus and Bifidobacterium bifidum gut microbiota composition. Thus, modulation of these microbiota seems to be a promising target for prevention and control of HCV infection.
Collapse
Affiliation(s)
- Zeinab Ashour
- Department of Internal Medicine, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Rasha Shahin
- Department of Internal Medicine, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Zeinab Ali-Eldin
- Department of Internal Medicine, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Mohamed El-Shayeb
- Department of Internal Medicine, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Tarek El-Tayeb
- Department of Agricultural Microbiology, Faculty of Agriculture, Ain Shams University, Cairo, Egypt
| | - Salwa Bakr
- Department of Clinical Pathology/Hematology & Transfusion Medicine, Faculty of Medicine, Fayoum University, Fayoum, 63514, Egypt.
| |
Collapse
|
46
|
Yi X, Cha M. Gut Dysbiosis Has the Potential to Reduce the Sexual Attractiveness of Mouse Female. Front Microbiol 2022; 13:916766. [PMID: 35677910 PMCID: PMC9169628 DOI: 10.3389/fmicb.2022.916766] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 04/26/2022] [Indexed: 11/13/2022] Open
Abstract
Increasing evidence has shown that the gut microbiome has significant effects on mate preferences of insects; however, whether gut microbiota composition affects sexual attractiveness and mate preference in mammals remains largely unknown. Here, we showed that antibiotic treatment significantly restructured the gut microbiota composition of both mouse males and females. Males, regardless of antibiotic treatment, exhibited a higher propensity to interact with the control females than the antibiotic-treated females. The data clearly showed that gut microbiota dysbiosis reduced the sexual attractiveness of females to males, implying that commensal gut microbiota influences female attractiveness to males. The reduced sexual attractiveness of the antibiotic-treated females may be beneficial to discriminating males by avoiding disorders of immunity and sociability in offspring that acquire maternal gut microbiota via vertical transmission. We suggest further work should be oriented to increase our understanding of the interactions between gut microbiota dysbiosis, sexual selection, and mate choice of wild animals at the population level.
Collapse
Affiliation(s)
- Xianfeng Yi
- College of Life Sciences, Qufu Normal University, Qufu, China
| | - Muha Cha
- College of Life Sciences, Qufu Normal University, Qufu, China.,Academy of Agricultural Sciences, Chifeng University, Chifeng, China
| |
Collapse
|
47
|
Li Y, Wang S, Lin M, Hou C, Li C, Li G. Analysis of interactions of immune checkpoint inhibitors with antibiotics in cancer therapy. Front Med 2022; 16:307-321. [PMID: 35648368 DOI: 10.1007/s11684-022-0927-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 02/24/2022] [Indexed: 11/04/2022]
Abstract
The discovery of immune checkpoint inhibitors, such as PD-1/PD-L1 and CTLA-4, has played an important role in the development of cancer immunotherapy. However, immune-related adverse events often occur because of the enhanced immune response enabled by these agents. Antibiotics are widely applied in clinical treatment, and they are inevitably used in combination with immune checkpoint inhibitors. Clinical practice has revealed that antibiotics can weaken the therapeutic response to immune checkpoint inhibitors. Studies have shown that the gut microbiota is essential for the interaction between immune checkpoint inhibitors and antibiotics, although the exact mechanisms remain unclear. This review focuses on the interactions between immune checkpoint inhibitors and antibiotics, with an in-depth discussion about the mechanisms and therapeutic potential of modulating gut microbiota, as well as other new combination strategies.
Collapse
Affiliation(s)
- Yingying Li
- Pharmacy Department, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Shiyuan Wang
- Pharmacy Department, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Mengmeng Lin
- Pharmacy Department, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Chunying Hou
- Pharmacy Department, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Chunyu Li
- Pharmacy Department, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| | - Guohui Li
- Pharmacy Department, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| |
Collapse
|
48
|
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is one of the most common causes of hospital-acquired pneumonia. To better manage patients with MRSA pneumonia, we require a greater understanding of the host-pathogen interactions during infection. MRSA research focuses on highly virulent and cytotoxic strains, which demonstrate robust phenotypes in animal models of infection. However, nosocomial infections are often caused by hospital-acquired MRSA (HA-MRSA) isolates that exhibit low cytotoxicity and few or no phenotypes in mice, thereby confounding mechanistic studies of pathogenesis. Consequently, virulence pathways utilized by HA-MRSA in nosocomial pneumonia are largely unknown. Here, we report that conditioning mice with broad-spectrum antibiotics lowers the barrier to pneumonia, thereby transforming otherwise avirulent HA-MRSA isolates into lethal pathogens. HA-MRSA isolates are avirulent in gnotobiotic mice, mimicking results in conventional animals. Thus, the observed enhanced susceptibility to infection in antibiotic-treated mice is not due to depletion of the microbiota. More generally, we found that antibiotic conditioning leads to increased susceptibility to infection by diverse antimicrobial-resistant (AMR) pathogens of low virulence. Treatment with antibiotics leads to dehydration and malnutrition, suggesting a potential role for these clinically relevant and reducible hospital complications in susceptibility to pathogens. In sum, the model described here mitigates the impact of low virulence in immunocompetent mice, providing a convenient model to gain fundamental insight into the pathogenesis of nosocomial pathogens.
Collapse
|
49
|
Wang S, Huang A, Gu Y, Li J, Huang L, Wang X, Tao Y, Liu Z, Wu C, Yuan Z, Hao H. Rational Use of Danofloxacin for Treatment of Mycoplasma gallisepticum in Chickens Based on the Clinical Breakpoint and Lung Microbiota Shift. Antibiotics (Basel) 2022; 11:antibiotics11030403. [PMID: 35326865 PMCID: PMC8944443 DOI: 10.3390/antibiotics11030403] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 03/11/2022] [Accepted: 03/13/2022] [Indexed: 02/01/2023] Open
Abstract
The study was to explore the rational use of danofloxacin against Mycoplasma gallisepticum (MG) based on its clinical breakpoint (CBP) and the effect on lung microbiota. The CBP was established according to epidemiological cutoff value (ECV/COWT), pharmacokinetic–pharmacodynamic (PK–PD) cutoff value (COPD) and clinical cutoff value (COCL). The ECV was determined by the micro-broth dilution method and analyzed by ECOFFinder software. The COPD was determined according to PK–PD modeling of danofloxacin in infected lung tissue with Monte Carlo analysis. The COCL was performed based on the relationship between the minimum inhibitory concentration (MIC) and the possibility of cure (POC) from clinical trials. The CBP in infected lung tissue was 1 μg/mL according to CLSI M37-A3 decision tree. The 16S ribosomal RNA (rRNA) sequencing results showed that the lung microbiota, especially the phyla Firmicutes and Proteobacteria had changed significantly along with the process of cure regimen (the 24 h dosing interval of 16.60 mg/kg b.w for three consecutive days). Our study suggested that the rational use of danofloxacin for the treatment of MG infections should consider the MIC and effect of antibiotics on the respiratory microbiota.
Collapse
Affiliation(s)
- Shuge Wang
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Wuhan 430070, China; (S.W.); (A.H.); (Y.G.); (L.H.); (X.W.); (Y.T.); (Z.L.); (Z.Y.)
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Wuhan 430070, China
- National Center for Veterinary Drug Safety Evaluation, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China;
| | - Anxiong Huang
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Wuhan 430070, China; (S.W.); (A.H.); (Y.G.); (L.H.); (X.W.); (Y.T.); (Z.L.); (Z.Y.)
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Wuhan 430070, China
| | - Yufeng Gu
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Wuhan 430070, China; (S.W.); (A.H.); (Y.G.); (L.H.); (X.W.); (Y.T.); (Z.L.); (Z.Y.)
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Wuhan 430070, China
| | - Jun Li
- Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China;
| | - Lingli Huang
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Wuhan 430070, China; (S.W.); (A.H.); (Y.G.); (L.H.); (X.W.); (Y.T.); (Z.L.); (Z.Y.)
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Wuhan 430070, China
| | - Xu Wang
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Wuhan 430070, China; (S.W.); (A.H.); (Y.G.); (L.H.); (X.W.); (Y.T.); (Z.L.); (Z.Y.)
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Wuhan 430070, China
| | - Yanfei Tao
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Wuhan 430070, China; (S.W.); (A.H.); (Y.G.); (L.H.); (X.W.); (Y.T.); (Z.L.); (Z.Y.)
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Wuhan 430070, China
| | - Zhenli Liu
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Wuhan 430070, China; (S.W.); (A.H.); (Y.G.); (L.H.); (X.W.); (Y.T.); (Z.L.); (Z.Y.)
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Wuhan 430070, China
| | - Congming Wu
- National Center for Veterinary Drug Safety Evaluation, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China;
| | - Zonghui Yuan
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Wuhan 430070, China; (S.W.); (A.H.); (Y.G.); (L.H.); (X.W.); (Y.T.); (Z.L.); (Z.Y.)
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Wuhan 430070, China
| | - Haihong Hao
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Wuhan 430070, China; (S.W.); (A.H.); (Y.G.); (L.H.); (X.W.); (Y.T.); (Z.L.); (Z.Y.)
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Wuhan 430070, China
- Correspondence: ; Tel.: +86-27-87287186; Fax: +86-27-87672232
| |
Collapse
|
50
|
Amorim N, McGovern E, Raposo A, Khatiwada S, Shen S, Koentgen S, Hold G, Behary J, El-Omar E, Zekry A. Refining a Protocol for Faecal Microbiota Engraftment in Animal Models After Successful Antibiotic-Induced Gut Decontamination. Front Med (Lausanne) 2022; 9:770017. [PMID: 35223890 PMCID: PMC8864074 DOI: 10.3389/fmed.2022.770017] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 01/17/2022] [Indexed: 12/23/2022] Open
Abstract
Background There is mounting evidence for the therapeutic use of faecal microbiota transplant (FMT) in numerous chronic inflammatory diseases. Germ free mice are not always accessible for FMT research and hence alternative approaches using antibiotic depletion prior to FMT in animal studies are often used. Hence, there is a need for standardising gut microbiota depletion and FMT methodologies in animal studies. The aim of this study was to refine gut decontamination protocols prior to FMT engraftment and determine efficiency and stability of FMT engraftment over time. Methods Male C57BL/6J mice received an antibiotic cocktail consisting of ampicillin, vancomycin, neomycin, and metronidazole in drinking water for 21 days ad libitum. After antibiotic treatment, animals received either FMT or saline by weekly oral gavage for 3 weeks (FMT group or Sham group, respectively), and followed up for a further 5 weeks. At multiple timepoints throughout the model, stool samples were collected and subjected to bacterial culture, qPCR of bacterial DNA, and fluorescent in-situ hybridisation (FISH) to determine bacterial presence and load. Additionally, 16S rRNA sequencing of stool was used to confirm gut decontamination and subsequent FMT engraftment. Results Antibiotic treatment for 7 days was most effective in gut decontamination, as evidenced by absence of bacteria observed in culture, and reduced bacterial concentration, as determined by FISH as well as qPCR. Continued antibiotic administration had no further efficacy on gut decontamination from days 7 to 21. Following gut decontamination, 3 weekly doses of FMT was sufficient for the successful engraftment of donor microbiota in animals. The recolonised animal gut microbiota was similar in composition to the donor sample, and significantly different from the Sham controls as assessed by 16S rRNA sequencing. Importantly, this similarity in composition to the donor sample persisted for 5 weeks following the final FMT dose. Conclusions Our results showed that 7 days of broad-spectrum antibiotics in drinking water followed by 3 weekly doses of FMT provides a simple, reliable, and cost-effective methodology for FMT in animal research.
Collapse
Affiliation(s)
- Nadia Amorim
- Microbiome Research Centre, St. George and Sutherland Clinical School, UNSW Sydney, Sydney, NSW, Australia
| | - Emily McGovern
- Microbiome Research Centre, St. George and Sutherland Clinical School, UNSW Sydney, Sydney, NSW, Australia
| | - Anita Raposo
- Microbiome Research Centre, St. George and Sutherland Clinical School, UNSW Sydney, Sydney, NSW, Australia
| | - Saroj Khatiwada
- Microbiome Research Centre, St. George and Sutherland Clinical School, UNSW Sydney, Sydney, NSW, Australia
| | - Sj Shen
- Microbiome Research Centre, St. George and Sutherland Clinical School, UNSW Sydney, Sydney, NSW, Australia
| | - Sabrina Koentgen
- Microbiome Research Centre, St. George and Sutherland Clinical School, UNSW Sydney, Sydney, NSW, Australia
| | - Georgina Hold
- Microbiome Research Centre, St. George and Sutherland Clinical School, UNSW Sydney, Sydney, NSW, Australia
| | - Jason Behary
- Microbiome Research Centre, St. George and Sutherland Clinical School, UNSW Sydney, Sydney, NSW, Australia.,Department of Gastroenterology and Hepatology, St. George Hospital, Sydney, NSW, Australia
| | - Emad El-Omar
- Microbiome Research Centre, St. George and Sutherland Clinical School, UNSW Sydney, Sydney, NSW, Australia.,Department of Gastroenterology and Hepatology, St. George Hospital, Sydney, NSW, Australia
| | - Amany Zekry
- Microbiome Research Centre, St. George and Sutherland Clinical School, UNSW Sydney, Sydney, NSW, Australia.,Department of Gastroenterology and Hepatology, St. George Hospital, Sydney, NSW, Australia
| |
Collapse
|