1
|
Elkattan HH, Elsisi AE, El-Lakkany NM. Gossypol enhances ponatinib's cytotoxicity against human hepatocellular carcinoma cells by involving cell cycle arrest, p-AKT/LC3II/p62, and Bcl2/caspase-3 pathways. Toxicol Rep 2025; 14:101856. [PMID: 39802605 PMCID: PMC11719416 DOI: 10.1016/j.toxrep.2024.101856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 11/30/2024] [Accepted: 12/07/2024] [Indexed: 01/16/2025] Open
Abstract
Despite significant breakthroughs in frontline cancer research and chemotherapy for hepatocellular carcinoma (HCC), many of the suggested drugs have high toxic side effects and resistance, limiting their clinical utility. Exploring potential therapeutic targets or novel combinations with fewer side effects is therefore crucial in combating this dreadful disease. The current study aims to use a novel combination of ponatinib and gossypol against the HepG2 cell line. Cell survival, FGF19/FGFR4, apoptotic and autophagic cell death, and synergistic drug interactions were assessed in response to increasing concentrations of ponatinib and/or gossypol treatment. Research revealed that ponatinib (1.25-40 μM) and gossypol (2.5-80 μM) reduced the viability of HepG2 cells in a way that was dependent on both time and dose. Ponatinib's anti-proliferation effectiveness was improved synergistically by gossypol and was associated with a rise in apoptotic cell death, cell cycle blockage during the G0/G1 phase, and suppression of the FGF19/FGFR4 axis. Furthermore, the ponatinib/gossypol combination lowered Bcl-2 and p-Akt while increasing active caspase-3, Beclin-1, p62, and LC3II. This combination, however, had no harm on normal hepatocytes. Overall, gossypol enhanced ponatinib's anticancer effects in HCC cells. Notably, this new combination appears to be potential adjuvant targeted chemotherapy, a discovery that warrants more clinical investigation, in the management of patients with HCC.
Collapse
Affiliation(s)
- Hadeel H. Elkattan
- Department of Pharmacology, Theodor Bilharz Research Institute, Warrak El-Hadar, Imbaba, Giza 12411, Egypt
| | - Alaa E. Elsisi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Naglaa M. El-Lakkany
- Department of Pharmacology, Theodor Bilharz Research Institute, Warrak El-Hadar, Imbaba, Giza 12411, Egypt
| |
Collapse
|
2
|
Lu Y, Liu Y, Cao J, Zhang Y, Zheng Y, Wang F. Waterborne ammonia toxicity damages crustacean hemocytes via lysosome-dependent autophagy: A case study of swimming crabs Portunus trituberculatus. ENVIRONMENTAL RESEARCH 2025; 272:120985. [PMID: 39983961 DOI: 10.1016/j.envres.2025.120985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 01/24/2025] [Accepted: 01/27/2025] [Indexed: 02/23/2025]
Abstract
Waterborne ammonia is a threat to animal health and its accumulation is typical of aquatic ecosystems. Autophagy serves as a safeguard of intracellular homeostasis, yet its role in maintaining the health of hemocytes, the master regulators of crustacean immunity, remains unclear. Herein, the swimming crab (Portunus trituberculatus) is employed as a case study to illustrate the impact of ammonia on hemocyte health via autophagy. This study showed the occurrence of abnormal cellular structure and significant accumulation of malondialdehyde (MDA) and reactive oxygen species (ROS) (P < 0.05), demonstrating that severe ammonia stress can damage hemocytes. This was accompanied by significant increase of autophagy hemocytes fraction and apoptosis (P < 0.05). Meanwhile, there was a significant increase in the expression of Beclin1 and microtubule-associated protein 1 light chain 3 (LC3-II) (P < 0.05). This suggests an ammonia-induced autophagy initiation. However, ammonia stress significantly decreased lysosomal fluorescence intensity (P < 0.05) and expression of the marker gene lysosomal-associated membrane protein 1 (LAMP1) (P < 0.05). These imply an ammonia-induced repression of lysosome-dependent autophagy degradation, which may underlie the pronounced increase in apoptosis (P < 0.05). After the administration of the autophagy activator rapamycin (Rap), rather than the inhibitor 3-Methyladenine (3-MA), the levels of apoptosis, ROS and the fraction of autophagic cells were significantly decreased (P < 0.05), demonstrating a mitigation of the ammonia-induced cell damage through lysosome-dependent autophagy degradation. This study sheds light on how crustaceans respond to ammonia exposure by demonstrating the significance of lysosome-dependent autophagy in maintaining hemocyte health.
Collapse
Affiliation(s)
- Yunliang Lu
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Yingying Liu
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Jianwei Cao
- Key Laboratory of Mariculture of Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Yueqi Zhang
- Key Laboratory of Mariculture of Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Yuan Zheng
- Department of Biochemistry and Molecular Cell Biology, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai, 200025, China.
| | - Fang Wang
- Key Laboratory of Mariculture of Ministry of Education, Ocean University of China, Qingdao, 266003, China.
| |
Collapse
|
3
|
Zhu C, Zhou J, Chen Z, Chen C, Wang Z, Yang P, Fu G, Liu X, Huang Y, Wan C. Mechanistic insights into the kidney injury in chickens induced by hypervirulent fowl adenovirus serotype 4. Microbiol Spectr 2025:e0005825. [PMID: 40130861 DOI: 10.1128/spectrum.00058-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Accepted: 03/03/2025] [Indexed: 03/26/2025] Open
Abstract
Hypervirulent fowl adenovirus serotype 4 (FAdV-4) has emerged as a significant poultry pathogen since 2015, exhibiting clinical multi-organ and multi-tissue tropism post-infection, resulting in substantial economic losses in the poultry industry. However, the molecular mechanism underlying kidney injury caused by FAdV-4 infection remains unclear. Our results indicated that FAdV-4 infection in chickens induces damage to kidney tissues, characterized by the degeneration and necrosis of kidney epithelial cells, glomerular injury, endoplasmic reticulum stress, and the activation of a robust inflammatory response in the kidney cells. Notably, autophagosome-like vesicles enclosed clusters of viral particles that were transmitted between kidney cells post-infection. There might be a novel mechanism of vesicle-mediated cell-to-cell transmission of hypervirulent FAdV-4 that hijacks autophagosome-like vesicles. We also investigated cellular autophagy in kidney cells in vivo and in vitro during early FAdV-4 infection. The autophagy-related marker proteins LC3B, ATG5, and BECN1 were upregulated post-infection, whereas SQSTM1 was downregulated, indicating that FAdV-4 infection enhances autophagic flux and induces complete autophagy. The viral structural protein Fiber 2 was also observed to colocalize with the autophagy-related marker protein LC3B and the exosome-specific marker protein CD63 in the kidney cells at 24 hpi, suggesting that FAdV-4-induced cellular autophagy promotes viral replication in kidney cells and that autophagosome-like vesicles are involved in early FAdV-4 replication in vivo in chickens. Our results offer novel insights into the pathogenesis of hypervirulent FAdV-4 from the perspective of kidney injury post-infection. IMPORTANCE Hypervirulent fowl adenovirus serotype 4 (FAdV-4) has become globally prevalent since 2015 as a predominant pathogen on poultry farms, leading to substantial economic losses for the poultry industry. However, the molecular mechanisms underlying kidney injury induced by FAdV-4 infection remain unclear. In this study, we primarily elucidated the mechanisms of kidney injury induced by FAdV-4 infection in chickens, utilizing both in vitro and in vivo models. Our results demonstrate that FAdV-4 infection in chickens causes degeneration and necrosis of kidney epithelial cells, glomerular injury, and expansion of the endoplasmic reticulum, while also triggering a robust inflammatory response in kidney cells. Notably, we observed the cell-to-cell transmission of virus particles delivered by autophagosome-like vesicles, and the viral infection-induced cellular autophagy facilitated viral replication in the kidney cells. These findings offer a novel perspective to understand the molecular mechanisms of FAdV-4-induced kidney injury and establish a basis for further investigation into the molecular pathogenesis of hypervirulent FAdV-4.
Collapse
Affiliation(s)
- Chunhua Zhu
- Fujian Provincial Key Laboratory for Avian Diseases Control and Prevention, Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fuzhou, China
| | - Jiayu Zhou
- Fujian Provincial Key Laboratory for Avian Diseases Control and Prevention, Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fuzhou, China
| | - Zhen Chen
- Fujian Provincial Key Laboratory for Avian Diseases Control and Prevention, Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fuzhou, China
| | - Cuiteng Chen
- Fujian Provincial Key Laboratory for Avian Diseases Control and Prevention, Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fuzhou, China
| | - Ziyue Wang
- Fujian Provincial Key Laboratory for Avian Diseases Control and Prevention, Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fuzhou, China
| | - Pei Yang
- Fujian Provincial Key Laboratory for Avian Diseases Control and Prevention, Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fuzhou, China
| | - Guanghua Fu
- Fujian Provincial Key Laboratory for Avian Diseases Control and Prevention, Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fuzhou, China
| | - Xiaodong Liu
- Institute of Biotechnology, Fujian Academy of Agricultural Sciences, Fuzhou, China
| | - Yu Huang
- Fujian Provincial Key Laboratory for Avian Diseases Control and Prevention, Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fuzhou, China
| | - Chunhe Wan
- Fujian Provincial Key Laboratory for Avian Diseases Control and Prevention, Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fuzhou, China
| |
Collapse
|
4
|
Chen P, Chen Y, Sharma A, Gonzalez-Carmona Maria A, Schmidt-Wolf IGH. Inhibition of ERO1L induces autophagy and apoptosis via endoplasmic reticulum stress in colorectal cancer. Cell Signal 2025; 127:111560. [PMID: 39657838 DOI: 10.1016/j.cellsig.2024.111560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 12/03/2024] [Accepted: 12/06/2024] [Indexed: 12/12/2024]
Abstract
Colorectal cancer (CRC) is one of the most common types of cancer with high incidence and mortality. Endoplasmic reticulum oxidoreductase 1 alpha (ERO1L) is overexpressed in CRC. This study aims to explore the role of ERO1L in CRC progression and evaluate the anti-tumor efficacy of the combination treatment of ERO1L inhibition with endoplasmic reticulum (ER) stress-inducing therapies. Herein, we found that ERO1L was elevated in CRC cell lines and patients. ER stress upregulated the expression of ERO1L, and ERO1L deficiency induced ER stress in CRC. ERO1L knockdown increased the susceptibility of CRC cells to ER stress. ERO1L contributed to the malignant phenotypes of CRC cells. Inhibition of ERO1L induced autophagy and caspase-dependent apoptosis by the induction of ER stress in CRC cells. Mechanically, the ERK1/2 pathway was involved in ERO1L knockdown-mediated apoptosis and autophagy. Combination treatment of ERO1L inhibition with ER stress-inducing agents, such as unfolded protein response (UPR)-targeting inhibitors and proteasome inhibitors, demonstrated enhanced anti-tumor capacity. In conclusion, ERO1L is overexpressed in CRC, and ERO1L deficiency induces apoptosis and autophagy via ER stress. ERO1L inhibition combined with ER stress-inducing therapies exhibits more effective anti-tumor activity against CRC. ERO1L may serve as a biomarker and therapeutic target for CRC treatment.
Collapse
Affiliation(s)
- Peng Chen
- Department of Integrated Oncology, Center for Integrated Oncology (CIO), University Hospital Bonn, 53127 Bonn, Germany
| | - Yinhao Chen
- Department of Integrated Oncology, Center for Integrated Oncology (CIO), University Hospital Bonn, 53127 Bonn, Germany
| | - Amit Sharma
- Department of Integrated Oncology, Center for Integrated Oncology (CIO), University Hospital Bonn, 53127 Bonn, Germany; Department of Neurosurgery, University Hospital Bonn, 53127 Bonn, Germany
| | | | - Ingo G H Schmidt-Wolf
- Department of Integrated Oncology, Center for Integrated Oncology (CIO), University Hospital Bonn, 53127 Bonn, Germany.
| |
Collapse
|
5
|
Xi H, Chen X, Wang X, Jiang F, Niu D. Role of programmed cell death in mammalian ovarian follicular atresia. J Steroid Biochem Mol Biol 2025; 247:106667. [PMID: 39725276 DOI: 10.1016/j.jsbmb.2024.106667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 12/19/2024] [Accepted: 12/21/2024] [Indexed: 12/28/2024]
Abstract
Programmed cell death (PCD) is a fundamental process in the development process of organisms, including apoptosis, autophagy, ferroptosis, and pyroptosis. In mammalian ovaries, 99 % of follicles undergo atresia, while only 1 % mature and ovulate, which limits the reproductive efficiency of mammals. The PCD process is closely related to the regulation of follicle development and atresia. Recently, an increasing number of studies have reported that autophagy, pyroptosis, and ferroptosis of PCD are involved in regulating granulosa cell apoptosis and follicular atresia. Granulosa cell apoptosis is a hallmark of follicular atresia. Therefore, an understanding of molecular mechanisms regulating PCD events is required for future advances in the diagnosis and management of various disorders of follicular atresia. This review summarizes recent work on apoptosis, autophagy, pyroptosis, and ferroptosis of PCD that affect granulosa cell survival and follicular atresia, and further elucidating the mechanisms of follicular atresia and providing new directions for improving the reproductive capacity of humans and animals.
Collapse
Affiliation(s)
- Huaming Xi
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou 311300, China.
| | - Xinyu Chen
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou 311300, China.
| | - Xianglong Wang
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou 311300, China.
| | - Feng Jiang
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou 311300, China.
| | - Dong Niu
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou 311300, China.
| |
Collapse
|
6
|
Asare O, Shim L, Lee CJ, Delgado J, Quailes N, Zavala K, Park J, Hafeez BB, Cho YY, Chauhan SC, Kim DJ. Loss of TC-PTP in keratinocytes leads to increased UVB-induced autophagy. Cell Death Discov 2025; 11:80. [PMID: 40021617 PMCID: PMC11871011 DOI: 10.1038/s41420-025-02353-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 01/28/2025] [Accepted: 02/12/2025] [Indexed: 03/03/2025] Open
Abstract
Ultraviolet B (UVB) radiation can distort cellular homeostasis and predispose the skin to carcinogenesis. Amongst the deteriorating effects of the sun's UVB radiation on cellular homeostasis is the formation of DNA photoproducts. These photoproducts can cause significant changes in the structure and conformation of DNA, inducing gene mutations which may accumulate to trigger the formation of skin cancer. Photoproducts are typically repaired by nucleotide excision repair. Notwithstanding, when the repair mechanism fails, apoptosis ensues to prevent the accumulation of mutations and to restore cellular homeostasis. This present study reports that T-cell protein tyrosine phosphatase (TC-PTP) can increase UVB-induced apoptosis by inhibiting autophagy-mediated cell survival of damaged keratinocytes. TC-PTP deficiency in 3PC mouse keratinocytes led to the formation of autophagic vacuoles and increased expression of LC3-II. We established human TC-PTP-deficient (TC-PTP/KO) HaCaT cells using the CRISPR/Cas9 system. TC-PTP/KO HaCaT cells exhibited increased cell survival upon UVB exposure, which was accompanied by increased expression of LC3-II and decreased expression of p62 compared to control cells. Pretreatment of TC-PTP/KO HaCaT cells with early-phase autophagy inhibitor, 3-methyladenine significantly decreased the expression of LC3-II and reduced cell survival in response to UVB irradiation in comparison with untreated TC-PTP/KO cells. Pretreatment of TC-PTP/KO HaCaT cells with late-phase inhibitor, chloroquine also significantly reduced cell viability with increased accumulation of LC3-II after UVB irradiation compared to untreated counterpart cells. While UVB significantly increased apoptosis in the engineered (Mock) cells, this was not observed in similarly treated TC-PTP/KO HaCaT cells. However, chloroquine treatment increased apoptosis in TC-PTP/KO HaCaT cells. Examination of human squamous cell carcinomas (SCCs) revealed that TC-PTP expression was inversely correlated with LC3 expression. Our findings suggest that TC-PTP negatively regulates autophagy-mediated survival of damaged cells following UVB exposure, which can contribute to remove damaged keratinocytes via apoptosis.
Collapse
Affiliation(s)
- Obed Asare
- Department of Medicine and Oncology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, USA
- Graduate Program in Biochemistry and Molecular Biology, University of Texas Rio Grande Valley, Edinburg, TX, USA
- Graduate Program in Cancer Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Lindsey Shim
- Department of Medicine and Oncology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, USA
- Graduate Program in Biochemistry and Molecular Biology, University of Texas Rio Grande Valley, Edinburg, TX, USA
| | - Cheol-Jung Lee
- Department of Medicine and Oncology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, USA
- Biopharmaceutical Research Center, Ochang Institute of Biological and Environmental Science, Korea Basic Science Institute, Cheongju-si, 28119, Republic of Korea
| | - Jose Delgado
- School of Medicine, University of Texas Rio Grande Valley, Edinburg, TX, USA
| | - Natasha Quailes
- School of Medicine, University of Texas Rio Grande Valley, Edinburg, TX, USA
| | - Klarissa Zavala
- Department of Health & Biomedical Sciences, College of Health Professions, University of Texas Rio Grande Valley, Edinburg, TX, USA
| | - Junsoo Park
- Division of Biological Science and Technology, Yonsei University, Wonju, 26493, Republic of Korea
| | - Bilal Bin Hafeez
- Department of Medicine and Oncology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, USA
- Graduate Program in Biochemistry and Molecular Biology, University of Texas Rio Grande Valley, Edinburg, TX, USA
- South Texas Center for Excellence in Cancer Research, University of Texas Rio Grande Valley, McAllen, TX, USA
| | - Yong-Yeon Cho
- College of Pharmacy, The Catholic University of Korea, Bucheon-si, Gyeonggi-do, 14662, Republic of Korea
- BK21-4TH, and RCD Control Material Research Institute, College of Pharmacy, The Catholic University of Korea, Bucheon-si, Gyeonggi-do, 14662, Republic of Korea
| | - Subhash C Chauhan
- Department of Medicine and Oncology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, USA
- Graduate Program in Biochemistry and Molecular Biology, University of Texas Rio Grande Valley, Edinburg, TX, USA
- South Texas Center for Excellence in Cancer Research, University of Texas Rio Grande Valley, McAllen, TX, USA
| | - Dae Joon Kim
- Department of Medicine and Oncology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, USA.
- Graduate Program in Biochemistry and Molecular Biology, University of Texas Rio Grande Valley, Edinburg, TX, USA.
- South Texas Center for Excellence in Cancer Research, University of Texas Rio Grande Valley, McAllen, TX, USA.
| |
Collapse
|
7
|
Lamsira HK, Sabatini A, Ciolfi S, Ciccosanti F, Sacchi A, Piacentini M, Nardacci R. Autophagy and Programmed Cell Death Modalities Interplay in HIV Pathogenesis. Cells 2025; 14:351. [PMID: 40072080 PMCID: PMC11899401 DOI: 10.3390/cells14050351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 02/14/2025] [Accepted: 02/23/2025] [Indexed: 03/15/2025] Open
Abstract
Human immunodeficiency virus (HIV) infection continues to be a major global health challenge, affecting 38.4 million according to the Joint United Nations Program on HIV/AIDS (UNAIDS) at the end of 2021 with 1.5 million new infections. New HIV infections increased during the 2 years after the COVID-19 pandemic. Understanding the intricate cellular processes underlying HIV pathogenesis is crucial for developing effective therapeutic strategies. Among these processes, autophagy and programmed cell death modalities, including apoptosis, necroptosis, pyroptosis, and ferroptosis, play pivotal roles in the host-virus interaction dynamics. Autophagy, a highly conserved cellular mechanism, acts as a double-edged sword in HIV infection, influencing viral replication, immune response modulation, and the fate of infected cells. Conversely, apoptosis, a programmed cell death mechanism, is a critical defense mechanism against viral spread and contributes to the depletion of CD4+ T cells, a hallmark of HIV/AIDS progression. This review aims to dissect the complex interplay between autophagy and these programmed cell death modalities in HIV-induced pathogenesis. It highlights the molecular mechanisms involved, their roles in viral persistence and immune dysfunction, and the challenges posed by the viral reservoir and drug resistance, which continue to impede effective management of HIV pathology. Targeting these pathways holds promise for novel therapeutic strategies to mitigate immune depletion and chronic inflammation, ultimately improving outcomes for individuals living with HIV.
Collapse
Affiliation(s)
- Harpreet Kaur Lamsira
- Departmental Faculty of Medicine, Saint Camillus International University of Health Sciences, 00131 Rome, Italy;
| | - Andrea Sabatini
- Department of Science, University ‘Roma Tre’, 00146 Rome, Italy (S.C.); (A.S.)
| | - Serena Ciolfi
- Department of Science, University ‘Roma Tre’, 00146 Rome, Italy (S.C.); (A.S.)
| | - Fabiola Ciccosanti
- Department of Epidemiology, Preclinical Research and Advanced Diagnostics, National Institute for Infectious Diseases IRCCS ‘L. Spallanzani’, 00149 Rome, Italy; (F.C.)
| | - Alessandra Sacchi
- Department of Science, University ‘Roma Tre’, 00146 Rome, Italy (S.C.); (A.S.)
| | - Mauro Piacentini
- Department of Epidemiology, Preclinical Research and Advanced Diagnostics, National Institute for Infectious Diseases IRCCS ‘L. Spallanzani’, 00149 Rome, Italy; (F.C.)
- Department of Biology, University ‘Tor Vergata’, 00133 Rome, Italy
| | - Roberta Nardacci
- Departmental Faculty of Medicine, Saint Camillus International University of Health Sciences, 00131 Rome, Italy;
- Department of Epidemiology, Preclinical Research and Advanced Diagnostics, National Institute for Infectious Diseases IRCCS ‘L. Spallanzani’, 00149 Rome, Italy; (F.C.)
| |
Collapse
|
8
|
Melo ESA, Asevedo EA, Duarte-Almeida JM, Nurkolis F, Syahputra RA, Park MN, Kim B, do Couto RO, Ribeiro RIMDA. Mechanisms of Cell Death Induced by Cannabidiol Against Tumor Cells: A Review of Preclinical Studies. PLANTS (BASEL, SWITZERLAND) 2025; 14:585. [PMID: 40006844 PMCID: PMC11859785 DOI: 10.3390/plants14040585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 02/09/2025] [Accepted: 02/11/2025] [Indexed: 02/27/2025]
Abstract
Commonly known as marijuana or hemp, Cannabis sativa L. (Cannabaceae), contains numerous active compounds, particularly cannabinoids, which have been extensively studied for their biological activities. Among these, cannabidiol (CBD) stands out for its therapeutic potential, especially given its non-psychotropic effects. This review evaluates the antitumor properties of CBD, highlighting its various mechanisms of action, including the induction of apoptosis, autophagy, and necrosis. By synthesizing findings from in vitro studies on the cell death mechanisms and signaling pathways activated by CBD in various human tumor cell lines, this literature review emphasizes the therapeutic promise of this natural antineoplastic agent. We conducted a comprehensive search of articles in PubMed, Scopus, Springer, Medline, Lilacs, and Scielo databases from 1984 to February 2022. Of the forty-three articles included, the majority (68.18%) reported that CBD activates apoptosis, while 18.18% observed simultaneous apoptosis and autophagy, 9.09% focused on autophagy alone, and 4.54% indicated necrosis. The antitumor effects of CBD appear to be mediated by transient receptor potential cation channels (TRPVs) in endometrial cancer, glioma, bladder cancer, and myeloma, with TRPV1, TRPV2, and TRPV4 playing key roles in activating apoptosis. This knowledge paves the way for innovative therapeutic strategies that may enhance cancer treatment outcomes while minimizing the toxicity and side effects associated with conventional therapies.
Collapse
Affiliation(s)
- Edilene S. A. Melo
- Experimental Pathology Laboratory, Dona Lindu Central-West Campus (CCO), Federal University of São João del-Rei (UFSJ), Sebastião Gonçalves Coelho 400, Chanadour, Divinopolis 35501-296, MG, Brazil; (E.S.A.M.); (E.A.A.)
| | - Estefani A. Asevedo
- Experimental Pathology Laboratory, Dona Lindu Central-West Campus (CCO), Federal University of São João del-Rei (UFSJ), Sebastião Gonçalves Coelho 400, Chanadour, Divinopolis 35501-296, MG, Brazil; (E.S.A.M.); (E.A.A.)
| | - Joaquim Maurício Duarte-Almeida
- Plant Cell Culture Laboratory, Dona Lindu Central-West Campus (CCO), Federal University of São João del-Rei, Sebastião Gonçalves Coelho 400, Chanadour, Divinopolis 35501-296, MG, Brazil;
| | - Fahrul Nurkolis
- Department of Biological Sciences, Faculty of Sciences and Technology, State Islamic University of Sunan Kalijaga (UIN Sunan Kalijaga), Yogyakarta 55281, Indonesia;
| | - Rony Abdi Syahputra
- Department of Pharmacology, Faculty of Pharmacy, Universitas Sumatera Utara, Medan 20155, Indonesia;
| | - Moon Nyeo Park
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (M.N.P.); (B.K.)
| | - Bonglee Kim
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (M.N.P.); (B.K.)
| | - Renê Oliveira do Couto
- Pharmaceutical Development Laboratory, Dona Lindu Central-West Campus (CCO), Federal University of São João del-Rei, Sebastião Gonçalves Coelho 400, Chanadour, Divinopolis 35501-296, MG, Brazil;
| | - Rosy Iara Maciel de A. Ribeiro
- Experimental Pathology Laboratory, Dona Lindu Central-West Campus (CCO), Federal University of São João del-Rei (UFSJ), Sebastião Gonçalves Coelho 400, Chanadour, Divinopolis 35501-296, MG, Brazil; (E.S.A.M.); (E.A.A.)
| |
Collapse
|
9
|
Sabry NC, Michel HE, Menze ET. Repurposing of erythropoietin as a neuroprotective agent against methotrexate-induced neurotoxicity in rats. J Psychopharmacol 2025; 39:147-163. [PMID: 39535118 DOI: 10.1177/02698811241295379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
BACKGROUND Methotrexate (MTX) is a cytotoxic drug that can trigger neurotoxicity via enhancing oxidative stress, apoptosis, and inflammation. On the other hand, erythropoietin (EPO) functions as an antioxidant, anti-apoptotic, and anti-inflammatory agent, in addition to its hematopoietic effects. AIM The present study was developed to examine the neuroprotective impact of EPO against MTX-provoked neurotoxicity in rats. METHODS Chemo fog was elicited in Wistar rats via injection of one dosage of MTX (20 mg/kg, i.p) on the sixth day of the study. EPO was injected at 500 IU/kg/day, i.p for 10 successive days. RESULTS MTX triggered memory and learning impairment as evidenced by Morris water maze, passive avoidance, and Y-maze cognitive tests. In addition, MTX induced oxidative stress as evident from the decline in hippocampal Nrf2 and HO-1 levels. MTX brought about apoptosis, as demonstrated by the elevation in p53, caspase-3, and Bax levels, as well as the decrease in Bcl2 levels. MTX also decreased Beclin-1, an autophagy-related marker, and increased P62 expression. In addition, MTX downregulated Sirt-1/AKT/FoxO3a pathway and increased miRNA-34a gene expression. Moreover, MTX increased acetylcholinesterase activity and reduced neurogenesis. EPO administration remarkably counteracted MTX-induced molecular and behavioral disorders in rat hippocampi. CONCLUSION Our findings impart preclinical indication for repurposing of EPO as a promising neuroprotective agent through modulating miRNA-34a, autophagy, and the Sirt-1/FoxO3a signaling pathway.
Collapse
Affiliation(s)
- Nadine C Sabry
- Faculty of Pharmacy, Department of Pharmacology and Toxicology, Ain Shams University, Cairo, Egypt
| | - Haidy E Michel
- Faculty of Pharmacy, Department of Pharmacology and Toxicology, Ain Shams University, Cairo, Egypt
| | - Esther T Menze
- Faculty of Pharmacy, Department of Pharmacology and Toxicology, Ain Shams University, Cairo, Egypt
| |
Collapse
|
10
|
Hussain MS, Mujwar S, Babu MA, Goyal K, Chellappan DK, Negi P, Singh TG, Ali H, Singh SK, Dua K, Gupta G, Balaraman AK. Pharmacological, computational, and mechanistic insights into triptolide's role in targeting drug-resistant cancers. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-03809-5. [PMID: 39862263 DOI: 10.1007/s00210-025-03809-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Accepted: 01/10/2025] [Indexed: 01/27/2025]
Abstract
As a promising candidate for tackling drug-resistant cancers, triptolide, a diterpenoid derived from the Chinese medicinal plant Tripterygium wilfordii, has been developed. This review summarizes potential antitumor activities, including the suppression of RNA polymerase II, the suppression of heat shock proteins (HSP70 and HSP90), and the blockade of NF-kB signalling. Triptolide is the first known compound to target cancer cells specifically but spare normal cells, and it has success in treating cancers that are difficult to treat, including pancreatic, breast, and lung cancers. It acts against the tolerance mechanisms, including efflux pump upregulation, epithelial-mesenchymal transition, and cancer stem cells. Triptolide modulates important cascades, including PI3K/AKT/mTOR, enhancing the efficacy of conventional therapies. Nonetheless, its clinical application is constrained by toxicity and bioavailability challenges. Emerging drug delivery systems, such as nanoparticles and micellar formulations, are being developed to address these limitations. It has strong interactions with key anticancer targets, like PARP, as determined in preclinical and computational studies consistent with its mechanism of action. Early-phase clinical trials of Minnelide, a water-soluble derivative of triptolide, are promising, but additional work is necessary to optimize dosing, delivery, and safety. This comprehensive analysis demonstrates that triptolide may constitute a repurposed precision medicine tool to overcome tolerance in cancer therapy.
Collapse
Affiliation(s)
- Md Sadique Hussain
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, Uttarakhand, 248007, India
| | - Somdutt Mujwar
- Chitkara College of Pharmacy, Chitkara University, Punjab, 140401, India
| | - M Arockia Babu
- Institute of Pharmaceutical Research, GLA University, Mathura, UP, 281406, India
| | - Kavita Goyal
- Department of Biotechnology, Graphic Era (Deemed to Be University), Clement Town, Dehradun, 248002, India
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University, Bukit Jalil, 57000, Kuala Lumpur, Malaysia
| | - Poonam Negi
- Chitkara College of Pharmacy, Chitkara University, Punjab, 140401, India
| | | | - Haider Ali
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University Chennai, Chennai, India
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, Australia
| | - Kamal Dua
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, Australia
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Gaurav Gupta
- Centre for Research Impact & Outcome, Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India
- Centre of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
| | - Ashok Kumar Balaraman
- Research and Enterprise, University of Cyberjaya, Persiaran Bestari, Cyber 11, 63000, Cyberjaya, Selangor, Malaysia.
| |
Collapse
|
11
|
Leisz S, Fritzsche S, Strauss C, Scheller C. The Protective Effect of Nimodipine in Schwann Cells Is Related to the Upregulation of LMO4 and SERCA3 Accompanied by the Fine-Tuning of Intracellular Calcium Levels. Int J Mol Sci 2025; 26:864. [PMID: 39859578 PMCID: PMC11765607 DOI: 10.3390/ijms26020864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 01/08/2025] [Accepted: 01/17/2025] [Indexed: 01/27/2025] Open
Abstract
Nimodipine is the current gold standard in the treatment of subarachnoid hemorrhage, as it is the only known calcium channel blocker that has been proven to improve neurological outcomes. In addition, nimodipine exhibits neuroprotective properties in vitro under various stress conditions. Furthermore, clinical studies have demonstrated a neuroprotective effect of nimodipine after vestibular schwannoma surgery. However, the molecular mode of action of nimodipine pre-treatment has not been well investigated. In the present study, using real-time cell death assays, we demonstrated that nimodipine not only reduces cell death induced by osmotic and oxidative stress but also protects cells directly at the time of stress induction in Schwann cells. Nimodipine counteracts stress-induced calcium overload and the overexpression of the Cav1.2 calcium channel. In addition, we found nimodipine-dependent upregulation of sarcoplasmic/endoplasmic reticulum calcium ATPase 3 (SERCA3) and LIM domain only 4 (LMO4) protein. Analysis of anti-apoptotic cell signaling showed an inhibition of the pro-apoptotic protein glycogen synthase kinase 3 beta (GSK3β). Nimodipine-treated Schwann cells exhibited higher levels of phosphorylated GSK3β at serine residue 9 during osmotic and oxidative stress. In conclusion, nimodipine prevents cell death by protecting cells from calcium overload by fine-tuning intracellular calcium signaling and gene expression.
Collapse
Affiliation(s)
- Sandra Leisz
- Department of Neurosurgery, Medical Faculty, Martin Luther University Halle-Wittenberg, Ernst-Grube-Straße 40, 06120 Halle (Saale), Germany
| | | | | | | |
Collapse
|
12
|
Shou J, Ma J, Wang X, Li X, Chen S, Kang B, Shaw P. Free Cholesterol-Induced Liver Injury in Non-Alcoholic Fatty Liver Disease: Mechanisms and a Therapeutic Intervention Using Dihydrotanshinone I. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2406191. [PMID: 39558866 PMCID: PMC11727260 DOI: 10.1002/advs.202406191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 08/28/2024] [Indexed: 11/20/2024]
Abstract
Build-up of free cholesterol (FC) substantially contributes to the development and severity of non-alcoholic fatty liver disease (NAFLD). Here, we investigate the specific mechanism by which FC induces liver injury in NAFLD and propose a novel therapeutic approach using dihydrotanshinone I (DhT). Rather than cholesterol ester (CE), we observed elevated levels of total cholesterol, FC, and alanine transaminase (ALT) in NAFLD patients and high-cholesterol diet-induced NAFLD mice compared to those in healthy controls. The FC level demonstrated a positive correlation with the ALT level in both patients and mice. Mechanistic studies revealed that FC elevated reactive oxygen species level, impaired the function of lysosomes, and disrupted lipophagy process, consequently inducing cell apoptosis. We then found that DhT protected mice on an HCD diet, independent of gut microbiota. DhT functioned as a potent ligand for peroxisome proliferator-activated receptor α (PPARα), stimulating its transcriptional function and enhancing catalase expression to lower reactive oxygen species (ROS) level. Notably, the protective effect of DhT was nullified in mice with hepatic PPARα knockdown. Thus, these findings are the first to report the detrimental role of FC in NAFLD, which could lead to the development of new treatment strategies for NAFLD by leveraging the therapeutic potential of DhT and PPARα pathway.
Collapse
Affiliation(s)
- Jia‐Wen Shou
- Li Dak Sum Yip Yio Chin R&D Centre for Chinese MedicineThe Chinese University of Hong KongHong Kong852852China
| | - Juncai Ma
- Centre for Cell and Developmental BiologyState Key Laboratory for AgrobiotechnologySchool of Life SciencesThe Chinese University of Hong KongHong Kong852852China
| | - Xuchu Wang
- Department of Laboratory Medicinethe Second Affiliated Hospital of Zhejiang UniversityHangzhou310000China
| | - Xiao‐Xiao Li
- Li Dak Sum Yip Yio Chin R&D Centre for Chinese MedicineThe Chinese University of Hong KongHong Kong852852China
- Research Center for Chinese Medicine InnovationThe Hong Kong Polytechnic UniversityHong Kong852852China
| | - Shu‐Cheng Chen
- School of NursingThe Hong Kong Polytechnic UniversityHong Kong852852China
| | - Byung‐Ho Kang
- Centre for Cell and Developmental BiologyState Key Laboratory for AgrobiotechnologySchool of Life SciencesThe Chinese University of Hong KongHong Kong852852China
| | - Pang‐Chui Shaw
- Li Dak Sum Yip Yio Chin R&D Centre for Chinese MedicineThe Chinese University of Hong KongHong Kong852852China
- School of Life SciencesThe Chinese University of Hong KongHong Kong852852China
- State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants and Institute of Chinese MedicineThe Chinese University of Hong KongHong Kong852852China
| |
Collapse
|
13
|
Giannotti L, Di Chiara Stanca B, Spedicato F, Vergara D, Stanca E, Damiano F, Siculella L. Exploring the Therapeutic Potential of Cannabidiol in U87MG Cells: Effects on Autophagy and NRF2 Pathway. Antioxidants (Basel) 2024; 14:18. [PMID: 39857352 PMCID: PMC11761945 DOI: 10.3390/antiox14010018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 12/14/2024] [Accepted: 12/24/2024] [Indexed: 01/27/2025] Open
Abstract
Cannabinoids include both endogenous endocannabinoids and exogenous phytocannabinoids, such as cannabidiol (CBD), and have potential as therapeutic agents in cancer treatment due to their selective anticancer activities. CBD exhibits both antioxidant and pro-oxidant effects depending on its concentration and cell types. These properties allow CBD to influence oxidative stress responses and potentially enhance the efficacy of antitumor therapies. In this study, we treated U87MG glioma cells with low dose (1 μM) CBD and evaluated its molecular effects. Our findings indicate that CBD reduced cell viability by 20% (p < 0.05) through the alteration of mitochondrial membrane potential. The alteration of redox status by CBD caused an attempt to rescue mitochondrial functionality through nuclear localization of the GABP transcription factor involved in mitochondria biogenesis. Moreover, CBD treatment caused an increase in autophagic flux, as supported by the increase in Beclin-1 and the ratio of LC3-II/LC3-I. Due to mitochondria functionality alteration, pro-apoptotic proteins were induced without activating apoptotic effectors Caspase-3 or Caspase-7. The study of the transcription factor NRF2 and the ubiquitin-binding protein p62 expression revealed an increase in their levels in CBD-treated cells. In conclusion, low-dose CBD makes U87MG cells more vulnerable to cytotoxic effects, reducing cell viability and mitochondrial dynamics while increasing autophagic flux and redox systems. This explains the mechanisms by which glioma cells respond to CBD treatment. These findings highlight the therapeutic potential of CBD, suggesting that modulating NRF2 and autophagy pathways could represent a promising strategy for glioblastoma treatment.
Collapse
Affiliation(s)
- Laura Giannotti
- Department of Experimental Medicine, University of Salento, 73100 Lecce, Italy; (B.D.C.S.); (E.S.); (L.S.)
| | - Benedetta Di Chiara Stanca
- Department of Experimental Medicine, University of Salento, 73100 Lecce, Italy; (B.D.C.S.); (E.S.); (L.S.)
- Institute of Polymers, Composites and Biomaterials, National Research Council (IPCB-CNR), 80125 Naples, Italy
| | - Francesco Spedicato
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy; (F.S.); (D.V.)
| | - Daniele Vergara
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy; (F.S.); (D.V.)
| | - Eleonora Stanca
- Department of Experimental Medicine, University of Salento, 73100 Lecce, Italy; (B.D.C.S.); (E.S.); (L.S.)
| | - Fabrizio Damiano
- Department of Experimental Medicine, University of Salento, 73100 Lecce, Italy; (B.D.C.S.); (E.S.); (L.S.)
| | - Luisa Siculella
- Department of Experimental Medicine, University of Salento, 73100 Lecce, Italy; (B.D.C.S.); (E.S.); (L.S.)
| |
Collapse
|
14
|
Balestra F, De Luca M, Panzetta G, Depalo N, Rizzi F, Mastrogiacomo R, Coletta S, Serino G, Piccinno E, Stabile D, Pesole PL, De Nunzio V, Pinto G, Cerabino N, Di Chito M, Notarnicola M, Shahini E, De Pergola G, Scavo MP. An 8-Week Very Low-Calorie Ketogenic Diet (VLCKD) Alters the Landscape of Obese-Derived Small Extracellular Vesicles (sEVs), Redefining Hepatic Cell Phenotypes. Nutrients 2024; 16:4189. [PMID: 39683581 DOI: 10.3390/nu16234189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 11/29/2024] [Accepted: 11/30/2024] [Indexed: 12/18/2024] Open
Abstract
Background. Very low-calorie ketogenic diets (VLCKD) are an effective weight-loss strategy for obese individuals, reducing risks of liver conditions such as non-alcoholic steatohepatitis and fibrosis. Small extracellular vesicles (sEVs) are implicated in liver fibrosis by influencing hepatic cell phenotypes and contributing to liver damage. This study investigates sEVs derived from serum of 60 obese adults categorized into low fibrosis risk (LR) and intermediate/high fibrosis risk (IHR) groups based on FibroScan elastography (FIB E scores, limit value 8 kPa) and all participants underwent an 8-week VLCKD intervention. Methods. The study examines the impact of these sEVs on fibrosis markers, inflammation, and autophagy in a hepatocyte cell line (HEPA-RG) using bioinformatics, RNA sequencing, lipidomics, RT-PCR, and Western blotting before (T0) and after (T1) VLCKD. Results. sEVs from LR patients post-VLCKD reduced fibrosis related gene expression (e.g., ACTA2) and enhanced proteins associated with regeneration and inflammation (e.g., HDAC6). Conversely, sEVs from IHR patients increased fibrosis and inflammation related gene expression (PIK3CB, AKT1, ACTA2) in hepatocytes, raising concerns about VLCKD suitability for IHR patients. IHR sEVs also decreased expression of HDAC10, HDAC6, HDAC3, MMP19, and MMP2, while increasing modulation of p-AKT, α-SMA, and VIM. Conclusion. These findings underscore the critical role of sEVs in regulating inflammation, remodeling, and hepatic stress responses, particularly in IHR patients, and suggest sEVs could complement instrumental evaluations like FibroScan in fibrosis assessment.
Collapse
Affiliation(s)
- Francesco Balestra
- Laboratory of Molecular Medicine, National Institute of Gastroenterology IRCCS "S. de Bellis", Via Turi 27, Castellana Grotte, 70013 Bari, Italy
| | - Maria De Luca
- Laboratory of Molecular Medicine, National Institute of Gastroenterology IRCCS "S. de Bellis", Via Turi 27, Castellana Grotte, 70013 Bari, Italy
| | - Giorgia Panzetta
- Laboratory of Molecular Medicine, National Institute of Gastroenterology IRCCS "S. de Bellis", Via Turi 27, Castellana Grotte, 70013 Bari, Italy
| | - Nicoletta Depalo
- Institute for Chemical-Physical Processes, Italian National Research Council (IPCF)-CNR SS Bari, Via Orabona 4, 70125 Bari, Italy
- National Interuniversity Consortium of Materials Science and Technology (INSTM), Bari Research Unit, Via Orabona 4, 70126 Bari, Italy
| | - Federica Rizzi
- Institute for Chemical-Physical Processes, Italian National Research Council (IPCF)-CNR SS Bari, Via Orabona 4, 70125 Bari, Italy
- National Interuniversity Consortium of Materials Science and Technology (INSTM), Bari Research Unit, Via Orabona 4, 70126 Bari, Italy
| | - Rita Mastrogiacomo
- Department of Chemistry, University of Bari, Via Orabona 4, 70125 Bari, Italy
| | - Sergio Coletta
- Core Facility Biobank, National Institute of Gastroenterology "S. de Bellis", IRCCS Research Hospital, Via Turi 27, Castellana Grotte, 70013 Bari, Italy
| | - Grazia Serino
- Laboratory of Molecular Medicine, National Institute of Gastroenterology IRCCS "S. de Bellis", Via Turi 27, Castellana Grotte, 70013 Bari, Italy
| | - Emanuele Piccinno
- Laboratory of Molecular Medicine, National Institute of Gastroenterology IRCCS "S. de Bellis", Via Turi 27, Castellana Grotte, 70013 Bari, Italy
| | - Dolores Stabile
- Core Facility Biobank, National Institute of Gastroenterology "S. de Bellis", IRCCS Research Hospital, Via Turi 27, Castellana Grotte, 70013 Bari, Italy
| | - Pasqua Letizia Pesole
- Core Facility Biobank, National Institute of Gastroenterology "S. de Bellis", IRCCS Research Hospital, Via Turi 27, Castellana Grotte, 70013 Bari, Italy
| | - Valentina De Nunzio
- Laboratory of Nutritional Biochemistry, National Institute of Gastroenterology, "S. de Bellis", Via Turi 27, Castellana Grotte, 70013 Bari, Italy
| | - Giuliano Pinto
- Laboratory of Nutritional Biochemistry, National Institute of Gastroenterology, "S. de Bellis", Via Turi 27, Castellana Grotte, 70013 Bari, Italy
| | - Nicole Cerabino
- Center of Nutrition for the Research and the Care of Obesity and Metabolic Diseases, National Institute of Gastroenterology IRCCS "Saverio de Bellis", Via Turi 27, Castellana Grotte, 70013 Bari, Italy
| | - Martina Di Chito
- Center of Nutrition for the Research and the Care of Obesity and Metabolic Diseases, National Institute of Gastroenterology IRCCS "Saverio de Bellis", Via Turi 27, Castellana Grotte, 70013 Bari, Italy
| | - Maria Notarnicola
- Laboratory of Nutritional Biochemistry, National Institute of Gastroenterology, "S. de Bellis", Via Turi 27, Castellana Grotte, 70013 Bari, Italy
| | - Endrit Shahini
- Gastroenterology Unit, National Institute of Gastroenterology IRCCS "S. de Bellis", Via Turi 27, Castellana Grotte, 70013 Bari, Italy
| | - Giovanni De Pergola
- Center of Nutrition for the Research and the Care of Obesity and Metabolic Diseases, National Institute of Gastroenterology IRCCS "Saverio de Bellis", Via Turi 27, Castellana Grotte, 70013 Bari, Italy
| | - Maria Principia Scavo
- Laboratory of Molecular Medicine, National Institute of Gastroenterology IRCCS "S. de Bellis", Via Turi 27, Castellana Grotte, 70013 Bari, Italy
| |
Collapse
|
15
|
Cao Z, Tian K, Ran Y, Zhou H, Zhou L, Ding Y, Tang X. Beclin-1: a therapeutic target at the intersection of autophagy, immunotherapy, and cancer treatment. Front Immunol 2024; 15:1506426. [PMID: 39650649 PMCID: PMC11621085 DOI: 10.3389/fimmu.2024.1506426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Accepted: 11/01/2024] [Indexed: 12/11/2024] Open
Abstract
The significant identification of Beclin-1's function in regulating autophagy flow signified a significant progression in our understanding of cellular operations. Beclin-1 acts as a scaffold for forming the PI3KC3 complex, controlling autophagy and cellular trafficking processes in a complicated way. This intricate protein has garnered considerable attention due to its substantial impact on the development of tumors. Strong evidence indicates Beclin-1 plays a critical role in controlling autophagy in various human cancer types and its intricate connection with apoptosis and ferroptosis. The potential of Beclin-1 as a viable target for cancer therapy is highlighted by its associations with key autophagy regulators such as AMPK, mTOR, and ATGs. Beclin-1 controls the growth and dissemination of tumors by autophagy. It also affects how tumors react to therapies such as chemotherapy and radiation therapy. The role of Beclin-1 in autophagy can influence apoptosis, depending on whether it supports cell survival or leads to cell death. Beclin-1 plays a crucial role in ferroptosis by increasing ATG5 levels, which in turn promotes autophagy-triggered ferroptosis. Finally, we analyzed the possible function of Beclin-1 in tumor immunology and drug sensitivity in cancers. In general, Beclin-1 has a significant impact on regulating autophagy, offering various potentials for medical intervention and altering our understanding of cancer biology.
Collapse
Affiliation(s)
- Zhumin Cao
- Department of Hepatobiliary Surgery, The Seventh People’s Hospital of Chongqing, Chongqing, China
| | - Ke Tian
- Department of Hepatobiliary Surgery, The Seventh People’s Hospital of Chongqing, Chongqing, China
| | - Yincheng Ran
- Department of Hepatobiliary Surgery, The Seventh People’s Hospital of Chongqing, Chongqing, China
| | - Haonan Zhou
- Department of Hepatobiliary Surgery, The Seventh People’s Hospital of Chongqing, Chongqing, China
| | - Lei Zhou
- Department of Hepatobiliary Surgery, The Seventh People’s Hospital of Chongqing, Chongqing, China
| | - Yana Ding
- Department of Hepatobiliary Surgery, District Traditional Chinese Medicine Hospital, Chongqing, China
| | - Xiaowei Tang
- Department of Hepatobiliary Surgery, District Traditional Chinese Medicine Hospital, Chongqing, China
| |
Collapse
|
16
|
Macejova D, Kollar J, Bobal P, Otevrel J, Schuster D, Brtko J. Triphenyltin isoselenocyanate: a novel nuclear retinoid X receptor ligand with antiproliferative and cytotoxic properties in cell lines derived from human breast cancer. Mol Cell Biochem 2024; 479:3091-3106. [PMID: 38227157 PMCID: PMC11473623 DOI: 10.1007/s11010-023-04914-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 12/03/2023] [Indexed: 01/17/2024]
Abstract
Several commercially available triorganotin compounds were previously found to function as agonist ligands for nuclear retinoid X receptor (RXR) molecules. Triphenyltin isoselenocyanate (TPT-NCSe), a novel selenium atom containing a derivative of triorganotin origin, was found to represent a new cognate bioactive ligand for RXRs. TPT-NCSe displayed a concentration- and time-dependent decrease in the cell viability in both human breast carcinoma MCF-7 (estrogen receptor positive) and MDA‑MB‑231 (triple negative) cell lines. Reactive oxygen species levels generated in response to TPT-NCSe were significantly higher in both carcinoma cell lines treated with TPT-NCSe when compared to mock-treated samples. Treatment with 500 nM TPT-NCSe caused a decrease in SOD1 and increased SOD2 mRNA in MCF-7 cells. The levels of SOD2 mRNA were more increased following the treatment with TPT-NCSe along with 1 μM all-trans retinoic acid (AtRA) in MCF-7 cells. An increased superoxide dismutase SOD1 and SOD2 mRNA levels were also detected in combination treatment of 500 nM TPT-NCSe and 1 μM AtRA in TPT-NCSe-treated MDA-MB-231 cells. The data have also shown that TPT-NCSe induces apoptosis via a caspase cascade triggered by the mitochondrial apoptotic pathway. TPT-NCSe modulates the expression levels of apoptosis‑related proteins, Annexin A5, Bcl‑2 and BAX family proteins, and finally, it enhances the expression levels of its cognate nuclear receptor subtypes RXRalpha and RXRbeta.
Collapse
Affiliation(s)
- Dana Macejova
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Dúbravská cesta 9, 845 05, Bratislava, Slovak Republic.
| | - Jakub Kollar
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, Paracelsus Medical University, Strubergasse 21, 5020, Salzburg, Austria
| | - Pavel Bobal
- Department of Chemical Drugs, Faculty of Pharmacy, Masaryk University, Palackého třída 1946/1, 612 00, Brno, Czech Republic
| | - Jan Otevrel
- Department of Chemical Drugs, Faculty of Pharmacy, Masaryk University, Palackého třída 1946/1, 612 00, Brno, Czech Republic
| | - Daniela Schuster
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, Paracelsus Medical University, Strubergasse 21, 5020, Salzburg, Austria
| | - Julius Brtko
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Dúbravská cesta 9, 845 05, Bratislava, Slovak Republic
| |
Collapse
|
17
|
Ou W, Liu H, Chen C, Yang C, Zhao X, Zhang Y, Zhang Z, Huang S, Mo H, Lu W, Wang X, Chen A, Yan J, Song X. Spexin inhibits excessive autophagy-induced ferroptosis to alleviate doxorubicin-induced cardiotoxicity by upregulating Beclin 1. Br J Pharmacol 2024; 181:4195-4213. [PMID: 38961632 DOI: 10.1111/bph.16484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 04/27/2024] [Accepted: 05/19/2024] [Indexed: 07/05/2024] Open
Abstract
BACKGROUND AND PURPOSE Doxorubicin is widely used in the treatment of malignant tumours, but doxorubicin-induced cardiotoxicity severely limits its clinical application. Spexin is a neuropeptide that acts as a novel biomarker in cardiovascular disease. However, the effects of spexin on doxorubicin-induced cardiotoxicity is unclear. EXPERIMENTAL APPROACH We established a model of doxorubicin-induced cardiotoxicity both in vivo and in vitro. Levels of cardiac damage in mice was assessed through cardiac function assessment, determination of serum cardiac troponin T and CKMB levels and histological examination. CCK8 and PI staining were used to assess the doxorubicin-induced toxicity in cultures of cardiomyocytes in vitro. Ferroptosis was assessed using FerroOrange staining, determination of MDA and 4-HNE content and ferroptosis-associated proteins SLC7A11 and GPX4. Mitochondrial membrane potential and lipid peroxidation levels were measured using TMRE and C11-BODIPY 581/591 probes, respectively. Myocardial autophagy was assessed by expression of P62 and Beclin1. KEY RESULTS Spexin treatment improved heart function of mice with doxorubicin-induced cardiotoxicity, and attenuated doxorubicin-induced cardiotoxicity by decreasing iron accumulation, abnormal lipid metabolism and inhibiting ferroptosis. Interestingly, doxorubicin caused excessive autophagy in cardiomyocyte in culture, which could be alleviated by treatment with spexin. Knockdown of Beclin 1 eliminated the protective effects of spexin in mice with DIC. CONCLUSION AND IMPLICATIONS Spexin ameliorated doxorubicin-induced cardiotoxicity by inhibiting excessive autophagy-induced ferroptosis, suggesting that spexin could be a drug candidate against doxorubicin-induced cardiotoxicity. Beclin 1 might be critical in mediating the protective effect of spexin against doxorubicin-induced cardiotoxicity.
Collapse
Affiliation(s)
- Wen Ou
- Department of Cardiology, Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Guangzhou, China
- Sino-Japanese Cooperation Platform for Translational Research in Heart Failure, Guangzhou, China
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, Southern Medical University, Guangzhou, China
| | - Haiqiong Liu
- Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Guangzhou, China
- Sino-Japanese Cooperation Platform for Translational Research in Heart Failure, Guangzhou, China
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, Southern Medical University, Guangzhou, China
- Department of Health Management, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Changhai Chen
- Department of Cardiology, Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Guangzhou, China
- Sino-Japanese Cooperation Platform for Translational Research in Heart Failure, Guangzhou, China
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, Southern Medical University, Guangzhou, China
- Department of Cardiology, The Affiliated Suqian First People's Hospital of Nanjing Medical University, Suqian, China
| | - Chaobo Yang
- Department of Cardiology, Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Guangzhou, China
- Sino-Japanese Cooperation Platform for Translational Research in Heart Failure, Guangzhou, China
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, Southern Medical University, Guangzhou, China
| | - Xiaoqing Zhao
- Department of Cardiology, Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Guangzhou, China
- Sino-Japanese Cooperation Platform for Translational Research in Heart Failure, Guangzhou, China
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, Southern Medical University, Guangzhou, China
| | - Yu Zhang
- Department of Cardiology, Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Guangzhou, China
- Sino-Japanese Cooperation Platform for Translational Research in Heart Failure, Guangzhou, China
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, Southern Medical University, Guangzhou, China
| | - Zhiyin Zhang
- Department of Cardiology, Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Guangzhou, China
- Sino-Japanese Cooperation Platform for Translational Research in Heart Failure, Guangzhou, China
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, Southern Medical University, Guangzhou, China
| | - Shuwen Huang
- Department of Cardiology, Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Guangzhou, China
- Sino-Japanese Cooperation Platform for Translational Research in Heart Failure, Guangzhou, China
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, Southern Medical University, Guangzhou, China
| | - Huaqiang Mo
- Department of Cardiology, Shenzhen People's Hospital, Shenzhen, China
| | - Weizhe Lu
- Department of Cardiology, Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Guangzhou, China
- Sino-Japanese Cooperation Platform for Translational Research in Heart Failure, Guangzhou, China
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, Southern Medical University, Guangzhou, China
| | - Xianbao Wang
- Department of Cardiology, Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Guangzhou, China
- Sino-Japanese Cooperation Platform for Translational Research in Heart Failure, Guangzhou, China
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, Southern Medical University, Guangzhou, China
| | - Aihua Chen
- Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Guangzhou, China
- Sino-Japanese Cooperation Platform for Translational Research in Heart Failure, Guangzhou, China
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, Southern Medical University, Guangzhou, China
- Department of Health Management, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Jing Yan
- Department of Cardiology, Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Guangzhou, China
- Sino-Japanese Cooperation Platform for Translational Research in Heart Failure, Guangzhou, China
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, Southern Medical University, Guangzhou, China
| | - Xudong Song
- Department of Cardiology, Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Guangzhou, China
- Sino-Japanese Cooperation Platform for Translational Research in Heart Failure, Guangzhou, China
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, Southern Medical University, Guangzhou, China
| |
Collapse
|
18
|
Park WY, Lim SH, Kim Y, Paek JH, Jin K, Han S, Ahn KS, Lee J. Impact of ciprofloxacin with autophagy on renal tubular injury. Medicine (Baltimore) 2024; 103:e39888. [PMID: 39465743 PMCID: PMC11460873 DOI: 10.1097/md.0000000000039888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Indexed: 10/29/2024] Open
Abstract
BACKGROUNDS Renal tubular injury caused by oxidative stress and inflammation results in acute kidney injury. Recent research reported that antibiotics may protect renal tubules from progressive deterioration, but the underlying mechanism remains unclear. Therefore, we investigated the efficacy and mechanism of action of antibiotics against renal tubular injury. METHODS We screened ciprofloxacin, ceftizoxime, minocycline, and netilmicin and selected ciprofloxacin to examine further because of its low toxicity towards renal tubular cells. We evaluated the effect of ciprofloxacin on cell survival by analyzing apoptosis and autophagy. RESULTS Terminal deoxynucleotidyl transferase-mediated d-UTP nick end labeling (TUNEL) assay results showed that the ciprofloxacin group had less apoptotic cells than the control group. The ratio of cleaved caspase 3 to caspase 3, the final effector in the apoptosis process, was decreased, but the ratio of B-cell lymphoma 2 (Bcl-2)-associated X protein (Bax) to Bcl-2 located upstream of caspase 3 was not decreased in the ciprofloxacin group. Therefore, apoptosis inhibition does not occur via Bax/Bcl-2. Conversely, the levels of phosphorylated Bcl-2, and Beclin-1, an autophagy marker, were increased, and that of caspase-3 was decreased in the ciprofloxacin group. CONCLUSION This indicates that ciprofloxacin enhances autophagy, increasing the amount of free Beclin-1 via phosphorylated Bcl-2, and inhibits caspase activity. Therefore, ciprofloxacin might protect against renal tubular injury through the activation of autophagy in the setting of acute kidney injury.
Collapse
Affiliation(s)
- Woo Yeong Park
- Department of Internal Medicine, Keimyung University Dongsan Hospital, Keimyung University School of Medicine, Daegu, Republic of Korea
| | - Sun-Ha Lim
- Department of Biochemistry, School of Medicine, Catholic University of Daegu, Daegu, Republic of Korea
| | - Yaerim Kim
- Department of Internal Medicine, Keimyung University Dongsan Hospital, Keimyung University School of Medicine, Daegu, Republic of Korea
| | - Jin Hyuk Paek
- Department of Internal Medicine, Keimyung University Dongsan Hospital, Keimyung University School of Medicine, Daegu, Republic of Korea
| | - Kyubok Jin
- Department of Internal Medicine, Keimyung University Dongsan Hospital, Keimyung University School of Medicine, Daegu, Republic of Korea
| | - Seungyeup Han
- Department of Internal Medicine, Keimyung University Dongsan Hospital, Keimyung University School of Medicine, Daegu, Republic of Korea
| | - Ki Sung Ahn
- Department of Internal Medicine, School of Medicine, Catholic University of Daegu, Daegu, Republic of Korea
| | - Jongwon Lee
- Department of Biochemistry, School of Medicine, Catholic University of Daegu, Daegu, Republic of Korea
| |
Collapse
|
19
|
Wang Y, Fang M, Ren Q, Qi W, Bai X, Amin N, Zhang X, Li Z, Zhang L. Sox17 protects human brain microvascular endothelial cells from AngII-induced injury by regulating autophagy and apoptosis. Mol Cell Biochem 2024; 479:2337-2350. [PMID: 37659973 PMCID: PMC11371885 DOI: 10.1007/s11010-023-04838-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 08/14/2023] [Indexed: 09/04/2023]
Abstract
Intracranial aneurysm (IA), is a localized dilation of the intracranial arteries, the rupture of which is catastrophic. Hypertension is major IA risk factor that mediates endothelial cell damage. Sox17 is highly expressed in intracranial vascular endothelial cells, and GWAS studies indicate that its genetic alteration is one of the major genetic risk factors for IA. Vascular endothelial cell injury plays a vital role in the pathogenesis of IA. The genetic ablation of Sox17 plus hypertension induced by AngII can lead to an increased incidence of intracranial aneurysms had tested in the previous animal experiments. In order to study the underlying molecular mechanisms, we established stable Sox17-overexpressing and knockdown cell lines in human brain microvascular endothelial cells (HBMECs) first. Then flow cytometry, western blotting, and immunofluorescence were employed. We found that the knockdown of Sox17 could worsen the apoptosis and autophagy of HBMECs caused by AngII, while overexpression of Sox17 had the opposite effect. Transmission electron microscopy displayed increased autophagosomes after the knockdown of Sox17 in HBMECs. The RNA-sequencing analysis shown that dysregulation of the Sox17 gene was closely associated with the autophagy-related pathways. Our study suggests that Sox17 could protect HBMECs from AngII-induced injury by regulating autophagy and apoptosis.
Collapse
Affiliation(s)
- Yanyan Wang
- Department of Neurology, The Second Hospital of Hebei Medical University, No 215 Heping West Road, Shijiazhuang, 050000, Hebei Province, China
- The Key Laboratory of Neurology (Hebei Medical University), Ministry of Education, Shijiazhuang, China
| | - Marong Fang
- Institute of System Medicine, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Qiannan Ren
- Institute of System Medicine, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Wei Qi
- Department of Gastroenterology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xinli Bai
- Department of Pediatrics, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Nashwa Amin
- Institute of System Medicine, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
- Department of Zoology, Faculty of Science, Aswan University, Qism Aswan, Egypt
| | - Xiangjian Zhang
- Department of Neurology, The Second Hospital of Hebei Medical University, No 215 Heping West Road, Shijiazhuang, 050000, Hebei Province, China
- The Key Laboratory of Neurology (Hebei Medical University), Ministry of Education, Shijiazhuang, China
| | - Zhenzhong Li
- Department of Neurology, The Second Hospital of Hebei Medical University, No 215 Heping West Road, Shijiazhuang, 050000, Hebei Province, China
- The Key Laboratory of Neurology (Hebei Medical University), Ministry of Education, Shijiazhuang, China
| | - Lihong Zhang
- Department of Neurology, The Second Hospital of Hebei Medical University, No 215 Heping West Road, Shijiazhuang, 050000, Hebei Province, China.
- The Key Laboratory of Neurology (Hebei Medical University), Ministry of Education, Shijiazhuang, China.
| |
Collapse
|
20
|
Bahojb Mahdavi SZ, Pouladi N, Amini M, Baradaran B, Najafi S, Vaghef Mehrabani S, Yari A, Ghobadi Alamdari S, Mokhtarzadeh AA. Let-7a-3p overexpression increases chemosensitivity to carmustine and synergistically promotes autophagy and suppresses cell survival in U87MG glioblastoma cancer cells. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:6903-6918. [PMID: 38587542 DOI: 10.1007/s00210-024-03060-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 03/18/2024] [Indexed: 04/09/2024]
Abstract
In terms of primary brain tumors, glioblastoma is one of the most aggressive and common brain tumors. The high resistance of glioblastoma to chemotherapy has made it vital to find alternative treatments and biological mechanisms to reduce the survival of cancer cells. Given that, the objective of the present research was to explore the potential of let-7a-3p when used in combination with carmustine in human glioblastoma cancer cells. Based on previous studies, the expression of let-7a is downregulated in the U87MG cell line. Let-7a-3p transfected into U87MG glioblastoma cells. Cell viability of the cells was assessed by MTT assay. The apoptotic induction in U87MG cancerous cells was determined through the utilization of DAPI and Annexin V/PI staining techniques. Moreover, the induction of autophagy and cell cycle arrest was evaluated by flow cytometry. Furthermore, cell migration was evaluated by the wound healing assay while colony formation assay was conducted to evaluate colony formation. Also, the expression of the relevant genes was evaluated using qRT-PCR. Transfection of let-7a-3p mimic in U87MG cells increased the expression of the miRNA and also increased the sensitivity of U87MG cells to carmustine. Let-7a-3p and carmustine induced sub-G1 and S phase cell cycle arrest, respectively. Combination treatment of let-7a-3p and carmustine synergistically increased arrested cells and induced apoptosis through regulating involved genes including P53, caspase-3, Bcl-2, and Bax. Combined treatment with let-7a-3p and carmustine also induced autophagy and increased the expression of the ATG5 and Beclin 1 (ATG6). Furthermore, let-7a-3p combined with carmustine inhibited cell migration via decreasing the expression of MMP-2. Moreover, the combination therapy decreased the ability of U87MG to form colonies through downregulating CD-44. In conclusion, our work suggests that combining let-7a-3p replacement therapy with carmustine treatment could be considered a promising strategy in treatment and can increase efficiency of glioblastoma chemotherapy.
Collapse
Affiliation(s)
- Seyedeh Zahra Bahojb Mahdavi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Biology, Faculty of Basic Sciences, Azarbaijan Shahid Madani University, Tabriz, Iran
| | - Nasser Pouladi
- Department of Biology, Faculty of Basic Sciences, Azarbaijan Shahid Madani University, Tabriz, Iran
| | - Mohammad Amini
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Souzan Najafi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shiva Vaghef Mehrabani
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Biology, Faculty of Basic Sciences, Azarbaijan Shahid Madani University, Tabriz, Iran
| | - Amirhossein Yari
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sania Ghobadi Alamdari
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Cell and Molecular Biology, Faculty of Basic Science, University of Maragheh, Maragheh, Iran
| | | |
Collapse
|
21
|
Kim SM, Han GU, Kim SG, Moon SH, Shin SH, Ryu BY. Mitigation of benzyl butyl phthalate toxicity in male germ cells with combined treatment of parthenolide, N-acetylcysteine, and 3-methyladenine. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 280:116544. [PMID: 38838463 DOI: 10.1016/j.ecoenv.2024.116544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 04/09/2024] [Accepted: 06/01/2024] [Indexed: 06/07/2024]
Abstract
Benzyl butyl phthalate (BBP) is a widely used plasticizer that poses various potential health hazards. Although BBP has been extensively studied, the direct mechanism underlying its toxicity in male germ cells remains unclear. Therefore, we investigated BBP-mediated male germ cell toxicity in GC-1 spermatogonia (spg), a differentiated mouse male germ cell line. This study investigated the impact of BBP on reactive oxygen species (ROS) generation, apoptosis, and autophagy regulation, as well as potential protective measures against BBP-induced toxicity. A marked dose-dependent decrease in GC-1 spg cell proliferation was observed following treatment with BBP at 12.5 μM. Exposure to 50 μM BBP, approximating the IC50 of 53.9 μM, markedly increased cellular ROS generation and instigated apoptosis, as evidenced by augmented protein levels of both intrinsic and extrinsic apoptosis-related markers. An amount of 50 μM BBP induced marked upregulation of autophagy regulator proteins, p38 MAPK, and extracellular signal-regulated kinase and substantially downregulated the phosphorylation of key kinases involved in regulating cell proliferation, including phosphoinositide 3-kinase, protein kinase B, mammalian target of rapamycin (mTOR), c-Jun N-terminal kinase. The triple combination of N-acetylcysteine, parthenolide, and 3-methyladenine markedly restored cell proliferation, decreased BBP-induced apoptosis and autophagy, and restored mTOR phosphorylation. This study provides new insights into BBP-induced male germ cell toxicity and highlights the therapeutic potential of the triple inhibitors in mitigating BBP toxicity.
Collapse
Affiliation(s)
- Seok-Man Kim
- Department of Animal Science and Technology, Chung-Ang University, Anseong, Gyeonggi-Do, 17546, Republic of Korea
| | - Gil Un Han
- Department of Animal Science and Technology, Chung-Ang University, Anseong, Gyeonggi-Do, 17546, Republic of Korea
| | - Seul Gi Kim
- Department of Animal Science and Technology, Chung-Ang University, Anseong, Gyeonggi-Do, 17546, Republic of Korea
| | - Sung-Hwan Moon
- Department of Animal Science and Technology, Chung-Ang University, Anseong, Gyeonggi-Do, 17546, Republic of Korea
| | - Seung Hee Shin
- Department of Animal Science and Technology, Chung-Ang University, Anseong, Gyeonggi-Do, 17546, Republic of Korea
| | - Buom-Yong Ryu
- Department of Animal Science and Technology, Chung-Ang University, Anseong, Gyeonggi-Do, 17546, Republic of Korea.
| |
Collapse
|
22
|
Cheng J, Luo J, Xu Z, Liu Z, Bao L, Xue L. ROS-Induced Autophagy of Skeletal Muscle Confers Resistance of Rice Flower Carp ( Cyprinus carpio) to Short-Term Fasting. Genes (Basel) 2024; 15:840. [PMID: 39062619 PMCID: PMC11275598 DOI: 10.3390/genes15070840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/15/2024] [Accepted: 06/18/2024] [Indexed: 07/28/2024] Open
Abstract
Starvation is one of the main stresses for fish due to food shortage, the evasion of predators, and intraspecific competition. This research evaluated the impact of brief fasting periods on reactive oxygen species (ROS) levels, antioxidant response, mRNA expression of antioxidants, autophagy-related signaling genes, and autophagosome development in the muscle tissue of rice flower carp. Following a three-day fasting period, the levels of ROS and MDA rose. Additionally, after 3 d of fasting, there was a notable upregulation of NRF2 and significant increases in the levels of GSH and the activities of enzymes such as SOD, CAT, GST, GR, and GPX, while the expression of the autophagy marker gene LC3B did not change (p < 0.05). After 7 d of fasting, the content of the ROS, the activity of SOD and GR, and the GSH content reached the maximum (p < 0.05). Concurrently, there was a significant rise in the quantity of autophagosomes. An RT-qPCR analysis revealed that seven d of starvation significantly elevated the mRNA expression of genes associated with the initiation and expansion of autophagosome membranes, vesicle recycling, and cargo recruitment, including ULK1, BECLIN1, LC3B, ATG3, ATG4B, ATG4C, ATG5, ATG9, and P62. After feeding resumed for 3 d, the mRNA level of BECLIN1, ATG3, ATG4B, ATG4C, ATG5, LC3B, and P62 still remained at a high level. The LC3II protein reached its highest level. All autophagy-related gene expression decreased in the 7-day resumed feeding group. Our data implied that short-term fasting can cause oxidative stress and disrupt the antioxidant system first and then induce autophagy in the muscles of rice flower carp. These findings shed light on how fasting affects muscle homeostasis in fish. ROS-induced autophagy of the skeletal muscle may confer the resistance of rice flower carp to short-term fasting.
Collapse
Affiliation(s)
- Jia Cheng
- School of Marine Sciences, Ningbo University, Ningbo 315832, China
- College of Biological and Chemical Engineering, Hunan Engineering Technology Research Center for Amphibian and Reptile Resource Protection and Product Processing, Changsha University, Changsha 410022, China
| | - Junhan Luo
- College of Biological and Chemical Engineering, Hunan Engineering Technology Research Center for Amphibian and Reptile Resource Protection and Product Processing, Changsha University, Changsha 410022, China
| | - Ziyang Xu
- College of Biological and Chemical Engineering, Hunan Engineering Technology Research Center for Amphibian and Reptile Resource Protection and Product Processing, Changsha University, Changsha 410022, China
| | - Zhouying Liu
- College of Biological and Chemical Engineering, Hunan Engineering Technology Research Center for Amphibian and Reptile Resource Protection and Product Processing, Changsha University, Changsha 410022, China
| | - Lingsheng Bao
- College of Biological and Chemical Engineering, Hunan Engineering Technology Research Center for Amphibian and Reptile Resource Protection and Product Processing, Changsha University, Changsha 410022, China
| | - Liangyi Xue
- School of Marine Sciences, Ningbo University, Ningbo 315832, China
| |
Collapse
|
23
|
Kurganovs NJ, Engedal N. To eat or not to eat: a critical review on the role of autophagy in prostate carcinogenesis and prostate cancer therapeutics. Front Pharmacol 2024; 15:1419806. [PMID: 38910881 PMCID: PMC11190189 DOI: 10.3389/fphar.2024.1419806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 05/20/2024] [Indexed: 06/25/2024] Open
Abstract
Around 1 in 7 men will be diagnosed with prostate cancer during their lifetime. Many strides have been made in the understanding and treatment of this malignancy over the years, however, despite this; treatment resistance and disease progression remain major clinical concerns. Recent evidence indicate that autophagy can affect cancer formation, progression, and therapeutic resistance. Autophagy is an evolutionarily conserved process that can remove unnecessary or dysfunctional components of the cell as a response to metabolic or environmental stress. Due to the emerging importance of autophagy in cancer, targeting autophagy should be considered as a potential option in disease management. In this review, along with exploring the advances made on understanding the role of autophagy in prostate carcinogenesis and therapeutics, we will critically consider the conflicting evidence observed in the literature and suggest how to obtain stronger experimental evidence, as the application of current findings in clinical practice is presently not viable.
Collapse
Affiliation(s)
- Natalie Jayne Kurganovs
- Autophagy in Cancer Lab, Institute for Cancer Research, Department of Tumor Biology, Oslo University Hospital, Oslo, Norway
| | - Nikolai Engedal
- Autophagy in Cancer Lab, Institute for Cancer Research, Department of Tumor Biology, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
24
|
Zeng X, Sun J, Li F, Peng L, Zhang C, Jiang X, Zha L, Rathinasabapathy A, Ren J, Yu Z, Wang L, Liu X. Beclin 1 Haploinsufficiency Ameliorates High-Fat Diet-Induced Myocardial Injury via Inhibiting Alternative Mitophagy. Antioxid Redox Signal 2024; 40:906-925. [PMID: 38251672 PMCID: PMC11554424 DOI: 10.1089/ars.2023.0399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 11/28/2023] [Indexed: 01/23/2024]
Affiliation(s)
- Xiaofang Zeng
- Department of Cardiology, Xiangya Hospital, Central South University, Changsha, China
- Department of Rheumatology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Jing Sun
- Department of Cardiology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Famei Li
- Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, China
| | - Liming Peng
- Department of Cardiology, Xiangya Hospital, Central South University, Changsha, China
| | - Chenglong Zhang
- Department of Cardiology, Xiangya Hospital, Central South University, Changsha, China
| | - Xiaowei Jiang
- Department of Cardiology, Xiangya Hospital, Central South University, Changsha, China
| | - Lihuang Zha
- Department of Cardiology, Xiangya Hospital, Central South University, Changsha, China
| | - Anandharajan Rathinasabapathy
- Division of Allergy, Pulmonary, and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Jun Ren
- Department of Cardiology and Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital Fudan University, Shanghai, China
- Department of Geriatrics, Xijing Hospital, The Air Force Military Medical University, Xi'an, China
| | - Zaixin Yu
- Department of Cardiology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Lin Wang
- Department of Geriatrics, Xijing Hospital, The Air Force Military Medical University, Xi'an, China
| | - Xiangwei Liu
- Department of Cardiology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
25
|
Martyniuk V, Matskiv T, Yunko K, Khoma V, Gnatyshyna L, Faggio C, Stoliar O. Reductive stress and cytotoxicity in the swollen river mussel (Unio tumidus) exposed to microplastics and salinomycin. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 350:123724. [PMID: 38462197 DOI: 10.1016/j.envpol.2024.123724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 03/03/2024] [Accepted: 03/04/2024] [Indexed: 03/12/2024]
Abstract
Multistress effects lead to unpredicted consequences in aquatic ecotoxicology and are extremely concerning. The goal of this study was to trace how specific effects of the antibiotic salinomycin (Sal) and microplastics (MP) on the bivalve molluscs are manifested in the combined environmentally relevant exposures. Unio tumidus specimens were treated with Sal (0.6 μg L-1), MP (1 mg L-1, 2 μm size), and both at 18 °C (Mix) and 25 °C (MixT) for 14 days. The redox stress and apoptotic enzyme responses and the balance of Zn/Cu in the digestive gland were analyzed. The shared signs of stress included a decrease in NAD+/NADH and Zn/Cu ratios and lysosomal integrity and an increase in Zn-metallothioneins and cholinesterase levels. MP caused a decrease in the glutathione (GSH) concentration and redox state, total antioxidant capacity, and Zn levels. MP and Mix induced coordinated apoptotic/autophagy activities, increasing caspase-3 and cathepsin D (CtD) total and extralysosomal levels. Sal activated caspase-3 only and increased by five times Cu level in the tissue. Due to the discriminant analysis, the cumulative effect was evident in the combined exposure at 18 °C. However, under heating, the levels of NAD+, NADH, GSH, GSH/GSSG and metallothionein-related thiols were decreased, and coordination of the cytosolic and lysosomal death stimuli was distorted, confirming that heating and pollution could exert unexpected synergistic effects on aquatic life.
Collapse
Affiliation(s)
- Viktoria Martyniuk
- Department of Chemistry and Methods of Its Teaching, Ternopil Volodymyr Hnatiuk National Pedagogical University, Kryvonosa Str 2, Ternopil, 46027, Ukraine.
| | - Tetiana Matskiv
- Department of Chemistry and Methods of Its Teaching, Ternopil Volodymyr Hnatiuk National Pedagogical University, Kryvonosa Str 2, Ternopil, 46027, Ukraine; Department of General Chemistry, I. Horbachevsky Ternopil National Medical University, Maidan Voli, 1, Ternopil, 46001, Ukraine.
| | - Kateryna Yunko
- Department of Chemistry and Methods of Its Teaching, Ternopil Volodymyr Hnatiuk National Pedagogical University, Kryvonosa Str 2, Ternopil, 46027, Ukraine.
| | - Vira Khoma
- Department of Research of Materials, Substances and Products, Ternopil Scientific Research Forensic Center of the Ministry of Internal Affairs of Ukraine, St. Budny, 48, Ternopil, 46020, Ukraine.
| | - Lesya Gnatyshyna
- Department of General Chemistry, I. Horbachevsky Ternopil National Medical University, Maidan Voli, 1, Ternopil, 46001, Ukraine.
| | - Caterina Faggio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d'Alcontres, S. Agata, Messina, 31-98166, Italy; Department of Eco-sustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, Naples, Italy.
| | - Oksana Stoliar
- Department of Chemistry and Methods of Its Teaching, Ternopil Volodymyr Hnatiuk National Pedagogical University, Kryvonosa Str 2, Ternopil, 46027, Ukraine; Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d'Alcontres, S. Agata, Messina, 31-98166, Italy.
| |
Collapse
|
26
|
Jin N, Zhang M, Zhou L, Jin S, Cheng H, Li X, Shi Y, Xiang T, Zhang Z, Liu Z, Zhao H, Xie J. Mitochondria transplantation alleviates cardiomyocytes apoptosis through inhibiting AMPKα-mTOR mediated excessive autophagy. FASEB J 2024; 38:e23655. [PMID: 38767449 DOI: 10.1096/fj.202400375r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 04/16/2024] [Accepted: 04/23/2024] [Indexed: 05/22/2024]
Abstract
The disruption of mitochondria homeostasis can impair the contractile function of cardiomyocytes, leading to cardiac dysfunction and an increased risk of heart failure. This study introduces a pioneering therapeutic strategy employing mitochondria derived from human umbilical cord mesenchymal stem cells (hu-MSC) (MSC-Mito) for heart failure treatment. Initially, we isolated MSC-Mito, confirming their functionality. Subsequently, we monitored the process of single mitochondria transplantation into recipient cells and observed a time-dependent uptake of mitochondria in vivo. Evidence of human-specific mitochondrial DNA (mtDNA) in murine cardiomyocytes was observed after MSC-Mito transplantation. Employing a doxorubicin (DOX)-induced heart failure model, we demonstrated that MSC-Mito transplantation could safeguard cardiac function and avert cardiomyocyte apoptosis, indicating metabolic compatibility between hu-MSC-derived mitochondria and recipient mitochondria. Finally, through RNA sequencing and validation experiments, we discovered that MSC-Mito transplantation potentially exerted cardioprotection by reinstating ATP production and curtailing AMPKα-mTOR-mediated excessive autophagy.
Collapse
Affiliation(s)
- Ning Jin
- Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, Key Laboratory of Coal Environmental Pathogenicity and Prevention, Ministry of Education, Shanxi Medical University, Taiyuan, China
- Department of Histology and Embryology, Shanxi Medical University, Taiyuan, China
| | - Mengyao Zhang
- Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, Key Laboratory of Coal Environmental Pathogenicity and Prevention, Ministry of Education, Shanxi Medical University, Taiyuan, China
| | - Li Zhou
- Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, Key Laboratory of Coal Environmental Pathogenicity and Prevention, Ministry of Education, Shanxi Medical University, Taiyuan, China
| | - Shanshan Jin
- Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, Key Laboratory of Coal Environmental Pathogenicity and Prevention, Ministry of Education, Shanxi Medical University, Taiyuan, China
| | - Haiqin Cheng
- Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, Key Laboratory of Coal Environmental Pathogenicity and Prevention, Ministry of Education, Shanxi Medical University, Taiyuan, China
| | - Xuewei Li
- Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, Key Laboratory of Coal Environmental Pathogenicity and Prevention, Ministry of Education, Shanxi Medical University, Taiyuan, China
| | - Yaqian Shi
- Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, Key Laboratory of Coal Environmental Pathogenicity and Prevention, Ministry of Education, Shanxi Medical University, Taiyuan, China
| | - Tong Xiang
- Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, Key Laboratory of Coal Environmental Pathogenicity and Prevention, Ministry of Education, Shanxi Medical University, Taiyuan, China
| | - Zongxiao Zhang
- Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, Key Laboratory of Coal Environmental Pathogenicity and Prevention, Ministry of Education, Shanxi Medical University, Taiyuan, China
| | - Zhizhen Liu
- Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, Key Laboratory of Coal Environmental Pathogenicity and Prevention, Ministry of Education, Shanxi Medical University, Taiyuan, China
| | - Hong Zhao
- Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, Key Laboratory of Coal Environmental Pathogenicity and Prevention, Ministry of Education, Shanxi Medical University, Taiyuan, China
| | - Jun Xie
- Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, Key Laboratory of Coal Environmental Pathogenicity and Prevention, Ministry of Education, Shanxi Medical University, Taiyuan, China
| |
Collapse
|
27
|
Yin Y, Ahmed N, Hassan MF, Guo K, Shakir Y, Zang J, Lyu J. Effect of Nano-selenium on Biological Mechanism of Goblet Cells of the Small Intestine Within Laying Hen. Biol Trace Elem Res 2024; 202:1699-1710. [PMID: 37454307 DOI: 10.1007/s12011-023-03770-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 07/07/2023] [Indexed: 07/18/2023]
Abstract
Dietary selenium intake within the normal physiological range is critical for various supporting biological functions. However, the effect of nano-selenium on biological mechanism of goblet cells associated with autophagy is largely unknown.The purpose of this study was to investigate the effect of nano-selenium on the mucosal immune-defense mechanism of goblet cells (GCs) in the small intestine of laying hens.The autophagy was determined by using specific markers. Nano-selenium-treated group of immunohistochemistry (IHC), immunofluorescence (IF), and western blotting (WB) results indicated the strong positive immune signaling of microtubule-associated light chain (LC3) within the mucosal surface of the small intestine. However, weak expression of LC3 was observed in the 3-methyladenine autophagy inhibitor (3-MA) group. IHC and IF staining results showed the opposite tendency for LC3 of sequestosome 1 (P62/SQSTM1). P62/SQSTM1 showed strong positive immune signaling within the mucosal surface of the small intestine of the 3-MAgroup, and weak immune signaling of P62/SQSTM1 in the nano-selenium-treated group. Moreover, pinpointing autophagy was involved in the mucosal production and enrichment of mucosal immunity of the GCs. The morphology and ultrastructure evidence showed that the mucus secretion of GCs was significantly increased after nano-selenium treatment confirmed by light and transmission electron microscopy. Besides that, immunostaining of IHC, IF and WB showed that autophagy enhanced the secretion of Mucin2 (Muc2) protein in nano-selenium-treated group. This work illustrates that the nano-selenium particle might enhance the mucosal immune-defense mechanism via the protective role of GCs for intestinal homeostasis through autophagy.
Collapse
Affiliation(s)
- Yongxiang Yin
- Department of Pathology, Wuxi Maternal and Child Health Care Hospital, Womens Hospital of Jiangnan University, Jiangsu, 214002, China
| | - Nisar Ahmed
- Faculty of Veterinary and Animal Sciences, Lasbela University of Agriculture, Water and Marine Sciences, Uthal, 90150, Pakistan
| | - Mohammad Farooque Hassan
- Shaheed Benazir Bhutto University of Veterinary and Animal Sciences, Sakrand, Sindh, 67210, Pakistan
| | - Kai Guo
- Department of Pathology, Suzhou Science and Technology Town Hospital, Suzhou, 215153, China
| | - Yasmeen Shakir
- Department of Biochemistry, Hazara University, Mansehra, 21300, Pakistan
| | - Jia Zang
- Department of Laboratory Medicine, Wuxi Maternal and Child Health Care Hospital, Womens Hospital of Jiangnan University, Jiangsu, 214002, China.
| | - Jue Lyu
- Department of Laboratory Medicine, Wuxi No.2 Peoples Hospital, Jiangnan University Medical Center, Jiangsu, 214002, China.
| |
Collapse
|
28
|
Dai C, Ge W, Li T, Kong X, Tian M, Niu J. Single Fluorescent Probe for Multiple Tasks: Illuminating Lipid Droplets and Lysosomes in Dual Channels and Distinguishing Autophagy and Apoptosis. Anal Chem 2024; 96:4013-4022. [PMID: 38426215 DOI: 10.1021/acs.analchem.3c03653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Lipid droplets (LDs) and lysosomes play key roles in autophagy and cell apoptosis, and the discriminative visualization of the two organelles and simultaneously of autophagy and apoptosis is very helpful to understand their internal relationships. However, fluorescent probes that can concurrently achieve these tasks are not available currently. Herein, we delicately fabricate a robust probe CAQ2 for multiple tasks: illumination of LDs and lysosomes in dual emission colors as well as discriminative visualization of cell apoptosis and autophagy. The probe exhibited both lipophilic and basic properties and displayed different emission colors in neutral and protonated forms; thus, LDs and lysosomes emitted blue and red fluorescence colors, respectively. Because of the lysosomal acidification during autophagy, CAQ2 detected autophagy with evidently enhanced red emission. Because of the lysosomal alkalization during apoptosis, CAQ2 imaged apoptosis with a drastically decreased red fluorescence intensity. With the robust probe, the autophagy under starvation and lipidless conditions was visualized, and the apoptosis induced by H2O2, ultraviolet (UV) irradiation, and rotenone treatment was successfully observed. The efficient detoxification of Na2S against rotenone treatment was successfully revealed.
Collapse
Affiliation(s)
- Chun Dai
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, Shandong 250022, China
| | - Wei Ge
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, Shandong 250022, China
| | - Tianyu Li
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, Shandong 250022, China
| | - Xiuqi Kong
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, Shandong 250022, China
| | - Minggang Tian
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, Shandong 250022, China
| | - Jie Niu
- Department of Otolaryngology-Head and Neck Surgery, Shandong Institute of Otorhinolaryngology, Shandong Provincial ENT Hospital, Shandong University, Jinan 250022, China
| |
Collapse
|
29
|
Zhan G, Wei T, Xie H, Xie X, Hu J, Tang H, Cheng Y, Liu H, Li S, Yang G. Autophagy inhibition mediated by trillin promotes apoptosis in hepatocellular carcinoma cells via activation of mTOR/STAT3 signaling. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:1575-1587. [PMID: 37676495 DOI: 10.1007/s00210-023-02700-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 08/29/2023] [Indexed: 09/08/2023]
Abstract
Apoptosis and autophagy have been shown to act cooperatively and antagonistically in self-elimination process. On the one side, apoptosis and autophagy can act as partners to induce cell death in a coordinated or cooperative manner; on the flip side, autophagy acts as an antagonist to block apoptotic cell death by promoting cell survival. Our previous research indicated that trillin could induce apoptosis of PLC/PRF/5 cells, but the effects of trillin on autophagy as well as its functional relationship to apoptosis have not been elucidated. Here, the running study aims to investigate the function and molecular mechanism of trillin on autophagy with hepatocellular carcinoma (HCC) cells. The objective of this study is to investigate the molecular mechanism of trillin on autophagy in HCC cells. Protein levels of autophagy markers beclin1, LC3B, and p62 were detected by western blotting. 6-Hydroxyflavone and stattic were used to test the role of trillin regulation of autophagy via serine threonine kinase (AKT)/extracellular-regulated protein kinases (ERK) 1/2/mammalian target of rapamycin (mTOR)/signal transducer and activator of transcription 3 (STAT3) signaling pathway. Flow cytometry was used to detect caspase 3 activity and apoptosis in PLC/PRF/5 cells treated with trillin for 24 h with or without rapamycin, stattic, and 6-hydroxyflavone. The protein level of autophagy marker beclin1 was decreased, whilst the protein level of p62 was significantly increased by trillin treatment, indicating trillin treatment led to inhibition of autophagy in HCC cells. Trillin treatment could reduce the protein levels of p-AKT and p-ERK1/2, but enhance the protein levels of mTOR and p-mTOR, suggesting that trillin could inhibit AKT/ERK rather than mTOR. The AKT/ERK activator 6-hydroxyflavone could reverse the loss of AKT and ERK1/2 phosphorylation induced by trillin, implying that trillin impairs autophagy through activated mTOR rather than AKT/ERK. STAT3 and p-STAT3 were significantly upregulated by the trillin treatment with an increase in dose from 0 to 50 μM, suggesting that autophagy inhibition is mediated by trillin via activation of STAT3 signaling. The STAT3 inhibitor stattic significantly reversed the increased STAT3 phosphorylation at tyrosine 705 induced by trillin. The mTOR signaling inhibitor rapamycin reversed the trillin-induced mTOR phosphorylation enhancement but exerted no effects on total mTOR levels, suggesting trillin treatment led to inhibition of autophagy in HCC cells through activating mTOR/STAT3 pathway. Furthermore, caspase 3 activities and the total rate of apoptosis were increased by trillin treatment, which was reversed by rapamycin, stattic, and 6-hydroxyflavone, proving that trillin promotes apoptosis via activation of mTOR/STAT3 signaling. Trillin induced autophagy inhibition and promoted apoptosis in PLC/PRF/5 cells via the activation of mTOR/STAT3 signaling. Trillin has the potential to be a viable therapeutic option for HCC treatment.
Collapse
Affiliation(s)
- Guangjie Zhan
- Hubei Provincial Key Laboratory of Occurrence and Intervention of Rheumatic Diseases, (Hubei Minzu University), Medical School of Hubei MinZu University, Enshi, Hubei, 445000, People's Republic of China
| | - Tiantian Wei
- Suizhou Hospital, Hubei University of Medicine, 441300, Suizhou, Hubei, People's Republic of China
| | - Huichen Xie
- Hubei Provincial Key Laboratory of Occurrence and Intervention of Rheumatic Diseases, (Hubei Minzu University), Medical School of Hubei MinZu University, Enshi, Hubei, 445000, People's Republic of China
| | - Xiaoming Xie
- Suizhou Hospital, Hubei University of Medicine, 441300, Suizhou, Hubei, People's Republic of China
| | - Jun Hu
- Department of Medical Genetics, School of Basic Medical Science, Demonstration Center for Experimental Basic Medicine Education, Wuhan University, 430071, Wuhan, Hubei, People's Republic of China
| | - Hao Tang
- Department of Medical Genetics, School of Basic Medical Science, Demonstration Center for Experimental Basic Medicine Education, Wuhan University, 430071, Wuhan, Hubei, People's Republic of China
| | - Yating Cheng
- Department of Medical Genetics, School of Basic Medical Science, Demonstration Center for Experimental Basic Medicine Education, Wuhan University, 430071, Wuhan, Hubei, People's Republic of China
| | - Huaifeng Liu
- School of Life Science, Bengbu Medical College, Bengbu, Anhui, 233030, People's Republic of China
| | - Shujing Li
- School of Life Science, Bengbu Medical College, Bengbu, Anhui, 233030, People's Republic of China.
| | - Guohua Yang
- Department of Medical Genetics, School of Basic Medical Science, Demonstration Center for Experimental Basic Medicine Education, Wuhan University, 430071, Wuhan, Hubei, People's Republic of China.
| |
Collapse
|
30
|
Naicker D, Rhoda C, Sunda F, Arowolo A. Unravelling the Intricate Roles of FAM111A and FAM111B: From Protease-Mediated Cellular Processes to Disease Implications. Int J Mol Sci 2024; 25:2845. [PMID: 38474092 DOI: 10.3390/ijms25052845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/27/2024] [Accepted: 02/28/2024] [Indexed: 03/14/2024] Open
Abstract
Proteases are critical enzymes in cellular processes which regulate intricate events like cellular proliferation, differentiation and apoptosis. This review highlights the multifaceted roles of the serine proteases FAM111A and FAM111B, exploring their impact on cellular functions and diseases. FAM111A is implicated in DNA replication and replication fork protection, thereby maintaining genome integrity. Additionally, FAM111A functions as an antiviral factor against DNA and RNA viruses. Apart from being involved in DNA repair, FAM111B, a paralog of FAM111A, participates in cell cycle regulation and apoptosis. It influences the apoptotic pathway by upregulating anti-apoptotic proteins and modulating cell cycle-related proteins. Furthermore, FAM111B's association with nucleoporins suggests its involvement in nucleo-cytoplasmic trafficking and plays a role in maintaining normal telomere length. FAM111A and FAM111B also exhibit some interconnectedness and functional similarity despite their distinct roles in cellular processes and associated diseases resulting from their dysfunction. FAM111A and FAM111B dysregulation are linked to genetic disorders: Kenny-Caffey Syndrome type 2 and Gracile Bone Dysplasia for FAM111A and POIKTMP, respectively, and cancers. Therefore, the dysregulation of these proteases in diseases emphasizes their potential as diagnostic markers and therapeutic targets. Future research is essential to unravel the intricate mechanisms governing FAM111A and FAM111B and explore their therapeutic implications comprehensively.
Collapse
Affiliation(s)
- Danielle Naicker
- Division of Medical Biochemistry, Department of Integrative Biomedical Sciences, University of Cape Town, Cape Town 7925, South Africa
| | - Cenza Rhoda
- Hair and Skin Research Unit, Division of Dermatology, Department of Medicine, University of Cape Town, Cape Town 7925, South Africa
| | - Falone Sunda
- Hair and Skin Research Unit, Division of Dermatology, Department of Medicine, University of Cape Town, Cape Town 7925, South Africa
| | - Afolake Arowolo
- Hair and Skin Research Unit, Division of Dermatology, Department of Medicine, University of Cape Town, Cape Town 7925, South Africa
- Biomedical Research and Innovation Platform, South African Medical Research Council, Cape Town 7500, South Africa
| |
Collapse
|
31
|
Kim SM, Kim YH, Han GU, Kim SG, Bhang DH, Kim BG, Moon SH, Shin SH, Ryu BY. Diisobutyl phthalate (DiBP)-induced male germ cell toxicity and its alleviation approach. Food Chem Toxicol 2024; 184:114387. [PMID: 38123059 DOI: 10.1016/j.fct.2023.114387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/22/2023] [Accepted: 12/12/2023] [Indexed: 12/23/2023]
Abstract
Diisobutyl phthalate (DiBP) is a commonly used plasticizer in manufacturing consumer and industrial products to improve flexibility and durability. Despite of the numerous studies, however, the direct mechanism underlying the male reproductive damage of DiBP is poorly understood. In this study, we investigated the male germ cell toxicity of DiBP using GC-1 spermatogonia (spg) cells. Our results indicated that DiBP exposure causes oxidative stress and apoptosis in GC-1 spg cells. In addition, DiBP-derived autophagy activation and down-regulation of phosphoinositide 3-kinase (PI3K)-AKT and extracellular signal-regulated kinase (ERK) pathways further inhibited GC-1 spg cell proliferation, indicating that DiBP can instigate male germ cell toxicity by targeting several pathways. Importantly, a combined treatment of parthenolide, N-acetylcysteine, and 3-methyladenine significantly reduced DiBP-induced male germ cell toxicity and restored proliferation. Taken together, the results of this study can provide valuable information to the existing literature by enhancing the understanding of single phthalate DiBP-derived male germ cell toxicity and the therapeutic interventions that can mitigate DiBP damage.
Collapse
Affiliation(s)
- Seok-Man Kim
- Department of Animal Science and Technology, Chung-Ang University, Anseong-Si, Gyeonggi-Do, 17546, Republic of Korea.
| | - Yong-Hee Kim
- AttisLab Inc., Anyang, Gyeonggi-Do, 14059, Republic of Korea.
| | - Gil Un Han
- Department of Animal Science and Technology, Chung-Ang University, Anseong-Si, Gyeonggi-Do, 17546, Republic of Korea.
| | - Seul Gi Kim
- Department of Animal Science and Technology, Chung-Ang University, Anseong-Si, Gyeonggi-Do, 17546, Republic of Korea.
| | - Dong Ha Bhang
- AttisLab Inc., Anyang, Gyeonggi-Do, 14059, Republic of Korea.
| | - Byung-Gak Kim
- Biattic Inc., Anyang, Gyeonggi-Do, 14059, Republic of Korea.
| | - Sung-Hwan Moon
- Department of Animal Science and Technology, Chung-Ang University, Anseong-Si, Gyeonggi-Do, 17546, Republic of Korea.
| | - Seung Hee Shin
- Department of Animal Science and Technology, Chung-Ang University, Anseong-Si, Gyeonggi-Do, 17546, Republic of Korea.
| | - Buom-Yong Ryu
- Department of Animal Science and Technology, Chung-Ang University, Anseong-Si, Gyeonggi-Do, 17546, Republic of Korea.
| |
Collapse
|
32
|
Wang S, Pang Z, Fan H, Tong Y. Advances in anti-EV-A71 drug development research. J Adv Res 2024; 56:137-156. [PMID: 37001813 PMCID: PMC10834817 DOI: 10.1016/j.jare.2023.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 03/05/2023] [Accepted: 03/21/2023] [Indexed: 03/31/2023] Open
Abstract
BACKGROUND Enterovirus A71 (EV-A71) is capable of causing hand, foot and mouth disease (HFMD), which may lead to neurological sequelae and even death. As EV-A71 is resistant to environmental changes and mutates easily, there is still a lack of effective treatments or globally available vaccines. AIM OF REVIEW For more than 50 years since the HFMD epidemic, related drug research has been conducted. Progress in this area can promote the further application of existing potential drugs and develop more efficient and safe antiviral drugs, and provide useful reference for protecting the younger generation and maintaining public health security. KEY SCIENTIFIC CONCEPTS OF REVIEW At present, researchers have identified hundreds of EV-A71 inhibitors based on screening repurposed drugs, targeted structural design, and rational modification of previously effective drugs as the main development strategies. This review systematically introduces the current potential drugs to inhibit EV-A71 infection, including viral inhibitors targeting key sites such as the viral capsid, RNA-dependent RNA polymerase (RdRp), 2C protein, internal ribosome entry site (IRES), 3C proteinase (3Cpro), and 2A proteinase (2Apro), starting from each stage of the viral life cycle. Meanwhile, the progress of host-targeting antiviral drugs and their development are summarized in terms of regulating host immunity, inhibiting autophagy or apoptosis, and regulating the cellular redox environment. In addition, the current clinical methods for the prevention and treatment of HFMD are summarized and discussed with the aim of providing support and recommendations for the treatment of enterovirus infections including EV-A71.
Collapse
Affiliation(s)
- Shuqi Wang
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Zehan Pang
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Huahao Fan
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China.
| | - Yigang Tong
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China; Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, China.
| |
Collapse
|
33
|
De Paoli SH, Patel M, Elhelu OK, Tarandovskiy ID, Tegegn TZ, Simak J. Structural analysis of platelet fragments and extracellular vesicles produced by apheresis platelets during storage. Blood Adv 2024; 8:207-218. [PMID: 37967384 PMCID: PMC10787271 DOI: 10.1182/bloodadvances.2023011325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 11/01/2023] [Accepted: 11/04/2023] [Indexed: 11/17/2023] Open
Abstract
ABSTRACT Platelets (PLTs) for transfusion can be stored for up to 7 days at room temperature (RT). The quality of apheresis PLTs decreases over storage time, which affects PLT hemostatic functions. Here, we characterized the membranous particles produced by PLT storage lesion (PSLPs), including degranulated PLTs, PLT ghosts, membrane fragments, and extracellular membrane vesicles (PEVs). The PSLPs generated in apheresis platelet units were analyzed on days 1, 3, 5, and 7 of RT storage. A differential centrifugation and a sucrose density gradient were used to separate PSLP populations. PSLPs were characterized using scanning and transmission electron microscopy (EM), flow cytometry (FC), and nanoparticle tracking analysis (NTA). PSLPs have different morphologies and a broad size distribution; FC and NTA showed that the concentration of small and large PSLPs increases with storage time. The density gradient separated 3 PSLP populations: (1) degranulated PLTs, PLT ghosts, and large PLT fragments; (2) PEVs originated from PLT activation and organelles released by necrotic PLTs; and (3) PEV ghosts. Most PSLPs expressed phosphatidyl serine and induced thrombin generation in the plasma. PSLPs contained extracellular mitochondria and some had the autophagosome marker LC3. PSLPs encompass degranulated PLTs, PLT ghosts, large PLT fragments, large and dense PEVs, and low-density PEV ghosts. The activation-related PSLPs are released, particularly during early stage of storage (days 1-3), and the release of apoptosis- and necrosis-related PSLPs prevails after that. No elevation of LC3- and TOM20-positive PSLPs indicates that the increase of extracellular mitochondria during later-stage storage is not associated with PLT mitophagy.
Collapse
Affiliation(s)
- Silvia H De Paoli
- Laboratory of Cellular Hematology, Office of Blood Research and Review, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, MD
| | - Mehulkumar Patel
- Laboratory of Cellular Hematology, Office of Blood Research and Review, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, MD
- Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, US Food and Drug Administration, Silver Spring, MD
| | - Oumsalama K Elhelu
- Laboratory of Cellular Hematology, Office of Blood Research and Review, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, MD
| | - Ivan D Tarandovskiy
- Laboratory of Cellular Hematology, Office of Blood Research and Review, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, MD
- Hemostasis Branch, Office of Therapeutic Products, Center of Biologics Evaluations and Research, US Food and Drug Administration, Silver Spring, MD
| | - Tseday Z Tegegn
- Laboratory of Cellular Hematology, Office of Blood Research and Review, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, MD
| | - Jan Simak
- Laboratory of Cellular Hematology, Office of Blood Research and Review, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, MD
| |
Collapse
|
34
|
Yu H, Ning N, He F, Xu J, Zhao H, Duan S, Zhao Y. Targeted Delivery of Geraniol via Hyaluronic Acid-Conjugation Enhances Its Anti-Tumor Activity Against Prostate Cancer. Int J Nanomedicine 2024; 19:155-169. [PMID: 38204602 PMCID: PMC10778230 DOI: 10.2147/ijn.s444815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 12/22/2023] [Indexed: 01/12/2024] Open
Abstract
Background Targeted delivery systems have been developed to improve cancer treatment by reducing side effects and enhancing drug efficacy. Geraniol, a natural product, has demonstrated promising anti-cancer effects in various cancer types, including prostate cancer, which is the most commonly diagnosed cancer in men. Hyaluronic acid (HA), a natural carrier targeting CD44-positive prostate cancer cells, can be utilized in a targeted delivery system. Purpose This study investigated the efficacy of a conjugate of HA and geraniol linked via a disulfide bond linker (HA-SS-Geraniol) in prostate cancer. Materials and Methods The cytotoxicity of HA-SS-Geraniol was evaluated on human PC-3 prostate cancer cells. Flow cytometry was used to assess its effects on mitochondrial membrane potential, apoptosis, and cell cycle arrest. Additionally, proteomic analysis was conducted to explore the underlying mechanism of action induced by HA-SS-Geraniol treatment. A subcutaneous xenograft tumor model was established in nude mice to evaluate the toxicity and efficacy of HA-SS-Geraniol in vivo. Results The results demonstrated that HA-SS-Geraniol exhibited potent cytotoxicity against PC-3 prostate cancer cells by inducing mitochondrial membrane potential loss and apoptosis in vitro. The proteomic analysis further supported the hypothesis that HA-SS-Geraniol induces cell death through mitochondria-mediated apoptosis, as evidenced by differential protein expression. The in vivo mouse model confirmed the safety of HA-SS-Geraniol and its ability to inhibit tumor growth. Conclusion HA-SS-Geraniol holds promise as a biologically safe and potentially effective therapeutic agent for prostate cancer treatment. Its targeted delivery system utilizing HA as a carrier shows potential for improving the efficacy of geraniol in cancer therapy.
Collapse
Affiliation(s)
- Han Yu
- College of Science, Mathematics and Technology, Wenzhou-Kean University, Wenzhou, Zhejiang Province, 325060, People’s Republic of China
- Wenzhou Municipal Key Laboratory for Applied Biomedical and Biopharmaceutical Informatics, Wenzhou-Kean University, Wenzhou, Zhejiang, 325060, People’s Republic of China
- Zhejiang Bioinformatics International Science and Technology Cooperation Center, Wenzhou-Kean University, Wenzhou, Zhejiang, 325060, People’s Republic of China
- Dorothy and George Hennings College of Science, Mathematics and Technology, Kean University, Union, NJ, 07083, USA
| | - Na Ning
- College of Science, Mathematics and Technology, Wenzhou-Kean University, Wenzhou, Zhejiang Province, 325060, People’s Republic of China
- Wenzhou Municipal Key Laboratory for Applied Biomedical and Biopharmaceutical Informatics, Wenzhou-Kean University, Wenzhou, Zhejiang, 325060, People’s Republic of China
- Zhejiang Bioinformatics International Science and Technology Cooperation Center, Wenzhou-Kean University, Wenzhou, Zhejiang, 325060, People’s Republic of China
| | - Fujin He
- School of Pharmacy, Henan University, Kaifeng, Henan, 475004, People’s Republic of China
| | - Jiao Xu
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325001, People’s Republic of China
| | - Han Zhao
- School of Pharmacy, Henan University, Kaifeng, Henan, 475004, People’s Republic of China
| | - Shaofeng Duan
- School of Pharmacy, Henan University, Kaifeng, Henan, 475004, People’s Republic of China
- The First Affiliated Hospital of Henan University, Kaifeng, Henan, 475004, People’s Republic of China
| | - Yunqi Zhao
- College of Science, Mathematics and Technology, Wenzhou-Kean University, Wenzhou, Zhejiang Province, 325060, People’s Republic of China
- Wenzhou Municipal Key Laboratory for Applied Biomedical and Biopharmaceutical Informatics, Wenzhou-Kean University, Wenzhou, Zhejiang, 325060, People’s Republic of China
- Zhejiang Bioinformatics International Science and Technology Cooperation Center, Wenzhou-Kean University, Wenzhou, Zhejiang, 325060, People’s Republic of China
- Dorothy and George Hennings College of Science, Mathematics and Technology, Kean University, Union, NJ, 07083, USA
| |
Collapse
|
35
|
Ostróżka A, Chajec Ł, Wilczek G, Student S, Kocot K, Homa J, Rost-Roszkowska M. Toxic effects of nickel on tolerance and regeneration in the freshwater shrimp
Neocaridina davidi. THE EUROPEAN ZOOLOGICAL JOURNAL 2024; 91:180-205. [DOI: 10.1080/24750263.2024.2310041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 01/19/2024] [Indexed: 01/04/2025] Open
Affiliation(s)
- A. Ostróżka
- Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, Katowice, Poland
| | - Ł. Chajec
- Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, Katowice, Poland
| | - G. Wilczek
- Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, Katowice, Poland
| | - S. Student
- Faculty of Automatic Control, Electronics and Computer Science, Silesian University of Technology, Gliwice, Poland
- Biotechnology Center, Silesian University of Technology, Gliwice, Poland
| | - K. Kocot
- Institute of Chemistry, University of Silesia in Katowice, Katowice, Poland
| | - J. Homa
- Institute of Zoology and Biomedical Research, Department of Evolutionary Immunology, Jagiellonian University, Krakow, Poland
| | - M. Rost-Roszkowska
- Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, Katowice, Poland
| |
Collapse
|
36
|
van Driel M, Muñoz A, van Leeuwen JP. Overview of vitamin D actions in cancer. FELDMAN AND PIKE'S VITAMIN D 2024:679-718. [DOI: 10.1016/b978-0-323-91338-6.00034-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
37
|
Pour PM, Nouri Z, Ghasemi D, Sajadimajd S, Farzaei MH. Cytotoxic Impact of Naringenin-Loaded Solid Lipid Nanoparticles on RIN5F Pancreatic β Cells via Autophagy Blockage. RECENT ADVANCES IN DRUG DELIVERY AND FORMULATION 2024; 18:304-314. [PMID: 39356101 DOI: 10.2174/0126673878297658240804192222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 06/26/2024] [Accepted: 07/02/2024] [Indexed: 10/03/2024]
Abstract
BACKGROUND Autophagy plays a crucial role in modulating the proliferation of cancer diseases. However, the application of Naringenin (Nar), a compound with potential benefits against these diseases, has been limited due to its poor solubility and bioavailability. OBJECTIVE This study aimed to develop solid lipid nanoparticles (Nar-SLNs) loaded with Nar to enhance their therapeutic impact. METHODS In vitro experiments using Rin-5F cells exposed to Nar and Nar-SLNs were carried out to investigate the protective effects of Nar and its nanoformulation against the pancreatic cancer cell line of Rin-5F. RESULTS Treatment with Nar and Nar-SLN led to an increase in autophagic markers (Akt, LC3, Beclin1, and ATG genes) and a decrease in the level of miR-21. Both Nar and Nar-SLN treatments inhibited cell proliferation and reduced the expression of autophagic markers. Notably, Nar-SLNs exhibited greater efficacy compared to free Nar. CONCLUSION These findings suggest that SLNs effectively enhance the cytotoxic impact of Nar, making Nar-SLNs a promising candidate for suppressing or preventing Rin-5F cell growth.
Collapse
Affiliation(s)
- Pardis Mohammadi Pour
- Department of Pharmacognosy, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Zeinab Nouri
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Dariush Ghasemi
- Kimia Andisheh Teb Medical and Molecular Laboratory Research Co., Tehran, Iran
| | - Soraya Sajadimajd
- Department of Biology, School of Sciences, Razi University, Kermanshah, Iran
| | - Mohammad Hosein Farzaei
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
38
|
Khalil MI, Ali MM, Holail J, Houssein M. Growth or death? Control of cell destiny by mTOR and autophagy pathways. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2023; 185:39-55. [PMID: 37944568 DOI: 10.1016/j.pbiomolbio.2023.10.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/08/2023] [Accepted: 10/23/2023] [Indexed: 11/12/2023]
Abstract
One of the central regulators of cell growth, proliferation, and metabolism is the mammalian target of rapamycin, mTOR, which exists in two structurally and functionally different complexes: mTORC1 and mTORC2; unlike m TORC2, mTORC1 is activated in response to the sufficiency of nutrients and is inhibited by rapamycin. mTOR complexes have critical roles not only in protein synthesis, gene transcription regulation, proliferation, tumor metabolism, but also in the regulation of the programmed cell death mechanisms such as autophagy and apoptosis. Autophagy is a conserved catabolic mechanism in which damaged molecules are recycled in response to nutrient starvation. Emerging evidence indicates that the mTOR signaling pathway is frequently activated in tumors. In addition, dysregulation of autophagy was associated with the development of a variety of human diseases, such as cancer and aging. Since mTOR can inhibit the induction of the autophagic process from the early stages of autophagosome formation to the late stage of lysosome degradation, the use of mTOR inhibitors to regulate autophagy could be considered a potential therapeutic option. The present review sheds light on the mTOR and autophagy signaling pathways and the mechanisms of regulation of mTOR-autophagy.
Collapse
Affiliation(s)
- Mahmoud I Khalil
- Department of Biological Sciences, Faculty of Science, Beirut Arab University, Beirut, 11072809, Lebanon; Molecular Biology Unit, Department of Zoology, Faculty of Science, Alexandria University, Alexandria, 21511, Egypt.
| | - Mohamad M Ali
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, SE-751 23, Uppsala, Sweden.
| | - Jasmine Holail
- Department of Biochemistry and Molecular Medicine, College of Medicine, Alfaisal University, Riyadh, Saudi Arabia; Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom.
| | - Marwa Houssein
- Department of Biological Sciences, Faculty of Science, Beirut Arab University, Beirut, 11072809, Lebanon.
| |
Collapse
|
39
|
Alafifi SA, Wahdan SA, Elhemiely AA, Elsherbiny DA, Azab SS. Modulatory effect of liraglutide on doxorubicin-induced testicular toxicity and behavioral abnormalities in rats: role of testicular-brain axis. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023; 396:2987-3005. [PMID: 37162541 PMCID: PMC10567954 DOI: 10.1007/s00210-023-02504-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 04/17/2023] [Indexed: 05/11/2023]
Abstract
Doxorubicin (DOX) is a powerful chemotherapeutic agent used in many types of malignancies. However, its use results in testicular damage. DOX-induced testicular damage results in low level of serum testosterone which may affect cognitive function. The current study investigated the protective effect of liraglutide (50, 100 μg/kg/day) in testicular toxicity and the consequent cognitive impairment induced by DOX. DOX treatment reduced sperm count (62%) and sperm motility (53%) and increased sperm abnormalities (786%), as compared to control group. DOX also reduced serum testosterone level (85%) and the gene expression of testicular 3β-HSD (68%) and 17β-HSD (82%). Moreover, it increased testicular oxidative stress (MDA and GSH) by 103% and 59%, respectively, apoptotic (caspase-3 and P53) by 996% and 480%, respectively. In addition, DOX resulted in increasing autophagic markers including PAKT, mTOR, and LC3 by 48%, 56%, and 640%, respectively. Additionally, rats' behavior in Y-maze (60%) and passive avoidance task (85%) was disrupted. The histopathological results of testis and brain supported the biochemical findings. Treatment with liraglutide (100 μg/kg/day) significantly abrogated DOX-induced testicular damage by restoring testicular architecture, increasing sperm count (136%) and sperm motility (106%), and decreasing sperm abnormalities (84%) as compared to DOX group. Furthermore, liraglutide increased serum testosterone (500%) and steroidogenesis enzymes 3β-HSD (105%) and 17β-HSD (181%) along with suppressing oxidative stress (MDA and GSH) by 23% and 85%, respectively; apoptotic (caspase-3 and P53) by 59% and55%, respectively; and autophagic markers including PAKT, mTOR, and LC3 by 48%, 97%, and 60%, respectively. Moreover, it enhanced the memory functions in passive avoidance and Y-maze tests (132%). In conclusion, liraglutide is a putative agent for protection against DOX-induced testicular toxicity and cognitive impairment through its antioxidant, antiapoptotic, and antiautophagic effects.
Collapse
Affiliation(s)
- Shorouk A Alafifi
- Pharmacology & Toxicology Department, Faculty of Pharmacy, Ain Shams University, Cairo, 11566, Egypt
| | - Sara A Wahdan
- Pharmacology & Toxicology Department, Faculty of Pharmacy, Ain Shams University, Cairo, 11566, Egypt
| | | | - Doaa A Elsherbiny
- Pharmacology & Toxicology Department, Faculty of Pharmacy, Ain Shams University, Cairo, 11566, Egypt
| | - Samar S Azab
- Pharmacology & Toxicology Department, Faculty of Pharmacy, Ain Shams University, Cairo, 11566, Egypt.
| |
Collapse
|
40
|
Wang Z, Chen K, Zhang K, He K, Zhang D, Guo X, Huang T, Hu J, Zhou X, Nie S. Agrocybe cylindracea fucoglucogalactan induced lysosome-mediated apoptosis of colorectal cancer cell through H3K27ac-regulated cathepsin D. Carbohydr Polym 2023; 319:121208. [PMID: 37567726 DOI: 10.1016/j.carbpol.2023.121208] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 07/13/2023] [Accepted: 07/14/2023] [Indexed: 08/13/2023]
Abstract
Inducing lysosomal dysfunction is emerging as a promising means for cancer therapy. Agrocybe cylindracea fucoglucogalactan (ACP) is a bioactive ingredient with anti-tumor activity, while its mechanism remains obscure. Herein, we found that ACP visibly inhibited the proliferation of colorectal cancer cells, and the IC50 value on HCT-116 cells (HT29 cells) was 490 μg/mL (786.4 μg/mL) at 24 h. RNA-seq showed that ACP regulated mitochondria, lysosome and apoptosis-related pathways. Further experiments proved that ACP indeed promoted apoptosis and lysosomal dysfunction of HCT-116 cells. Moreover, ChIP-seq revealed that ACP increased histone-H3-lysine-27 acetylation (H3K27ac) on CTSD (cathepsin D) promoter in HCT-116 cells, thus facilitating the binding of transcription factor EB (TFEB), and resulted in ascension of CTSD expression. Additionally, ACP triggered mitochondrial-mediated apoptosis by decreasing mitochondrial membrane potential and increasing pro-apoptotic protein levels. Notably, Pepstatin A (CTSD inhibitor) availably alleviated ACP-induced apoptosis. Taken together, our results indicated that ACP induced lysosome-mitochondria mediated apoptosis via H3K27ac-regulated CTSD in HCT-116 cells. This study indicates that ACP has anti-cancer potential in the treatment of colorectal cancer.
Collapse
Affiliation(s)
- Ziwei Wang
- State Key Laboratory of Food Science and Technology, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Nanchang University, Nanchang 330047, China
| | - Kunying Chen
- State Key Laboratory of Food Science and Technology, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Nanchang University, Nanchang 330047, China
| | - Ke Zhang
- State Key Laboratory of Food Science and Technology, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Nanchang University, Nanchang 330047, China
| | - Kaihong He
- State Key Laboratory of Food Science and Technology, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Nanchang University, Nanchang 330047, China
| | - Duoduo Zhang
- State Key Laboratory of Food Science and Technology, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Nanchang University, Nanchang 330047, China
| | - Xiaohan Guo
- State Key Laboratory of Food Science and Technology, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Nanchang University, Nanchang 330047, China
| | - Tongwen Huang
- State Key Laboratory of Food Science and Technology, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Nanchang University, Nanchang 330047, China
| | - Jielun Hu
- State Key Laboratory of Food Science and Technology, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Nanchang University, Nanchang 330047, China
| | - Xingtao Zhou
- State Key Laboratory of Food Science and Technology, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Nanchang University, Nanchang 330047, China.
| | - Shaoping Nie
- State Key Laboratory of Food Science and Technology, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Nanchang University, Nanchang 330047, China.
| |
Collapse
|
41
|
Raoofi A, Omraninava M, Javan R, Maghsodi D, Rustamzadeh A, Nasiry D, Ghaemi A. Protective effects of epigallocatechin gallate in the mice induced by chronic scrotal hyperthermia. Tissue Cell 2023; 84:102165. [PMID: 37480630 DOI: 10.1016/j.tice.2023.102165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 07/07/2023] [Accepted: 07/11/2023] [Indexed: 07/24/2023]
Abstract
One of the most common complications of chronic scrotal hyperthermia (SHT) is a serious disorder in the male reproductive system. The most important factor in the occurrence of these disorders is oxidative stress. Currently, we investigated the effects of epigallocatechin gallate (EGCG), as a highly potent antioxidant, against cells and tissue disorders in mice affected by chronic SHT. Fifty-six male adult NMRI mice were allocated into seven equal groups. Except the non-treated (Control) group, six other groups were exposed to heat stress. Two treated groups including Preventive and Curative received oral administration of EGCG (50 mg/kg/day) starting immediately before heat exposure and fifteen consecutive days after the end of the heat exposure, respectively. For each treated group, two subgroups including positive control (Pre/Cur + PC groups) and vehicle (Pre/Cur + vehicle groups) were considered. At the end of the study, sperm characteristics, testosterone levels, stereological parameters, apoptosis, oxidant state, and molecular assessments were performed. We found that the sperm parameters, testosterone levels, the numerical density of spermatogonia, primary spermatocytes, spermatids, sertoli, leydig cells, and seminiferous tubules, biochemical factors (except MDA), and expression of c-kit gene were significantly higher in the Preventive and Curative groups, especially in Preventive ones, compared to other groups (P < 0.05). This is while expression of HSP72 and NF-κβ genes, MDA levels, as well as density of apoptotic cells considerably decreased in both EGCG-treated groups compared to other groups and it was more pronounced in Preventive ones (P < 0.05). Generally, EGCG attenuated cellular and molecular disorders induced by heat stress in the testis and it was more pronounced in Preventive status.
Collapse
Affiliation(s)
- Amir Raoofi
- Cellular and Molecular Research Center, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Melody Omraninava
- Health Reproductive Research Center, Islamic Azad University, Sari, Iran
| | - Roghayeh Javan
- Traditional and Complementary Medicine Research Center, Sabzevar University of Medical Science, Sabzevar, Iran
| | - Davood Maghsodi
- Student Research Committee, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Auob Rustamzadeh
- Department of Anatomical sciences, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Davood Nasiry
- Department of Paramedicine, Amol School of Paramedical Sciences, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Alireza Ghaemi
- Department of Basic Sciences and Nutrition, Health Sciences Research Center, Faculty of Public Health, Mazandaran University of Medical Sciences, Sari, Iran.
| |
Collapse
|
42
|
Yuan C, Ma Z, Xie J, Li W, Su L, Zhang G, Xu J, Wu Y, Zhang M, Liu W. The role of cell death in SARS-CoV-2 infection. Signal Transduct Target Ther 2023; 8:357. [PMID: 37726282 PMCID: PMC10509267 DOI: 10.1038/s41392-023-01580-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 06/09/2023] [Accepted: 07/31/2023] [Indexed: 09/21/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), showing high infectiousness, resulted in an ongoing pandemic termed coronavirus disease 2019 (COVID-19). COVID-19 cases often experience acute respiratory distress syndrome, which has caused millions of deaths. Apart from triggering inflammatory and immune responses, many viral infections can cause programmed cell death in infected cells. Cell death mechanisms have a vital role in maintaining a suitable environment to achieve normal cell functionality. Nonetheless, these processes are dysregulated, potentially contributing to disease pathogenesis. Over the past decades, multiple cell death pathways are becoming better understood. Growing evidence suggests that the induction of cell death by the coronavirus may significantly contributes to viral infection and pathogenicity. However, the interaction of SARS-CoV-2 with cell death, together with its associated mechanisms, is yet to be elucidated. In this review, we summarize the existing evidence concerning the molecular modulation of cell death in SARS-CoV-2 infection as well as viral-host interactions, which may shed new light on antiviral therapy against SARS-CoV-2.
Collapse
Affiliation(s)
- Cui Yuan
- College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| | - Zhenling Ma
- College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| | - Jiufeng Xie
- College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| | - Wenqing Li
- College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| | - Lijuan Su
- College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| | - Guozhi Zhang
- College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| | - Jun Xu
- College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| | - Yaru Wu
- College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| | - Min Zhang
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China
| | - Wei Liu
- College of Life Sciences, Henan Agricultural University, Zhengzhou, China.
| |
Collapse
|
43
|
Han EJ, Choi EY, Jeon SJ, Lee SW, Moon JM, Jung SH, Jung JY. Piperine Induces Apoptosis and Autophagy in HSC-3 Human Oral Cancer Cells by Regulating PI3K Signaling Pathway. Int J Mol Sci 2023; 24:13949. [PMID: 37762259 PMCID: PMC10530752 DOI: 10.3390/ijms241813949] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/08/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023] Open
Abstract
Currently, therapies for treating oral cancer have various side effects; therefore, research on treatment methods employing natural substances is being conducted. This study aimed to investigate piperine-induced apoptosis and autophagy in HSC-3 human oral cancer cells and their effects on tumor growth in vivo. A 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay demonstrated that piperine reduced the viability of HSC-3 cells and 4',6-diamidino-2-phenylindole staining, annexin-V/propidium iodide staining, and analysis of apoptosis-related protein expression confirmed that piperine induces apoptosis in HSC-3 cells. Additionally, piperine-induced autophagy was confirmed by the observation of increased acidic vesicular organelles and autophagy marker proteins, demonstrating that autophagy in HSC-3 cells induces apoptosis. Mechanistically, piperine induced apoptosis and autophagy by inhibiting the phosphatidylinositol-3-kinase (PI3K)/protein kinase B/mammalian target of rapamycin pathway in HSC-3 cells. We also confirmed that piperine inhibits oral cancer tumor growth in vivo via antitumor effects related to apoptosis and PI3K signaling pathway inhibition. Therefore, we suggest that piperine can be considered a natural anticancer agent for human oral cancer.
Collapse
Affiliation(s)
- Eun-Ji Han
- Laboratory Animal Science, Department of Companion, Kongju National University, Yesan-gun 32439, Republic of Korea; (E.-J.H.); (E.-Y.C.); (S.-J.J.); (S.-W.L.); (J.-M.M.); (S.-H.J.)
| | - Eun-Young Choi
- Laboratory Animal Science, Department of Companion, Kongju National University, Yesan-gun 32439, Republic of Korea; (E.-J.H.); (E.-Y.C.); (S.-J.J.); (S.-W.L.); (J.-M.M.); (S.-H.J.)
| | - Su-Ji Jeon
- Laboratory Animal Science, Department of Companion, Kongju National University, Yesan-gun 32439, Republic of Korea; (E.-J.H.); (E.-Y.C.); (S.-J.J.); (S.-W.L.); (J.-M.M.); (S.-H.J.)
| | - Sang-Woo Lee
- Laboratory Animal Science, Department of Companion, Kongju National University, Yesan-gun 32439, Republic of Korea; (E.-J.H.); (E.-Y.C.); (S.-J.J.); (S.-W.L.); (J.-M.M.); (S.-H.J.)
| | - Jun-Mo Moon
- Laboratory Animal Science, Department of Companion, Kongju National University, Yesan-gun 32439, Republic of Korea; (E.-J.H.); (E.-Y.C.); (S.-J.J.); (S.-W.L.); (J.-M.M.); (S.-H.J.)
| | - Soo-Hyun Jung
- Laboratory Animal Science, Department of Companion, Kongju National University, Yesan-gun 32439, Republic of Korea; (E.-J.H.); (E.-Y.C.); (S.-J.J.); (S.-W.L.); (J.-M.M.); (S.-H.J.)
| | - Ji-Youn Jung
- Laboratory Animal Science, Department of Companion, Kongju National University, Yesan-gun 32439, Republic of Korea; (E.-J.H.); (E.-Y.C.); (S.-J.J.); (S.-W.L.); (J.-M.M.); (S.-H.J.)
- Research Institute for Natural Products, Kongju National University, Yesan-gun 32439, Republic of Korea
| |
Collapse
|
44
|
Xiao H, Wei C, Liu H, Li Z, Zheng C, Luo J. Lentinan alleviates sciatic nerve injury by promoting autophagy to remove myelin fragments. Phytother Res 2023; 37:4042-4058. [PMID: 37165703 DOI: 10.1002/ptr.7862] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 04/20/2023] [Accepted: 04/21/2023] [Indexed: 05/12/2023]
Abstract
Lentinan, a natural drug with wide-ranging pharmacological activities, can regulate autophagy-the process through which Schwann cells (SCs) eliminate myelin fragments after peripheral nerve injury (PNI). However, the effect of lentinan after PNI and the role of accelerated myelin debris removal via autophagy in this process are unclear. This study examined the effect of lentinan on rat sciatic nerve repair following crush injury and the underlying mechanisms. After the successful establishment of the sciatic nerve compression injury model, group-specific treatments were performed. The treatment group received 20 mg/kg lentinan via intraperitoneal injection, while the model group was treated with normal saline. The recovery in each group was then evaluated. Further, a rat SC line (RSC96) was cultured in medium with/without lentinan after supplementation with homogenous myelin fractions to evaluate the removal of myelin particles. Our results showed that lentinan promotes autophagic flux in vivo via the AMPK/mTOR signaling pathway, accelerates the clearance of myelin debris by SCs, and inhibits neuronal apoptosis, thereby promoting neurological recovery. Similarly, in vitro experiments showed that lentinan promotes the phagocytosis of myelin debris by SCs. In conclusion, our results suggest that lentinan primarily promotes nerve regeneration by accelerating the autophagic clearance of myelin debris in SCs, and this process is likely regulated by the AMPK/mTOR signaling pathway. Therefore, this study provides compelling evidence that lentinan may be a cost-effective and natural treatment agent for PNI.
Collapse
Affiliation(s)
- Haili Xiao
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Chao Wei
- Department of Hepatobiliary surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Huiying Liu
- Institute of Translational Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Zhiqiang Li
- Department of Orthopedics, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Cihua Zheng
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jun Luo
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
45
|
Yu H, Hao Z, Liu X, Wei Z, Tan R, Liu X, Chen Q, Chen Y, Zhou H, Liu Y, Fu Z. Autophagy blockage and lysosomal dysfunction are involved in diallyl sulfide-induced inhibition of malignant growth in hepatocellular carcinoma cells. ENVIRONMENTAL TOXICOLOGY 2023; 38:2100-2110. [PMID: 37209385 DOI: 10.1002/tox.23834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 04/23/2023] [Accepted: 05/01/2023] [Indexed: 05/22/2023]
Abstract
Diallyl sulfide (DAS), as a major component of garlic extracts, has been shown to inhibit growth of hepatocellular carcinoma cells (HCC), but the underlying mechanism is still elusive. In this study, we aimed to explore the involvement of autophagy in DAS-induced growth inhibition of HepG2 and Huh7 hepatocellular carcinoma cells. We studied growth of DAS-treated HepG2 and Huh7 cells using the MTS and clonogenic assays. Autophagic flux was examined by immunofluorescence and confocal microscopy. The expression levels of autophagy-related proteins AMPK, mTOR, p62, LC3-II, LAMP1, and cathepsin D in the HepG2 and Huh7 cells treated with DAS as well as the tumors formed by HepG2 cells in the nude mice in the presence or absence of DAS were examined using western blotting and immunohistochemistry analysis. We found that DAS treatment induced activation of AMPK/mTOR, and accumulation of LC3-II and p62 both in vivo and in vitro. DAS inhibited autophagic flux through blocking the fusion of autophagosomes with lysosomes. Furthermore, DAS induced an increase in lysosomal pH and inhibition of Cathepsin D maturation. Co-treatment with an autophagy inhibitor (Chloroquine, CQ) further enhanced the growth inhibitory activity of DAS in HCC cells. Thus, our findings indicate that autophagy is involved in DAS-mediated growth inhibition of HCC cells both in vitro and in vivo.
Collapse
Affiliation(s)
- Haiyan Yu
- Department of Pathology and Pathophysiology, School of Medicine, Jianghan University, Wuhan, People's Republic of China
| | - Zhiwei Hao
- Department of Pathology and Pathophysiology, School of Medicine, Jianghan University, Wuhan, People's Republic of China
| | - Xuemin Liu
- Department of Pathology and Pathophysiology, School of Medicine, Jianghan University, Wuhan, People's Republic of China
| | - Zhixuan Wei
- Department of Pathology and Pathophysiology, School of Medicine, Jianghan University, Wuhan, People's Republic of China
| | - Renming Tan
- Department of Pathology and Pathophysiology, School of Medicine, Jianghan University, Wuhan, People's Republic of China
| | - Xiaotian Liu
- Department of Pathology and Pathophysiology, School of Medicine, Jianghan University, Wuhan, People's Republic of China
| | - Qiongxia Chen
- Department of Pathology and Pathophysiology, School of Medicine, Jianghan University, Wuhan, People's Republic of China
| | - Ying Chen
- Department of Pathology and Pathophysiology, School of Medicine, Jianghan University, Wuhan, People's Republic of China
| | - Hongyan Zhou
- Department of Pathology and Pathophysiology, School of Medicine, Jianghan University, Wuhan, People's Republic of China
| | - Yuchen Liu
- Cancer Institute, School of Medicine, Jianghan University, Wuhan, People's Republic of China
| | - Zhengqi Fu
- Department of Pathology and Pathophysiology, School of Medicine, Jianghan University, Wuhan, People's Republic of China
- Cancer Institute, School of Medicine, Jianghan University, Wuhan, People's Republic of China
| |
Collapse
|
46
|
Ye X, Chen L. Protective role of autophagy in triptolide-induced apoptosis of TM3 Leydig cells. J Transl Int Med 2023; 11:265-274. [PMID: 37662886 PMCID: PMC10474888 DOI: 10.2478/jtim-2021-0051] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Background and Objectives Triptolide (TP) is known to impair testicular development and spermatogenesis in mammals, but the mechanism of the side effects still needs to be investigated. The aim of the research is to confirm whether TP can cause autophagy in TM3 Leydig cells and the potential molecular pathway in vitro. Methods TM3 Leydig cells are used to investigate the molecular pathway through Western blot, detection of apoptosis, transmission electron microscopy for autophagosomes and so on. Results The data show that TP treatment resulted in the decreasing of the viability of TM3 cells due to the increased apoptosis. Treated with TP, the formation of autophagosomes, the decrease in P62, and the increase in the conversion of LC3-I to LC3-II suggested the induction of autophagy. The induction of autophagy has accompanied the activation of the mTOR/P70S6K signal pathway. The viability of the TM3 cells was further inhibited when they were co-treated with autophagy inhibitor, chloroquine (CQ). Conclusion All these data suggest that autophagy plays a very important role in antagonizing TM3 cell apoptosis during the TP exposure.
Collapse
Affiliation(s)
- Xiaoyun Ye
- Medical Center of Reproductive and Genetics, Peking University First Hospital, Beijing100034, China
| | - Liang Chen
- Medical Center of Reproductive and Genetics, Peking University First Hospital, Beijing100034, China
| |
Collapse
|
47
|
Shen S, Shao Y, Li C. Different types of cell death and their shift in shaping disease. Cell Death Discov 2023; 9:284. [PMID: 37542066 PMCID: PMC10403589 DOI: 10.1038/s41420-023-01581-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 07/16/2023] [Accepted: 07/26/2023] [Indexed: 08/06/2023] Open
Abstract
Cell death is the irreversible stop of life. It is also the basic physiological process of all organisms which involved in the embryonic development, organ maintenance and autoimmunity of the body. In recent years, we have gained more comprehension of the mechanism in cell death and have basically clarified the different types of "programmed cell death", such as apoptosis, necroptosis, autophagy, and pyroptosis, and identified some key genes in these processes. However, in these previous studies, the conversion between different cell death modes and their application in diseases are rarely explored. To sum up, although many valued discoveries have been discovered in the field of cell death in recent years, there are still many unknown problems to be solved in this field. Facts have proved that cell death is a very complex game, and a series of core players have the ability to destroy the delicate balance of the cell environment, from survival to death, from anti-inflammatory to pro-inflammatory. With the thorough research of the complex regulatory mechanism of cell death, there will certainly be exciting new research in this field in the next few years. The sake of this paper is to emphasize the complex mechanism of overturning the balance between different cell fates and provide relevant theoretical basis for the connection between cell death transformation and disease treatment in the future.
Collapse
Affiliation(s)
- Sikou Shen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, PR China
| | - Yina Shao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, PR China
| | - Chenghua Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, PR China.
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, PR China.
| |
Collapse
|
48
|
Si J, Liu B, Qi K, Chen X, Li D, Yang S, Ji E. Tanshinone IIA inhibited intermittent hypoxia induced neuronal injury through promoting autophagy via AMPK-mTOR signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2023; 315:116677. [PMID: 37268259 DOI: 10.1016/j.jep.2023.116677] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/03/2023] [Accepted: 05/21/2023] [Indexed: 06/04/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Chronic intermittent hypoxia (CIH) is the primary pathophysiological process of obstructive sleep apnea (OSA) and is closely linked to neurocognitive dysfunction. Tanshinone IIA (Tan IIA) is extracted from Salvia miltiorrhiza Bunge and used in Traditional Chinese Medicine (TCM) to improve cognitive impairment. Studies have shown that Tan IIA has anti-inflammatory, anti-oxidant, and anti-apoptotic properties and provides protection in intermittent hypoxia (IH) conditions. However, the specific mechanism is still unclear. AIM OF THE STUDY To assess the protective effect and mechanism of Tan IIA treatment on neuronal injury in HT22 cells exposed to IH. MATERIALS AND METHODS The study established an HT22 cell model exposed to IH (0.1% O2 3 min/21% O2 7 min for six cycles/h). Cell viability was determined using the Cell Counting Kit-8, and cell injury was determined using the LDH release assay. Mitochondrial damage and cell apoptosis were observed using the Mitochondrial Membrane Potential and Apoptosis Detection Kit. Oxidative stress was assessed using DCFH-DA staining and flow cytometry. The level of autophagy was assessed using the Cell Autophagy Staining Test Kit and transmission electron microscopy (TEM). Western blot was used to detect the expressions of the AMPK-mTOR pathway, LC3, P62, Beclin-1, Nrf2, HO-1, SOD2, NOX2, Bcl-2/Bax, and caspase-3. RESULTS The study showed that Tan IIA significantly improved HT22 cell viability under IH conditions. Tan IIA treatment improved mitochondrial membrane potential, decreased cell apoptosis, inhibited oxidative stress, and increased autophagy levels in HT22 cells under IH conditions. Furthermore, Tan IIA increased AMPK phosphorylation and LC3II/I, Beclin-1, Nrf2, HO-1, SOD2, and Bcl-2/Bax expressions, while decreasing mTOR phosphorylation and NOX2 and cleaved caspase-3/caspase-3 expressions. CONCLUSION The study suggested that Tan IIA significantly ameliorated neuronal injury in HT22 cells exposed to IH. The neuroprotective mechanism of Tan IIA may mainly be related to inhibiting oxidative stress and neuronal apoptosis by activating the AMPK/mTOR autophagy pathway under IH conditions.
Collapse
Affiliation(s)
- Jianchao Si
- Department of Physiology, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, People's Republic of China.
| | - Bingbing Liu
- Department of Physiology, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, People's Republic of China.
| | - Kerong Qi
- Department of Physiology, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, People's Republic of China.
| | - Xue Chen
- Department of Physiology, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, People's Republic of China.
| | - Dongli Li
- Department of Physiology, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, People's Republic of China.
| | - Shengchang Yang
- Department of Physiology, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, People's Republic of China; Hebei Technology Innovation Center of TCM Combined Hydrogen Medicine, Shijiazhuang, Hebei, People's Republic of China.
| | - Ensheng Ji
- Department of Physiology, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, People's Republic of China; Hebei Technology Innovation Center of TCM Combined Hydrogen Medicine, Shijiazhuang, Hebei, People's Republic of China.
| |
Collapse
|
49
|
Sharma A, Anand SK, Singh N, Dwivedi UN, Kakkar P. AMP-activated protein kinase: An energy sensor and survival mechanism in the reinstatement of metabolic homeostasis. Exp Cell Res 2023; 428:113614. [PMID: 37127064 DOI: 10.1016/j.yexcr.2023.113614] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 04/18/2023] [Accepted: 04/22/2023] [Indexed: 05/03/2023]
Abstract
Cells are programmed to favorably respond towards the nutrient availability by adapting their metabolism to meet energy demands. AMP-activated protein kinase (AMPK) is a highly conserved serine/threonine energy-sensing kinase. It gets activated upon a decrease in the cellular energy status as reflected by an increased AMP/ATP ratio, ADP, and also during the conditions of glucose starvation without change in the adenine nucelotide ratio. AMPK functions as a centralized regulator of metabolism, acting at cellular and physiological levels to circumvent the metabolic stress by restoring energy balance. This review intricately highlights the integrated signaling pathways by which AMPK gets activated allosterically or by multiple non-canonical upstream kinases. AMPK activates the ATP generating processes (e.g., fatty acid oxidation) and inhibits the ATP consuming processes that are non-critical for survival (e.g., cell proliferation, protein and triglyceride synthesis). An integrated signaling network with AMPK as the central effector regulates all the aspects of enhanced stress resistance, qualified cellular housekeeping, and energy metabolic homeostasis. Importantly, the AMPK mediated amelioration of cellular stress and inflammatory responses are mediated by stimulation of transcription factors such as Nrf2, SIRT1, FoxO and inhibition of NF-κB serving as main downstream effectors. Moreover, many lines of evidence have demonstrated that AMPK controls autophagy through mTOR and ULK1 signaling to fine-tune the metabolic pathways in response to different cellular signals. This review also highlights the critical involvement of AMPK in promoting mitochondrial health, and homeostasis, including mitophagy. Loss of AMPK or ULK1 activity leads to aberrant accumulation of autophagy-related proteins and defective mitophagy thus, connecting cellular energy sensing to autophagy and mitophagy.
Collapse
Affiliation(s)
- Ankita Sharma
- Herbal Research Laboratory, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, India; Department of Biochemistry, University of Lucknow, Lucknow, 226007, India; Department of Biotechnology, National Institute of Pharmaceutical Education and Research-Raebareli, Bijnor-Sisendi Road, Post Office Mati, Lucknow, 226002, India.
| | - Sumit Kr Anand
- Herbal Research Laboratory, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India; Department of Pathology, LSU Health, 1501 Kings Hwy, Shreveport, LA, 71103, USA.
| | - Neha Singh
- Herbal Research Laboratory, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| | | | - Poonam Kakkar
- Herbal Research Laboratory, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
50
|
Yang DL, Li Y, Ma SQ, Zhang YJ, Huang JH, He LJ. Compound 275# Induces Mitochondria-Mediated Apoptosis and Autophagy Initiation in Colorectal Cancer Cells through an Accumulation of Intracellular ROS. Molecules 2023; 28:molecules28073211. [PMID: 37049976 PMCID: PMC10095895 DOI: 10.3390/molecules28073211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 03/28/2023] [Accepted: 03/30/2023] [Indexed: 04/08/2023] Open
Abstract
Colorectal cancer (CRC) is the most common intestinal malignancy, and nearly 70% of patients with this cancer develop metastatic disease. In the present study, we synthesized a novel compound, termed N-(3-(5,7-dimethylbenzo [d]oxazol-2-yl)phenyl)-5-nitrofuran-2-carboxamide (compound 275#), and found that it exhibits antiproliferative capability in suppressing the proliferation and growth of CRC cell lines. Furthermore, compound 275# triggered caspase 3-mediated intrinsic apoptosis of mitochondria and autophagy initiation. An investigation of the molecular mechanisms demonstrated that compound 275# induced intrinsic apoptosis, and autophagy initiation was largely mediated by increasing the levels of the intracellular accumulation of reactive oxygen species (ROS) in CRC cells. Taken together, these data suggest that ROS accumulation after treatment with compound 275# leads to mitochondria-mediated apoptosis and autophagy activation, highlighting the potential of compound 275# as a novel therapeutic agent for the treatment of CRC.
Collapse
Affiliation(s)
- Dong-Lin Yang
- College of Pharmacy, National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, Chongqing Key Laboratory of Kinase Modulators as Innovative Medicine, Chongqing University of Arts and Sciences, Chongqing 402160, China
- College of Pharmaceutical Sciences and Chinese Medicine, Southwest University, Chongqing 400715, China
| | - Yong Li
- College of Pharmacy, National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, Chongqing Key Laboratory of Kinase Modulators as Innovative Medicine, Chongqing University of Arts and Sciences, Chongqing 402160, China
| | - Shui-Qing Ma
- College of Pharmacy, National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, Chongqing Key Laboratory of Kinase Modulators as Innovative Medicine, Chongqing University of Arts and Sciences, Chongqing 402160, China
| | - Ya-Jun Zhang
- College of Pharmacy, National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, Chongqing Key Laboratory of Kinase Modulators as Innovative Medicine, Chongqing University of Arts and Sciences, Chongqing 402160, China
| | - Jiu-Hong Huang
- College of Pharmacy, National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, Chongqing Key Laboratory of Kinase Modulators as Innovative Medicine, Chongqing University of Arts and Sciences, Chongqing 402160, China
- College of Pharmaceutical Sciences and Chinese Medicine, Southwest University, Chongqing 400715, China
| | - Liu-Jun He
- College of Pharmacy, National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, Chongqing Key Laboratory of Kinase Modulators as Innovative Medicine, Chongqing University of Arts and Sciences, Chongqing 402160, China
| |
Collapse
|