1
|
Lu P, Cao X, Zheng J, Sun Y, Tang Z, Zhao M. Visualization and Comparison of the Level of Apurinic/Apyrimidinic Endonuclease 1 in Live Normal/Cancerous and Neuron Cells with a Fluorescent Nanoprobe. Molecules 2023; 28:molecules28093935. [PMID: 37175345 PMCID: PMC10179877 DOI: 10.3390/molecules28093935] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/24/2023] [Accepted: 05/05/2023] [Indexed: 05/15/2023] Open
Abstract
As a major apurinic/apyrimidinic endonuclease and a redox signaling protein in human cells, APE1 plays a crucial role in cellular function and survival. The relationship between alterations of APE1 expression and subcellular localization and the initiation, development and treatment of various cancers has received extensive attention. However, comparing the in-vivo activity of APE1 in normal and cancerous breast live cells remains challenging due to the low efficiency of commonly used liposome transfection methods in delivering DNA substrate probes into human normal breast epithelial cells (MCF-10A). In this work, we develop a DNA/RNA hybrid-based small magnetic fluorescent nanoprobe (25 ± 3 nm) that can be taken up by various live cells under magnetic transfection. The D0/R-nanoprobe demonstrates an outstanding specificity toward APE1 and strong resistance to the cellular background interference. Using this nanoprobe, we are not only able to visualize the intracellular activity of APE1 in breast ductal carcinoma (MCF-7) live cells, but also demonstrate the APE1 activity in MCF-10A live cells for the first time. The method is then extended to observe the changes in APE1 levels in highly metabolically active neuroendocrine cells under normal conditions and severe attacks by reactive oxygen species in real-time. The fluorescent nanoprobe provides a useful tool for studying the dynamic changes of intracellular APE1 in normal or cancerous live cells. It also displays the potential for visible and controllable release of miRNA drugs within live cells for therapeutic purposes.
Collapse
Affiliation(s)
- Peng Lu
- Beijing National Laboratory for Molecular Sciences and MOE Key Laboratory of Bioorganic Chemistry and Molecular Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xiangjian Cao
- Beijing National Laboratory for Molecular Sciences and MOE Key Laboratory of Bioorganic Chemistry and Molecular Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Jinghui Zheng
- Beijing National Laboratory for Molecular Sciences and MOE Key Laboratory of Bioorganic Chemistry and Molecular Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Ying Sun
- Beijing National Laboratory for Molecular Sciences and MOE Key Laboratory of Bioorganic Chemistry and Molecular Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Ziyu Tang
- Beijing National Laboratory for Molecular Sciences and MOE Key Laboratory of Bioorganic Chemistry and Molecular Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Meiping Zhao
- Beijing National Laboratory for Molecular Sciences and MOE Key Laboratory of Bioorganic Chemistry and Molecular Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
2
|
Choi S, Lee YR, Kim KM, Choi E, Jeon BH. Dual Function of Secreted APE1/Ref-1 in TNBC Tumorigenesis: An Apoptotic Initiator and a Regulator of Chronic Inflammatory Signaling. Int J Mol Sci 2022; 23:ijms23169021. [PMID: 36012284 PMCID: PMC9409365 DOI: 10.3390/ijms23169021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/07/2022] [Accepted: 08/09/2022] [Indexed: 11/16/2022] Open
Abstract
The simultaneous regulation of cancer cells and inflammatory immune cells in the tumor microenvironment (TME) can be an effective strategy in treating aggressive breast cancer types, such as triple-negative breast cancer (TNBC). Apurinic/apyrimidinic endonuclease 1/redox effector factor 1 (APE1/Ref-1) is a multi-functional nuclear protein that can be stimulated and then secreted. The extracellular APE1/Ref-1 causes a reduction in disulfide bonds in cytokine receptors, resulting in their conformational changes, thereby inhibiting inflammatory signaling. Furthermore, the secreted APE1/Ref-1 in response to acetylation has been shown to bind to a receptor for the advanced glycation end product (RAGE), initiating the apoptotic cell death of TNBC in vitro and in vivo. This study used PPTLS-APE1/Ref-1 in an adenovirus vector (Ad-PPTLS-APE1/Ref-1) for the constant expression of extracellular APE1/Ref-1, and our results demonstrated its dual function as an apoptotic initiator and inflammation regulator. Injecting MDA-MB 231 orthotopic xenografts with the Ad-PPTLS-APE1/Ref-1 inhibited tumor growth and development in response to acetylation. Moreover, Ad-PPTLS-APE1/Ref-1 generated reactive oxygen species (ROS), and tumor tissues derived from these xenografts exhibited apoptotic bodies. Compared to normal mice, a comparable ratio of anti- and pro-inflammatory cytokines was observed in the plasma of Ad-PPTLS-APE1/Ref-1-injected mice. Mechanistically, the disturbed cytokine receptor by reducing activity of PPTLS-APE1/Ref-1 inhibited inflammatory signaling leading to the inactivation of the p21-activated kinase 1-mediated signal transducer and activator of transcription 3/nuclear factor-κB axis in tumor tissues. These results suggest that the regulation of inflammatory signaling with adenoviral-mediated PPTLS-APE1/Ref-1 in tumors modulates the secretion of pro-inflammatory cytokines in TME, thereby inhibiting aggressive cancer cell progression, and could be considered as a promising and safe therapeutic strategy for treating TNBCs.
Collapse
Affiliation(s)
- Sunga Choi
- Department of Bioinformatics and Biosystems, Seongnam Campus of Korea Polytechnics, Seongnam-si 13122, Korea
- Correspondence: ; Tel.: +82-31-739-4140; Fax: +82-31-739-3375
| | - Yu-Ran Lee
- Research Institute of Medical Sciences, College of Medicine, Chungnam National University, Daejeon 35015, Korea
- Department of Medical Science, College of Medicine, Chungnam National University, Daejeon 35015, Korea
| | - Ki-Mo Kim
- Korean Medicine Convergence Research Division, Korea Institute of Oriental Medicine (KIOM), Daejeon 34054, Korea
| | - Euna Choi
- Department of Biology, Union University, Jackson, TN 38305, USA
| | - Byeong-Hwa Jeon
- Research Institute of Medical Sciences, College of Medicine, Chungnam National University, Daejeon 35015, Korea
- Department of Medical Science, College of Medicine, Chungnam National University, Daejeon 35015, Korea
| |
Collapse
|
3
|
Wu Z, Duan H, Cheng Y, Guo D, Peng L, Hu Y, Hu J, Luo T. A novel ligand swing-mediated active site coordination change of human apurinic/apyrimidinic endonuclease 1: A potential cytotoxic mechanism of nickel ion in the base excision repair. Chem Phys 2022. [DOI: 10.1016/j.chemphys.2022.111456] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
4
|
Rchiad Z, Haidar M, Ansari HR, Tajeri S, Mfarrej S, Ben Rached F, Kaushik A, Langsley G, Pain A. Novel tumour suppressor roles for GZMA and RASGRP1 in Theileria annulata-transformed macrophages and human B lymphoma cells. Cell Microbiol 2020; 22:e13255. [PMID: 32830401 PMCID: PMC7685166 DOI: 10.1111/cmi.13255] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 08/03/2020] [Accepted: 08/07/2020] [Indexed: 12/22/2022]
Abstract
Theileria annulata is a tick-transmitted apicomplexan parasite that infects and transforms bovine leukocytes into disseminating tumours that cause a disease called tropical theileriosis. Using comparative transcriptomics we identified genes transcriptionally perturbed during Theileria-induced leukocyte transformation. Dataset comparisons highlighted a small set of genes associated with Theileria-transformed leukocyte dissemination. The roles of Granzyme A (GZMA) and RAS guanyl-releasing protein 1 (RASGRP1) were verified by CRISPR/Cas9-mediated knockdown. Knocking down expression of GZMA and RASGRP1 in attenuated macrophages led to a regain in their dissemination in Rag2/γC mice confirming their role as dissemination suppressors in vivo. We further evaluated the roles of GZMA and RASGRP1 in human B lymphomas by comparing the transcriptome of 934 human cancer cell lines to that of Theileria-transformed bovine host cells. We confirmed dampened dissemination potential of human B lymphomas that overexpress GZMA and RASGRP1. Our results provide evidence that GZMA and RASGRP1 have a novel tumour suppressor function in both T. annulata-infected bovine host leukocytes and in human B lymphomas.
Collapse
Affiliation(s)
- Zineb Rchiad
- Pathogen Genomics Laboratory, BESE Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia.,Laboratoire de Biologie Comparative des Apicomplexes, Faculté de Médecine, Université Paris Descartes - Sorbonne Paris Cité, Paris, France.,INSERM U1016, CNRS UMR8104, Cochin Institute, Paris, France.,Centre de Coalition, Innovation, et de prévention des Epidémies au Maroc (CIPEM), Mohammed VI Polytechnic University (UM6P), Ben Guerir, Morocco
| | - Malak Haidar
- Pathogen Genomics Laboratory, BESE Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia.,Laboratoire de Biologie Comparative des Apicomplexes, Faculté de Médecine, Université Paris Descartes - Sorbonne Paris Cité, Paris, France.,INSERM U1016, CNRS UMR8104, Cochin Institute, Paris, France
| | - Hifzur Rahman Ansari
- Pathogen Genomics Laboratory, BESE Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia.,King Abdullah International Medical Research Center (KAIMRC), King Abdulaziz Medical City, Ministry of National Guard Health Affairs, Jeddah, Saudi Arabia
| | - Shahin Tajeri
- Laboratoire de Biologie Comparative des Apicomplexes, Faculté de Médecine, Université Paris Descartes - Sorbonne Paris Cité, Paris, France.,INSERM U1016, CNRS UMR8104, Cochin Institute, Paris, France
| | - Sara Mfarrej
- Pathogen Genomics Laboratory, BESE Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Fathia Ben Rached
- Pathogen Genomics Laboratory, BESE Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Abhinav Kaushik
- Pathogen Genomics Laboratory, BESE Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Gordon Langsley
- Laboratoire de Biologie Comparative des Apicomplexes, Faculté de Médecine, Université Paris Descartes - Sorbonne Paris Cité, Paris, France.,INSERM U1016, CNRS UMR8104, Cochin Institute, Paris, France
| | - Arnab Pain
- Pathogen Genomics Laboratory, BESE Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia.,Global Station for Zoonosis Control, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Sapporo, Japan
| |
Collapse
|
5
|
Tu Y, Wu X, Yu F, Dang J, Wei Y, Yu H, Liao W, Zhang Y, Wang J. Tristetraprolin-RNA interaction map reveals a novel TTP-RelB regulatory network for innate immunity gene expression. Mol Immunol 2020; 121:59-71. [DOI: 10.1016/j.molimm.2020.02.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 01/03/2020] [Accepted: 02/07/2020] [Indexed: 02/03/2023]
|
6
|
Zhang H, Ba S, Yang Z, Wang T, Lee JY, Li T, Shao F. Graphene Quantum Dot-Based Nanocomposites for Diagnosing Cancer Biomarker APE1 in Living Cells. ACS APPLIED MATERIALS & INTERFACES 2020; 12:13634-13643. [PMID: 32129072 DOI: 10.1021/acsami.9b21385] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
As an essential DNA repair enzyme, apurinic/apyrimidinic endonuclease 1 (APE1) is overexpressed in most human cancers and is identified as a cancer diagnostic and predictive biomarker for cancer risk assessment, diagnosis, prognosis, and prediction of treatment efficacy. Despite its importance in cancer, however, it is still a significant challenge nowadays to sense abundance variation and monitor enzymatic activity of this biomarker in living cells. Here, we report our construction of biocompatible functional nanocomposites, which are a combination of meticulously designed unimolecular DNA and fine-sized graphene quantum dots. Upon utilization of these nanocomposites as diagnostic probes, massive accumulation of fluorescence signal in living cells can be triggered by merely a small amount of cellular APE1 through repeated cycles of enzymatic catalysis. Most critically, our delicate structural designs assure that these graphene quantum dot-based nanocomposites are capable of sensing cancer biomarker APE1 in identical type of cells under different cell conditions and can be applied to multiple cancerous cells in a highly sensitive and specific manners. This work not only brings about new methods for cytology-based cancer screening but also lays down a general principle for fabricating diagnostic probes that target other endogenous biomarkers in living cells.
Collapse
Affiliation(s)
- Hao Zhang
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - Sai Ba
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - Zhaoqi Yang
- School of Pharmaceutical Sciences, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Tianxiang Wang
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - Jasmine Yiqin Lee
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - Tianhu Li
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - Fangwei Shao
- ZJU-UIUC Institute, Zhejiang University, Haining, Zhejiang 314400, China
| |
Collapse
|
7
|
Zhang Y, Deng Y, Wang C, Li L, Xu L, Yu Y, Su X. Probing and regulating the activity of cellular enzymes by using DNA tetrahedron nanostructures. Chem Sci 2019; 10:5959-5966. [PMID: 31360402 PMCID: PMC6566069 DOI: 10.1039/c9sc01912j] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 05/03/2019] [Indexed: 01/14/2023] Open
Abstract
Given the essential role of apurinic/apyrimidinic endonuclease (APE1) in gene repair and cancer progression, we report a novel approach for probing and regulating cellular APE1 activity by using DNA tetrahedrons.
Given the essential role of apurinic/apyrimidinic endonuclease (APE1) in gene repair and cancer progression, we report a novel approach for probing and regulating cellular APE1 activity by using DNA tetrahedrons. The tetrahedron with an AP site-containing antenna exhibits high sensitivity and specificity to APE1. It is suitable for APE1 in vitro detection (detection limit 5 pM) and cellular fluorescence imaging without any auxiliary transfection reagents, which discriminates the APE1 expression level of cancer cells and normal cells. In contrast, the tetrahedron with an AP site on its scaffold exhibits high binding affinity to APE1 but limits enzymatic catalysis making this nanostructure an APE1 inhibitor with an IC50 of 14.8 nM. It suppresses the APE1 activity in living cells and sensitizes cancer cells to anticancer drugs. We also demonstrate that the APE1 probe and inhibitor can be switched allosterically via stand displacement, which holds potential for reversible inhibition of APE1. Our approach provides a new way for fabricating enzyme probes and regulators and new insights into enzyme–substrate interactions, and it can be expanded to regulate other nucleic acid related enzymes.
Collapse
Affiliation(s)
- Yi Zhang
- College of Life Science and Technology , Beijing University of Chemical Technology , Beijing 100029 , China .
| | - Yingnan Deng
- College of Life Science and Technology , Beijing University of Chemical Technology , Beijing 100029 , China .
| | - Congshan Wang
- College of Life Science and Technology , Beijing University of Chemical Technology , Beijing 100029 , China .
| | - Lidan Li
- College of Life Science and Technology , Beijing University of Chemical Technology , Beijing 100029 , China .
| | - Lida Xu
- College of Life Science and Technology , Beijing University of Chemical Technology , Beijing 100029 , China .
| | - Yingjie Yu
- Department of Biomedical Engineering , Tufts University , Medford , MA 02155 , USA .
| | - Xin Su
- College of Life Science and Technology , Beijing University of Chemical Technology , Beijing 100029 , China .
| |
Collapse
|
8
|
Ma X, Dang C, Min W, Diao Y, Hui W, Wang X, Dai Z, Wang X, Kang H. Downregulation of APE1 potentiates breast cancer cells to olaparib by inhibiting PARP-1 expression. Breast Cancer Res Treat 2019; 176:109-117. [PMID: 30989461 DOI: 10.1007/s10549-019-05189-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Accepted: 03/01/2019] [Indexed: 12/24/2022]
Abstract
PURPOSE Targeting DNA repair mechanisms to induce apoptosis may be a promising strategy for breast cancer treatment. Olaparib is proved to have anticancer effect by inhibiting DNA repairing protein poly (ADP-ribose) polymerase (PARP). However, the cytotoxicity of olaparib is very limited to homologous recombination-proficient cells. This study aims to examine the effect and mechanism of olaparib treatment in breast cancer cell lines. METHODS We investigated the cytotoxic effect of various doses of olaparib treatment to MCF-7 and ZR-75-1 cells in vitro. mRNA and protein levels of PARP and APE1 were examined by real-time PCR and western blot, respectively. APE1-deficient cell lines were created by RNA interference and used for in vitro cytotoxicity study as well as in vivo study. RESULTS 2 µM or higher concentrations of olaparib lead to significant cell death and ROS production. Moreover, olaparib treatment not only inhibits PARP1, but also reduces the expression of APE1 in both mRNA and protein levels. Deficiency of APE1 resulted in increased sensitivity of MCF-7 and ZR-75-1 cells to olaparib treatment. In vivo study showed that reduction of APE1 significantly reduced the volume and weight of MCF-7 xenografted tumors when treated with olaparib, which suggests the synergistic function of inhibition of APE1 in promoting antitumor effects of olaparib treatment. CONCLUSION To acquire better benefits for HR-proficient breast cancer patients, developing chemotherapeutic drugs antagonize APE1 would be an effective strategy to improve the clinical outcome of PARP inhibitors.
Collapse
Affiliation(s)
- Xiaobin Ma
- Department of Oncology, The Second Affiliated Hospital, Medical School of Xi'an Jiaotong University, Xi'an, 710004, Shanxi, China
| | - Chengxue Dang
- Department of Surgical Oncology, The First Affiliated Hospital, Medical School of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Weili Min
- Department of Oncology, The Second Affiliated Hospital, Medical School of Xi'an Jiaotong University, Xi'an, 710004, Shanxi, China
| | - Yan Diao
- Department of Oncology, The Second Affiliated Hospital, Medical School of Xi'an Jiaotong University, Xi'an, 710004, Shanxi, China
| | - Wentao Hui
- Department of Oncology, The Second Affiliated Hospital, Medical School of Xi'an Jiaotong University, Xi'an, 710004, Shanxi, China
| | - Xiaolong Wang
- Department of Oncology, The Second Affiliated Hospital, Medical School of Xi'an Jiaotong University, Xi'an, 710004, Shanxi, China
| | - Zhijun Dai
- Department of Oncology, The Second Affiliated Hospital, Medical School of Xi'an Jiaotong University, Xi'an, 710004, Shanxi, China
| | - Xijing Wang
- Department of Oncology, The Second Affiliated Hospital, Medical School of Xi'an Jiaotong University, Xi'an, 710004, Shanxi, China
| | - Huafeng Kang
- Department of Oncology, The Second Affiliated Hospital, Medical School of Xi'an Jiaotong University, Xi'an, 710004, Shanxi, China.
| |
Collapse
|
9
|
Jiang ST, Han SY, Pang LN, Jiao YN, He XR, Li PP. Bu-Fei decoction and modified Bu-Fei decoction inhibit the growth of non-small cell lung cancer, possibly via inhibition of apurinic/apyrimidinic endonuclease 1. Int J Mol Med 2018; 41:2128-2138. [PMID: 29393411 PMCID: PMC5810238 DOI: 10.3892/ijmm.2018.3444] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 01/15/2018] [Indexed: 12/28/2022] Open
Abstract
Human apurinic/apyrimidinic endonuclease 1 (APE1) is a ubiquitous multifunctional protein, which possesses DNA repair and redox activities. High levels of APE1 are associated with chemo‑ and radioresistance, and poor prognosis in various types of cancer, including non‑small cell lung cancer (NSCLC). Bu‑Fei decoction (BFD) is a traditional Chinese herbal formula, which is believed to supplement Qi, clear away heat and nourish the lungs. BFD and modified Bu‑Fei decoction (MBFD) have been used in China to treat patients with lung cancer. The present study aimed to evaluate the potential antitumor effects of BFD and MBFD on NSCLC in vitro and in vivo. In addition, the possible contribution of APE1 was examined. MTT assay was used to investigated the anti-tumor activity of BFD and MBFD on H1975 and H292 NSCLC cell lines. The DNA damage of cells in the control and the experimental groups was detected using comet assay. The in vivo anti-tumor effects of BFD and MBFD were evaluated in a NSCLC tumor nude mouse xenograft model. Polymerase chain reaction (PCR), reverse transcription‑quantitative PCR (RT‑qPCR) analysis and western blot analysis were applied to analyze the mRNA and protein expression levels of APE1 in H1975 and H292 cells, so as to the xenograft tumor tissues. The concentration of APE1 in mice plasma was determined using enzyme linked immunosorbent assay (ELISA). In vitro, BFD and MBFD inhibited the growth of cultured H1975 and H292 NSCLC cells. The results of a comet assay revealed that BFD and MBFD increased DNA damage. Furthermore, the expression levels of APE1 were decreased in response to BFD and MBFD at the mRNA and protein levels. In mice carrying NSCLC xenografts, BFD and MBFD inhibited tumor growth and decreased APE1 expression. In addition, in normal human lung bronchial epithelial BEAS‑2B cells, the half maximal inhibitory concentrations of BFD and MBFD were much higher compared with in NSCLC cells, and they had no effect on DNA damage. These results suggested that BFD and MBFD may inhibit the growth of NSCLC, possibly by inhibiting APE1 expression.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents, Phytogenic/pharmacology
- Antineoplastic Agents, Phytogenic/therapeutic use
- Carcinoma, Non-Small-Cell Lung/drug therapy
- Carcinoma, Non-Small-Cell Lung/genetics
- Carcinoma, Non-Small-Cell Lung/pathology
- Cell Cycle/drug effects
- Cell Line
- Cell Line, Tumor
- Cell Proliferation/drug effects
- DNA Repair/drug effects
- DNA-(Apurinic or Apyrimidinic Site) Lyase/antagonists & inhibitors
- DNA-(Apurinic or Apyrimidinic Site) Lyase/genetics
- Down-Regulation/drug effects
- Drugs, Chinese Herbal/pharmacology
- Drugs, Chinese Herbal/therapeutic use
- Female
- Humans
- Lung Neoplasms/drug therapy
- Lung Neoplasms/genetics
- Lung Neoplasms/pathology
- Mice, Inbred BALB C
- Mice, Nude
- RNA, Messenger/antagonists & inhibitors
- RNA, Messenger/genetics
Collapse
Affiliation(s)
- Shan-Tong Jiang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Integration of Chinese and Western Medicine, Peking University Cancer Hospital & Institute, Beijing 100142, P.R. China
| | - Shu-Yan Han
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Integration of Chinese and Western Medicine, Peking University Cancer Hospital & Institute, Beijing 100142, P.R. China
| | - Li-Na Pang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Integration of Chinese and Western Medicine, Peking University Cancer Hospital & Institute, Beijing 100142, P.R. China
| | - Yan-Na Jiao
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Integration of Chinese and Western Medicine, Peking University Cancer Hospital & Institute, Beijing 100142, P.R. China
| | - Xi-Ran He
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Integration of Chinese and Western Medicine, Peking University Cancer Hospital & Institute, Beijing 100142, P.R. China
| | - Ping-Ping Li
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Integration of Chinese and Western Medicine, Peking University Cancer Hospital & Institute, Beijing 100142, P.R. China
| |
Collapse
|
10
|
Antoniali G, Malfatti MC, Tell G. Unveiling the non-repair face of the Base Excision Repair pathway in RNA processing: A missing link between DNA repair and gene expression? DNA Repair (Amst) 2017. [DOI: 10.1016/j.dnarep.2017.06.008] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
11
|
Abstract
Reduction-oxidation factor 1-apurinic/apyrimidinic endonuclease (Ref-1/APE1) is a critical node in tumor cells, both as a redox regulator of transcription factor activation and as part of the DNA damage response. As a redox signaling protein, Ref-1/APE1 enhances the transcriptional activity of STAT3, HIF-1α, nuclear factor kappa B, and other transcription factors to promote growth, migration, and survival in tumor cells as well as inflammation and angiogenesis in the tumor microenvironment. Ref-1/APE1 is activated in a variety of cancers, including prostate, colon, pancreatic, ovarian, lung and leukemias, leading to increased aggressiveness. Transcription factors downstream of Ref-1/APE1 are key contributors to many cancers, and Ref-1/APE1 redox signaling inhibition slows growth and progression in a number of tumor types. Ref-1/APE1 inhibition is also highly effective when paired with other drugs, including standard-of-care therapies and therapies targeting pathways affected by Ref-1/APE1 redox signaling. Additionally, Ref-1/APE1 plays a role in a variety of other indications, such as retinopathy, inflammation, and neuropathy. In this review, we discuss the functional consequences of activation of the Ref-1/APE1 node in cancer and other diseases, as well as potential therapies targeting Ref-1/APE1 and related pathways in relevant diseases. APX3330, a novel oral anticancer agent and the first drug to target Ref-1/APE1 for cancer is entering clinical trials and will be explored in various cancers and other diseases bringing bench discoveries to the clinic.
Collapse
|
12
|
Juhnke M, Heumann A, Chirico V, Höflmayer D, Menz A, Hinsch A, Hube-Magg C, Kluth M, Lang DS, Möller-Koop C, Sauter G, Simon R, Beyer B, Pompe R, Thederan I, Schlomm T, Luebke AM. Apurinic/apyrimidinic endonuclease 1 (APE1/Ref-1) overexpression is an independent prognostic marker in prostate cancer withoutTMPRSS2:ERGfusion. Mol Carcinog 2017; 56:2135-2145. [DOI: 10.1002/mc.22670] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Revised: 04/19/2017] [Accepted: 05/01/2017] [Indexed: 11/06/2022]
Affiliation(s)
- Manuela Juhnke
- Institute of Pathology; University Medical Center Hamburg-Eppendorf; Hamburg Germany
| | - Asmus Heumann
- Department of General, Visceral and Thoracic Surgery; University Medical Center Hamburg-Eppendorf; Hamburg Germany
| | - Viktoria Chirico
- Institute of Pathology; University Medical Center Hamburg-Eppendorf; Hamburg Germany
| | - Doris Höflmayer
- Institute of Pathology; University Medical Center Hamburg-Eppendorf; Hamburg Germany
| | - Anne Menz
- Institute of Pathology; University Medical Center Hamburg-Eppendorf; Hamburg Germany
| | - Andrea Hinsch
- Institute of Pathology; University Medical Center Hamburg-Eppendorf; Hamburg Germany
| | - Claudia Hube-Magg
- Institute of Pathology; University Medical Center Hamburg-Eppendorf; Hamburg Germany
| | - Martina Kluth
- Institute of Pathology; University Medical Center Hamburg-Eppendorf; Hamburg Germany
| | - Dagmar S. Lang
- Institute of Pathology; University Medical Center Hamburg-Eppendorf; Hamburg Germany
| | - Christina Möller-Koop
- Institute of Pathology; University Medical Center Hamburg-Eppendorf; Hamburg Germany
| | - Guido Sauter
- Institute of Pathology; University Medical Center Hamburg-Eppendorf; Hamburg Germany
| | - Ronald Simon
- Institute of Pathology; University Medical Center Hamburg-Eppendorf; Hamburg Germany
| | - Burkhard Beyer
- Martini-Clinic, Prostate Cancer Center; University Medical Center Hamburg-Eppendorf; Germany
| | - Raisa Pompe
- Martini-Clinic, Prostate Cancer Center; University Medical Center Hamburg-Eppendorf; Germany
| | - Imke Thederan
- Martini-Clinic, Prostate Cancer Center; University Medical Center Hamburg-Eppendorf; Germany
| | - Thorsten Schlomm
- Martini-Clinic, Prostate Cancer Center; University Medical Center Hamburg-Eppendorf; Germany
- Department of Urology, Section for Translational Prostate Cancer Research; University Medical Center Hamburg-Eppendorf; Germany
| | - Andreas M. Luebke
- Institute of Pathology; University Medical Center Hamburg-Eppendorf; Hamburg Germany
| |
Collapse
|
13
|
Apurinic/apyrimidinic endonuclease 1 (APE1) is overexpressed in malignant transformation of salivary gland pleomorphic adenoma. Eur Arch Otorhinolaryngol 2017; 274:3203-3209. [DOI: 10.1007/s00405-017-4605-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 05/09/2017] [Indexed: 12/31/2022]
|
14
|
Guerreiro PS, Corvacho E, Costa JG, Saraiva N, Fernandes AS, Castro M, Miranda JP, Oliveira NG. The APE1 redox inhibitor E3330 reduces collective cell migration of human breast cancer cells and decreases chemoinvasion and colony formation when combined with docetaxel. Chem Biol Drug Des 2017; 90:561-571. [DOI: 10.1111/cbdd.12979] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 03/08/2017] [Accepted: 03/11/2017] [Indexed: 01/01/2023]
Affiliation(s)
- Patrícia S. Guerreiro
- Research Institute for Medicines (iMed.ULisboa); Faculty of Pharmacy; Universidade de Lisboa; Lisbon Portugal
| | - Eduardo Corvacho
- Research Institute for Medicines (iMed.ULisboa); Faculty of Pharmacy; Universidade de Lisboa; Lisbon Portugal
| | - João G. Costa
- Research Institute for Medicines (iMed.ULisboa); Faculty of Pharmacy; Universidade de Lisboa; Lisbon Portugal
- CBIOS; Universidade Lusófona Research Center for Biosciences & Health Technologies; Lisbon Portugal
| | - Nuno Saraiva
- CBIOS; Universidade Lusófona Research Center for Biosciences & Health Technologies; Lisbon Portugal
| | - Ana S. Fernandes
- Research Institute for Medicines (iMed.ULisboa); Faculty of Pharmacy; Universidade de Lisboa; Lisbon Portugal
- CBIOS; Universidade Lusófona Research Center for Biosciences & Health Technologies; Lisbon Portugal
| | - Matilde Castro
- Research Institute for Medicines (iMed.ULisboa); Faculty of Pharmacy; Universidade de Lisboa; Lisbon Portugal
| | - Joana P. Miranda
- Research Institute for Medicines (iMed.ULisboa); Faculty of Pharmacy; Universidade de Lisboa; Lisbon Portugal
| | - Nuno G. Oliveira
- Research Institute for Medicines (iMed.ULisboa); Faculty of Pharmacy; Universidade de Lisboa; Lisbon Portugal
| |
Collapse
|
15
|
Guerreiro PS, Estácio SG, Antunes F, Fernandes AS, Pinheiro PF, Costa JG, Castro M, Miranda JP, Guedes RC, Oliveira NG. Structure-based virtual screening toward the discovery of novel inhibitors of the DNA repair activity of the human apurinic/apyrimidinic endonuclease 1. Chem Biol Drug Des 2016; 88:915-925. [DOI: 10.1111/cbdd.12826] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 05/10/2016] [Accepted: 07/11/2016] [Indexed: 01/21/2023]
Affiliation(s)
- Patrícia S. Guerreiro
- Research Institute for Medicines (iMed.ULisboa); Faculty of Pharmacy; Universidade de Lisboa; Lisbon Portugal
| | - Sílvia G. Estácio
- BioISI - Biosystems and Integrative Sciences Institute; Faculdade de Ciências; Universidade de Lisboa; Lisbon Portugal
| | - Fernando Antunes
- Departamento de Química e Bioquímica and Centro de Química e Bioquímica; Faculdade de Ciências; Universidade de Lisboa; Lisbon Portugal
| | - Ana S. Fernandes
- Research Institute for Medicines (iMed.ULisboa); Faculty of Pharmacy; Universidade de Lisboa; Lisbon Portugal
- CBIOS; Universidade Lusófona Research Center for Biosciences and Health Technologies; Lisbon Portugal
| | - Pedro F. Pinheiro
- Research Institute for Medicines (iMed.ULisboa); Faculty of Pharmacy; Universidade de Lisboa; Lisbon Portugal
- Centro de Química Estrutural (CQE); Instituto Superior Técnico; Universidade de Lisboa; Lisbon Portugal
| | - João G. Costa
- Research Institute for Medicines (iMed.ULisboa); Faculty of Pharmacy; Universidade de Lisboa; Lisbon Portugal
- CBIOS; Universidade Lusófona Research Center for Biosciences and Health Technologies; Lisbon Portugal
| | - Matilde Castro
- Research Institute for Medicines (iMed.ULisboa); Faculty of Pharmacy; Universidade de Lisboa; Lisbon Portugal
| | - Joana P. Miranda
- Research Institute for Medicines (iMed.ULisboa); Faculty of Pharmacy; Universidade de Lisboa; Lisbon Portugal
| | - Rita C. Guedes
- Research Institute for Medicines (iMed.ULisboa); Faculty of Pharmacy; Universidade de Lisboa; Lisbon Portugal
| | - Nuno G. Oliveira
- Research Institute for Medicines (iMed.ULisboa); Faculty of Pharmacy; Universidade de Lisboa; Lisbon Portugal
| |
Collapse
|
16
|
Transcriptional Up-Regulation of APE1/Ref-1 in Hepatic Tumor: Role in Hepatocytes Resistance to Oxidative Stress and Apoptosis. PLoS One 2015; 10:e0143289. [PMID: 26624999 PMCID: PMC4666459 DOI: 10.1371/journal.pone.0143289] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2015] [Accepted: 11/03/2015] [Indexed: 01/11/2023] Open
Abstract
Objective Human Hepatocellular Carcinoma (HCC) is the fifth most frequent neoplasm worldwide and the most serious complication of long-standing chronic liver diseases (CLD). Its development is associated with chronic inflammation and sustained oxidative stress. Deregulation of apurinic apyrimidinic endonuclease 1/redox effector factor 1 (APE1/Ref-1), a master regulator of cellular response to oxidative stress, has been associated with poor prognosis in several cancers including HCC. Design In the present study we investigated the APE1/Ref-1 mRNA levels in cirrhotic and HCC tissues obtained during HCC resection. The possible protective role of APE1/Ref-1 against oxidative stress and apoptosis was evaluated in vitro in immortalized human hepatocytes (IHH) over-expressing APE1/Ref-1. Results APE1/Ref-1 was up-regulated in HCC, regulation occurring at the transcriptional level. APE1/Ref-1 mRNA content increased with the progression of liver disease with the transcriptional up-regulation present in cirrhosis significantly increased in HCC. The up-regulation was higher in the less differentiated cancers. In vitro, over-expression of APE1/Ref-1 in normal hepatocytes conferred cell protection against oxidative stress and it was associated with BAX inhibition and escape from apoptosis. Conclusion APE1/Ref-1 is up-regulated in HCC and this over-expression correlates with cancer aggressiveness. The up-regulation occurs at the transcriptional level and it is present in the earliest phases of hepatocarcinogenesis. The APE-1/Ref-1 over-expression is associated with hepatocyte survival and inhibits BAX activation and apoptosis. These data suggest a possible role of APE1/Ref-1 over-expression both in hepatocyte survival and HCC development calling attention to this molecule as a promising marker for HCC diagnosis and treatment.
Collapse
|
17
|
Hsia KT, Liu CJ, Mar K, Lin LH, Lin CS, Cheng MF, Lee HS, Chiu SY. Impact of apurinic/apyrimidinic endonuclease 1/redox factor-1 on treatment response and survival in oral squamous cell carcinoma. Head Neck 2015; 38:550-9. [PMID: 25482590 DOI: 10.1002/hed.23927] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/03/2014] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Apurinic/apyrimidinic endonuclease 1/redox factor-1 (APE1/Ref-1) is a multifunctional protein involved in DNA repair and redox signaling. The purpose of this study was to investigate the relationship between APE1/Ref-1 expression and clinicopathological features, survival, and treatment response in patients with oral squamous cell carcinoma (OSCC) and cell lines. METHODS APE1/Ref-1 expression in OSCC was evaluated by immunohistochemistry, and its relationship to patient outcomes and treatment response was assessed statistically. The effects of stable short hairpin (sh)RNA-mediated knockdown of APE1/Ref-1 on cell survival, migration, and chemoradiation sensitivity were determined in OSCC cell lines. RESULTS APE1/Ref-1 immunostaining was correlated with positive lymph node status, and higher APE1/Ref-1 expression was significantly associated with poor prognosis and reduced treatment response. Consistent with the clinical studies, APE1/Ref-1 expression in OSCC cell lines was implicated in the regulation of migration and cisplatin-induced apoptosis. CONCLUSION Elevated APE1/Ref-1 expression may be used to predict poor survival and may confer chemoresistance in OSCC.
Collapse
Affiliation(s)
- Kan-Tai Hsia
- Institute of Oral Biology, School of Dentistry, National Yang-Ming University, Taipei, Taiwan
| | - Chung-Ji Liu
- Institute of Oral Biology, School of Dentistry, National Yang-Ming University, Taipei, Taiwan.,Department of Oral and Maxillofacial Surgery, Taipei Mackay Memorial Hospital, Taipei, Taiwan
| | - Kwei Mar
- Department of Dentistry, Zhongxiao Branch, Taipei City Hospital, Taipei, Taiwan
| | - Li-Han Lin
- Institute of Oral Biology, School of Dentistry, National Yang-Ming University, Taipei, Taiwan
| | - Chun-Shu Lin
- Department of Radiation Oncology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Ming-Fang Cheng
- Institute of Oral Biology, School of Dentistry, National Yang-Ming University, Taipei, Taiwan.,Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan.,Division of Histological and Clinical Pathology, Hualien Armed Forced General Hospital, Hualien, Taiwan
| | - Herng-Sheng Lee
- Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Shang-Yi Chiu
- Institute of Oral Biology, School of Dentistry, National Yang-Ming University, Taipei, Taiwan
| |
Collapse
|
18
|
Feng Z, Kochanek S, Close D, Wang L, Srinivasan A, Almehizia AA, Iyer P, Xie XQ, Johnston PA, Gold B. Design and activity of AP endonuclease-1 inhibitors. J Chem Biol 2015; 8:79-93. [PMID: 26101550 DOI: 10.1007/s12154-015-0131-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 03/25/2015] [Indexed: 12/12/2022] Open
Abstract
Apurinic/apyrimidinic endonuclease-1/redox effector factor-1 (APE-1) is a critical component of base excision repair that excises abasic lesions created enzymatically by the action of DNA glycosylases on modified bases and non-enzymatically by hydrolytic depurination/depyrimidination of nucleobases. Many anticancer drugs generate DNA adducts that are processed by base excision repair, and tumor resistance is frequently associated with enhanced APE-1 expression. Accordingly, APE-1 is a potential therapeutic target to treat cancer. Using computational approaches and the high resolution structure of APE-1, we developed a 5-point pharmacophore model for APE-1 small molecule inhibitors. One of the nM APE-1 inhibitors (AJAY-4) that was identified based on this model exhibited an overall median growth inhibition (GI50) of 4.19 μM in the NCI-60 cell line panel. The mechanism of action is shown to be related to the buildup of abasic sites that cause PARP activation and PARP cleavage, and the activation of caspase-3 and caspase-7, which is consistent with cell death by apoptosis. In a drug combination growth inhibition screen conducted in 10 randomly selected NCI-60 cell lines and with 20 clinically used non-genotoxic anticancer drugs, a synergy was flagged in the SK-MEL-5 melanoma cell line exposed to combinations of vemurafenib, which targets melanoma cells with V600E mutated BRAF, and AJAY-4, our most potent APE-1 inhibitor. The synergy between AJAY-4 and vemurafenib was not observed in cell lines expressing wild-type B-Raf protein. This synergistic combination may provide a solution to the resistance that develops in tumors treated with B-Raf-targeting drugs.
Collapse
Affiliation(s)
- Zhiwei Feng
- Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15261 USA
| | - Stanton Kochanek
- Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15261 USA
| | - David Close
- Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15261 USA
| | - LiRong Wang
- Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15261 USA
| | - Ajay Srinivasan
- Malaria Vaccine Development Program, New Delhi, 110067 India
| | | | - Prema Iyer
- Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15261 USA
| | - Xiang-Qun Xie
- Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15261 USA
| | - Paul A Johnston
- Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15261 USA
| | - Barry Gold
- Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15261 USA
| |
Collapse
|
19
|
Doherty R, Madhusudan S. DNA Repair Endonucleases: Physiological Roles and Potential as Drug Targets. ACTA ACUST UNITED AC 2015; 20:829-41. [PMID: 25877151 DOI: 10.1177/1087057115581581] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Accepted: 03/22/2015] [Indexed: 12/15/2022]
Abstract
Genomic DNA is constantly exposed to endogenous and exogenous damaging agents. To overcome these damaging effects and maintain genomic stability, cells have robust coping mechanisms in place, including repair of the damaged DNA. There are a number of DNA repair pathways available to cells dependent on the type of damage induced. The removal of damaged DNA is essential to allow successful repair. Removal of DNA strands is achieved by nucleases. Exonucleases are those that progressively cut from DNA ends, and endonucleases make single incisions within strands of DNA. This review focuses on the group of endonucleases involved in DNA repair pathways, their mechanistic functions, roles in cancer development, and how targeting these enzymes is proving to be an exciting new strategy for personalized therapy in cancer.
Collapse
Affiliation(s)
- Rachel Doherty
- Laboratory of Molecular Oncology, Academic Unit of Oncology, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham University Hospitals, Nottingham, UK
| | - Srinivasan Madhusudan
- Laboratory of Molecular Oncology, Academic Unit of Oncology, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham University Hospitals, Nottingham, UK
| |
Collapse
|
20
|
Poletto M, Malfatti MC, Dorjsuren D, Scognamiglio PL, Marasco D, Vascotto C, Jadhav A, Maloney DJ, Wilson DM, Simeonov A, Tell G. Inhibitors of the apurinic/apyrimidinic endonuclease 1 (APE1)/nucleophosmin (NPM1) interaction that display anti-tumor properties. Mol Carcinog 2015; 55:688-704. [PMID: 25865359 DOI: 10.1002/mc.22313] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Revised: 02/10/2015] [Accepted: 02/21/2015] [Indexed: 12/23/2022]
Abstract
The apurinic/apyrimidinic endonuclease 1 (APE1) is a protein central to the base excision DNA repair pathway and operates in the modulation of gene expression through redox-dependent and independent mechanisms. Aberrant expression and localization of APE1 in tumors are recurrent hallmarks of aggressiveness and resistance to therapy. We identified and characterized the molecular association between APE1 and nucleophosmin (NPM1), a multifunctional protein involved in the preservation of genome stability and rRNA maturation. This protein-protein interaction modulates subcellular localization and endonuclease activity of APE1. Moreover, we reported a correlation between APE1 and NPM1 expression levels in ovarian cancer, with NPM1 overexpression being a marker of poor prognosis. These observations suggest that tumors that display an augmented APE1/NPM1 association may exhibit increased aggressiveness and resistance. Therefore, targeting the APE1/NPM1 interaction might represent an innovative strategy for the development of anticancer drugs, as tumor cells relying on higher levels of APE1 and NPM1 for proliferation and survival may be more sensitive than untransformed cells. We set up a chemiluminescence-based high-throughput screening assay in order to find small molecules able to interfere with the APE1/NPM1 interaction. This screening led to the identification of a set of bioactive compounds that impair the APE1/NPM1 association in living cells. Interestingly, some of these molecules display anti-proliferative activity and sensitize cells to therapeutically relevant genotoxins. Given the prognostic significance of APE1 and NPM1, these compounds might prove effective in the treatment of tumors that show abundant levels of both proteins, such as ovarian or hepatic carcinomas.
Collapse
Affiliation(s)
- Mattia Poletto
- Department of Medical and Biological Sciences, University of Udine, Udine, Italy
| | - Matilde C Malfatti
- Department of Medical and Biological Sciences, University of Udine, Udine, Italy
| | - Dorjbal Dorjsuren
- NIH Chemical Genomics Center, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, Maryland
| | - Pasqualina L Scognamiglio
- Department of Pharmacy, CIRPEB (Centro Interuniversitario di Ricerca sui Peptidi Bioattivi), University of Naples 'Federico II', Naples, Italy.,Center for Advanced Biomaterials for Healthcare@CRIB, Istituto Italiano di Tecnologia (IIT), Naples, Italy
| | - Daniela Marasco
- Department of Pharmacy, CIRPEB (Centro Interuniversitario di Ricerca sui Peptidi Bioattivi), University of Naples 'Federico II', Naples, Italy
| | - Carlo Vascotto
- Department of Medical and Biological Sciences, University of Udine, Udine, Italy
| | - Ajit Jadhav
- NIH Chemical Genomics Center, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, Maryland
| | - David J Maloney
- NIH Chemical Genomics Center, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, Maryland
| | - David M Wilson
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, Maryland
| | - Anton Simeonov
- NIH Chemical Genomics Center, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, Maryland
| | - Gianluca Tell
- Department of Medical and Biological Sciences, University of Udine, Udine, Italy
| |
Collapse
|
21
|
Sui J, Li M, Qian C, Wang S, Cheng Y, Chen BPC, Wang D. Functional analysis of tanshinone IIA that blocks the redox function of human apurinic/apyrimidinic endonuclease 1/redox factor-1. DRUG DESIGN DEVELOPMENT AND THERAPY 2014; 8:2147-60. [PMID: 25395832 PMCID: PMC4224025 DOI: 10.2147/dddt.s71124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Apurinic/apyrimidinic endonuclease 1/redox factor-1 (APE1/Ref-1) is a multifunctional protein possessing both DNA repair and redox regulatory activities. It has been shown that blocking redox function leads to genotoxic, antiangiogenic, cytostatic, and proapoptotic effects in cells. Therefore, the selective inhibitors against APE1's redox function can be served as potential pharmaceutical candidates in cancer therapeutics. In the present study, we identified the biological specificity of the Chinese herbal compound tanshinone IIA (T2A) in blocking the redox function of APE1. Using dual polarization interferometry, the direct interaction between APE1 and T2A was observed with a KD value at subnanomolar level. In addition, we showed that T2A significantly compromised the growth of human cervical cancer and colon cancer cells. Furthermore, the growth-inhibitory or proapoptotic effect of T2A was diminished in APE1 knockdown or redox-deficient cells, suggesting that the cytostatic effect of T2A might be specifically through inhibiting the redox function of APE1. Finally, T2A pretreatment enhanced the cytotoxicity of ionizing radiation or other chemotherapeutic agents in human cervical cancer and colon cancer cell lines. The data presented herein suggest T2A as a promising bioactive inhibitor of APE1 redox activity.
Collapse
Affiliation(s)
- Jiangdong Sui
- Cancer Center, Daping Hospital and Research Institute of Surgery, Third Military Medical University, Chongqing, People's Republic of China ; Division of Molecular Radiation Biology, Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Mengxia Li
- Cancer Center, Daping Hospital and Research Institute of Surgery, Third Military Medical University, Chongqing, People's Republic of China
| | - Chengyuan Qian
- Cancer Center, Daping Hospital and Research Institute of Surgery, Third Military Medical University, Chongqing, People's Republic of China
| | - Shufeng Wang
- Institute of Immunology, PLA, College of Basic Medical Sciences, Third Military Medical University, Chongqing, People's Republic of China
| | - Yi Cheng
- Cancer Center, Daping Hospital and Research Institute of Surgery, Third Military Medical University, Chongqing, People's Republic of China
| | - Benjamin P C Chen
- Division of Molecular Radiation Biology, Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Dong Wang
- Cancer Center, Daping Hospital and Research Institute of Surgery, Third Military Medical University, Chongqing, People's Republic of China
| |
Collapse
|
22
|
Woo J, Park H, Sung SH, Moon BI, Suh H, Lim W. Prognostic value of human apurinic/apyrimidinic endonuclease 1 (APE1) expression in breast cancer. PLoS One 2014; 9:e99528. [PMID: 24914806 PMCID: PMC4051707 DOI: 10.1371/journal.pone.0099528] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2014] [Accepted: 05/15/2014] [Indexed: 01/10/2023] Open
Abstract
Human apurinic/apyrimidinic endonuclease 1 (APE1) is an essential protein for DNA base excision repair (BER) and redox regulation. The ability of cancer cells to recognize DNA damage and initiate DNA repair is an important mechanism for therapeutic resistance. Several recent studies have suggested that APE1 expression levels and/or subcellular dysregulation may be used to indicate the sensitivity of tumors to radiotherapy or chemotherapy. In this study, we assessed the prognostic significance of APE1 and differences in APE1 expression levels according to breast cancer molecular subtypes. We analyzed formalin-fixed, paraffin-embedded tumor tissue sections from 243 cases diagnosed as invasive breast cancer at Ewha Womans University Medical Center between January 2003 and December 2008. Immunohistochemistry was performed and the nuclear level of APE1 was scored by taking into account the percentage of positive cells. Medical records were reviewed to investigate clinicopathologic characteristics. We found that nuclear APE1 high-level expression (proportion ≥50%) in breast cancer showed a tendency towards unfavorable prognosis regarding disease-free survival (p = 0.093). However, there was no significant difference in overall survival between low and high-level expression groups (p = 0.294). Interestingly, within the Ki-67 low-level expression group, APE1 low-level expression was significantly associated with poor overall survival (p = 0.007). A significant positive correlation was observed between APE1 nuclear expression and estrogen receptor status (75.7% vs. 59.7%, p = 0.022). Also, the luminal A subtype was the most commonly observed breast cancer subtype in the APE1 high-level expression group (61.6% vs. 45.2%, p = 0.000). This study suggests that APE1 expression may be associated with breast cancer prognosis. In particular, its role as a prognostic factor would be significant for breast cancers with a low Ki-67 proliferation index. It is proposed that nuclear APE1 may be a novel target in breast cancer with a low proliferation rate to obtain better outcome.
Collapse
Affiliation(s)
- Joohyun Woo
- Department of Surgery, Ewha Womans University School of Medicine, Ewha Womans University Mokdong Hospital, Seoul, Korea
| | - Heejung Park
- Department of Pathology, Ewha Womans University School of Medicine, Ewha Womans University Mokdong Hospital, Seoul, Korea
| | - Sun Hee Sung
- Department of Pathology, Ewha Womans University School of Medicine, Ewha Womans University Mokdong Hospital, Seoul, Korea
| | - Byung-In Moon
- Department of Surgery, Ewha Womans University School of Medicine, Ewha Womans University Mokdong Hospital, Seoul, Korea
| | - Hyunsuk Suh
- Department of Plastic surgery, Ewha Womans University School of Medicine, Ewha Womans University Mokdong Hospital, Seoul, Korea
| | - Woosung Lim
- Department of Surgery, Ewha Womans University School of Medicine, Ewha Womans University Mokdong Hospital, Seoul, Korea
| |
Collapse
|
23
|
Abstract
SIGNIFICANCE Human apurinic/apyrimidinic endonuclease 1 (APE1, also known as REF-1) was isolated based on its ability to cleave at AP sites in DNA or activate the DNA binding activity of certain transcription factors. We review herein topics related to this multi-functional DNA repair and stress-response protein. RECENT ADVANCES APE1 displays homology to Escherichia coli exonuclease III and is a member of the divalent metal-dependent α/β fold-containing phosphoesterase superfamily of enzymes. APE1 has acquired distinct active site and loop elements that dictate substrate selectivity, and a unique N-terminus which at minimum imparts nuclear targeting and interaction specificity. Additional activities ascribed to APE1 include 3'-5' exonuclease, 3'-repair diesterase, nucleotide incision repair, damaged or site-specific RNA cleavage, and multiple transcription regulatory roles. CRITICAL ISSUES APE1 is essential for mouse embryogenesis and contributes to cell viability in a genetic background-dependent manner. Haploinsufficient APE1(+/-) mice exhibit reduced survival, increased cancer formation, and cellular/tissue hyper-sensitivity to oxidative stress, supporting the notion that impaired APE1 function associates with disease susceptibility. Although abnormal APE1 expression/localization has been seen in cancer and neuropathologies, and impaired-function variants have been described, a causal link between an APE1 defect and human disease remains elusive. FUTURE DIRECTIONS Ongoing efforts aim at delineating the biological role(s) of the different APE1 activities, as well as the regulatory mechanisms for its intra-cellular distribution and participation in diverse molecular pathways. The determination of whether APE1 defects contribute to human disease, particularly pathologies that involve oxidative stress, and whether APE1 small-molecule regulators have clinical utility, is central to future investigations.
Collapse
Affiliation(s)
- Mengxia Li
- Intramural Research Program, Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health , Baltimore, Maryland
| | | |
Collapse
|
24
|
Sudhakar J, Khetan V, Madhusudan S, Krishnakumar S. Dysregulation of human apurinic/apyrimidinic endonuclease 1 (APE1) expression in advanced retinoblastoma. Br J Ophthalmol 2014; 98:402-7. [DOI: 10.1136/bjophthalmol-2013-304166] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
25
|
Abdel-Fatah TMA, Perry C, Moseley P, Johnson K, Arora A, Chan S, Ellis IO, Madhusudan S. Clinicopathological significance of human apurinic/apyrimidinic endonuclease 1 (APE1) expression in oestrogen-receptor-positive breast cancer. Breast Cancer Res Treat 2014; 143:411-21. [PMID: 24381055 DOI: 10.1007/s10549-013-2820-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Accepted: 12/20/2013] [Indexed: 01/28/2023]
Abstract
Oestrogen metabolites can induce oxidative DNA base damage and generate potentially mutagenic apurinic sites (AP sites) in the genomic DNA. If unrepaired, mutagenic AP sites could drive breast cancer pathogenesis and aggressive phenotypes. Human apurinic/apyrimidinic endonuclease 1 (APE1) is a key DNA base excision repair (BER) protein and essential for processing AP sites generated either directly by oestrogen metabolites or during BER of oxidative base damage. Our hypothesis is that altered APE1 expression may be associated with aggressive tumour biology and impact upon clinical outcomes in breast cancer. In the current study, we have investigated APE1 protein expression in a large cohort of breast cancers (n = 1285) and correlated to clinicopathological features and survival outcomes. Low APE1 protein expression was associated with high histological grade (p < 0.000001), high mitotic index (p < 0.000001), glandular de-differentiation (p < 0.000001), pleomorphism (p = 0.003), absence of hormonal receptors (ER-/PgR-/AR-) (p < 0.0001) and presence of triple negative phenotype (p = 0.001). Low APE1 protein expression was associated with loss of BRCA1, low XRCC1, low FEN1, low SMUG1 and low pol β (ps < 0.0001). High MIB1 (p = 0.048), bcl-2 negativity (p < 0.0001) and low TOP2A (p < 0.0001) were likely in low APE1 tumours. In the ER-positive sub-group, specifically, low APE1 remains significantly associated with high histological grade, high mitotic index, glandular de-differentiation (ps < 0.00001) and poor breast cancer specific survival (p = 0.007). In the ER-positive cohort that received adjuvant endocrine therapy, low APE1 protein expression is associated with poor survival (p = 0.006). In multivariate analysis, low APE1 remains independently associated with poor survival in ER-positive tumours (p = 0.048). We conclude that low APE1 expression may have prognostic and predictive significance in ER-positive breast cancers.
Collapse
|
26
|
Differential effects of methoxyamine on doxorubicin cytotoxicity and genotoxicity in MDA-MB-231 human breast cancer cells. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2013; 757:140-7. [PMID: 23958474 DOI: 10.1016/j.mrgentox.2013.08.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Revised: 07/29/2013] [Accepted: 08/06/2013] [Indexed: 12/13/2022]
Abstract
Pharmacological inhibition of DNA repair is a promising approach to increase the effectiveness of anticancer drugs. The chemotherapeutic drug doxorubicin (Dox) may act, in part, by causing oxidative DNA damage. The base excision repair (BER) pathway effects the repair of many DNA lesions induced by reactive oxygen species (ROS). Methoxyamine (MX) is an indirect inhibitor of apurinic/apyrimidinic endonuclease 1 (APE1), a multifunctional BER protein. We have evaluated the effects of MX on the cytotoxicity and genotoxicity of Dox in MDA-MB-231 metastatic breast cancer cells. MX has little effects on the viability and proliferation of Dox-treated cells. However, as assessed by the cytokinesis-block micronucleus assay (CBMN), MX caused a significant 1.4-fold increase (P<0.05) in the frequency of micronucleated binucleated cells induced by Dox, and also altered the distribution of the numbers of micronuclei. The fluorescence probe dihydroethidium (DHE) indicated little production of ROS by Dox. Overall, our results suggest differential outcomes for the inhibition of APE1 activity in breast cancer cells exposed to Dox, with a sensitizing effect observed for genotoxicity but not for cytotoxicity.
Collapse
|
27
|
Kim MH, Kim HB, Yoon SP, Lim SC, Cha MJ, Jeon YJ, Park SG, Chang IY, You HJ. Colon cancer progression is driven by APEX1-mediated upregulation of Jagged. J Clin Invest 2013; 123:65521. [PMID: 23863623 PMCID: PMC3726152 DOI: 10.1172/jci65521] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Accepted: 04/25/2013] [Indexed: 02/05/2023] Open
Abstract
Aberrant expression of apurinic-apyrimidinic endonuclease-1 (APEX1) has been reported in numerous human solid tumors and is positively correlated with cancer progression; however, the role of APEX1 in tumor progression is poorly defined. Here, we show that APEX1 contributes to aggressive colon cancer behavior and functions as an upstream activator in the Jagged1/Notch signaling pathway. APEX1 overexpression or knockdown in human colon cancer cell lines induced profound changes in malignant properties such as cell proliferation, anchorage-independent growth, migration, invasion, and angiogenesis in vitro and in tumor formation and metastasis in mouse xenograft models. These oncogenic effects of APEX1 were mediated by the upregulation of Jagged1, a major Notch ligand. Furthermore, APEX1 expression was associated with Jagged1 in various colon cancer cell lines and in tissues from colon cancer patients. This finding identifies APEX1 as a positive regulator of Jagged1/Notch activity and suggests that it is a potential therapeutic target in colon cancers that exhibit high levels of Jagged1/Notch signaling.
Collapse
Affiliation(s)
- Mi-Hwa Kim
- DNA Damage Response Network Center, Chosun University, Gwangju, Republic of Korea.
Department of Pharmacology, Chosun University School of Medicine, Gwangju, Republic of Korea.
Department of Anatomy, School of Medicine, Jeju National University, Jeju-Do, Republic of Korea.
Department of Pathology, Chosun University School of Medicine, Gwangju, Republic of Korea.
Department of Hemato-oncology, Chosun University Hospital Internal Medicine, Gwangju, Republic of Korea.
Department of Anatomy, Chosun University School of Medicine, Gwangju, Republic of Korea
| | - Hong-Beum Kim
- DNA Damage Response Network Center, Chosun University, Gwangju, Republic of Korea.
Department of Pharmacology, Chosun University School of Medicine, Gwangju, Republic of Korea.
Department of Anatomy, School of Medicine, Jeju National University, Jeju-Do, Republic of Korea.
Department of Pathology, Chosun University School of Medicine, Gwangju, Republic of Korea.
Department of Hemato-oncology, Chosun University Hospital Internal Medicine, Gwangju, Republic of Korea.
Department of Anatomy, Chosun University School of Medicine, Gwangju, Republic of Korea
| | - Sang Pil Yoon
- DNA Damage Response Network Center, Chosun University, Gwangju, Republic of Korea.
Department of Pharmacology, Chosun University School of Medicine, Gwangju, Republic of Korea.
Department of Anatomy, School of Medicine, Jeju National University, Jeju-Do, Republic of Korea.
Department of Pathology, Chosun University School of Medicine, Gwangju, Republic of Korea.
Department of Hemato-oncology, Chosun University Hospital Internal Medicine, Gwangju, Republic of Korea.
Department of Anatomy, Chosun University School of Medicine, Gwangju, Republic of Korea
| | - Sung-Chul Lim
- DNA Damage Response Network Center, Chosun University, Gwangju, Republic of Korea.
Department of Pharmacology, Chosun University School of Medicine, Gwangju, Republic of Korea.
Department of Anatomy, School of Medicine, Jeju National University, Jeju-Do, Republic of Korea.
Department of Pathology, Chosun University School of Medicine, Gwangju, Republic of Korea.
Department of Hemato-oncology, Chosun University Hospital Internal Medicine, Gwangju, Republic of Korea.
Department of Anatomy, Chosun University School of Medicine, Gwangju, Republic of Korea
| | - Man Jin Cha
- DNA Damage Response Network Center, Chosun University, Gwangju, Republic of Korea.
Department of Pharmacology, Chosun University School of Medicine, Gwangju, Republic of Korea.
Department of Anatomy, School of Medicine, Jeju National University, Jeju-Do, Republic of Korea.
Department of Pathology, Chosun University School of Medicine, Gwangju, Republic of Korea.
Department of Hemato-oncology, Chosun University Hospital Internal Medicine, Gwangju, Republic of Korea.
Department of Anatomy, Chosun University School of Medicine, Gwangju, Republic of Korea
| | - Young Jin Jeon
- DNA Damage Response Network Center, Chosun University, Gwangju, Republic of Korea.
Department of Pharmacology, Chosun University School of Medicine, Gwangju, Republic of Korea.
Department of Anatomy, School of Medicine, Jeju National University, Jeju-Do, Republic of Korea.
Department of Pathology, Chosun University School of Medicine, Gwangju, Republic of Korea.
Department of Hemato-oncology, Chosun University Hospital Internal Medicine, Gwangju, Republic of Korea.
Department of Anatomy, Chosun University School of Medicine, Gwangju, Republic of Korea
| | - Sang Gon Park
- DNA Damage Response Network Center, Chosun University, Gwangju, Republic of Korea.
Department of Pharmacology, Chosun University School of Medicine, Gwangju, Republic of Korea.
Department of Anatomy, School of Medicine, Jeju National University, Jeju-Do, Republic of Korea.
Department of Pathology, Chosun University School of Medicine, Gwangju, Republic of Korea.
Department of Hemato-oncology, Chosun University Hospital Internal Medicine, Gwangju, Republic of Korea.
Department of Anatomy, Chosun University School of Medicine, Gwangju, Republic of Korea
| | - In-Youb Chang
- DNA Damage Response Network Center, Chosun University, Gwangju, Republic of Korea.
Department of Pharmacology, Chosun University School of Medicine, Gwangju, Republic of Korea.
Department of Anatomy, School of Medicine, Jeju National University, Jeju-Do, Republic of Korea.
Department of Pathology, Chosun University School of Medicine, Gwangju, Republic of Korea.
Department of Hemato-oncology, Chosun University Hospital Internal Medicine, Gwangju, Republic of Korea.
Department of Anatomy, Chosun University School of Medicine, Gwangju, Republic of Korea
| | - Ho Jin You
- DNA Damage Response Network Center, Chosun University, Gwangju, Republic of Korea.
Department of Pharmacology, Chosun University School of Medicine, Gwangju, Republic of Korea.
Department of Anatomy, School of Medicine, Jeju National University, Jeju-Do, Republic of Korea.
Department of Pathology, Chosun University School of Medicine, Gwangju, Republic of Korea.
Department of Hemato-oncology, Chosun University Hospital Internal Medicine, Gwangju, Republic of Korea.
Department of Anatomy, Chosun University School of Medicine, Gwangju, Republic of Korea
| |
Collapse
|
28
|
Storr SJ, Woolston CM, Zhang Y, Martin SG. Redox environment, free radical, and oxidative DNA damage. Antioxid Redox Signal 2013; 18:2399-408. [PMID: 23249296 DOI: 10.1089/ars.2012.4920] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
SIGNIFICANCE Effective redox homeostasis is critical, and disruption of this process can have important cellular consequences. An array of systems protect the cell from potentially damaging reactive oxygen species (ROS), however if these systems are overwhelmed, for example, in aberrantly functioning cells, ROS can have a number of detrimental consequences, including DNA damage. Oxidative DNA damage can be repaired by a number of DNA repair pathways, such as base excision repair (BER). RECENT ADVANCES The role of ROS in oxidative DNA damage is well established, however, there is an emerging role for ROS and the redox environment in modulating the efficiency of DNA repair pathways targeting oxidative DNA lesions. CRITICAL ISSUES Oxidative DNA damage and modulation of DNA damage and repair by the redox environment are implicated in a number of diseases. Understanding how the redox environment plays such a critical role in DNA damage and repair will allow us to further understand the far reaching cellular consequence of ROS. FUTURE DIRECTIONS In this review, we discuss the detrimental effects of ROS, oxidative DNA damage repair, and the redox systems that exist to control redox homeostasis. We also describe how DNA pathways can be modulated by the redox environment and how the redox environment and oxidative DNA damage plays a role in disease.
Collapse
Affiliation(s)
- Sarah J Storr
- Academic Oncology, University of Nottingham, School of Molecular Medical Sciences, Nottingham University Hospitals Trust, City Hospital Campus, Nottingham, United Kingdom
| | | | | | | |
Collapse
|
29
|
Zhang J, Luo M, Marasco D, Logsdon D, LaFavers KA, Chen Q, Reed A, Kelley MR, Gross ML, Georgiadis MM. Inhibition of apurinic/apyrimidinic endonuclease I's redox activity revisited. Biochemistry 2013; 52:2955-66. [PMID: 23597102 PMCID: PMC3706204 DOI: 10.1021/bi400179m] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The essential base excision repair protein, apurinic/apyrimidinic endonuclease 1 (APE1), plays an important role in redox regulation in cells and is currently targeted for the development of cancer therapeutics. One compound that binds APE1 directly is (E)-3-[2-(5,6-dimethoxy-3-methyl-1,4-benzoquinonyl)]-2-nonylpropenoic acid (E3330). Here, we revisit the mechanism by which this negatively charged compound interacts with APE1 and inhibits its redox activity. At high concentrations (millimolar), E3330 interacts with two regions in the endonuclease active site of APE1, as mapped by hydrogen-deuterium exchange mass spectrometry. However, this interaction lowers the melting temperature of APE1, which is consistent with a loss of structure in APE1, as measured by both differential scanning fluorimetry and circular dichroism. These results are consistent with other findings that E3330 concentrations of >100 μM are required to inhibit APE1's endonuclease activity. To determine the role of E3330's negatively charged carboxylate in redox inhibition, we converted the carboxylate to an amide by synthesizing (E)-2-[(4,5-dimethoxy-2-methyl-3,6-dioxocyclohexa-1,4-dien-1-yl)methylene]-N-methoxy-undecanamide (E3330-amide), a novel uncharged derivative. E3330-amide has no effect on the melting temperature of APE1, suggesting that it does not interact with the fully folded protein. However, E3330-amide inhibits APE1's redox activity in in vitro electrophoretic mobility shift redox and cell-based transactivation assays, producing IC(50) values (8.5 and 7 μM) lower than those produced with E3330 (20 and 55 μM, respectively). Thus, E3330's negatively charged carboxylate is not required for redox inhibition. Collectively, our results provide additional support for a mechanism of redox inhibition involving interaction of E3330 or E3330-amide with partially unfolded APE1.
Collapse
Affiliation(s)
- Jun Zhang
- Department of Chemistry, Washington University in St. Louis, St. Louis, Missouri 63130
| | - Meihua Luo
- Section of Pediatric Hematology and Oncology, Department of Pediatrics, Indiana University School of Medicine
| | - Daniela Marasco
- Department of Pharmacy, University of Naples Federico II Via Mezzocannone, 16, 80134, Naples, Italy
| | - Derek Logsdon
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine
| | - Kaice A. LaFavers
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine
| | - Qiujia Chen
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine
| | - April Reed
- Section of Pediatric Hematology and Oncology, Department of Pediatrics, Indiana University School of Medicine
| | - Mark R. Kelley
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine
- Section of Pediatric Hematology and Oncology, Department of Pediatrics, Indiana University School of Medicine
| | - Michael L. Gross
- Department of Chemistry, Washington University in St. Louis, St. Louis, Missouri 63130
| | - Millie M. Georgiadis
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine
- Department of Chemistry and Chemical Biology, Purdue School of Science, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana 46202
| |
Collapse
|
30
|
Petruccelli LA, Pettersson F, Del Rincón SV, Guilbert C, Licht JD, Miller WH. Expression of leukemia-associated fusion proteins increases sensitivity to histone deacetylase inhibitor-induced DNA damage and apoptosis. Mol Cancer Ther 2013; 12:1591-604. [PMID: 23536727 DOI: 10.1158/1535-7163.mct-12-1039] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Histone deacetylase inhibitors (HDI) show activity in a broad range of hematologic and solid malignancies, yet the percentage of patients in any given malignancy who experience a meaningful clinical response remains small. In this study, we sought to investigate HDI efficacy in acute myeloid leukemia (AML) cells expressing leukemia-associated fusion proteins (LAFP). HDIs have been shown to induce apoptosis, in part, through accumulation of DNA damage and inhibition of DNA repair. LAFPs have been correlated with a DNA repair-deficient phenotype, which may make them more sensitive to HDI-induced DNA damage. We found that expression of the LAFPs PLZF-RARα, PML-RARα, and RUNX1-ETO (AML1-ETO) increased sensitivity to DNA damage and apoptosis induced by the HDI vorinostat. The increase in apoptosis correlated with an enhanced downregulation of the prosurvival protein BCL2. Vorinostat also induced expression of the cell-cycle regulators p19(INK4D) and p21(WAF1) and triggered a G2-M cell cycle arrest to a greater extent in LAFP-expressing cells. The combination of LAFP and vorinostat further led to a greater downregulation of several base excision repair (BER) enzymes. These BER genes represent biomarker candidates for response to HDI-induced DNA damage. Notably, repair of vorinostat-induced DNA double-strand breaks was found to be impaired in PLZF-RARα-expressing cells, suggesting a mechanism by which LAFP expression and HDI treatment cooperate to cause an accumulation of damaged DNA. These data support the continued study of HDI-based treatment regimens in LAFP-positive AMLs.
Collapse
Affiliation(s)
- Luca A Petruccelli
- Lady Davis Institute for Medical Research, Segal Cancer Center, Jewish General Hospital, McGill University, Montreal, Quebec, Canada
| | | | | | | | | | | |
Collapse
|
31
|
Chen S, Xiong G, Wu S, Mo J. Downregulation of apurinic/apyrimidinic endonuclease 1/redox factor-1 enhances the sensitivity of human pancreatic cancer cells to radiotherapy in vitro. Cancer Biother Radiopharm 2012; 28:169-76. [PMID: 23268706 DOI: 10.1089/cbr.2012.1266] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
UNLABELLED Abstract Background: Radiotherapy is an important treatment for the patients with advanced pancreatic cancer. Emerging studies determined apurinic/apyrimidinic endonuclease 1/redox factor-1 (APE1/Ref-1) might associate with the resistance of human pancreatic cancer cells to radiotherapy. AIMS To investigate whether downregulation of APE1/Ref-1 expression by ribonucleic acid interference would increase the sensitivity of chromic-P32 phosphate to pancreatic cancer cells. METHODS The plasmids containing APE-specific and unspecific short hairpin were transfected into Patu-8898 cells. Stable cell clones were selected by G418. The mRNA expression of APE1/Ref-1 was detected by semiquantitative reverse transcription-polymerase chain reaction and the protein expression of APE1/Ref-1 was detected by Western blot analysis; cell proliferation was studied by 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) and colony formation assay; apoptosis was detected by flow cytometry. RESULTS After 24 hours irradiation, APE1/Ref-1 mRNA and protein expression were upregulated, in a concentration-dependent manner. Suppression of APE1/Ref-1 by siRNA increased the pancreatic cancer cells hypersensitive to (32)P-CP. In the combination of (32)P-CP and siRNA group, MTT assay showed that the cell inhibition increased to (74.33%±9.02%), the surviving fraction in the colony formation assay was only 25.00%, and the apoptosis rate was up to (16.77%±0.98%). CONCLUSIONS Knockdown APE1/Ref-1 gene expression may significantly sensitize the Patu-8988 cells to radiotherapy, which may be a useful target for modifying radiation resistance of pancreatic cancer cells to irradiation.
Collapse
Affiliation(s)
- Sumei Chen
- Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, Shanghai Jiao-Tong University School of Medicine Renji Hospital, Shanghai, China
| | | | | | | |
Collapse
|
32
|
Ruiz FM, Francis SM, Tintoré M, Ferreira R, Gil-Redondo R, Morreale A, Ortiz ÁR, Eritja R, Fàbrega C. Receptor-based virtual screening and biological characterization of human apurinic/apyrimidinic endonuclease (Ape1) inhibitors. ChemMedChem 2012; 7:2168-78. [PMID: 23109358 DOI: 10.1002/cmdc.201200372] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Revised: 09/26/2012] [Indexed: 12/25/2022]
Abstract
The endonucleolytic activity of human apurinic/apyrimidinic endonuclease (AP endo, Ape1) is a major factor in maintaining the integrity of the genome. Conversely, as an undesired effect, Ape1 overexpression has been linked to resistance to radio- and chemotherapeutic treatments in several human tumors. Inhibition of Ape1 using siRNA or the expression of a dominant negative form of the protein has been shown to sensitize cells to DNA-damaging agents, including various chemotherapeutic agents. Therefore, inhibition of the enzymatic activity of Ape1 might result in a potent antitumor therapy. A number of small molecules have been described as Ape1 inhibitors; however, those compounds are in the early stages of development. Herein we report the identification of new compounds as potential Ape1 inhibitors through a docking-based virtual screening technique. Some of the compounds identified have in vitro activities in the low-to-medium micromolar range. Interaction of these compounds with the Ape1 protein was observed by mass spectrometry. These molecules also potentiate the cytotoxicity of the chemotherapeutic agent methyl methanesulfonate in fibrosarcoma cells. This study demonstrates the power of docking and virtual screening techniques as initial steps in the design of new drugs, and opens the door to the development of a new generation of Ape1 inhibitors.
Collapse
|
33
|
Kelley MR, Georgiadis MM, Fishel ML. APE1/Ref-1 role in redox signaling: translational applications of targeting the redox function of the DNA repair/redox protein APE1/Ref-1. Curr Mol Pharmacol 2012; 5:36-53. [PMID: 22122463 DOI: 10.2174/1874467211205010036] [Citation(s) in RCA: 130] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2010] [Revised: 08/18/2010] [Accepted: 08/25/2010] [Indexed: 12/22/2022]
Abstract
The heterogeneity of most cancers diminishes the treatment effectiveness of many cancer-killing regimens. Thus, treatments that hold the most promise are ones that block multiple signaling pathways essential to cancer survival. One of the most promising proteins in that regard is APE1, whose reduction-oxidation activity influences multiple cancer survival mechanisms, including growth, proliferation, metastasis, angiogenesis, and stress responses. With the continued research using APE1 redox specific inhibitors alone or coupled with developing APE1 DNA repair inhibitors it will now be possible to further delineate the role of APE1 redox, repair and protein-protein interactions. Previously, use of siRNA or over expression approaches, while valuable, do not give a clear picture of the two major functions of APE1 since both techniques severely alter the cellular milieu. Additionally, use of the redox-specific APE1 inhibitor, APX3330, now makes it possible to study how inhibition of APE1's redox signaling can affect multiple tumor pathways and can potentiate the effectiveness of existing cancer regimens. Because APE1 is an upstream effector of VEGF, as well as other molecules that relate to angiogenesis and the tumor microenvironment, it is also being studied as a possible treatment for agerelated macular degeneration and diabetic retinopathy. This paper reviews all of APE1's functions, while heavily focusing on its redox activities. It also discusses APE1's altered expression in many cancers and the therapeutic potential of selective inhibition of redox regulation, which is the subject of intense preclinical studies.
Collapse
Affiliation(s)
- Mark R Kelley
- Department of Pediatrics (Section of Hematology/Oncology), Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| | | | | |
Collapse
|
34
|
Acetylation on critical lysine residues of Apurinic/apyrimidinic endonuclease 1 (APE1) in triple negative breast cancers. Biochem Biophys Res Commun 2012; 424:34-9. [PMID: 22713458 DOI: 10.1016/j.bbrc.2012.06.039] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2012] [Accepted: 06/09/2012] [Indexed: 12/18/2022]
Abstract
Protein acetylation plays many roles within living cells, modulating metabolism, signaling and cell response to environmental stimuli, as well as having an impact on pathological conditions, such as cancer pathogenesis and progression. The Apurinic/apyrimidinic endonuclease APE1 is a vital protein that exerts many functions in mammalian cells, acting as a pivotal enzyme in the base excision repair (BER) pathway of DNA lesions, as transcriptional modulator and being also involved in RNA metabolism. As an eclectic and abundant protein, APE1 is extensively modulated through post-translational modifications, including acetylation. Many findings have linked APE1 to cancer development and onset of chemo- and radio-resistance. Here, we focus on APE1 acetylation pattern in triple negative breast cancer (TNBC). We describe the validation and characterization of a polyclonal antibody that is specific for the acetylation on lysine 35 of the protein. Finally, we use the new antibody to analyze the APE1 acetylation pattern on a cohort of TNBC specimens, exploiting immunohistochemistry. Our findings reveal a profound deregulation of APE1 acetylation status in TNBC, opening new perspectives for future improvements on treatment and prognosis of this molecular subtype of breast carcinomas.
Collapse
|
35
|
Tang CH, Wei W, Liu L. Regulation of DNA repair by S-nitrosylation. Biochim Biophys Acta Gen Subj 2011; 1820:730-5. [PMID: 21571039 DOI: 10.1016/j.bbagen.2011.04.014] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2011] [Revised: 04/27/2011] [Accepted: 04/28/2011] [Indexed: 02/02/2023]
Abstract
BACKGROUND Expression of the inducible nitric oxide synthase (iNOS) is commonly induced in inflammation, an important risk factor of cancer. Nitric oxide (NO) and related reactive nitrogen species can directly cause DNA damage to increase DNA mutation. They can also indirectly affect DNA mutation by modulation of DNA repair proteins, in particular through protein S-nitrosylation, a key regulatory mechanism of NO. SCOPE OF REVIEW Here we review protein targets, molecular mechanisms, and potential roles of NO in the regulation of DNA repair, with a focus on S-nitrosylation of DNA repair proteins by endogenous NO synthase activity. MAJOR CONCLUSIONS Recent studies have identified a number of key DNA repair proteins as targets of S-nitrosylation, including O(6)-alkylguanine-DNA-alkyltransferase (AGT), 8-oxoguanine glycosylase, apurinic-apyrimidinic endonuclease 1, and DNA-dependent protein kinase catalytic subunit. S-nitrosylation has been shown to modulate the activity, stability, and cellular localization of DNA repair proteins. The level of protein S-nitrosylation depends both on NO synthesis by NO synthases and on denitrosylation by a major denitrosylase, S-nitrosoglutathione reductase (GSNOR). Dysregulated S-nitrosylation of AGT due to GSNOR deficiency inactivates AGT-dependent DNA repair and appears to contribute critically to hepatocarcinogenesis. GENERAL SIGNIFICANCE Studies on the S-nitrosylation of DNA repair proteins have started to reveal molecular mechanisms for the contribution of inflammation to mutagenesis and carcinogenesis. The modulation of protein S-nitrosylation to affect the activity of DNA repair proteins may provide a therapeutic strategy to prevent DNA damage and mutation frequently associated with chronic inflammation and to sensitize cancer cells to DNA-damaging drugs. This article is part of a Special Issue entitled Regulation of Cellular Processes by S-nitrosylation.
Collapse
Affiliation(s)
- Chi-Hui Tang
- The Department of Microbiology and Immunology, University of California, San Francisco, CA, United States
| | | | | |
Collapse
|
36
|
Kelley MR, Luo M, Reed A, Su D, Delaplane S, Borch RF, Nyland RL, Gross ML, Georgiadis MM. Functional analysis of novel analogues of E3330 that block the redox signaling activity of the multifunctional AP endonuclease/redox signaling enzyme APE1/Ref-1. Antioxid Redox Signal 2011; 14:1387-401. [PMID: 20874257 PMCID: PMC3061197 DOI: 10.1089/ars.2010.3410] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
APE1 is a multifunctional protein possessing DNA repair and redox activation of transcription factors. Blocking these functions leads to apoptosis, antiangiogenesis, cell-growth inhibition, and other effects, depending on which function is blocked. Because a selective inhibitor of the APE redox function has potential as a novel anticancer therapeutic, new analogues of E3330 were synthesized. Mass spectrometry was used to characterize the interactions of the analogues (RN8-51, 10-52, and 7-60) with APE1. RN10-52 and RN7-60 were found to react rapidly with APE1, forming covalent adducts, whereas RN8-51 reacted reversibly. Median inhibitory concentration (IC(50) values of all three compounds were significantly lower than that of E3330. EMSA, transactivation assays, and endothelial tube growth-inhibition analysis demonstrated the specificity of E3330 and its analogues in blocking the APE1 redox function and demonstrated that the analogues had up to a sixfold greater effect than did E3330. Studies using cancer cell lines demonstrated that E3330 and one analogue, RN8-51, decreased the cell line growth with little apoptosis, whereas the third, RN7-60, caused a dramatic effect. RN8-51 shows particular promise for further anticancer therapeutic development. This progress in synthesizing and isolating biologically active novel E3330 analogues that effectively inhibit the APE1 redox function validates the utility of further translational anticancer therapeutic development.
Collapse
Affiliation(s)
- Mark R Kelley
- Department of Pediatrics (Section of Hematology/Oncology), Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, 980 West Walnut Street, Indianapolis, IN 46202, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Sheng Q, Zhang Y, Wang R, Zhang J, Chen B, Wang J, Zhang W, Xin X. Prognostic significance of APE1 cytoplasmic localization in human epithelial ovarian cancer. Med Oncol 2011; 29:1265-71. [PMID: 21479902 DOI: 10.1007/s12032-011-9931-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2011] [Accepted: 03/24/2011] [Indexed: 01/03/2023]
Abstract
Cytoplasmic localization of apurinic/apyrimidinic endonuclease 1 (APE1) correlates with different tumorigenic processes and poor prognosis in several cancer types. However, rare investigation into the prognosis value of cytoplasmic localization of APE1 was provided in ovarian cancer. The present study examined for the first time the cytoplasmic localization of APE1 in epithelial ovarian cancer (EOC) by immunohistochemistry. The relationship between cytoplasmic localization of APE1 and clinicopathological parameters, as well as the correlation between cytoplasmic localization of APE1 and prognosis, was investigated. We found that cytoplasmic positivity was significantly higher in EOCs with low tumor differentiation (P = 0.002) and was significantly higher in advanced Federation International of Gynecology and Obstetrics (FIGO) stage (III + IV) patients compared to that in early FIGO stage (I + II) patients (40.7% vs. 11.8%; P = 0.002). No significant difference was observed in APE1 pattern referring to age, tumor size, family history, histological type, ascites, and lymphatic metastasis (P > 0.05). In addition, a lower survival rate was found in patients with cytoplasmic positive localization of APE1 compared to that in patients with cytoplasmic negative localization (P < 0.05). All these findings suggest that cytoplasmic localization of APE1 is associated with tumor progression and might be a valuable prognostic marker for EOC.
Collapse
Affiliation(s)
- Qingsong Sheng
- Department of Gynecology and Obstetrics, Xijing Hospital, Fourth Military Medical University, 710032 Xi'an, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Al-Attar A, Gossage L, Fareed KR, Shehata M, Mohammed M, Zaitoun AM, Soomro I, Lobo DN, Abbotts R, Chan S, Madhusudan S. Human apurinic/apyrimidinic endonuclease (APE1) is a prognostic factor in ovarian, gastro-oesophageal and pancreatico-biliary cancers. Br J Cancer 2010; 102:704-9. [PMID: 20087352 PMCID: PMC2837561 DOI: 10.1038/sj.bjc.6605541] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2009] [Revised: 12/09/2009] [Accepted: 12/16/2009] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Altered DNA repair may be associated with aggressive tumour biology and impact upon response to chemotherapy and radiotherapy. We investigated whether expression of human AP endonuclease (APE1), a key multifunctional protein involved in DNA BER, would impact on clinicopathological outcomes in ovarian, gastro-oesophageal, and pancreatico-biliary cancer. METHODS Formalin-fixed human ovarian, gastro-oesophageal, and pancreatico-biliary cancers were constructed into TMAs. Expression of APE1 was analysed by IHC and correlated to clinicopathological variables. RESULTS In ovarian cancer, nuclear APE1 expression was seen in 71.9% (97 out of 135) of tumours and correlated with tumour type (P=0.006), optimal debulking (P=0.009), and overall survival (P=0.05). In gastro-oesophageal cancers previously exposed to neoadjuvant chemotherapy, 34.8% (16 out of 46) of tumours were positive in the nucleus and this correlated with shorter overall survival (P=0.005), whereas cytoplasmic localisation correlated with tumour dedifferentiation (P=0.034). In pancreatico-biliary cancer, nuclear staining was seen in 44% (32 out of 72) of tumours. Absence of cytoplasmic staining was associated with perineural invasion (P=0.007), vascular invasion (P=0.05), and poorly differentiated tumours (P=0.068). A trend was noticed with advanced stage (P=0.077). CONCLUSIONS Positive clinicopathological correlations of APE1 expression suggest that APE1 is a potential drug target in ovarian, gastro-oesophageal, and pancreatico-biliary cancers.
Collapse
Affiliation(s)
- A Al-Attar
- Department of Clinical Oncology, Nottingham University Hospitals NHS Trust, Nottingham, UK
| | - L Gossage
- Laboratory of Molecular Oncology, Academic Unit of Oncology, School of Molecular Medical Sciences, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham, UK
| | - K R Fareed
- Laboratory of Molecular Oncology, Academic Unit of Oncology, School of Molecular Medical Sciences, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham, UK
| | - M Shehata
- Department of Clinical Oncology, Nottingham University Hospitals NHS Trust, Nottingham, UK
| | - M Mohammed
- Laboratory of Molecular Oncology, Academic Unit of Oncology, School of Molecular Medical Sciences, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham, UK
| | - A M Zaitoun
- Department of Pathology, Nottingham University Hospitals NHS Trust, Nottingham, UK
| | - I Soomro
- Department of Pathology, Nottingham University Hospitals NHS Trust, Nottingham, UK
| | - D N Lobo
- Division of Gastrointestinal Surgery, Nottingham Digestive Diseases Centre, NIHR Biomedical Research Unit Nottingham University Hospitals NHS Trust, Queen's Medical Centre, Nottingham, UK
| | - R Abbotts
- Laboratory of Molecular Oncology, Academic Unit of Oncology, School of Molecular Medical Sciences, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham, UK
| | - S Chan
- Department of Clinical Oncology, Nottingham University Hospitals NHS Trust, Nottingham, UK
| | - S Madhusudan
- Laboratory of Molecular Oncology, Academic Unit of Oncology, School of Molecular Medical Sciences, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham, UK
| |
Collapse
|
39
|
Abbotts R, Madhusudan S. Human AP endonuclease 1 (APE1): from mechanistic insights to druggable target in cancer. Cancer Treat Rev 2010; 36:425-35. [PMID: 20056333 DOI: 10.1016/j.ctrv.2009.12.006] [Citation(s) in RCA: 172] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2009] [Revised: 12/02/2009] [Accepted: 12/07/2009] [Indexed: 01/16/2023]
Abstract
DNA base excision repair (BER) is critically involved in the processing of DNA base damage induced by alkylating agents. Pharmacological inhibition of BER (using PARP inhibitors), either alone or in combination with chemotherapy has recently shown promise in clinical trials. Human apurinic/apyrimidinic endonuclease 1(APE1) is an essential BER protein that is involved in the processing of potentially cytotoxic abasic sites that are obligatory intermediates in BER. Here we provide a summary of the basic mechanistic role of APE1 in DNA repair and redox regulation and highlight preclinical and clinical data that confirm APE1 as a valid anticancer drug target. Development of small molecule inhibitors of APE1 is an area of intense research and current evidence using APE1 inhibitors has demonstrated potentiation of cytotoxicity of alkylating agents in preclinical models implying translational applications in cancer patients.
Collapse
Affiliation(s)
- Rachel Abbotts
- Translational DNA Repair Group, Laboratory of Molecular Oncology, Academic Unit of Oncology, School of Molecular Medical Sciences, University of Nottingham, Nottingham, UK
| | | |
Collapse
|
40
|
Zawahir Z, Dayam R, Deng J, Pereira C, Neamati N. Pharmacophore Guided Discovery of Small-Molecule Human Apurinic/Apyrimidinic Endonuclease 1 Inhibitors. J Med Chem 2008; 52:20-32. [DOI: 10.1021/jm800739m] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Zahrah Zawahir
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, 1985 Zonal Avenue, Los Angeles, California 90033
| | - Raveendra Dayam
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, 1985 Zonal Avenue, Los Angeles, California 90033
| | - Jinxia Deng
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, 1985 Zonal Avenue, Los Angeles, California 90033
| | - Cherelene Pereira
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, 1985 Zonal Avenue, Los Angeles, California 90033
| | - Nouri Neamati
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, 1985 Zonal Avenue, Los Angeles, California 90033
| |
Collapse
|
41
|
Di Maso V, Avellini C, Crocè LS, Rosso N, Quadrifoglio F, Cesaratto L, Codarin E, Bedogni G, Beltrami CA, Tell G, Tiribelli C. Subcellular localization of APE1/Ref-1 in human hepatocellular carcinoma: possible prognostic significance. Mol Med 2007; 13:89-96. [PMID: 17515960 PMCID: PMC1869623 DOI: 10.2119/2006-00084.dimaso] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2006] [Accepted: 12/07/2006] [Indexed: 12/21/2022] Open
Abstract
APE1/Ref-1, normally localized in the nucleus, is a regulator of the cellular response to oxidative stress. Cytoplasmic localization has been observed in several tumors and correlates with a poor prognosis. Because no data are available on liver tumors, we investigated APE1/Ref-1 subcellular localization and its correlation with survival in 47 consecutive patients undergoing hepatocellular carcinoma (HCC) resection. APE1/Ref-1 expression was determined by immunohistochemistry in HCC and surrounding liver cirrhosis (SLC) and compared with normal liver tissue. Survival probability was evaluated using Kaplan-Meier curves (log-rank test) and Cox regression. Cytoplasmic expression of APE1/Ref-1 was significantly higher in HCC than in SLC (P = 0.00001); normal liver showed only nuclear reactivity. Patients with poorly differentiated HCC showed a cytoplasmic expression three times higher than those with well-differentiated HCC (P = 0.03). Cytoplasmic localization was associated with a median survival time shorter than those with negative cytoplasmic reactivity (0.44 compared with 1.64 years, P = 0.003), and multivariable analysis confirmed that cytoplasmic APE1/Ref-1 localization is a predictor of survival. Cytoplasmic expression of APE1/Ref-1 is increased in HCC and is associated with a lower degree of differentiation and a shorter survival time, pointing to the use of the cytoplasmic localization of APE1/Ref-1 as a prognostic marker for HCC.
Collapse
Affiliation(s)
- Vittorio Di Maso
- Centro Studi Fegato, AREA Science Park and University of Trieste
| | - Claudio Avellini
- Dipartimento di Scienze Mediche e Morfologiche, University of Udine
| | | | - Natalia Rosso
- Centro Studi Fegato, AREA Science Park and University of Trieste
| | | | - Laura Cesaratto
- Dipartimento di Scienze e Tecnologie Biomediche, University of Udine, Italy
| | - Erika Codarin
- Dipartimento di Scienze e Tecnologie Biomediche, University of Udine, Italy
| | - Giorgio Bedogni
- Centro Studi Fegato, AREA Science Park and University of Trieste
| | | | - Gianluca Tell
- Dipartimento di Scienze e Tecnologie Biomediche, University of Udine, Italy
| | - Claudio Tiribelli
- Centro Studi Fegato, AREA Science Park and University of Trieste
- Address correspondence and reprint requests to Claudio Tiribelli, Centro Studi Fegato, AREA Science Park, Ed.Q, SS14 km. 163.5, Basovizza, 34012 Trieste, Italy. Phone: 040-3757840; Fax: 040-399 4226; E-mail:
| |
Collapse
|
42
|
Di Maso V, Avellini C, Crocè LS, Rosso N, Quadrifoglio F, Cesaratto L, Codarin E, Bedogni G, Beltrami CA, Tell G, Tiribelli C. Subcellular localization of APE1/Ref-1 in human hepatocellular carcinoma: possible prognostic significance. MOLECULAR MEDICINE (CAMBRIDGE, MASS.) 2007. [PMID: 17515960 DOI: 10.2119/2006-00084.di] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
APE1/Ref-1, normally localized in the nucleus, is a regulator of the cellular response to oxidative stress. Cytoplasmic localization has been observed in several tumors and correlates with a poor prognosis. Because no data are available on liver tumors, we investigated APE1/Ref-1 subcellular localization and its correlation with survival in 47 consecutive patients undergoing hepatocellular carcinoma (HCC) resection. APE1/Ref-1 expression was determined by immunohistochemistry in HCC and surrounding liver cirrhosis (SLC) and compared with normal liver tissue. Survival probability was evaluated using Kaplan-Meier curves (log-rank test) and Cox regression. Cytoplasmic expression of APE1/Ref-1 was significantly higher in HCC than in SLC (P = 0.00001); normal liver showed only nuclear reactivity. Patients with poorly differentiated HCC showed a cytoplasmic expression three times higher than those with well-differentiated HCC (P = 0.03). Cytoplasmic localization was associated with a median survival time shorter than those with negative cytoplasmic reactivity (0.44 compared with 1.64 years, P = 0.003), and multivariable analysis confirmed that cytoplasmic APE1/Ref-1 localization is a predictor of survival. Cytoplasmic expression of APE1/Ref-1 is increased in HCC and is associated with a lower degree of differentiation and a shorter survival time, pointing to the use of the cytoplasmic localization of APE1/Ref-1 as a prognostic marker for HCC.
Collapse
Affiliation(s)
- Vittorio Di Maso
- Centro Studi Fegato, AREA Science Park and University of Trieste, Trieste, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Fishel ML, Kelley MR. The DNA base excision repair protein Ape1/Ref-1 as a therapeutic and chemopreventive target. Mol Aspects Med 2007; 28:375-95. [PMID: 17560642 DOI: 10.1016/j.mam.2007.04.005] [Citation(s) in RCA: 208] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2007] [Accepted: 04/15/2007] [Indexed: 10/23/2022]
Abstract
With our growing understanding of the pathways involved in cell proliferation and signaling, targeted therapies, in the treatment of cancer are entering the clinical arena. New and emerging targets are proteins involved in DNA repair pathways. Inhibition of various proteins in the DNA repair pathways sensitizes cancer cells to DNA damaging agents such as chemotherapy and/or radiation. We study the apurinic endonuclease 1/redox factor-1 (Ape1/Ref-1) and believe that its crucial function in DNA repair and reduction-oxidation or redox signaling make it an excellent target for sensitizing tumor cells to chemotherapy. Ape1/Ref-1 is an essential enzyme in the base excision repair (BER) pathway which is responsible for the repair of DNA caused by oxidative and alkylation damage. As importantly, Ape1/Ref-1 also functions as a redox factor maintaining transcription factors in an active reduced state. Ape1/Ref-1 stimulates the DNA binding activity of numerous transcription factors that are involved in cancer promotion and progression such as AP-1 (Fos/Jun), NFkappaB, HIF-1alpha, CREB, p53 and others. We will discuss what is known regarding the pharmacological targeting of the DNA repair activity, as well as the redox activity of Ape1/Ref-1, and explore the budding clinical utility of inhibition of either of these functions in cancer treatment. A brief discussion of the effect of polymorphisms in its DNA sequence is included because of Ape1/Ref-1's importance to maintenance and integrity of the genome. Experimental modification of Ape1/Ref-1 activity changes the response of cells and of organisms to DNA damaging agents, suggesting that Ape1/Ref-1 may also be a productive target of chemoprevention. In this review, we will provide an overview of Ape1/Ref-1's activities and explore the potential of this protein as a target in cancer treatment as well as its role in chemoprevention.
Collapse
Affiliation(s)
- Melissa L Fishel
- Department of Pediatrics (Section of Hematology/Oncology), Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, United States
| | | |
Collapse
|
44
|
Di Maso V, Avellini C, Crocè LS, Rosso N, Quadrifoglio F, Cesaratto L, Codarin E, Bedogni G, Beltrami CA, Tell G, Tiribelli C. Subcellular localization of APE1/Ref-1 in human hepatocellular carcinoma: possible prognostic significance. Mol Med 2007; 13:89-96. [PMID: 17515960 DOI: 10.2119/2006-00084.di.maso] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2006] [Accepted: 12/07/2006] [Indexed: 01/04/2025] Open
Abstract
APE1/Ref-1, normally localized in the nucleus, is a regulator of the cellular response to oxidative stress. Cytoplasmic localization has been observed in several tumors and correlates with a poor prognosis. Because no data are available on liver tumors, we investigated APE1/Ref-1 subcellular localization and its correlation with survival in 47 consecutive patients undergoing hepatocellular carcinoma (HCC) resection. APE1/Ref-1 expression was determined by immunohistochemistry in HCC and surrounding liver cirrhosis (SLC) and compared with normal liver tissue. Survival probability was evaluated using Kaplan-Meier curves (log-rank test) and Cox regression. Cytoplasmic expression of APE1/Ref-1 was significantly higher in HCC than in SLC (P = 0.00001); normal liver showed only nuclear reactivity. Patients with poorly differentiated HCC showed a cytoplasmic expression three times higher than those with well-differentiated HCC (P = 0.03). Cytoplasmic localization was associated with a median survival time shorter than those with negative cytoplasmic reactivity (0.44 compared with 1.64 years, P = 0.003), and multivariable analysis confirmed that cytoplasmic APE1/Ref-1 localization is a predictor of survival. Cytoplasmic expression of APE1/Ref-1 is increased in HCC and is associated with a lower degree of differentiation and a shorter survival time, pointing to the use of the cytoplasmic localization of APE1/Ref-1 as a prognostic marker for HCC.
Collapse
Affiliation(s)
- Vittorio Di Maso
- Centro Studi Fegato, AREA Science Park and University of Trieste, Trieste, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Madhusudan S, Smart F, Shrimpton P, Parsons JL, Gardiner L, Houlbrook S, Talbot DC, Hammonds T, Freemont PA, Sternberg MJE, Dianov GL, Hickson ID. Isolation of a small molecule inhibitor of DNA base excision repair. Nucleic Acids Res 2005; 33:4711-24. [PMID: 16113242 PMCID: PMC1188083 DOI: 10.1093/nar/gki781] [Citation(s) in RCA: 172] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
The base excision repair (BER) pathway is essential for the removal of DNA bases damaged by alkylation or oxidation. A key step in BER is the processing of an apurinic/apyrimidinic (AP) site intermediate by an AP endonuclease. The major AP endonuclease in human cells (APE1, also termed HAP1 and Ref-1) accounts for >95% of the total AP endonuclease activity, and is essential for the protection of cells against the toxic effects of several classes of DNA damaging agents. Moreover, APE1 overexpression has been linked to radio- and chemo-resistance in human tumors. Using a newly developed high-throughput screen, several chemical inhibitors of APE1 have been isolated. Amongst these, CRT0044876 was identified as a potent and selective APE1 inhibitor. CRT0044876 inhibits the AP endonuclease, 3′-phosphodiesterase and 3′-phosphatase activities of APE1 at low micromolar concentrations, and is a specific inhibitor of the exonuclease III family of enzymes to which APE1 belongs. At non-cytotoxic concentrations, CRT0044876 potentiates the cytotoxicity of several DNA base-targeting compounds. This enhancement of cytotoxicity is associated with an accumulation of unrepaired AP sites. In silico modeling studies suggest that CRT0044876 binds to the active site of APE1. These studies provide both a novel reagent for probing APE1 function in human cells, and a rational basis for the development of APE1-targeting drugs for antitumor therapy.
Collapse
Affiliation(s)
| | - Fiona Smart
- Cancer Research Technology Ltd, Wolfson Institute for Biomedical ResearchThe Cruciform Building, Gower Street, London, WC1E 6BT, UK
| | - Paul Shrimpton
- Structural Bioinformatics Group, Centre for Bioinformatics, Imperial College LondonLondon, SW7 2AZ, UK
| | - Jason L. Parsons
- MRC Radiation and Genome Stability UnitHarwell, Oxfordshire, OX11 0RD, UK
| | | | | | | | - Timothy Hammonds
- Cancer Research Technology Ltd, Wolfson Institute for Biomedical ResearchThe Cruciform Building, Gower Street, London, WC1E 6BT, UK
| | - Paul A. Freemont
- Centre for Structural Biology, Imperial College LondonLondon SW7 2AZ, UK
| | - Michael J. E. Sternberg
- Structural Bioinformatics Group, Centre for Bioinformatics, Imperial College LondonLondon, SW7 2AZ, UK
| | - Grigory L. Dianov
- MRC Radiation and Genome Stability UnitHarwell, Oxfordshire, OX11 0RD, UK
| | - Ian D. Hickson
- To whom correspondence should be addressed. Tel: +44 0 1865 222 417; Fax: +44 0 1865 222 431;
| |
Collapse
|
46
|
Tell G, Damante G, Caldwell D, Kelley MR. The intracellular localization of APE1/Ref-1: more than a passive phenomenon? Antioxid Redox Signal 2005; 7:367-84. [PMID: 15706084 DOI: 10.1089/ars.2005.7.367] [Citation(s) in RCA: 291] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Human apurinic/apyrimidinic endonuclease 1/redox effector factor-1 (APE1/Ref-1) is a perfect paradigm of the functional complexity of a biological macromolecule. First, it plays a crucial role, by both redox-dependent and -independent mechanisms, as a transcriptional coactivator for different transcription factors, either ubiquitous (i.e., AP-1, Egr-1, NF-kappaB, p53, HIF) or tissue-specific (i.e., PEBP-2, Pax-5 and -8, TTF-1), in controlling different cellular processes such as apoptosis, proliferation, and differentiation. Second, it acts, as an apurinic/apyrimidinic endonuclease, during the second step of the DNA base excision repair pathway, which is responsible for the repair of cellular alkylation and oxidative DNA damages. Third, it controls the intracellular reactive oxygen species production by negatively regulating the activity of the Ras-related GTPase Rac1. Despite these known functions of APE1/Ref-1, information is still scanty about the molecular mechanisms responsible for the coordinated control of its several activities. Some evidence suggests that the expression and subcellular localization of APE1/Ref-1 are finely tuned. APE1/Ref-1 is a ubiquitous protein, but its expression pattern differs according to the different cell types. APE1/Ref-1 subcellular localization is mainly nuclear, but cytoplasmic staining has also been reported, the latter being associated with mitochondria and/or presence within the endoplasmic reticulum. It is not by chance that both expression and subcellular localization are altered in several metabolic and proliferative disorders, such as in tumors and aging. Moreover, a fundamental role played by different posttranslational modifications in modulating APE1/Ref-1 functional activity is becoming evident. In the present review, we tried to put together a growing body of information concerning APE1/Ref-1's different functions, shedding new light on present and future directions to understand fully this unique molecule.
Collapse
Affiliation(s)
- Gianluca Tell
- Department of Biomedical Sciences and Technologies, University of Udine, Piazzale Kolbe 4, 33100 Udine, Italy.
| | | | | | | |
Collapse
|
47
|
Zhang QH, Xiao HL, Li ZP, Zhong ZY, He Y, Qing Y, Wang D. Expression of apurinic/apyrimidinic endonuclease 1 in hepatocellular carcinoma. Shijie Huaren Xiaohua Zazhi 2005; 13:508-511. [DOI: 10.11569/wcjd.v13.i4.508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To explore the expression and clinicopathological relevance of apurinic/apyrimidinic endonuclease (Ape1) in hepatocellular carcinoma (HCC).
METHODS: Ape1 expression was detected by immunohistochemical S-P method in tissues of normal liver (n = 10), hepatocirrhosis (n = 40) and HCC (n = 103).
RESULTS: Three types of Ape1 positive staining were noticed in HCC: nuclear, cytoplasmic and mixed. There were significant more mixed type of Ape1 expression in HCC than in hepatocirrhosis and normal liver (49.5% vs 20%, 0%, P<0.01). The positive degree of Ape1 expression in both nucleus and cytoplasm was significantly higher in HCC than that in hepatocirrhosis and normal liver, and higher in hepatocirrhosis than that in normal liver (P<0.01). The positive expression of Ape1 was correlated with the histological grade of HCC (P<0.05).
CONCLUSION: Overexperssion of Ape1 in neoplastic cells might be a useful marker in evaluating histological grade of HCC. Ape1 gene may play an important role in tumorigenesis and progression of HCC.
Collapse
|
48
|
Minisini AM, Di Loreto C, Mansutti M, Artico D, Pizzolitto S, Piga A, Puglisi F. Topoisomerase IIalpha and APE/ref-1 are associated with pathologic response to primary anthracycline-based chemotherapy for breast cancer. Cancer Lett 2004; 224:133-9. [PMID: 15911109 DOI: 10.1016/j.canlet.2004.11.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2004] [Revised: 10/30/2004] [Accepted: 11/01/2004] [Indexed: 11/15/2022]
Abstract
The aim of this study was to evaluate the role of several biological and histological markers (topoisomerase IIalpha, MIB-1, E2F, apoptotic index, APE/ref-1, p53, Her-2/neu, estrogen and porgesterone receptors, and histological grading) as predictors of pathologic response after anthracycline-based chemotherapy for breast cancer. A series of 50 consecutive breast cancer patients receiving anthracycline-based primary chemotherapy were retrospectively studied. Biological markers were assessed by immunohistochemistry (and by TUNEL assay for apoptotic index) in pre-treatment core biopsies and post-treatment surgical samples. The expression of topoisomerase IIalpha, E2F, MIB-1, estrogen and progesterone receptors decreased, while APE/ref-1 staining increased after treatment. Higher topoisomerase IIalpha (P=0.007) and lower APE/ref-1 (P=0.04) expression were associated with better pathologic response.
Collapse
Affiliation(s)
- Alessandro M Minisini
- Medical Oncology Department, University of Udine and S. Maria della Misericordia Hospital, P.le SM della Misericordia, I-33100 Udine, Italy.
| | | | | | | | | | | | | |
Collapse
|
49
|
Abstract
Human apurinic/apyrimidinic endonuclease/redox factor-1 (hAPE/Ref-1) is a multifunctional protein involved in the repair of DNA damaged by oxidative or alkylating compounds as well as in the regulation of stress inducible transcription factors such as AP-1, NF-kappaB, HIF-1 and p53. With respect to transcriptional regulation, both redox dependent and independent mechanisms have been described. APE/Ref-1 also acts as a transcriptional repressor. Recent data indicate that APE/Ref-1 negatively regulates the activity of the Ras-related GTPase Rac1. How these different physiological activities of APE/Ref-1 are coordinated is poorly understood. So far, convincing evidence is available that the expression of the APE/Ref-1 gene is inducible by oxidative stress and that overexpressed APE/Ref-1 protein protects cells against the genotoxic and cell killing effects of reactive oxygen species (ROS), whereas down-regulation sensitizes cells. Therefore, APE/Ref-1 can be considered to be part of an adaptive cellular response mechanism to oxidative genotoxic stress. The physiological relevance of increase of either the repair or redox activity of APE/Ref-1 for this adaptive response is unclear. Data will be shown that transfection of the truncated protein exhibiting either one of the activities provoked increase of resistance. Since APE/Ref-1 expression level and intracellular localization is variable in different types of tumors and frequently found to be different in non-malignant compared to the corresponding malignant human tissue, the protein is thought to be a diagnostic and prognostic tumor marker. Because of its involvement in DNA repair and apoptosis-related signaling mechanisms, APE/Ref-1 is also being discussed as a novel target for tumor-therapeutic approaches.
Collapse
Affiliation(s)
- Gerhard Fritz
- Division of Applied Toxicology, Institute of Toxicology, University of Mainz, Obere Zahlbacher Str. 67, D-55131 Mainz, Germany.
| | | | | | | |
Collapse
|
50
|
Wang GS, Wang MW, Wu BY, Liu XB, You WD, Yang XY. A gene encoding an apurinic/apyrimidinic endonuclease-like protein is up-regulated in human gastric cancer. World J Gastroenterol 2003; 9:1196-201. [PMID: 12800223 PMCID: PMC4611783 DOI: 10.3748/wjg.v9.i6.1196] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To identify the gene that may predispose to human gastric cancer and to analyze its expression in gastric cancer and non-tumorous gastric mucosa.
METHODS: Cancer, para-tumor, and non-tumor gastric tissues were studied for gene expression profile using fluorescent differential display reverse transcription polymerase chain reaction (DDRT-PCR). The differentially expressed bands of interest were analyzed by cloning, Northern blotting, and sequencing. The sequencing results were compared with the GenBank database for homology and conserved domain analysis. In situ hybridization with DIG-labeled cRNA probes was used to detect the expression of gene in paraffin embedded gastric adenocarcinoma and non-cancerous tissues.
RESULTS: A gene expressed higher in tumor and para-tumor tissues than in their non-tumor counterparts of all 7 tested gastric adenocarcinoma patients was identified by means of DDRT-PCR analysis. It was named GCRG213 (gastric cancer related gene 213). Northern blot confirmed the differential expression. GCRG213 (GenBank No. AY053451) consisted of 1094 base pairs with an open reading frame (ORF) which encoded 142 amino acids. The deduced amino acid sequence contained a putative conserved domain, apurinic/apyrimidinic endonuclease (APE). In situ hybridization analysis showed that GCRG213 was expressed higher in gastric cancer tissues than in their corresponding non-tumor ones. Precancerous leisions of gastric adenocarcinoma showed a high GCRG213 expression, too. No difference of the expression patterns was found between the early and advanced gastric cancer.
CONCLUSION: A gene named GCRG213 was identified in human gastric adenocarcinoma. It encoded an APE-like protein which was probably a new member of the APE family. GCRG213 was over-expressed not only in gastric cancer, but also in its precancerous leisions. The role of GCRG213 expression in carcinogenesis needs further study.
Collapse
Affiliation(s)
- Gang-Shi Wang
- Department of Gerontal Gastroenterology, General Hospital of Chinese PLA, Beijing 100853, China.
| | | | | | | | | | | |
Collapse
|