1
|
Moutsoglou D, Syal A, Lopez S, Nelson EC, Chen L, Kabage AJ, Fischer M, Khoruts A, Vaughn BP, Staley C. Novel Microbial Engraftment Trajectories Following Microbiota Transplant Therapy in Ulcerative Colitis. J Crohns Colitis 2025; 19:jjae142. [PMID: 39240145 DOI: 10.1093/ecco-jcc/jjae142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Indexed: 09/07/2024]
Abstract
BACKGROUND AND AIMS Microbiota transplant therapy (MTT) is an emerging treatment for ulcerative colitis (UC). One proposed mechanism for the benefit of MTT is through engraftment of donor microbiota; however, engraftment kinetics are unknown. We identified SourceTracker as an efficient method both to determine engraftment and for the kinetic study of engrafting donor taxa to aid in determining the mechanism of how this therapy may treat UC. METHODS Ulcerative colitis patients received either encapsulated (drug name MTP-101C) or placebo capsules daily for 8 weeks followed by a 4-week washout period. Amplicon sequence data from donors and patients were analyzed using the Bayesian algorithm SourceTracker. RESULTS Twenty-seven patients were enrolled, 14 to placebo and 13 to MTT. Baseline Shannon and Chao1 indices negatively correlated with week 12 donor engraftment for patients treated with active drug capsules but not for placebo patients. SourceTracker engraftment positively correlated with the week 12 distance from donors measured using the Bray-Curtis similarity metric in treated patients but not with placebo. Engraftment at week 12 was significantly higher in the MTT group than in the placebo group. We identified engrafting taxa from donors in our patients and quantified the proportion of donor similarity or engraftment during weeks 1 through 8 (active treatment) and week 12, 4 weeks after the last dose. CONCLUSION SourceTracker can be used as a simple and reliable method to quantify donor microbial community engraftment and donor taxa contribution in patients with UC and other inflammatory conditions treated with MTT.
Collapse
Affiliation(s)
- Daphne Moutsoglou
- Department of Gastroenterology, Minneapolis VA Health Care System, MN 55417, USA
- Department of Medicine, University of Minnesota, Minneapolis, MN 55455, USA
| | - Aneesh Syal
- Division of Basic and Translational Research, Department of Surgery, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Sharon Lopez
- Division of Gastroenterology, Hepatology, and Nutrition, University of Minnesota, Minneapolis, MN 55355, USA
| | - Elizabeth C Nelson
- Division of Gastroenterology, Hepatology, and Nutrition, University of Minnesota, Minneapolis, MN 55355, USA
| | - Lulu Chen
- Division of Gastroenterology, Hepatology, and Nutrition, University of Minnesota, Minneapolis, MN 55355, USA
| | - Amanda J Kabage
- Division of Gastroenterology, Hepatology, and Nutrition, University of Minnesota, Minneapolis, MN 55355, USA
| | - Monika Fischer
- Division of Gastroenterology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Alexander Khoruts
- Division of Gastroenterology, Hepatology, and Nutrition, University of Minnesota, Minneapolis, MN 55355, USA
| | - Byron P Vaughn
- Division of Gastroenterology, Hepatology, and Nutrition, University of Minnesota, Minneapolis, MN 55355, USA
| | - Christopher Staley
- Division of Basic and Translational Research, Department of Surgery, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| |
Collapse
|
2
|
Hemachandra S, Rathnayake SN, Jayamaha AA, Francis BS, Welmillage D, Kaur DN, Zaw HK, Zaw LT, Chandra HA, Abeysekera ME. Fecal Microbiota Transplantation as an Alternative Method in the Treatment of Obesity. Cureus 2025; 17:e76858. [PMID: 39901991 PMCID: PMC11788455 DOI: 10.7759/cureus.76858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/03/2025] [Indexed: 02/05/2025] Open
Abstract
Fecal microbiota transplantation (FMT) has emerged as a promising therapeutic approach for various health conditions, particularly obesity and metabolic disorders. This review examines the mechanisms underlying FMT, including its role in restoring gut microbiota diversity and enhancing immunomodulatory functions, which are essential for maintaining overall health. Recent studies indicate that FMT can significantly improve body weight and metabolic parameters, suggesting its potential as an alternative or complementary treatment to current obesity therapies. However, the effectiveness of FMT depends on several factors, including the composition of the donor microbiota, recipient characteristics, and concomitant medications or dietary interventions. Despite its great promise, challenges such as standardized protocols, donor screening, and the need for a deeper understanding of gut microbiota dynamics remain key hurdles. Future research should focus on elucidating the specific microbial compositions necessary for optimal therapeutic outcomes and exploring personalized FMT approaches tailored to individual patient profiles. This evolving field presents exciting opportunities for innovative strategies in obesity treatment, warranting further investigation and clinical application.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Hein K Zaw
- Gastroenterology, Nanjing Medical University, Nanjing, CHN
| | - Lin T Zaw
- Gastroenterology, Nanjing Medical University, Nanjing, CHN
| | | | | |
Collapse
|
3
|
Liang Y, Li Y, Lee C, Yu Z, Chen C, Liang C. Ulcerative colitis: molecular insights and intervention therapy. MOLECULAR BIOMEDICINE 2024; 5:42. [PMID: 39384730 PMCID: PMC11464740 DOI: 10.1186/s43556-024-00207-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 09/13/2024] [Indexed: 10/11/2024] Open
Abstract
Ulcerative colitis (UC) is a chronic inflammatory bowel disease characterized by abdominal pain, diarrhea, rectal bleeding, and weight loss. The pathogenesis and treatment of UC remain key areas of research interest. Various factors, including genetic predisposition, immune dysregulation, and alterations in the gut microbiota, are believed to contribute to the pathogenesis of UC. Current treatments for UC include 5-aminosalicylic acids, corticosteroids, immunosuppressants, and biologics. However, study reported that the one-year clinical remission rate is only around 40%. It is necessary to prompt the exploration of new treatment modalities. Biologic therapies, such as anti-TNF-α monoclonal antibody and JAK inhibitor, primarily consist of small molecules targeting specific pathways, effectively inducing and maintaining remission. Given the significant role of the gut microbiota, research into intestinal microecologics, such as probiotics and prebiotics, and fecal microbiota transplantation (FMT) shows promising potential in UC treatment. Additionally, medicinal herbs, such as chili pepper and turmeric, used in complementary therapy have shown promising results in UC management. This article reviews recent findings on the mechanisms of UC, including genetic susceptibility, immune cell dynamics and cytokine regulation, and gut microbiota alterations. It also discusses current applications of biologic therapy, herbal therapy, microecologics, and FMT, along with their prospects and challenges.
Collapse
Affiliation(s)
- Yuqing Liang
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- Department of Geriatrics, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China
| | - Yang Li
- Department of Respiratory, Sichuan Integrative Medicine Hospital, Chengdu, 610042, China
| | - Chehao Lee
- Department of Traditional Chinese Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
| | - Ziwei Yu
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Chongli Chen
- Department of Geriatrics, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China.
| | - Chao Liang
- Department of Geriatrics, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China.
| |
Collapse
|
4
|
Fanizzi F, D'Amico F, Zanotelli Bombassaro I, Zilli A, Furfaro F, Parigi TL, Cicerone C, Fiorino G, Peyrin-Biroulet L, Danese S, Allocca M. The Role of Fecal Microbiota Transplantation in IBD. Microorganisms 2024; 12:1755. [PMID: 39338430 PMCID: PMC11433743 DOI: 10.3390/microorganisms12091755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 08/19/2024] [Accepted: 08/22/2024] [Indexed: 09/30/2024] Open
Abstract
Gut microbiota dysbiosis has a critical role in the pathogenesis of inflammatory bowel diseases, prompting the exploration of novel therapeutic approaches like fecal microbiota transplantation, which involves the transfer of fecal microbiota from a healthy donor to a recipient with the aim of restoring a balanced microbial community and attenuating inflammation. Fecal microbiota transplantation may exert beneficial effects in inflammatory bowel disease through modulation of immune responses, restoration of mucosal barrier integrity, and alteration of microbial metabolites. It could alter disease course and prevent flares, although long-term durability and safety data are lacking. This review provides a summary of current evidence on fecal microbiota transplantation in inflammatory bowel disease management, focusing on its challenges, such as variability in donor selection criteria, standardization of transplant protocols, and long-term outcomes post-transplantation.
Collapse
Affiliation(s)
- Fabrizio Fanizzi
- Department of Gastroenterology and Endoscopy, IRCCS Ospedale San Raffaele, Vita-Salute San Raffaele University, 20132 Milan, Italy
| | - Ferdinando D'Amico
- Department of Gastroenterology and Endoscopy, IRCCS Ospedale San Raffaele, Vita-Salute San Raffaele University, 20132 Milan, Italy
| | - Isadora Zanotelli Bombassaro
- Department of Gastroenterology and Endoscopy, Santa Casa de Misericordia de Porto Alagre, Porto Alegre 90020-090, Brazil
| | - Alessandra Zilli
- Department of Gastroenterology and Endoscopy, IRCCS Ospedale San Raffaele, Vita-Salute San Raffaele University, 20132 Milan, Italy
| | - Federica Furfaro
- Department of Gastroenterology and Endoscopy, IRCCS Ospedale San Raffaele, Vita-Salute San Raffaele University, 20132 Milan, Italy
| | - Tommaso Lorenzo Parigi
- Department of Gastroenterology and Endoscopy, IRCCS Ospedale San Raffaele, Vita-Salute San Raffaele University, 20132 Milan, Italy
| | - Clelia Cicerone
- Department of Gastroenterology and Endoscopy, IRCCS Ospedale San Raffaele, Vita-Salute San Raffaele University, 20132 Milan, Italy
| | - Gionata Fiorino
- Department of Gastroenterology and Digestive Endoscopy, San Camillo-Forlanini Hospital, 00152 Rome, Italy
| | - Laurent Peyrin-Biroulet
- Department of Gastroenterology, Nancy University Hospital, F-54500 Vandœuvre-lès-Nancy, France
- INSERM, Nutrition-Genetics and Exposure to Environmental Risks Research Unit (NGERE), University of Lorraine, F-54000 Nancy, France
- INFINY Institute, Nancy University Hospital, F-54500 Vandœuvre-lès-Nancy, France
- Fédération Hospitalo-Universitaire CARE, Nancy University Hospital, F-54500 Vandœuvre-lès-Nancy, France
- Groupe Hospitalier Privé Ambroise Paré-Hartmann, Paris IBD Center, F-92200 Neuilly sur Seine, France
- Division of Gastroenterology and Hepatology, McGill University Health Centre, Montreal, QC H4A 3J1, Canada
| | - Silvio Danese
- Department of Gastroenterology and Endoscopy, IRCCS Ospedale San Raffaele, Vita-Salute San Raffaele University, 20132 Milan, Italy
| | - Mariangela Allocca
- Department of Gastroenterology and Endoscopy, IRCCS Ospedale San Raffaele, Vita-Salute San Raffaele University, 20132 Milan, Italy
| |
Collapse
|
5
|
Kou RW, Li ZQ, Wang JL, Jiang SQ, Zhang RJ, He YQ, Xia B, Gao JM. Ganoderic Acid A Mitigates Inflammatory Bowel Disease through Modulation of AhR Activity by Microbial Tryptophan Metabolism. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:17912-17923. [PMID: 39078661 DOI: 10.1021/acs.jafc.4c01166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/31/2024]
Abstract
Inflammatory bowel disease (IBD), including Crohn's disease and ulcerative colitis, is a complex gastrointestinal condition influenced by genetic, microbial, and environmental factors, among which the gut microbiota plays a crucial role and has emerged as a potential therapeutic target. Ganoderic acid A (GAA), which is a lanostane triterpenoid compound derived from edible mushroom Ganoderma lucidum, has demonstrated the ability to modulate gut dysbiosis. Thus, we investigated the impact of GAA on IBD using a dextran sodium sulfate (DSS)-induced colitis mouse model. GAA effectively prevented colitis, preserved epithelial and mucus layer integrity, and modulated the gut microbiota. In addition, GAA promoted tryptophan metabolism, especially 3-IAld generation, activated the aryl hydrocarbon receptor (AhR), and induced IL-22 production. Fecal microbiota transplantation validated the mediating role of the gut microbiota in the IBD protection conferred by GAA. Our study suggests that GAA holds potential as a nutritional intervention for ameliorating IBD by influencing the gut microbiota, thereby regulating tryptophan metabolism, enhancing AhR activity, and ultimately improving gut barrier function.
Collapse
Affiliation(s)
- Rong-Wei Kou
- School of Science, Xi'an University of Technology, Xi'an 710048, Shaanxi, People's Republic of China
| | - Zhi-Qing Li
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, People's Republic of China
| | - Jia-Lin Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, People's Republic of China
| | - Shi-Qi Jiang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, People's Republic of China
| | - Rui-Jing Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, People's Republic of China
| | - Yang-Qing He
- School of Science, Xi'an University of Technology, Xi'an 710048, Shaanxi, People's Republic of China
| | - Bing Xia
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, People's Republic of China
| | - Jin-Ming Gao
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, Shaanxi, People's Republic of China
| |
Collapse
|
6
|
Liu X, Li S, Wang L, Ma K. Microecological regulation in HCC therapy: Gut microbiome enhances ICI treatment. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167230. [PMID: 38734322 DOI: 10.1016/j.bbadis.2024.167230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 05/07/2024] [Accepted: 05/07/2024] [Indexed: 05/13/2024]
Abstract
The exploration of the complex mechanisms of cancer immunotherapy is rapidly evolving worldwide, and our focus is on the interaction of hepatocellular carcinoma (HCC) with immune checkpoint inhibitors (ICIs), particularly as it relates to the regulatory role of the gut microbiome. An important basis for the induction of immune responses in HCC is the presence of specific anti-tumor cells that can be activated and reinforced by ICIs, which is why the application of ICIs results in sustained tumor response rates in the majority of HCC patients. However, mechanisms of acquired resistance to immunotherapy in unresectable HCC result in no long-term benefit for some patients. The significant heterogeneity of inter-individual differences in the gut microbiome in response to treatment with ICIs makes it possible to target modulation of specific gut microbes to assist in augmenting checkpoint blockade therapies in HCC. This review focuses on the complex relationship between the gut microbiome, host immunity, and HCC, and emphasizes that manipulating the gut microbiome to improve response rates to cancer ICI therapy is a clinical strategy with unlimited potential.
Collapse
Affiliation(s)
- Xuliang Liu
- Division of Hepatobiliary and Pancreatic Surgery, Department of General Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Shiyao Li
- Department of Respiratory Medicine, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Liming Wang
- Division of Hepatobiliary and Pancreatic Surgery, Department of General Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China; Engineering Research Center for New Materials and Precision Treatment Technology of Malignant Tumors Therapy, The Second Affiliated Hospital, Dalian Medical University, Dalian, Liaoning, China; Engineering Technology Research Center for Translational Medicine, The Second Affiliated Hospital, Dalian Medical University, Dalian, Liaoning, China.
| | - Kexin Ma
- Division of Hepatobiliary and Pancreatic Surgery, Department of General Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China.
| |
Collapse
|
7
|
Seida I, Al Shawaf M, Mahroum N. Fecal microbiota transplantation in autoimmune diseases - An extensive paper on a pathogenetic therapy. Autoimmun Rev 2024; 23:103541. [PMID: 38593970 DOI: 10.1016/j.autrev.2024.103541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/31/2024] [Accepted: 04/04/2024] [Indexed: 04/11/2024]
Abstract
The role of infections in the pathogenesis of autoimmune diseases has long been recognized and reported. In addition to infectious agents, the internal composition of the "friendly" living bacteria, (microbiome) and its correlation to immune balance and dysregulation have drawn the attention of researchers for decades. Nevertheless, only recently, scientific papers regarding the potential role of transferring microbiome from healthy donor subjects to patients with autoimmune diseases has been proposed. Fecal microbiota transplantation or FMT, carries the logic of transferring microorganisms responsible for immune balance from healthy donors to individuals with immune dysregulation or more accurately for our paper, autoimmune diseases. Viewing the microbiome as a pathogenetic player allows us to consider FMT as a pathogenetic-based treatment. Promising results alongside improved outcomes have been demonstrated in patients with different autoimmune diseases following FMT. Therefore, in our current extensive review, we aimed to highlight the implication of FMT in various autoimmune diseases, such as inflammatory bowel disease, autoimmune thyroid and liver diseases, systemic lupus erythematosus, and type 1 diabetes mellitus, among others. Presenting all the aspects of FMT in more than 12 autoimmune diseases in one paper, to the best of our knowledge, is the first time presented in medical literature. Viewing FMT as such could contribute to better understanding and newer application of the model in the therapy of autoimmune diseases, indeed.
Collapse
Affiliation(s)
- Isa Seida
- International School of Medicine, Istanbul Medipol University, Istanbul, Turkey
| | - Maisam Al Shawaf
- International School of Medicine, Istanbul Medipol University, Istanbul, Turkey
| | - Naim Mahroum
- International School of Medicine, Istanbul Medipol University, Istanbul, Turkey.
| |
Collapse
|
8
|
Martemucci G, Khalil M, Di Luca A, Abdallah H, D’Alessandro AG. Comprehensive Strategies for Metabolic Syndrome: How Nutrition, Dietary Polyphenols, Physical Activity, and Lifestyle Modifications Address Diabesity, Cardiovascular Diseases, and Neurodegenerative Conditions. Metabolites 2024; 14:327. [PMID: 38921462 PMCID: PMC11206163 DOI: 10.3390/metabo14060327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 06/07/2024] [Accepted: 06/07/2024] [Indexed: 06/27/2024] Open
Abstract
Several hallmarks of metabolic syndrome, such as dysregulation in the glucose and lipid metabolism, endothelial dysfunction, insulin resistance, low-to-medium systemic inflammation, and intestinal microbiota dysbiosis, represent a pathological bridge between metabolic syndrome and diabesity, cardiovascular, and neurodegenerative disorders. This review aims to highlight some therapeutic strategies against metabolic syndrome involving integrative approaches to improve lifestyle and daily diet. The beneficial effects of foods containing antioxidant polyphenols, intestinal microbiota control, and physical activity were also considered. We comprehensively examined a large body of published articles involving basic, animal, and human studie, as well as recent guidelines. As a result, dietary polyphenols from natural plant-based antioxidants and adherence to the Mediterranean diet, along with physical exercise, are promising complementary therapies to delay or prevent the onset of metabolic syndrome and counteract diabesity and cardiovascular diseases, as well as to protect against neurodegenerative disorders and cognitive decline. Modulation of the intestinal microbiota reduces the risks associated with MS, improves diabetes and cardiovascular diseases (CVD), and exerts neuroprotective action. Despite several studies, the estimation of dietary polyphenol intake is inconclusive and requires further evidence. Lifestyle interventions involving physical activity and reduced calorie intake can improve metabolic outcomes.
Collapse
Affiliation(s)
| | - Mohamad Khalil
- Clinica Medica “A. Murri”, Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), University of Bari Medical School, 70121 Bari, Italy;
| | - Alessio Di Luca
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, 70126 Bari, Italy; (A.D.L.); (A.G.D.)
| | - Hala Abdallah
- Clinica Medica “A. Murri”, Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), University of Bari Medical School, 70121 Bari, Italy;
| | | |
Collapse
|
9
|
Lee MA, Questa M, Wanakumjorn P, Kol A, McLaughlin B, Weimer BC, Buono A, Suchodolski JS, Marsilio S. Safety profile and effects on the peripheral immune response of fecal microbiota transplantation in clinically healthy dogs. J Vet Intern Med 2024; 38:1425-1436. [PMID: 38613431 PMCID: PMC11099722 DOI: 10.1111/jvim.17061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 03/21/2024] [Indexed: 04/15/2024] Open
Abstract
BACKGROUND Fecal microbiota transplantation (FMT) is increasingly used for gastrointestinal and extra-gastrointestinal diseases in veterinary medicine. However, its effects on immune responses and possible adverse events have not been systematically investigated. HYPOTHESIS/OBJECTIVES Determine the short-term safety profile and changes in the peripheral immune system after a single FMT administration in healthy dogs. ANIMALS Ten client-owned, clinically healthy dogs as FMT recipients, and 2 client-owned clinically healthy dogs as FMT donors. METHODS Prospective non-randomized clinical trial. A single rectal enema of 5 g/kg was given to clinically healthy canine recipients. During the 28 days after FMT administration, owners self-reported adverse events and fecal scores. On Days 0 (baseline), 1, 4, 10, and 28 after FMT, fecal and blood samples were collected. The canine fecal dysbiosis index (DI) was calculated using qPCR. RESULTS No significant changes were found in the following variables: CBC, serum biochemistry, C-reactive protein, serum cytokines (interleukins [IL]-2, -6, -8, tumor necrosis factor [TNF]-α), peripheral leukocytes (B cells, T cells, cluster of differentiation [CD]4+ T cells, CD8+ T cells, T regulatory cells), and the canine DI. Mild vomiting (n = 3), diarrhea (n = 4), decreased activity (n = 2), and inappetence (n = 1) were reported, and resolved without intervention. CONCLUSIONS AND CLINICAL IMPORTANCE Fecal microbiota transplantation did not significantly alter the evaluated variables and recipients experienced minimal adverse events associated with FMT administration. Fecal microbiota transplantation was not associated with serious adverse events, changes in peripheral immunologic variables, or the canine DI in the short-term.
Collapse
Affiliation(s)
- Mary Ann Lee
- Department of Medicine and EpidemiologyUniversity of California School of Veterinary Medicine, University of CaliforniaDavisCaliforniaUSA
| | - Maria Questa
- Department of Medicine and EpidemiologyUniversity of California School of Veterinary Medicine, University of CaliforniaDavisCaliforniaUSA
| | - Patrawin Wanakumjorn
- Department of Pathology, Microbiology & ImmunologySchool of Veterinary Medicine, University of CaliforniaDavisCaliforniaUSA
| | - Amir Kol
- Department of Pathology, Microbiology & ImmunologySchool of Veterinary Medicine, University of CaliforniaDavisCaliforniaUSA
| | - Bridget McLaughlin
- Flow Cytometry Shared Resource LaboratoryUniversity of California, DavisDavisCaliforniaUSA
| | - Bart C. Weimer
- Department of Population Health and Reproduction, 100K Pathogen Genome ProjectUniversity of California School of Veterinary Medicine, University of CaliforniaDavisCaliforniaUSA
| | - Agostino Buono
- Gastrointestinal LaboratoryTexas A&M School of Veterinary Medicine & Biomedical SciencesCollege StationTexasUSA
| | - Jan S. Suchodolski
- Gastrointestinal LaboratoryTexas A&M School of Veterinary Medicine & Biomedical SciencesCollege StationTexasUSA
| | - Sina Marsilio
- Department of Medicine and EpidemiologyUniversity of California School of Veterinary Medicine, University of CaliforniaDavisCaliforniaUSA
| |
Collapse
|
10
|
Pandey H, Jain D, Tang DWT, Wong SH, Lal D. Gut microbiota in pathophysiology, diagnosis, and therapeutics of inflammatory bowel disease. Intest Res 2024; 22:15-43. [PMID: 37935653 PMCID: PMC10850697 DOI: 10.5217/ir.2023.00080] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/23/2023] [Accepted: 08/27/2023] [Indexed: 11/09/2023] Open
Abstract
Inflammatory bowel disease (IBD) is a multifactorial disease, which is thought to be an interplay between genetic, environment, microbiota, and immune-mediated factors. Dysbiosis in the gut microbial composition, caused by antibiotics and diet, is closely related to the initiation and progression of IBD. Differences in gut microbiota composition between IBD patients and healthy individuals have been found, with reduced biodiversity of commensal microbes and colonization of opportunistic microbes in IBD patients. Gut microbiota can, therefore, potentially be used for diagnosing and prognosticating IBD, and predicting its treatment response. Currently, there are no curative therapies for IBD. Microbiota-based interventions, including probiotics, prebiotics, synbiotics, and fecal microbiota transplantation, have been recognized as promising therapeutic strategies. Clinical studies and studies done in animal models have provided sufficient evidence that microbiota-based interventions may improve inflammation, the remission rate, and microscopic aspects of IBD. Further studies are required to better understand the mechanisms of action of such interventions. This will help in enhancing their effectiveness and developing personalized therapies. The present review summarizes the relationship between gut microbiota and IBD immunopathogenesis. It also discusses the use of gut microbiota as a noninvasive biomarker and potential therapeutic option.
Collapse
Affiliation(s)
| | | | - Daryl W. T. Tang
- School of Biological Sciences, Nanyang Technological University, Singapore
| | - Sunny H. Wong
- Centre for Microbiome Medicine, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| | - Devi Lal
- Department of Zoology, Ramjas College, University of Delhi, Delhi, India
| |
Collapse
|
11
|
Li L, Huang X, Chen H. Unveiling the hidden players: exploring the role of gut mycobiome in cancer development and treatment dynamics. Gut Microbes 2024; 16:2328868. [PMID: 38485702 PMCID: PMC10950292 DOI: 10.1080/19490976.2024.2328868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 03/06/2024] [Indexed: 03/19/2024] Open
Abstract
The role of gut fungal species in tumor-related processes remains largely unexplored, with most studies still focusing on fungal infections. This review examines the accumulating evidence suggesting the involvement of commensal and pathogenic fungi in cancer biological process, including oncogenesis, progression, and treatment response. Mechanisms explored include fungal influence on host immunity, secretion of bioactive toxins/metabolites, interaction with bacterial commensals, and migration to other tissues in certain types of cancers. Attempts to utilize fungal molecular signatures for cancer diagnosis and fungal-derived products for treatment are discussed. A few studies highlight fungi's impact on the responsiveness and sensitivity to chemotherapy, radiotherapy, immunotherapy, and fecal microbiota transplant. Given the limited understanding and techniques in fungal research, the studies on gut fungi are still facing great challenges, despite having great potentials.
Collapse
Affiliation(s)
- Lingxi Li
- State Key Laboratory of Systems Medicine for Cancer, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Division of Gastroenterology and Hepatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai Cancer Institute, Shanghai, China
| | - Xiaowen Huang
- State Key Laboratory of Systems Medicine for Cancer, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Division of Gastroenterology and Hepatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai Cancer Institute, Shanghai, China
| | - Haoyan Chen
- State Key Laboratory of Systems Medicine for Cancer, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Division of Gastroenterology and Hepatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai Cancer Institute, Shanghai, China
| |
Collapse
|
12
|
Tikunov AY, Fedorets VA, Shrainer EV, Morozov VV, Bystrova VI, Tikunova NV. Intestinal Microbiome Changes and Clinical Outcomes of Patients with Ulcerative Colitis after Fecal Microbiota Transplantation. J Clin Med 2023; 12:7702. [PMID: 38137770 PMCID: PMC10743744 DOI: 10.3390/jcm12247702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/06/2023] [Accepted: 12/12/2023] [Indexed: 12/24/2023] Open
Abstract
BACKGROUND AND AIMS Ulcerative colitis (UC) is a chronic inflammatory disease that affects many people. One of the possible ways to treat UC is fecal microbiota transplantation (FMT). In this study, changes in the intestinal microbiome and clinical outcomes of 20 patients with UC after FMT were estimated. METHODS FMT enemas were administrated ten times, once a day, and fecal microbiota from three donors was used for each enema. The clinical outcomes were assessed after eight weeks and then via a patient survey. The 16S rRNA profiles of the gut microbiota were compared between three samplings: samples from 20 patients with UC before and after FMT and samples from 18 healthy volunteers. RESULTS Clinical remission was achieved in 19 (95%) patients at week 8. Adverse events occurred in five patients, including one non-responder. A significant increase in average biodiversity was shown in samples after FMT compared to samples before FMT, as well as a decrease in the proportion of some potentially pathogenic bacteria. CONCLUSION The efficacy of FMT for UC treatment was confirmed; however, the duration of remission varied substantially, possibly due to different characteristics of the initial microbiota of patients. Targeted analysis of a patient's microbiome before FMT could increase the treatment efficacy.
Collapse
Affiliation(s)
- Artem Y. Tikunov
- Federal State Public Scientific Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (A.Y.T.); (V.A.F.); (E.V.S.); (V.V.M.); (V.I.B.)
| | - Valeria A. Fedorets
- Federal State Public Scientific Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (A.Y.T.); (V.A.F.); (E.V.S.); (V.V.M.); (V.I.B.)
| | - Evgenia V. Shrainer
- Federal State Public Scientific Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (A.Y.T.); (V.A.F.); (E.V.S.); (V.V.M.); (V.I.B.)
- Department of Obstetrics and Gynecology, V. Zelman Institute for Medicine and Psychology, Novosibirsk National Research State University, 630090 Novosibirsk, Russia
| | - Vitaliy V. Morozov
- Federal State Public Scientific Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (A.Y.T.); (V.A.F.); (E.V.S.); (V.V.M.); (V.I.B.)
| | - Valeria I. Bystrova
- Federal State Public Scientific Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (A.Y.T.); (V.A.F.); (E.V.S.); (V.V.M.); (V.I.B.)
- Department of Obstetrics and Gynecology, V. Zelman Institute for Medicine and Psychology, Novosibirsk National Research State University, 630090 Novosibirsk, Russia
| | - Nina V. Tikunova
- Federal State Public Scientific Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (A.Y.T.); (V.A.F.); (E.V.S.); (V.V.M.); (V.I.B.)
| |
Collapse
|
13
|
Lopetuso LR, Laterza L, Petito V, Pecere S, Quaranta G, Del Chierico F, Puca P, Schiavoni E, Napolitano D, Poscia A, Ianiro G, Pugliese D, Putignani L, Sanguinetti M, Armuzzi A, Masucci L, Gasbarrini A, Cammarota G, Scaldaferri F. Serial Fecal Microbiota Infusions via Colonoscopy for Active Ulcerative Colitis: A Feasibility, Safety, and Translational Monocentric Italian Study. Microorganisms 2023; 11:2536. [PMID: 37894194 PMCID: PMC10609093 DOI: 10.3390/microorganisms11102536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/26/2023] [Accepted: 10/06/2023] [Indexed: 10/29/2023] Open
Abstract
The effectiveness of fecal microbiota transplantation (FMT) in ulcerative colitis (UC) remains unclear. This study aimed to investigate the feasibility and effectiveness of serial fecal infusions via colonoscopy in patients with active UC. Subjects with mild-to-moderate UC received three consecutive fecal infusions via colonoscopy. A control population with the same baseline features receiving Infliximab treatment was enrolled. Adverse events and clinical, endoscopic, and microbial outcomes were investigated. Nineteen patients with mildly-to-moderately active UC were enrolled. Clinical response was obtained in six patients at week 2, in eight at week 6, and in nine at week 12. Clinical response was maintained in eight patients at week 24. Endoscopic remission at week 12 was reached in six patients. In the control population, 13/19 patients achieved clinical response at week 6, and 10/19 patients maintained clinical response after 6 months. Microbiota richness was higher in responders compared with the non-responders. Peptostreptococcus, Lactobacillus, and Veillonella were higher in non-responders, while Parabacteroides, Bacteroides, Faecalibacterium, and Akkermansia were higher in responders at all timepoints. Serial FMT infusions appear to be feasible, safe, and effective in UC patients, with a potential role in inducing and maintaining clinical response. Specific bacteria predict the response to FMT.
Collapse
Affiliation(s)
- Loris Riccardo Lopetuso
- IBD Unit, CEMAD, Digestive Diseases Center, Medicina Interna e Gastroenterologia, Dipartimento di Scienze Mediche e Chirurgiche, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, L. Go A. Gemelli 8, 00168 Rome, Italy; (L.R.L.); (L.L.); (V.P.); (S.P.); (P.P.); (E.S.); (D.N.); (D.P.); (A.G.)
- Department of Medicine and Ageing Sciences, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
- Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Lucrezia Laterza
- IBD Unit, CEMAD, Digestive Diseases Center, Medicina Interna e Gastroenterologia, Dipartimento di Scienze Mediche e Chirurgiche, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, L. Go A. Gemelli 8, 00168 Rome, Italy; (L.R.L.); (L.L.); (V.P.); (S.P.); (P.P.); (E.S.); (D.N.); (D.P.); (A.G.)
| | - Valentina Petito
- IBD Unit, CEMAD, Digestive Diseases Center, Medicina Interna e Gastroenterologia, Dipartimento di Scienze Mediche e Chirurgiche, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, L. Go A. Gemelli 8, 00168 Rome, Italy; (L.R.L.); (L.L.); (V.P.); (S.P.); (P.P.); (E.S.); (D.N.); (D.P.); (A.G.)
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, L. Go F. Vito 1, 00168 Rome, Italy; (G.I.); (G.C.)
| | - Silvia Pecere
- IBD Unit, CEMAD, Digestive Diseases Center, Medicina Interna e Gastroenterologia, Dipartimento di Scienze Mediche e Chirurgiche, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, L. Go A. Gemelli 8, 00168 Rome, Italy; (L.R.L.); (L.L.); (V.P.); (S.P.); (P.P.); (E.S.); (D.N.); (D.P.); (A.G.)
| | - Gianluca Quaranta
- Microbiology Unit, Fondazione Policlinico Universitario ‘A. Gemelli’ IRCCS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (G.Q.); (M.S.); (L.M.)
| | - Federica Del Chierico
- Unit of Human Microbiome, Bambino Gesù Children’s Hospital, IRCCS, 00168 Rome, Italy;
| | - Pierluigi Puca
- IBD Unit, CEMAD, Digestive Diseases Center, Medicina Interna e Gastroenterologia, Dipartimento di Scienze Mediche e Chirurgiche, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, L. Go A. Gemelli 8, 00168 Rome, Italy; (L.R.L.); (L.L.); (V.P.); (S.P.); (P.P.); (E.S.); (D.N.); (D.P.); (A.G.)
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, L. Go F. Vito 1, 00168 Rome, Italy; (G.I.); (G.C.)
| | - Elisa Schiavoni
- IBD Unit, CEMAD, Digestive Diseases Center, Medicina Interna e Gastroenterologia, Dipartimento di Scienze Mediche e Chirurgiche, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, L. Go A. Gemelli 8, 00168 Rome, Italy; (L.R.L.); (L.L.); (V.P.); (S.P.); (P.P.); (E.S.); (D.N.); (D.P.); (A.G.)
| | - Daniele Napolitano
- IBD Unit, CEMAD, Digestive Diseases Center, Medicina Interna e Gastroenterologia, Dipartimento di Scienze Mediche e Chirurgiche, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, L. Go A. Gemelli 8, 00168 Rome, Italy; (L.R.L.); (L.L.); (V.P.); (S.P.); (P.P.); (E.S.); (D.N.); (D.P.); (A.G.)
| | - Andrea Poscia
- Section of Hygiene, University Department of Life Sciences and Public Health, Università Cattolica del Sacro Cuore, 00168 Roma, Italy;
- UOC ISP Prevention and Surveillance of Infectious and Chronic Diseases, Department of Prevention, Local Health Authority (ASUR-AV2), 60035 Jesi, Italy
| | - Gianluca Ianiro
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, L. Go F. Vito 1, 00168 Rome, Italy; (G.I.); (G.C.)
- UOC di Gastroenterologia, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, L. Go A. Gemelli 8, 00168 Rome, Italy
| | - Daniela Pugliese
- IBD Unit, CEMAD, Digestive Diseases Center, Medicina Interna e Gastroenterologia, Dipartimento di Scienze Mediche e Chirurgiche, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, L. Go A. Gemelli 8, 00168 Rome, Italy; (L.R.L.); (L.L.); (V.P.); (S.P.); (P.P.); (E.S.); (D.N.); (D.P.); (A.G.)
| | - Lorenza Putignani
- Unit of Microbiomics and Unit of Human Microbiome, Bambino Gesù Children’s Hospital, IRCCS, 00168 Rome, Italy;
| | - Maurizio Sanguinetti
- Microbiology Unit, Fondazione Policlinico Universitario ‘A. Gemelli’ IRCCS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (G.Q.); (M.S.); (L.M.)
| | - Alessandro Armuzzi
- IBD Center, IRCCS Humanitas Research Hospital, Rozzano, 20089 Milan, Italy;
| | - Luca Masucci
- Microbiology Unit, Fondazione Policlinico Universitario ‘A. Gemelli’ IRCCS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (G.Q.); (M.S.); (L.M.)
| | - Antonio Gasbarrini
- IBD Unit, CEMAD, Digestive Diseases Center, Medicina Interna e Gastroenterologia, Dipartimento di Scienze Mediche e Chirurgiche, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, L. Go A. Gemelli 8, 00168 Rome, Italy; (L.R.L.); (L.L.); (V.P.); (S.P.); (P.P.); (E.S.); (D.N.); (D.P.); (A.G.)
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, L. Go F. Vito 1, 00168 Rome, Italy; (G.I.); (G.C.)
| | - Giovanni Cammarota
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, L. Go F. Vito 1, 00168 Rome, Italy; (G.I.); (G.C.)
- UOC di Gastroenterologia, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, L. Go A. Gemelli 8, 00168 Rome, Italy
| | - Franco Scaldaferri
- IBD Unit, CEMAD, Digestive Diseases Center, Medicina Interna e Gastroenterologia, Dipartimento di Scienze Mediche e Chirurgiche, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, L. Go A. Gemelli 8, 00168 Rome, Italy; (L.R.L.); (L.L.); (V.P.); (S.P.); (P.P.); (E.S.); (D.N.); (D.P.); (A.G.)
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, L. Go F. Vito 1, 00168 Rome, Italy; (G.I.); (G.C.)
| |
Collapse
|
14
|
Shao T, Hsu R, Hacein-Bey C, Zhang W, Gao L, Kurth MJ, Zhao H, Shuai Z, Leung PSC. The Evolving Landscape of Fecal Microbial Transplantation. Clin Rev Allergy Immunol 2023; 65:101-120. [PMID: 36757537 PMCID: PMC9909675 DOI: 10.1007/s12016-023-08958-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/23/2023] [Indexed: 02/10/2023]
Abstract
The human gastrointestinal tract houses an enormous microbial ecosystem. Recent studies have shown that the gut microbiota plays significant physiological roles and maintains immune homeostasis in the human body. Dysbiosis, an imbalanced gut microbiome, can be associated with various disease states, as observed in infectious diseases, inflammatory diseases, autoimmune diseases, and cancer. Modulation of the gut microbiome has become a therapeutic target in treating these disorders. Fecal microbiota transplantation (FMT) from a healthy donor restores the normal gut microbiota homeostasis in the diseased host. Ample evidence has demonstrated the efficacy of FMT in recurrent Clostridioides difficile infection (rCDI). The application of FMT in other human diseases is gaining attention. This review aims to increase our understanding of the mechanisms of FMT and its efficacies in human diseases. We discuss the application, route of administration, limitations, safety, efficacies, and suggested mechanisms of FMT in rCDI, autoimmune diseases, and cancer. Finally, we address the future perspectives of FMT in human medicine.
Collapse
Affiliation(s)
- Tihong Shao
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
- Division of Rheumatology, Allergy and Clinical Immunology, University of California Davis School of Medicine, Davis, CA, 95616, USA
| | - Ronald Hsu
- Division of Gastroenterology, University of California Davis School of Medicine, Davis, CA, 95616, USA
| | - Camelia Hacein-Bey
- Division of Rheumatology, Allergy and Clinical Immunology, University of California Davis School of Medicine, Davis, CA, 95616, USA
| | - Weici Zhang
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Lixia Gao
- Department of Rheumatology and Immunology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, China
| | - Mark J Kurth
- Department of Chemistry, University of California Davis, Davis, CA, 95616, USA
| | - Huanhuan Zhao
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Zongwen Shuai
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Patrick S C Leung
- Division of Rheumatology, Allergy and Clinical Immunology, University of California Davis School of Medicine, Davis, CA, 95616, USA.
| |
Collapse
|
15
|
Lopetuso LR, Deleu S, Godny L, Petito V, Puca P, Facciotti F, Sokol H, Ianiro G, Masucci L, Abreu M, Dotan I, Costello SP, Hart A, Iqbal TH, Paramsothy S, Sanguinetti M, Danese S, Tilg H, Cominelli F, Pizarro TT, Armuzzi A, Cammarota G, Gasbarrini A, Vermeire S, Scaldaferri F. The first international Rome consensus conference on gut microbiota and faecal microbiota transplantation in inflammatory bowel disease. Gut 2023; 72:1642-1650. [PMID: 37339849 PMCID: PMC10423477 DOI: 10.1136/gutjnl-2023-329948] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 05/16/2023] [Indexed: 06/22/2023]
Abstract
BACKGROUND Several randomised clinical trials (RCTs) performing faecal microbiota transplantation (FMT) for the management of inflammatory bowel disease (IBD), particularly for ulcerative colitis, have recently been published, but with major variations in study design. These include differences in administered dose, route and frequency of delivery, type of placebo and evaluated endpoints. Although the overall outcomes appear to be promising, they are highly dependent on both donor and recipient factors. OBJECTIVE To develop concensus-based statements and recommendations for the evaluation, management and potential treatment of IBD using FMT in order to move towards standardised practices. DESIGN An international panel of experts convened several times to generate evidence-based guidelines by performing a deep evaluation of currently available and/or published data. Twenty-five experts in IBD, immunology and microbiology collaborated in different working groups to provide statements on the following key issues related to FMT in IBD: (A) pathogenesis and rationale, (B) donor selection and biobanking, (C) FMT practices and (D) consideration of future studies and perspectives. Statements were evaluated and voted on by all members using an electronic Delphi process, culminating in a plenary consensus conference and generation of proposed guidelines. RESULTS AND CONCLUSIONS Our group has provided specific statements and recommendations, based on best available evidence, with the end goal of providing guidance and general criteria required to promote FMT as a recognised strategy for the treatment of IBD.
Collapse
Affiliation(s)
- Loris Riccardo Lopetuso
- IBD Unit, CEMAD Centro Malattie dell'Apparato Digerente, UOC di Medicina Interna e Gastroenterologia, Dipartimento di Scienze Mediche e Chirurgiche, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Roma, Italy
- Department of Medicine and Ageing Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
- Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Sara Deleu
- Department of Chronic Diseases & Metabolism (CHROMETA), KU Leuven, Leuven, Belgium
| | - Lihi Godny
- Division of Gastroenterology, Rabin Medical Center, Petah Tikva, Israel
| | - Valentina Petito
- IBD Unit, CEMAD Centro Malattie dell'Apparato Digerente, UOC di Medicina Interna e Gastroenterologia, Dipartimento di Scienze Mediche e Chirurgiche, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Roma, Italy
| | - Pierluigi Puca
- IBD Unit, CEMAD Centro Malattie dell'Apparato Digerente, UOC di Medicina Interna e Gastroenterologia, Dipartimento di Scienze Mediche e Chirurgiche, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Roma, Italy
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Roma, Italy
| | - Federica Facciotti
- Dipartimento di Biotecnologie e Bioscienze, University of Milan-Bicocca, Milano, Italy
| | - Harry Sokol
- INSERM, Centre de Recherche Saint-Antoine, CRSA, AP-HP, Saint Antoine Hospital, Gastroenterology Department, Sorbonne Universite, Paris, France
| | - Gianluca Ianiro
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Roma, Italy
- UOC di Medicina Interna e Gastroenterologia, Dipartimento di Scienze Mediche e Chirurgiche, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Roma, Italy
| | - Luca Masucci
- Department of Laboratory Sciences and Infectious Diseases, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Roma, Italy
| | - Maria Abreu
- Department of Medicine, Division of Gastroenterology, Crohn's and Colitis Center, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Iris Dotan
- Division of Gastroenterology, Rabin Medical Center, Petah Tikva, Israel
| | - Samuel Paul Costello
- Department of Gastroenterology, The Queen Elizabeth Hospital, Adelaide, South Australia, Australia
| | - Ailsa Hart
- IBD Unit, Saint Mark's Hospital, Harrow, UK
| | - Tariq H Iqbal
- Microbiome Treatment Center, University of Birmingham, Birmingham, UK
| | - Sudarshan Paramsothy
- Gastroenterology and Liver Services, Concord Repatriation General Hospital, Sydney, New South Wales, Australia
| | - Maurizio Sanguinetti
- Department of Laboratory Sciences and Infectious Diseases, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Roma, Italy
| | - Silvio Danese
- Gastroenterology and Endoscopy, IRCCS Ospedale San Raffaele and University Vita-Salute San Raffaele, Milano, Italy
| | - Herbert Tilg
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology & Metabolism, Medizinische Universitat Innsbruck, Innsbruck, Austria
| | - Fabio Cominelli
- Division of Gastroenterology and Liver Diseases, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Theresa T Pizarro
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Alessandro Armuzzi
- Deparment of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milano, Italy
- IBD Center, IRCCS Humanitas Research Hospital, Rozzano, Milano, Italy
| | - Giovanni Cammarota
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Roma, Italy
- UOC di Medicina Interna e Gastroenterologia, Dipartimento di Scienze Mediche e Chirurgiche, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Roma, Italy
| | - Antonio Gasbarrini
- IBD Unit, CEMAD Centro Malattie dell'Apparato Digerente, UOC di Medicina Interna e Gastroenterologia, Dipartimento di Scienze Mediche e Chirurgiche, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Roma, Italy
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Roma, Italy
- UOC di Medicina Interna e Gastroenterologia, Dipartimento di Scienze Mediche e Chirurgiche, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Roma, Italy
| | - Séverine Vermeire
- Department of Chronic Diseases & Metabolism (CHROMETA), KU Leuven, Leuven, Belgium
| | - Franco Scaldaferri
- IBD Unit, CEMAD Centro Malattie dell'Apparato Digerente, UOC di Medicina Interna e Gastroenterologia, Dipartimento di Scienze Mediche e Chirurgiche, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Roma, Italy
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Roma, Italy
| |
Collapse
|
16
|
Bracaglia C, Marucci G, Del Chierico F, Russo A, Pardeo M, Pires Marafon D, Quagliariello A, Caiello I, Rea F, Fingerhutova S, Insalaco A, Prencipe G, Dolezalova P, De Benedetti F, Putignani L. Microbiota transplant to control inflammation in a patient with NLRC4 gain-of-function-induced disease. J Allergy Clin Immunol 2023; 152:302-303. [PMID: 37178069 DOI: 10.1016/j.jaci.2023.03.031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/24/2023] [Accepted: 03/07/2023] [Indexed: 05/15/2023]
Affiliation(s)
- Claudia Bracaglia
- Division of Rheumatology, ERN RITA Center, Bambino Gesù Children's Hospital, IRCCS, Roma, Italy
| | - Giulia Marucci
- Division of Rheumatology, ERN RITA Center, Bambino Gesù Children's Hospital, IRCCS, Roma, Italy
| | - Federica Del Chierico
- Multimodal Laboratory Medicine Research Area, Unit of Human Microbiome, Bambino Gesù Children's Hospital, IRCCS, Roma, Italy
| | - Alessandra Russo
- Multimodal Laboratory Medicine Research Area, Unit of Human Microbiome, Bambino Gesù Children's Hospital, IRCCS, Roma, Italy
| | - Manuela Pardeo
- Division of Rheumatology, ERN RITA Center, Bambino Gesù Children's Hospital, IRCCS, Roma, Italy
| | - Denise Pires Marafon
- Division of Rheumatology, ERN RITA Center, Bambino Gesù Children's Hospital, IRCCS, Roma, Italy
| | - Andrea Quagliariello
- Multimodal Laboratory Medicine Research Area, Unit of Human Microbiome, Bambino Gesù Children's Hospital, IRCCS, Roma, Italy
| | - Ivan Caiello
- Laboratory of Immuno-Rheumatology, Bambino Gesù Children's Hospital, IRCCS, Roma, Italy
| | - Francesca Rea
- Digestive Endoscopy and Surgery Unit, Bambino Gesù Children's Hospital, IRCCS, Roma, Italy
| | - Sarka Fingerhutova
- Centre for Paediatric Rheumatology and Autoinflammatory Diseases, ERN RITA Centre, Department of Paediatrics and Inherited Metabolic Disorders, 1st Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Antonella Insalaco
- Division of Rheumatology, ERN RITA Center, Bambino Gesù Children's Hospital, IRCCS, Roma, Italy
| | - Giusi Prencipe
- Laboratory of Immuno-Rheumatology, Bambino Gesù Children's Hospital, IRCCS, Roma, Italy
| | - Pavla Dolezalova
- Centre for Paediatric Rheumatology and Autoinflammatory Diseases, ERN RITA Centre, Department of Paediatrics and Inherited Metabolic Disorders, 1st Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Fabrizio De Benedetti
- Division of Rheumatology, ERN RITA Center, Bambino Gesù Children's Hospital, IRCCS, Roma, Italy; Laboratory of Immuno-Rheumatology, Bambino Gesù Children's Hospital, IRCCS, Roma, Italy.
| | - Lorenza Putignani
- Multimodal Laboratory Medicine Research Area, Unit of Human Microbiome, Bambino Gesù Children's Hospital, IRCCS, Roma, Italy; Department of Diagnostic and Laboratory Medicine, Unit of Microbiology and Diagnostic Immunology, Unit of Microbiomics and Multimodal Laboratory Medicine Research Area, Unit of Human Microbiome, Bambino Gesù Children's Hospital, IRCCS, Roma, Italy
| |
Collapse
|
17
|
Levast B, Fontaine M, Nancey S, Dechelotte P, Doré J, Lehert P. Single-Donor and Pooling Strategies for Fecal Microbiota Transfer Product Preparation in Ulcerative Colitis: A Systematic Review and Meta-analysis. Clin Transl Gastroenterol 2023; 14:e00568. [PMID: 37232579 PMCID: PMC10208705 DOI: 10.14309/ctg.0000000000000568] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 01/31/2023] [Indexed: 05/27/2023] Open
Abstract
INTRODUCTION Patients with ulcerative colitis (UC) have a less diverse microbiome than healthy subjects. Multiple studies have evaluated fecal microbiota transfer (FMT) in these patients using different methods of product preparation, doses, and routes of administration. A systematic review and meta-analysis was performed to compare the efficacy of single-donor (SDN) and multidonor (MDN) strategies for product preparation. METHODS Systematic searches were performed in Web of Science, Scopus, PubMed, and Orbit Intelligence for studies comparing FMT products manufactured using SDN or MDN strategies to placebo in patients with UC. Fourteen controlled studies were selected for meta-analysis (10 randomized and 4 nonrandomized). The treatment response was assessed by using fixed- and random-effects models, and the significance of the indirect difference between the interventions was assessed using a network approach. RESULTS Considering all 14 studies, MDN and SDN were superior to placebo in terms of treatment response (risk ratios [RRs]: 4.41 and 1.57, respectively [P ≤ 0.001 for both]), and MDN was superior to SDN (RR: 2.81, P = 0.005). Meta-analysis of the 10 studies with high quality of evidence showed that MDN was superior to SDN in terms of treatment response (RR: 2.31, P = 0.042). Results were identical for both models. DISCUSSION There was a significant clinical benefit (remission) for patients with UC who received FMT with products manufactured by MDN strategies. Reduction of donor effect may lead to a gain in microbial diversity that could improve response to treatment. These results may have implications in the treatment approach of other diseases amenable to microbiome manipulation.JOURNAL/cltg/04.03/01720094-202305000-00002/2FFU1/v/2023-05-23T220055Z/r/image-tiff.
Collapse
Affiliation(s)
| | | | - Stéphane Nancey
- Department of Gastroenterology, CHU de Lyon, Lyon-Sud Hospital, University Claude Bernard Lyon 1 and CIRI-INSERM U1111, Lyon, France
| | | | - Joël Doré
- Université Paris-Saclay, INRAE, MetaGenoPolis, AgroParis Tech, MICALIS, 78350, Jouy-en-Josas, France
| | - Philippe Lehert
- Faculty of Management, UCL, Louvain, Belgium
- Faculty of Medicine, University of Melbourne, Australia
| |
Collapse
|
18
|
Reznikov EA, Suskind DL. Current Nutritional Therapies in Inflammatory Bowel Disease: Improving Clinical Remission Rates and Sustainability of Long-Term Dietary Therapies. Nutrients 2023; 15:nu15030668. [PMID: 36771373 PMCID: PMC9920576 DOI: 10.3390/nu15030668] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/19/2023] [Accepted: 01/25/2023] [Indexed: 01/31/2023] Open
Abstract
Inflammatory Bowel Disease (IBD) includes a spectrum of chronic immune-mediated intestinal diseases thought to be related to the complex interaction between the host immune system and the intestinal microbiome. Research supports the use of nutritional therapy in IBD; however, it is not routinely used in clinical practice. This literature review seeks to advance the understanding of diet and its effect in IBD with a focus on both Crohn's Disease (CD) and Ulcerative Colitis (UC). The contribution of diet to the development and treatment of IBD cannot be overstated. In both pediatric as well as adult IBD, nutritional interventions have been shown to improve clinical symptoms as well as inflammatory burden. The impact of dietary intervention is best exemplified through the use of Exclusive Enteral Nutrition (EEN) in CD. EEN and clinical research on exclusionary whole food diets-Crohn's Disease Exclusion Diet (CDED), Specific Carbohydrate Diet (SCD), low fermentable oligosaccharides, disaccharides, monosaccharides and polyols (FODMAP) diet, and Mediterranean Diet-are discussed within this review. Current clinical literature supports the elimination of detrimental components and the incorporation of low processed whole foods in the diet. Additional prospective and longitudinal dietary studies on sustainable and long-term dietary options, along with a deeper understanding of the mechanism, are needed to further advance the role of nutritional interventions in IBD.
Collapse
|
19
|
Mahmoudi H, Hossainpour H. Application and development of fecal microbiota transplantation in the treatment of gastrointestinal and metabolic diseases: A review. Saudi J Gastroenterol 2023; 29:3-11. [PMID: 36412458 PMCID: PMC10117003 DOI: 10.4103/sjg.sjg_131_22] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Fecal microbiota transplantation (FMT) restores a balanced intestinal flora, which helps to cure recurrent Clostridium difficile infections (RCDI). FMT has also been used to treat other gastrointestinal diseases, including inflammatory bowel disease (IBD), irritable bowel syndrome (IBS), and chronic constipation, as well as a variety of non-GI disorders. The purpose of this review is to discuss gut microbiota and FMT treatment of GI and non-GI diseases. An imbalanced gut microbiota is known to predispose one to Clostridium difficile infections (CDI), IBD, and IBS. However, the complex role of the gut microbiota in maintaining health is a newer concept that is being increasingly studied. The microbiome plays a major role in cellular immunity and metabolism and has been implicated in the pathogenesis of non-GI autoimmune diseases, chronic fatigue syndrome, obesity, and even some neuropsychiatric disorders. Many recent studies have reported that viral gastroenteritis can affect intestinal epithelial cells, and SARS-CoV-2 virus has been identified in the stool of infected patients. FMT is a highly effective cure for RCDI, but a better understanding of the gut microbiota in maintaining health and controlled studies of FMT in a variety of conditions are needed before FMT can be accepted and used clinically.
Collapse
Affiliation(s)
- Hassan Mahmoudi
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences; Department of Nursing and Paramedical, Nahavand School of Allied Medical Sciences, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Hadi Hossainpour
- Department of Microbiology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
20
|
Zhang X, Ishikawa D, Ohkusa T, Fukuda S, Nagahara A. Hot topics on fecal microbiota transplantation for the treatment of inflammatory bowel disease. Front Med (Lausanne) 2022; 9:1068567. [PMID: 36530877 PMCID: PMC9755187 DOI: 10.3389/fmed.2022.1068567] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 11/21/2022] [Indexed: 11/04/2023] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic intestinal mucosal inflammatory disease with complex etiology. Traditional anti-inflammatory treatment regimens have yielded unsatisfactory results. As research continues to deepen, it has been found that the gut microbiota of patients with IBD is generally altered. The presence of microorganisms in the human gastrointestinal tract is inextricably linked to the regulation of health and disease. Disruption of the microbiotic balance of microbiota in the gastrointestinal tract is called dysbiosis, which leads to disease. Therefore, in recent years, the exploration of therapeutic methods to restore the homeostasis of the gut microbiota has attracted attention. Moreover, the use of the well-established fecal microbiota transplantation (FMT) regimen for the treatment of Clostridioides difficile infection has attracted the interest of IBD researchers. Therefore, there are an increasing number of clinical studies regarding FMT for IBD treatment. However, a series of questions regarding FMT in the treatment of IBD warrants further investigation and discussion. By reviewing published studies, this review explored hot topics such as the efficacy, safety, and administration protocol flow of FMT in the treatment of IBD. Different administration protocols have generally shown reassuring results with significant efficacy and safety. However, the FMT treatment regimen needs to be further optimized. We believe that in the future, individual customized or standard FMT implementation will further enhance the relevance of FMT in the treatment of IBD.
Collapse
Affiliation(s)
- Xiaochen Zhang
- Department of Gastroenterology, Juntendo University School of Medicine, Tokyo, Japan
| | - Dai Ishikawa
- Department of Gastroenterology, Juntendo University School of Medicine, Tokyo, Japan
- Department of Regenerative Microbiology, Juntendo University School of Medicine, Tokyo, Japan
| | - Toshifumi Ohkusa
- Department of Microbiota Research, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Department of Gastroenterology and Hepatology, The Jikei University Kashiwa Hospital, Chiba, Japan
| | - Shinji Fukuda
- Department of Regenerative Microbiology, Juntendo University School of Medicine, Tokyo, Japan
| | - Akihito Nagahara
- Department of Gastroenterology, Juntendo University School of Medicine, Tokyo, Japan
- Department of Regenerative Microbiology, Juntendo University School of Medicine, Tokyo, Japan
| |
Collapse
|
21
|
Yu J, Cheon JH. Microbial Modulation in Inflammatory Bowel Diseases. Immune Netw 2022; 22:e44. [PMID: 36627937 PMCID: PMC9807960 DOI: 10.4110/in.2022.22.e44] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 10/30/2022] [Accepted: 11/02/2022] [Indexed: 12/30/2022] Open
Abstract
Gut dysbiosis is one of prominent features in inflammatory bowel diseases (IBDs) which are of an unknown etiology. Although the cause-and-effect relationship between IBD and gut dysbiosis remains to be elucidated, one area of research has focused on the management of IBD by modulating and correcting gut dysbiosis. The use of antibiotics, probiotics either with or without prebiotics, and fecal microbiota transplantation from healthy donors are representative methods for modulating the intestinal microbiota ecosystem. The gut microbiota is not a simple assembly of bacteria, fungi, and viruses, but a complex organ-like community system composed of numerous kinds of microorganisms. Thus, studies on specific changes in the gut microbiota depending on which treatment option is applied are very limited. Here, we review previous studies on microbial modulation as a therapeutic option for IBD and its significance in the pathogenesis of IBD.
Collapse
Affiliation(s)
- Jongwook Yu
- Department of Internal Medicine and Institute of Gastroenterology, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Jae Hee Cheon
- Department of Internal Medicine and Institute of Gastroenterology, Yonsei University College of Medicine, Seoul 03722, Korea
| |
Collapse
|
22
|
Gut microbiome in modulating immune checkpoint inhibitors. EBioMedicine 2022; 82:104163. [PMID: 35841869 PMCID: PMC9297075 DOI: 10.1016/j.ebiom.2022.104163] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 06/29/2022] [Accepted: 06/29/2022] [Indexed: 11/24/2022] Open
Abstract
Funding
Collapse
|
23
|
Huang T, Xu J, Wang M, Pu K, Li L, Zhang H, Liang Y, Sun W, Wang Y. An updated systematic review and meta-analysis of fecal microbiota transplantation for the treatment of ulcerative colitis. Medicine (Baltimore) 2022; 101:e29790. [PMID: 35905229 PMCID: PMC9333500 DOI: 10.1097/md.0000000000029790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Fecal microbiota transplantation (FMT) as a promising therapy for ulcerative colitis (UC) remains controversial. We conducted a systematic review and meta-analysis to assess the efficiency and safety of FMT as a treatment for UC. METHODS The target studies were identified by searching PubMed, EMBASE, the Cochrane Library, Web of Science, and ClinicalTrials and by manual supplementary retrieval. We conducted a general review and quantitative synthesis of included studies. We used the RevMan and Stata programs in the meta-analysis. The outcomes were total remission, clinical remission, steroid-free remission, and serious adverse events. We also performed subgroup analyses based on different populations. RESULTS A total of 34 articles were included in the general review. Only 16 articles, including 4 randomized controlled trials, 2 controlled clinical trials, and 10 cohort studies, were selected for the meta-analysis. We found that donor FMT might be more effective than placebo for attaining total remission (risk ratio [RR]: 2.77, 95% confidence interval [CI]: 1.54-4.98; P = .0007), clinical remission (RR: 0.33, 95% CI: 0.24-0.41; P < .05), and steroid-free remission (RR: 3.63, 95% CI: 1.57-8.42; P = .003), but found no statistically significant difference in the incidence of serious adverse events (RR: 0.88, 95% CI: 0.34-2.31, P = .8). The subgroup analyses revealed significant differences between the pooled clinical remission rates for different regions, degrees of severity of the disease, and patients with steroid- or nonsteroid-dependent UC. CONCLUSIONS FMT can achieve clinical remission and clinical response in patients with UC.
Collapse
Affiliation(s)
- Taobi Huang
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
- Department of Gastroenterology, the First Hospital of Lanzhou University, Lanzhou, China
- Gansu Province Key Laboratory of Gastrointestinal Diseases in Lanzhou University, Lanzhou, China
| | - Jinlan Xu
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
- Department of Gastroenterology, the First Hospital of Lanzhou University, Lanzhou, China
- Gansu Province Key Laboratory of Gastrointestinal Diseases in Lanzhou University, Lanzhou, China
| | - Maoying Wang
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Ke Pu
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
- Department of Gastroenterology, the First Hospital of Lanzhou University, Lanzhou, China
- Gansu Province Key Laboratory of Gastrointestinal Diseases in Lanzhou University, Lanzhou, China
| | - Longquan Li
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
- Department of Gastroenterology, the First Hospital of Lanzhou University, Lanzhou, China
- Gansu Province Key Laboratory of Gastrointestinal Diseases in Lanzhou University, Lanzhou, China
| | - Huiyun Zhang
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
- Department of Gastroenterology, the First Hospital of Lanzhou University, Lanzhou, China
- Gansu Province Key Laboratory of Gastrointestinal Diseases in Lanzhou University, Lanzhou, China
| | - Yuan Liang
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
- Department of Gastroenterology, the First Hospital of Lanzhou University, Lanzhou, China
- Gansu Province Key Laboratory of Gastrointestinal Diseases in Lanzhou University, Lanzhou, China
| | - Weiming Sun
- Department of Endocrinology, The First Hospital of Lanzhou University, Lanzhou, China
- *Correspondence: Yu Ping Wang, Department of Gastroenterology, Key Laboratory for Gastrointestinal Diseases of Gansu Province, The First Hospital of Lanzhou University, No.1 West Donggang Road, Lanzhou, Gansu 730000, China (e-mail:
| | - Yuping Wang
- Department of Gastroenterology, the First Hospital of Lanzhou University, Lanzhou, China
- Gansu Province Key Laboratory of Gastrointestinal Diseases in Lanzhou University, Lanzhou, China
- *Correspondence: Yu Ping Wang, Department of Gastroenterology, Key Laboratory for Gastrointestinal Diseases of Gansu Province, The First Hospital of Lanzhou University, No.1 West Donggang Road, Lanzhou, Gansu 730000, China (e-mail:
| |
Collapse
|
24
|
Ulcerative Colitis in Response to Fecal Microbiota Transplantation via Modulation of Gut Microbiota and Th17/Treg Cell Balance. Cells 2022; 11:cells11111851. [PMID: 35681546 PMCID: PMC9180439 DOI: 10.3390/cells11111851] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 05/19/2022] [Accepted: 06/01/2022] [Indexed: 02/04/2023] Open
Abstract
Background: Fecal microbiota transplantation (FMT) may contribute to disease remission in ulcerative colitis (UC). We studied the microbiota change and its regulation on T cells after FMT. Methods: Patients with mild to moderately active UC were included to receive FMT. The intestinal histopathological changes and barrier function were evaluated. The fecal samples of donors and patients were analyzed by 16S rRNA gene-based microbiota analysis, and the colon Th17 and Treg cells were assessed. Results: Fifteen patients completed the 8-week-follow-up. A total of 10 patients (66.7%) were in the responders (RE) group and five in the non-responders (NR) group. The Nancy histological index and fecal calprotectin decreased (p < 0.001, p = 0.06, respectively) and Occludin and Claudin1 increased in the RE group. The abundance of Faecalibaterium increased significantly by 2.3-fold in the RE group at week 8 (p = 0.043), but it was suppressed in the NR group. Fecal calprotectin (r = −0.382, p = 0.003) and Nancy index (r = −0.497, p = 0.006) were correlated inversely with the abundance of Faecalibacterium, respectively. In the RE group the relative mRNA expression of RORγt decreased and Foxp3 increased. Significantly decreased CD4+ RORγt+ Th17 and increased CD4+ Foxp3+ Treg were also observed in the RE group. The relative abundance of Faecalibacterium correlated with CD4+ RORγt+ Th17 (r = −0.430, p = 0.018) and CD4+ Foxp3+ Treg (r = 0.571, p = 0.001). Conclusions: The long-term Faecalibaterium colonization following FMT plays a crucial role in UC remission by alleviating intestinal inflammation. This anti-inflammatory effect of Faecalibacterium may be achieved by regulating the imbalance of Th17/Treg levels in UC.
Collapse
|
25
|
Chen C, Chen L, Sun D, Li C, Xi S, Ding S, Luo R, Geng Y, Bai Y. Adverse events of intestinal microbiota transplantation in randomized controlled trials: a systematic review and meta-analysis. Gut Pathog 2022; 14:20. [PMID: 35619175 PMCID: PMC9134705 DOI: 10.1186/s13099-022-00491-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Accepted: 04/11/2022] [Indexed: 01/04/2025] Open
Abstract
Background Intestinal microbiota transplantation (IMT) has been recognized as an effective treatment for recurrent Clostridium difficile infection (rCDI) and a novel treatment option for other diseases. However, the safety of IMT in patients has not been established. Aims This systematic review and meta-analysis was conducted to assess the safety of IMT. Methods We systematically reviewed all randomized controlled trials (RCTs) of IMT studies published up to 28 February 2021 using databases including PubMed, EMBASE and the Cochrane Library. Studies were excluded if they did not report adverse events (AEs). Two authors independently extracted the data. The relative risk (RR) of serious adverse events (SAEs) and common adverse events (CAEs) were estimated separately, as were predefined subgroups. Publication bias was evaluated by a funnel plot and Egger’s regression test. Results Among 978 reports, 99 full‐text articles were screened, and 20 articles were included for meta-analysis, involving 1132 patients (603 in the IMT group and 529 in the control group). We found no significant difference in the incidence of SAEs between the IMT group and the control group (RR = 1.36, 95% CI 0.56–3.31, P = 0.50). Of these 20 studies, 7 described the number of patients with CAEs, involving 360 patients (195 in the IMT group and 166 in the control group). An analysis of the eight studies revealed that the incidence of CAEs was also not significantly increased in the IMT group compared with the control group (RR = 1.06, 95% CI 0.91–1.23, P = 0.43). Subgroup analysis showed that the incidence of CAEs was significantly different between subgroups of delivery methods (P(CAE) = 0.04), and the incidence of IMT-related SAEs and CAEs was not significantly different in the other predefined subgroups. Conclusion Currently, IMT is widely used in many diseases, but its associated AEs should not be ignored. To improve the safety of IMT, patients' conditions should be fully evaluated before IMT, appropriate transplantation methods should be selected, each operative step of faecal bacteria transplantation should be strictly controlled, AE management mechanisms should be improved, and a close follow-up system should be established.
Collapse
Affiliation(s)
- Chong Chen
- Department of Gastroenterology, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, 518037, China
| | - Liyu Chen
- Department of Gastroenterology, 923Th Hospital of PLA Joint Logistics Support Force, Nanning, 530021, China
| | - Dayong Sun
- Department of Gastroenterology, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, 518037, China
| | - Cailan Li
- Department of Gastroenterology, 923Th Hospital of PLA Joint Logistics Support Force, Nanning, 530021, China
| | - Shiheng Xi
- Department of Gastroenterology, 923Th Hospital of PLA Joint Logistics Support Force, Nanning, 530021, China
| | - Shihua Ding
- Department of Gastroenterology, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, 518037, China
| | - Rongrong Luo
- Department of Gastroenterology, 923Th Hospital of PLA Joint Logistics Support Force, Nanning, 530021, China
| | - Yan Geng
- Department of Gastroenterology, 923Th Hospital of PLA Joint Logistics Support Force, Nanning, 530021, China.
| | - Yang Bai
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
26
|
Zhang J, Guo Y, Duan L. Features of Gut Microbiome Associated With Responses to Fecal Microbiota Transplantation for Inflammatory Bowel Disease: A Systematic Review. Front Med (Lausanne) 2022; 9:773105. [PMID: 35721102 PMCID: PMC9198717 DOI: 10.3389/fmed.2022.773105] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 04/19/2022] [Indexed: 12/14/2022] Open
Abstract
Fecal microbiota transplantation (FMT) has been seen as a novel treatment for inflammatory bowel disease (IBD). The results on microbial alterations and their relationship to treatment efficacy are varied among studies. We performed a systematic review to explore the association between microbial features and therapy outcomes. We searched PubMed, Web of Science, Embase, and Cochrane Library databases from inception to November 2020. Studies that investigated the efficacy of FMT and baseline microbial features or dynamic alteration of the microbiome during FMT were included. The methodological quality of the included cohort studies and randomized controlled trials (RCTs) was assessed using the Newcastle-Ottawa Scale (NOS) and the Cochrane risk of bias tool, respectively. A total of 30 studies were included in the analysis. Compared to non-responders, the microbial structure of patients who responded to FMT had a higher similarity to that of their donors after FMT. Donors of responders (R-d) and non-responders (NR-d) had different microbial taxa, but the results were inconsistent. After FMT, several beneficial short-chain fatty acids- (SCFA-) producing taxa, such as Faecalibacterium, Eubacterium, Roseburia, and species belonging to them, were enriched in responders, while pathogenic bacteria (Escherichia coli and Escherichia-Shigella) belonging to the phylum Proteobacteria were decreased. Alterations of microbial functional genes and metabolites were also observed. In conclusion, the response to FMT was associated with the gut microbiota and their metabolites. The pre-FMT microbial features of recipients, the comparison of pre- and post-FMT microbiota, and the relationship between recipients and donors at baseline should be further investigated using uniform and standardized methods.
Collapse
Affiliation(s)
- Jindong Zhang
- Department of Gastroenterology, Peking University Third Hospital, Beijing, China
| | - Yangyang Guo
- Department of Critical Care Medicine, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Liping Duan
- Department of Gastroenterology, Peking University Third Hospital, Beijing, China
| |
Collapse
|
27
|
Li M, Yang L, Mu C, Sun Y, Gu Y, Chen D, Liu T, Cao H. Gut microbial metabolome in inflammatory bowel disease: From association to therapeutic perspectives. Comput Struct Biotechnol J 2022; 20:2402-2414. [PMID: 35664229 PMCID: PMC9125655 DOI: 10.1016/j.csbj.2022.03.038] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 03/26/2022] [Accepted: 03/31/2022] [Indexed: 12/11/2022] Open
Abstract
Inflammatory bowel disease (IBD), comprising Crohn's disease (CD) and ulcerative colitis (UC), is a set of clinically chronic, relapsing gastrointestinal inflammatory disease and lacks of an absolute cure. Although the precise etiology is unknown, developments in high-throughput microbial genomic sequencing significantly illuminate the changes in the intestinal microbial structure and functions in patients with IBD. The application of microbial metabolomics suggests that the microbiota can influence IBD pathogenesis by producing metabolites, which are implicated as crucial mediators of host-microbial crosstalk. This review aims to elaborate the current knowledge of perturbations of the microbiome-metabolome interface in IBD with description of altered composition and metabolite profiles of gut microbiota. We emphasized and elaborated recent findings of several potentially protective metabolite classes in IBD, including fatty acids, amino acids and derivatives and bile acids. This article will facilitate a deeper understanding of the new therapeutic approach for IBD by applying metabolome-based adjunctive treatment.
Collapse
Key Words
- AMPs, Antimicrobial peptides
- BAs, Bile acids
- BC, Bray Curtis
- CD, Crohn’s disease
- CDI, Clostridioides difficile infection
- DC, Diversion colitis
- DCA, Deoxycholic acid
- DSS, Dextran sulfate sodium
- FAs, Fatty acid
- FMT, Fecal microbiota transplantation
- FODMAP, Fermentable oligosaccharide, disaccharide, monosaccharide, and polyol
- GC–MS, Gas chromatography-mass spectrometry
- Gut microbiota
- HDAC, Histone deacetylase
- IBD, Inflammatory bowel disease
- Inflammatory bowel diseases
- LC-MS, Liquid chromatography-mass spectrometry
- LCA, Lithocholic acid
- LCFAs, Long-chain fatty acids
- MCFAs, Medium-chain fatty acids
- MD, Mediterranean diet
- MS, Mass spectrometry
- Metabolite
- Metabolomics
- Metagenomics
- Microbial therapeutics
- NMR, Nuclear magnetic resonance
- PBAs, Primary bile acids
- SBAs, Secondary bile acids
- SCD, Special carbohydrate diet
- SCFAs, Short-chain fatty acids
- TNBS, 2,4,6-trinitro-benzene sulfonic acid
- UC, Ulcerative colitis
- UDCA, Ursodeoxycholic acid
- UPLC-MS, ultraperformance liquid chromatography coupled to mass spectrometry
- UU, Unweighted UniFrac
- WMS, Whole-metagenome shotgun
Collapse
Affiliation(s)
| | | | | | - Yue Sun
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Yu Gu
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Danfeng Chen
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Tianyu Liu
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Hailong Cao
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| |
Collapse
|
28
|
Haindl R, Totzauer L, Kulozik U. Preservation by lyophilization of a human intestinal microbiota: influence of the cultivation pH on the drying outcome and re‐establishment ability. Microb Biotechnol 2022; 15:886-900. [PMID: 35124900 PMCID: PMC8913864 DOI: 10.1111/1751-7915.14007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 01/05/2022] [Indexed: 11/28/2022] Open
Affiliation(s)
- Regina Haindl
- Chair of Food and Bioprocess Engineering TUM School of Life Sciences ZIEL‐Institute for Food and Health Technical University of Munich Weihenstephaner Berg 1 Freising‐Weihenstephan Germany
| | - Lisa Totzauer
- Chair of Food and Bioprocess Engineering TUM School of Life Sciences ZIEL‐Institute for Food and Health Technical University of Munich Weihenstephaner Berg 1 Freising‐Weihenstephan Germany
| | - Ulrich Kulozik
- Chair of Food and Bioprocess Engineering TUM School of Life Sciences ZIEL‐Institute for Food and Health Technical University of Munich Weihenstephaner Berg 1 Freising‐Weihenstephan Germany
| |
Collapse
|
29
|
Manzoor S, Wani SM, Mir SA, Rizwan D. Role of probiotics and prebiotics in mitigation of different diseases. Nutrition 2022; 96:111602. [PMID: 35182833 DOI: 10.1016/j.nut.2022.111602] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 11/30/2021] [Accepted: 01/13/2022] [Indexed: 11/15/2022]
|
30
|
Yu D, Meng X, de Vos WM, Wu H, Fang X, Maiti AK. Implications of Gut Microbiota in Complex Human Diseases. Int J Mol Sci 2021; 22:12661. [PMID: 34884466 PMCID: PMC8657718 DOI: 10.3390/ijms222312661] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 10/30/2021] [Accepted: 11/17/2021] [Indexed: 02/07/2023] Open
Abstract
Humans, throughout the life cycle, from birth to death, are accompanied by the presence of gut microbes. Environmental factors, lifestyle, age and other factors can affect the balance of intestinal microbiota and their impact on human health. A large amount of data show that dietary, prebiotics, antibiotics can regulate various diseases through gut microbes. In this review, we focus on the role of gut microbes in the development of metabolic, gastrointestinal, neurological, immune diseases and, cancer. We also discuss the interaction between gut microbes and the host with respect to their beneficial and harmful effects, including their metabolites, microbial enzymes, small molecules and inflammatory molecules. More specifically, we evaluate the potential ability of gut microbes to cure diseases through Fecal Microbial Transplantation (FMT), which is expected to become a new type of clinical strategy for the treatment of various diseases.
Collapse
Affiliation(s)
- Dahai Yu
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, 2699 Qianjin Street, Changchun 130012, China; (X.M.); (X.F.)
| | - Xin Meng
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, 2699 Qianjin Street, Changchun 130012, China; (X.M.); (X.F.)
| | - Willem M. de Vos
- Laboratory of Microbiology, Wageningen University, Dreijenplein 10, 6703 HB Wageningen, The Netherlands;
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland
| | - Hao Wu
- Vascular Biology Program, Department of Surgery, Boston Children’s Hospital and Harvard Medical School, Boston, MA 02115, USA;
| | - Xuexun Fang
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, 2699 Qianjin Street, Changchun 130012, China; (X.M.); (X.F.)
| | - Amit K. Maiti
- Department of Genetics and Genomics, Mydnavar, 2645 Somerset Boulevard, Troy, MI 48084, USA
| |
Collapse
|
31
|
Ren R, Gao X, Shi Y, Li J, Peng L, Sun G, Wang Z, Yan B, Zhi J, Yang Y. Long-Term Efficacy of Low-Intensity Single Donor Fecal Microbiota Transplantation in Ulcerative Colitis and Outcome-Specific Gut Bacteria. Front Microbiol 2021; 12:742255. [PMID: 34867859 PMCID: PMC8635752 DOI: 10.3389/fmicb.2021.742255] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 10/07/2021] [Indexed: 12/26/2022] Open
Abstract
Aims: To assess the long-term efficacy and safety of single-donor, low-intensity fecal microbiota transplantation (FMT) in treating ulcerative colitis (UC), and to identify the outcome-specific gut bacteria. Design: Thirty-one patients with active UC (Mayo scores ≥ 3) were recruited, and all received FMT twice, at the start of the study and 2∼3 months later, respectively, with a single donor and a long-term follow-up. The fecal microbiome profile was accessed via 16S rRNA sequencing before and after FMT. Results: After the first FMT, 22.58% (7/31) of patients achieved clinical remission and endoscopy remission, with the clinical response rate of 67.74% (21/31), which increased to 55% (11/20) and 80% (16/20), respectively, after the second FMT. No serious adverse events occurred in all patients. During 4 years of follow-up, the mean remission period of patients was 26.5 ± 19.98 m; the relapse rate in the 12 remission patients was 33.33% within 1 year, and 58.3% within 4 years. At baseline, UC patients showed an enrichment in some proinflammatory microorganisms compared to the donor, such as Bacteroides fragilis, Clostridium difficile, and Ruminococcus gnavus, and showed reduced amounts of short-chain fatty acid (SCFA) producing bacteria especially Faecalibacterium prausnitzii. FMT induced taxonomic compositional changes in the recipient gut microbiota, resulting in a donor-like state. Given this specific donor, UC recipients with different outcomes showed distinct gut microbial features before and after FMT. In prior to FMT, relapse was characterized by higher abundances of Bacteroides fragilis and Lachnospiraceae incertae sedis, together with lower abundances of Bacteroides massiliensis, Roseburia, and Ruminococcus; Prevotella copri was more abundant in the non-responders (NR); and the patients with sustained remission (SR) had a higher abundance of Bifidobacterium breve. After FMT, the NR patients had a lower level of Bifidobacterium compared to those with relapse (Rel) and SR, while a higher level of Bacteroides spp. was observed in the Rel group. Conclusion: Low-intensity single donor FMT could induce long remission in active UC. The gut microbiota composition in UC patients at baseline may be predictive of therapeutic response to FMT.
Collapse
Affiliation(s)
- Rongrong Ren
- Department of Gastroenterology and Hepatology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Xuefeng Gao
- Department of Gastroenterology and Hepatology, Shenzhen University General Hospital, Shenzhen, China
- Central Laboratory, Shenzhen Key Laboratory of Precision Medicine for Hematological Malignancies, Shenzhen University General Hospital, Shenzhen, China
| | - Yichao Shi
- Department of Gastroenterology and Hepatology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Jianfeng Li
- Department of Gastroenterology and Hepatology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Lihua Peng
- Department of Gastroenterology and Hepatology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Gang Sun
- Department of Gastroenterology and Hepatology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Zikai Wang
- Department of Gastroenterology and Hepatology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Bin Yan
- Department of Gastroenterology and Hepatology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Junli Zhi
- Department of Gastroenterology and Hepatology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Yunsheng Yang
- Department of Gastroenterology and Hepatology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
32
|
Michailidis L, Currier AC, Le M, Flomenhoft DR. Adverse events of fecal microbiota transplantation: a meta-analysis of high-quality studies. Ann Gastroenterol 2021; 34:802-814. [PMID: 34815646 PMCID: PMC8596209 DOI: 10.20524/aog.2021.0655] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 03/08/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Fecal microbiota transplantation (FMT) has shown excellent efficacy in treating Clostridioides difficile infection, as well as promise in several other diseases. The heightened interest is accompanied by concerns over adverse events (AE) and safety. To further understand that in FMT, we performed a systematic review of the literature and a meta-analysis of high-quality, prospective randomized controlled trials FMT. METHODS Studies were selected based on predefined exclusion criteria and were assessed for quality. Only prospective, randomized, controlled studies of high quality were included in the final analysis. Data were extracted on demographics, AE, indication, delivery method and follow-up duration. RESULTS Out of 334 articles reviewed, 9 high quality studies with 756 FMTs were selected for final analysis. The pooled rate of AE was 39.3% (95% confidence interval [CI] 0.19-0.642) as they were reported by 112 patients who received FMT. The SAE rate was 5.3% (95%CI 3.1-8.8%). The most common AE reported was abdominal pain, followed by diarrhea. The most common SAE was Clostridium difficile infection. Upper gastrointestinal tract delivery was associated with a higher rate of total AE, but not SAE. CONCLUSIONS Based on the selected studies, the AE rate of FMT is 39.3%, with most AE being mild and self-limiting. SAE were uncommon at 5.3%, and many were only possibly related to the FMT. Adherence to standardized reporting of AE as well as longitudinal studies and registries will help further clarify the safety of FMT in the future.
Collapse
Affiliation(s)
- Lamprinos Michailidis
- Department of Digestive Diseases and Nutrition, University of Kentucky College of Medicine, Lexington, KY, USA
- Correspondence to: Lamprinos Michailidis, MD, University of Kentucky College of Medicine 800 Rose Street Room MN649, Lexington, KY 40536, USA, e-mail:
| | - Alden C. Currier
- Department of Digestive Diseases and Nutrition, University of Kentucky College of Medicine, Lexington, KY, USA
| | - Michelle Le
- Department of Digestive Diseases and Nutrition, University of Kentucky College of Medicine, Lexington, KY, USA
| | - Deborah R. Flomenhoft
- Department of Digestive Diseases and Nutrition, University of Kentucky College of Medicine, Lexington, KY, USA
| |
Collapse
|
33
|
Baumgartner M, Lang M, Holley H, Crepaz D, Hausmann B, Pjevac P, Moser D, Haller F, Hof F, Beer A, Orgler E, Frick A, Khare V, Evstatiev R, Strohmaier S, Primas C, Dolak W, Köcher T, Klavins K, Rath T, Neurath MF, Berry D, Makristathis A, Muttenthaler M, Gasche C. Mucosal Biofilms Are an Endoscopic Feature of Irritable Bowel Syndrome and Ulcerative Colitis. Gastroenterology 2021; 161:1245-1256.e20. [PMID: 34146566 PMCID: PMC8527885 DOI: 10.1053/j.gastro.2021.06.024] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 06/11/2021] [Accepted: 06/13/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND & AIMS Irritable bowel syndrome (IBS) and inflammatory bowel diseases result in a substantial reduction in quality of life and a considerable socioeconomic impact. In IBS, diagnosis and treatment options are limited, but evidence for involvement of the gut microbiome in disease pathophysiology is emerging. Here we analyzed the prevalence of endoscopically visible mucosal biofilms in gastrointestinal disease and associated changes in microbiome composition and metabolism. METHODS The presence of mucosal biofilms was assessed in 1426 patients at 2 European university-based endoscopy centers. One-hundred and seventeen patients were selected for in-depth molecular and microscopic analysis using 16S ribosomal RNA gene amplicon-sequencing of colonic biopsies and fecal samples, confocal microscopy with deep learning-based image analysis, scanning electron microscopy, metabolomics, and in vitro biofilm formation assays. RESULTS Biofilms were present in 57% of patients with IBS and 34% of patients with ulcerative colitis compared with 6% of controls (P < .001). These yellow-green adherent layers of the ileum and right-sided colon were microscopically confirmed to be dense bacterial biofilms. 16S-sequencing links the presence of biofilms to a dysbiotic gut microbiome, including overgrowth of Escherichia coli and Ruminococcus gnavus. R. gnavus isolates cultivated from patient biofilms also formed biofilms in vitro. Metabolomic analysis found an accumulation of bile acids within biofilms that correlated with fecal bile acid excretion, linking this phenotype with a mechanism of diarrhea. CONCLUSIONS The presence of mucosal biofilms is an endoscopic feature in a subgroup of IBS and ulcerative colitis with disrupted bile acid metabolism and bacterial dysbiosis. They provide novel insight into the pathophysiology of IBS and ulcerative colitis, illustrating that biofilm can be seen as a tipping point in the development of dysbiosis and disease.
Collapse
Affiliation(s)
- Maximilian Baumgartner
- Division of Gastroenterology and Hepatology, Department of Internal Medicine 3, Medical University of Vienna, Vienna, Austria
| | - Michaela Lang
- Division of Gastroenterology and Hepatology, Department of Internal Medicine 3, Medical University of Vienna, Vienna, Austria,Centre for Microbiology and Environmental Systems Science, Department of Microbiology and Ecosystem Science, Division of Microbial Ecology, University of Vienna, Vienna, Austria
| | - Hunter Holley
- Division of Gastroenterology and Hepatology, Department of Internal Medicine 3, Medical University of Vienna, Vienna, Austria,Centre for Microbiology and Environmental Systems Science, Department of Microbiology and Ecosystem Science, Division of Microbial Ecology, University of Vienna, Vienna, Austria
| | - Daniel Crepaz
- Centre for Microbiology and Environmental Systems Science, Department of Microbiology and Ecosystem Science, Division of Microbial Ecology, University of Vienna, Vienna, Austria
| | - Bela Hausmann
- Joint Microbiome Facility of the Medical University of Vienna and the University of Vienna, Vienna, Austria,Division of Microbiology, Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Petra Pjevac
- Centre for Microbiology and Environmental Systems Science, Department of Microbiology and Ecosystem Science, Division of Microbial Ecology, University of Vienna, Vienna, Austria,Joint Microbiome Facility of the Medical University of Vienna and the University of Vienna, Vienna, Austria
| | - Doris Moser
- Department of Cranio-Maxillofacial and Oral Surgery, Medical University of Vienna, Vienna, Austria
| | - Felix Haller
- Division of Gastroenterology and Hepatology, Department of Internal Medicine 3, Medical University of Vienna, Vienna, Austria
| | - Fabian Hof
- Division of Gastroenterology and Hepatology, Department of Internal Medicine 3, Medical University of Vienna, Vienna, Austria
| | - Andrea Beer
- Department of Pathology, Medical University of Vienna, Vienna, Austria
| | - Elisabeth Orgler
- Division of Gastroenterology and Hepatology, Department of Internal Medicine 3, Medical University of Vienna, Vienna, Austria
| | - Adrian Frick
- Division of Gastroenterology and Hepatology, Department of Internal Medicine 3, Medical University of Vienna, Vienna, Austria
| | - Vineeta Khare
- Division of Gastroenterology and Hepatology, Department of Internal Medicine 3, Medical University of Vienna, Vienna, Austria
| | - Rayko Evstatiev
- Division of Gastroenterology and Hepatology, Department of Internal Medicine 3, Medical University of Vienna, Vienna, Austria
| | - Susanne Strohmaier
- Center for Public Health, Department of Epidemiology, Medical University of Vienna, Vienna, Austria
| | - Christian Primas
- Division of Gastroenterology and Hepatology, Department of Internal Medicine 3, Medical University of Vienna, Vienna, Austria
| | - Werner Dolak
- Division of Gastroenterology and Hepatology, Department of Internal Medicine 3, Medical University of Vienna, Vienna, Austria
| | | | - Kristaps Klavins
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Timo Rath
- Ludwig Demling Endoscopy Center of Excellence, Division of Gastroenterology, Friedrich-Alexander-University, Erlangen, Germany
| | - Markus F. Neurath
- Ludwig Demling Endoscopy Center of Excellence, Division of Gastroenterology, Friedrich-Alexander-University, Erlangen, Germany
| | - David Berry
- Centre for Microbiology and Environmental Systems Science, Department of Microbiology and Ecosystem Science, Division of Microbial Ecology, University of Vienna, Vienna, Austria,Joint Microbiome Facility of the Medical University of Vienna and the University of Vienna, Vienna, Austria
| | - Athanasios Makristathis
- Joint Microbiome Facility of the Medical University of Vienna and the University of Vienna, Vienna, Austria,Division of Microbiology, Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Markus Muttenthaler
- Faculty of Chemistry, Institute of Biological Chemistry, University of Vienna, Vienna, Austria,Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | - Christoph Gasche
- Division of Gastroenterology and Hepatology, Department of Internal Medicine 3, Medical University of Vienna, Vienna, Austria; Loha for Life, Center for Gastroenterlogy and Iron Deficiency, Vienna, Austria.
| |
Collapse
|
34
|
El-Sayed A, Aleya L, Kamel M. Microbiota and epigenetics: promising therapeutic approaches? ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:49343-49361. [PMID: 34319520 PMCID: PMC8316543 DOI: 10.1007/s11356-021-15623-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 07/20/2021] [Indexed: 04/15/2023]
Abstract
The direct/indirect responsibility of the gut microbiome in disease induction in and outside the digestive tract is well studied. These results are usually from the overpopulation of certain species on the cost of others, interaction with beneficial microflora, interference with normal epigenetic control mechanisms, or suppression of the immune system. Consequently, it is theoretically possible to cure such disorders by rebalancing the microbiome inside our bodies. This can be achieved by changing the lifestyle pattern and diet or by supplementation with beneficial bacteria or their metabolites. Various approaches have been explored to manipulate the normal microbial inhabitants, including nutraceutical, supplementations with prebiotics, probiotics, postbiotics, synbiotics, and antibiotics, or through microbiome transplantation (fecal, skin, or vaginal microbiome transplantation). In the present review, the interaction between the microbiome and epigenetics and their role in disease induction is discussed. Possible future therapeutic approaches via the reestablishment of equilibrium in our internal micro-ecosystem are also highlighted.
Collapse
Affiliation(s)
- Amr El-Sayed
- Department of Medicine and Infectious Diseases, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Lotfi Aleya
- Chrono-Environnement Laboratory, UMR CNRS 6249, Bourgogne Franche-Comté University, F-25030, Besançon Cedex, France
| | - Mohamed Kamel
- Department of Medicine and Infectious Diseases, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt.
| |
Collapse
|
35
|
Wang Y, Dykes GA. Direct modulation of the gut microbiota as a therapeutic approach for Alzheimer's disease. CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2021; 21:14-25. [PMID: 34365962 DOI: 10.2174/1871527320666210806165751] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 04/18/2021] [Accepted: 05/24/2021] [Indexed: 11/22/2022]
Abstract
Alzheimer's disease is a neurodegenerative disease characterized by a progressive decline in memory and cognitive functions. It is a multifactorial disease involving a wide range of pathological factors that are not fully understood. As supported by a growing amount of evidence in recent years, the gut microbiota plays an important role in the pathogenesis of Alzheimer's disease through the brain-gut-microbiota axis. This suggests that direct modulation of the gut microbiota can be a potential therapeutic target for Alzheimer's disease. This review summarizes recent research findings on the modulation of the gut microbiota by probiotic therapies and faecal microbiota transplantation for controlling the pathologies of Alzheimer's disease. Current limitations and future research directions of this field are also discussed.
Collapse
Affiliation(s)
- Yi Wang
- School of Agriculture and Food Sciences, the University of Queensland, Keyhole Road, St Lucia, Queensland 4072. Australia
| | - Gary A Dykes
- School of Agriculture and Food Sciences, the University of Queensland, Keyhole Road, St Lucia, Queensland 4072. Australia
| |
Collapse
|
36
|
Nishikawa Y, Sato N, Tsukinaga S, Uchiyama K, Koido S, Ishikawa D, Ohkusa T. Long-term outcomes of antibiotic combination therapy for ulcerative colitis. Ther Adv Chronic Dis 2021; 12:20406223211028790. [PMID: 34285790 PMCID: PMC8264727 DOI: 10.1177/20406223211028790] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 06/10/2021] [Indexed: 12/30/2022] Open
Abstract
Aims An antibiotic combination of amoxicillin, tetracycline and metronidazole (ATM) is effective for ulcerative colitis (UC), but this regimen is discontinued in some cases due to adverse events. This study aimed to assess a revised combination, namely, amoxicillin, fosfomycin and metronidazole (AFM), in UC patients with the goal of reducing side effects while maintaining therapeutic efficacy. Methods A prospective open-label trial was undertaken in 104 adult UC patients. A combination of oral amoxicillin (1500 mg), fosfomycin (3000 mg) and metronidazole (750 mg) was administered to patients daily for 2-4 weeks in addition to their conventional medication. Clinical assessment was performed using the Lichtiger index before treatment and at 0, 3, 6, 9 and 12 months and 2 and 3 years. Endoscopic evaluation was performed using the Mayo score before treatment and at 3 and 12 months. Results The compliance rate was 99.2%. Response and remission rates were 80.8% and 63.5% at completion, 73.1% and 64.4% at 3 months, and 39.4% for both at 12 months, respectively. Of the 41 patients who were in remission at 12 months, 63.4% maintained that status until the 2-year follow-up. Similarly, 69.2% of those in remission at 2 years remained relapse free at the 3-year follow-up. Side effects were observed in 44.2% of the participants. Fever occurred in one patient (1.0%), which was lower than the rate observed with ATM therapy. Conclusion These results indicate that AFM therapy induces remission and is appropriate for long-term maintenance of UC while producing fewer and milder adverse events than ATM therapy. Clinical trials This study was registered in the University Hospital Medical Information Network (No. R000046546).
Collapse
Affiliation(s)
- Yuriko Nishikawa
- Department of Microbiota Research, Juntendo University Graduate School of Medicine, 3-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Nobuhiro Sato
- Department of Microbiota Research, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo, Japan
| | - Shintaro Tsukinaga
- Department of Endoscopy, The Jikei University Kashiwa Hospital, Kashiwa, Chiba, Japan
| | - Kan Uchiyama
- Department of Gastroenterology and Hepatology, The Jikei University Kashiwa Hospital, Kashiwa, Chiba, Japan
| | - Shigeo Koido
- Department of Gastroenterology and Hepatology, The Jikei University Kashiwa Hospital, Kashiwa, Chiba, Japan
| | - Dai Ishikawa
- Department of Gastroenterology, Juntendo University School of Medicine, Bunkyo-ku, Tokyo, Japan
| | - Toshifumi Ohkusa
- Department of Microbiota Research, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo, Japan Department of Gastroenterology and Hepatology, The Jikei University Kashiwa Hospital, Chiba, Japan
| |
Collapse
|
37
|
Gupta M, Krishan P, Kaur A, Arora S, Trehanpati N, Singh TG, Bedi O. Mechanistic and physiological approaches of fecal microbiota transplantation in the management of NAFLD. Inflamm Res 2021; 70:765-776. [PMID: 34212214 DOI: 10.1007/s00011-021-01480-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/17/2021] [Indexed: 12/14/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a multifaceted disease allied with various metabolic disorders, obesity and dysbiosis. Gut microbiota plays an influential role in the pathogenesis of NAFLD and other metabolic disorders. However, recent scientific upsurge emphasizes on the utility of beneficial gut microbiota and bacteriotherapy in the management of NAFLD. Fecal microbiota transplantation (FMT) is the contemporary therapeutic approach with state-of-the-art methods for the treatment of NAFLD. Other potential therapies include probiotics and prebiotics supplements which are based on alteration of gut microbes to treat NAFLD. In this review, our major focus is on the pathological association of gut microbiota with progression of NAFLD, historical aspects and recent advances in FMT with possible intervention to combat NAFLD and its associated metabolic dysfunctions.
Collapse
Affiliation(s)
- Manisha Gupta
- Chitkara College of Pharmacy, Chitkara University, Chandigarh-Patiala National Highway (NH-64), Rajpura, 140401, Punjab, India
| | - Pawan Krishan
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, India
| | - Amarjot Kaur
- Chitkara College of Pharmacy, Chitkara University, Chandigarh-Patiala National Highway (NH-64), Rajpura, 140401, Punjab, India
| | - Sandeep Arora
- Chitkara College of Pharmacy, Chitkara University, Chandigarh-Patiala National Highway (NH-64), Rajpura, 140401, Punjab, India
| | - Nirupma Trehanpati
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Thakur Gurjeet Singh
- Chitkara College of Pharmacy, Chitkara University, Chandigarh-Patiala National Highway (NH-64), Rajpura, 140401, Punjab, India
| | - Onkar Bedi
- Chitkara College of Pharmacy, Chitkara University, Chandigarh-Patiala National Highway (NH-64), Rajpura, 140401, Punjab, India.
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, India.
| |
Collapse
|
38
|
Gopalakrishnan V, Dozier EA, Glover MS, Novick S, Ford M, Morehouse C, Warrener P, Caceres C, Hess S, Sellman BR, Cohen TS. Engraftment of Bacteria after Fecal Microbiota Transplantation Is Dependent on Both Frequency of Dosing and Duration of Preparative Antibiotic Regimen. Microorganisms 2021; 9:1399. [PMID: 34209573 PMCID: PMC8306289 DOI: 10.3390/microorganisms9071399] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 06/22/2021] [Accepted: 06/24/2021] [Indexed: 01/04/2023] Open
Abstract
The gut microbiota has emerged as a key mediator of human physiology, and germ-free mice have been essential in demonstrating a role for the microbiome in disease. Preclinical models using conventional mice offer the advantage of working with a mature immune system. However, optimal protocols for fecal microbiota transplant (FMT) engraftment in conventional mice are yet to be established. Conventional BALB/c mice were randomized to receive 3-day (3d) or 3-week (3w) antibiotic (ABX) regimen in their drinking water followed by 1 or 5-daily FMTs from a human donor. Fecal samples were collected longitudinally and characterized using 16S ribosomal RNA (rRNA) sequencing. Semi-targeted metabolomic profiling of fecal samples was also done with liquid chromatography-mass spectrometry (LC-MS). Lastly, we sought to confirm our findings in BKS mice. Recovery of baseline diversity scores were greatest in the 3d groups, driven by re-emergence of mouse commensal microbiota, whereas the most resemblance to donor microbiota was seen in the 3w + 5-FMT group. Amplicon sequence variants (ASVs) that were linked to the input material (human ASVs) engrafted to a significantly greater extent when compared to mouse ASVs in the 3-week groups but not the 3-day groups. Lastly, comparison of metabolomic profiles revealed distinct functional profiles by ABX regimen. These results indicate successful model optimization and emphasize the importance of ABX duration and frequency of FMT dosing; the most stable and reliable colonization by donor ASVs was seen in the 3wk + 5-FMT group.
Collapse
Affiliation(s)
- Vancheswaran Gopalakrishnan
- Microbiome Discovery, Microbial Sciences, BioPharmaceuticals R & D, AstraZeneca, Gaithersburg, MD 20878, USA; (V.G.); (E.A.D.); (C.M.); (P.W.); (C.C.); (B.R.S.)
| | - Elizabeth Ashley Dozier
- Microbiome Discovery, Microbial Sciences, BioPharmaceuticals R & D, AstraZeneca, Gaithersburg, MD 20878, USA; (V.G.); (E.A.D.); (C.M.); (P.W.); (C.C.); (B.R.S.)
| | - Matthew S. Glover
- Dynamic Omics, Antibody Discovery & Protein Engineering, R & D, AstraZeneca, Gaithersburg, MD 20878, USA; (M.S.G.); (S.H.)
| | - Steven Novick
- Data Sciences and Quantitative Biology, Discovery Sciences, BioPharmaceuticals R & D, AstraZeneca, Gaithersburg, MD 20878, USA;
| | - Michael Ford
- Animal Sciences and Technologies, R & D, AstraZeneca, Gaithersburg, MD 20878, USA;
| | - Christopher Morehouse
- Microbiome Discovery, Microbial Sciences, BioPharmaceuticals R & D, AstraZeneca, Gaithersburg, MD 20878, USA; (V.G.); (E.A.D.); (C.M.); (P.W.); (C.C.); (B.R.S.)
| | - Paul Warrener
- Microbiome Discovery, Microbial Sciences, BioPharmaceuticals R & D, AstraZeneca, Gaithersburg, MD 20878, USA; (V.G.); (E.A.D.); (C.M.); (P.W.); (C.C.); (B.R.S.)
| | - Carolina Caceres
- Microbiome Discovery, Microbial Sciences, BioPharmaceuticals R & D, AstraZeneca, Gaithersburg, MD 20878, USA; (V.G.); (E.A.D.); (C.M.); (P.W.); (C.C.); (B.R.S.)
| | - Sonja Hess
- Dynamic Omics, Antibody Discovery & Protein Engineering, R & D, AstraZeneca, Gaithersburg, MD 20878, USA; (M.S.G.); (S.H.)
| | - Bret R. Sellman
- Microbiome Discovery, Microbial Sciences, BioPharmaceuticals R & D, AstraZeneca, Gaithersburg, MD 20878, USA; (V.G.); (E.A.D.); (C.M.); (P.W.); (C.C.); (B.R.S.)
| | - Taylor S. Cohen
- Microbiome Discovery, Microbial Sciences, BioPharmaceuticals R & D, AstraZeneca, Gaithersburg, MD 20878, USA; (V.G.); (E.A.D.); (C.M.); (P.W.); (C.C.); (B.R.S.)
| |
Collapse
|
39
|
Pavel FM, Vesa CM, Gheorghe G, Diaconu CC, Stoicescu M, Munteanu MA, Babes EE, Tit DM, Toma MM, Bungau S. Highlighting the Relevance of Gut Microbiota Manipulation in Inflammatory Bowel Disease. Diagnostics (Basel) 2021; 11:diagnostics11061090. [PMID: 34203609 PMCID: PMC8232187 DOI: 10.3390/diagnostics11061090] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 06/06/2021] [Accepted: 06/12/2021] [Indexed: 01/11/2023] Open
Abstract
Two different conditions are included in inflammatory bowel disease (IBD), Crohn's disease (CD) and ulcerative colitis (UC), being distinguished by chronic recurrence of gut inflammation in persons that are genetically predisposed and subjected to environmental causative factors. The normal structure of the gut microbiome and its alterations in IBD were defined in several microbial studies. An important factor in the prolonged inflammatory process in IBD is the impaired microbiome or "dysbiosis". Thus, gut microbiome management is likely to be an objective in IBD treatment. In this review, we analyzed the existing data regarding the pathophysiological/therapeutic implications of intestinal microflora in the development and evolution of IBD. Furthermore, the main effects generated by the administration of probiotics, prebiotics, fecal transplantation, and phytochemicals supplementation were analyzed regarding their potential roles in improving the clinical and biochemical status of patients suffering from Crohn's disease (CD) and ulcerative colitis (UC), and are depicted in the sections/subsections of the present paper. Data from the literature give evidence in support of probiotic and prebiotic therapy, showing effects such as improving remission rate, improving macroscopic and microscopic aspects of IBD, reducing the pro-inflammatory cytokines and interleukins, and improving the disease activity index. Therefore, the additional benefits of these therapies should not be ignored as adjuvants to medical therapy.
Collapse
Affiliation(s)
- Flavia Maria Pavel
- Department of Preclinical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania; (F.M.P.); (C.M.V.)
| | - Cosmin Mihai Vesa
- Department of Preclinical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania; (F.M.P.); (C.M.V.)
| | - Gina Gheorghe
- Department 5, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (G.G.); (C.C.D.)
- Department of Internal Medicine, Clinical Emergency Hospital of Bucharest, 105402 Bucharest, Romania
| | - Camelia C. Diaconu
- Department 5, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (G.G.); (C.C.D.)
- Department of Internal Medicine, Clinical Emergency Hospital of Bucharest, 105402 Bucharest, Romania
| | - Manuela Stoicescu
- Department of Medical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410041 Oradea, Romania; (M.S.); (M.A.M.); (E.E.B.)
| | - Mihai Alexandru Munteanu
- Department of Medical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410041 Oradea, Romania; (M.S.); (M.A.M.); (E.E.B.)
| | - Elena Emilia Babes
- Department of Medical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410041 Oradea, Romania; (M.S.); (M.A.M.); (E.E.B.)
| | - Delia Mirela Tit
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania; (D.M.T.); (M.M.T.)
- Doctoral School of Biological and Biomedical Sciences, University of Oradea, 410087 Oradea, Romania
| | - Mirela Marioara Toma
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania; (D.M.T.); (M.M.T.)
- Doctoral School of Biological and Biomedical Sciences, University of Oradea, 410087 Oradea, Romania
| | - Simona Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania; (D.M.T.); (M.M.T.)
- Doctoral School of Biological and Biomedical Sciences, University of Oradea, 410087 Oradea, Romania
- Correspondence: ; Tel.: +40-726-776-588
| |
Collapse
|
40
|
PH van Trijp M, Wilms E, Ríos-Morales M, Masclee AA, Brummer RJ, Witteman BJ, Troost FJ, Hooiveld GJ. Using naso- and oro-intestinal catheters in physiological research for intestinal delivery and sampling in vivo: practical and technical aspects to be considered. Am J Clin Nutr 2021; 114:843-861. [PMID: 34036315 PMCID: PMC8408849 DOI: 10.1093/ajcn/nqab149] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 04/09/2021] [Indexed: 01/19/2023] Open
Abstract
Intestinal catheters have been used for decades in human nutrition, physiology, pharmacokinetics, and gut microbiome research, facilitating the delivery of compounds directly into the intestinal lumen or the aspiration of intestinal fluids in human subjects. Such research provides insights about (local) dynamic metabolic and other intestinal luminal processes, but working with catheters might pose challenges to biomedical researchers and clinicians. Here, we provide an overview of practical and technical aspects of applying naso- and oro-intestinal catheters for delivery of compounds and sampling luminal fluids from the jejunum, ileum, and colon in vivo. The recent literature was extensively reviewed, and combined with experiences and insights we gained through our own clinical trials. We included 60 studies that involved a total of 720 healthy subjects and 42 patients. Most of the studies investigated multiple intestinal regions (24 studies), followed by studies investigating only the jejunum (21 studies), ileum (13 studies), or colon (2 studies). The ileum and colon used to be relatively inaccessible regions in vivo. Custom-made state-of-the-art catheters are available with numerous options for the design, such as multiple lumina, side holes, and inflatable balloons for catheter progression or isolation of intestinal segments. These allow for multiple controlled sampling and compound delivery options in different intestinal regions. Intestinal catheters were often used for delivery (23 studies), sampling (10 studies), or both (27 studies). Sampling speed decreased with increasing distance from the sampling syringe to the specific intestinal segment (i.e., speed highest in duodenum, lowest in ileum/colon). No serious adverse events were reported in the literature, and a dropout rate of around 10% was found for these types of studies. This review is highly relevant for researchers who are active in various research areas and want to expand their research with the use of intestinal catheters in humans in vivo.
Collapse
Affiliation(s)
- Mara PH van Trijp
- Division of Human Nutrition and Health, Wageningen University, Wageningen, The Netherlands
| | - Ellen Wilms
- Division Gastroenterology-Hepatology, Department of Internal Medicine, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands
| | - Melany Ríos-Morales
- Laboratory of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Ad Am Masclee
- Division Gastroenterology-Hepatology, Department of Internal Medicine, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands
| | - Robert Jan Brummer
- Nutrition-Gut-Brain Interactions Research Centre, School of Medical Sciences, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Ben Jm Witteman
- Division of Human Nutrition and Health, Wageningen University, Wageningen, The Netherlands,Hospital Gelderse Vallei, Department of Gastroenterology and Hepatology, Ede, The Netherlands
| | - Freddy J Troost
- Division Gastroenterology-Hepatology, Department of Internal Medicine, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands,Food Innovation and Health, Centre for Healthy Eating and Food Innovation, Maastricht University, Maastricht, The Netherlands
| | | |
Collapse
|
41
|
Meyer J, Roos E, Ris F, Fearnhead N, Davies J. Does dairy product consumption impact the prevalence of inflammatory bowel disease? An ecological cross-sectional analysis. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104446] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|
42
|
Earley H, Lennon G, Coffey JC, Winter DC, O’Connell PR. Colonisation of the colonic mucus gel layer with butyrogenic and hydrogenotropic bacteria in health and ulcerative colitis. Sci Rep 2021; 11:7262. [PMID: 33790336 PMCID: PMC8012382 DOI: 10.1038/s41598-021-86166-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 02/18/2021] [Indexed: 02/01/2023] Open
Abstract
Butyrate is the primary energy source for colonocytes and is essential for mucosal integrity and repair. Butyrate deficiency as a result of colonic dysbiosis is a putative factor in ulcerative colitis (UC). Commensal microbes are butyrogenic, while others may inhibit butyrate, through hydrogenotropic activity. The aim of this study was to quantify butyrogenic and hydrogenotropic species and determine their relationship with inflammation within the colonic mucus gel layer (MGL). Mucosal brushings were obtained from 20 healthy controls (HC), 20 patients with active colitis (AC) and 14 with quiescent colitis (QUC). Abundance of each species was determined by RT-PCR. Inflammatory scores were available for each patient. Statistical analyses were performed using Mann-Whitney-U and Kruskall-Wallis tests. Butyrogenic R. hominis was more abundant in health than UC (p < 0.005), prior to normalisation against total bacteria. Hydrogenotropic B. wadsworthia was reduced in AC compared to HC and QUC (p < 0.005). An inverse correlation existed between inflammation and R. hominis (ρ - 0.460, p < 0.005) and B. wadsworthia (ρ - 0.646, p < 0.005). Other hydrogenotropic species did not widely colonise the MGL. These data support a role for butyrogenic bacteria in UC. Butyrate deficiency in UC may be related to reduced microbial production, rather than inhibition by microbial by-products.
Collapse
Affiliation(s)
- Helen Earley
- grid.7886.10000 0001 0768 2743School of Medicine and Medical Science, University College Dublin, Belfield, Dublin 4, Ireland ,grid.412751.40000 0001 0315 8143Centre for Colorectal Disease, St Vincent’s University Hospital, Dublin 4, Ireland
| | - Grainne Lennon
- grid.7886.10000 0001 0768 2743School of Medicine and Medical Science, University College Dublin, Belfield, Dublin 4, Ireland ,grid.412751.40000 0001 0315 8143Centre for Colorectal Disease, St Vincent’s University Hospital, Dublin 4, Ireland
| | | | - Desmond C. Winter
- grid.412751.40000 0001 0315 8143Centre for Colorectal Disease, St Vincent’s University Hospital, Dublin 4, Ireland
| | - P. Ronan O’Connell
- grid.7886.10000 0001 0768 2743School of Medicine and Medical Science, University College Dublin, Belfield, Dublin 4, Ireland ,grid.412751.40000 0001 0315 8143Centre for Colorectal Disease, St Vincent’s University Hospital, Dublin 4, Ireland
| |
Collapse
|
43
|
Gryaznova MV, Solodskikh SA, Panevina AV, Syromyatnikov MY, Dvoretskaya YD, Sviridova TN, Popov ES, Popov VN. Study of microbiome changes in patients with ulcerative colitis in the Central European part of Russia. Heliyon 2021; 7:e06432. [PMID: 33748490 PMCID: PMC7970149 DOI: 10.1016/j.heliyon.2021.e06432] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 01/05/2021] [Accepted: 03/03/2021] [Indexed: 12/31/2022] Open
Abstract
Ulcerative colitis (UC) is an inflammatory disease that affects the colon and rectum. Recently, evidence has emerged about the influence of microbiota on the development of this disease. However, studies on the role of intestinal microbiota in the pathogenesis of UC have been incomplete. In addition, there are no comprehensive studies of the causes of ulcerative colitis and data on the microbiological composition of the intestines of patients with ulcerative colitis in Russia. We carried out a study of the microbiological composition of the intestines of patients with ulcerative colitis and healthy individuals. We found significant changes in the bacteria genera and species in patients with UC compared with the control group using sequencing on the IonTorrent PGM system and subsequent data analysis. In our study we observed a significant increase of the genus Haemophilus, Olsenella, Prevotella, Cedecea, Peptostreptococcus, Faecalibacterium, Lachnospira, Negativibacillus, Butyrivibrio, and the species Bacteroides coprocola, Phascolarctobacterium succinatutens, Dialister succinatiphilus, Sutterella wadsworthensis, Faecalibacterium prausnitzii in patients with ulcerative colitis. In addition, in patients with ulcerative colitis there was a significant decrease in the genus Fusicatenibacter, Butyricimonas, Lactococcus, Eisenbergiella, Coprobacter, Cutibacterium, Falsochrobactrum, Brevundimonas, Yersinia, Leuconostoc and in the species Fusicatenibacter saccharivorans. We found confirmation of our data with literary sources and studies of UC. In addition, we discovered a few taxa such as Negativibacillus spp. and Falsochrobactrum spp. that have not been previously found in human stool samples. Our data confirm that more research is needed to understand the role of microbiome changes in the development of UC in different people populations.
Collapse
Affiliation(s)
- M V Gryaznova
- Department of Genetics, Cytology and Bioengineering, Voronezh State University, 394018 Voronezh, Russia.,Laboratory of Metagenomics and Food Biotechnology, Voronezh State University of Engineering Technologies, 394036 Voronezh, Russia
| | - S A Solodskikh
- Department of Genetics, Cytology and Bioengineering, Voronezh State University, 394018 Voronezh, Russia.,Laboratory of Metagenomics and Food Biotechnology, Voronezh State University of Engineering Technologies, 394036 Voronezh, Russia
| | - A V Panevina
- Department of Genetics, Cytology and Bioengineering, Voronezh State University, 394018 Voronezh, Russia
| | - M Y Syromyatnikov
- Department of Genetics, Cytology and Bioengineering, Voronezh State University, 394018 Voronezh, Russia.,Laboratory of Metagenomics and Food Biotechnology, Voronezh State University of Engineering Technologies, 394036 Voronezh, Russia
| | - Yu D Dvoretskaya
- Department of Genetics, Cytology and Bioengineering, Voronezh State University, 394018 Voronezh, Russia.,Laboratory of Metagenomics and Food Biotechnology, Voronezh State University of Engineering Technologies, 394036 Voronezh, Russia
| | - T N Sviridova
- Department of Hospital Therapy and Endocrinology, Voronezh State Medical University Named After N.N. Burdenko, 394036 Voronezh, Russia.,Family Medicine Center "Olympus of Health", 394036 Voronezh, Russia
| | - E S Popov
- Laboratory of Metagenomics and Food Biotechnology, Voronezh State University of Engineering Technologies, 394036 Voronezh, Russia
| | - V N Popov
- Department of Genetics, Cytology and Bioengineering, Voronezh State University, 394018 Voronezh, Russia.,Laboratory of Metagenomics and Food Biotechnology, Voronezh State University of Engineering Technologies, 394036 Voronezh, Russia
| |
Collapse
|
44
|
Тикунов АЮ, Морозов ВВ, Швалов АН, Бардашева АВ, Шрайнер ЕВ, Максимова ОА, Волошина ИО, Морозова ВВ, Власов ВВ, Тикунова НВ. [Fecal microbiome change in patients with ulcerative colitis after fecal microbiota transplantation]. Vavilovskii Zhurnal Genet Selektsii 2021; 24:168-175. [PMID: 33659796 PMCID: PMC7716530 DOI: 10.18699/vj20.610] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Intestinal human microbiota is a dynamic system that is under the pressures of its host organism and external factors. Microbiota disruption caused by these factors can lead to severe diseases including inflammatory and oncological diseases of the gastrointestinal tract. One of the possible approaches in managing the intestinal microbiota is fecal microbiota transplantation (FT) - transfer of the microbiota from the stool of a healthy donor to the intestinal tract of a recipient patient. Currently, this procedure is recognized as an efficacious method to normalize the intestinal microbiota mainly in inflammatory diseases of the gastrointestinal tract. In Russia, pilot studies of the effectiveness of FT in patients with ulcerative colitis have been conducted for several years, and these studies were started in Novosibirsk. The aim of this study was to assess the change of intestinal microbiome in 20 patients with ulcerative colitis after a single FT procedure. The main method is a comparative analysis of 16S ribosomal RNA sequence libraries constructed using fecal samples obtained from patients with ulcerative colitis before and after FT and sequenced on the Illumina MiSeq platform. The obtained results showed that FT led to an increase in average biodiversity in samples after FT compared to samples before FT; however, the difference was not significant. In the samples studied, the proportion of Firmicutes sequences, the major gastrointestinal microbiota of healthy people, was decreased (~32 % vs. >70 %), while the proportion of Proteobacteria sequences was increased (>9 % vs. <5 %). In some samples collected before FT, sequences of pathogenic Firmicutes and Proteobacteria were detected, including Acinetobacter spp., Enterococcus spp., Klebsiella pneumoniae, Proteus mirabilis, Staphylococcus aureus, Stenotrophomonas maltophylia, Streptococcus spp. In most cases, the proportion of such sequences after FT substantially decreased in appropriate samples. The exception was the Clostridium difficile sequences, which accounted for <0.5 % of the sequences in samples from almost half of the patients and after FT, the share of such C. difficile sequences was significantly reduced only in samples from three patients. It should be noted that the proportion of Lactobacillus spp. increased ten-fold and their species composition significantly expanded. According to the obtained results, a preliminary conclusion can be made that even a single FT procedure can lead to an increase in the biodiversity of the gastrointestinal microbiota in patients and to the optimization of the taxonomic composition of the microbiota.
Collapse
Affiliation(s)
- А Ю Тикунов
- Институт химической биологии и фундаментальной медицины Сибирского отделения Российской академии наук, Новосибирск, Россия
| | - В В Морозов
- Институт химической биологии и фундаментальной медицины Сибирского отделения Российской академии наук, Новосибирск, Россия
| | - А Н Швалов
- Государственный научный центр вирусологии и биотехнологии «Вектор» Роспотребнадзора Российской Федерации, р. п. Кольцово, Новосибирская область, Россия 3 ООО «Центр персонализированной
| | - А В Бардашева
- Институт химической биологии и фундаментальной медицины Сибирского отделения Российской академии наук, Новосибирск, Россия
| | - Е В Шрайнер
- Институт химической биологии и фундаментальной медицины Сибирского отделения Российской академии наук, Новосибирск, Россия
| | - О А Максимова
- ООО «Центр персонализированной медицины», Новосибирск, Россия
| | - И О Волошина
- ООО «Центр персонализированной медицины», Новосибирск, Россия
| | - В В Морозова
- Институт химической биологии и фундаментальной медицины Сибирского отделения Российской академии наук, Новосибирск, Россия
| | - В В Власов
- Институт химической биологии и фундаментальной медицины Сибирского отделения Российской академии наук, Новосибирск, Россия
| | - Н В Тикунова
- Институт химической биологии и фундаментальной медицины Сибирского отделения Российской академии наук, Новосибирск, Россия
| |
Collapse
|
45
|
Manandhar I, Alimadadi A, Aryal S, Munroe PB, Joe B, Cheng X. Gut microbiome-based supervised machine learning for clinical diagnosis of inflammatory bowel diseases. Am J Physiol Gastrointest Liver Physiol 2021; 320:G328-G337. [PMID: 33439104 PMCID: PMC8828266 DOI: 10.1152/ajpgi.00360.2020] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Despite the availability of various diagnostic tests for inflammatory bowel diseases (IBD), misdiagnosis of IBD occurs frequently, and thus, there is a clinical need to further improve the diagnosis of IBD. As gut dysbiosis is reported in patients with IBD, we hypothesized that supervised machine learning (ML) could be used to analyze gut microbiome data for predictive diagnostics of IBD. To test our hypothesis, fecal 16S metagenomic data of 729 subjects with IBD and 700 subjects without IBD from the American Gut Project were analyzed using five different ML algorithms. Fifty differential bacterial taxa were identified [linear discriminant analysis effect size (LEfSe): linear discriminant analysis (LDA) score > 3] between the IBD and non-IBD groups, and ML classifications trained with these taxonomic features using random forest (RF) achieved a testing area under the receiver operating characteristic curves (AUC) of ∼0.80. Next, we tested if operational taxonomic units (OTUs), instead of bacterial taxa, could be used as ML features for diagnostic classification of IBD. Top 500 high-variance OTUs were used for ML training, and an improved testing AUC of ∼0.82 (RF) was achieved. Lastly, we tested if supervised ML could be used for differentiating Crohn's disease (CD) and ulcerative colitis (UC). Using 331 CD and 141 UC samples, 117 differential bacterial taxa (LEfSe: LDA score > 3) were identified, and the RF model trained with differential taxonomic features or high-variance OTU features achieved a testing AUC > 0.90. In summary, our study demonstrates the promising potential of artificial intelligence via supervised ML modeling for predictive diagnostics of IBD using gut microbiome data.NEW & NOTEWORTHY Our study demonstrates the promising potential of artificial intelligence via supervised machine learning modeling for predictive diagnostics of different types of inflammatory bowel diseases using fecal gut microbiome data.
Collapse
Affiliation(s)
- Ishan Manandhar
- 1Bioinformatics & Artificial Intelligence Laboratory, Center for Hypertension and Precision Medicine, Program in Physiological Genomics, Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio
| | - Ahmad Alimadadi
- 1Bioinformatics & Artificial Intelligence Laboratory, Center for Hypertension and Precision Medicine, Program in Physiological Genomics, Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio
| | - Sachin Aryal
- 1Bioinformatics & Artificial Intelligence Laboratory, Center for Hypertension and Precision Medicine, Program in Physiological Genomics, Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio
| | - Patricia B. Munroe
- 2Clinical Pharmacology, William Harvey Research Institute &
National Institute of Health Research Barts Cardiovascular Biomedical Research Centre, Barts
and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Bina Joe
- 1Bioinformatics & Artificial Intelligence Laboratory, Center for Hypertension and Precision Medicine, Program in Physiological Genomics, Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio
| | - Xi Cheng
- 1Bioinformatics & Artificial Intelligence Laboratory, Center for Hypertension and Precision Medicine, Program in Physiological Genomics, Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio
| |
Collapse
|
46
|
Banfi D, Moro E, Bosi A, Bistoletti M, Cerantola S, Crema F, Maggi F, Giron MC, Giaroni C, Baj A. Impact of Microbial Metabolites on Microbiota-Gut-Brain Axis in Inflammatory Bowel Disease. Int J Mol Sci 2021; 22:1623. [PMID: 33562721 PMCID: PMC7915037 DOI: 10.3390/ijms22041623] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/29/2021] [Accepted: 02/02/2021] [Indexed: 02/07/2023] Open
Abstract
The complex bidirectional communication system existing between the gastrointestinal tract and the brain initially termed the "gut-brain axis" and renamed the "microbiota-gut-brain axis", considering the pivotal role of gut microbiota in sustaining local and systemic homeostasis, has a fundamental role in the pathogenesis of Inflammatory Bowel Disease (IBD). The integration of signals deriving from the host neuronal, immune, and endocrine systems with signals deriving from the microbiota may influence the development of the local inflammatory injury and impacts also more distal brain regions, underlying the psychophysiological vulnerability of IBD patients. Mood disorders and increased response to stress are frequently associated with IBD and may affect the disease recurrence and severity, thus requiring an appropriate therapeutic approach in addition to conventional anti-inflammatory treatments. This review highlights the more recent evidence suggesting that alterations of the microbiota-gut-brain bidirectional communication axis may concur to IBD pathogenesis and sustain the development of both local and CNS symptoms. The participation of the main microbial-derived metabolites, also defined as "postbiotics", such as bile acids, short-chain fatty acids, and tryptophan metabolites in the development of IBD-associated gut and brain dysfunction will be discussed. The last section covers a critical evaluation of the main clinical evidence pointing to the microbiome-based therapeutic approaches for the treatment of IBD-related gastrointestinal and neuropsychiatric symptoms.
Collapse
Affiliation(s)
- Davide Banfi
- Department of Medicine and Surgery, University of Insubria, via H Dunant 5, 21100 Varese, Italy; (D.B.); (A.B.); (M.B.); (F.M.); (A.B.)
| | - Elisabetta Moro
- Department of Internal Medicine and Therapeutics, Section of Pharmacology, University of Pavia, via Ferrata 9, 27100 Pavia, Italy; (E.M.); (F.C.)
| | - Annalisa Bosi
- Department of Medicine and Surgery, University of Insubria, via H Dunant 5, 21100 Varese, Italy; (D.B.); (A.B.); (M.B.); (F.M.); (A.B.)
| | - Michela Bistoletti
- Department of Medicine and Surgery, University of Insubria, via H Dunant 5, 21100 Varese, Italy; (D.B.); (A.B.); (M.B.); (F.M.); (A.B.)
| | - Silvia Cerantola
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Largo Meneghetti 2, 35131 Padova, Italy; (S.C.); (M.C.G.)
| | - Francesca Crema
- Department of Internal Medicine and Therapeutics, Section of Pharmacology, University of Pavia, via Ferrata 9, 27100 Pavia, Italy; (E.M.); (F.C.)
| | - Fabrizio Maggi
- Department of Medicine and Surgery, University of Insubria, via H Dunant 5, 21100 Varese, Italy; (D.B.); (A.B.); (M.B.); (F.M.); (A.B.)
| | - Maria Cecilia Giron
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Largo Meneghetti 2, 35131 Padova, Italy; (S.C.); (M.C.G.)
| | - Cristina Giaroni
- Department of Medicine and Surgery, University of Insubria, via H Dunant 5, 21100 Varese, Italy; (D.B.); (A.B.); (M.B.); (F.M.); (A.B.)
- Centre of Neuroscience, University of Insubria, 21100 Varese, Italy
| | - Andreina Baj
- Department of Medicine and Surgery, University of Insubria, via H Dunant 5, 21100 Varese, Italy; (D.B.); (A.B.); (M.B.); (F.M.); (A.B.)
| |
Collapse
|
47
|
Chen T, Xia C, Hu H, Wang H, Tan B, Tian P, Zhao X, Wang L, Han Y, Deng KY, Wei H, Xin HB. Dysbiosis of the rat vagina is efficiently rescued by vaginal microbiota transplantation or probiotic combination. Int J Antimicrob Agents 2021; 57:106277. [PMID: 33434677 DOI: 10.1016/j.ijantimicag.2021.106277] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 12/30/2020] [Accepted: 01/03/2021] [Indexed: 12/11/2022]
Abstract
Vaginal dysbiosis is characterised by a disturbed vaginal microbiota and is associated with various gynaecological diseases. Owing to its high recurrence rate, there is an urgent need for the development of effective therapeutic agents. In the present study, a vaginal dysbiosis model was developed to study the effect of vaginal microbiota transplantation (VMT) or probiotic combination (containing Lactobacillus helveticus, Lactobacillus crispatus, Lactobacillus acidophilus, Lactobacillus gasseri and Lactobacillus salivarius) on vaginal dysbiosis. Our results indicated that VMT or probiotic combination significantly reduced bacterial-induced inflammation (infiltration of neutrophils, lymphocytes and monocytes) in the uterine wall and the enrichment of pro-inflammatory cytokines [interleukin-1β (IL-1β) and tumour necrosis factor-alpha (TNFα)] in vaginal tissue, and restored the disturbed vaginal microbiota to normal levels (increased numbers of Lactobacillus and decreased numbers of Enterobacter and Enterococcus), thus it should be beneficial for avoiding the recurrence of vaginal dysbiosis. Therefore, VMT or probiotic combination might be an effective agent for the treatment of bacterial-induced vaginosis.
Collapse
Affiliation(s)
- Tingtao Chen
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330031, PR China.
| | - Chaofei Xia
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330031, PR China
| | - Hong Hu
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330031, PR China
| | - Huan Wang
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330031, PR China
| | - Buzhen Tan
- Department of Obstetrics & Gynecology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, PR China
| | - Puyuan Tian
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330031, PR China
| | - Xiaoxiao Zhao
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330031, PR China
| | - Le Wang
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330031, PR China
| | - Yiwen Han
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330031, PR China
| | - Ke-Yu Deng
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330031, PR China
| | - Hong Wei
- Precision Medicine Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, PR China.
| | - Hong-Bo Xin
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330031, PR China.
| |
Collapse
|
48
|
Faecal microbiota transplantation for Clostridioides difficile: mechanisms and pharmacology. Nat Rev Gastroenterol Hepatol 2021; 18:67-80. [PMID: 32843743 DOI: 10.1038/s41575-020-0350-4] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/07/2020] [Indexed: 12/14/2022]
Abstract
Faecal microbiota transplantation (FMT) has emerged as a remarkably successful treatment for recurrent Clostridioides difficile infection that cannot be cured with antibiotics alone. Understanding the complex biology and pathogenesis of C. difficile infection, which we discuss in this Perspective, is essential for understanding the potential mechanisms by which FMT cures this disease. Although FMT has already entered clinical practice, different microbiota-based products are currently in clinical trials and are vying for regulatory approval. However, all these therapeutics belong to an entirely new class of agents that require the development of a new branch of pharmacology. Characterization of microbiota therapeutics uses novel and rapidly evolving technologies and requires incorporation of microbial ecology concepts. Here, we consider FMT within a pharmacological framework, including its essential elements: formulation, pharmacokinetics and pharmacodynamics. From this viewpoint, multiple gaps in knowledge become apparent, identifying areas that require systematic research. This knowledge is needed to help clinical providers use microbiota therapeutics appropriately and to facilitate development of next-generation microbiota products with improved safety and efficacy. The discussion here is limited to FMT as a representative of microbiota therapeutics and recurrent C. difficile as the indication; however, consideration of the intrinsic basic principles is relevant to this entire class of microbiota-based therapeutics.
Collapse
|
49
|
Singh A, Mahajan R, Kao D, Midha V, Sood A. Long term management of ulcerative colitis with Faecal Microbiota Transplantation. MEDICINE IN MICROECOLOGY 2020. [DOI: 10.1016/j.medmic.2020.100026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
50
|
Ding X, Yang X, Wang H. Methodology, efficacy and safety of fecal microbiota transplantation in treating inflammatory bowel disease. MEDICINE IN MICROECOLOGY 2020. [DOI: 10.1016/j.medmic.2020.100028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|