1
|
Suleman M, Sayaf AM, Aftab S, Alissa M, Alghamdi A, Alghamdi SA, Alshehri MA, Yeoh KK, Crovella S, Shaito AA. Medicinal Phytocompounds as Potential Inhibitors of p300-HIF1α Interaction: A Structure-Based Screening and Molecular Dynamics Simulation Study. Pharmaceuticals (Basel) 2025; 18:602. [PMID: 40284037 PMCID: PMC12030413 DOI: 10.3390/ph18040602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2025] [Revised: 04/09/2025] [Accepted: 04/15/2025] [Indexed: 04/29/2025] Open
Abstract
Background: Hypoxia plays a key role in cancer progression, mainly by stabilizing and activating hypoxia-inducible factor-1 (HIF-1). For HIF-1 to function under low oxygen conditions, it must interact with the transcriptional coactivator p300, a critical step for promoting cancer cell survival and adaptation in hypoxic environments. Methods: Consequently, we used drug design and molecular simulation techniques to screen phytochemical databases, including traditional Chinese and African medicine sources, for compounds that could disrupt the p300/HIF-1 interaction. Results: In this study, we identified potential compounds with high docking scores such as EA-176920 (-8.719), EA-46881231 (-8.642), SA-31161 (-9.580), SA-5280863 (-8.179), NE-5280362 (-10.287), NE-72276 (-9.017), NA-11210533 (-10.366), NA-11336960 (-7.818), TCM-5281792 (-12.648), and TCM-6441280 (-9.470 kcal/mol) as lead compounds. Furthermore, the compound with the highest docking score from each database (EA-176920, SA-31161, NE-5280362, NA-11210533, and TCM-5281792) was subjected to further analysis. The stable binding affinity of these compounds with p300 was confirmed by Post-simulation binding free energy (-22.0020 kcal/mol, -25.4499 kcal/mol, -32.4530 kcal/mol, -33.9918 kcal/mol, and -57.7755 kcal/mol, respectively) and KD analysis. Moreover, the selected compounds followed the Lipinski rules with favorable ADMET properties like efficient intestinal absorption, high water solubility, and no toxicity. Conclusions: Our findings highlight the potential of natural compounds to target key protein-protein interactions in cancer and lay the groundwork for future in vitro and in vivo studies to explore their therapeutic potential. Specifically, disrupting the p300/HIF-1 interaction could interfere with hypoxia-driven pathways that promote tumor growth, angiogenesis, and metastasis, offering a promising strategy to suppress cancer progression at the molecular level.
Collapse
Affiliation(s)
- Muhammad Suleman
- Laboratory of Animal Research Center (LARC), Qatar University, Doha P.O. Box 2713, Qatar;
- Center for Biotechnology and Microbiology, University of Swat, Swat 19200, Pakistan;
| | - Abrar Mohammad Sayaf
- School of Chemical Sciences, Universiti Sains Malaysia, Gelugor 10050, Penang, Malaysia; (A.M.S.); (K.K.Y.)
| | - Sohail Aftab
- Center for Biotechnology and Microbiology, University of Swat, Swat 19200, Pakistan;
| | - Mohammed Alissa
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia; (M.A.); (A.A.); (S.A.A.); (M.A.A.)
| | - Abdullah Alghamdi
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia; (M.A.); (A.A.); (S.A.A.); (M.A.A.)
| | - Suad A. Alghamdi
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia; (M.A.); (A.A.); (S.A.A.); (M.A.A.)
| | - Mohammed A. Alshehri
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia; (M.A.); (A.A.); (S.A.A.); (M.A.A.)
| | - Kar Kheng Yeoh
- School of Chemical Sciences, Universiti Sains Malaysia, Gelugor 10050, Penang, Malaysia; (A.M.S.); (K.K.Y.)
| | - Sergio Crovella
- Laboratory of Animal Research Center (LARC), Qatar University, Doha P.O. Box 2713, Qatar;
| | - Abdullah A. Shaito
- Biomedical Research Center (BRC), Department of Biomedical Sciences at College of Health Sciences, and College of Medicine, QU Health, Qatar University, Doha P.O. Box 2713, Qatar
| |
Collapse
|
2
|
McDermott A, Tavassoli A. Hypoxia-inducible transcription factors: architects of tumorigenesis and targets for anticancer drug discovery. Transcription 2025; 16:86-117. [PMID: 39470609 PMCID: PMC11970764 DOI: 10.1080/21541264.2024.2417475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 10/10/2024] [Accepted: 10/12/2024] [Indexed: 10/30/2024] Open
Abstract
Hypoxia-inducible factors (HIFs) play a pivotal role as master regulators of tumor survival and growth, controlling a wide array of cellular processes in response to hypoxic stress. Clinical data correlates upregulated HIF-1 and HIF-2 levels with an aggressive tumor phenotype and poor patient outcome. Despite extensive validation as a target in cancer, pharmaceutical targeting of HIFs, particularly the interaction between α and βsubunits that forms the active transcription factor, has proved challenging. Nonetheless, many indirect inhibitors of HIFs have been identified, targeting diverse parts of this pathway. Significant strides have also been made in the development of direct inhibitors of HIF-2, exemplified by the FDA approval of Belzutifan for the treatment of metastatic clear cell renal carcinoma. While efforts to target HIF-1 using various therapeutic modalities have shown promise, no clinical candidates have yet emerged. This review aims to provide insights into the intricate and extensive role played by HIFs in cancer, and the ongoing efforts to develop therapeutic agents against this target.
Collapse
Affiliation(s)
| | - Ali Tavassoli
- School of Chemistry, University of Southampton, Southampton, UK
| |
Collapse
|
3
|
Wang L, Wu H, Liu Z, Sun R, Li Y, Si Y, Nie Y, Qiao Y, Qian X, Zhang S, Li G, Sun W, Pan Y, Akkaya EU. N-Phenyl-2-Pyridone-Derived Endoperoxide Suppressing both Lung Cancer and Idiopathic Pulmonary Fibrosis Progression by Three-Pronged Action. Angew Chem Int Ed Engl 2024; 63:e202408473. [PMID: 38979839 DOI: 10.1002/anie.202408473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 06/18/2024] [Accepted: 07/04/2024] [Indexed: 07/10/2024]
Abstract
We report an endoperoxide compound (E5) which can deliver three therapeutic components by a thermal cycloreversion, namely, singlet oxygen, triplet oxygen and 3-methyl-N-phenyl-2-pyridone (P5), thus targeting multiple mechanisms for treating non-small cell lung cancer and idiopathic pulmonary fibrosis. In aqueous environment, E5 undergoes clean reaction to afford three therapeutic components with a half-life of 8.3 hours without the generation of other by-products, which not only achieves good cytotoxicity toward lung cancer cells and decreases the levels of hypoxia-inducible factor 1α (HIF-1α) protein, but also inhibits the transforming growth factor β1 (TGF-β1) induced fibrosis in vitro. In vivo experiments also demonstrated the efficacy of E5 in inhibiting tumor growth and relieving idiopathic pulmonary fibrosis, while exhibiting good biocompatibility. Many lines of evidence reveal the therapeutic efficacy of singlet oxygen and 3-methyl-N-phenyl-2-pyridone for these two lung diseases, and triplet oxygen could downregulate HIF-1α and relieve tumor hypoxia which is a critical issue in photodynamic therapy (PDT). Unlike other combination therapies, in which multiple therapeutic agents are given in independent formulations, our work demonstrates single molecule endoperoxide prodrugs could be developed as new platforms for treatment of cancers and related diseases.
Collapse
Affiliation(s)
- Lei Wang
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Department of Pharmaceutical Sciences, Dalian University of Technology, 116024, Dalian, China
| | - Hao Wu
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Department of Pharmaceutical Sciences, Dalian University of Technology, 116024, Dalian, China
| | - Ziang Liu
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Department of Pharmaceutical Sciences, Dalian University of Technology, 116024, Dalian, China
| | - Rensong Sun
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Department of Pharmaceutical Sciences, Dalian University of Technology, 116024, Dalian, China
| | - Yanping Li
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Department of Pharmaceutical Sciences, Dalian University of Technology, 116024, Dalian, China
| | - Yu Si
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Department of Pharmaceutical Sciences, Dalian University of Technology, 116024, Dalian, China
| | - Yun Nie
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Department of Pharmaceutical Sciences, Dalian University of Technology, 116024, Dalian, China
| | - Yuan Qiao
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Department of Pharmaceutical Sciences, Dalian University of Technology, 116024, Dalian, China
| | - Xiao Qian
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Department of Pharmaceutical Sciences, Dalian University of Technology, 116024, Dalian, China
| | - Shengli Zhang
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Department of Pharmaceutical Sciences, Dalian University of Technology, 116024, Dalian, China
| | - Guangzhe Li
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Department of Pharmaceutical Sciences, Dalian University of Technology, 116024, Dalian, China
| | - Wen Sun
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Department of Pharmaceutical Sciences, Dalian University of Technology, 116024, Dalian, China
| | - Yue Pan
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Department of Pharmaceutical Sciences, Dalian University of Technology, 116024, Dalian, China
| | - Engin U Akkaya
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Department of Pharmaceutical Sciences, Dalian University of Technology, 116024, Dalian, China
| |
Collapse
|
4
|
Iseki S, Ikeda H, Kobayashi S, Irie K, Harada H, Kakeya H. Teleocidin B-4, a PKC Activator, Upregulates Hypoxia-Inducible Factor 1 (HIF-1) Activity by Promoting the Accumulation of HIF-1α Protein via the PKCα/mTORC Signaling Pathway. JOURNAL OF NATURAL PRODUCTS 2024; 87:1666-1671. [PMID: 38840407 DOI: 10.1021/acs.jnatprod.4c00395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
Hypoxia-inducible factor 1 (HIF-1) signaling is upregulated in an oxygen-dependent manner under hypoxic conditions. Activation of HIF-1 signaling increases the expression of HIF-1 target genes involved in cell survival, proliferation, and angiogenesis. Therefore, compounds that activate HIF-1 signaling have therapeutic potential in ischemic diseases. Screening for compounds that activate HIF-1 activity identified a microbial metabolite, teleocidin B-4, a PKC activator. Other PKC activators, such as TPA and 10-Me-Aplog-1, also activated HIF-1 activity. PKC activators induced HIF-1α protein accumulation through PKCα/mTORC activation. These results suggest that PKC activators without tumor-promoting activity have potential as therapeutic agents via HIF-1 target gene activation.
Collapse
Affiliation(s)
- Shogo Iseki
- Department of System Chemotherapy and Molecular Sciences, Division of Medicinal Frontier Sciences, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Hiroaki Ikeda
- Department of System Chemotherapy and Molecular Sciences, Division of Medicinal Frontier Sciences, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Sayaka Kobayashi
- Department of System Chemotherapy and Molecular Sciences, Division of Medicinal Frontier Sciences, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Kazuhiro Irie
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Hiroshi Harada
- Laboratory of Cancer Cell Biology, Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Hideaki Kakeya
- Department of System Chemotherapy and Molecular Sciences, Division of Medicinal Frontier Sciences, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| |
Collapse
|
5
|
Ball A, Mohammed S, Doigneaux C, Gardner RM, Easton JW, Turner S, Essex JW, Pairaudeau G, Tavassoli A. Identification and Development of Cyclic Peptide Inhibitors of Hypoxia Inducible Factors 1 and 2 That Disrupt Hypoxia-Response Signaling in Cancer Cells. J Am Chem Soc 2024; 146:8877-8886. [PMID: 38503564 PMCID: PMC10996005 DOI: 10.1021/jacs.3c10508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 03/07/2024] [Accepted: 03/07/2024] [Indexed: 03/21/2024]
Abstract
Hypoxia inducible factor (HIF) is a heterodimeric transcription factor composed of an oxygen-regulated α subunit and a constitutively expressed β subunit that serves as the master regulator of the cellular response to low oxygen concentrations. The HIF transcription factor senses and responds to hypoxia by significantly altering transcription and reprogramming cells to enable adaptation to a hypoxic microenvironment. Given the central role played by HIF in the survival and growth of tumors in hypoxia, inhibition of this transcription factor serves as a potential therapeutic approach for treating a variety of cancers. Here, we report the identification, optimization, and characterization of a series of cyclic peptides that disrupt the function of HIF-1 and HIF-2 transcription factors by inhibiting the interaction of both HIF-1α and HIF-2α with HIF-1β. These compounds are shown to bind to HIF-α and disrupt the protein-protein interaction between the α and β subunits of the transcription factor, resulting in disruption of hypoxia-response signaling by our lead molecule in several cancer cell lines.
Collapse
Affiliation(s)
- Andrew
T. Ball
- School
of Chemistry, University of Southampton, Southampton SO17 1BJ, U.K.
| | - Soran Mohammed
- School
of Chemistry, University of Southampton, Southampton SO17 1BJ, U.K.
| | - Cyrielle Doigneaux
- School
of Chemistry, University of Southampton, Southampton SO17 1BJ, U.K.
| | - Reece M. Gardner
- School
of Chemistry, University of Southampton, Southampton SO17 1BJ, U.K.
| | - James W. Easton
- School
of Chemistry, University of Southampton, Southampton SO17 1BJ, U.K.
| | - Steven Turner
- School
of Chemistry, University of Southampton, Southampton SO17 1BJ, U.K.
| | - Jonathan W. Essex
- School
of Chemistry, University of Southampton, Southampton SO17 1BJ, U.K.
| | - Garry Pairaudeau
- Discovery
Sciences IMED Biotech Unit, AstraZeneca, 310 Cambridge Science Park, Milton
Road, Cambridge CB4 0WG, U.K.
| | - Ali Tavassoli
- School
of Chemistry, University of Southampton, Southampton SO17 1BJ, U.K.
| |
Collapse
|
6
|
Gao X, Zhang Y, Zhu Q, Han Y, Jia R, Zhang W. Effects of myeloperoxidase on inflammatory responses with hypoxia in Citrobacter rodentium-infectious mice. Immun Inflamm Dis 2024; 12:e1157. [PMID: 38415976 PMCID: PMC10836036 DOI: 10.1002/iid3.1157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 12/30/2023] [Accepted: 01/03/2024] [Indexed: 02/29/2024] Open
Abstract
PURPOSE Myeloperoxidase (MPO) has been identified as a mediator in various inflammatory diseases. Bacterial infection of the intestine and hypoxia can both lead to inflammatory responses, but the role of MPO in these phenomena remains unclear. METHODS By building the MPO-/- mice, we evaluated relevant inflammatory factors and tissue damage in mice with intestinal Citrobacter rodentium infection and hypoxia. The body weight and excreted microorganisms were monitored. Intestinal tissues were collected 7 days after bacterial infection under hypoxia to undergo haematoxylin-eosin staining and assess the degree of pathological damage. ELISA assays were performed to quantify the serum levels of TNF-α, IFN-γ, IL-6, and IL-1β inflammatory cytokines. PCR, WB, and IF assays were conducted to determine the expression of chemokines MCP1, MIP2, and KC in the colon and spleen. RESULTS The C. rodentium infection and hypoxia caused weight loss, intestinal colitis, and splenic inflammatory cells active proliferation in wild-type mice. MPO deficiency alleviated this phenomenon. MPO-/- mice also displayed a significant decline in bacteria clearing ability. The level of TNF-α in the serum and spleen was both lower in MPO-/- hypoxia C. rodentium-infected mice than that in wild-type mice. The chemokines expression levels of MIP2, KC, and MCP1 in the spleen and colon of each bacterial infected group were significantly increased (p < .05), while in hypoxia, the factors in the spleen and colon were decreased (p < .05). MPO deficiency was found to lower the levels of these chemokines compared with wild-type mice. CONCLUSION MPO plays an important role of the inflammatory responses in infectious enteritis and hypoxia in mice, and the loss of MPO may greatly reduce the body's inflammatory responses to fight diseases.
Collapse
Affiliation(s)
- Xiang Gao
- Department of Basic Medical Sciences, Medical CollegeQinghai UniversityXiningQinghaiChina
- Research Centre for High Altitude Medicine, Research Centre for High Altitude MedicineQinghai UniversityXiningQinghaiChina
- The Key Laboratory of High‐Altitude Medical Application of Qinghai ProvinceXiningQinghaiChina
| | - Yu Zhang
- Department of Basic Medical Sciences, Medical CollegeQinghai UniversityXiningQinghaiChina
| | - Qinfang Zhu
- Research Centre for High Altitude Medicine, Research Centre for High Altitude MedicineQinghai UniversityXiningQinghaiChina
- The Key Laboratory of High‐Altitude Medical Application of Qinghai ProvinceXiningQinghaiChina
| | - Ying Han
- Department of Basic Medical Sciences, Medical CollegeQinghai UniversityXiningQinghaiChina
- Research Centre for High Altitude Medicine, Research Centre for High Altitude MedicineQinghai UniversityXiningQinghaiChina
- The Key Laboratory of High‐Altitude Medical Application of Qinghai ProvinceXiningQinghaiChina
| | - Ruhan Jia
- Department of Basic Medical Sciences, Medical CollegeQinghai UniversityXiningQinghaiChina
- Research Centre for High Altitude Medicine, Research Centre for High Altitude MedicineQinghai UniversityXiningQinghaiChina
- The Key Laboratory of High‐Altitude Medical Application of Qinghai ProvinceXiningQinghaiChina
| | - Wei Zhang
- Department of Basic Medical Sciences, Medical CollegeQinghai UniversityXiningQinghaiChina
- Research Centre for High Altitude Medicine, Research Centre for High Altitude MedicineQinghai UniversityXiningQinghaiChina
- The Key Laboratory of High‐Altitude Medical Application of Qinghai ProvinceXiningQinghaiChina
| |
Collapse
|
7
|
Jiang W, Abdulkadir S, Zhao X, Sang P, Tomatsidou A, Zhang X, Chen Y, Calcul L, Sun X, Cheng F, Hu Y, Cai J. Inhibition of Hypoxia-Inducible Transcription Factor (HIF-1α) Signaling with Sulfonyl-γ-AApeptide Helices. J Am Chem Soc 2023; 145:20009-20020. [PMID: 37665648 PMCID: PMC10637359 DOI: 10.1021/jacs.3c06694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2023]
Abstract
The development of inhibitors that selectively block protein-protein interactions (PPIs) is crucial for chemical biology, medicinal chemistry, and biomedical sciences. Herein, we reported the design, synthesis, and investigation of sulfonyl-γ-AApeptide as an alternative strategy of canonical peptide-based inhibitors to disrupt hypoxia-inducible factor 1α (HIF-1α) and p300 PPI by mimicking the helical domain of HIF-1α involved in the binding to p300. The designed molecules recognized the p300 protein with high affinity and potently inhibited the hypoxia-inducible signaling pathway. Gene expression profiling supported the idea that the lead molecules selectively inhibited hypoxia-inducible genes involved in the signaling cascade. Our studies also demonstrated that both helical faces consisting of either chiral side chains or achiral sulfonyl side chains of sulfonyl-γ-AApeptides could be adopted for mimicry of the α-helix engaging in PPIs. Furthermore, these sulfonyl-γ-AApeptides were cell-permeable and exhibited favorable stability and pharmacokinetic profiles. Our results could inspire the design of helical sulfonyl-γ-AApeptides as a general strategy to mimic the protein helical domain and modulate many other PPIs.
Collapse
Affiliation(s)
- Wei Jiang
- Department of Chemistry, University of South Florida, 4202 E. Fowler Ave, Tampa, Florida 33620, United States
- Institute of Materials Engineering, College of Engineering and Applied Sciences, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Sami Abdulkadir
- Department of Chemistry, University of South Florida, 4202 E. Fowler Ave, Tampa, Florida 33620, United States
| | - Xue Zhao
- Department of Chemistry, University of South Florida, 4202 E. Fowler Ave, Tampa, Florida 33620, United States
| | - Peng Sang
- Department of Chemistry, University of South Florida, 4202 E. Fowler Ave, Tampa, Florida 33620, United States
| | - Anastasia Tomatsidou
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida 33612, United States
| | - Xiujun Zhang
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida 33612, United States
| | - Yu Chen
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida 33612, United States
| | - Laurent Calcul
- Department of Chemistry, University of South Florida, 4202 E. Fowler Ave, Tampa, Florida 33620, United States
| | - Xingmin Sun
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida 33612, United States
| | - Feng Cheng
- Department of Pharmaceutical Sciences, Taneja College of Pharmacy, University of South Florida, Tampa, Florida 33612, United States
| | - Yong Hu
- Institute of Materials Engineering, College of Engineering and Applied Sciences, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Jianfeng Cai
- Department of Chemistry, University of South Florida, 4202 E. Fowler Ave, Tampa, Florida 33620, United States
| |
Collapse
|
8
|
Ramya P, Beena V, Radhika G, Shynu M, Jayavardhanan K. Molecular characterisation of coding regions of HIF-1a gene in Vechur cattle by cDNA sequencing. Heliyon 2022; 8:e12578. [PMID: 36601432 PMCID: PMC9806684 DOI: 10.1016/j.heliyon.2022.e12578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 11/09/2022] [Accepted: 12/15/2022] [Indexed: 12/25/2022] Open
Abstract
Hypoxia-inducible factor (HIF)-1α is a transcription factor stabilized by hypoxia by inducing or suppressing the homeostatic regulatory gene expression, enabling tissues and cells to survive despite fluctuations in environmental circumstances. As the name implies, hypoxia-inducible factor-1 is secreted not only as a cellular response to hypoxia but also in heat stress and oxidative stress. The goal of this work was to determine the molecular characterisation of the HIF-1α gene coding region as well as the differences in HIF-1αprotein primary structure between Vechur cattle and other cattle breeds in the online databases. Total RNA was isolated from blood samples of 6 Vechur cattle using the trizol reagent method, and full-length c sequences of the HIF-1α gene were sequenced. The base pair length of composite HIF-1αcDNA of Vechur cattle and encoding ORFis 3956 bp and 2469 bp respectively. The 5'UTR was recognized to be 279 bp in length. The start codon was identified at nucleotide 280-282, the stop codon UGA at 2746-2748 bp and a 1208 bp 3'UTR which included a poly-A tail of 27 adenine residues. In a comparative analysis of the cDNA, point transitions causing guanine to adenine (G>A) changes at 1211th and 2699th positions were noticed as a heterozygous condition in the whole 3956 bp sequence. These two SNVs in the coding regions were responsible for two amino acid changes in the deduced 823 amino acid sequence. Since the predicted amino acid arginine had been replaced with lysine at 311th and 807th positions, it showed 99.76 percent sequence identity with Bos taurus. The phylogenetic tree revealed that the HIF-1α protein of Vechur cattle had a lesser evolutionary distance from the same gene of related species emphasising the highly conserved nature of this particular protein. This structural variation observed in the present study should be evaluated on a larger population to assess its functional relevance for thermo-tolerance.
Collapse
Affiliation(s)
- P.R. Ramya
- Department of Veterinary Biochemistry, College of Veterinary and Animal Sciences, Mannuthy, Thrissur District, Kerala State, 680651, India
| | - V. Beena
- Department of Veterinary Physiology, Kerala Veterinary and Animal Sciences University, Mannuthy, Kerala State, 680651, India
| | - G. Radhika
- Department of Animal Breeding and Genetics, Kerala Veterinary and Animal Sciences University, Pookkod, Wayanad District, 673576, Kerala State, India
| | - M. Shynu
- Department of Veterinary Biochemistry, Kerala Veterinary and Animal Sciences University, Pookkod, Wayanad District, 673576, Kerala State, India
| | - K.K. Jayavardhanan
- Department of Veterinary Biochemistry, College of Veterinary and Animal Sciences, Mannuthy, Thrissur District, 680651, Kerala State, India
| |
Collapse
|
9
|
Xu YR, Wang AL, Li YQ. Hypoxia-inducible factor 1-alpha is a driving mechanism linking chronic obstructive pulmonary disease to lung cancer. Front Oncol 2022; 12:984525. [PMID: 36338690 PMCID: PMC9634253 DOI: 10.3389/fonc.2022.984525] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 10/10/2022] [Indexed: 11/27/2022] Open
Abstract
Patients with chronic obstructive pulmonary disease (COPD), irrespective of their smoking history, are more likely to develop lung cancer than the general population. This is mainly because COPD is characterized by chronic persistent inflammation and hypoxia, which are the risk factors for lung cancer. However, the mechanisms underlying this observation are still unknown. Hypoxia-inducible factor 1-alpha (HIF-1α) plays an important role in the crosstalk that exists between inflammation and hypoxia. Furthermore, HIF-1α is the main regulator of somatic adaptation to hypoxia and is highly expressed in hypoxic environments. In this review, we discuss the molecular aspects of the crosstalk between hypoxia and inflammation, showing that HIF-1α is an important signaling pathway that drives COPD progression to lung cancer. Here, we also provide an overview of HIF-1α and its principal regulatory mechanisms, briefly describe HIF-1α-targeted therapy in lung cancer, and summarize substances that may be used to target HIF-1α at the level of COPD-induced inflammation.
Collapse
Affiliation(s)
- Yuan-rui Xu
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
- Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, Zhejiang, China
| | - An-long Wang
- Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, Zhejiang, China
| | - Ya-qing Li
- Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, Zhejiang, China
- *Correspondence: Ya-qing Li,
| |
Collapse
|
10
|
Devaux CA, Raoult D. The impact of COVID-19 on populations living at high altitude: Role of hypoxia-inducible factors (HIFs) signaling pathway in SARS-CoV-2 infection and replication. Front Physiol 2022; 13:960308. [PMID: 36091390 PMCID: PMC9454615 DOI: 10.3389/fphys.2022.960308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 08/02/2022] [Indexed: 11/13/2022] Open
Abstract
Cases of coronavirus disease 2019 (COVID-19) have been reported worldwide. However, one epidemiological report has claimed a lower incidence of the disease in people living at high altitude (>2,500 m), proposing the hypothesis that adaptation to hypoxia may prove to be advantageous with respect to SARS-CoV-2 infection. This publication was initially greeted with skepticism, because social, genetic, or environmental parametric variables could underlie a difference in susceptibility to the virus for people living in chronic hypobaric hypoxia atmospheres. Moreover, in some patients positive for SARS-CoV-2, early post-infection ‘happy hypoxia” requires immediate ventilation, since it is associated with poor clinical outcome. If, however, we accept to consider the hypothesis according to which the adaptation to hypoxia may prove to be advantageous with respect to SARS-CoV-2 infection, identification of the molecular rational behind it is needed. Among several possibilities, HIF-1 regulation appears to be a molecular hub from which different signaling pathways linking hypoxia and COVID-19 are controlled. Interestingly, HIF-1α was reported to inhibit the infection of lung cells by SARS-CoV-2 by reducing ACE2 viral receptor expression. Moreover, an association of the rs11549465 variant of HIF-1α with COVID-19 susceptibility was recently discovered. Here, we review the evidence for a link between HIF-1α, ACE2 and AT1R expression, and the incidence/severity of COVID-19. We highlight the central role played by the HIF-1α signaling pathway in the pathophysiology of COVID-19.
Collapse
Affiliation(s)
- Christian Albert Devaux
- Aix-Marseille University, IRD, APHM, MEPHI, Marseille, France
- IHU-Méditerranée Infection, Marseille, France
- Centre National de la Recherche Scientifique, Marseille, France
- *Correspondence: Christian Albert Devaux,
| | - Didier Raoult
- Aix-Marseille University, IRD, APHM, MEPHI, Marseille, France
- IHU-Méditerranée Infection, Marseille, France
| |
Collapse
|
11
|
Semenov O, Daks A, Fedorova O, Shuvalov O, Barlev NA. Opposing Roles of Wild-type and Mutant p53 in the Process of Epithelial to Mesenchymal Transition. Front Mol Biosci 2022; 9:928399. [PMID: 35813818 PMCID: PMC9261265 DOI: 10.3389/fmolb.2022.928399] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 06/01/2022] [Indexed: 12/05/2022] Open
Abstract
The central role of an aberrantly activated EMT program in defining the critical features of aggressive carcinomas is well documented and includes cell plasticity, metastatic dissemination, drug resistance, and cancer stem cell-like phenotypes. The p53 tumor suppressor is critical for leashing off all the features mentioned above. On the molecular level, the suppression of these effects is exerted by p53 via regulation of its target genes, whose products are involved in cell cycle, apoptosis, autophagy, DNA repair, and interactions with immune cells. Importantly, a set of specific mutations in the TP53 gene (named Gain-of-Function mutations) converts this tumor suppressor into an oncogene. In this review, we attempted to contrast different regulatory roles of wild-type and mutant p53 in the multi-faceted process of EMT.
Collapse
Affiliation(s)
- Oleg Semenov
- Regulation of Gene Expression Laboratory, Institute of Cytology RAS, Saint-Petersburg, Russia
| | - Alexandra Daks
- Regulation of Gene Expression Laboratory, Institute of Cytology RAS, Saint-Petersburg, Russia
| | - Olga Fedorova
- Regulation of Gene Expression Laboratory, Institute of Cytology RAS, Saint-Petersburg, Russia
| | - Oleg Shuvalov
- Regulation of Gene Expression Laboratory, Institute of Cytology RAS, Saint-Petersburg, Russia
| | - Nickolai A. Barlev
- Regulation of Gene Expression Laboratory, Institute of Cytology RAS, Saint-Petersburg, Russia
- Laboratory of Intracellular Signalling, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
- The Group of Targeted Delivery Mechanisms of Nanosystems, Institute of Biomedical Chemistry, Moscow, Russia
- *Correspondence: Nickolai A. Barlev,
| |
Collapse
|
12
|
Regulation of Transactivation at C-TAD Domain of HIF-1α by Factor-Inhibiting HIF-1α (FIH-1): A Potential Target for Therapeutic Intervention in Cancer. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:2407223. [PMID: 35592530 PMCID: PMC9113874 DOI: 10.1155/2022/2407223] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 04/17/2022] [Accepted: 04/23/2022] [Indexed: 12/31/2022]
Abstract
Hypoxia-inducible factor-1alpha (HIF-1α) is a major transcription factor that adapts to low oxygen homeostasis and regulates the expression of several hypoxic genes, which aid in cancer survival and development. It has recently piqued the interest of translational researchers in the disciplines of cancer sciences. Hypoxia triggers an ample adaptive mechanism mediated via the HIF-1α transcriptional domain. Anaerobic glycolysis, angiogenesis, metastasis, and mitophagy are adaptive mechanisms that support tumor survival by promoting oxygen supply and regulating oxygen demand in hypoxic tumor cells. Throughout this pathway, the factor-inhibiting HIF-1α is a negative regulator of HIF-1α leading to its hydroxylation at the C-TAD domain of HIF-1α under normoxia. Thus, hydroxylated HIF-1α is unable to proceed with the transcriptional events due to interference in binding of C-TAD and CBP/p300. From this review, we can hypothesize that remodeling of FIH-1 activity is a unique mechanism that decreases the transcriptional activity of HIF-1α and, as a result, all of its hypoxic consequences. Hence, this review manuscript details the depth of knowledge of FIH-1 on hypoxia-associated cellular and molecular events, a potential strategy for targeting hypoxia-induced malignancies.
Collapse
|
13
|
Bi Y, Lei X, Chai N, Linghu E. NOX4: a potential therapeutic target for pancreatic cancer and its mechanism. J Transl Med 2021; 19:515. [PMID: 34930338 PMCID: PMC8686284 DOI: 10.1186/s12967-021-03182-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 12/03/2021] [Indexed: 12/18/2022] Open
Abstract
Nicotinamide adenine dinucleotide phosphate (NADPH) oxidase 4 (NOX4) is one of the seven isoforms of NOX family, which is upregulated in pancreatic cancer cell, mouse model of pancreatic cancer and human pancreatic cancer tissue. NOX4 is a constitutively active enzyme that primarily produces hydrogen peroxide, which exhibits completely different properties from other subtypes of NOX family. More importantly, recent studies illuminate that NOX4 promotes pancreatic cancer occurrence and development in different ways. This review summarizes the potential roles and its mechanism of NOX4 in pancreatic cancer and explores NOX4 as the potential therapeutic target in pancreatic cancer.
Collapse
Affiliation(s)
- Yawei Bi
- Department of Gastroenterology and Hepatology, The First Medical Center of PLA General Hospital, Beijing, 100853, China
| | - Xiao Lei
- Senior Department of Oncology, The Fifth Medical Center of PLA General Hospital, Beijing, 100859, China
| | - Ningli Chai
- Department of Gastroenterology and Hepatology, The First Medical Center of PLA General Hospital, Beijing, 100853, China.
| | - Enqiang Linghu
- Department of Gastroenterology and Hepatology, The First Medical Center of PLA General Hospital, Beijing, 100853, China.
| |
Collapse
|
14
|
Chen F, Licarete E, Wu X, Petrusca D, Maguire C, Jacobsen M, Colter A, Sandusky GE, Czader M, Capitano ML, Ropa JP, Boswell HS, Carta F, Supuran CT, Parkin B, Fishel ML, Konig H. Pharmacological inhibition of Carbonic Anhydrase IX and XII to enhance targeting of acute myeloid leukaemia cells under hypoxic conditions. J Cell Mol Med 2021; 25:11039-11052. [PMID: 34791807 PMCID: PMC8650039 DOI: 10.1111/jcmm.17027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Accepted: 09/19/2021] [Indexed: 01/02/2023] Open
Abstract
Acute myeloid leukaemia (AML) is an aggressive form of blood cancer that carries a dismal prognosis. Several studies suggest that the poor outcome is due to a small fraction of leukaemic cells that elude treatment and survive in specialised, oxygen (O2)‐deprived niches of the bone marrow. Although several AML drug targets such as FLT3, IDH1/2 and CD33 have been established in recent years, survival rates remain unsatisfactory, which indicates that other, yet unrecognized, mechanisms influence the ability of AML cells to escape cell death and to proliferate in hypoxic environments. Our data illustrates that Carbonic Anhydrases IX and XII (CA IX/XII) are critical for leukaemic cell survival in the O2‐deprived milieu. CA IX and XII function as transmembrane proteins that mediate intracellular pH under low O2 conditions. Because maintaining a neutral pH represents a key survival mechanism for tumour cells in O2‐deprived settings, we sought to elucidate the role of dual CA IX/XII inhibition as a novel strategy to eliminate AML cells under hypoxic conditions. Our findings demonstrate that the dual CA IX/XII inhibitor FC531 may prove to be of value as an adjunct to chemotherapy for the treatment of AML.
Collapse
Affiliation(s)
- Fangli Chen
- Melvin and Bren Simon Comprehensive Cancer Center, Indiana University, Indianapolis, Indiana, USA
| | - Emilia Licarete
- Melvin and Bren Simon Comprehensive Cancer Center, Indiana University, Indianapolis, Indiana, USA.,Department of Molecular Biology and Biotechnology, Faculty of Biology and Geology, Babes-Bolyai University, Cluj-Napoca, Romania
| | - Xue Wu
- Melvin and Bren Simon Comprehensive Cancer Center, Indiana University, Indianapolis, Indiana, USA
| | - Daniela Petrusca
- Melvin and Bren Simon Comprehensive Cancer Center, Indiana University, Indianapolis, Indiana, USA
| | - Callista Maguire
- Department of Pathology and Laboratory Medicine, Indiana University, Indianapolis, Indiana, USA
| | - Max Jacobsen
- Department of Pathology and Laboratory Medicine, Indiana University, Indianapolis, Indiana, USA
| | - Austyn Colter
- Department of Pathology and Laboratory Medicine, Indiana University, Indianapolis, Indiana, USA
| | - George E Sandusky
- Department of Pathology and Laboratory Medicine, Indiana University, Indianapolis, Indiana, USA
| | - Magdalena Czader
- Department of Pathology and Laboratory Medicine, Indiana University, Indianapolis, Indiana, USA
| | - Maegan L Capitano
- Melvin and Bren Simon Comprehensive Cancer Center, Indiana University, Indianapolis, Indiana, USA
| | - James P Ropa
- Melvin and Bren Simon Comprehensive Cancer Center, Indiana University, Indianapolis, Indiana, USA
| | - H Scott Boswell
- Melvin and Bren Simon Comprehensive Cancer Center, Indiana University, Indianapolis, Indiana, USA
| | - Fabrizio Carta
- NEUROFARBA Department, Pharmaceutical and Nutraceutical Section, University of Florence, Firenze, Italy
| | - Claudiu T Supuran
- NEUROFARBA Department, Pharmaceutical and Nutraceutical Section, University of Florence, Firenze, Italy
| | - Brian Parkin
- Division of Hematology and Oncology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Melissa L Fishel
- Melvin and Bren Simon Comprehensive Cancer Center, Indiana University, Indianapolis, Indiana, USA.,Department of Pediatrics, Wells Center for Pediatric Research, Indiana University, Indianapolis, Indiana, USA.,Department of Pharmacology & Toxicology, Indiana University, Indianapolis, Indiana, USA
| | - Heiko Konig
- Melvin and Bren Simon Comprehensive Cancer Center, Indiana University, Indianapolis, Indiana, USA
| |
Collapse
|
15
|
Ikeda H, Kakeya H. Targeting hypoxia-inducible factor 1 (HIF-1) signaling with natural products toward cancer chemotherapy. J Antibiot (Tokyo) 2021; 74:687-695. [PMID: 34331027 DOI: 10.1038/s41429-021-00451-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 05/29/2021] [Accepted: 06/04/2021] [Indexed: 02/06/2023]
Abstract
Tumor cells are often exposed to hypoxia because of the lower oxygen supply deep inside the tumor tissues. However, tumor cells survive in these severe conditions by adapting to hypoxic stress through the induction of hypoxia-inducible factor 1 (HIF-1) signaling. HIF-1 activation is responsible for the expression of numerous HIF-1 target genes, which are related to cell survival, proliferation, angiogenesis, invasion, metastasis, cancer stemness, and metabolic reprogramming. Therefore, HIF-1 is expected to be a potential pharmacological target for cancer therapy. Small molecules derived from natural products (microbial origin, plant-derived, or marine organisms) have been shown to have unique chemical structures and biological activities, including HIF-1 inhibition. Several studies identified HIF-1 inhibitors from natural products. In this review, we summarize the current HIF-1 signaling inhibitors originating from natural products with a variety of modes of action, mainly focusing on microbial metabolites.
Collapse
Affiliation(s)
- Hiroaki Ikeda
- Department of System Chemotherapy and Molecular Sciences, Division of Bioinformatics and Chemical Genomics, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Hideaki Kakeya
- Department of System Chemotherapy and Molecular Sciences, Division of Bioinformatics and Chemical Genomics, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto, 606-8501, Japan.
| |
Collapse
|
16
|
Tessier TM, Dodge MJ, MacNeil KM, Evans AM, Prusinkiewicz MA, Mymryk JS. Almost famous: Human adenoviruses (and what they have taught us about cancer). Tumour Virus Res 2021; 12:200225. [PMID: 34500123 PMCID: PMC8449131 DOI: 10.1016/j.tvr.2021.200225] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 08/25/2021] [Accepted: 09/03/2021] [Indexed: 12/11/2022] Open
Abstract
Papillomaviruses, polyomaviruses and adenoviruses are collectively categorized as the small DNA tumour viruses. Notably, human adenoviruses were the first human viruses demonstrated to be able to cause cancer, albeit in non-human animal models. Despite their long history, no human adenovirus is a known causative agent of human cancers, unlike a subset of their more famous cousins, including human papillomaviruses and human Merkel cell polyomavirus. Nevertheless, seminal research using human adenoviruses has been highly informative in understanding the basics of cell cycle control, gene expression, apoptosis and cell differentiation. This review highlights the contributions of human adenovirus research in advancing our knowledge of the molecular basis of cancer.
Collapse
Affiliation(s)
- Tanner M Tessier
- Department of Microbiology and Immunology, The University of Western Ontario, London, ON, Canada
| | - Mackenzie J Dodge
- Department of Microbiology and Immunology, The University of Western Ontario, London, ON, Canada
| | - Katelyn M MacNeil
- Department of Microbiology and Immunology, The University of Western Ontario, London, ON, Canada
| | - Andris M Evans
- Department of Microbiology and Immunology, The University of Western Ontario, London, ON, Canada
| | - Martin A Prusinkiewicz
- Department of Microbiology and Immunology, The University of Western Ontario, London, ON, Canada
| | - Joe S Mymryk
- Department of Microbiology and Immunology, The University of Western Ontario, London, ON, Canada; Department of Otolaryngology, Head & Neck Surgery, The University of Western Ontario, London, ON, Canada; Department of Oncology, The University of Western Ontario, London, ON, Canada; London Regional Cancer Program, Lawson Health Research Institute, London, ON, Canada.
| |
Collapse
|
17
|
Ortmann BM, Burrows N, Lobb IT, Arnaiz E, Wit N, Bailey PSJ, Jordon LH, Lombardi O, Peñalver A, McCaffrey J, Seear R, Mole DR, Ratcliffe PJ, Maxwell PH, Nathan JA. The HIF complex recruits the histone methyltransferase SET1B to activate specific hypoxia-inducible genes. Nat Genet 2021; 53:1022-1035. [PMID: 34155378 PMCID: PMC7611696 DOI: 10.1038/s41588-021-00887-y] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 05/14/2021] [Indexed: 02/05/2023]
Abstract
Hypoxia-inducible transcription factors (HIFs) are fundamental to cellular adaptation to low oxygen levels, but it is unclear how they interact with chromatin and activate their target genes. Here, we use genome-wide mutagenesis to identify genes involved in HIF transcriptional activity, and define a requirement for the histone H3 lysine 4 (H3K4) methyltransferase SET1B. SET1B loss leads to a selective reduction in transcriptional activation of HIF target genes, resulting in impaired cell growth, angiogenesis and tumor establishment in SET1B-deficient xenografts. Mechanistically, we show that SET1B accumulates on chromatin in hypoxia, and is recruited to HIF target genes by the HIF complex. The selective induction of H3K4 trimethylation at HIF target loci is both HIF- and SET1B-dependent and, when impaired, correlates with decreased promoter acetylation and gene expression. Together, these findings show SET1B as a determinant of site-specific histone methylation and provide insight into how HIF target genes are differentially regulated.
Collapse
Affiliation(s)
- Brian M Ortmann
- Cambridge Institute of Therapeutic Immunology and Infectious Disease (CITIID), Jeffrey Cheah Biomedical Centre, Department of Medicine, University of Cambridge, Cambridge, UK
| | - Natalie Burrows
- Cambridge Institute for Medical Research, The Keith Peters Building, Department of Medicine, University of Cambridge, Cambridge, UK
| | - Ian T Lobb
- Cambridge Institute for Medical Research, The Keith Peters Building, Department of Medicine, University of Cambridge, Cambridge, UK
| | - Esther Arnaiz
- Cambridge Institute of Therapeutic Immunology and Infectious Disease (CITIID), Jeffrey Cheah Biomedical Centre, Department of Medicine, University of Cambridge, Cambridge, UK
| | - Niek Wit
- Cambridge Institute of Therapeutic Immunology and Infectious Disease (CITIID), Jeffrey Cheah Biomedical Centre, Department of Medicine, University of Cambridge, Cambridge, UK
| | - Peter S J Bailey
- Cambridge Institute of Therapeutic Immunology and Infectious Disease (CITIID), Jeffrey Cheah Biomedical Centre, Department of Medicine, University of Cambridge, Cambridge, UK
| | - Louise H Jordon
- Cambridge Institute of Therapeutic Immunology and Infectious Disease (CITIID), Jeffrey Cheah Biomedical Centre, Department of Medicine, University of Cambridge, Cambridge, UK
| | - Olivia Lombardi
- NDM Research Building, University of Oxford, Headington, Oxford, UK
| | - Ana Peñalver
- Cambridge Institute for Medical Research, The Keith Peters Building, Department of Medicine, University of Cambridge, Cambridge, UK
| | - James McCaffrey
- Cambridge Institute for Medical Research, The Keith Peters Building, Department of Medicine, University of Cambridge, Cambridge, UK
- Department of Histopathology, Cambridge University NHS Foundation Trust, Cambridge, UK
| | - Rachel Seear
- Cambridge Institute of Therapeutic Immunology and Infectious Disease (CITIID), Jeffrey Cheah Biomedical Centre, Department of Medicine, University of Cambridge, Cambridge, UK
| | - David R Mole
- NDM Research Building, University of Oxford, Headington, Oxford, UK
| | - Peter J Ratcliffe
- Ludwig Institute for Cancer Research, University of Oxford, Headington, Oxford, UK
- The Francis Crick Institute, London, UK
| | - Patrick H Maxwell
- Cambridge Institute for Medical Research, The Keith Peters Building, Department of Medicine, University of Cambridge, Cambridge, UK
| | - James A Nathan
- Cambridge Institute of Therapeutic Immunology and Infectious Disease (CITIID), Jeffrey Cheah Biomedical Centre, Department of Medicine, University of Cambridge, Cambridge, UK.
| |
Collapse
|
18
|
Weinhouse C. The roles of inducible chromatin and transcriptional memory in cellular defense system responses to redox-active pollutants. Free Radic Biol Med 2021; 170:85-108. [PMID: 33789123 PMCID: PMC8382302 DOI: 10.1016/j.freeradbiomed.2021.03.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 03/12/2021] [Accepted: 03/15/2021] [Indexed: 12/17/2022]
Abstract
People are exposed to wide range of redox-active environmental pollutants. Air pollution, heavy metals, pesticides, and endocrine disrupting chemicals can disrupt cellular redox status. Redox-active pollutants in our environment all trigger their own sets of specific cellular responses, but they also activate a common set of general stress responses that buffer the cell against homeostatic insults. These cellular defense system (CDS) pathways include the heat shock response, the oxidative stress response, the hypoxia response, the unfolded protein response, the DNA damage response, and the general stress response mediated by the stress-activated p38 mitogen-activated protein kinase. Over the past two decades, the field of environmental epigenetics has investigated epigenetic responses to environmental pollutants, including redox-active pollutants. Studies of these responses highlight the role of chromatin modifications in controlling the transcriptional response to pollutants and the role of transcriptional memory, often referred to as "epigenetic reprogramming", in predisposing previously exposed individuals to more potent transcriptional responses on secondary challenge. My central thesis in this review is that high dose or chronic exposure to redox-active pollutants leads to transcriptional memories at CDS target genes that influence the cell's ability to mount protective responses. To support this thesis, I will: (1) summarize the known chromatin features required for inducible gene activation; (2) review the known forms of transcriptional memory; (3) discuss the roles of inducible chromatin and transcriptional memory in CDS responses that are activated by redox-active environmental pollutants; and (4) propose a conceptual framework for CDS pathway responsiveness as a readout of total cellular exposure to redox-active pollutants.
Collapse
Affiliation(s)
- Caren Weinhouse
- Oregon Institute of Occupational Health Sciences, Oregon Health & Science University, Portland, OR, 97214, USA.
| |
Collapse
|
19
|
Qiao J, Wang M, Cui M, Fang Y, Li H, Zheng C, Li Z, Xu Y, Hua H, Li D. Small-molecule probes for fluorescent detection of cellular hypoxia-related nitroreductase. J Pharm Biomed Anal 2021; 203:114199. [PMID: 34130009 DOI: 10.1016/j.jpba.2021.114199] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 06/03/2021] [Accepted: 06/06/2021] [Indexed: 12/12/2022]
Abstract
Nitroreductase is a reductase that catalyzes nitro aromatic compounds to aromatic amines. It effectively reduces nitro to hydroxylamine or amino when in the presence of nicotinamide adenine dinucleotide or nicotinamide adenine dinucleotide phosphate. In terms of tumor, nitroreductase is upregulated in hypoxic tumor cells, and its content is directly related to the degree of hypoxia. Therefore, effective detection of nitroreductase is important not only for the study of cellular hypoxia, but also for the diagnosis and treatment of tumors and related diseases. In this review, we summarized the latest advances in small-molecule fluorescent probes for nitroreductase detection based on different fluorescence mechanisms, with a focus on research conducted between May 2018 and December 2020. The development trends and application prospect in this rapidly developing field were also highlighted.
Collapse
Affiliation(s)
- Jian Qiao
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, PR China; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, PR China; School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, PR China
| | - Mingying Wang
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, PR China; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, PR China
| | - Menghan Cui
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, PR China; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, PR China
| | - Yuxi Fang
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, PR China; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, PR China
| | - Haonan Li
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, PR China; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, PR China
| | - Chao Zheng
- PET Center, Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, Connecticut 06520, United States
| | - Zhanlin Li
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, PR China; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, PR China
| | - Yongnan Xu
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, PR China; School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, PR China.
| | - Huiming Hua
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, PR China; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, PR China.
| | - Dahong Li
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, PR China; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, PR China.
| |
Collapse
|
20
|
Gilmore AC, Flaherty SJ, Somasundaram V, Scheiblin DA, Lockett SJ, Wink DA, Heinz WF. An in vitro tumorigenesis model based on live-cell-generated oxygen and nutrient gradients. Commun Biol 2021; 4:477. [PMID: 33859337 PMCID: PMC8050328 DOI: 10.1038/s42003-021-01954-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Accepted: 03/02/2021] [Indexed: 01/06/2023] Open
Abstract
The tumor microenvironment (TME) is multi-cellular, spatially heterogenous, and contains cell-generated gradients of soluble molecules. Current cell-based model systems lack this complexity or are difficult to interrogate microscopically. We present a 2D live-cell chamber that approximates the TME and demonstrate that breast cancer cells and macrophages generate hypoxic and nutrient gradients, self-organize, and have spatially varying phenotypes along the gradients, leading to new insights into tumorigenesis.
Collapse
Affiliation(s)
- Anne C Gilmore
- Optical Microscopy and Analysis Laboratory, Office of Science and Technology Resources, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
- Graduate School of Biomedical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Sarah J Flaherty
- Optical Microscopy and Analysis Laboratory, Office of Science and Technology Resources, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | - Veena Somasundaram
- Laboratory of Cancer Immunometabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | - David A Scheiblin
- Optical Microscopy and Analysis Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Stephen J Lockett
- Optical Microscopy and Analysis Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - David A Wink
- Laboratory of Cancer Immunometabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | - William F Heinz
- Optical Microscopy and Analysis Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA.
| |
Collapse
|
21
|
Shen M, Xu M, Zhong F, Crist MC, Prior AB, Yang K, Allaire DM, Choueiry F, Zhu J, Shi H. A Multi-Omics Study Revealing the Metabolic Effects of Estrogen in Liver Cancer Cells HepG2. Cells 2021; 10:cells10020455. [PMID: 33672651 PMCID: PMC7924215 DOI: 10.3390/cells10020455] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 02/14/2021] [Accepted: 02/16/2021] [Indexed: 12/19/2022] Open
Abstract
Hepatocellular carcinoma (HCC) that is triggered by metabolic defects is one of the most malignant liver cancers. A much higher incidence of HCC among men than women suggests the protective roles of estrogen in HCC development and progression. To begin to understand the mechanisms involving estrogenic metabolic effects, we compared cell number, viability, cytotoxicity, and apoptosis among HCC-derived HepG2 cells that were treated with different concentrations of 2-deoxy-d-glucose (2-DG) that blocks glucose metabolism, oxamate that inhibits lactate dehydrogenase and glycolysis, or oligomycin that blocks ATP synthesis and mitochondrial oxidative phosphorylation. We confirmed that HepG2 cells primarily utilized glycolysis followed by lactate fermentation, instead of mitochondrial oxidative phosphorylation, for cell growth. We hypothesized that estrogen altered energy metabolism via its receptors to carry out its anticancer effects in HepG2 cells. We treated cells with 17β-estradiol (E2), 1,3,5-tris(4-hydroxyphenyl)-4-propyl-1H-pyrazole (PPT) an estrogen receptor (ER) α (ERα) agonist, or 2,3-bis(4-hydroxyphenyl)-propionitrile (DPN), an ERβ agonist. We then used transcriptomic and metabolomic analyses and identified differentially expressed genes and unique metabolite fingerprints that are produced by each treatment. We further performed integrated multi-omics analysis, and identified key genes and metabolites in the gene–metabolite interaction contributed by E2 and ER agonists. This integrated transcriptomic and metabolomic study suggested that estrogen acts on estrogen receptors to suppress liver cancer cell growth via altering metabolism. This is the first exploratory study that comprehensively investigated estrogen and its receptors, and their roles in regulating gene expression, metabolites, metabolic pathways, and gene–metabolite interaction in HCC cells using bioinformatic tools. Overall, this study provides potential therapeutic targets for future HCC treatment.
Collapse
Affiliation(s)
- Minqian Shen
- Department of Biology, Miami University, Oxford, OH 45056, USA; (M.S.); (M.X.); (M.C.C.); (A.B.P.); (D.M.A.)
| | - Mengyang Xu
- Department of Biology, Miami University, Oxford, OH 45056, USA; (M.S.); (M.X.); (M.C.C.); (A.B.P.); (D.M.A.)
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH 45056, USA; (F.Z.); (K.Y.)
| | - Fanyi Zhong
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH 45056, USA; (F.Z.); (K.Y.)
| | - McKenzie C. Crist
- Department of Biology, Miami University, Oxford, OH 45056, USA; (M.S.); (M.X.); (M.C.C.); (A.B.P.); (D.M.A.)
| | - Anjali B. Prior
- Department of Biology, Miami University, Oxford, OH 45056, USA; (M.S.); (M.X.); (M.C.C.); (A.B.P.); (D.M.A.)
| | - Kundi Yang
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH 45056, USA; (F.Z.); (K.Y.)
| | - Danielle M. Allaire
- Department of Biology, Miami University, Oxford, OH 45056, USA; (M.S.); (M.X.); (M.C.C.); (A.B.P.); (D.M.A.)
| | - Fouad Choueiry
- Department of Human Sciences, College of Education and Human Ecology, Columbus, OH 43210, USA;
- James Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| | - Jiangjiang Zhu
- Department of Human Sciences, College of Education and Human Ecology, Columbus, OH 43210, USA;
- James Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
- Correspondence: (J.Z.); (H.S.); Tel.: +1-614-685-2226 (J.Z.); +1-513-529-3162 (H.S.)
| | - Haifei Shi
- Department of Biology, Miami University, Oxford, OH 45056, USA; (M.S.); (M.X.); (M.C.C.); (A.B.P.); (D.M.A.)
- Correspondence: (J.Z.); (H.S.); Tel.: +1-614-685-2226 (J.Z.); +1-513-529-3162 (H.S.)
| |
Collapse
|
22
|
Mylonis I, Chachami G, Simos G. Specific Inhibition of HIF Activity: Can Peptides Lead the Way? Cancers (Basel) 2021; 13:cancers13030410. [PMID: 33499237 PMCID: PMC7865418 DOI: 10.3390/cancers13030410] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/15/2021] [Accepted: 01/16/2021] [Indexed: 12/19/2022] Open
Abstract
Simple Summary Cancer cells in solid tumors often experience lack of oxygen (hypoxia), which they overcome with the help of hypoxia inducible transcription factors (HIFs). When HIFs are activated, they stimulate the expression of many genes and cause the production of proteins that help cancer cells grow and migrate even in the presence of very little oxygen. Many experiments have shown that agents that block the activity of HIFs (HIF inhibitors) can prevent growth of cancer cells under hypoxia and, subsequently, hinder formation of malignant tumors or metastases. Most small chemical HIF inhibitors lack the selectivity required for development of safe anticancer drugs. On the other hand, peptides derived from HIFs themselves can be very selective HIF inhibitors by disrupting specific associations of HIFs with cellular components that are essential for HIF activation. This review discusses the nature of available peptide HIF inhibitors and their prospects as effective pharmaceuticals against cancer. Abstract Reduced oxygen availability (hypoxia) is a characteristic of many disorders including cancer. Central components of the systemic and cellular response to hypoxia are the Hypoxia Inducible Factors (HIFs), a small family of heterodimeric transcription factors that directly or indirectly regulate the expression of hundreds of genes, the products of which mediate adaptive changes in processes that include metabolism, erythropoiesis, and angiogenesis. The overexpression of HIFs has been linked to the pathogenesis and progression of cancer. Moreover, evidence from cellular and animal models have convincingly shown that targeting HIFs represents a valid approach to treat hypoxia-related disorders. However, targeting transcription factors with small molecules is a very demanding task and development of HIF inhibitors with specificity and therapeutic potential has largely remained an unattainable challenge. Another promising approach to inhibit HIFs is to use peptides modelled after HIF subunit domains known to be involved in protein–protein interactions that are critical for HIF function. Introduction of these peptides into cells can inhibit, through competition, the activity of endogenous HIFs in a sequence and, therefore also isoform, specific manner. This review summarizes the involvement of HIFs in cancer and the approaches for targeting them, with a special focus on the development of peptide HIF inhibitors and their prospects as highly-specific pharmacological agents.
Collapse
Affiliation(s)
- Ilias Mylonis
- Laboratory of Biochemistry, Faculty of Medicine, University of Thessaly, 41500 Larissa, Greece;
- Correspondence: (I.M.); (G.S.)
| | - Georgia Chachami
- Laboratory of Biochemistry, Faculty of Medicine, University of Thessaly, 41500 Larissa, Greece;
| | - George Simos
- Laboratory of Biochemistry, Faculty of Medicine, University of Thessaly, 41500 Larissa, Greece;
- Gerald Bronfman Department of Oncology, Faculty of Medicine, McGill University, Montreal, QC H4A 3T2, Canada
- Correspondence: (I.M.); (G.S.)
| |
Collapse
|
23
|
Metabolic Regulation of Epigenetic Modifications and Cell Differentiation in Cancer. Cancers (Basel) 2020; 12:cancers12123788. [PMID: 33339101 PMCID: PMC7765496 DOI: 10.3390/cancers12123788] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 12/07/2020] [Accepted: 12/11/2020] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Cancer cells change their metabolism to support a chaotic and uncontrolled growth. In addition to meeting the metabolic needs of the cell, these changes in metabolism also affect the patterns of gene activation, changing the identity of cancer cells. As a consequence, cancer cells become more aggressive and more resistant to treatments. In this article, we present a review of the literature on the interactions between metabolism and cell identity, and we explore the mechanisms by which metabolic changes affect gene regulation. This is important because recent therapies under active investigation target both metabolism and gene regulation. The interactions of these new therapies with existing chemotherapies are not known and need to be investigated. Abstract Metabolic reprogramming is a hallmark of cancer, with consistent rewiring of glucose, glutamine, and mitochondrial metabolism. While these metabolic alterations are adequate to meet the metabolic needs of cell growth and proliferation, the changes in critical metabolites have also consequences for the regulation of the cell differentiation state. Cancer evolution is characterized by progression towards a poorly differentiated, stem-like phenotype, and epigenetic modulation of the chromatin structure is an important prerequisite for the maintenance of an undifferentiated state by repression of lineage-specific genes. Epigenetic modifiers depend on intermediates of cellular metabolism both as substrates and as co-factors. Therefore, the metabolic reprogramming that occurs in cancer likely plays an important role in the process of the de-differentiation characteristic of the neoplastic process. Here, we review the epigenetic consequences of metabolic reprogramming in cancer, with particular focus on the role of mitochondrial intermediates and hypoxia in the regulation of cellular de-differentiation. We also discuss therapeutic implications.
Collapse
|
24
|
Wang X, Liu K, Gong H, Li D, Chu W, Zhao D, Wang X, Xu D. Death by histone deacetylase inhibitor quisinostat in tongue squamous cell carcinoma via apoptosis, pyroptosis, and ferroptosis. Toxicol Appl Pharmacol 2020; 410:115363. [PMID: 33290780 DOI: 10.1016/j.taap.2020.115363] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 11/03/2020] [Accepted: 12/01/2020] [Indexed: 12/20/2022]
Abstract
Tongue cancer is one of the most common oral malignancies. Quisinostat is a histone deacetylase inhibitor with antitumor activity. The aim of this study was to evaluate the effects of quisinostat on the viability of tongue squamous cell carcinoma (TSCC) cells (CAL-27, TCA-8113) in vitro and in vivo. Cell viability, cell morphological observation, scratch wound-healing assay, transwell migration assay, transmission electron microscope, flow cytometry and cellular reactive oxygen species were assessed in vitro. The results showed that quisinostat can significantly inhibit the viability, growth and migration of TSCC cells. And quisinostat could significantly induce TSCC cells apoptosis, pyroptosis, and ferroptosis. Quisinostat significantly inhibited tumor tissue growth in animal experiments. Up-regulation of the expression of Bax, cleaved-caspase3, caspase-1, p53, phospho-p53 and down-regulated of the expression of caspase-3, Bcl-2, GPX4 in cell lines and tumor tissues of nude mice were observed by Western blotting analysis. Up-regulation of the expression of caspase-1, Bax, cleaved-caspase3, p53 and down-regulated of the expression of ki67, caspase-3, Bcl-2, GPX4 in tumor tissues of nude mice were observed by immunohistochemistry. TUNEL analysis showed that quisinostat could increase the apoptosis rate in the tumor tissues of nude mice. Up-regulation of the expression of p53 and down-regulated expression of GPX4 in cell lines were observed by immunofluorescent staining, and the expression locations of p53 and GPX4 proteins in TSCC cells were observed. Based on these findings, quisinostat may be a potential drug for the treatment of tongue squamous cell carcinoma.
Collapse
Affiliation(s)
- Xinhuan Wang
- Department of Oral and Maxillofacial Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150081, PR China
| | - Ke Liu
- Department of Oral and Maxillofacial Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150081, PR China
| | - Huimin Gong
- Department of Oral, Dalian Stomatological Hospital, Dalian, Liaoning 116021, PR China
| | - Dezhi Li
- Department of Oral and Maxillofacial Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150081, PR China
| | - Wenfeng Chu
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150081, PR China
| | - Dan Zhao
- Department of Clinical Pharmacy (Key Laboratories of Education Ministry for Myocardial Ischemia Mechanism and Treatment), the 2nd Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang 150081, PR China
| | - Xiaofeng Wang
- Department of Oral and Maxillofacial Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150081, PR China.
| | - Dongyang Xu
- Department of Oral and Maxillofacial Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150081, PR China.
| |
Collapse
|
25
|
Shaikh S, Wang Y, ur Rehman F, Jiang H, Wang X. Phosphorescent Ir (III) complexes as cellular staining agents for biomedical molecular imaging. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2020.213344] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
26
|
Hypoxia-Inducible Factor 1α (HIF-1α) Counteracts the Acute Death of Cells Transplanted into the Injured Spinal Cord. eNeuro 2020; 7:ENEURO.0092-19.2019. [PMID: 31488552 PMCID: PMC7215587 DOI: 10.1523/eneuro.0092-19.2019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 08/10/2019] [Accepted: 08/19/2019] [Indexed: 01/13/2023] Open
Abstract
Cellular transplantation is in clinical testing for a number of central nervous system disorders, including spinal cord injury (SCI). One challenge is acute transplanted cell death. To prevent this death, there is a need to both establish when the death occurs and develop approaches to mitigate its effects. Here, using luciferase (luc) and green fluorescent protein (GFP) expressing Schwann cell (SC) transplants in the contused thoracic rat spinal cord 7 d postinjury, we establish via in vivo bioluminescent (IVIS) imaging and stereology that cell death occurs prior to 2–3 d postimplantation. We then test an alternative approach to the current paradigm of enhancing transplant survival by including multiple factors along with the cells. To stimulate multiple cellular adaptive pathways concurrently, we activate the hypoxia-inducible factor 1α (HIF-1α) transcriptional pathway. Retroviral expression of VP16-HIF-1α in SCs increased HIF-α by 5.9-fold and its target genes implicated in oxygen transport and delivery (VEGF, 2.2-fold) and cellular metabolism (enolase, 1.7-fold). In cell death assays in vitro, HIF-1α protected cells from H2O2-induced oxidative damage. It also provided some protection against camptothecin-induced DNA damage, but not thapsigargin-induced endoplasmic reticulum stress or tunicamycin-induced unfolded protein response. Following transplantation, VP16-HIF-1α increased SC survival by 34.3%. The increase in cell survival was detectable by stereology, but not by in vivo luciferase or ex vivo GFP IVIS imaging. The results support the hypothesis that activating adaptive cellular pathways enhances transplant survival and identifies an alternative pro-survival approach that, with optimization, could be amenable to clinical translation.
Collapse
|
27
|
Comparison of In Vitro Chlamydia muridarum Infection Under Aerobic and Anaerobic Conditions. Curr Microbiol 2020; 77:1580-1589. [PMID: 32253468 DOI: 10.1007/s00284-020-01966-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 03/24/2020] [Indexed: 10/24/2022]
Abstract
Although Chlamydia infects host body regions that are hypoxic to anoxic, standard Chlamydiae culture conditions are in CO2 enriched (5%) atmospheric oxygen (21%). Because of its success in causing disease in principally anaerobic body sites, e.g., vaginal tract, we hypothesize that Chlamydia has an anaerobic life cycle that plays a role in its maintenance in the host. Using a model system developed for the anaerobic culture of mammalian cells, we assessed the anoxic infectious cycle of C. muridarum in anaerobically cultured HeLa 229 cells. In the absence of oxygen, C. muridarum is capable of going through their life cycle, although its cycle is slowed (2 days post-infection anaerobic vs. 1 day aerobic). Interestingly, in addition to a slower rate of replication, there is a reduction in Chlamydia inclusion number and size as compared to aerobic controls. Anaerobic infected host cell physiology also changed with IL-6 and IL-8 production significantly lower (p ≤ 0.05) compared to aerobic infected host cells (day 4 post-infection). These findings demonstrate that Chlamydia are capable of replicating in the absence of oxygen.
Collapse
|
28
|
Effects of Environmental pH on the Growth of Gastric Cancer Cells. Gastroenterol Res Pract 2020; 2020:3245359. [PMID: 32211041 PMCID: PMC7085403 DOI: 10.1155/2020/3245359] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 12/04/2019] [Accepted: 02/27/2020] [Indexed: 12/14/2022] Open
Abstract
Background Proton pump inhibitor (PPI) and other acid-suppressing drugs are widely used in the treatment of gastrointestinal ulcer, upper gastrointestinal bleeding, gastritis, and gastric cancer (GC). About 80% of GC patients receive acid suppression treatment. PPI suppresses the production of gastric acid by inhibiting the function of H+/K+-ATPase in gastric parietal cells and raises the pH value to achieve therapeutic purposes. Some studies have found that PPI had a certain antitumor effect in the proliferation and apoptosis of tumor cells. But the effects of environmental pH on the growth of GC cells and its mechanism are unknown. Therefore, we hoped to find the effects of culture medium pH on the biological behavior of GC cells by in vitro experiments and provide guidance for the use of acid-suppressing drugs in GC patients. Aims We aimed to observe the effects of pH changes in GC cell culture medium on the cell biological behavior of cancer cells and to analyze the potential mechanisms. We hoped to find out the effect of acid suppression on the growth of GC cells. Methods The GC cell lines (SGC-7901 and MKN45) were used as the research object. We adjusted the pH value in the cell culture medium to observe the changes in cell viability (MTT), apoptosis (flow cytometry), and invasion (Transwell) at pH 6, pH 7, and pH 8. qRT-PCR and western blot (WB) assays were used to determine the expression changes of genes and proteins (mTOR, AKT, Wnt, Glut, and HIF-1α) at pH 6, pH 7, and pH 8. Results The results of MTT showed that the viability of SGC-7901 and MKN45 in the pH 8.0 group was significantly weaker than that in the pH 6.0 or pH 7.0 group (P < 0.001). Flow cytometry results showed that the apoptosis of SGC-7901 and MKN45 in the pH 8.0 group was more obvious than that in the pH 6.0 or pH 7.0 group (P < 0.001). Flow cytometry results showed that the apoptosis of SGC-7901 and MKN45 in the pH 8.0 group was more obvious than that in the pH 6.0 or pH 7.0 group (P < 0.001). Flow cytometry results showed that the apoptosis of SGC-7901 and MKN45 in the pH 8.0 group was more obvious than that in the pH 6.0 or pH 7.0 group (α) at pH 6, pH 7, and pH 8. P < 0.001). Flow cytometry results showed that the apoptosis of SGC-7901 and MKN45 in the pH 8.0 group was more obvious than that in the pH 6.0 or pH 7.0 group ( Conclusions Compared with the microacid environment, the microalkaline environment inhibited the viability, invasion, and expression of genes and proteins (mTOR, AKT, Wnt, Glut, and HIF-1α) but promoted the apoptosis of GC cells and thus inhibited the growth of GC.α) at pH 6, pH 7, and pH 8.
Collapse
|
29
|
Loenarz C. Ein Gespür für Sauerstoff: Entdeckung des molekularen Mechanismus der zellulären Sauerstoffregulation rückt die Hydroxylierung von Makromolekülen in den Blickpunkt. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201913263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Christoph Loenarz
- Institut für Pharmazeutische Wissenschaften Albert-Ludwigs-Universität Freiburg Albertstr. 25 79104 Freiburg Deutschland
| |
Collapse
|
30
|
Loenarz C. An Oxygen Sensation: Progress in Macromolecule Hydroxylation Triggered by the Elucidation of Cellular Oxygen Sensing. Angew Chem Int Ed Engl 2020; 59:3776-3780. [PMID: 31961479 DOI: 10.1002/anie.201913263] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Indexed: 11/06/2022]
Abstract
The 2019 Nobel Prize in Physiology or Medicine honours three scientists that devoted their careers to pursuing an audacious basic science question: by what mechanisms do animals sense oxygen, and how can cells adapt to a lack of oxygen? The identification of the human hypoxia inducible factor pathway has enabled new approaches for the therapy of related diseases including cancer, cardiovascular disease, anaemia, and stroke. The intricate molecular details of oxygen sensing broadened interest in the family of iron- and 2-oxoglutarate-dependent oxygenases known from elaborate natural product chemistry, and catalysed major progress in macromolecule hydroxylation. The laureates' work enables numerous avenues for molecular scientists, from C-H activation chemistry to PROTAC technology, medicinal chemistry, and epigenetics.
Collapse
Affiliation(s)
- Christoph Loenarz
- Institute of Pharmaceutical Sciences, Albert Ludwig University of Freiburg, Albertstr. 25, 79104, Freiburg, Germany
| |
Collapse
|
31
|
Quantitative proteomic analysis reveals that Luks-PV exerts antitumor activity by regulating the key proteins and metabolic pathways in HepG2 cells. Anticancer Drugs 2019; 31:223-230. [PMID: 31789624 PMCID: PMC7028286 DOI: 10.1097/cad.0000000000000866] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Hepatocellular carcinoma (HCC) is a complicated and poor prognosis cancer, necessitating the development of a potential treatment strategy. In this study, we initially revealed that LukS-PV belonged to leukocidin family performs an anti-HCC action. Then, we used liquid chromatography-mass spectrometry (LC/MS) to compare protein expression profiles of the LukS-PV-treated human HCC cell lines HepG2 and the control cells. GO annotations and Kyoto Encyclopedia of Genes and Genomes pathway analysis were carried out of differential expression followed by protein-protein interactome, to explore the underlying cancer suppressor mechanisms of LukS-PV for human HCC. A total of 88 upregulated proteins and 46 downregulated proteins were identified. The top 10 proteins identified by the MCC method are FN1, APP, TIMP1, nucleobindin-1, GOLM1, APLP2, CYR61, CD63, ENG, and CD9. Our observation on protein expression indicated that LukS-PV produces a signature affecting central carbon metabolism in cancer, galactose metabolism, and fructose and mannose metabolism pathways. The results give a functional effects and molecular mechanism insight, following LukS-PV treatment.
Collapse
|
32
|
Sadaghianloo N, Contenti J, Dardik A, Mazure NM. Role of Hypoxia and Metabolism in the Development of Neointimal Hyperplasia in Arteriovenous Fistulas. Int J Mol Sci 2019; 20:ijms20215387. [PMID: 31671790 PMCID: PMC6862436 DOI: 10.3390/ijms20215387] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 10/24/2019] [Accepted: 10/25/2019] [Indexed: 12/11/2022] Open
Abstract
For patients with end-stage renal disease requiring hemodialysis, their vascular access is both their lifeline and their Achilles heel. Despite being recommended as primary vascular access, the arteriovenous fistula (AVF) shows sub-optimal results, with about 50% of patients needing a revision during the year following creation. After the AVF is created, the venous wall must adapt to new environment. While hemodynamic changes are responsible for the adaptation of the extracellular matrix and activation of the endothelium, surgical dissection and mobilization of the vein disrupt the vasa vasorum, causing wall ischemia and oxidative stress. As a consequence, migration and proliferation of vascular cells participate in venous wall thickening by a mechanism of neointimal hyperplasia (NH). When aggressive, NH causes stenosis and AVF dysfunction. In this review we show how hypoxia, metabolism, and flow parameters are intricate mechanisms responsible for the development of NH and stenosis during AVF maturation.
Collapse
Affiliation(s)
- Nirvana Sadaghianloo
- Centre de Méditerranéen de Médecine Moléculaire (C3M), Université Côte d'Azur, INSERM U1065, 151 Route de St Antoine de Ginestière, BP2 3194, 06204 Nice CEDEX 03, France.
- Department of Vascular Surgery, Centre Hospitalier Universitaire de Nice, 06000 Nice, France.
| | - Julie Contenti
- Centre de Méditerranéen de Médecine Moléculaire (C3M), Université Côte d'Azur, INSERM U1065, 151 Route de St Antoine de Ginestière, BP2 3194, 06204 Nice CEDEX 03, France.
- Department of Emergency Medicine, Centre Hospitalier Universitaire de Nice, 06000 Nice, France.
| | - Alan Dardik
- Department of Surgery and the Vascular Biology and Therapeutics Program, Yale University, New Haven, CT 06520, USA.
- Department of Surgery, VA Connecticut Healthcare Systems, West Haven, CT 06516, USA.
| | - Nathalie M Mazure
- Centre de Méditerranéen de Médecine Moléculaire (C3M), Université Côte d'Azur, INSERM U1065, 151 Route de St Antoine de Ginestière, BP2 3194, 06204 Nice CEDEX 03, France.
- Department of Vascular Surgery, Centre Hospitalier Universitaire de Nice, 06000 Nice, France.
| |
Collapse
|
33
|
Winata IGS, Hidayat YM, Winarno GN, Suardi D, Soetopo S, Suwiyoga K. Pulsatility Index and Hypoxia Inducible Factor-1α Expression Predict the Clinical Response after External Radiation in Patients with Stage IIB to IVA Cervical Cancer. Asian Pac J Cancer Prev 2019; 20:2073-2078. [PMID: 31350968 PMCID: PMC6745215 DOI: 10.31557/apjcp.2019.20.7.2073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Indexed: 11/25/2022] Open
Abstract
Objective: To evaluate the ability of pulsatility index (PI), resistance index (RI), and hypoxia inducible
factor-1α (HIF-1α) expression in predicting the clinical response after radiation in patients with cervical cancer.
Methods: A prospective cohort was carried on in Department of Obstetric and Gynecology Dr. Hasan Sadikin Hospital/
Faculty of Medicine, Padjadjaran University, during the period of July 2017 to March 2018 which include 51 samples
with stage IIB to IVA cervical cancer. Tumor perfusion and oxygenation were evaluated using color Doppler ultrasound
indices (pulsatility index and resistance index) and the expression of hypoxia inducible factor-1α (HIF-1α). The clinical
response was assessed 2 months after external radiation. Result: Among 51 patients, 31 patients demonstrated good
response and 20 patients demonstrated poor response to radiation. The mean value of PI was significantly lower in patients
who demonstrated good response as compared to patients with poor response (0.84±0.916 vs. 1.70±1.260, p = 0.004).
The mean value of RI did not differ significantly (0.29±0.112 vs. to 0.36±0.189 p =0.173). HIF-1α expression was
significantly lower in patients who demonstrated good response as compared to patients with poor response (1.83±1.529
vs. 6.55±2.625, p = 0.0001). In multivariate model, PI and HIF-1α expression both predicted the clinical response after
radiation. Conclusion: PI and HIF-1α expression predict the clinical response after radiation in patients with cervical
cancer.
Collapse
Affiliation(s)
- I Gde Sastra Winata
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, dr. Hasan Sadikin Hospital/Faculty of Medicine, Padjajaran University, Bandung, Indonesia.
| | - Yudi Mulyana Hidayat
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, dr. Hasan Sadikin Hospital/Faculty of Medicine, Padjajaran University, Bandung, Indonesia.
| | - Gatot Nyarumenteng Winarno
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, dr. Hasan Sadikin Hospital/Faculty of Medicine, Padjajaran University, Bandung, Indonesia.
| | - Dodi Suardi
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, dr. Hasan Sadikin Hospital/Faculty of Medicine, Padjajaran University, Bandung, Indonesia.
| | - Setiawan Soetopo
- Deparment of Radiotherapy, dr. Hasan Sadikin Hospital/Faculty of Medicine, Padjajaran University, Bandung, Indonesia
| | - Ketut Suwiyoga
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Sanglah Hospital/Faculty of Medicine, Udayana University, Denpasar, Bali, Indonesia
| |
Collapse
|
34
|
Nigam M, Suleria HAR, Farzaei MH, Mishra AP. Marine anticancer drugs and their relevant targets: a treasure from the ocean. Daru 2019; 27:491-515. [PMID: 31165439 PMCID: PMC6593002 DOI: 10.1007/s40199-019-00273-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 05/08/2019] [Indexed: 02/07/2023] Open
Abstract
Marine organisms comprising animals and plants are wealthiest sources of bioactive compounds possessing various pharmacological properties specifically: free radical scavenging, antitumor, antimicrobial, analgesic, neuroprotective and immunomodulatory. Marine drugs provide an alternative source to meet the demand of effective, safe and low-cost drugs that are rising with the continuously growing world population. Cancer is one of the leading reasons of mortality in western nations in contrast to communicable diseases of developing nations. In spite of outstanding developments in cancer therapy in past three decades, there is still an insistent necessity for innovative drugs in the area of cancer biology, especially in the unexplored area of marine anticancer compounds. However, recent technological innovations in structure revelation, synthetic creation of new compounds and biological assays have made possible the isolation and clinical assessment of innumerable unique anticancer compounds from marine environment. This review provides an insight into the anticancer research so far conducted in the area of the marine natural products/synthetic derivatives, their possible molecular targets and the current challenges in the drug development. Graphical abstract.
Collapse
Affiliation(s)
- Manisha Nigam
- Department of Biochemistry, H. N. B. Garhwal (A Central) University, Srinagar Garhwal, Uttarakhand 246174 India
| | - Hafiz Ansar Rasul Suleria
- Centre for Chemistry and Biotechnology, School of Life and Environmental Sciences, Deakin University, Pigdons Road, Waurn Ponds, Victoria 3216 Australia
- UQ Diamantina Institute, Translational Research Institute, Faculty of Medicine, The University of Queensland, 37 Kent Street Woolloongabba, Brisbane, QLD 4102 Australia
- Department of Food, Nutrition, Dietetics and Health, Kansas State University, Manhattan, KS 66506 USA
| | - Mohammad Hosein Farzaei
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Abhay Prakash Mishra
- Department of Pharmaceutical Chemistry, H. N. B. Garhwal (A Central) University, Srinagar Garhwal, Uttarakhand 246174 India
| |
Collapse
|
35
|
Zhang Y, Chen Z, Feng L, Jiang P, Li X, Wang X. Ionizing Radiation-inducible microRNA-21 Induces Angiogenesis by Directly Targeting PTEN. Asian Pac J Cancer Prev 2019; 20:1587-1593. [PMID: 31128066 PMCID: PMC6857897 DOI: 10.31557/apjcp.2019.20.5.1587] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Background: Previous experimental studies have established that MicroRNAs (miRNAs) can function as oncogenes or tumor suppressors in the regulation of tumor biology or pathology. However, the effects of ionizing radiation (IR) on the expression levels of cellular miRNAs and their further effects on the biological behavior of tumor cells require further investigation. Methods: We determined the proliferation, migration and tube formation of HUVEC cells after ionizing radiation (control, 0h and 24h), and the changes of miR-21, VEFG and HIF-1α levels after ionizing radiation were measured by Western blot (WB). The effects of miR-21 mimics and inhibitors on the protein and mRNA expression of PTEN were determined by RT-PCT and WB. Two independent luciferase reporter plasmids were constructed to detect changes in PTEN protein expression. Results: We found that both IR and miR-21 increase proliferation, migration and tube formation of HUVEC cells. Ionizing radiation directly targets the inhibition of PTEN expression by causing an increase in miR-21 expression, and induces the accumulation of VEGF and HIF-1α expression in cells by the PI3K / AKT signaling pathway. Simultaneous induction of ectopic expression of PTEN can rescue radiation-induced proliferation, migration and tube formation in tumor cells. Conclusion: miR-21 promotes tumor cell proliferation and migration by targeting inhibition of PTEN expression, which may become a potential target for tumor therapy in the future.
Collapse
Affiliation(s)
- Yongchun Zhang
- Department of Radiotherapy, Affiliated Hospital of Qingdao University, Qingdao, China.
| | - Zhiying Chen
- Department of Radiotherapy, Affiliated Hospital of Qingdao University, Qingdao, China.
| | - Lingxin Feng
- Department of Radiotherapy, Affiliated Hospital of Qingdao University, Qingdao, China.
| | - Peng Jiang
- Department of Radiotherapy, Affiliated Hospital of Qingdao University, Qingdao, China.
| | - Xiumei Li
- Department of Radiotherapy, Affiliated Hospital of Qingdao University, Qingdao, China.
| | - Xiang Wang
- Department of Radiotherapy, Affiliated Hospital of Qingdao University, Qingdao, China.
| |
Collapse
|
36
|
Li J, Wei Z, Lin X, Zheng D, Wu M, Liu X, Liu J. Programmable Therapeutic Nanodevices with Circular Amplification of H 2 O 2 in the Tumor Microenvironment for Synergistic Cancer Therapy. Adv Healthc Mater 2019; 8:e1801627. [PMID: 30945472 DOI: 10.1002/adhm.201801627] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 02/25/2019] [Indexed: 12/20/2022]
Abstract
Tumor microenvironment activated nanodevices have remarkable superiority to enhance therapeutic efficacy and minimize side effects, but their practical applications are dramatically reduced by the low abundance and heterogeneous distribution of specific stimuli at the tumor site. Herein, programmable vesicular nanodevices based on the triblock copolymer containing poly(ethylene glycol) (PEG) and poly(caprolactone) (PCL) with peroxalate esters (PO) as hydrogen peroxide-responsive linkage (PEG-PO-PCL-PO-PEG), are developed for co-delivery of hypoxia-activated prodrug (AQ4N) and glucose oxidase (GOD). The obtained nanodevices (PAG) can be activated by the high level of H2 O2 in tumor microenvironment to improve the permeability of membranes for glucose entrance. Afterward, the oxidation of glucose catalyzed by GOD produces amplified H2 O2 amounts which in turn induce complete destruction of PAG for fast release of AQ4N and GOD. Ultimately, the PAG can exert programmable therapeutic effects from the following aspects: 1) starvation therapy by cutting off the energy supply from glucose through GOD catalysis; 2) oxidative cytotoxicity after H2 O2 amplification; 3) chemotherapy of AQ4N activated by the intensified tumor hypoxia microenvironment after oxygen consumption. The stimuli amplification, controlled drug release, synergistic therapy, and corresponding mechanisms of PAG are demonstrated. Therefore, the presented work could provide significant new insights for cancer treatment.
Collapse
Affiliation(s)
- Jiong Li
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350025, P. R. China
- Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, P. R. China
| | - Zuwu Wei
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350025, P. R. China
- Mengchao Med-X Center, Fuzhou University, Fuzhou, 350116, P. R. China
- The Liver Center of Fujian Province, Fujian Medical University, Fuzhou, 350025, P. R. China
| | - Xinyi Lin
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350025, P. R. China
- Mengchao Med-X Center, Fuzhou University, Fuzhou, 350116, P. R. China
- The Liver Center of Fujian Province, Fujian Medical University, Fuzhou, 350025, P. R. China
| | - Dongye Zheng
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350025, P. R. China
- Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, P. R. China
| | - Ming Wu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350025, P. R. China
- Mengchao Med-X Center, Fuzhou University, Fuzhou, 350116, P. R. China
- The Liver Center of Fujian Province, Fujian Medical University, Fuzhou, 350025, P. R. China
| | - Xiaolong Liu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350025, P. R. China
- Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, P. R. China
- Mengchao Med-X Center, Fuzhou University, Fuzhou, 350116, P. R. China
- The Liver Center of Fujian Province, Fujian Medical University, Fuzhou, 350025, P. R. China
| | - Jingfeng Liu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350025, P. R. China
- Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, P. R. China
- Mengchao Med-X Center, Fuzhou University, Fuzhou, 350116, P. R. China
- The Liver Center of Fujian Province, Fujian Medical University, Fuzhou, 350025, P. R. China
- Liver Disease Center, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, P. R. China
| |
Collapse
|
37
|
Li J, Xi W, Li X, Sun H, Li Y. Advances in inhibition of protein-protein interactions targeting hypoxia-inducible factor-1 for cancer therapy. Bioorg Med Chem 2019; 27:1145-1158. [PMID: 30819620 DOI: 10.1016/j.bmc.2019.01.042] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 01/25/2019] [Accepted: 01/31/2019] [Indexed: 12/23/2022]
Abstract
Hypoxia is a common characteristic of many types of solid tumors and is associated with tumor propagation, malignant progression, and resistance to anti-cancer therapy. HIF-1 pathway is one of the survival pathways activated in tumor in response to hypoxia. In hypoxic condition, hypoxia-inducible factor-1α (HIF-1α) is stabilized and translocated into nucleus where it forms heterodimer with HIF-1β and regulates the expression of a plethora of genes involved in different processes, such as cell proliferation, differentiation, apoptosis, vascularization/angiogenesis, tumor invasion and metastasis. Recruitment of co-activator p300 or CBP to HIF-1α is critical to the transactivation activity of HIF-1 dimer, therefore, small molecules which can block the dimerization of HIF-1α and HIF-1β or inhibit the interaction between HIF-1α and p300 can function as inhibitors of HIF-1 and have the potential to be developed as novel therapies for the treatment of human cancers. In this review, recent progress of small molecular inhibitors of protein-protein interactions targeting HIF-1 is summarized, the mechanism of functions of these compounds and their potential usage as anti-cancer agents have also been discussed.
Collapse
Affiliation(s)
- Jia Li
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, China
| | - Wanlin Xi
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, China
| | - Xiaofang Li
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, China
| | - Haiying Sun
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, China.
| | - Yuyan Li
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
38
|
Karagiota A, Kourti M, Simos G, Mylonis I. HIF-1α-derived cell-penetrating peptides inhibit ERK-dependent activation of HIF-1 and trigger apoptosis of cancer cells under hypoxia. Cell Mol Life Sci 2019; 76:809-825. [PMID: 30535970 PMCID: PMC11105304 DOI: 10.1007/s00018-018-2985-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 11/19/2018] [Accepted: 11/27/2018] [Indexed: 12/19/2022]
Abstract
Hypoxia is frequently encountered in the microenvironment of solid tumors. Hypoxia-inducible factors (HIFs), the main effectors of cell response to hypoxia, promote cancer cell survival and progression. HIF-1α, the oxygen-regulated subunit of HIF-1, is often correlated with oncogenesis and represents an attractive therapeutic target. We have previously reported that activation HIF-1α by ERK involves modification of two serine residues and masking of a nuclear export signal (NES), all inside a 43-amino acid domain termed ERK Targeted Domain (ETD). Overexpression of ETD variants including wild-type, phospho-mimetic (SE) or NES-less (IA) mutant forms caused HIF-1 inactivation in two hepatocarcinoma cell lines, while a phospho-deficient (SA) form was ineffective and acted as a sequence-specific negative control. To deliver these ETD forms directly into cancer cells, they were fused to the HIV TAT-sequence and produced as cell-permeable peptides. When the TAT-ETD peptides were added to the culture medium of Huh7 cells, they entered the cells and, with the exception of ETD-SA, accumulated inside the nucleus, caused mislocalization of endogenous HIF-1α to the cytoplasm, significant reduction of HIF-1 activity and inhibition of expression of specific HIF-1, but not HIF-2, gene targets under hypoxia. More importantly, transduced nuclear TAT-ETD peptides restricted migration, impaired colony formation and triggered apoptotic cell death of cancer cells grown under hypoxia, while they produced no effects in normoxic cells. These data demonstrate the importance of ERK-mediated activation of HIF-1 for low oxygen adaptation and the applicability of ETD peptide derivatives as sequence-specific HIF-1 and cancer cell growth inhibitors under hypoxia.
Collapse
Affiliation(s)
- Angeliki Karagiota
- Laboratory of Biochemistry, Faculty of Medicine, University of Thessaly, Biopolis, 41500, Larissa, Greece
| | - Maria Kourti
- Laboratory of Biochemistry, Faculty of Medicine, University of Thessaly, Biopolis, 41500, Larissa, Greece
| | - George Simos
- Laboratory of Biochemistry, Faculty of Medicine, University of Thessaly, Biopolis, 41500, Larissa, Greece.
- Gerald Bronfman Department of Oncology, Faculty of Medicine, McGill University, Montreal, Canada.
| | - Ilias Mylonis
- Laboratory of Biochemistry, Faculty of Medicine, University of Thessaly, Biopolis, 41500, Larissa, Greece.
| |
Collapse
|
39
|
Moreno Roig E, Groot AJ, Yaromina A, Hendrickx TC, Barbeau LMO, Giuranno L, Dams G, Ient J, Olivo Pimentel V, van Gisbergen MW, Dubois LJ, Vooijs MA. HIF-1α and HIF-2α Differently Regulate the Radiation Sensitivity of NSCLC Cells. Cells 2019; 8:cells8010045. [PMID: 30642030 PMCID: PMC6356534 DOI: 10.3390/cells8010045] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 01/04/2019] [Accepted: 01/04/2019] [Indexed: 12/17/2022] Open
Abstract
The hypoxia-inducible transcription factors (HIF)-1/2α are the main oxygen sensors which regulate the adaptation to intratumoral hypoxia. The aim of this study was to assess the role of the HIF proteins in regulating the radiation response of a non-small cell lung cancer (NSCLC) in vitro model. To directly assess the unique and overlapping functions of HIF-1α and HIF-2α, we use CRISPR gene-editing to generate isogenic H1299 non-small cell lung carcinoma cells lacking HIF-1α, HIF-2α or both. We found that in HIF1 knockout cells, HIF-2α was strongly induced by hypoxia compared to wild type but the reverse was not seen in HIF2 knockout cells. Cells lacking HIF-1α were more radiation resistant than HIF2 knockout and wildtype cells upon hypoxia, which was associated with a reduced recruitment of γH2AX foci directly after irradiation and not due to differences in proliferation. Conversely, double-HIF1/2 knockout cells were most radiation sensitive and had increased γH2AX recruitment and cell cycle delay. Compensatory HIF-2α activity in HIF1 knockout cells is the main cause of this radioprotective effect. Under hypoxia, HIF1 knockout cells uniquely had a strong increase in lactate production and decrease in extracellular pH. Using genetically identical HIF-α isoform-deficient cells we identified a strong radiosensitizing of HIF1, but not of HIF2, which was associated with a reduced extracellular pH and reduced glycolysis.
Collapse
Affiliation(s)
- Eloy Moreno Roig
- Department of Radiotherapy (MAASTRO), GROW-School for Oncology and Developmental Biology, Maastricht University, 6229 ET Maastricht, The Netherlands.
| | - Arjan J Groot
- Department of Radiotherapy (MAASTRO), GROW-School for Oncology and Developmental Biology, Maastricht University, 6229 ET Maastricht, The Netherlands.
| | - Ala Yaromina
- Department of Radiotherapy (MAASTRO), GROW-School for Oncology and Developmental Biology, Maastricht University, 6229 ET Maastricht, The Netherlands.
| | - Tessa C Hendrickx
- Department of Radiotherapy (MAASTRO), GROW-School for Oncology and Developmental Biology, Maastricht University, 6229 ET Maastricht, The Netherlands.
| | - Lydie M O Barbeau
- Department of Radiotherapy (MAASTRO), GROW-School for Oncology and Developmental Biology, Maastricht University, 6229 ET Maastricht, The Netherlands.
| | - Lorena Giuranno
- Department of Radiotherapy (MAASTRO), GROW-School for Oncology and Developmental Biology, Maastricht University, 6229 ET Maastricht, The Netherlands.
| | - Glenn Dams
- Department of Radiotherapy (MAASTRO), GROW-School for Oncology and Developmental Biology, Maastricht University, 6229 ET Maastricht, The Netherlands.
| | - Jonathan Ient
- Department of Radiotherapy (MAASTRO), GROW-School for Oncology and Developmental Biology, Maastricht University, 6229 ET Maastricht, The Netherlands.
| | - Veronica Olivo Pimentel
- Department of Radiotherapy (MAASTRO), GROW-School for Oncology and Developmental Biology, Maastricht University, 6229 ET Maastricht, The Netherlands.
| | - Marike W van Gisbergen
- Department of Radiotherapy (MAASTRO), GROW-School for Oncology and Developmental Biology, Maastricht University, 6229 ET Maastricht, The Netherlands.
| | - Ludwig J Dubois
- Department of Radiotherapy (MAASTRO), GROW-School for Oncology and Developmental Biology, Maastricht University, 6229 ET Maastricht, The Netherlands.
| | - Marc A Vooijs
- Department of Radiotherapy (MAASTRO), GROW-School for Oncology and Developmental Biology, Maastricht University, 6229 ET Maastricht, The Netherlands.
| |
Collapse
|
40
|
Mahdi A, Darvishi B, Majidzadeh-A K, Salehi M, Farahmand L. Challenges facing antiangiogenesis therapy: The significant role of hypoxia-inducible factor and MET in development of resistance to anti-vascular endothelial growth factor-targeted therapies. J Cell Physiol 2018; 234:5655-5663. [PMID: 30515806 DOI: 10.1002/jcp.27414] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 08/21/2018] [Indexed: 02/06/2023]
Abstract
It is now fully recognized that along with multiple physiological functions, angiogenesis is also involved in the fundamental process and pathobiology of several disorders including cancer. Recent studies have fully established the role of angiogenesis in cancer progression as well as invasion and metastasis. Consequently, many therapeutic agents such as monoclonal antibodies targeting angiogenesis pathway have been introduced in clinic with the hope for improving the outcomes of cancer therapy. Bevacizumab (Avastin®) was the first anti-vascular endothelial growth factor (VEGF) targeting monoclonal antibody developed with this purpose and soon received its accelerated US Food and Drug Administration (FDA) approval for treatment of patients with metastatic breast cancer in 2008. However, the failure to meet expecting results in different follow-up studies, forced FDA to remove bevacizumab approval for metastatic breast cancer. Investigations have now revealed that while suppressing VEGF pathway initially decreases tumor progression rate and vasculature density, activation of several interrelated pathways and signaling molecules following VEGF blockade compensate the insufficiency of VEGF and initially blocked angiogenesis, explaining in part the failure observed with bevacizumab single therapy. In present review, we introduce some of the main pathways and signaling molecules involved in angiogenesis and then propose how their interconnection may result in development of resistance to bevacizumab.
Collapse
Affiliation(s)
- Ali Mahdi
- Department of Recombinant Proteins, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Behrad Darvishi
- Department of Recombinant Proteins, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Keivan Majidzadeh-A
- Department of Recombinant Proteins, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran.,Tasnim Biotechnology Research Center, Faculty of Medicine, AJA University of Medical Sciences, Tehran, Iran
| | - Malihe Salehi
- Department of Recombinant Proteins, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Leila Farahmand
- Department of Recombinant Proteins, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| |
Collapse
|
41
|
Chen Z, Guo P, Xie X, Yu H, Wang Y, Chen G. The role of tumour microenvironment: a new vision for cholangiocarcinoma. J Cell Mol Med 2018; 23:59-69. [PMID: 30394682 PMCID: PMC6307844 DOI: 10.1111/jcmm.13953] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 09/10/2018] [Indexed: 12/18/2022] Open
Abstract
Cholangiocarcinoma (CCA) is a relatively rare malignant and lethal tumour derived from bile duct epithelium and the morbidity is now increasing worldwide. This disease is difficult to diagnose at its inchoate stage and has poor prognosis. Therefore, a clear understanding of pathogenesis and major influencing factors is the key to develop effective therapeutic methods for CCA. In previous studies, canonical correlation analysis has demonstrated that tumour microenvironment plays an intricate role in the progression of various types of cancers including CCA. CCA tumour microenvironment is a dynamic environment consisting of authoritative tumour stromal cells and extracellular matrix where tumour stromal cells and cancer cells can thrive. CCA stromal cells include immune and non‐immune cells, such as inflammatory cells, endothelial cells, fibroblasts, and macrophages. Likewise, CCA tumour microenvironment contains abundant proliferative factors and can significantly impact the behaviour of cancer cells. Through abominably intricate interactions with CCA cells, CCA tumour microenvironment plays an important role in promoting tumour proliferation, accelerating neovascularization, facilitating tumour invasion, and preventing tumour cells from organismal immune reactions and apoptosis. This review summarizes the recent research progress regarding the connection between tumour behaviours and tumour stromal cells in CCA, as well as the mechanism underlying the effect of tumour stromal cells on the growth of CCA. A thorough understanding of the relationship between CCA and tumour stromal cells can shed some light on the development of new therapeutic methods for treating CCA.
Collapse
Affiliation(s)
- Ziyan Chen
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
| | - Pengyi Guo
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
| | - Xiaozai Xie
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
| | - Haitao Yu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
| | - Yi Wang
- Environmental and Public, Health School of Wenzhou Medical University, Wenzhou, China
| | - Gang Chen
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
42
|
Ning X, Wang Y, Yan W, Li G, Sang N. Chitin synthesis inhibitors promote liver cancer cell metastasis via interfering with hypoxia-inducible factor 1α. CHEMOSPHERE 2018; 206:231-237. [PMID: 29753285 DOI: 10.1016/j.chemosphere.2018.05.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 04/30/2018] [Accepted: 05/02/2018] [Indexed: 06/08/2023]
Abstract
Chitin synthesis inhibitors (CSIs), as alternatives to conventional insecticides, have been in worldwide demand in recent years. However, little attention has been paid to the potential ecological safety and health risks of CSIs, especially their abilities to interfere with nonsexual hormone receptors such as hypoxia-inducible factor 1α (HIF-1α). In this work, we conducted a systematic study regarding the influence of CSIs on HIF-1α-related liver cancer cell metastasis. The dual-luciferase reporter gene assay revealed that two of fourteen CSIs exhibited dose-response HIF-1α agonistic activities at noncytotoxic concentrations with relative luciferase activity (RLA) values of 25.6% for diflubenzuron (DFB) and 20.9% for triflumuron (TFM). Following this result, in vitro bioassays demonstrated that both DFB and TFM stimulated HepG2 cell migration and invasion. This action was associated with the varied expression levels of genes involved in epithelial-to-mesenchymal transition (EMT) activation and extracellular matrix (ECM) degradation, such as the upregulation of fibronectin (FN1) and matrix metalloproteinase-2 (MMP-2) and the suppression of E-cadherin (E-cad) and tissue inhibitor of metalloproteinases-2 (TIMP-2). Moreover, changes in these EMT and ECM phenotype markers were dramatically blocked by a HIF-1α inhibitor (KC7F2), which further verified the involvement of HIF-1α in CSI-induced HepG2 cell metastasis. For the first time, our findings reveal that CSIs play crucial roles in promoting the metastasis of human liver cancer cells and that HIF-1α is potentially responsible for these changes.
Collapse
Affiliation(s)
- Xia Ning
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, PR China
| | - Yue Wang
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, PR China
| | - Wei Yan
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, PR China
| | - Guangke Li
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, PR China
| | - Nan Sang
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, PR China.
| |
Collapse
|
43
|
Liu XY, Li XY, Yang FL, Li Y, Jiao XZ, Xie P. Design, synthesis of a novel 4-O-methylsaucerneol analogue LXY7824 as potent HIF-1 inhibitor and anti-cancer agent. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2018; 20:545-558. [PMID: 29862843 DOI: 10.1080/10286020.2018.1473386] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 05/02/2018] [Indexed: 06/08/2023]
Abstract
Hypoxia-inducible factor-1 (HIF-1), an important transcription factor for tumor survival, is an attractive target for anti-cancer treatment. Herein, we present the design and synthesis of LXY7824, a simplified analogue of 4-O-methylsaucerneol. In addition, its significant HIF-1 inhibitory activity and potent anti-cancer activity in vivo and in vitro were also reported.
Collapse
Affiliation(s)
- Xiao-Yu Liu
- a State Key Laboratory of Bioactive Substance and Function of Natural Medicine, Beijing Key Laboratory of Active Substance Discovery and Druggability Evaluation , Institute of Materia Medica , Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing 100050 , China
| | - Xiao-Yu Li
- a State Key Laboratory of Bioactive Substance and Function of Natural Medicine, Beijing Key Laboratory of Active Substance Discovery and Druggability Evaluation , Institute of Materia Medica , Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing 100050 , China
| | - Fei-Long Yang
- a State Key Laboratory of Bioactive Substance and Function of Natural Medicine, Beijing Key Laboratory of Active Substance Discovery and Druggability Evaluation , Institute of Materia Medica , Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing 100050 , China
| | - Yan Li
- a State Key Laboratory of Bioactive Substance and Function of Natural Medicine, Beijing Key Laboratory of Active Substance Discovery and Druggability Evaluation , Institute of Materia Medica , Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing 100050 , China
| | - Xiao-Zhen Jiao
- a State Key Laboratory of Bioactive Substance and Function of Natural Medicine, Beijing Key Laboratory of Active Substance Discovery and Druggability Evaluation , Institute of Materia Medica , Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing 100050 , China
| | - Ping Xie
- a State Key Laboratory of Bioactive Substance and Function of Natural Medicine, Beijing Key Laboratory of Active Substance Discovery and Druggability Evaluation , Institute of Materia Medica , Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing 100050 , China
| |
Collapse
|
44
|
Shang W, Zhang Q, Huang Y, Shanti R, Alawi F, Le A, Jiang C. Cellular Plasticity-Targeted Therapy in Head and Neck Cancers. J Dent Res 2018; 97:654-664. [PMID: 29486673 DOI: 10.1177/0022034518756351] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Head and neck cancer is one of the most frequent human malignancies worldwide, with a high rate of recurrence and metastasis. Head and neck squamous cell carcinoma (HNSCC) is cellularly and molecularly heterogeneous, with subsets of undifferentiated cancer cells exhibiting stem cell-like properties, called cancer stem cells (CSCs). Epithelial-mesenchymal transition, gene mutation, and epigenetic modification are associated with the formation of cellular plasticity of tumor cells in HNSCC, contributing to the acquisition of invasive, recurrent, and metastatic properties and therapeutic resistance. Tumor microenvironment (TME) plays a supportive role in the initiation, progression, and metastasis of head and neck cancer. Stromal fibroblasts, vasculature, immune cells, cytokines, and hypoxia constitute the main components of TME in HNSCC, which contributes not only to the acquisition of CSC properties but also to the recurrence and therapeutic resistance of the malignancies. In this review, we discuss the potential mechanisms underlying the development of cellular plasticity, especially the emergence of CSCs, in HNSCC. We also highlight recent studies implicating the complex interplays among TME components, plastic CSCs, tumorigenesis, recurrence, and therapeutic resistance of HNSCC. Finally, we summarize the treatment modalities of HNSCC and reinforce the novel concept of therapeutic targeting CSCs in HNSCC.
Collapse
Affiliation(s)
- W Shang
- 1 Department of Oral and Maxillofacial Surgery, The Affiliated Hospital of Qingdao University, Shandong, China.,4 School of Stomatology, Qingdao University, Shandong, China
| | - Q Zhang
- 2 Department of Oral and Maxillofacial Surgery and Pharmacology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Y Huang
- 3 Department of Orthodontics, The Affiliated Hospital of Qingdao University, Shandong, China.,4 School of Stomatology, Qingdao University, Shandong, China
| | - R Shanti
- 2 Department of Oral and Maxillofacial Surgery and Pharmacology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA.,5 Department of Oral and Maxillofacial Surgery, Perelman Center for Advanced Medicine, Penn Medicine Hospital of the University of Pennsylvania, Philadelphia, PA, USA.,6 Department of Otorhinolaryngology-Head and Neck Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - F Alawi
- 7 Department of Pathology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - A Le
- 2 Department of Oral and Maxillofacial Surgery and Pharmacology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA.,5 Department of Oral and Maxillofacial Surgery, Perelman Center for Advanced Medicine, Penn Medicine Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - C Jiang
- 3 Department of Orthodontics, The Affiliated Hospital of Qingdao University, Shandong, China.,4 School of Stomatology, Qingdao University, Shandong, China
| |
Collapse
|
45
|
Babu A, Kamaraj M, Basu M, Mukherjee D, Kapoor S, Ranjan S, Swamy MM, Kaypee S, Scaria V, Kundu TK, Sachidanandan C. Chemical and genetic rescue of an ep300 knockdown model for Rubinstein Taybi Syndrome in zebrafish. Biochim Biophys Acta Mol Basis Dis 2018; 1864:1203-1215. [PMID: 29409755 DOI: 10.1016/j.bbadis.2018.01.029] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 01/08/2018] [Accepted: 01/27/2018] [Indexed: 10/18/2022]
Abstract
EP300 is a member of the EP300/CBP family of lysine acetyltransferases (KATs) with multiple roles in development and physiology. Loss of EP300/CBP activity in humans causes a very rare congenital disorder called Rubinstein Taybi Syndrome (RSTS). The zebrafish genome has two co-orthologs of lysine acetyltransferase EP300 (KAT3B) in zebrafish viz. ep300a and ep300b. Chemical inhibition of Ep300 with C646, a competitive inhibitor and morpholino-based genetic knockdown of ep300a and ep300b cause defects in embryonic development reminiscent of the human RSTS syndrome. Remarkably, overexpression of Ep300a KAT domain results in near complete rescue of the jaw development defects, a characteristic feature of RSTS in human suggesting the dispensability of the protein-interaction and DNA-binding domains for at least some developmental roles of Ep300. We also perform a chemical screen and identify two inhibitors of deacetylases, CHIC35 and HDACi III, that can partially rescue the RSTS-like phenotypes. Thus, modeling rare human genetic disorders in zebrafish allows for functional understanding of the genes involved and can also yield small molecule candidates towards therapeutic goals.
Collapse
Affiliation(s)
- Aswini Babu
- CSIR-Institute of Genomics & Integrative Biology, South Campus, New Delhi 110025, India; Academy of Scientific and Innovative Research (AcSIR), New Delhi 110025, India
| | - Mageshi Kamaraj
- CSIR-Institute of Genomics & Integrative Biology, South Campus, New Delhi 110025, India
| | - Moumita Basu
- Transcription and Disease Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Bengaluru 560064, India
| | - Debanjan Mukherjee
- Transcription and Disease Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Bengaluru 560064, India
| | - Shruti Kapoor
- CSIR-Institute of Genomics & Integrative Biology, South Campus, New Delhi 110025, India; Academy of Scientific and Innovative Research (AcSIR), New Delhi 110025, India
| | - Shashi Ranjan
- CSIR-Institute of Genomics & Integrative Biology, South Campus, New Delhi 110025, India
| | - Mahadeva M Swamy
- Transcription and Disease Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Bengaluru 560064, India
| | - Stephanie Kaypee
- Transcription and Disease Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Bengaluru 560064, India
| | - Vinod Scaria
- CSIR-Institute of Genomics & Integrative Biology, South Campus, New Delhi 110025, India; Academy of Scientific and Innovative Research (AcSIR), New Delhi 110025, India
| | - Tapas K Kundu
- Transcription and Disease Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Bengaluru 560064, India.
| | - Chetana Sachidanandan
- CSIR-Institute of Genomics & Integrative Biology, South Campus, New Delhi 110025, India; Academy of Scientific and Innovative Research (AcSIR), New Delhi 110025, India.
| |
Collapse
|
46
|
Shen M, Cao J, Shi H. Effects of Estrogen and Estrogen Receptors on Transcriptomes of HepG2 Cells: A Preliminary Study Using RNA Sequencing. Int J Endocrinol 2018; 2018:5789127. [PMID: 30510575 PMCID: PMC6230429 DOI: 10.1155/2018/5789127] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 08/12/2018] [Indexed: 12/23/2022] Open
Abstract
Men have a much higher incidence of hepatocellular carcinoma (HCC), the predominant form of liver cancer, than women, suggesting that estrogens play a protective role in liver cancer development and progression. To begin to understand the potential mechanisms of estrogens' inhibitory effects on HCC development, RNA sequencing was used to generate comprehensive global transcriptome profiles of the human HCC-derived HepG2 cell line following treatment of vehicle (control), estradiol (E2), estrogen receptor alpha- (ERα-) specific agonist 1,3,5-tris(4-hydroxyphenyl)-4-propyl-1H-pyrazole (PPT), or ERβ-specific agonist 2,3-bis(4-hydroxyphenyl)-propionitrile (DPN) using a small set of cells. Gene ontology (GO) analysis identified increased expression of genes involved in the biological process (BP) of response to different stimuli and metabolic processes by E2 and ER agonists, which enhanced molecular function (MF) in various enzyme activities and chemical bindings. Kyoto Encyclopedia of Genes and Genomes (KEGG) functional pathway analysis indicated enhanced pathways associated with carbohydrate metabolism, complement and coagulation cascades, and HIF-1 signaling pathway by E2 and ER agonists. GO analysis also identified decreased expression of genes by E2, PPT, and DPN involved in BP related to the cell cycle and cell division, which reduced MF in activity of multiple enzymes and microtubule activity. KEGG analysis indicated that E2, PPT, and DPN suppressed pathways associated with the cell cycle; E2 and PPT suppressed pathways associated with chemical carcinogenesis and drug metabolism, and DPN suppressed DNA replication, recombination, and repair. Collectively, these differentially expressed genes across HepG2 cell transcriptome involving cellular and metabolic processes by E2 and ER agonists provided mechanistic insight into protective effects of estrogens in HCC development.
Collapse
Affiliation(s)
- Minqian Shen
- Department of Biology, Miami University, 700 E. High St., Oxford, OH, USA
| | - Jingyi Cao
- Department of Biology, Miami University, 700 E. High St., Oxford, OH, USA
| | - Haifei Shi
- Department of Biology, Miami University, 700 E. High St., Oxford, OH, USA
| |
Collapse
|
47
|
Ulasov AV, Rosenkranz AA, Sobolev AS. Transcription factors: Time to deliver. J Control Release 2017; 269:24-35. [PMID: 29113792 DOI: 10.1016/j.jconrel.2017.11.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 11/02/2017] [Accepted: 11/03/2017] [Indexed: 12/17/2022]
Abstract
Transcription factors (TFs) are at the center of the broad regulatory network orchestrating gene expression programs that elicit different biological responses. For a long time, TFs have been considered as potent drug targets due to their implications in the pathogenesis of a variety of diseases. At the same time, TFs, located at convergence points of cellular regulatory pathways, are powerful tools providing opportunities both for cell type change and for managing the state of cells. This task formulation requires the TF modulation problem to come to the fore. We review several ways to manage TF activity (small molecules, transfection, nanocarriers, protein-based approaches), analyzing their limitations and the possibilities to overcome them. Delivery of TFs could revolutionize the biomedical field. Whether this forecast comes true will depend on the ability to develop convenient technologies for targeted delivery of TFs.
Collapse
Affiliation(s)
- Alexey V Ulasov
- Department of Molecular Genetics of Intracellular Transport, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov St., 119334 Moscow, Russia
| | - Andrey A Rosenkranz
- Department of Molecular Genetics of Intracellular Transport, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov St., 119334 Moscow, Russia; Faculty of Biology, Moscow State University, 1-12 Leninskiye Gory St., 119234 Moscow, Russia
| | - Alexander S Sobolev
- Department of Molecular Genetics of Intracellular Transport, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov St., 119334 Moscow, Russia; Faculty of Biology, Moscow State University, 1-12 Leninskiye Gory St., 119234 Moscow, Russia.
| |
Collapse
|
48
|
Yao X, Tan J, Lim KJ, Koh J, Ooi WF, Li Z, Huang D, Xing M, Chan YS, Qu JZ, Tay ST, Wijaya G, Lam YN, Hong JH, Lee-Lim AP, Guan P, Ng MSW, He CZ, Lin JS, Nandi T, Qamra A, Xu C, Myint SS, Davies JOJ, Goh JY, Loh G, Tan BC, Rozen SG, Yu Q, Tan IBH, Cheng CWS, Li S, Chang KTE, Tan PH, Silver DL, Lezhava A, Steger G, Hughes JR, Teh BT, Tan P. VHL Deficiency Drives Enhancer Activation of Oncogenes in Clear Cell Renal Cell Carcinoma. Cancer Discov 2017; 7:1284-1305. [DOI: 10.1158/2159-8290.cd-17-0375] [Citation(s) in RCA: 110] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2017] [Revised: 07/19/2017] [Accepted: 08/25/2017] [Indexed: 11/16/2022]
|
49
|
Hypoxia-inducible factor-1α activation in HPV-positive head and neck squamous cell carcinoma cell lines. Oncotarget 2017; 8:89681-89691. [PMID: 29163780 PMCID: PMC5685701 DOI: 10.18632/oncotarget.20813] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Accepted: 08/21/2017] [Indexed: 01/14/2023] Open
Abstract
Purpose Human papillomavirus (HPV) is a causative agent for a rising number of head and neck squamous cell carcinomas (HNSCC), which are characterized by distinct tumor biology. Hypoxia inducible-factor (HIF) signaling influences initiation and progression of carcinogenesis and HPV oncoproteins have evolved to highjack cellular pathways for viral reproduction. Therefore, we investigated whether HPV activates HIF-1α expression in HNSCC. Experimental Technique HPV-positive and -negative HNSCC cells were examined for adaptive responses to hypoxia. Expression of HIF-1α, prolyl hydroxylase-domain protein 2 (PHD2) and E-cadherin was analyzed by Western blotting, immunofluorescence (IF) microscopy and migration/wound healing assays. Results HPV-positive HNSCC cells showed higher HIF-1α and PHD2 protein levels under normoxia and hypoxia. HIF-1α hydroxylation was reduced in HPV-positive HNSCC cell lines under PHD and proteasomal inhibition. In vitro wound healing assays showed impairment of migration and proliferation by HIF-1α pathway activation in HPV-negative cell lines only. In contrast, migration and proliferation in HPV-positive cell lines was impaired by HIF-1α specific siRNA. Conclusions HPV-positive HNSCC cells show activation of the HIF pathway and adaptation to HIF-1α upregulation, representing potential therapeutic targets in this emerging tumor entity.
Collapse
|
50
|
The Role of NOX4 and TRX2 in Angiogenesis and Their Potential Cross-Talk. Antioxidants (Basel) 2017; 6:antiox6020042. [PMID: 28594389 PMCID: PMC5488022 DOI: 10.3390/antiox6020042] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 05/31/2017] [Accepted: 06/02/2017] [Indexed: 12/18/2022] Open
Abstract
The nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (NOX) family is the major source of reactive oxygen species (ROS) in the vascular system. In this family, NOX4, a constitutive active form of NOXs, plays an important role in angiogenesis. Thioredoxin 2 (TRX2) is a key mitochondrial redox protein that maintains normal protein function and also provides electrons to peroxiredoxin 3 (PRX3) to scavenge H₂O₂ in mitochondria. Angiogenesis, a process of new blood vessel formation, is involved in a variety of physiological processes and pathological conditions. It seems to be paradoxical for ROS-producing NOX4 and ROS-scavenging TRX2 to have a similar role in promoting angiogenesis. In this review, we will focus on data supporting the role of NOX4 and TRX2 in angiogenesis and their cross-talks and discuss how ROS can positively or negatively regulate angiogenesis, depending on their species, levels and locations. NOX4 and TRX2-mediated ROS signaling could be promising targets for the treatment of angiogenesis-related diseases.
Collapse
|