1
|
Dong D, Yu X, Liu H, Xu J, Guo J, Guo W, Li X, Wang F, Zhang D, Liu K, Sun Y. Study of immunosenescence in the occurrence and immunotherapy of gastrointestinal malignancies. Semin Cancer Biol 2025; 111:16-35. [PMID: 39929408 DOI: 10.1016/j.semcancer.2025.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 01/18/2025] [Accepted: 01/26/2025] [Indexed: 02/25/2025]
Abstract
In human beings heterogenous, pervasive and lethal malignancies of different parts of the gastrointestinal (GI) tract viz., tumours of the oesophagus, stomach, small intestine, colon, and rectum, represent gastrointestinal malignancies. Primary treatment modality for gastric cancer includes chemotherapy, surgical interventions, radiotherapy, monoclonal antibodies and inhibitors of angiogenesis. However, there is a need to improve upon the existing treatment modality due to associated adverse events and the development of resistance towards treatment. Additionally, age has been found to contribute to increasing the incidence of tumours due to immunosenescence-associated immunosuppression. Immunosenescence is the natural process of ageing, wherein immune cells as well as organs begin to deteriorate resulting in a dysfunctional or malfunctioning immune system. Accretion of senescent cells in immunosenescence results in the creation of a persistent inflammatory environment or inflammaging, marked with elevated expression of pro-inflammatory and immunosuppressive cytokines and chemokines. Perturbation in the T-cell pools and persistent stimulation by the antigens facilitate premature senility of the immune cells, and senile immune cells exacerbate inflammaging conditions and the inefficiency of the immune system to identify the tumour antigen. Collectively, these conditions contribute positively towards tumour generation, growth and eventually proliferation. Thus, activating the immune cells to distinguish the tumour cells from normal cells and invade them seems to be a logical strategy for the treatment of cancer. Consequently, various approaches to immunotherapy, viz., programmed death ligand-1 (PD-1) inhibitors, Cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) inhibitors etc are being extensively evaluated for their efficiency in gastric cancer. In fact, PD-1 inhibitors have been sanctioned as late late-line therapy modality for gastric cancer. The present review will focus on deciphering the link between the immune system and gastric cancer, and the alterations in the immune system that incur during the development of gastrointestinal malignancies. Also, the mechanism of evasion by tumour cells and immune checkpoints involved along with different approaches of immunotherapy being evaluated in different clinical trials will be discussed.
Collapse
Affiliation(s)
- Daosong Dong
- Department of Pain, The First Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Xue Yu
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, Key Laboratory of Molecular Pathology and Epidemiology of Gastric Cancer in the Universities of Liaoning Province, Shenyang, Liaoning 110001, China
| | - Haoran Liu
- Department of Breast Surgery, The First Hospital of China Medical University, Shenyang 110001, China
| | - Jingjing Xu
- Department of Rheumatology and Immunology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Jiayan Guo
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang 110001, China
| | - Wei Guo
- Department of Pancreatic-Biliary Surgery, The First Hospital of China Medical University, Shenyang 110001, China
| | - Xiang Li
- Department of Pancreatic-Biliary Surgery, The First Hospital of China Medical University, Shenyang 110001, China
| | - Fei Wang
- Department of Otolaryngology, The First Hospital of China Medical University, Shenyang 110001, China.
| | - Dongyong Zhang
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang 110001, China.
| | - Kaiwei Liu
- Department of Ultrasound, Shengjing Hospital of China Medical University, Shenyang, China.
| | - Yanbin Sun
- Department of Thoracic Surgery, The First Hospital of China Medical University, Shenyang 110001, China.
| |
Collapse
|
2
|
Qin X, Zhang M, Liang J, Xu S, Fu X, Liu Z, Tian T, Song J, Lin Y. Nanoparticles encapsulating antigenic peptides induce tolerogenic dendritic cells in situ for treating systemic lupus erythematosus. J Control Release 2025; 380:943-956. [PMID: 39983922 DOI: 10.1016/j.jconrel.2025.02.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 02/12/2025] [Accepted: 02/18/2025] [Indexed: 02/23/2025]
Abstract
Using Tetrahedral framework nucleic acids, we combined antigenic peptides to create the "DART" vaccine: DNA framework-Antigenic peptide-RNA modification-Targeting aptamer coupling. Generating antigen-specific tolerogenic dendritic cells (tolDCs), for systemic lupus erythematosus (SLE) is a potential therapeutic strategy for addressing compromised autoimmune tolerance. However, simple antigenic peptides degrade easily, lack specificity for delivery to dendritic cells (DCs), and cannot transform DCs to tolDCs. Therefore, this study aims to employ DART to generate tolDCs and compare DART-treated DCs to tolDCs. DART improved peptide stability, specifically targeted DCs, induced tolDCs in situ, and showed promising outcomes in mitigating SLE symptoms in the MRL/lpr mouse model. DART effectively normalized the plasma cytokine levels, glomerulonephritis, and joint lesions in MRL/lpr mice. These findings highlight the potential of the DART vaccine to induce transformation of DCs to tolDCs and address SLE symptoms, suggesting novel therapeutic utility. These findings may advance vaccine design for various autoimmune diseases.
Collapse
Affiliation(s)
- Xin Qin
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China; Stomatological Hospital of Chongqing Medical University, Chongqing 401147, China
| | - Mei Zhang
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Jiale Liang
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Siqi Xu
- The Affiliated Hainan Hospital of Hainan Medical University, Haikou 570101, China
| | - Xiao Fu
- The Affiliated Hainan Hospital of Hainan Medical University, Haikou 570101, China
| | - Zhiqiang Liu
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Taoran Tian
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China.
| | - Jinlin Song
- Stomatological Hospital of Chongqing Medical University, Chongqing 401147, China.
| | - Yunfeng Lin
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China; Sichuan Provincial Engineering Research Center of Oral Biomaterials, Chengdu, Sichuan 610041, China.
| |
Collapse
|
3
|
Sarangi R, Mishra S, Mahapatra S. Cancer Vaccines: A Novel Revolutionized Approach to Cancer Therapy. Indian J Clin Biochem 2025; 40:191-200. [PMID: 40123637 PMCID: PMC11928706 DOI: 10.1007/s12291-024-01201-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 02/19/2024] [Indexed: 03/25/2025]
Abstract
Over the past few decades, there has been significant advancement in the field of tumor immunotherapy. For many years vaccination against infectious diseases have been available. On the other hand very few cancer vaccines have been approved for human use. Ideal Cancer vaccines are biological response modifier work by stimulating both humoral and cellular immunity while overcoming the immunological suppression found in tumor. Two types of cancer vaccine: Prophylactic and therapeutic cancer vaccines are recommended for clinical use of individuals. HPV and HBV vaccines are the two widely used preventive vaccine used for treatment of cervical and hepatocellular carcinoma respectively and are approved by Food and Drug Administration (FDA). In therapeutic vaccine only three are approved: Sipuleucel T-cell vaccine for treatment refractory prostatic cancer, BCG vaccine for early bladder cancer and T-VEC for inoperable melanoma. Active ingredient in all cancer vaccines is an antigen. Antigens used for formulating cancer vaccines along with adjuvants optimizes immunogenicity in it. Heterogeneity within and between cancer types, screening and identifying suitable antigen specific to tumors and selection of vaccine delivery platforms are challenges in the development of vaccines. Adoptive cell therapy, Chimeric antigen receptor T cell therapy are recent breakthrough for cancer treatment.
Collapse
Affiliation(s)
- RajLaxmi Sarangi
- Departments of Biochemistry, Kalinga Institute of Medical Sciences (KIMS), Bhubaneswar, Odisha 751024 India
| | - Sanjukta Mishra
- Departments of Biochemistry, Kalinga Institute of Medical Sciences (KIMS), Bhubaneswar, Odisha 751024 India
| | - Srikrushna Mahapatra
- Departments of Biochemistry, Kalinga Institute of Medical Sciences (KIMS), Bhubaneswar, Odisha 751024 India
| |
Collapse
|
4
|
Poudel K, Ji Z, Njauw CN, Rajadurai A, Bhayana B, Sullivan RJ, Kim JO, Tsao H. Fabrication and functional validation of a hybrid biomimetic nanovaccine (HBNV) against Kit K641E -mutant melanoma. Bioact Mater 2025; 46:347-364. [PMID: 39834347 PMCID: PMC11742834 DOI: 10.1016/j.bioactmat.2024.12.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 12/03/2024] [Accepted: 12/20/2024] [Indexed: 01/22/2025] Open
Abstract
Cancer nanovaccines hold the promise for personalization, precision, and pliability by integrating all the elements essential for effective immune stimulation. An effective immune response requires communication and interplay between antigen-presenting cells (APCs), tumor cells, and immune cells to stimulate, extend, and differentiate antigen-specific and non-specific anti-tumor immune cells. The versatility of nanomedicine can be adapted to deliver both immunoadjuvant payloads and antigens from the key players in immunity (i.e., APCs and tumor cells). The imperative for novel cancer medicine is particularly pressing for less common but more devastating KIT-mutated acral and mucosal melanomas that are resistant to small molecule c-kit and immune checkpoint inhibitors. To overcome this challenge, we successfully engineered nanotechnology-enabled hybrid biomimetic nanovaccine (HBNV) comprised of membrane proteins (antigens to activate immunity and homing/targeting ligand to tumor microenvironment (TME) and lymphoid organs) from fused cells (of APCs and tumor cells) and immunoadjuvant. These HBNVs are efficiently internalized to the target cells, assisted in the maturation of APCs via antigens and adjuvant, activated the release of anti-tumor cytokines/inhibited the release of immunosuppressive cytokine, showed a homotypic effect on TME and lymph nodes, activated the anti-tumor immune cells/downregulated the immunosuppressive immune cells, reprogram the tumor microenvironment, and showed successful anti-tumor therapeutic and prophylactic effects.
Collapse
Affiliation(s)
- Kishwor Poudel
- Wellman Center for Photomedicine and Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Zhenyu Ji
- Wellman Center for Photomedicine and Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Ching-Ni Njauw
- Wellman Center for Photomedicine and Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Anpuchchelvi Rajadurai
- Wellman Center for Photomedicine and Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Brijesh Bhayana
- Wellman Center for Photomedicine and Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Ryan J. Sullivan
- Mass General Cancer Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Jong Oh Kim
- College of Pharmacy, Yeungnam University, Gyeongsan, 38541, Republic of Korea
| | - Hensin Tsao
- Wellman Center for Photomedicine and Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Mass General Cancer Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
5
|
Suzuki H, Hasegawa S, Fushimi S, Tagami K, Nishikawa M, Kondo Y, Yasuda H. Metformin prevents diabetes development in type 1 diabetes models via suppression of mTOR and STAT3 signaling in immune cells. Sci Rep 2025; 15:10641. [PMID: 40148472 DOI: 10.1038/s41598-025-93647-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 03/07/2025] [Indexed: 03/29/2025] Open
Abstract
Type 1 diabetes (T1D) is an organ-specific autoimmune disease caused by T cell-mediated pancreatic β cell destruction. To evaluate the effects of metformin on immune cells in autoimmune diabetes, we administered metformin intraperitoneally to two T1D mouse models and analyzed autoimmune diabetes progression. In a cyclophosphamide (CY)-induced T1D model in male non-obese diabetic (NOD) mice, intraperitoneal administration of metformin significantly prevented autoimmune diabetes. Treatment with metformin showed a decrease in activated T cells, CD44hiCD62Llo effector memory cells, macrophages, and dendritic cells (DCs), and an increase in CD44hiCD62Lhi central memory cells, B cells, and regulatory T cells (Tregs) in splenocytes. Interestingly, metformin treatment showed a decrease in activated T cells, CD4+ effector memory T cells and Th1-type antigen-specific cells in PLN cells. IL-17 production was significantly suppressed in metformin-treated mice. TNF-α production from DCs in vitro was dose-dependently suppressed by metformin. Activity of mTOR signaling was significantly reduced in CD4+ T cells, CD8+ T cells, and B220+ B cells. In addition, activities of mTOR and STAT3 signaling in DCs were also reduced significantly. Furthermore, metformin treatment in female NOD mice, a spontaneous T1D model, significantly suppressed autoimmune diabetes onset as well and an increase in Tregs was observed. Our results suggest that metformin may suppress autoimmunity and have therapeutic potential in T1D progression as an immunomodulator.
Collapse
Affiliation(s)
- Haruka Suzuki
- Division of Health Sciences, Department of Public Health, Kobe University Graduate School of Health Sciences, 7-10-2 Tomogaoka, Suma-ku, Kobe, 654-0142, Japan
| | - Shuji Hasegawa
- Division of Health Sciences, Department of Public Health, Kobe University Graduate School of Health Sciences, 7-10-2 Tomogaoka, Suma-ku, Kobe, 654-0142, Japan
| | - Sae Fushimi
- Division of Health Sciences, Department of Public Health, Kobe University Graduate School of Health Sciences, 7-10-2 Tomogaoka, Suma-ku, Kobe, 654-0142, Japan
| | - Kanako Tagami
- Division of Health Sciences, Department of Public Health, Kobe University Graduate School of Health Sciences, 7-10-2 Tomogaoka, Suma-ku, Kobe, 654-0142, Japan
| | - Minaho Nishikawa
- Division of Health Sciences, Department of Public Health, Kobe University Graduate School of Health Sciences, 7-10-2 Tomogaoka, Suma-ku, Kobe, 654-0142, Japan
| | - Yuichi Kondo
- Division of Health Sciences, Department of Public Health, Kobe University Graduate School of Health Sciences, 7-10-2 Tomogaoka, Suma-ku, Kobe, 654-0142, Japan
| | - Hisafumi Yasuda
- Division of Health Sciences, Department of Public Health, Kobe University Graduate School of Health Sciences, 7-10-2 Tomogaoka, Suma-ku, Kobe, 654-0142, Japan.
- Department of General Internal Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan.
| |
Collapse
|
6
|
Yang X, Zhang H, He C, Wang D, Li J, Fu C, Wang Y, Wu Y, Zhang J. Gegen Qinlian decoction remodels tumor immune microenvironment and inhibits aerobic glycolysis with the synergistic combination of CPT-11 chemotherapy in colorectal cancer therapy. JOURNAL OF ETHNOPHARMACOLOGY 2025; 344:119538. [PMID: 40023342 DOI: 10.1016/j.jep.2025.119538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 02/08/2025] [Accepted: 02/21/2025] [Indexed: 03/04/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Although several traditional Chinese medicine formulas have demonstrated remarkable outcomes in suppressing the severe gastrointestinal toxicity induced by irinotecan (CPT-11), few studies have investigated whether enhanced anti-cancer efficacy and reduced intestinal toxicity can be achieved through co-administration. CPT-11, as a first-line drug for treating colorectal cancer, has the side effect of intestinal toxicity. Previous studies have primarily focused on using traditional Chinese medicine to alleviate diarrhea caused by CPT-11. The combination of the classic Chinese medicine prescription Gegen Qinlian decoction (GQD) extract and CPT-11 can significantly reduce its intestinal toxicity. However, the mechanism by which it enhances anti-cancer effects remains to be elucidated. AIM OF STUDY To investigate the combined effects of GQD and CPT-11 on colorectal cancer progression and intestinal toxicity. MATERIALS AND METHODS The CT-26 xenograft tumor-bearing mouse model was established to evaluate the synergistic antitumor effects of GQD extract and CPT-11. Tumor size and tumor tissue changes were assessed, and flow cytometry was employed to analyze immune cell populations, thereby evaluating the impact of the combined treatment on tumor growth inhibition and immune modulation. Under anaerobic glycolysis conditions, glucose uptake and cell viability of CT26 cells were measured, and Western blotting analysis was used to determine the protein expression of PKM2 and GAPDH in tumors, assessing the metabolic impact of GQD extract on cancer cells. Flow cytometry was also used to assess the polarization of macrophages in colon tissue, and ELISA was employed to measure cytokine levels in colon tissue, evaluating the protective effect of GQD extract on the colon. RESULTS The combination of GQD extract and CPT-11 significantly increased tumor growth suppression and decreased intestinal toxicity in the mouse model. The anti-cancer synergy was reduced Treg cell immunosuppression and increased CD4+ and CD8+ T cell populations. GQD extract regulated glucose uptake and cell viability in CT-26 cells under anaerobic glycolysis, potentially disrupting cancer cell glycolysis. GQD also alleviated intestinal toxicity by modulating cytokine levels and promoting macrophage polarization from M1 to M2 in colon tissues. CONCLUSION The study indicates that GQD extract improves CPT-11 efficacy in treating colorectal cancer and provides insights into the synergistic effects of TCM formulas in cancer treatment.
Collapse
Affiliation(s)
- Xiaoqin Yang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Heng Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Chenglin He
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Di Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Jingjing Li
- Department of Rehabilitation Sciences, Faculty of Health and Social Sciences, Hong Kong Polytechnic University, Hong Kong, SAR, China
| | - Chaomei Fu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yitao Wang
- State Key Laboratory of Quality Research in Traditional Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, 999078, China
| | - Yihan Wu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Jinming Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| |
Collapse
|
7
|
Qin S, Na J, Yang Q, Tang J, Deng Y, Zhong L. Advances in dendritic cell-based therapeutic tumor vaccines. Mol Immunol 2025; 181:113-128. [PMID: 40120558 DOI: 10.1016/j.molimm.2025.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 02/09/2025] [Accepted: 03/11/2025] [Indexed: 03/25/2025]
Abstract
Dendritic cell-based therapeutic tumor vaccines are an active immunotherapy that has been commonly tried in the clinic,traditional treatment modalities for malignant tumors, such as surgery, radiotherapy and chemotherapy, have the disadvantages of high recurrence rates and side effects. The dendritic cell vaccination destroys cells from tumors by means of the patient's own system of immunity, a very promising treatment. However, due to the suppression of the tumor immune microenvironment, the difficulty of screening for optimal specific antigens, and the high technical difficulty of vaccine production. Most tumor vaccines currently available in the clinic have failed to produce significant clinical therapeutic effects. In this review, the fundamentals of therapeutic dendritic cells vaccine therapy are briefly outlined, with a focus on the progress of therapeutic Dendritic cells vaccine research in the clinic and the initiatives undertaken to enhance dendritic cell vaccinations' anti-tumor effectiveness. It is believed that through the continuous exploration of novel therapeutic strategies, therapeutic dendritic cells vaccines can play a greater role in improving tumor treatment for tumor patients.
Collapse
Affiliation(s)
- Simin Qin
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-targeting Therangstics, Guangxi Key Laboratory of Bio-targeting Therangstics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Major New Drugs Innovation and Development, Guangxi Medical University, Nanning 530021, China.
| | - Jintong Na
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-targeting Therangstics, Guangxi Key Laboratory of Bio-targeting Therangstics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Major New Drugs Innovation and Development, Guangxi Medical University, Nanning 530021, China.
| | - Qun Yang
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-targeting Therangstics, Guangxi Key Laboratory of Bio-targeting Therangstics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Major New Drugs Innovation and Development, Guangxi Medical University, Nanning 530021, China.
| | - Jing Tang
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-targeting Therangstics, Guangxi Key Laboratory of Bio-targeting Therangstics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Major New Drugs Innovation and Development, Guangxi Medical University, Nanning 530021, China.
| | - Yamin Deng
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-targeting Therangstics, Guangxi Key Laboratory of Bio-targeting Therangstics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Major New Drugs Innovation and Development, Guangxi Medical University, Nanning 530021, China.
| | - Liping Zhong
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-targeting Therangstics, Guangxi Key Laboratory of Bio-targeting Therangstics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Major New Drugs Innovation and Development, Guangxi Medical University, Nanning 530021, China; Pharmaceutical College, Guangxi Medical University, Nanning, Guangxi 530021, China.
| |
Collapse
|
8
|
Takahashi H, Perez-Villarroel P, Falahat R, Mulé JJ. Targeting MARCO in combination with anti-CTLA-4 leads to enhanced melanoma regression and immune cell infiltration via macrophage reprogramming. J Immunother Cancer 2025; 13:e011030. [PMID: 40081947 PMCID: PMC11907082 DOI: 10.1136/jitc-2024-011030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Accepted: 03/03/2025] [Indexed: 03/16/2025] Open
Abstract
BACKGROUND Strategies to improve the therapeutic efficacy of cancer immunotherapy with immune checkpoint inhibitors include targeting additional immunosuppressive compartments in the tumor microenvironment (TME). Inhibitory macrophages (Mφ) can be one of the most abundant immune cells in the TME associated with poor prognosis. However, to date, selective Mφ depletion strategies as a cancer immunotherapy have not been successful in clinical trials. Macrophage Receptor with Collagenous Structure (MARCO) is one of a family of class-A scavenger receptors expressed by Mφ in the TME and is one of the most upregulated transcripts in dendritic cells (DC) following their ex vivo uptake of dead tumor cells. The clinical significance of MARCO expression in the TME is not fully understood. METHODS The therapeutic potential of targeting MARCO by an anti-murine MARCO (ED31, clone ED31) monoclonal antibody, which inhibits ligand-binding to MARCO, was explored in combination with anti-cytotoxic T-lymphocyte associated protein 4 (anti-CTLA-4) or anti-programmed cell death protein-1 (anti-PD-1) in C57BL/6J mice bearing B16F10 or Pan02 tumors. The mechanism by which ED31 impacts the TME was investigated by flow cytometry in the different treatment arms. The contribution of Mφ was assessed by both in vivo depletion and in vitro functional assays. Chemokine production was measured by a bead-based multiplex assay. RESULTS ED31 enhanced antitumor efficacy of anti-CTLA-4, but not of anti-PD-1. Analysis of the TME revealed that adding ED31 to anti-CTLA-4 substantially increased immune cell infiltration, including mature conventional DC recruitment, that was due to a switch to M1-pattern chemokines by Mφ. Mφ depletion completely abrogated both the increase in immune cell infiltration and chemokine production, and abolished the antitumor efficacy of the combination therapy. CONCLUSIONS Targeting MARCO as an additional checkpoint in the TME can offer a strategy to improve the antitumor efficacy of anti-CTLA-4 through a mechanism involving Mφ reprogramming rather than their depletion.
Collapse
Affiliation(s)
| | | | - Rana Falahat
- Immunology, Moffitt Cancer Center, Tampa, Florida, USA
| | - James J Mulé
- Immunology, Moffitt Cancer Center, Tampa, Florida, USA
- Cutaneous Oncology Program, Moffitt Cancer Center, Tampa, Florida, USA
| |
Collapse
|
9
|
He W, Cui K, Farooq MA, Huang N, Zhu S, Jiang D, Zhang X, Chen J, Liu Y, Xu G. TCR-T cell therapy for solid tumors: challenges and emerging solutions. Front Pharmacol 2025; 16:1493346. [PMID: 40129944 PMCID: PMC11931055 DOI: 10.3389/fphar.2025.1493346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 02/20/2025] [Indexed: 03/26/2025] Open
Abstract
With the use of T cell receptor T cells (TCR-T cells) and chimeric antigen receptor T cells (CAR-T cells), T-cell immunotherapy for cancer has advanced significantly in recent years. CAR-T cell therapy has demonstrated extraordinary success when used to treat hematologic malignancies. Nevertheless, there are several barriers that prevent this achievement from being applied to solid tumors, such as challenges with tumor targeting and inadequate transit and adaption of genetically modified T-cells, especially in unfavorable tumor microenvironments The deficiencies of CAR-T cell therapy in the treatment of solid tumors are compensated for by TCR-T cells, which have a stronger homing ability to initiate intracellular commands, 90% of the proteins can be used as developmental targets, and they can recognize target antigens more broadly. As a result, TCR-T cells may be more effective in treating solid tumors. In this review, we discussed the structure of TCR-T and have outlined the drawbacks of TCR-T in cancer therapy, and suggested potential remedies. This review is crucial in understanding the current state and future potential of TCR-T cell therapy. We emphasize how important it is to use combinatorial approaches, combining new combinations of various emerging strategies with over-the-counter therapies designed for TCR-T, to increase the anti-tumor efficacy of TCR-T inside the TME and maximize treatment safety, especially when it comes to solid tumor immunotherapies.
Collapse
Affiliation(s)
- Wanjun He
- Guangdong Provincial Key Laboratory of Medical Immunology and Molecular Diagnostics, The First Dongguan Affiliated Hospital, School of Medical Technology, Guangdong Medical University, Dongguan, China
- Dongguan Key Laboratory of Molecular Immunology and Cell Therapy, Guangdong Medical University, Dongguan, China
| | - Kai Cui
- Guangdong Provincial Key Laboratory of Medical Immunology and Molecular Diagnostics, The First Dongguan Affiliated Hospital, School of Medical Technology, Guangdong Medical University, Dongguan, China
- Dongguan Key Laboratory of Molecular Immunology and Cell Therapy, Guangdong Medical University, Dongguan, China
| | - Muhammad Asad Farooq
- Guangdong Provincial Key Laboratory of Medical Immunology and Molecular Diagnostics, The First Dongguan Affiliated Hospital, School of Medical Technology, Guangdong Medical University, Dongguan, China
| | - Na Huang
- Guangdong Provincial Key Laboratory of Medical Immunology and Molecular Diagnostics, The First Dongguan Affiliated Hospital, School of Medical Technology, Guangdong Medical University, Dongguan, China
- Dongguan Key Laboratory of Molecular Immunology and Cell Therapy, Guangdong Medical University, Dongguan, China
| | - Songshan Zhu
- Guangdong Provincial Key Laboratory of Medical Immunology and Molecular Diagnostics, The First Dongguan Affiliated Hospital, School of Medical Technology, Guangdong Medical University, Dongguan, China
- Dongguan Key Laboratory of Molecular Immunology and Cell Therapy, Guangdong Medical University, Dongguan, China
| | - Dan Jiang
- Guangdong Provincial Key Laboratory of Medical Immunology and Molecular Diagnostics, The First Dongguan Affiliated Hospital, School of Medical Technology, Guangdong Medical University, Dongguan, China
- Dongguan Key Laboratory of Molecular Immunology and Cell Therapy, Guangdong Medical University, Dongguan, China
| | - Xiqian Zhang
- Guangdong Provincial Key Laboratory of Medical Immunology and Molecular Diagnostics, The First Dongguan Affiliated Hospital, School of Medical Technology, Guangdong Medical University, Dongguan, China
- Dongguan Key Laboratory of Molecular Immunology and Cell Therapy, Guangdong Medical University, Dongguan, China
- Yinchuan Guolong Orthopedic Hospital, Yinchuan, China
| | - Jian Chen
- Yinchuan Guolong Orthopedic Hospital, Yinchuan, China
| | - Yinxia Liu
- Guangdong Provincial Key Laboratory of Medical Immunology and Molecular Diagnostics, The First Dongguan Affiliated Hospital, School of Medical Technology, Guangdong Medical University, Dongguan, China
| | - Guangxian Xu
- Guangdong Provincial Key Laboratory of Medical Immunology and Molecular Diagnostics, The First Dongguan Affiliated Hospital, School of Medical Technology, Guangdong Medical University, Dongguan, China
- Dongguan Key Laboratory of Molecular Immunology and Cell Therapy, Guangdong Medical University, Dongguan, China
| |
Collapse
|
10
|
Li X, Li H, Zhao X, Wang J, Li D, Li Q, Xu Q, Wu S, Liang Q, Li S, Jiao Q, Liu K, Du S, Peng C, Wang B, Gu L, Zhang X, Huang Q, Ma X. New mouse models for exploring renal tumor extension into the inferior vena cava. Commun Biol 2025; 8:359. [PMID: 40044768 PMCID: PMC11882954 DOI: 10.1038/s42003-025-07757-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Accepted: 02/17/2025] [Indexed: 03/09/2025] Open
Abstract
Renal tumors with inferior vena cava tumor thrombus (IVCTT) remain a challenge in urology. However, in vivo models remain unavailable, which hampers the elucidation of its pathogenesis, identification of therapeutic targets, and screening for effective drugs. In this study, we initially develop two IVCTT models in BALB/c and BALB/c-nu/nu mice using the mouse Renca cell line. The pathological features and immune microenvironment of IVCTT in immunocompetent mice closely resembles those observed in humans. Single-cell transcriptome sequencing, immunohistochemistry and multiplex immunohistochemistry reveal a predominance of monocytes, macrophages, and neutrophils within IVCTT, mirroring the cellular composition of the human IVCTT; however, fewer lymphocytes are observed. The IVCTT in immunodeficient mice progresses much faster than in immunocompetent mice. More importantly, we successfully use the human tumor cell line on the BALB/c nu/nu mice to create an IVCTT model. The proposed in vivo models mimic the progression of renal tumors with IVCTT, clarify that the immune system can inhibit tumor thrombus progression, and provide tools for subsequent mechanistic research and translational preclinical studies.
Collapse
Affiliation(s)
- Xiubin Li
- Department of Urology, The Third Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Huaikang Li
- Department of Urology, The Third Medical Center, Chinese PLA General Hospital, Beijing, China
- Medical School of Chinese PLA, Beijing, China
| | - Xupeng Zhao
- Department of Urology, The Third Medical Center, Chinese PLA General Hospital, Beijing, China
- School of Medicine, Nankai University, Tianjin, China
| | - Jichen Wang
- Department of Urology, The Third Medical Center, Chinese PLA General Hospital, Beijing, China
- Medical School of Chinese PLA, Beijing, China
| | - Di Li
- Medical School of Chinese PLA, Beijing, China
- Air Force Medical Center, Fourth Military Medical University, Beijing, China
| | - Qiuyang Li
- Department of Ultrasound, The First Center of Chinese PLA General Hospital, Beijing, China
| | - Qingjiang Xu
- Department of Urology, The Third Medical Center, Chinese PLA General Hospital, Beijing, China
- Medical School of Chinese PLA, Beijing, China
| | - Shengpan Wu
- Department of Urology, The Third Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Qiyang Liang
- Department of Urology, The Third Medical Center, Chinese PLA General Hospital, Beijing, China
- Medical School of Chinese PLA, Beijing, China
| | - Shangwei Li
- Department of Urology, The Third Medical Center, Chinese PLA General Hospital, Beijing, China
- Medical School of Chinese PLA, Beijing, China
| | - Qilong Jiao
- Department of Urology, The Third Medical Center, Chinese PLA General Hospital, Beijing, China
- School of Medicine, Nankai University, Tianjin, China
| | - Kan Liu
- Department of Urology, The Third Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Songliang Du
- Department of Urology, The Third Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Cheng Peng
- Department of Urology, The Third Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Baojun Wang
- Department of Urology, The Third Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Liangyou Gu
- Department of Urology, The Third Medical Center, Chinese PLA General Hospital, Beijing, China.
| | - Xu Zhang
- Department of Urology, The Third Medical Center, Chinese PLA General Hospital, Beijing, China.
| | - Qingbo Huang
- Department of Urology, The Third Medical Center, Chinese PLA General Hospital, Beijing, China.
| | - Xin Ma
- Department of Urology, The Third Medical Center, Chinese PLA General Hospital, Beijing, China.
| |
Collapse
|
11
|
Cui X, Song Y, Han J, Yuan Z. The multifaceted role of SMAD4 in immune cell function. Biochem Biophys Rep 2025; 41:101902. [PMID: 39802394 PMCID: PMC11721226 DOI: 10.1016/j.bbrep.2024.101902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 11/25/2024] [Accepted: 12/14/2024] [Indexed: 01/16/2025] Open
Abstract
The Transforming Growth Factor-beta (TGF-β) signaling pathway, with SMAD4 as its central mediator, plays a pivotal role in regulating cellular functions, including growth, differentiation, apoptosis, and immune responses. While extensive research has elucidated SMAD4's role in tumorigenesis, its functions within immune cells remain underexplored. This review synthesizes current knowledge on SMAD4's diverse roles in various immune cells such as T cells, B cells, dendritic cells, and macrophages, highlighting its impact on immune homeostasis and pathogen response. Understanding SMAD4's role in immune cells is crucial, as its dysregulation can lead to autoimmune disorders, chronic inflammation, and immune deficiencies. The review emphasizes the significance of SMAD4 in immune regulation, proposing that deeper investigation could reveal novel therapeutic targets for immune-mediated conditions. Insights into SMAD4's involvement in processes like T cell differentiation, B cell class switch recombination, and macrophage polarization underscore its potential as a therapeutic target for a range of diseases, including autoimmune disorders and cancer.
Collapse
Affiliation(s)
- Xinmu Cui
- Changchun Medical College, 6177, Jilin Street, Changchun, 130031, China
| | - Yu Song
- Changchun Medical College, 6177, Jilin Street, Changchun, 130031, China
| | - Jianfeng Han
- Changchun Medical College, 6177, Jilin Street, Changchun, 130031, China
- Cellular Biomedicine Group Inc, Shanghai, 201203, China
| | - Zhaoxin Yuan
- Changchun Medical College, 6177, Jilin Street, Changchun, 130031, China
| |
Collapse
|
12
|
Gao F, Liu X, Ma Z, Tang M, Tang Z, Wu J, Luo M, Tang Y, Wang X, Wang B, Kim BYS, Yang Z, Jiang W, Tang P, Li C. An Integrated Modular Vaccination System for Spatiotemporally Separated Perioperative Cancer Immunotherapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2418322. [PMID: 39924759 DOI: 10.1002/adma.202418322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 12/24/2024] [Indexed: 02/11/2025]
Abstract
The perioperative period is crucial for determining postoperative tumor recurrence and metastasis. Various factors in postoperative lesions can diminish the therapeutic effect of conventional chemoradiotherapy, while emerging immunotherapy is restricted. The combination use of inflammatory inhibitors during treatment is also controversial. Here, a modular microneedle prepared from engineered keratin proteins is reported, which spatially and temporally differentiates the microenvironment of immune cell activation required for immunotherapy from that of wound healing. The recombinant keratin-84-T-based needle root layer, mainly retained in the epidermis, facilitated dendritic cell recruitment to achieve maximum antigen presentation of loaded vaccines. Meanwhile, the recombinant keratin-81-1Aα-based needle tip layer, located within the dermis, rapidly mitigated inflammatory responses while promoting tissue repair and regeneration. Unlike simply mixing immunotherapy and wound treatment, this spatiotemporal segmentation approach maximized the efficacy of immune therapeutics while promoting wound healing, making it suitable for application throughout the perioperative period.
Collapse
Affiliation(s)
- Feiyan Gao
- State Key Laboratory of Resource Insects, Medical Research Institute, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, China
| | - Xinlong Liu
- State Key Laboratory of Resource Insects, Medical Research Institute, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, China
| | - Zhongyi Ma
- State Key Laboratory of Resource Insects, Medical Research Institute, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, China
| | - Mei Tang
- State Key Laboratory of Resource Insects, Medical Research Institute, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, China
| | - Zhongjie Tang
- State Key Laboratory of Resource Insects, Medical Research Institute, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, China
| | - Jin Wu
- Department of Breast and Thyroid Surgery, Southwest Hospital, Chongqing, 400038, China
| | - Min Luo
- State Key Laboratory of Resource Insects, Medical Research Institute, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, China
- NMPA Key Laboratory for Quality Monitoring of Narcotic Drug and Psychotropic Substance, Chongqing, 401121, China
| | - Yaqin Tang
- School of Pharmacy and Bioengineering, Chongqing University of Technology, 69 Hongguang Road, Chongqing, 400054, China
| | - Xiaoyou Wang
- State Key Laboratory of Resource Insects, Medical Research Institute, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, China
| | - Bochu Wang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400030, China
| | - Betty Y S Kim
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Zhaogang Yang
- School of Life Sciences, Jilin University, Changchun, 130012, China
| | - Wen Jiang
- Department of Radiation oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Peng Tang
- Department of Breast and Thyroid Surgery, Southwest Hospital, Chongqing, 400038, China
| | - Chong Li
- State Key Laboratory of Resource Insects, Medical Research Institute, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, China
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| |
Collapse
|
13
|
Wang Z, Sun X, Lin Y, Fu Y, Yi Z. Stealth in non-tuberculous mycobacteria: clever challengers to the immune system. Microbiol Res 2025; 292:128039. [PMID: 39752805 DOI: 10.1016/j.micres.2024.128039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 12/18/2024] [Accepted: 12/23/2024] [Indexed: 01/19/2025]
Abstract
Non-tuberculous Mycobacteria (NTM) are found extensively in various environments, yet most are non-pathogenic. Only a limited number of these organisms can cause various infections, including those affecting the lungs, skin, and central nervous system, particularly when the host's autoimmune function is compromised. Among these, Non-tuberculous Mycobacteria Pulmonary Diseases (NTM-PD) are the most prevalent. Currently, there is a lack of effective treatments and preventive measures for NTM infections. This article aims to deepen the comprehension of the pathogenic mechanisms linked to NTM and to formulate new intervention strategies by synthesizing current research and detailing the different tactics used by NTM to avoid elimination by the host's immune response. These intricate mechanisms not only affect the innate immune response but also successfully oppose the adaptive immune response, establishing persistent infections within the host. This includes effects on the functions of macrophages, neutrophils, dendritic cells, and T lymphocytes, as well as modulation of cytokine production. The article particularly emphasizes the survival strategies of NTM within macrophages, such as inhibiting phagosome maturation and acidification, resisting intracellular killing mechanisms, and interfering with autophagy and cell death pathways. This review aims to deepen the understanding of NTM's immune evasion mechanisms, thereby facilitating efforts to inhibit its proliferation and spread within the host, ultimately providing new methods and strategies for NTM-related treatments.
Collapse
Affiliation(s)
- Zhenghao Wang
- School of Clinical Medicine, Shandong Second Medical University, Weifang 261053, China
| | - Xiurong Sun
- School of Clinical Medicine, Shandong Second Medical University, Weifang 261053, China
| | - Yuli Lin
- School of Medical Laboratory, Shandong Second Medical University, Weifang 261053, China
| | - Yurong Fu
- School of Basic Medical Sciences, Shandong Second Medical University, Weifang 261053, China.
| | - Zhengjun Yi
- School of Medical Laboratory, Shandong Second Medical University, Weifang 261053, China.
| |
Collapse
|
14
|
Nonaka Y, Hoshino K, Nakamura T, Kamitori S. Structural analysis of Spi-B DNA-binding Ets domain recognizing 5'-AGAA-3' and 5'-GGAA-3' sequences. Biochem Biophys Res Commun 2025; 749:151354. [PMID: 39892964 DOI: 10.1016/j.bbrc.2025.151354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Accepted: 01/16/2025] [Indexed: 02/04/2025]
Abstract
Plasmacytoid dendritic cells produce large amounts of type-I interferon (IFN-I) upon sensing nucleic acid components of pathogens by Toll-like receptors (TLR7 and TLR9). The transcription factor Spi-B has the DNA-binding Ets domain, and transactivates the Ifna4 promoter co-operatively with IFN regulatory factor-7 (IRF-7) for TLR7/TLR9-induced IFN-I production. Spi-B associates with IRF-7, and activates transcription by binding to the 5'-AGAA-3' sequence, being different from 5'-GGAA-3', known as the Ets domain recognition sequence. To understand the molecular mechanism for the co-operative transactivation of the Ifna4 promoter by Spi-B and IRF-7, we performed X-ray structural determination of the Spi-B Ets domain in complex with target DNAs, including 5'-AGAA-3' and 5'-GGAA-3' sequences. Furthermore, we conducted a modeling study of the complex of the Spi-B and IRF-7 with Ifna4 promoter DNA. X-ray structures showed that the binding of the Spi-B Ets domain induces a kink in DNA at the recognition sequence, and a more kinked DNA structure was observed in 5'-AGAA-3' than 5'-GGAA-3'. A modeling study showed that the Spi-B-induced kinked DNA structure in 5'-AGAA-3' is favorable for Spi-B and IRF-7 to approach each other for association on DNA.
Collapse
Affiliation(s)
- Yasuhiro Nonaka
- International Institute of Rare Sugar Research and Education, Kagawa University, Takamatsu, Kagawa, 760-8521, Japan; Department of Pharmacology, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa, 761-0793, Japan
| | - Katsuaki Hoshino
- International Institute of Rare Sugar Research and Education, Kagawa University, Takamatsu, Kagawa, 760-8521, Japan; Department of Immunology, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa, 761-0793, Japan; Research Facility Center for Science & Technology, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa, 761-0793, Japan
| | - Takanori Nakamura
- Research Facility Center for Science & Technology, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa, 761-0793, Japan
| | - Shigehiro Kamitori
- International Institute of Rare Sugar Research and Education, Kagawa University, Takamatsu, Kagawa, 760-8521, Japan; Department of Basic Life Science, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa, 761-0793, Japan; Research Facility Center for Science & Technology, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa, 761-0793, Japan.
| |
Collapse
|
15
|
Meng Y, Yao Z, Ke X, Hu M, Ren H, Gao S, Zhang H. Extracellular vesicles-based vaccines: Emerging immunotherapies against cancer. J Control Release 2025; 378:438-459. [PMID: 39667569 DOI: 10.1016/j.jconrel.2024.12.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 12/03/2024] [Accepted: 12/05/2024] [Indexed: 12/14/2024]
Abstract
Cancer vaccines are promising therapeutic approaches to enhance specific T-cell immunity against most solid tumors. By stimulating anti-tumor immunity, clearing minimal residual disease, and minimizing adverse effects, these vaccines target tumor cells and are effective when combined with immune checkpoint blockade or other immunotherapies. However, the development of tumor cell-based vaccines faces quality issues due to poor immunogenicity, tumor heterogeneity, a suppressive tumor immune microenvironment, and ineffective delivery methods. In contrast, extracellular vesicles (EVs), naturally released by cells, are considered the ideal drug carriers and vaccine platforms. EVs offer highly organ-specific targeting, induce broader and more effective immune responses, and demonstrate superior tissue delivery ability. The development of EV vaccines is crucial for advancing cancer immunotherapy. Compared to cell-based vaccines, EV vaccines produced under Good Manufacturing Practices (GMP) offer advantages such as high safety, ease of preservation and transport, and a wide range of sources. This review summarizes the latest research findings on EV vaccine and potential applications in this field. It also highlights novel neoantigens for the development of EV vaccines against cancer.
Collapse
Affiliation(s)
- Yuhua Meng
- Department of General Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China; State Key Laboratory of Bioactive Molecules and Druggability Assessment, MOE Key Laboratory of Tumor Molecular Biology, and Institute of Precision Cancer Medicine and Pathology, School of Medicine, Jinan University, Guangzhou, Guangdong, China
| | - Zhimeng Yao
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, MOE Key Laboratory of Tumor Molecular Biology, and Institute of Precision Cancer Medicine and Pathology, School of Medicine, Jinan University, Guangzhou, Guangdong, China; Department of Urology Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Xiurong Ke
- Department of Surgery, Laboratory for Translational Surgical Oncology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Mengyuan Hu
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, MOE Key Laboratory of Tumor Molecular Biology, and Institute of Precision Cancer Medicine and Pathology, School of Medicine, Jinan University, Guangzhou, Guangdong, China
| | - Hongzheng Ren
- Gongli Hospital of Shanghai Pudong New Area, Department of Pathology, Shanghai, China
| | - Shegan Gao
- College of Clinical Medicine, The First Affiliated Hospital of Henan University of Science and Technology, Henan Key Laboratory of Cancer Epigenetics, Luoyang, Henan, China.
| | - Hao Zhang
- Gongli Hospital of Shanghai Pudong New Area, Department of Pathology, Shanghai, China; Department of Pathology, and Institute of Precision Cancer Medicine and Pathology, School of Medicine, State Key Laboratory of Bioactive Molecules and Druggability Assessment, MOE Key Laboratory of Tumor Molecular Biology, Jinan University, Guangzhou, Guangdong, China; Department of Thoracic Surgery and General Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China.
| |
Collapse
|
16
|
Fernandes EE, de Almeida Lança ML, de Souza YA, El-Achkar VN, Costa V, Carlos R, Ribeiro-Silva A, Sichero L, Villa LL, León JE, Kaminagakura E. Impact of HPV Types and Dendritic Cells on Recurrent Respiratory Papillomatosis' Aggressiveness. Diseases 2025; 13:43. [PMID: 39997050 PMCID: PMC11854725 DOI: 10.3390/diseases13020043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 01/13/2025] [Accepted: 01/16/2025] [Indexed: 02/26/2025] Open
Abstract
OBJECTIVE This study assesses the associations between dendritic cells, HPV 6 and 11, and Recurrent Respiratory Papillomatosis (RRP) aggressiveness. METHODS The Derkay score was calculated using information obtained from the medical records. Biopsies from 36 patients with juvenile RRP (JRRP) and 43 adult RRP (ARRP) patients were analyzed under light microscopy, and their clinical data were collected. Immunohistochemical analysis using antibodies against CD83, CD1a, Factor XIIIa, and S100 was performed, and inflammatory cells were quantified. Data obtained were analyzed using the chi-squared test, in addition to the Mann-Whitney and Z tests for two proportions, considering a confidence interval of 95% and p < 0.05 as statistically significant. RESULTS A higher quantity of S100 was identified in the epithelium (p < 0.001) and in the conjunctive tissue (p = 0.027) among the ARRP cases, while CD83 (p = 0.025) and Factor XIIIa (p = 0.018), both in the epithelium, were identified among the JRRP cases. We observed significant association between a higher quantity of CD83 in the epithelium in the juvenile group with a low Derkay index (p = 0.034) and with HPV 6 (p = 0.039). CONCLUSIONS An increased quantity of dendritic cells is present in individuals diagnosed with RRP, regardless of age, and this may be related to the lower Derkay index, regardless of the HPV type detected.
Collapse
Affiliation(s)
- Ellen Eduarda Fernandes
- Department of Bioscience and Oral Diagnosis, Institute of Science and Technology, São Paulo State University—UNESP, São José dos Campos 12245-000, Brazil; (E.E.F.); (M.L.d.A.L.); (Y.A.d.S.); (V.N.E.-A.); (V.C.)
| | - Maria Leticia de Almeida Lança
- Department of Bioscience and Oral Diagnosis, Institute of Science and Technology, São Paulo State University—UNESP, São José dos Campos 12245-000, Brazil; (E.E.F.); (M.L.d.A.L.); (Y.A.d.S.); (V.N.E.-A.); (V.C.)
| | - Yan Aparecido de Souza
- Department of Bioscience and Oral Diagnosis, Institute of Science and Technology, São Paulo State University—UNESP, São José dos Campos 12245-000, Brazil; (E.E.F.); (M.L.d.A.L.); (Y.A.d.S.); (V.N.E.-A.); (V.C.)
| | - Vivian Narana El-Achkar
- Department of Bioscience and Oral Diagnosis, Institute of Science and Technology, São Paulo State University—UNESP, São José dos Campos 12245-000, Brazil; (E.E.F.); (M.L.d.A.L.); (Y.A.d.S.); (V.N.E.-A.); (V.C.)
| | - Victor Costa
- Department of Bioscience and Oral Diagnosis, Institute of Science and Technology, São Paulo State University—UNESP, São José dos Campos 12245-000, Brazil; (E.E.F.); (M.L.d.A.L.); (Y.A.d.S.); (V.N.E.-A.); (V.C.)
| | - Román Carlos
- Centro Clínico de Cabeza y Cuello, Guatemala City 01010, Guatemala;
| | - Alfredo Ribeiro-Silva
- Department of Pathology and Forensic Medicine, Ribeirão Preto Medical School, Universidade de São Paulo, Ribeirão Preto 14049-900, Brazil;
| | - Laura Sichero
- Center for Translational Research in Oncology, Instituto do Cancer do Estado de São Paulo, Hospital das Clinicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo 01246-903, Brazil; (L.S.); (L.L.V.)
| | - Luisa Lina Villa
- Center for Translational Research in Oncology, Instituto do Cancer do Estado de São Paulo, Hospital das Clinicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo 01246-903, Brazil; (L.S.); (L.L.V.)
- Department of Radiology and Oncology, Faculdade de Medicina, Universidade de São Paulo, São Paulo 01246-903, Brazil
| | - Jorge Esquiche León
- Oral Pathology, Department of Stomatology, Public Oral Health and Forensic Dentistry, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14040-904, Brazil;
| | - Estela Kaminagakura
- Department of Bioscience and Oral Diagnosis, Institute of Science and Technology, São Paulo State University—UNESP, São José dos Campos 12245-000, Brazil; (E.E.F.); (M.L.d.A.L.); (Y.A.d.S.); (V.N.E.-A.); (V.C.)
| |
Collapse
|
17
|
Hou H, Liu X, Liu J, Wang Y. Carbohydrate polymer-based nanoparticles with cell membrane camouflage for cancer therapy: A review. Int J Biol Macromol 2025; 289:138620. [PMID: 39674458 DOI: 10.1016/j.ijbiomac.2024.138620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 11/21/2024] [Accepted: 12/08/2024] [Indexed: 12/16/2024]
Abstract
Recent developments in biomimetic nanoparticles, specifically carbohydrate polymer-coated cell membrane nanoparticles, have demonstrated considerable promise in treating cancer. These systems improve drug delivery by imitating natural cell actions, enhancing biocompatibility, and decreasing immune clearance. Conventional drug delivery methods frequently face challenges with non-specific dispersal and immune detection, which can hinder their efficiency and safety. These biomimetic nanoparticles improve target specificity, retention times, and therapeutic efficiency by using biological components like chitosan, hyaluronic acid, and alginate. Chitosan-based nanoparticles, which come from polysaccharides found in nature, have self-assembly abilities that make them better drug carriers. Hyaluronic acid helps target tissues more effectively, especially in cancer environments where there are high levels of hyaluronic acid receptors. Alginate-based systems also enhance drug delivery by being biocompatible and degradable, making them ideal choices for advanced therapeutic uses. Moreover, these particles hold potential for overcoming resistance to multiple drugs and boosting the body's immune reaction to tumors through precise delivery and decreased side effects of chemotherapy drugs. This review delves into the possibilities of using carbohydrate polymer-functionalized nanoparticles and their impact on enhancing the efficacy of cancer treatment.
Collapse
Affiliation(s)
- Haijia Hou
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Xuejian Liu
- Department of Pulmonary and Critical Care Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jun Liu
- Department of Thoracic Surgery, Shengjing Hospital of China Medical University, Shenyang, China.
| | - Yudong Wang
- Department of Thoracic Surgery, Shengjing Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
18
|
Chan L, Pinedo K, Stabile MA, Hamlin RE, Pienkos SM, Ratnasiri K, Yang S, Blomkalns AL, Nadeau KC, Pulendran B, O'Hara R, Rogers AJ, Holmes SP, Blish CA. Prior vaccination prevents overactivation of innate immune responses during COVID-19 breakthrough infection. Sci Transl Med 2025; 17:eadq1086. [PMID: 39879318 DOI: 10.1126/scitranslmed.adq1086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 09/10/2024] [Accepted: 12/16/2024] [Indexed: 01/31/2025]
Abstract
At this stage in the COVID-19 pandemic, most infections are "breakthrough" infections that occur in individuals with prior severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) exposure. To refine long-term vaccine strategies against emerging variants, we examined both innate and adaptive immunity in breakthrough infections. We performed single-cell transcriptomic, proteomic, and functional profiling of primary and breakthrough infections to compare immune responses from unvaccinated and vaccinated individuals during the SARS-CoV-2 Delta wave. Breakthrough infections were characterized by a less activated transcriptomic profile in monocytes and natural killer cells, with induction of pathways limiting monocyte migratory potential and natural killer cell proliferation. Furthermore, we observed a female-specific increase in transcriptomic and proteomic activation of multiple innate immune cell subsets during breakthrough infections. These insights suggest that prior SARS-CoV-2 vaccination prevents overactivation of innate immune responses during breakthrough infections with discernible sex-specific patterns and underscore the potential of harnessing vaccines in mitigating pathologic immune responses resulting from overactivation.
Collapse
Affiliation(s)
- Leslie Chan
- Stanford Immunology Program, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Kassandra Pinedo
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Mikayla A Stabile
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Rebecca E Hamlin
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Shaun M Pienkos
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Kalani Ratnasiri
- Stanford Immunology Program, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Samuel Yang
- Department of Emergency Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Andra L Blomkalns
- Department of Emergency Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Kari C Nadeau
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, MA 02115, USA
| | - Bali Pulendran
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Ruth O'Hara
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Angela J Rogers
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Susan P Holmes
- Department of Statistics, Stanford University, Stanford, CA 94305, USA
| | - Catherine A Blish
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
- Stanford Medical Scientist Training Program, Stanford University School of Medicine, Stanford, CA 94305, USA
- Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
| |
Collapse
|
19
|
Bandola-Simon J, Ito Y, Wucherpfennig KW, Roche PA. Defective removal of invariant chain peptides from MHC class II suppresses tumor antigen presentation and promotes tumor growth. Cell Rep 2025; 44:115150. [PMID: 39752250 PMCID: PMC11886875 DOI: 10.1016/j.celrep.2024.115150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 11/26/2024] [Accepted: 12/12/2024] [Indexed: 02/01/2025] Open
Abstract
Tumor-draining lymph node dendritic cells (DCs) are poor stimulators of tumor antigen-specific CD4 T cells; however, the mechanism behind this defect is unclear. We now show that, in tumor-draining lymph node DCs, a large proportion of major histocompatibility complex class II (MHC-II) molecules retains the class II-associated invariant chain peptide (CLIP) fragment of the invariant chain bound to the MHC-II peptide binding groove due to reduced expression of the peptide editor H2-M and enhanced activity of the CLIP-generating proteinase cathepsin S. The net effect of this is that MHC-II molecules are unable to efficiently bind antigenic peptides. DCs in mice expressing a mutation in the invariant chain sequence that results in enhanced MHC-II-CLIP accumulation are poor stimulators of CD4 T cells and have diminished anti-tumor responses. Our data reveal a previously unknown mechanism of immune evasion in which enhanced expression of MHC-II-CLIP complexes on tumor-draining lymph node DCs limits MHC-II availability for tumor peptides.
Collapse
Affiliation(s)
- Joanna Bandola-Simon
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yoshinaga Ito
- Institute for Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan
| | - Kai W Wucherpfennig
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Immunology, Harvard Medical School, Boston, MA 02115, USA; Department of Neurology, Brigham & Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Paul A Roche
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
20
|
Wen P, Wang Y, Zhang C, He P, Lin Z, Hu Z, Lu W. Liposome-loaded dissolvable microneedle patches for more efficient intradermal antigen delivery of Hepatitis B vaccine. Int J Pharm 2025; 669:125023. [PMID: 39638267 DOI: 10.1016/j.ijpharm.2024.125023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 11/22/2024] [Accepted: 12/01/2024] [Indexed: 12/07/2024]
Abstract
The aim of this study was to improve the efficacy of Hepatitis B surface antigen (HBsAg) vaccination via liposome-loaded dissolvable microneedle (Lipo-dMN) patches. HBsAg liposomes were prepared using the thin-film hydration method and subsequently incorporated into dissolvable microneedle patches via a pre-vacuum approach. Liposomes, dissolvable microneedle patches (dMN), and Lipo-dMN were characterized for encapsulation efficiency, mechanical properties, morphology, skin insertion, in vitro release, cellular uptake, and in vivo vaccination studies. The HBsAg was encapsulated into liposomes with encapsulation efficiencies around 50 %, particle size around 160 nm, and zeta potential around -20 mV. HBsAg can maintain its activity during the preparation of dMN and Lipo-dMN. The intact pyramid microneedle has a sharp end and strong mechanical properties that allow easy insertion into the ex vivo pig skin. The dMN and Lipo-dMN, with a mechanical property of 1.6 N, readily penetrate the epidermis and release the HBsAg and HBsAg liposome to modulate the immune response. A comprehensive comparison of HBsAg subcutaneous injection and intradermal delivery of HBsAg and HBsAg liposome by dMN revealed different levels of anti-HBsAg IgG antibody. Inoculation with dMN and Lipo-dMN resulted in significantly higher levels of anti-HBsAg IgG antibodies (p < 0.01) compared to subcutaneous injection of HBsAg. In addition, we found that IgG levels increased significantly (P < 0.05) with increased dose of subcutaneous injection of HBsAg and intradermal delivery of dMN, but the opposite effect was observed in Lipo-dMN. The possible mechanism for this observation may be the increased cellular uptake of liposomes by BMDCs upon long-term incubation. In summary, this study presents a promising approach to enhance HBsAg vaccination efficacy through the synergistic combination of liposomes and dissolvable microneedles at reduced vaccine doses.
Collapse
Affiliation(s)
- Ping Wen
- Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education, Shanghai 201203, China; Advanced Institute of Pharmaceutical Innovative Technology, Prinbury Biopharm Co, Ltd, Shanghai 201203, China
| | - Yunyang Wang
- Beijing Institute of Biological Products Co., Ltd, Beijing 100176, China
| | - Chenghao Zhang
- Advanced Institute of Pharmaceutical Innovative Technology, Prinbury Biopharm Co, Ltd, Shanghai 201203, China
| | - Peng He
- National Institutes for Food and Drug Control, Beijing 102629, China
| | - Zhuming Lin
- Advanced Institute of Pharmaceutical Innovative Technology, Prinbury Biopharm Co, Ltd, Shanghai 201203, China
| | - Zhongyu Hu
- National Institutes for Food and Drug Control, Beijing 102629, China.
| | - Weiyue Lu
- Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education, Shanghai 201203, China.
| |
Collapse
|
21
|
Guo ZX, Ma JL, Zhang JQ, Yan LL, Zhou Y, Mao XL, Li SW, Zhou XB. Metabolic reprogramming and immunological changes in the microenvironment of esophageal cancer: future directions and prospects. Front Immunol 2025; 16:1524801. [PMID: 39925801 PMCID: PMC11802498 DOI: 10.3389/fimmu.2025.1524801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Accepted: 01/06/2025] [Indexed: 02/11/2025] Open
Abstract
Background Esophageal cancer (EC) is the seventh-most prevalent cancer worldwide and is a significant contributor to cancer-related mortality. Metabolic reprogramming in tumors frequently coincides with aberrant immune function alterations, and extensive research has demonstrated that perturbations in energy metabolism within the tumor microenvironment influence the occurrence and progression of esophageal cancer. Current treatment modalities for esophageal cancer primarily include encompass chemotherapy and a limited array of targeted therapies, which are hampered by toxicity and drug resistance issues. Immunotherapy, particularly immune checkpoint inhibitors (ICIs) targeting the PD-1/PD-L1 pathway, has exhibited promising results; however, a substantial proportion of patients remain unresponsive. The optimization of these immunotherapies requires further investigation. Mounting evidence underscores the importance of modulating metabolic traits within the tumor microenvironment (TME) to augment anti-tumor immunotherapy. Methods We selected relevant studies on the metabolism of the esophageal cancer tumor microenvironment and immune cells based on our searches of MEDLINE and PubMed, focusing on screening experimental articles and reviews related to glucose metabolism, amino acid metabolism, and lipid metabolism, as well their interactions with tumor cells and immune cells, published within the last five years. We analyzed and discussed these studies, while also expressing our own insights and opinions. Results A total of 137 articles were included in the review: 21 articles focused on the tumor microenvironment of esophageal cancer, 33 delved into research related to glucose metabolism and tumor immunology, 30 introduced amino acid metabolism and immune responses, and 17 focused on the relationship between lipid metabolism in the tumor microenvironment and both tumor cells and immune cells. Conclusion This article delves into metabolic reprogramming and immune alterations within the TME of EC, systematically synthesizes the metabolic characteristics of the TME, dissects the interactions between tumor and immune cells, and consolidates and harnesses pertinent immunotherapy targets, with the goal of enhancing anti-tumor immunotherapy for esophageal cancer and thereby offering insights into the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Zhi-Xun Guo
- Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
| | - Jia-Li Ma
- Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
| | - Jin-Qiu Zhang
- Department of Gastroenterology, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
| | - Ling-Ling Yan
- Department of Gastroenterology, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
| | - Ying Zhou
- Department of Gastroenterology, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
| | - Xin-li Mao
- Department of Gastroenterology, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
- Key Laboratory of Minimally Invasive Techniques & Rapid Rehabilitation of Digestive System Tumor of Zhejiang Province, Linhai, Zhejiang, China
- Institute of Digestive Disease, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Shao-Wei Li
- Department of Gastroenterology, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
- Key Laboratory of Minimally Invasive Techniques & Rapid Rehabilitation of Digestive System Tumor of Zhejiang Province, Linhai, Zhejiang, China
- Institute of Digestive Disease, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Xian-Bin Zhou
- Department of Gastroenterology, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
- Key Laboratory of Minimally Invasive Techniques & Rapid Rehabilitation of Digestive System Tumor of Zhejiang Province, Linhai, Zhejiang, China
- Institute of Digestive Disease, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| |
Collapse
|
22
|
Liu M, Zheng L, Zhang Y, Tian J. Mechanistic insights into pachymic acid's action on triple-negative breast Cancer through TOP2A targeting. Sci Rep 2025; 15:2856. [PMID: 39843552 PMCID: PMC11754797 DOI: 10.1038/s41598-025-87286-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 01/17/2025] [Indexed: 01/24/2025] Open
Abstract
Triple-negative breast cancer (TNBC) is characterized by the absence of estrogen and progesterone receptors, and lack of human epidermal growth factor receptor 2 (HER2) expression. Traditional Chinese medicine (TCM) has demonstrated promising efficacy in treating TNBC. This study explored the mechanisms of pachymic acid (PA) on TNBC by merging network pharmacology with experimental validation. We acquired Microarray data of TNBC from the Gene Expression Omnibus (GEO). The related targets of PA were predicted and screened using the following 6 databases: Swiss Target Prediction, HERB (Herbal Medicine Database), ETCM (Encyclopedia of Traditional Chinese Medicine), BATMAN (Bioinformatics Analysis Tool for Molecular Mechanism of Traditional Chinese Medicine), HIT (Herb Ingredients' Targets Database), and PharmMapper. The STRING interaction network analysis tool was used to create Protein-Protein Interaction (PPI) networks. Enrichment analysis included Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG). We conducted a pan-cancer analysis, tumor immune microenvironment analysis, and molecular docking. We performed cell experimental, included cytotoxicity assay, apoptosis analysis, proliferation assay, and migration and invasion assays. PA has potential for treating TNBC with the target of TOP2A, and platinum drug resistance possibly serving as the KEGG pathway through which PA exerts its therapeutic effects. PA is involved in processes such as nuclear division, chromosome segregation, mitotic nuclear division, condensed chromosome formation, and protein C-terminus binding. PA probably exert its therapeutic effects through the tumor immune microenvironment, involving elements such as Dendritic cells activated, Eosinophils, Macrophages M0, Macrophages M1, and T cells CD4 memory activated. The therapeutic effects of PA may vary across different subtypes of TNBC such as TNBC-BL1, TNBC-Metaplastic, and TNBC-BL2. This study provides compelling evidence that PA holds significant promise as a therapeutic agent for TNBC, primarily through its action on TOP2A and its influence on the TNBC.
Collapse
Affiliation(s)
- Ming Liu
- Evidence-based Medicine Center, School of Basic Medical Sciences, Lanzhou University, Lanzhou City, No.199 Donggang West Road, 730000, Gansu Province, China
| | - Li Zheng
- Department of Pharmacy, China Aerospace Science & Industry Corporation 731 Hospital, Beijing, China
| | - Yang Zhang
- Department of Traditional Chinese medicine, China Aerospace Science & Industry Corporation 731 Hospital, Beijing, China
| | - Jinhui Tian
- Evidence-based Medicine Center, School of Basic Medical Sciences, Lanzhou University, Lanzhou City, No.199 Donggang West Road, 730000, Gansu Province, China.
- Key Laboratory of Evidence-Based Medicine and Knowledge Translation of Gansu Province, Lanzhou City, Gansu Province, China.
| |
Collapse
|
23
|
Folz KE, Siemens N. Streptokinase is dispensable in Streptococcus dysgalactiae subspecies equisimilis infections of human dendritic cells. Sci Rep 2025; 15:2723. [PMID: 39838000 PMCID: PMC11751451 DOI: 10.1038/s41598-025-87404-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 01/20/2025] [Indexed: 01/23/2025] Open
Abstract
In recent years, increased numbers of severe Streptococcus dysgalactiae subsp. equisimilis (SDSE) infections, including necrotizing soft tissue infections (NSTIs), have been reported. One of the main virulence factors of SDSE is streptokinase (Ska). Ska promotes bacterial spread in the tissue through Ska-plasminogen interactions and subsequent activation of plasminogen to plasmin. In this study, the impact of streptokinase on SDSE infections of human monocyte-derived dendritic cells (moDCs) was investigated. MoDCs were infected with SDSE strain S118 and its isogenic mutant lacking streptokinase. All infections were performed with and without human serum to compare direct Ska-mediated as well as plasmin activity-related effects. Intracellular killing kinetics, moDC viability and maturation, as well as the release of pro-inflammatory cytokines were assessed. Irrespective of the strain and experimental conditions, the bacteria were equally phagocytosed and killed. MoDCs remained viable, readily matured and secreted equal amounts of cytokines in response to S118 as well as S118Δska infections. Our data demonstrate that moDCs response to SDSE infections is not affected by Ska or its respective plasminogen activating function.
Collapse
Affiliation(s)
- Katharina E Folz
- Department of Molecular Genetics and Infection Biology, University of Greifswald, 17489, Greifswald, Germany
| | - Nikolai Siemens
- Department of Molecular Genetics and Infection Biology, University of Greifswald, 17489, Greifswald, Germany.
| |
Collapse
|
24
|
Kessler AL, Pieterman RFA, Doff WAS, Bezstarosti K, Bouzid R, Klarenaar K, Jansen DTSL, Luijten RJ, Demmers JAA, Buschow SI. HLA I immunopeptidome of synthetic long peptide pulsed human dendritic cells for therapeutic vaccine design. NPJ Vaccines 2025; 10:12. [PMID: 39827205 PMCID: PMC11742953 DOI: 10.1038/s41541-025-01069-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 01/03/2025] [Indexed: 01/22/2025] Open
Abstract
Synthetic long peptides (SLPs) are a promising vaccine modality that exploit dendritic cells (DC) to treat chronic infections or cancer. Currently, the design of SLPs relies on in silico prediction and multifactorial T cells assays to determine which SLPs are best cross-presented on DC human leukocyte antigen class I (HLA-I). Furthermore, it is unknown how TLR ligand-based adjuvants affect DC cross-presentation. Here, we generated a unique, high-quality immunopeptidome dataset of human DCs pulsed with 12 hepatitis B virus (HBV)-based SLPs combined with either a TLR1/2 (Amplivant®) or TLR3 (PolyI:C) ligand. The obtained immunopeptidome reflected adjuvant-induced differences, but no differences in cross-presentation of SLPs. We uncovered dominant (cross-)presentation on B-alleles, and identified 33 unique SLP-derived HLA-I peptides, several of which were not in silico predicted and some were consistently found across donors. Our work puts forward DC immunopeptidomics as a valuable tool for therapeutic vaccine design.
Collapse
Affiliation(s)
- Amy L Kessler
- Department of Gastroenterology & Hepatology, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical sciences, University of Utrecht, Utrecht, The Netherlands
| | - Roel F A Pieterman
- Department of Gastroenterology & Hepatology, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Wouter A S Doff
- Proteomics Center, Department of Biochemistry, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Karel Bezstarosti
- Proteomics Center, Department of Biochemistry, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Rachid Bouzid
- Department of Gastroenterology & Hepatology, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands
- Merus N.V., Utrecht, The Netherlands
| | - Kim Klarenaar
- Department of Gastroenterology & Hepatology, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands
- Division of Laboratories, Pharmacy and Biomedical Genetics, UMC Utrecht, Utrecht, The Netherlands
| | - Diahann T S L Jansen
- Department of Gastroenterology & Hepatology, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands
- Department of Internal Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Robbie J Luijten
- Department of Gastroenterology & Hepatology, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Jeroen A A Demmers
- Proteomics Center, Department of Biochemistry, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Sonja I Buschow
- Department of Gastroenterology & Hepatology, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands.
| |
Collapse
|
25
|
Chen D, Ling X, Wang Y, Zhang Q, He X, Dong Z, Li M, He Q. Autophagy-activating aluminum hydroxide nanovaccine for enhanced antigen presentation and anti-tumor immunity. J Control Release 2025; 377:223-235. [PMID: 39547420 DOI: 10.1016/j.jconrel.2024.11.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 11/08/2024] [Accepted: 11/09/2024] [Indexed: 11/17/2024]
Abstract
Lymph node (LN) targeting and antigen presentation by antigen-presenting cells (APCs) are critical factors affecting the immune responses induced by tumor vaccines. Autophagy activation promotes MHC class I and II antigen presentation in APCs. To enhance antigen presentation in LNs, we developed an aluminum hydroxide nanovaccine that simultaneously incorporates the autophagy-activating peptide Beclin-1 and the antigenic protein OVA (B/O@AN nanovaccine) through layer-by-layer electrostatic interaction. B/O@AN has a particle size of approximately 80 nm and efficiently targets lymph nodes following subcutaneous administration. The combination of the Beclin-1 peptide with the aluminum hydroxide nanovaccine promotes dendritic cell (DC) maturation. More importantly, B/O@AN facilitates antigen cross-presentation by promoting lysosomal escape and autophagy induction. After immunization, compared to O/@AN without Beclin-1, B/O@AN significantly augments antigen-specific cellular immune responses, leading to substantial increases in cytotoxic T lymphocytes (CTLs), T-helper 1 (Th1) cells, as well as serum antibody levels, thereby impeding melanoma development and progression in both prophylactic and therapeutic settings. These results provide evidence that autophagy activation strengthens antigen presentation and augments the antigen-specific immune responses of the aluminum hydroxide nanovaccine.
Collapse
Affiliation(s)
- Dong Chen
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Centre for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, PR China
| | - Xiaoli Ling
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Centre for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, PR China
| | - Yashi Wang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Centre for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, PR China
| | - Qiang Zhang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Centre for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, PR China
| | - Xuan He
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Centre for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, PR China
| | - Ziyan Dong
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Centre for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, PR China
| | - Man Li
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Centre for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, PR China.
| | - Qin He
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Centre for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, PR China.
| |
Collapse
|
26
|
Wu S, Cao Z, Lu R, Zhang Z, Sethi G, You Y. Interleukin-6 (IL-6)-associated tumor microenvironment remodelling and cancer immunotherapy. Cytokine Growth Factor Rev 2025:S1359-6101(25)00001-2. [PMID: 39828476 DOI: 10.1016/j.cytogfr.2025.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Accepted: 01/09/2025] [Indexed: 01/22/2025]
Abstract
Interleukin-6 (IL-6) is a pro-inflammatory cytokine playing a pivotal role during inflammation and immune responses. In the recent years, the function of IL-6 in the tumor microenvironment (TME) for affecting tumorigenesis and immunotherapy response has been investigated. The genetic mutations are mainly responsible for the development of cancer, while interactions in TME are also important, involving both cancers and non-cancerous cells. IL-6 plays a significant role in these interactions, enhancing the proliferation, survival and metastasis of tumor cells through inflammatory pathways, highlighting its carcinogenic function. Multiple immune cells including macrophages, T cells, myeloid-derived suppressor cells, dendritic cells and natural killer cells can be affected by IL-6 to develop immunosuppressive TME. IL-6 can also participate in the immune evasion through increasing levels of PD-L1, compromising the efficacy of therapeutics. Notably, IL-6 exerts a double-edge sword function and it can dually increase or decrease cancer immunotherapy, providing a challenge for targeting this cytokine in cancer therapy. Highlighting the complicated function of IL-6 in TME can lead to the development of effective therapeutics for cancer immunity.
Collapse
Affiliation(s)
- Songsong Wu
- Department of Radiation Oncology, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zhumin Cao
- Department of Interventional and Vascular Surgery, The Seventh People's Hospital of Chongqing, Chongqing, China
| | - Rongying Lu
- Samueli School of Engineering, University of California, Irvine, CA, USA
| | - Zhenwang Zhang
- Hubei Key Laboratory of Diabetes and Angiopathy, School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning, Hubei Province 437100, China.
| | - Gautam Sethi
- Department of Pharmacology and NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.
| | - Yulai You
- Department of Hepatobiliary surgery, Chongqing University Affiliated Jiangjin Central Hospital, Chongqing, China.
| |
Collapse
|
27
|
Ghattas M, Dwivedi G, Chevrier A, Horn-Bourque D, Alameh MG, Lavertu M. Chitosan immunomodulation: insights into mechanisms of action on immune cells and signaling pathways. RSC Adv 2025; 15:896-909. [PMID: 39802469 PMCID: PMC11719903 DOI: 10.1039/d4ra08406c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Accepted: 12/22/2024] [Indexed: 01/16/2025] Open
Abstract
Chitosan, a biodegradable and biocompatible natural polymer composed of β-(1-4)-linked N-acetyl glucosamine (GlcNAc) and d-glucosamine (GlcN) and derived from crustacean shells, has been widely studied for various biomedical applications, including drug delivery, cartilage repair, wound healing, and tissue engineering, because of its unique physicochemical properties. One of the most promising areas of research is the investigation of the immunomodulatory properties of chitosan, since the biopolymer has been shown to modulate the maturation, activation, cytokine production, and polarization of dendritic cells and macrophages, two key immune cells involved in the initiation and regulation of innate and adaptive immune responses, leading to enhanced immune responses. Several signaling pathways, including the cGAS-STING, STAT-1, and NLRP3 inflammasomes, are involved in chitosan-induced immunomodulation. This review provides a comprehensive overview of the current understanding of the in vitro immunomodulatory effects of chitosan. This information may facilitate the development of chitosan-based therapies and vaccine adjuvants for various immune-related diseases.
Collapse
Affiliation(s)
- Majed Ghattas
- Department of Chemical Engineering, Polytechnique Montreal Montreal QC Canada
- Institute of Biomedical Engineering, Polytechnique Montreal Montreal QC Canada
| | - Garima Dwivedi
- Perelman School of Medicine, University of Pennsylvania Philadelphia PA USA
| | - Anik Chevrier
- Department of Chemical Engineering, Polytechnique Montreal Montreal QC Canada
| | - Delano Horn-Bourque
- Department of Chemical Engineering, Polytechnique Montreal Montreal QC Canada
- Institute of Biomedical Engineering, Polytechnique Montreal Montreal QC Canada
| | - Mohamad-Gabriel Alameh
- Perelman School of Medicine, University of Pennsylvania Philadelphia PA USA
- Penn Institute for RNA Innovation, University of Pennsylvania Philadelphia PA USA
| | - Marc Lavertu
- Department of Chemical Engineering, Polytechnique Montreal Montreal QC Canada
- Institute of Biomedical Engineering, Polytechnique Montreal Montreal QC Canada
| |
Collapse
|
28
|
Zhou X, Wu Y, Zhu Z, Lu C, Zhang C, Zeng L, Xie F, Zhang L, Zhou F. Mucosal immune response in biology, disease prevention and treatment. Signal Transduct Target Ther 2025; 10:7. [PMID: 39774607 PMCID: PMC11707400 DOI: 10.1038/s41392-024-02043-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 09/05/2024] [Accepted: 10/27/2024] [Indexed: 01/11/2025] Open
Abstract
The mucosal immune system, as the most extensive peripheral immune network, serves as the frontline defense against a myriad of microbial and dietary antigens. It is crucial in preventing pathogen invasion and establishing immune tolerance. A comprehensive understanding of mucosal immunity is essential for developing treatments that can effectively target diseases at their entry points, thereby minimizing the overall impact on the body. Despite its importance, our knowledge of mucosal immunity remains incomplete, necessitating further research. The outbreak of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has underscored the critical role of mucosal immunity in disease prevention and treatment. This systematic review focuses on the dynamic interactions between mucosa-associated lymphoid structures and related diseases. We delve into the basic structures and functions of these lymphoid tissues during disease processes and explore the intricate regulatory networks and mechanisms involved. Additionally, we summarize novel therapies and clinical research advances in the prevention of mucosal immunity-related diseases. The review also addresses the challenges in developing mucosal vaccines, which aim to induce specific immune responses while maintaining tolerance to non-pathogenic microbes. Innovative therapies, such as nanoparticle vaccines and inhalable antibodies, show promise in enhancing mucosal immunity and offer potential for improved disease prevention and treatment.
Collapse
Affiliation(s)
- Xiaoxue Zhou
- School of Medicine, Hangzhou City University, Hangzhou, China
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Yuchen Wu
- The First School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zhipeng Zhu
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Chu Lu
- The First Affiliated Hospital, the Institutes of Biology and Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Chunwu Zhang
- The First School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Linghui Zeng
- School of Medicine, Hangzhou City University, Hangzhou, China
| | - Feng Xie
- The First Affiliated Hospital, the Institutes of Biology and Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China.
| | - Long Zhang
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, China.
- The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China.
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, China.
| | - Fangfang Zhou
- The First Affiliated Hospital, the Institutes of Biology and Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China.
| |
Collapse
|
29
|
Hillemanns P, Zikan M, Forget F, Denys HG, Baurain JF, Rob L, Woelber L, Blecharz P, Bidzinski M, Chovanec J, Marmé F, Link T, Dannecker C, Rosholm A, Berg KCG, Oliveri RS, Lindemann K. Safety and efficacy of the therapeutic DNA-based vaccine VB10.16 in combination with atezolizumab in persistent, recurrent or metastatic HPV16-positive cervical cancer: a multicenter, single-arm phase 2a study. J Immunother Cancer 2025; 13:e010827. [PMID: 39773564 PMCID: PMC11749841 DOI: 10.1136/jitc-2024-010827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 12/23/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND Second-line treatment options for persistent, recurrent or metastatic (r/m) cervical cancer are limited. We investigated the safety, efficacy, and immunogenicity of the therapeutic DNA-based vaccine VB10.16 combined with the immune checkpoint inhibitor atezolizumab in patients with human papillomavirus (HPV)16-positive r/m cervical cancer. PATIENTS AND METHODS This multicenter, single-arm, phase 2a study (NCT04405349, registered 26 May 2020) enrolled adult patients with persistent, r/m HPV16-positive cervical cancer. Patients received 3 mg VB10.16 (every 3 weeks (Q3W) for 12 weeks, hereafter every 6 weeks) combined with 1,200 mg atezolizumab (Q3W) for 48 weeks in total with a 12-month follow-up. The primary endpoints were incidence and severity of adverse events (AEs) and objective response rate (ORR; Response Evaluation Criteria in Solid Tumor V.1.1). ORR was assessed in the efficacy population, being all response-evaluable patients who received any administration of VB10.16 and atezolizumab and had at least one post-baseline imaging assessment. RESULTS Between June 16, 2020, and January 25, 2022, 52 patients received at least one administration of study treatment. Of these, 47 patients had a minimum of one post-baseline tumor assessment. The median follow-up time for survival was 11.7 months. AEs related to VB10.16 were non-serious and mainly mild injection site reactions (9 of 52 patients). There were no signs of new toxicities other than what was already described with atezolizumab. ORR was 19.1% (95% CI 9.1% to 33.3%). Median duration of response was not reached (n.r.) (95% CI 2.2 to n.r.), median progression-free survival was 4.1 months (95% CI 2.1 to 6.2), and median overall survival was 21.3 months (95% CI 8.5 to n.r.). In programmed death-ligand 1 (PD-L1)-positive patients (n=24), ORR was 29.2% (95% CI 12.6 to 51.1). HPV16-specific T-cell responses were analyzed in 36 of 47 patients with an increase observed in 22/36 (61%). CONCLUSIONS The therapeutic DNA-based vaccine VB10.16 combined with atezolizumab was safe and well tolerated showing a promising clinically meaningful efficacy with durable responses in patients with persistent, r/m HPV16-positive cervical cancer, especially if PD-L1-positive.
Collapse
Affiliation(s)
- Peter Hillemanns
- Department of Gynecology and Obstetrics, Hannover Medical School, Hannover, Germany
| | - Michal Zikan
- Department of Obstetrics and Gynecology, Bulovka University Hospital Na Bulovce Budinova 67/2, Prague, Czech Republic
| | | | - Hannelore G Denys
- Medical Oncology, University Hospital Ghent, Gent, Flanders, Belgium
| | | | - Lukas Rob
- University Hospital Kralovske Vinohrady, Praha, Czech Republic
| | - Linn Woelber
- Department of Gynecology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Pawel Blecharz
- Gynecologic Oncology Department, Maria Sklodowska-Curie National Research Institute of Oncology in Warsaw Krakow Branch, Krakow, Poland
| | - Mariusz Bidzinski
- Gynecologic Oncology Department, Maria Sklodowska-Curie National Research Institute of Oncology, Warzawa, Poland
| | | | - Frederik Marmé
- Department of Gynecology and Obstetrics, University Hospital Mannheim, Mannheim, Germany
| | - Theresa Link
- Department of Gynecology and Obstetrics, Medical Faculty, Dresden, Germany
- Department of Gynecology and Obstetrics, Technische Universität Dresden, Dresden, Germany
| | - Christian Dannecker
- Gynecology and Obstetrics, Faculty of Medicine, University of Augsburg, Augsburg, Germany
| | | | | | | | - Kristina Lindemann
- Department of gynecological oncology, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
30
|
Khatoon S, Kalam N. Mechanistic insight of curcumin: a potential pharmacological candidate for epilepsy. Front Pharmacol 2025; 15:1531288. [PMID: 39845785 PMCID: PMC11752882 DOI: 10.3389/fphar.2024.1531288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 12/16/2024] [Indexed: 01/24/2025] Open
Abstract
Recurrent spontaneous seizures with an extended epileptic discharge are the hallmarks of epilepsy. At present, there are several available anti-epileptic drugs (AEDs) in the market. Still no adequate treatment for epilepsy treatment is available. The main disadvantages of AEDs are their associated adverse effects. It is a challenge to develop new therapies that can reduce seizures by modulating the underlying mechanisms with no adverse effects. In the last decade, the neuromodulatory potential of phytoconstituents has sparked their usage in the treatment of central nervous system disorders. Curcumin is an active polyphenolic component that interacts at cellular and molecular levels. Curcumin's neuroprotective properties have been discovered in recent preclinical and clinical studies due to its immunomodulatory effects. Curcumin has the propensity to modulate signaling pathways involved in cell survival and manage oxidative stress, apoptosis, and inflammatory mechanisms. Further, curcumin can persuade epigenetic alterations, including histone modifications (acetylation/deacetylation), which are the changes responsible for the altered expression of genes facilitating the process of epileptogenesis. The bioavailability of curcumin in the brain is a concern that needs to be tackled. Therefore, nanonization has emerged as a novel drug delivery system to enhance the pharmacokinetics of curcumin. In the present review, we reviewed curcumin's modulatory effects on potential biomarkers involved in epileptogenesis including dendritic cells, T cell subsets, cytokines, chemokines, apoptosis mediators, antioxidant mechanisms, and cognition impairment. Also, we have discussed the nanocarrier systems for encapsulating curcumin, offering a promising approach to enhance bioavailability of curcumin.
Collapse
Affiliation(s)
- Saima Khatoon
- Department of Obstetrics, Gynecology and Reproductive Sciences, School of Medicine, University of Maryland, Baltimore, MD, United States
| | - Nida Kalam
- Infection and Immunity Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University, Bandar Sunway, Malaysia
| |
Collapse
|
31
|
Zhang J, Lin L. Immunoinfiltration Analysis of Mitochondrial Damage-Related Genes in Lung Adenocarcinoma and Construction of a Classification and Prognostic Model Integrated With WGCNA and Machine Learning Algorithms. Cancer Med 2025; 14:e70590. [PMID: 39823156 PMCID: PMC11737511 DOI: 10.1002/cam4.70590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 12/29/2024] [Accepted: 12/30/2024] [Indexed: 01/19/2025] Open
Abstract
BACKGROUND Lung adenocarcinoma (LUAD) exhibits molecular heterogeneity, with mitochondrial damage affecting progression. The relationship between mitochondrial damage and immune infiltration, and Weighted Gene Co-expression Network Analysis (WGCNA)-derived biomarkers for LUAD classification and prognosis, remains unexplored. AIMS The objective of our research is to identify gene modules closely related to the clinical stages of LUAD using the WGCNA method. Based on the genes within these modules, we constructed machine learning (ML) models for classification and prognosis prediction, thereby facilitating precise diagnosis and personalized treatment of LUAD. MATERIALS & METHODS Using GeneCards and The Cancer Genome Atlas (TCGA) databases, we screened differentially expressed mitochondrial damage-related genes in LUAD. Immune cell infiltration patterns were assessed using Single-Sample Gene Set Enrichment Analysis (SSGSEA) method. Functional enrichment analyses were conducted to explore biological functions and signaling pathways. Gene modules related to clinical stages of LUAD were identified by WGCNA. ML models were constructed for classification and prognosis prediction, and validated in an independent Gene Expression Omnibus (GEO) dataset. RESULTS The study revealed a significant relationship between mitochondrial damage and immune infiltration in LUAD. We identified a gene module closely associated with the clinical stages of LUAD. The ML models for classification and prognosis that were constructed demonstrated good effectiveness and generalization capabilities. DISCUSSION Mitochondrial damage-related genes are crucial in LUAD progression and linked to immune infiltration. The gene module and models identified have potential applications in LUAD classification and prognosis, offering novel markers for precision medicine. CONCLUSION This study uncovers the relationship between mitochondrial damage and immune infiltration in LUAD, paving the way for molecular classification, prognosis prediction, and personalized treatment strategies.
Collapse
Affiliation(s)
- Jirong Zhang
- Department of GeriatricsThe Second Affiliated Hospital of Harbin Medical UniversityHarbinHeilongjiangPeople's Republic of China
| | - Lin Lin
- Department of Respiratory MedicineThe Second Affiliated Hospital of Harbin Medical UniversityHarbinHeilongjiangPeople's Republic of China
| |
Collapse
|
32
|
Dudziak D, Heger L, Agace WW, Bakker J, de Gruijl TD, Dress RJ, Dutertre C, Fenton TM, Fransen MF, Ginhoux F, Heyman O, Horev Y, Hornsteiner F, Kandiah V, Kles P, Lubin R, Mizraji G, Prokopi A, Saar O, Sopper S, Stoitzner P, Strandt H, Sykora MM, Toffoli EC, Tripp CH, van Pul K, van de Ven R, Wilensky A, Yona S, Zelle‐Rieser C. Guidelines for preparation and flow cytometry analysis of human nonlymphoid tissue DC. Eur J Immunol 2025; 55:e2250325. [PMID: 39668411 PMCID: PMC11739683 DOI: 10.1002/eji.202250325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 09/19/2024] [Accepted: 09/25/2024] [Indexed: 12/14/2024]
Abstract
This article is part of the Dendritic Cell Guidelines article series, which provides a collection of state-of-the-art protocols for the preparation, phenotype analysis by flow cytometry, generation, fluorescence microscopy, and functional characterization of mouse and human dendritic cells (DC) from lymphoid organs, and various nonlymphoid tissues. Within this article, detailed protocols are presented that allow for the generation of single-cell suspensions from human nonlymphoid tissues including lung, skin, gingiva, intestine as well as from tumors and tumor-draining lymph nodes with a subsequent analysis of dendritic cells by flow cytometry. Further, prepared single-cell suspensions can be subjected to other applications including cellular enrichment procedures, RNA sequencing, functional assays, etc. While all protocols were written by experienced scientists who routinely use them in their work, this article was also peer-reviewed by leading experts and approved by all co-authors, making it an essential resource for basic and clinical DC immunologists.
Collapse
Affiliation(s)
- Diana Dudziak
- Institute of ImmunologyJena University HospitalFriedrich‐Schiller‐UniversityJenaGermany
- Laboratory of Dendritic Cell BiologyDepartment of DermatologyUniversity Hospital ErlangenErlangenGermany
| | - Lukas Heger
- Laboratory of Dendritic Cell BiologyDepartment of DermatologyUniversity Hospital ErlangenErlangenGermany
- Department of Transfusion Medicine and HemostaseologyUniversity Hospital ErlangenErlangenGermany
| | - William W Agace
- LEO Foundation Skin Immunology Research CenterDepartment of Immunology and MicrobiologyUniversity of CopenhagenCopenhagenDenmark
- Immunology SectionLund UniversityLundSweden
| | - Joyce Bakker
- Institute for Infection and ImmunologyCancer ImmunologyAmsterdamThe Netherlands
- Cancer Center AmsterdamCancer ImmunologyAmsterdamThe Netherlands
- Amsterdam UMC location Vrije UniversiteitMedical OncologyAmsterdamThe Netherlands
| | - Tanja D. de Gruijl
- Institute for Infection and ImmunologyCancer ImmunologyAmsterdamThe Netherlands
- Cancer Center AmsterdamCancer ImmunologyAmsterdamThe Netherlands
- Amsterdam UMC location Vrije UniversiteitMedical OncologyAmsterdamThe Netherlands
| | - Regine J. Dress
- Institute of Systems ImmunologyHamburg Center for Translational Immunology (HCTI)University Medical Center Hamburg‐EppendorfHamburgGermany
| | | | | | - Marieke F. Fransen
- Institute for Infection and ImmunologyCancer ImmunologyAmsterdamThe Netherlands
- Cancer Center AmsterdamCancer ImmunologyAmsterdamThe Netherlands
- Department of Pulmonary DiseasesAmsterdam UMC location Vrije UniversiteitAmsterdamThe Netherlands
| | - Florent Ginhoux
- Singapore Immunology Network (SIgN), Agency for Science, Technology and ResearchSingaporeSingapore
- Department of Immunology and MicrobiologyShanghai Institute of ImmunologyShanghai Jiao Tong University School of MedicineShanghaiChina
- SingHealth Duke‐NUS Academic Medical CentreTranslational Immunology InstituteSingaporeSingapore
- INSERM U1015, Gustave Roussy Cancer CampusVillejuifFrance
| | - Oded Heyman
- Department of PeriodontologyHadassah Medical CenterFaculty of Dental MedicineHebrew University of JerusalemIsrael
| | - Yael Horev
- Department of PeriodontologyHadassah Medical CenterFaculty of Dental MedicineHebrew University of JerusalemIsrael
| | - Florian Hornsteiner
- Department of Dermatology, Venereology & AllergologyMedical University of InnsbruckInnsbruckAustria
| | - Vinitha Kandiah
- Institute for Infection and ImmunologyCancer ImmunologyAmsterdamThe Netherlands
- Cancer Center AmsterdamCancer ImmunologyAmsterdamThe Netherlands
- Amsterdam UMC location Vrije UniversiteitMedical OncologyAmsterdamThe Netherlands
| | - Paz Kles
- Department of PeriodontologyHadassah Medical CenterFaculty of Dental MedicineHebrew University of JerusalemIsrael
| | - Ruth Lubin
- Faculty of Dental MedicineThe Institute of Biomedical and Oral ResearchHebrew University of JerusalemIsrael
| | - Gabriel Mizraji
- Department of PeriodontologyHadassah Medical CenterFaculty of Dental MedicineHebrew University of JerusalemIsrael
| | - Anastasia Prokopi
- Institute for Infection and ImmunologyCancer ImmunologyAmsterdamThe Netherlands
- Cancer Center AmsterdamCancer ImmunologyAmsterdamThe Netherlands
- Amsterdam UMC location Vrije UniversiteitMedical OncologyAmsterdamThe Netherlands
| | - Or Saar
- Department of PeriodontologyHadassah Medical CenterFaculty of Dental MedicineHebrew University of JerusalemIsrael
| | - Sieghart Sopper
- Internal Medicine V, Hematology and OncologyMedical University of InnsbruckInnsbruckAustria
- Tyrolean Cancer Research CenterInnsbruckAustria
| | - Patrizia Stoitzner
- Department of Dermatology, Venereology & AllergologyMedical University of InnsbruckInnsbruckAustria
| | - Helen Strandt
- Department of Dermatology, Venereology & AllergologyMedical University of InnsbruckInnsbruckAustria
| | - Martina M Sykora
- Internal Medicine V, Hematology and OncologyMedical University of InnsbruckInnsbruckAustria
- Tyrolean Cancer Research CenterInnsbruckAustria
| | - Elisa C. Toffoli
- Institute for Infection and ImmunologyCancer ImmunologyAmsterdamThe Netherlands
- Cancer Center AmsterdamCancer ImmunologyAmsterdamThe Netherlands
- Amsterdam UMC location Vrije UniversiteitMedical OncologyAmsterdamThe Netherlands
| | - Christoph H. Tripp
- Department of Dermatology, Venereology & AllergologyMedical University of InnsbruckInnsbruckAustria
| | - Kim van Pul
- Institute for Infection and ImmunologyCancer ImmunologyAmsterdamThe Netherlands
- Cancer Center AmsterdamCancer ImmunologyAmsterdamThe Netherlands
- Amsterdam UMC location Vrije UniversiteitMedical OncologyAmsterdamThe Netherlands
| | - Rieneke van de Ven
- Cancer Center AmsterdamCancer ImmunologyAmsterdamThe Netherlands
- Amsterdam UMC location Vrije UniversiteitMedical OncologyAmsterdamThe Netherlands
- Department of Otolaryngology, Head and Neck SurgeryAmsterdam UMC location Vrije UniversiteitAmsterdamThe Netherlands
| | - Asaf Wilensky
- Department of PeriodontologyHadassah Medical CenterFaculty of Dental MedicineHebrew University of JerusalemIsrael
| | - Simon Yona
- Faculty of Dental MedicineThe Institute of Biomedical and Oral ResearchHebrew University of JerusalemIsrael
| | - Claudia Zelle‐Rieser
- Department of Dermatology, Venereology & AllergologyMedical University of InnsbruckInnsbruckAustria
| |
Collapse
|
33
|
Rizwan M, Cheng K, Gang Y, Hou Y, Wang C. Immunomodulatory Effects of Vitamin D and Zinc on Viral Infection. Biol Trace Elem Res 2025; 203:1-17. [PMID: 38451442 DOI: 10.1007/s12011-024-04139-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 03/02/2024] [Indexed: 03/08/2024]
Abstract
Several nutrients are crucial in enhancing the immune system and preserving the structural integrity of bodily tissue barriers. Vitamin D (VD) and zinc (Zn) have received considerable interest due to their immunomodulatory properties and ability to enhance the body's immune defenses. Due to their antiviral, anti-inflammatory, antioxidative, and immunomodulatory properties, the two nutritional powerhouses VD and Zn are crucial for innate and adaptive immunity. As observed with COVID-19, deficiencies in these micronutrients impair immune responses, increasing susceptibility to viral infections and severe disease. Ensuring an adequate intake of VD and Zn emerges as a promising strategy for fortifying the immune system. Ongoing clinical trials are actively investigating their potential therapeutic advantages. Beyond the immediate context of the pandemic, these micronutrients offer valuable tools for enhancing immunity and overall well-being, especially in the face of future viral threats. This analysis emphasizes the enduring significance of VD and Zn as both treatment and preventive measures against potential viral challenges beyond the current health crisis. The overview delves into the immunomodulatory potential of VD and Zn in combating viral infections, with particular attention to their effects on animals. It provides a comprehensive summary of current research findings regarding their individual and synergistic impacts on immune function, underlining their potential in treating and preventing viral infections. Overall, this overview underscores the need for further research to understand how VD and Zn can modulate the immune response in combatting viral diseases in animals.
Collapse
Affiliation(s)
- Muhammad Rizwan
- College of Fisheries, Huazhong Agriculture University, Wuhan, 430070, China
| | - Ke Cheng
- College of Fisheries, Huazhong Agriculture University, Wuhan, 430070, China
| | - Yang Gang
- College of Fisheries, Huazhong Agriculture University, Wuhan, 430070, China
| | - Yuntao Hou
- College of Fisheries, Huazhong Agriculture University, Wuhan, 430070, China
| | - Chunfang Wang
- College of Fisheries, Huazhong Agriculture University, Wuhan, 430070, China.
| |
Collapse
|
34
|
Ayalew H, Xu C, Adane A, Sanchez ALB, Li S, Wang J, Wu S, Qiu K, Qi G, Zhang H. Ontogeny and function of the intestinal epithelial and innate immune cells during early development of chicks: to explore in ovo immunomodulatory nutrition. Poult Sci 2025; 104:104607. [PMID: 39693955 PMCID: PMC11720616 DOI: 10.1016/j.psj.2024.104607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 11/23/2024] [Accepted: 11/26/2024] [Indexed: 12/20/2024] Open
Abstract
Intestinal epithelial cells (IECs) and innate immune cells in the gastrointestinal tract (GIT) of chickens play crucial roles in pathogens defense and maintaining gut health. However, their effectiveness influenced with their developmental and functional stages during pre and post hatch periods of chick. During embryonic development, differentiation and migration of these innate immune systems are tightly regulated by diverse cellular and molecular factors. The maturation and functionality of IECs are histologically evident starting embryonic day (ED) 14. Moreover, the innate immun cells, such as dendritic cells (DCs), macrophages, natural killer (NK) cells, and gamma-delta (γδ) T cells have showed developmental expression varation, while most identified by the 3rd days of incubation and capable of responsing to their cognate ligands of pathogens by ED 17, it may not efficient during posthatch period. In modern poultry production, in ovo feeding of bioactive substances is a topic of interest to maximize the protection capability of hatched chicks by enhancing improvement on the development of innate immune systems. However, their actions and effects on each distinct innate immune involved response are inconsistent and not clearly understood. Thus, summarizing the ontogeny and function of IECs, innate immunity systems, and interaction mechanisms of in ovo feeding of bioactive substances could provide baseline information for designing targeted in ovo feeding interventions to modulate cell waise specific innate immune systems.
Collapse
Affiliation(s)
- Habtamu Ayalew
- Laboratory of Quality and Safety Risk Assessment for Animal Products on Feed Hazards (Beijing) of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China; University of Gondar, College of Veterinary Medicine and Animal Sciences, Po. Box 196, Gondar, Ethiopia
| | - Changchun Xu
- Laboratory of Quality and Safety Risk Assessment for Animal Products on Feed Hazards (Beijing) of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Assefa Adane
- University of Gondar, College of Veterinary Medicine and Animal Sciences, Po. Box 196, Gondar, Ethiopia
| | - Astrid Lissette Barreto Sanchez
- Laboratory of Quality and Safety Risk Assessment for Animal Products on Feed Hazards (Beijing) of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Siman Li
- Laboratory of Quality and Safety Risk Assessment for Animal Products on Feed Hazards (Beijing) of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jing Wang
- Laboratory of Quality and Safety Risk Assessment for Animal Products on Feed Hazards (Beijing) of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Shugeng Wu
- Laboratory of Quality and Safety Risk Assessment for Animal Products on Feed Hazards (Beijing) of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Kai Qiu
- Laboratory of Quality and Safety Risk Assessment for Animal Products on Feed Hazards (Beijing) of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Guanghai Qi
- Laboratory of Quality and Safety Risk Assessment for Animal Products on Feed Hazards (Beijing) of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Haijun Zhang
- Laboratory of Quality and Safety Risk Assessment for Animal Products on Feed Hazards (Beijing) of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
35
|
Kumar V, Stewart Iv JH. Platelet's plea to Immunologists: Please do not forget me. Int Immunopharmacol 2024; 143:113599. [PMID: 39547015 DOI: 10.1016/j.intimp.2024.113599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 10/07/2024] [Accepted: 11/06/2024] [Indexed: 11/17/2024]
Abstract
Platelets are non-nucleated mammalian cells originating from the cytoplasmic expulsion of the megakaryocytes. Megakaryocytes develop during hematopoiesis through megakaryopoiesis, whereas platelets develop from megakaryocytes through thrombopoiesis. Since their first discovery, platelets have been studied as critical cells controlling hemostasis or blood coagulation. However, coagulation and innate immune response are evolutionarily linked processes. Therefore, it has become critical to investigate the immunological functions of platelets to maintain immune homeostasis. Advances in immunology and platelet biology research have explored different critical roles of platelets, including phagocytosis, release of different immune mediators, and controlling functions of different immune cells by direct interaction and immune mediators. The current article discusses platelet's development and their critical role as innate immune cells, which express different pattern recognition receptors (PRRs), recognizing different pathogen or microbe-associated molecular patterns (PAMPs or MAMPs) and death/damage-associated molecular patterns (DAMPs) and their direct interactions with innate and adaptive immune cells to maintain immune homeostasis.
Collapse
Affiliation(s)
- Vijay Kumar
- Department of Surgery, Laboratory of Tumor Immunology and Immunotherapy, Medical Education Building-C, Morehouse School of Medicine, 720 Westview Drive, Atlanta, GA 30310 USA.
| | - John H Stewart Iv
- Department of Surgery, Laboratory of Tumor Immunology and Immunotherapy, Medical Education Building-C, Morehouse School of Medicine, 720 Westview Drive, Atlanta, GA 30310 USA
| |
Collapse
|
36
|
Cervantes-Torres J, Hernández-Aceves JA, Gajón Martínez JA, Moctezuma-Rocha D, Vázquez Ramírez R, Sifontes-Rodríguez S, Ramírez-Salinas GL, Mendoza Sierra L, Alfonzo LB, Sciutto E, Fragoso G. Exploring the Mechanisms Underlying Cellular Uptake and Activation of Dendritic Cells by the GK-1 Peptide. ACS OMEGA 2024; 9:49625-49638. [PMID: 39713707 PMCID: PMC11656211 DOI: 10.1021/acsomega.4c07736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 11/03/2024] [Accepted: 11/21/2024] [Indexed: 12/24/2024]
Abstract
The use of peptides for cancer immunotherapy is a promising and emerging approach that is being intensively explored worldwide. One such peptide, GK-1, has been shown to delay the growth of triple-negative breast tumors in mice, reduce their metastatic capacity, and reverse the intratumor immunosuppression that characterizes this model. Herein, it is demonstrated that GK-1 is taken up by bone marrow dendritic cells in a dose-dependent manner 15 min after exposure, more efficiently at 37 °C than at 4 °C, implying an entrance into the cells by energy-independent and -dependent processes through clathrin-mediated endocytosis. Theoretical predictions support the binding of GK-1 to the hydrophobic pocket of MD2, preventing it from bridging TLR4, thereby promoting receptor dimerization and cell activation. GK-1 can effectively activate cells via a TLR4-dependent pathway based on in vitro studies using HEK293 and HEK293-TLR4-MD2 cells and in vivo using C3H/HeJ mice (hyporesponsive to LPS). In conclusion, GK-1 enters the cells by passive diffusion and by activation of the transmembrane Toll-like receptor 4 triggering cell activation, which could be involved in the GK-1 antitumor properties.
Collapse
Affiliation(s)
- Jacquelynne Cervantes-Torres
- Departamento
de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México MX 04510, Mexico
- Departamento
de Microbiología e Inmunología, Facultad de Medicina
Veterinaria y Zootecnia, Universidad Nacional
Autónoma de México, Ciudad de México MX 04510, Mexico
| | - Juan A. Hernández-Aceves
- Departamento
de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México MX 04510, Mexico
| | - Julián A. Gajón Martínez
- Unidad de
Investigación Médica en Inmunoquímica, Hospital
de Especialidades, CMN Siglo XXI, Instituto
Mexicano del Seguro Social, Ciudad de México MX 06600, Mexico
| | - Diego Moctezuma-Rocha
- Departamento
de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México MX 04510, Mexico
| | - Ricardo Vázquez Ramírez
- Departamento
de Biología Molecular y Biotecnología, Instituto de
Investigaciones Biomédicas, Universidad Nacional Autónoma
de México, Sede Tercer Circuito Exterior
Edificio C 1er Piso, C-146, Ciudad
de México MX 04510, Mexico
| | - Sergio Sifontes-Rodríguez
- Investigador
por México del CONAHCyT adscrito al Departamento de Inmunología,
Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Sede Circuito
Escolar Edificio A 1er Piso, Ciudad
de México MX 04510, Mexico
| | - Gemma L. Ramírez-Salinas
- Departamento
de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México MX 04510, Mexico
| | - Luis Mendoza Sierra
- Departamento
de Biología Molecular y Biotecnología, Instituto de
Investigaciones Biomédicas, Universidad Nacional Autónoma
de México, Sede Tercer Circuito Exterior
Edificio C 1er Piso, C-146, Ciudad
de México MX 04510, Mexico
| | - Laura Bonifaz Alfonzo
- Unidad de
Investigación Médica en Inmunoquímica, Hospital
de Especialidades, CMN Siglo XXI, Instituto
Mexicano del Seguro Social, Ciudad de México MX 06600, Mexico
| | - Edda Sciutto
- Departamento
de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México MX 04510, Mexico
| | - Gladis Fragoso
- Departamento
de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México MX 04510, Mexico
| |
Collapse
|
37
|
Song M, Ivkov R, Korangath P. Dendritic cell activation by iron oxide nanoparticles depends on the extracellular environment. NANOSCALE ADVANCES 2024; 7:209-218. [PMID: 39569333 PMCID: PMC11575603 DOI: 10.1039/d4na00561a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 11/10/2024] [Indexed: 11/22/2024]
Abstract
Nanoparticles can exert immune modulating effects in a host depending on composition, mode of administration, and type of disease. Although the specific mechanisms of nanoparticle-induced immune responses remain unclear, their uptake by macrophages and other phagocytic innate immune cells is considered to be a key event. Our objective here was to ascertain if nanoparticle-mediated activation of dendritic cells (DCs) occurs in vitro or in vivo when exposed to hydroxyethyl starch-coated iron oxide nanoparticles. For the present studies, our choice of nanoparticles, animal model, and experimental design is motivated by our previously published observations that systemic exposure can induce antitumor adaptive immune responses in mouse models of metastatic breast cancer. Here, we began by assessing the potential toxicity of systemic exposure to commercially available starch-coated Bionized Nanoferrite® nanoparticles (BP) by measuring body weight, complete blood count, and enzyme parameters in healthy FVB/NJ mice after repeated BP dosing. We observed no evidence of toxicity at doses up to 25 mg Fe per mouse, five-fold higher than those used in subsequent in vivo experiments. We then measured the expression of surface maturation markers (CD86, MHC II) in DCs incubated with BP in vitro. Although DCs cultured with BP revealed high levels of nanoparticle uptake, neither JAWSII dendritic cells nor bone marrow derived dendritic cells (BMDCs) showed significant changes in marker expression to indicate stimulation of maturation and effector function. To assess whether BP interactions in vivo produced different effects, we analyzed CD80, CD86, and MHC II expression of DCs recovered from the livers, spleens, bone marrows, and lymph nodes of mice injected once with BP (5 mg Fe). Interestingly, only DCs in spleens and bone marrow cells responded to BP exposure. DCs recovered from other organs showed no evidence of increased activation. These findings highlight complex interactions between living systems and nanoparticles, and their potential to mediate context-specific and selective activation of innate immune cells. Our study also emphasizes that results obtained from in vitro experiments must be interpreted with caution, as they may not faithfully represent responses in living systems.
Collapse
Affiliation(s)
- Mason Song
- Department of Biomedical Engineering, Whiting School of Engineering, Johns Hopkins University Baltimore 21218 USA
| | - Robert Ivkov
- Department of Radiation Oncology and Molecular Radiation Sciences, School of Medicine, Johns Hopkins University 1550 Orleans Street, Cancer Research Building - II, Rm 416 Baltimore MD 21231 USA
- Department of Oncology, Sydney Kimmel Comprehensive Cancer Center, School of Medicine, Johns Hopkins University Baltimore MD 21231 USA
- Department of Mechanical Engineering, Whiting School of Engineering, Johns Hopkins University Baltimore 21218 USA
- Department of Materials Science and Engineering, Whiting School of Engineering, Johns Hopkins University Baltimore 21218 USA
| | - Preethi Korangath
- Department of Radiation Oncology and Molecular Radiation Sciences, School of Medicine, Johns Hopkins University 1550 Orleans Street, Cancer Research Building - II, Rm 416 Baltimore MD 21231 USA
- Department of Oncology, Sydney Kimmel Comprehensive Cancer Center, School of Medicine, Johns Hopkins University Baltimore MD 21231 USA
| |
Collapse
|
38
|
Higashioka K, Rao DA. DC-T cell power couples in rheumatoid arthritis joints. Immunity 2024; 57:2715-2717. [PMID: 39662087 DOI: 10.1016/j.immuni.2024.11.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 11/11/2024] [Indexed: 12/13/2024]
Abstract
Rheumatoid arthritis (RA) is driven by antigen-specific T cell responses targeting the joints. MacDonald et al.1 define the range of dendritic cell (DC) populations within joints of RA patients and highlight specific iDC3 and DC2 populations enriched in inflamed RA synovium that promote T cell activation as well as tolerogenic AXL+ DC2s in healthy synovium that are lost in RA.
Collapse
Affiliation(s)
- Kazuhiko Higashioka
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Deepak A Rao
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
39
|
MacDonald L, Elmesmari A, Somma D, Frew J, Di Mario C, Madhu R, Paoletti A, Simakou T, Hardy OM, Tolusso B, Campobasso D, Perniola S, Gessi M, Gigante MR, Petricca L, Bruno D, Coletto LA, Benvenuto R, Isaacs JD, Filby A, McDonald D, Sim JPX, Jamieson N, Wei K, D'Agostino MA, Millar NL, Milling S, McSharry C, Gremese E, Affleck K, Baker KF, McInnes IB, Otto TD, Korsunsky I, Alivernini S, Kurowska-Stolarska M. Synovial tissue myeloid dendritic cell subsets exhibit distinct tissue-niche localization and function in health and rheumatoid arthritis. Immunity 2024; 57:2843-2862.e12. [PMID: 39609125 DOI: 10.1016/j.immuni.2024.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 07/11/2024] [Accepted: 11/05/2024] [Indexed: 11/30/2024]
Abstract
Current rheumatoid arthritis (RA) treatments do not restore immune tolerance. Investigating dendritic cell (DC) populations in human synovial tissue (ST) may reveal pathways to reinstate tolerance in RA. Using single-cell and spatial transcriptomics of ST biopsies, as well as co-culture systems, we identified condition- and niche-specific DC clusters with distinct functions. Healthy tissue contained tolerogenic AXL+ DC2s in the lining niche. In active RA, the hyperplasic lining niche was populated with inflammatory DC3s that activated CCL5-positive effector memory T cells, promoting synovitis. Lymphoid niches that emerged in the sublining layer were enriched with CCR7+ DC2s, which interacted with naive T cells, potentially driving the local expansion of new effector T cells. Remission saw the resolution of these pathogenic niches but lacked recovery of tolerogenic DC2s and exhibited activation of blood precursors of ST-DC3 clusters prior to flare-ups. Targeting pathogenic DC3s or restoring tolerogenic DC2s may help restore immune homeostasis in RA joints.
Collapse
Affiliation(s)
- Lucy MacDonald
- Research into Inflammatory Arthritis Centre Versus Arthritis (RACE), Glasgow, UK; School of Infection & Immunity, University of Glasgow, Glasgow, UK
| | - Aziza Elmesmari
- Research into Inflammatory Arthritis Centre Versus Arthritis (RACE), Glasgow, UK; School of Infection & Immunity, University of Glasgow, Glasgow, UK
| | - Domenico Somma
- Research into Inflammatory Arthritis Centre Versus Arthritis (RACE), Glasgow, UK; School of Infection & Immunity, University of Glasgow, Glasgow, UK
| | - Jack Frew
- Research into Inflammatory Arthritis Centre Versus Arthritis (RACE), Glasgow, UK; School of Infection & Immunity, University of Glasgow, Glasgow, UK
| | - Clara Di Mario
- Immunology Research Core Facility, Gemelli Science and Technology Park, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Roopa Madhu
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA; Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02141, USA
| | - Audrey Paoletti
- School of Infection & Immunity, University of Glasgow, Glasgow, UK
| | - Theodoros Simakou
- Research into Inflammatory Arthritis Centre Versus Arthritis (RACE), Glasgow, UK; School of Infection & Immunity, University of Glasgow, Glasgow, UK
| | - Olympia M Hardy
- Research into Inflammatory Arthritis Centre Versus Arthritis (RACE), Glasgow, UK; School of Infection & Immunity, University of Glasgow, Glasgow, UK
| | - Barbara Tolusso
- Immunology Research Core Facility, Gemelli Science and Technology Park, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Denise Campobasso
- Immunology Research Core Facility, Gemelli Science and Technology Park, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Simone Perniola
- Immunology Research Core Facility, Gemelli Science and Technology Park, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy; Division of Clinical Immunology, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Marco Gessi
- Institute of Pathology, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Maria Rita Gigante
- Division of Rheumatology, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Luca Petricca
- Division of Rheumatology, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Dario Bruno
- Research into Inflammatory Arthritis Centre Versus Arthritis (RACE), Glasgow, UK; Immunology Research Core Facility, Gemelli Science and Technology Park, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy; Division of Clinical Immunology, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Lavinia Agra Coletto
- Research into Inflammatory Arthritis Centre Versus Arthritis (RACE), Glasgow, UK; School of Infection & Immunity, University of Glasgow, Glasgow, UK; Immunology Research Core Facility, Gemelli Science and Technology Park, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Roberta Benvenuto
- Institute of Pathology, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - John D Isaacs
- Research into Inflammatory Arthritis Centre Versus Arthritis (RACE), Glasgow, UK; Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK; Musculoskeletal Unit, Newcastle-upon-Tyne Hospitals, Newcastle upon Tyne, UK
| | - Andrew Filby
- Flow Cytometry Core Facility, Newcastle University, Newcastle upon Tyne, UK
| | - David McDonald
- Flow Cytometry Core Facility, Newcastle University, Newcastle upon Tyne, UK
| | - Jasmine P X Sim
- Research into Inflammatory Arthritis Centre Versus Arthritis (RACE), Glasgow, UK; Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Nigel Jamieson
- School of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Kevin Wei
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | | | - Neal L Millar
- Research into Inflammatory Arthritis Centre Versus Arthritis (RACE), Glasgow, UK; School of Infection & Immunity, University of Glasgow, Glasgow, UK
| | - Simon Milling
- Research into Inflammatory Arthritis Centre Versus Arthritis (RACE), Glasgow, UK; School of Infection & Immunity, University of Glasgow, Glasgow, UK
| | - Charles McSharry
- School of Infection & Immunity, University of Glasgow, Glasgow, UK; NHS Greater Glasgow and Clyde, Glasgow, UK
| | - Elisa Gremese
- Research into Inflammatory Arthritis Centre Versus Arthritis (RACE), Glasgow, UK; Immunology Research Core Facility, Gemelli Science and Technology Park, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy; Division of Clinical Immunology, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Karen Affleck
- Respiratory and Immunology Research Unit, GSK, Stevenage, UK
| | - Kenneth F Baker
- Research into Inflammatory Arthritis Centre Versus Arthritis (RACE), Glasgow, UK; Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK; Musculoskeletal Unit, Newcastle-upon-Tyne Hospitals, Newcastle upon Tyne, UK
| | - Iain B McInnes
- Research into Inflammatory Arthritis Centre Versus Arthritis (RACE), Glasgow, UK; School of Infection & Immunity, University of Glasgow, Glasgow, UK
| | - Thomas D Otto
- Research into Inflammatory Arthritis Centre Versus Arthritis (RACE), Glasgow, UK; School of Infection & Immunity, University of Glasgow, Glasgow, UK
| | - Ilya Korsunsky
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA; Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02141, USA
| | - Stefano Alivernini
- Research into Inflammatory Arthritis Centre Versus Arthritis (RACE), Glasgow, UK; School of Infection & Immunity, University of Glasgow, Glasgow, UK; Immunology Research Core Facility, Gemelli Science and Technology Park, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy; Division of Rheumatology, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.
| | - Mariola Kurowska-Stolarska
- Research into Inflammatory Arthritis Centre Versus Arthritis (RACE), Glasgow, UK; School of Infection & Immunity, University of Glasgow, Glasgow, UK.
| |
Collapse
|
40
|
Yang D, Wang X, Sun Y, Shao Y, Shi X. Identification and experimental validation of genes associated with programmed cell death in dendritic cells of the thyroid tissue in Hashimoto's thyroiditis. Int Immunopharmacol 2024; 142:113083. [PMID: 39260305 DOI: 10.1016/j.intimp.2024.113083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 08/28/2024] [Accepted: 09/02/2024] [Indexed: 09/13/2024]
Abstract
INTRODUCTION Hashimoto's thyroiditis (HT) is a chronic autoimmune disorder. As antigen-presenting cells, dendritic cells(DCs) play a pivotal role in inducing programmed cell death (PCD) types, contributing to immune disorders. This study aimed to identify genes associated with multiple PCD pathways in dendritic cells within the thyroid tissue of patients with HT. METHODS The single-cell RNA-sequencing dataset HRA001684 was obtained from the National Genomics Data Center (NGDC) to calculate the area under the curve (AUC) scores for PCD-related genes. Additionally, mRNA sequencing datasets GSE138198 and HRA001684 were sourced from the Gene Expression Omnibus(GEO) and NGDC, respectively. Differentially expressed genes (DEGs) were identified by comparing normal and HT groups in GSE138198 and HRA001684. The intersection of these DEGs with PCD-related genes led to the identification of 17 PCD-related DEGs(PCDDEGs). RESULTS AUC scores revealed that DCs in HT exhibited significantly elevated levels of necroptosis, ferroptosis, pyroptosis, autophagy, and PANoptosis, expressing six key PCDDEGs: TNFAIP3, CYBB, PTPN6, STAT1, TGFB1, and NLRP3. These genes displayed an AUC>0.8 for HT in the GSE29315, GSE138198, and HRA001684 datasets, confirming their diagnostic accuracy. Moreover, their expression was positively correlated with the serum levels of thyroid peroxidase and thyroglobulin antibodies, while the expression of all PCDDEGs was negatively correlated with the abundance of thyroid follicular epithelial cells. qRT-PCR, WB, IHC, and IF experiments further confirmed the differences in PCDDEGs gene and protein levels in HT patients. DISCUSSION These findings highlight the crucial role of DCs in mediating PCD within the thyroid tissues of HT patients. The identified PCDDEGs-TNFAIP3, CYBB, PTPN6, STAT1, TGFB1, and NLRP3-may significantly contribute to HT pathogenesis through PCD pathways.
Collapse
Affiliation(s)
- Dongyu Yang
- Department of Endocrinology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, 110004, PR China
| | - Xichang Wang
- Department of Endocrinology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, 110004, PR China
| | - Ying Sun
- Department of Endocrinology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, 110004, PR China
| | - Ying Shao
- Department of Endocrinology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, 110004, PR China
| | - Xiaoguang Shi
- Department of Endocrinology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, 110004, PR China.
| |
Collapse
|
41
|
Cross K, Vetter SW, Alam Y, Hasan MZ, Nath AD, Leclerc E. Role of the Receptor for Advanced Glycation End Products (RAGE) and Its Ligands in Inflammatory Responses. Biomolecules 2024; 14:1550. [PMID: 39766257 PMCID: PMC11673996 DOI: 10.3390/biom14121550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 11/30/2024] [Accepted: 12/02/2024] [Indexed: 01/03/2025] Open
Abstract
Since its discovery in 1992, the receptor for advanced glycation end products (RAGE) has emerged as a key receptor in many pathological conditions, especially in inflammatory conditions. RAGE is expressed by most, if not all, immune cells and can be activated by many ligands. One characteristic of RAGE is that its ligands are structurally very diverse and belong to different classes of molecules, making RAGE a promiscuous receptor. Many of RAGE ligands are damaged associated molecular patterns (DAMPs) that are released by cells under inflammatory conditions. Although RAGE has been at the center of a lot of research in the past three decades, a clear understanding of the mechanisms of RAGE activation by its ligands is still missing. In this review, we summarize the current knowledge of the role of RAGE and its ligands in inflammation.
Collapse
Affiliation(s)
| | | | | | | | | | - Estelle Leclerc
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, ND 58105, USA; (K.C.); (S.W.V.); (Y.A.); (M.Z.H.); (A.D.N.)
| |
Collapse
|
42
|
Huang J, Zhong Y, Cheng N, Zhang Z, Huang L, Song L, Cheng S, Zhao H, Liu D. Sishen pills inhibit inflammatory dendritic cell differentiation via miR-505-3p mediated E-cadherin downregulation in ulcerative colitis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 135:156035. [PMID: 39342779 DOI: 10.1016/j.phymed.2024.156035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 08/28/2024] [Accepted: 09/07/2024] [Indexed: 10/01/2024]
Abstract
BACKGROUND Ulcerative colitis (UC) is an autoimmune disease that is highly susceptible to recurrence, which is still a lack of effective drugs with minor side effects in clinic. Intervention of inflammatory differentiation of dendritic cells (DCs) might be an effective strategy to treat UC. Sishen Pills (SSP) is a classic Chinese herbal formula which has been demonstrated the protective effect of UC, but the mechanism remains unclear. PURPOSE To elucidate the protective effects of SSP against UC in mice and reveal its regulatory mechanism of DCs and the key active ingredients for the UC treatment based on transcriptomics, network pharmacology and experiments validation in vivo and vitro. METHOD The key active ingredients of SSP were detected and screened integrating LC-MS/MS and network pharmacology. A mouse UC model was induced with 3% sodium dextran sulfate and treated with SSP for 14 days to evaluate the efficacy. ELISA was used to detect the levels of IL-6, IL-1β and TNF-α in the colon; flow cytometry was used to detect the expression levels of DCs and their subpopulations; whole transcriptomic sequencing of differential RNAs in the colon and RT-PCR to detect key miRNAs to verify the sequencing results. Mouse bone marrow-derived dendritic cells (BMDCs) were isolated, an inflammatory model was constructed using 100 ng/ml LPS, and the effects of SSP on DC proliferation and apoptosis and their surface co-stimulatory molecule expression were examined; IL-6, IL-1β, TNF-α levels were measured by ELISA; RT-PCR and WB were performed to detect miR-505-3p, CDH1, E-cadherin expression. BMDCs with low expression of miR-505-3p were constructed by lentiviral transfection for further validation. The potential key ingredient was re-validated in vivo and vitro experiment. RESULTS Animal experiments showed that SSP alleviated DSS-induced UC symptoms and colonic pathological injury in mice, and inhibited IL-6, IL-1β, TNF-α secretion and inflammatory DC proliferation and activation maturation. Network pharmacology predicted that evodiamine, isobavachalcone, curcumin, and engenol may play a key role in SSP. RNA sequencing revealed that miR-505-3p, as the differential miRNA, shared a large number of transcription factors with E-cadherin, and was involved in inflammatory differentiation regulation. In vivo experiments confirmed that SSP accelerated apoptosis, slowed down proliferation, inhibited inflammatory differentiation and IL-6, IL-1β, and TNF-α secretion in BMDCs, and decreased miR-505-3p, CDH1, and E-cadherin levels. After knocking down miR-505-3p, SSP could not regulate the inflammatory differentiation and IL-6, IL-1β, TNF-α level in BMDCs. Additionally, evodiamine was found and verified to be the key active ingredient of SSP in preventing the inflammatory differatiation of DCs. CONCLUSION SSP prevented the inflammatory differentiation of DCs by downregulating the expression of miR-505-3p, in which Evodiamine may played a key role.
Collapse
Affiliation(s)
- Jiaqi Huang
- Department of Postgraduate, Jiangxi University of Chinese Medicine, Nanchang 330004, Jiangxi Province, China
| | - Youbao Zhong
- Laboratory Animal Research Center for Science and Technology, Jiangxi University of Chinese Medicine, Nanchang 330004, Jiangxi Province, China
| | - Nian Cheng
- Department of Postgraduate, Jiangxi University of Chinese Medicine, Nanchang 330004, Jiangxi Province, China
| | - Zheyan Zhang
- Department of Postgraduate, Jiangxi University of Chinese Medicine, Nanchang 330004, Jiangxi Province, China
| | - Li Huang
- Department of Postgraduate, Jiangxi University of Chinese Medicine, Nanchang 330004, Jiangxi Province, China
| | - Lizhao Song
- Department of Postgraduate, Jiangxi University of Chinese Medicine, Nanchang 330004, Jiangxi Province, China
| | - Shaomin Cheng
- Formula-Pattern Research Center of Jiangxi University of Chinese Medicine, Nanchang 330004, Jiangxi Province, China; College of Traditional Chinese Medicine, Jiangxi University of Chinese Medicine, Nanchang 330004, Jiangxi Province, China.
| | - Haimei Zhao
- College of Traditional Chinese Medicine, Jiangxi University of Chinese Medicine, Nanchang 330004, Jiangxi Province, China.
| | - Duanyong Liu
- Formula-Pattern Research Center of Jiangxi University of Chinese Medicine, Nanchang 330004, Jiangxi Province, China; School of Nursing, Jiangxi University of Chinese Medicine, Nanchang 330004, Jiangxi Province, China.
| |
Collapse
|
43
|
Leyva-Castillo JM, Das M, Strakosha M, McGurk A, Artru E, Kam C, Alasharee M, Wesemann DR, Tomura M, Karasuyama H, Brombacher F, Geha RS. IL-4 acts on skin-derived dendritic cells to promote the T H2 response to cutaneous sensitization and the development of allergic skin inflammation. J Allergy Clin Immunol 2024; 154:1462-1471.e3. [PMID: 38996877 PMCID: PMC11625010 DOI: 10.1016/j.jaci.2024.06.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 06/06/2024] [Accepted: 06/24/2024] [Indexed: 07/14/2024]
Abstract
BACKGROUND Atopic dermatitis is characterized by scratching and a TH2-dominated local and systemic response to cutaneously encountered antigens. Dendritic cells (DCs) capture antigens in the skin and rapidly migrate to draining lymph nodes (dLNs) where they drive the differentiation of antigen-specific naive T cells. OBJECTIVE We sought to determine whether non-T-cell-derived IL-4 acts on skin-derived DCs to promote the TH2 response to cutaneously encountered antigen and allergic skin inflammation. METHODS DCs from dLNs of ovalbumin (OVA)-exposed skin were analyzed by flow cytometry and for their ability to polarize OVA-specific naive CD4+ T cells. Skin inflammation following epicutaneous sensitization of tape-stripped skin was assessed by flow cytometry of skin cells and real-time quantitative PCR of cytokines. Cytokine secretion and antibody levels were evaluated by ELISA. RESULTS Scratching upregulated IL4 expression in human skin. Similarly, tape stripping caused rapid basophil-dependent upregulation of cutaneous Il4 expression in mouse skin. In vitro treatment of DCs from skin dLNs with IL-4 promoted their capacity to drive TH2 differentiation. DCs from dLNs of OVA-sensitized skin of Il4-/- mice and CD11c-CreIl4rflox/- mice, which lack IL-4Rα expression in DCs (DCΔ/Δll4ra mice), were impaired in their capacity to drive TH2 polarization compared with DCs from controls. Importantly, OVA-sensitized DCΔ/Δll4ra mice demonstrated impaired allergic skin inflammation and OVA-specific systemic TH2 response evidenced by reduced TH2 cytokine secretion by OVA-stimulated splenocytes and lower levels of OVA-specific IgE and IgG1 antibodies, compared with controls. CONCLUSIONS Mechanical skin injury causes basophil-dependent upregulation of cutaneous IL-4. IL-4 acts on skin DCs that capture antigen and migrate to dLNs to promote their capacity for TH2 polarization and drive allergic skin inflammation.
Collapse
Affiliation(s)
| | - Mrinmoy Das
- Division of Immunology, Department of Pediatrics, Boston Children's Hospital, Boston, Mass
| | - Maria Strakosha
- Division of Immunology, Department of Pediatrics, Boston Children's Hospital, Boston, Mass
| | - Alex McGurk
- Division of Immunology, Department of Pediatrics, Boston Children's Hospital, Boston, Mass
| | - Emilie Artru
- Division of Immunology, Department of Pediatrics, Boston Children's Hospital, Boston, Mass
| | - Christy Kam
- Division of Immunology, Department of Pediatrics, Boston Children's Hospital, Boston, Mass
| | - Mohammed Alasharee
- Division of Immunology, Department of Pediatrics, Boston Children's Hospital, Boston, Mass
| | - Duane R Wesemann
- Division of Allergy and Clinical Immunology, Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Mass; Broad Institute, Cambridge, Mass; Ragon Institute, Cambridge, Mass
| | - Michio Tomura
- Laboratory of Immunology, Faculty of Pharmacy, Osaka Ohtani University, Osaka, Japan
| | - Hajime Karasuyama
- Inflammation, Infection and Immunity Laboratory, Advanced Research Institute, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Frank Brombacher
- International Center for Genetic Engineering and Biotechnology & University of Cape Town & South Africa Medical Research Council, Cape Town, South Africa
| | - Raif S Geha
- Division of Immunology, Department of Pediatrics, Boston Children's Hospital, Boston, Mass.
| |
Collapse
|
44
|
Devaraja K, Singh M, Sharan K, Aggarwal S. Coley's Toxin to First Approved Therapeutic Vaccine-A Brief Historical Account in the Progression of Immunobiology-Based Cancer Treatment. Biomedicines 2024; 12:2746. [PMID: 39767654 PMCID: PMC11726767 DOI: 10.3390/biomedicines12122746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 11/19/2024] [Accepted: 11/28/2024] [Indexed: 01/03/2025] Open
Abstract
Cancer immunobiology is one of the hot topics of discussion amongst researchers today, and immunotherapeutic modalities are among the selected few emerging approaches to cancer treatment that have exhibited a promising outlook. However, immunotherapy is not a new kid on the block; it has been around for centuries. The origin of cancer immunotherapy in modern medicine can be traced back to the initial reports of spontaneous regression of malignant tumors in some patients following an acute febrile infection, at the turn of the twentieth century. This review briefly revisits the historical accounts of immunotherapy, highlighting some of the significant developments in the field of cancer immunobiology, that have been instrumental in bringing back the immunotherapeutic approaches to the forefront of cancer research. Some of the topics covered are: Coley's toxin-the first immunotherapeutic; the genesis of the theory of immune surveillance; the discovery of T lymphocytes and dendritic cells and their roles; the role of tumor antigens; relevance of tumor microenvironment; the anti-tumor (therapeutic) ability of Bacillus Calmette- Guérin; Melacine-the first therapeutic vaccine engineered; theories of immunoediting and immunophenotyping of cancer; and Provenge-the first FDA-approved therapeutic vaccine. In this review, head and neck cancer has been taken as the reference tumor for narrating the progression of cancer immunobiology, particularly for highlighting the advent of immunotherapeutic agents.
Collapse
Affiliation(s)
- K. Devaraja
- Department of Head and Neck Surgery, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal 576104, India
| | - Manisha Singh
- Department of GI Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Krishna Sharan
- Department of Radiation Oncology, K S Hegde Medical College, Nitte University, Mangalore 574110, India;
| | - Sadhna Aggarwal
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
45
|
Corica DA, Bell SD, Miller PJ, Kasperbauer DT, Lawler NJ, Wakefield MR, Fang Y. Into the Future: Fighting Melanoma with Immunity. Cancers (Basel) 2024; 16:4002. [PMID: 39682188 DOI: 10.3390/cancers16234002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/26/2024] [Accepted: 11/28/2024] [Indexed: 12/18/2024] Open
Abstract
Immunotherapy offers a novel and promising option in the treatment of late-stage melanoma. By utilizing the immune system to assist in tumor destruction, patients have additional options after tumor progression. Immune checkpoint inhibitors reduce the ability for tumors to evade the immune system by inhibiting key surface proteins used to inactivate T-cells. Without these surface proteins, T-cells can induce cytotoxic responses against tumors. Tumor infiltrating lymphocyte therapy is a form of adoptive cell therapy that takes advantage of a small subset of T-cells that recognize and infiltrate tumors. Isolation and rapid expansion of these colonies assist the immune system in mounting a charged response that can induce remission. Tumor vaccines deliver a high dose of unique antigens expressed by tumor cells to the entire body. The introduction of large quantities of tumor antigens upregulates antigen presenting cells and leads to effective activation of the immune system against tumors. Cytokine therapy introduces high amounts of chemical messengers that are endogenous to the immune system and support T-cell expansion. While other methods of immunotherapy exist, immune checkpoint inhibitors, tumor infiltrating lymphocytes, tumor vaccines, and cytokine therapy are commonly used to treat melanoma. Like many other cancer treatments, immunotherapy is not without adverse effects, as toxicities represent a major obstacle. However, immunotherapy has been efficacious in the treatment of melanoma.
Collapse
Affiliation(s)
- Derek A Corica
- Department of Microbiology, Immunology & Pathology, Des Moines University, West Des Moines, IA 50266, USA
| | - Scott D Bell
- Department of Microbiology, Immunology & Pathology, Des Moines University, West Des Moines, IA 50266, USA
| | - Peyton J Miller
- Department of Microbiology, Immunology & Pathology, Des Moines University, West Des Moines, IA 50266, USA
| | - Daniel T Kasperbauer
- Department of Microbiology, Immunology & Pathology, Des Moines University, West Des Moines, IA 50266, USA
| | - Nicholas J Lawler
- Department of Microbiology, Immunology & Pathology, Des Moines University, West Des Moines, IA 50266, USA
| | - Mark R Wakefield
- Department of Surgery, University of Missouri School of Medicine, Columbia, MO 65212, USA
- Ellis Fischel Cancer Center, University of Missouri School of Medicine, Columbia, MO 65212, USA
| | - Yujiang Fang
- Department of Microbiology, Immunology & Pathology, Des Moines University, West Des Moines, IA 50266, USA
- Department of Surgery, University of Missouri School of Medicine, Columbia, MO 65212, USA
- Ellis Fischel Cancer Center, University of Missouri School of Medicine, Columbia, MO 65212, USA
| |
Collapse
|
46
|
Lee CB, Choi HG, Gurmessa SK, Jang IT, Kumar N, Jiang Z, Kaushik NK, Kim HJ. Enhancing antitumor immunity in Lewis lung cancer through plasma-treated medium-induced activation of dendritic cells. Cancer Cell Int 2024; 24:389. [PMID: 39580412 PMCID: PMC11585098 DOI: 10.1186/s12935-024-03569-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Accepted: 11/09/2024] [Indexed: 11/25/2024] Open
Abstract
BACKGROUND Recently, atmospheric non-thermal plasma jet-treated medium (PTM) has been recognized as a novel strategy in cancer therapy and lymphocyte activation. However, PTM has limitations in inducing a robust antitumor-immune response. This study demonstrated that PTM treatment inhibited tumor progression by activating dendritic cells (DCs). METHOD In this study, we investigated the effects of PTM on selective cytotoxicity and intracellular reactive oxygen species (ROS) generation and oxidative stress-mediated signaling (e.g., glutathione peroxidase, catalase) using respective fluorescence probes in Lewis lung cancer (LLC) cells. Then, the PTM affects the expression of interferon-gamma (IFN)-γ-induced programmed death-ligand 1 (PD-L1) and inhibition of signal transducer and activator of transcription 1 (STAT1) in LLC cells using immunoblotting. Additionally, PTM effects on the tumor cell's death and activation of DCs were done by co-culturing DCs with or without tumor cells. Further, a mouse model was used to evaluate the synergistic antitumor effects of PTM and DCs where tumors are grown under the skin. RESULTS PTM-exposed tumor cells increase intracellular superoxide production, enhancing ROS generation and leading to cancer immunogenic cell death. In addition, PTM suppresses IFN-γ-induced PD-L1 expression and STAT1 activation in tumor cells. The activation of DCs induced by PTM is downregulated when these cells are co-cultured with tumor cells. In vivo, intraperitoneal injection of PTM-activated DCs, as a synergistic agent to intertumoral PTM treatment, led to increased CD4+ and CD8+ T cell infiltration into the tumor and spleen and eventually decreased tumor growth. CONCLUSION Overall, this research introduces a promising avenue for improving lung cancer treatment using PTM to stimulate an immune response and induce cell death in tumor cells. Further studies will be essential to validate these findings and explore clinical applications.
Collapse
Affiliation(s)
- Chae Bok Lee
- Department of Microbiology, College of Medicine, Chungnam National University, Daejeon, 35015, Korea
| | - Hei Gwon Choi
- Department of Internal Medicine, College of Medicine, Chungnam National University, Daejeon, 35015, Korea
- Department of Medical Sciences, Chungnam National University, Daejeon, 35015, Korea
| | - Sintayehu Kebede Gurmessa
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, 3181 SW Sam Jackson Park Rd, Portland, OR, 97239, USA
| | - In-Taek Jang
- Department of Microbiology, College of Medicine, Chungnam National University, Daejeon, 35015, Korea
| | - Naresh Kumar
- Department of Medical Devices, National Institute of Pharmaceutical Education and Research Guwahati (NIPER-G), Kamrup, Assam, 781101, India
| | - Zongyou Jiang
- Department of Microbiology, College of Medicine, Chungnam National University, Daejeon, 35015, Korea
| | - Nagendra Kumar Kaushik
- Department of Electrical and Biological Physics, Plasma Bioscience Research Center, Kwangwoon University, Seoul, 01897, Korea
| | - Hwa-Jung Kim
- Department of Microbiology, College of Medicine, Chungnam National University, Daejeon, 35015, Korea.
| |
Collapse
|
47
|
Franken G, Cuenca-Escalona J, Stehle I, van Reijmersdal V, Rodgers Furones A, Gokhale R, Classens R, Di Blasio S, Dolen Y, van Spriel AB, Querol Cano L. Galectin-9 regulates dendritic cell polarity and uropod contraction by modulating RhoA activity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.10.30.564706. [PMID: 39605690 PMCID: PMC11601427 DOI: 10.1101/2023.10.30.564706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Adaptive immunity relies on dendritic cell (DC) migration to transport antigens from tissues to lymph nodes. Galectins, a family of β-galactoside-binding proteins, control cell membrane organisation, exerting crucial roles in multiple physiological processes. Here, we report a novel mechanism underlying cell polarity and uropod retraction. We demonstrate that galectin-9 regulates chemokine-driven and basal DC migration both in humans and mice, indicating a conserved function for this lectin. We identified the underlying mechanism, namely a deficiency in cell rear contractility mediated by galectin-9 interaction with CD44 that in turn regulates RhoA activity. Analysis of DC motility in the 3D tumour-microenvironment revealed galectin-9 is also required for DC infiltration. Moreover, exogenous galectin-9 rescued the motility of tumour-immunocompromised human blood DCs, validating the physiological relevance of galectin-9 in DC migration and underscoring its implications for DC-based immunotherapies. Our results identify galectin-9 as a necessary mechanistic component for DC motility and highlight a novel role for the lectin in regulating cell polarity and contractility.
Collapse
|
48
|
Planchon MS, Fishman JA, El Khoury J. Modulation of Monocyte Effector Functions and Gene Expression by Human Cytomegalovirus Infection. Viruses 2024; 16:1809. [PMID: 39772120 PMCID: PMC11680302 DOI: 10.3390/v16121809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 11/15/2024] [Accepted: 11/19/2024] [Indexed: 01/11/2025] Open
Abstract
Monocytes are crucial players in innate immunity. The human cytomegalovirus (CMV) infection has significant impacts on monocyte effector functions and gene expression. CMV, a β-herpesvirus, disrupts key monocyte roles, including phagocytosis, antigen presentation, cytokine production, and migration, impairing their ability to combat pathogens and activate adaptive immune responses. CMV modulates monocyte gene expression, decreasing their capacity for antigen presentation and phagocytosis while increasing pro-inflammatory cytokine production, which can contribute to tissue damage and chronic inflammation. CMV also alters monocyte migration to sites of infection while promoting trans-endothelial migration, thus aiding viral dissemination. Additionally, the virus affects reactive oxygen species (ROS) production, thereby contributing to end-organ disease associated with CMV infection. Overall, these changes enhance viral persistence during acute infection and facilitate immune evasion during latency. We highlight the clinical significance of these disruptions, particularly in immunocompromised patients such as transplant recipients, where the modulation of monocyte function by CMV exacerbates risks for infection, inflammation, and graft rejection. An understanding of these mechanisms will inform therapeutic strategies to mitigate CMV-related complications in vulnerable populations.
Collapse
Affiliation(s)
- Matthew S. Planchon
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02129, USA;
- Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Jay A. Fishman
- Transplant Infectious Disease and Compromised Host Program, Division of Infectious Diseases, Massachusetts General Hospital, and Harvard Medical School, Boston, MA 02114, USA;
| | - Joseph El Khoury
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02129, USA;
- Transplant Infectious Disease and Compromised Host Program, Division of Infectious Diseases, Massachusetts General Hospital, and Harvard Medical School, Boston, MA 02114, USA;
| |
Collapse
|
49
|
Finkina EI, Bogdanov IV, Shevchenko OV, Fateeva SI, Ignatova AA, Balandin SV, Ovchinnikova TV. Immunomodulatory Effects of the Tobacco Defensin NaD1. Antibiotics (Basel) 2024; 13:1101. [PMID: 39596794 PMCID: PMC11591356 DOI: 10.3390/antibiotics13111101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/13/2024] [Accepted: 11/14/2024] [Indexed: 11/29/2024] Open
Abstract
Background/Objectives: Defensins are important components of the innate plant immune system, exhibiting antimicrobial activity against phytopathogens, as well as against fungi pathogenic to humans. Along with antifungal activity, plant defensins are also capable of influencing various immune processes, but not much is known about these effects. In this study, we investigated the immunomodulatory effects of the tobacco defensin NaD1, which possesses a pronounced antifungal activity. Methods and Results: We showed that NaD1 could penetrate the Caco-2 polarized monolayer. Using a multiplex assay with a panel of 48 cytokines, chemokines and growth factors, we demonstrated that NaD1 at a concentration of 2 μM had immunomodulatory effects on human dendritic cells and blood monocytes, mainly inhibiting the production of various immune factors. Using the sandwich ELISA method, we demonstrated that NaD1 at the same concentration had a pronounced immunomodulatory effect on unstimulated THP-1-derived macrophages and those stimulated by bacterial LPS or fungal zymosan. NaD1 had a dual effect and induced the production of both pro-inflammatory cytokine IL-1β as well as anti-inflammatory IL-10 on resting and pro-inflammatory THP-1-derived macrophages. We also found that the immunomodulatory effects of the tobacco defensin NaD1 and the pea defensin Psd1 differed from each other, indicating nonuniformity in the modes of action of plant defensins. Conclusions: Thus, our data demonstrated that the tobacco defensin NaD1 exhibits different immunomodulatory effects on various immune cells. We hypothesized that influence on human immune system along with antifungal activity, could determine the effectiveness of this peptide under infection in vivo.
Collapse
Affiliation(s)
- Ekaterina I. Finkina
- M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia (T.V.O.)
| | - Ivan V. Bogdanov
- M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia (T.V.O.)
| | - Olga V. Shevchenko
- M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia (T.V.O.)
- Moscow Center for Advanced Studies, 123592 Moscow, Russia
| | - Serafima I. Fateeva
- M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia (T.V.O.)
- Department of Bioorganic Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Anastasia A. Ignatova
- M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia (T.V.O.)
| | - Sergey V. Balandin
- M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia (T.V.O.)
| | - Tatiana V. Ovchinnikova
- M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia (T.V.O.)
- Moscow Center for Advanced Studies, 123592 Moscow, Russia
- Department of Bioorganic Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia
| |
Collapse
|
50
|
Mor G, Singh A, Yang J, Adzibolosu N, Cai S, Kauf E, Yang L, Li Q, Li H, Werner A, Parthasarathy S, Ding J, Fortier J, Rodriguez-Garcia M, Diao LH. Decoding Functional and Developmental Trajectories of Tissue-Resident Uterine Dendritic Cells Through Integrative Omics. RESEARCH SQUARE 2024:rs.3.rs-5424920. [PMID: 39606471 PMCID: PMC11601813 DOI: 10.21203/rs.3.rs-5424920/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Uterine dendritic cells (uDCs) are critical for endometrial function, yet their origin, molecular characteristics, and specific roles during the pre- and post-implantation periods in the human endometrium remain largely unknown. The complexity of the endometrial environment makes defining the contributions of uDCs subtypes challenging. We hypothesize that distinct uDC subsets carry out specialized functions, and that resident progenitor DCs generate these subtypes. Employing single-cell RNA sequencing on uterine tissues collected across different menstrual phases and during early pregnancy, we identify several uDCs subtypes, including resident progenitor DCs. CITE-seq was performed on endometrial single-cell suspensions to link surface protein expression with key genes identified by the RNAseq analysis. Our analysis revealed the developmental trajectory of the uDCs along with the distinct functional roles of each uDC subtype, including immune regulation, antigen presentation, and creating a conducive environment for embryo implantation. This study provides a comprehensive characterization of uDCs, serving as a foundational reference for future studies for better understanding female reproductive disorders such as infertility and pregnancy complications.
Collapse
Affiliation(s)
| | | | - Jing Yang
- National Institute for Data Science in Health and Medicine, School of Medicine, Xiamen University, Xiamen 361102, China
| | | | - Songchen Cai
- Shenzhen Zhongshan Obstetrics & Gynecology Hospital
| | | | | | - Qiyuan Li
- National Institute for Data Science in Health and Medicine, School of Medicine, Xiamen University, Xiamen 361102, China
| | - Hanjie Li
- Shenzhen Institutes of Advanced Technology
| | | | | | | | | | | | | |
Collapse
|