1
|
Younis MA, Harashima H. Understanding Gene Involvement in Hepatocellular Carcinoma: Implications for Gene Therapy and Personalized Medicine. Pharmgenomics Pers Med 2024; 17:193-213. [PMID: 38737776 PMCID: PMC11088404 DOI: 10.2147/pgpm.s431346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 04/09/2024] [Indexed: 05/14/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is the dominant type of liver cancers and is one of the deadliest health threats globally. The conventional therapeutic options for HCC are hampered by low efficiency and intolerable side effects. Gene therapy, however, now offers hope for the treatment of many disorders previously considered incurable, and gene therapy is beginning to address many of the shortcomings of conventional therapies. Herein, we summarize the involvement of genes in the pathogenesis and prognosis of HCC, with a special focus on dysregulated signaling pathways, genes involved in immune evasion, and non-coding RNAs as novel two-edged players, which collectively offer potential targets for the gene therapy of HCC. Herein, the opportunities and challenges of HCC gene therapy are discussed. These include innovative therapies such as genome editing and cell therapies. Moreover, advanced gene delivery technologies that recruit nanomedicines for use in gene therapy for HCC are highlighted. Finally, suggestions are offered for improved clinical translation and future directions in this area of endeavor.
Collapse
Affiliation(s)
- Mahmoud A Younis
- Laboratory of Innovative Nanomedicine, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, 060-0812, Japan
- Department of Industrial Pharmacy, Faculty of Pharmacy, Assiut University, Assiut, 71526, Egypt
| | - Hideyoshi Harashima
- Laboratory of Innovative Nanomedicine, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, 060-0812, Japan
| |
Collapse
|
2
|
Jiménez DJ, Javed A, Rubio-Tomás T, Seye-Loum N, Barceló C. Clinical and Preclinical Targeting of Oncogenic Pathways in PDAC: Targeted Therapeutic Approaches for the Deadliest Cancer. Int J Mol Sci 2024; 25:2860. [PMID: 38474109 DOI: 10.3390/ijms25052860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/22/2024] [Accepted: 01/30/2024] [Indexed: 03/14/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the leading causes of cancer-related death worldwide. It is commonly diagnosed in advanced stages and therapeutic interventions are typically constrained to systemic chemotherapy, which yields only modest clinical outcomes. In this review, we examine recent developments in targeted therapy tailored to address distinct molecular pathway alteration required for PDAC. Our review delineates the principal signaling pathways and molecular mechanisms implicated in the initiation and progression of PDAC. Subsequently, we provide an overview of prevailing guidelines, ongoing investigations, and prospective research trajectories related to targeted therapeutic interventions, drawing insights from randomized clinical trials and other pertinent studies. This review focus on a comprehensive examination of preclinical and clinical data substantiating the efficacy of these therapeutic modalities, emphasizing the potential of combinatorial regimens and novel therapies to enhance the quality of life for individuals afflicted with PDAC. Lastly, the review delves into the contemporary application and ongoing research endeavors concerning targeted therapy for PDAC. This synthesis serves to bridge the molecular elucidation of PDAC with its clinical implications, the evolution of innovative therapeutic strategies, and the changing landscape of treatment approaches.
Collapse
Affiliation(s)
- Diego J Jiménez
- Translational Pancreatic Cancer Oncogenesis Group, Health Research Institute of the Balearic Islands (IdISBa), Hospital Universitari Son Espases, 07120 Palma de Mallorca, Spain
| | - Aadil Javed
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Teresa Rubio-Tomás
- School of Medicine, University of Crete, 70013 Herakleion, Crete, Greece
| | - Ndioba Seye-Loum
- Translational Pancreatic Cancer Oncogenesis Group, Health Research Institute of the Balearic Islands (IdISBa), Hospital Universitari Son Espases, 07120 Palma de Mallorca, Spain
| | - Carles Barceló
- Translational Pancreatic Cancer Oncogenesis Group, Health Research Institute of the Balearic Islands (IdISBa), Hospital Universitari Son Espases, 07120 Palma de Mallorca, Spain
| |
Collapse
|
3
|
Suresh D, Srinivas AN, Prashant A, Harikumar KB, Kumar DP. Therapeutic options in hepatocellular carcinoma: a comprehensive review. Clin Exp Med 2023; 23:1901-1916. [PMID: 36780119 DOI: 10.1007/s10238-023-01014-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 01/27/2023] [Indexed: 02/14/2023]
Abstract
Hepatocellular carcinoma (HCC) is a chronic liver disease that is highly fatal if not detected and treated early. The incidence and death rate of HCC have been increasing in recent decades despite the measures taken for preventive screening and effective diagnostic and treatment strategies. The pathophysiology of HCC is multifactorial and highly complex owing to its molecular and immune heterogeneity, and thus the gap in knowledge still precludes making choices between viable therapeutic options and also the development of effective regimens. The treatment of HCC demands multidisciplinary approaches and primarily depends on tumor stage, hepatic functional reserve, and response to treatment by patients. Although curative treatments are limited but critical in the early stages of cancer, there are numerous palliative treatments available for patients with intermediate and advanced-stage HCC. In recent times, the use of combination therapy has succeeded over the use of monotherapy in the treatment of HCC by achieving effective tumor suppression, increasing survival rate, decreasing toxicity, and also aiding in overcoming drug resistance. This work focuses on reviewing the current and emerging treatment strategies for HCC.
Collapse
Affiliation(s)
- Diwakar Suresh
- Department of Biochemistry, CEMR, JSS Medical College, JSS Academy of Higher Education and Research, SS Nagar, Mysuru, 570015, India
| | - Akshatha N Srinivas
- Department of Biochemistry, CEMR, JSS Medical College, JSS Academy of Higher Education and Research, SS Nagar, Mysuru, 570015, India
| | - Akila Prashant
- Department of Biochemistry, CEMR, JSS Medical College, JSS Academy of Higher Education and Research, SS Nagar, Mysuru, 570015, India
| | - Kuzhuvelil B Harikumar
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvananthapuram, 695014, India
| | - Divya P Kumar
- Department of Biochemistry, CEMR, JSS Medical College, JSS Academy of Higher Education and Research, SS Nagar, Mysuru, 570015, India.
| |
Collapse
|
4
|
Jiang D, Xu T, Zhong L, Liang Q, Hu Y, Xiao W, Shi J. Research progress of VEGFR small molecule inhibitors in ocular neovascular diseases. Eur J Med Chem 2023; 257:115535. [PMID: 37285684 DOI: 10.1016/j.ejmech.2023.115535] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/24/2023] [Accepted: 05/28/2023] [Indexed: 06/09/2023]
Abstract
Angiogenesis is the biological process in which existing blood vessels generate new ones and it is essential for body growth and development, wound healing, and granulation tissue formation. Vascular endothelial growth factor receptor (VEGFR) is a crucial cell membrane receptor that binds to VEGF to regulate angiogenesis and maintenance. Dysregulation of VEGFR signaling can lead to several diseases, such as cancer and ocular neovascular disease, making it a crucial research area for disease treatment. Currently, anti-VEGF drugs commonly used in ophthalmology are mainly four macromolecular drugs, Bevacizumab, Ranibizumab, Conbercept and Aflibercept. Although these drugs are relatively effective in treating ocular neovascular diseases, their macromolecular properties, strong hydrophilicity, and poor blood-eye barrier penetration limit their efficacy. However, VEGFR small molecule inhibitors possess high cell permeability and selectivity, allowing them to traverse and bind to VEGF-A specifically. Consequently, they have a shorter duration of action on the target, and they offer significant therapeutic benefits to patients in the short term. Consequently, there is a need to develop small molecule inhibitors of VEGFR to target ocular neovascularization diseases. This review summarizes the recent developments in potential VEGFR small molecule inhibitors for the targeted treatment of ocular neovascularization diseases, with the aim of providing insights for future studies on VEGFR small molecule inhibitors.
Collapse
Affiliation(s)
- Die Jiang
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Ting Xu
- Department of Anesthesiology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610072, China
| | - Lei Zhong
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Qi Liang
- College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan, 611756, China
| | - Yonghe Hu
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China; Department of Pharmacy, The General Hospital of Western Theater Command of PLA, Chengdu, 610083, China.
| | - Wenjing Xiao
- Department of Pharmacy, The General Hospital of Western Theater Command of PLA, Chengdu, 610083, China.
| | - Jianyou Shi
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China; State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
5
|
Gaitskell K, Rogozińska E, Platt S, Chen Y, Abd El Aziz M, Tattersall A, Morrison J. Angiogenesis inhibitors for the treatment of epithelial ovarian cancer. Cochrane Database Syst Rev 2023; 4:CD007930. [PMID: 37185961 PMCID: PMC10111509 DOI: 10.1002/14651858.cd007930.pub3] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
BACKGROUND Many women, and other females, with epithelial ovarian cancer (EOC) develop resistance to conventional chemotherapy drugs. Drugs that inhibit angiogenesis (development of new blood vessels), essential for tumour growth, control cancer growth by denying blood supply to tumour nodules. OBJECTIVES To compare the effectiveness and toxicities of angiogenesis inhibitors for treatment of epithelial ovarian cancer (EOC). SEARCH METHODS We identified randomised controlled trials (RCTs) by searching CENTRAL, MEDLINE and Embase (from 1990 to 30 September 2022). We searched clinical trials registers and contacted investigators of completed and ongoing trials for further information. SELECTION CRITERIA RCTs comparing angiogenesis inhibitors with standard chemotherapy, other types of anti-cancer treatment, other angiogenesis inhibitors with or without other treatments, or placebo/no treatment in a maintenance setting, in women with EOC. DATA COLLECTION AND ANALYSIS: We used standard methodological procedures expected by Cochrane. Our outcomes were overall survival (OS), progression-free survival (PFS), quality of life (QoL), adverse events (grade 3 and above) and hypertension (grade 2 and above). MAIN RESULTS We identified 50 studies (14,836 participants) for inclusion (including five studies from the previous version of this review): 13 solely in females with newly-diagnosed EOC and 37 in females with recurrent EOC (nine studies in platinum-sensitive EOC; 19 in platinum-resistant EOC; nine with studies with mixed or unclear platinum sensitivity). The main results are presented below. Newly-diagnosed EOC Bevacizumab, a monoclonal antibody that binds vascular endothelial growth factor (VEGF), given with chemotherapy and continued as maintenance, likely results in little to no difference in OS compared to chemotherapy alone (hazard ratio (HR) 0.97, 95% confidence interval (CI) 0.88 to 1.07; 2 studies, 2776 participants; moderate-certainty evidence). Evidence is very uncertain for PFS (HR 0.82, 95% CI 0.64 to 1.05; 2 studies, 2746 participants; very low-certainty evidence), although the combination results in a slight reduction in global QoL (mean difference (MD) -6.4, 95% CI -8.86 to -3.94; 1 study, 890 participants; high-certainty evidence). The combination likely increases any adverse event (grade ≥ 3) (risk ratio (RR) 1.16, 95% CI 1.07 to 1.26; 1 study, 1485 participants; moderate-certainty evidence) and may result in a large increase in hypertension (grade ≥ 2) (RR 4.27, 95% CI 3.25 to 5.60; 2 studies, 2707 participants; low-certainty evidence). Tyrosine kinase inhibitors (TKIs) to block VEGF receptors (VEGF-R), given with chemotherapy and continued as maintenance, likely result in little to no difference in OS (HR 0.99, 95% CI 0.84 to 1.17; 2 studies, 1451 participants; moderate-certainty evidence) and likely increase PFS slightly (HR 0.88, 95% CI 0.77 to 1.00; 2 studies, 2466 participants; moderate-certainty evidence). The combination likely reduces QoL slightly (MD -1.86, 95% CI -3.46 to -0.26; 1 study, 1340 participants; moderate-certainty evidence), but it increases any adverse event (grade ≥ 3) slightly (RR 1.31, 95% CI 1.11 to 1.55; 1 study, 188 participants; moderate-certainty evidence) and may result in a large increase in hypertension (grade ≥ 3) (RR 6.49, 95% CI 2.02 to 20.87; 1 study, 1352 participants; low-certainty evidence). Recurrent EOC (platinum-sensitive) Moderate-certainty evidence from three studies (with 1564 participants) indicates that bevacizumab with chemotherapy, and continued as maintenance, likely results in little to no difference in OS (HR 0.90, 95% CI 0.79 to 1.02), but likely improves PFS (HR 0.56, 95% CI 0.50 to 0.63) compared to chemotherapy alone. The combination may result in little to no difference in QoL (MD 0.8, 95% CI -2.11 to 3.71; 1 study, 486 participants; low-certainty evidence), but it increases the rate of any adverse event (grade ≥ 3) slightly (RR 1.11, 1.07 to 1.16; 3 studies, 1538 participants; high-certainty evidence). Hypertension (grade ≥ 3) was more common in arms with bevacizumab (RR 5.82, 95% CI 3.84 to 8.83; 3 studies, 1538 participants). TKIs with chemotherapy may result in little to no difference in OS (HR 0.86, 95% CI 0.67 to 1.11; 1 study, 282 participants; low-certainty evidence), likely increase PFS (HR 0.56, 95% CI 0.44 to 0.72; 1 study, 282 participants; moderate-certainty evidence), and may have little to no effect on QoL (MD 6.1, 95% CI -0.96 to 13.16; 1 study, 146 participants; low-certainty evidence). Hypertension (grade ≥ 3) was more common with TKIs (RR 3.32, 95% CI 1.21 to 9.10). Recurrent EOC (platinum-resistant) Bevacizumab with chemotherapy and continued as maintenance increases OS (HR 0.73, 95% CI 0.61 to 0.88; 5 studies, 778 participants; high-certainty evidence) and likely results in a large increase in PFS (HR 0.49, 95% CI 0.42 to 0.58; 5 studies, 778 participants; moderate-certainty evidence). The combination may result in a large increase in hypertension (grade ≥ 2) (RR 3.11, 95% CI 1.83 to 5.27; 2 studies, 436 participants; low-certainty evidence). The rate of bowel fistula/perforation (grade ≥ 2) may be slightly higher with bevacizumab (RR 6.89, 95% CI 0.86 to 55.09; 2 studies, 436 participants). Evidence from eight studies suggest TKIs with chemotherapy likely result in little to no difference in OS (HR 0.85, 95% CI 0.68 to 1.08; 940 participants; moderate-certainty evidence), with low-certainty evidence that it may increase PFS (HR 0.70, 95% CI 0.55 to 0.89; 940 participants), and may result in little to no meaningful difference in QoL (MD ranged from -0.19 at 6 weeks to -3.40 at 4 months). The combination increases any adverse event (grade ≥ 3) slightly (RR 1.23, 95% CI 1.02 to 1.49; 3 studies, 402 participants; high-certainty evidence). The effect on bowel fistula/perforation rates is uncertain (RR 2.74, 95% CI 0.77 to 9.75; 5 studies, 557 participants; very low-certainty evidence). AUTHORS' CONCLUSIONS Bevacizumab likely improves both OS and PFS in platinum-resistant relapsed EOC. In platinum-sensitive relapsed disease, bevacizumab and TKIs probably improve PFS, but may or may not improve OS. The results for TKIs in platinum-resistant relapsed EOC are similar. The effects on OS or PFS in newly-diagnosed EOC are less certain, with a decrease in QoL and increase in adverse events. Overall adverse events and QoL data were more variably reported than were PFS data. There appears to be a role for anti-angiogenesis treatment, but given the additional treatment burden and economic costs of maintenance treatments, benefits and risks of anti-angiogenesis treatments should be carefully considered.
Collapse
Affiliation(s)
- Kezia Gaitskell
- Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | | | - Sarah Platt
- Obstetrics and Gynaecology, St Mary's Hospital, University Hospitals Bristol and Weston NHS Foundation Trust, Bristol, UK
- Department of Gynaecological Oncology, St. Michael's Hospital, Bristol, UK
| | - Yifan Chen
- Oxford Medical School, University of Oxford, Oxford, UK
| | | | | | - Jo Morrison
- Department of Gynaecological Oncology, Musgrove Park Hospital, Somerset NHS Foundation Trust, Taunton, UK
| |
Collapse
|
6
|
Liu H, Su H, Wang F, Dang Y, Ren Y, Yin S, Lu H, Zhang H, Wu J, Xu Z, Zheng M, Gao J, Cao Y, Xu J, Chen L, Wu X, Ma M, Xu L, Wang F, Chen J, Su C, Wu C, Xie H, Gu J, Xi JJ, Ge B, Fei Y, Chen C. Pharmacological boosting of cGAS activation sensitizes chemotherapy by enhancing antitumor immunity. Cell Rep 2023; 42:112275. [PMID: 36943864 DOI: 10.1016/j.celrep.2023.112275] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 01/18/2023] [Accepted: 03/01/2023] [Indexed: 03/23/2023] Open
Abstract
Enhancing chemosensitivity is one of the largest unmet medical needs in cancer therapy. Cyclic GMP-AMP synthase (cGAS) connects genome instability caused by platinum-based chemotherapeutics to type I interferon (IFN) response. Here, by using a high-throughput small-molecule microarray-based screening of cGAS interacting compounds, we identify brivanib, known as a dual inhibitor of vascular endothelial growth factor receptor and fibroblast growth factor receptor, as a cGAS modulator. Brivanib markedly enhances cGAS-mediated type I IFN response in tumor cells treated with platinum. Mechanistically, brivanib directly targets cGAS and enhances its DNA binding affinity. Importantly, brivanib synergizes with cisplatin in tumor control by boosting CD8+ T cell response in a tumor-intrinsic cGAS-dependent manner, which is further validated by a patient-derived tumor-like cell clusters model. Taken together, our findings identify cGAS as an unprecedented target of brivanib and provide a rationale for the combination of brivanib with platinum-based chemotherapeutics in cancer treatment.
Collapse
Affiliation(s)
- Haipeng Liu
- Clinical and Translational Research Center, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China; Central Laboratory, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China; Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China; Shanghai HUASHEN Institute of Microbes and Infections, Shanghai 200052, China.
| | - Hang Su
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
| | - Fei Wang
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
| | - Yifang Dang
- Clinical and Translational Research Center, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China; Central Laboratory, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China; Shanghai HUASHEN Institute of Microbes and Infections, Shanghai 200052, China
| | - Yijiu Ren
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
| | - Shenyi Yin
- College of Future Technology, Peking University, Beijing 100871, China
| | - Huinan Lu
- GeneX Health Co. Ltd., Beijing 100195, China
| | - Hang Zhang
- Department of Optical Science and Engineering, Shanghai Engineering Research Center of Ultra-Precision Optical Manufacturing, Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), Fudan University, Shanghai 200433, China
| | - Jun Wu
- Center for Bioinformatics and Computational Biology, and the Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Zhu Xu
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Mengge Zheng
- Clinical and Translational Research Center, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China; Central Laboratory, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
| | - Jiani Gao
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
| | - Yajuan Cao
- Clinical and Translational Research Center, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China; Central Laboratory, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
| | - Junfang Xu
- Clinical and Translational Research Center, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China; Central Laboratory, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
| | - Li Chen
- Clinical and Translational Research Center, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China; Central Laboratory, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
| | - Xiangyang Wu
- Clinical and Translational Research Center, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China; Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
| | - Mingtong Ma
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
| | - Long Xu
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
| | - Fang Wang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
| | - Jianxia Chen
- Clinical and Translational Research Center, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China; Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
| | - Chunxia Su
- Department of Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
| | - Chunyan Wu
- Department of Pathology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
| | - Huikang Xie
- Department of Pathology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
| | - Jijie Gu
- WuXi Biologics (Shanghai) Co., Ltd., Shanghai City 201401, China
| | - Jianzhong Jeff Xi
- College of Future Technology, Peking University, Beijing 100871, China
| | - Baoxue Ge
- Clinical and Translational Research Center, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China; Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China.
| | - Yiyan Fei
- Department of Optical Science and Engineering, Shanghai Engineering Research Center of Ultra-Precision Optical Manufacturing, Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), Fudan University, Shanghai 200433, China.
| | - Chang Chen
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China.
| |
Collapse
|
7
|
Khachigian LM, Liew G, Teo KYC, Wong TY, Mitchell P. Emerging therapeutic strategies for unmet need in neovascular age-related macular degeneration. J Transl Med 2023; 21:133. [PMID: 36810060 PMCID: PMC9942398 DOI: 10.1186/s12967-023-03937-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 01/27/2023] [Indexed: 02/23/2023] Open
Abstract
Neovascular age-related macular degeneration (nAMD) is a major cause of visual impairment and blindness. Anti-vascular endothelial growth factor (VEGF) agents, such as ranibizumab, bevacizumab, aflibercept, brolucizumab and faricimab have revolutionized the clinical management of nAMD. However, there remains an unmet clinical need for new and improved therapies for nAMD, since many patients do not respond optimally, may lose response over time or exhibit sub-optimal durability, impacting on real world effectiveness. Evidence is emerging that targeting VEGF-A alone, as most agents have done until recently, may be insufficient and agents that target multiple pathways (e.g., aflibercept, faricimab and others in development) may be more efficacious. This article reviews issues and limitations that have arisen from the use of existing anti-VEGF agents, and argues that the future may lie in multi-targeted therapies including alternative agents and modalities that target both the VEGF ligand/receptor system as well as other pathways.
Collapse
Affiliation(s)
- Levon M. Khachigian
- grid.1005.40000 0004 4902 0432Vascular Biology and Translational Research, Faculty of Medicine and Health, School of Medical Sciences, University of New South Wales, Sydney, NSW 2052 Australia
| | - Gerald Liew
- grid.476921.fCentre for Vision Research, Westmead Institute for Medical Research, University of Sydney, Westmead, Australia
| | - Kelvin Y. C. Teo
- grid.419272.b0000 0000 9960 1711Singapore National Eye Centre and Singapore Eye Research Institute, Singapore, Singapore ,grid.4280.e0000 0001 2180 6431Duke-NUS Graduate Medical School, National University of Singapore, Singapore, Singapore
| | - Tien Y. Wong
- grid.419272.b0000 0000 9960 1711Singapore National Eye Centre and Singapore Eye Research Institute, Singapore, Singapore ,grid.4280.e0000 0001 2180 6431Duke-NUS Graduate Medical School, National University of Singapore, Singapore, Singapore ,grid.12527.330000 0001 0662 3178Tsinghua Medicine, Tsinghua University, Beijing, China
| | - Paul Mitchell
- grid.476921.fCentre for Vision Research, Westmead Institute for Medical Research, University of Sydney, Westmead, Australia
| |
Collapse
|
8
|
Liu Y, Gao P, Liang X, Zhang Y, Yu X, Xue X, Kockaya L, Pandey P, Doerksen RJ, Wang X, Yao G, Chu W, Chen X, Song S, Hamann MT, Li L. Prenylated flavonoids with significant anti-hepatoma activity from Daphne giraldii and effects on Fibroblast Growth Factor Receptor 1 (FGFR1). Eur J Med Chem 2023; 247:115006. [PMID: 36549116 PMCID: PMC11173874 DOI: 10.1016/j.ejmech.2022.115006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/23/2022] [Accepted: 12/03/2022] [Indexed: 12/14/2022]
Abstract
We report here the orchestration of molecular ion networking (MoIN) and a set of computational and informatics assisted structural elucidation approaches in the discovery of 23 new prenyl-flavonoids and 13 known molecules from Daphne giraldii Nitsche (Thymelaeaceae), some of which possess significant bioactivity against hepatoma carcinoma. Daphnegiratriprenylone A (DPTP-A) represents the class of polyprenyl-flavonoids possessing a triprenyl substitution, and was identified with the guidance of mass spectrometry and nuclear magnetic resonance combined with computational approaches. This approach illustrates a paradigm shift in the application of computational tools for the direct assignment of new natural product structures and it was demonstrated to be reliable compared to conventional 2D-NMR techniques. Seventeen compounds exhibited potent and selective activity against Hep3B cells (IC50 ranging from 0.42 to 7.08 μM). Tyrosine kinase FGFR1 has emerged as a potential target of polyprenyl-flavonoids by a reverse pharmacophore mapping approach. We validated that the prenyl-flavonoids effectively inhibit FGFR1 using the Mobility Shift Assay, Western blot and molecular dynamics simulations, and the results suggest significant potency of the compounds towards FGFR1. These findings provide a new chemical class with strong links to traditional medicines, possessing reasonable safety for developing potential therapeutic agents for FGFR1-related diseases.
Collapse
Affiliation(s)
- Ying Liu
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, PR China
| | - Pinyi Gao
- College of Pharmaceutical and Biotechnology Engineering, Shenyang University of Chemical Technology, Shenyang, 110142, PR China
| | - Xiao Liang
- College of Pharmacy, Liaoning University, 66 Chongshan Road, Shenyang, 110036, Liaoning, PR China
| | - Yangyang Zhang
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, PR China
| | - Xiaoqi Yu
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, PR China
| | - Xiaobian Xue
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, PR China
| | - Lara Kockaya
- Division of Medicinal Chemistry, Department of BioMolecular Sciences, University of Mississippi, Mississippi, 38677, USA
| | - Pankaj Pandey
- National Center for Natural Products Research, School of Pharmacy, University of Mississippi, Mississippi, 38677, USA
| | - Robert J Doerksen
- Division of Medicinal Chemistry, Department of BioMolecular Sciences, University of Mississippi, Mississippi, 38677, USA
| | - Xiaojuan Wang
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, Gansu, PR China
| | - Guodong Yao
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, PR China
| | - Wanchun Chu
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, PR China
| | - Xin Chen
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, PR China
| | - Shaojiang Song
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, PR China
| | - Mark T Hamann
- College of Pharmacy & Medicine, Medical University of South Carolina, Charleston, SC, 29425-5700, USA.
| | - Lingzhi Li
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, PR China.
| |
Collapse
|
9
|
Cai J, Zhang R. Molecular Structure and Supramolecular Architecture of Brivanib: (R)-1-(4-(4-Fluoro-2-methyl-1H-indol-5-yloxy)-5-methylpyrrolo[2,1-f] [1,2,4]triazin-6-yloxy)propan-2-ol. CRYSTALLOGR REP+ 2022. [DOI: 10.1134/s1063774522070045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
|
10
|
Damaskos C, Garmpis N, Dimitroulis D, Garmpi A, Psilopatis I, Sarantis P, Koustas E, Kanavidis P, Prevezanos D, Kouraklis G, Karamouzis MV, Marinos G, Kontzoglou K, Antoniou EA. Targeted Therapies for Hepatocellular Carcinoma Treatment: A New Era Ahead-A Systematic Review. Int J Mol Sci 2022; 23:14117. [PMID: 36430594 PMCID: PMC9698799 DOI: 10.3390/ijms232214117] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/10/2022] [Accepted: 11/11/2022] [Indexed: 11/17/2022] Open
Abstract
Hepatocellular carcinoma (HCC) remains one of the most common malignancies and the third cause of cancer-related death worldwide, with surgery being the best prognostic tool. Among the well-known causative factors of HCC are chronic liver virus infections, chronic virus hepatitis B (HBV) and chronic hepatitis virus C (HCV), aflatoxins, tobacco consumption, and non-alcoholic liver disease (NAFLD). There is a need for the development of efficient molecular markers and alternative therapeutic targets of great significance. In this review, we describe the general characteristics of HCC and present a variety of targeted therapies that resulted in progress in HCC therapy.
Collapse
Affiliation(s)
- Christos Damaskos
- Renal Transplantation Unit, Laiko General Hospital, 11527 Athens, Greece
- Nikolaos Christeas Laboratory of Experimental Surgery and Surgical Research, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Nikolaos Garmpis
- Nikolaos Christeas Laboratory of Experimental Surgery and Surgical Research, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
- Second Department of Propedeutic Surgery, Laiko General Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Dimitrios Dimitroulis
- Second Department of Propedeutic Surgery, Laiko General Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Anna Garmpi
- First Department of Propedeutic Internal Medicine, Laiko General Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Iason Psilopatis
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt—Universität zu Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Panagiotis Sarantis
- Molecular Oncology Unit, Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Evangelos Koustas
- Molecular Oncology Unit, Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Prodromos Kanavidis
- Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | | | - Gregory Kouraklis
- Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Michail V. Karamouzis
- Molecular Oncology Unit, Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Georgios Marinos
- Department of Hygiene, Epidemiology and Medical Statistics, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Konstantinos Kontzoglou
- Nikolaos Christeas Laboratory of Experimental Surgery and Surgical Research, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
- Second Department of Propedeutic Surgery, Laiko General Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Efstathios A. Antoniou
- Nikolaos Christeas Laboratory of Experimental Surgery and Surgical Research, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
- Second Department of Propedeutic Surgery, Laiko General Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| |
Collapse
|
11
|
Kamal MA, Mandour YM, Abd El-Aziz MK, Stein U, El Tayebi HM. Small Molecule Inhibitors for Hepatocellular Carcinoma: Advances and Challenges. Molecules 2022; 27:5537. [PMID: 36080304 PMCID: PMC9457820 DOI: 10.3390/molecules27175537] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/20/2022] [Accepted: 08/22/2022] [Indexed: 12/12/2022] Open
Abstract
According to data provided by World Health Organization, hepatocellular carcinoma (HCC) is the sixth most common cause of deaths due to cancer worldwide. Tremendous progress has been achieved over the last 10 years developing novel agents for HCC treatment, including small-molecule kinase inhibitors. Several small molecule inhibitors currently form the core of HCC treatment due to their versatility since they would be more easily absorbed and have higher oral bioavailability, thus easier to formulate and administer to patients. In addition, they can be altered structurally to have greater volumes of distribution, allowing them to block extravascular molecular targets and to accumulate in a high concentration in the tumor microenvironment. Moreover, they can be designed to have shortened half-lives to control for immune-related adverse events. Most importantly, they would spare patients, healthcare institutions, and society as a whole from the burden of high drug costs. The present review provides an overview of the pharmaceutical compounds that are licensed for HCC treatment and other emerging compounds that are still investigated in preclinical and clinical trials. These molecules are targeting different molecular targets and pathways that are proven to be involved in the pathogenesis of the disease.
Collapse
Affiliation(s)
- Monica A. Kamal
- The Molecular Pharmacology Research Group, Department of Pharmacology, Toxicology and Clinical Pharmacy, Faculty of Pharmacy and Biotechnology, German University in Cairo-GUC, Cairo 11835, Egypt
| | - Yasmine M. Mandour
- School of Life and Medical Sciences, University of Hertfordshire Hosted by Global Academic Foundation, New Administrative Capital, Cairo 11578, Egypt
| | - Mostafa K. Abd El-Aziz
- The Molecular Pharmacology Research Group, Department of Pharmacology, Toxicology and Clinical Pharmacy, Faculty of Pharmacy and Biotechnology, German University in Cairo-GUC, Cairo 11835, Egypt
| | - Ulrike Stein
- Experimental and Clinical Research Center, Charité-Universitätsmedizin Berlin and Max-Delbrück-Center for Molecular Medicine, 13125 Berlin, Germany
| | - Hend M. El Tayebi
- The Molecular Pharmacology Research Group, Department of Pharmacology, Toxicology and Clinical Pharmacy, Faculty of Pharmacy and Biotechnology, German University in Cairo-GUC, Cairo 11835, Egypt
| |
Collapse
|
12
|
Recent progress on vascular endothelial growth factor receptor inhibitors with dual targeting capabilities for tumor therapy. J Hematol Oncol 2022; 15:89. [PMID: 35799213 PMCID: PMC9263050 DOI: 10.1186/s13045-022-01310-7] [Citation(s) in RCA: 81] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 06/30/2022] [Indexed: 02/08/2023] Open
Abstract
Vascular endothelial growth factor receptors (VEGFRs) are a family of receptor protein tyrosine kinases that play an important role in the regulation of tumor-induced angiogenesis. Currently, VEGFR inhibitors have been widely used in the treatment of various tumors. However, current VEGFR inhibitors are limited to a certain extent due to limited clinical efficacy and potential toxicity, which hinder their clinical application. Thus, the development of new strategies to improve the clinical outcomes and minimize the toxic effects of VEGFR inhibitors is required. Given the synergistic effect of VEGFR and other therapies in tumor development and progression, VEGFR dual-target inhibitors are becoming an attractive approach due to their favorable pharmacodynamics, low toxicity, and anti-resistant effects. This perspective provides an overview of the development of VEGFR dual-target inhibitors from multiple aspects, including rational target combinations, drug discovery strategies, structure–activity relationships and future directions.
Collapse
|
13
|
An L, Liao H, Yuan K. Efficacy and Safety of Second-line Treatments in Patients with Advanced Hepatocellular Carcinoma after Sorafenib Failure: A Meta-analysis. J Clin Transl Hepatol 2021; 9:868-877. [PMID: 34966650 PMCID: PMC8666373 DOI: 10.14218/jcth.2021.00054] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 04/05/2021] [Accepted: 04/26/2021] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND AND AIMS In the last decade, several second-line therapies followed by sorafenib in patients with advanced hepatocellular carcinoma (HCC) have been reported. But the outcomes were different from each other. This meta-analysis aimed to evaluate the efficacy and safety of the second-line therapies followed by sorafenib in patients with advanced HCC. METHODS Embase (1974 to October 2019) and Ovid MEDLINE (1946 to October 2019) were searched for randomized clinical trials on second-line therapies followed by sorafenib in patients with advanced HCC. The quality of each study was assessed by the modified Jadad scale. Statistical analysis was carried out by RevMan5.3 software. Efficacy and safety were analyzed. Efficacy included overall survival (OS), disease control rate, time to progression, and progression-free survival. RESULTS Eight studies involving 3,173 patients were eligible. No difference in OS was found between the second-line treatment group and the control group (HR=0.87, 95% CI: 0.74-1.01, p=0.06). Disease control rate (relative risk (RR)=1.36, 95% CI: 1.16-1.60, p=0.0002), time to progression (HR=0.64, 95% CI: 0.51-0.81, p=0.0002) and progression-free survival (HR=0.60, 95% CI: 0.46-0.77, p<0.0001) were significantly improved by the second-line therapies. There was a slight difference in adverse events of any grade (RR=1.07, 95% CI: 1.00-1.14, p=0.03) between the two groups. CONCLUSIONS These second-line therapies followed by sorafenib may potentially improve the prognosis in patients with advanced HCC. Compared with other second-line therapies, regorafenib seemed to be more effective.
Collapse
Affiliation(s)
- Limin An
- Department of Liver Surgery & Liver Transplantation, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, Sichuan, China
| | - Haotian Liao
- Department of Liver Surgery & Liver Transplantation, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, Sichuan, China
| | - Kefei Yuan
- Department of Liver Surgery & Liver Transplantation, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, Sichuan, China
- Laboratory of Liver Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Correspondence to: Kefei Yuan, Laboratory of Liver Surgery, West China Hospital, Sichuan University, 37 Guoxue lane, Wuhou District, Chengdu, Sichuan 610041, China. ORCID: https://orcid.org/0000-0003-4308-7743. Tel: +86-28-8542-2114, Fax: +86-28-8558-2944, E-mail:
| |
Collapse
|
14
|
Chakraborty A, Roy S, Chakraborty MP, Roy SS, Purkait K, Koley TS, Das R, Acharya M, Mukherjee A. Cytotoxic Ruthenium(II) Complexes of Pyrazolylbenzimidazole Ligands That Inhibit VEGFR2 Phosphorylation. Inorg Chem 2021; 60:18379-18394. [PMID: 34780170 DOI: 10.1021/acs.inorgchem.1c02979] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Eight new ruthenium(II) complexes of N,N-chelating pyrazolylbenzimidazole ligands of the general formula [RuII(p-cym)(L)X]+ [where the ligand L is 2-(1H-pyrazol-1-yl)-1H-benzo[d]imidazole (L1) substituted at the 4 position of the pyrazole ring by Cl (L2), Br (L3), or I (L4) and X = Cl- and I-] were synthesized and characterized using various analytical techniques. Complexes 1 and 3 were also characterized by single-crystal X-ray crystallography, and they crystallized as a monoclinic crystal system in space groups P21/n and P21/c, respectively. The complexes display good solution stability at physiological pH 7.4. The iodido-coordinated pyrazolylbenzimidazole ruthenium(II) p-cymene complexes (2, 4, 6, and 8) are more resistant toward hydrolysis and have less tendency to form monoaquated complexes in comparison to their chlorido analogues (1, 3, 5, and 7). The halido-substituted 2-(1H-pyrazol-1-yl)-1H-benzo[d]imidazole ligands, designed as organic-directing molecules, inhibit vascular endothelial growth factor receptor 2 (VEGFR2) phosphorylation. In addition, the ruthenium(II) complexes display a potential to bind to DNA bases. The cytotoxicity profile of the complexes (IC50 ca. 9-12 μM for 4-8) against the triple-negative breast cancer cells (MDA-MB-231) show that most of the complexes are efficient. The lipophilicity and cellular accumulation data of the complexes show a good correlation with the cytotoxicity profile of 1-8. The representative complexes 3 and 7 demonstrate the capability of arresting the cell cycle in the G2/M phase and induce apoptosis. The inhibition of VEGFR2 phosphorylation with the representative ligands L2 and L4 and the corresponding metal complexes 3 and 7 in vitro shows that the organic-directing ligands and their complexes inhibit VEGFR2 phosphorylation. Besides, L2, L4, 3, and 7 inhibit the phosphorylation of extracellular signal-regulated kinase 1/2 (ERK1/2) and proto-oncogene tyrosine-protein kinase (Src), capable of acting downstream of VEGFR2 as well as independently. Compounds L2, L4, 3, and 7 have a lesser effect on ERK1/2 and more prominently affect Src phosphorylation. We extended the study for L2 and 3 in the Tg(fli1:gfp) zebrafish model and found that L2 is more effective in vivo compared to 3 in inhibiting angiogenesis.
Collapse
|
15
|
Brivanib alaninate inhibited dengue virus proliferation through VEGFR2/AMPK pathway. Pharmacol Res 2021; 170:105721. [PMID: 34116207 DOI: 10.1016/j.phrs.2021.105721] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 05/16/2021] [Accepted: 06/04/2021] [Indexed: 12/28/2022]
Abstract
Dengue virus (DENV) is the most prevalent arthropod-borne viral disease of humans and has a major impact on global public health. There is no clinically approved drugs for DENV infection. Since intracellular VEGFR2 is increased in DENV infected patients, we thus hypothesized that VEGFR2 participated DENV proliferation and its inhibitors could be served as antivirals against DENV. Actually our results showed that VEGFR2 was induced by DENV infection. Also the agonist of VEGFR2, VEGF-A, promoted DENV proliferation. Therefore, we screened the inhibitors of VEGFR2 and found that brivanib alaninate (brivanib) showed the best anti-DENV ability with the lowest cellular cytotoxicity. Mechanically, our results indicated VEGFR2 directly interacted with PTP1B to dephosphorylate AMPK to provide lipid environment for viral replication. However, this effect could be inhibited by brivanib, which significantly reversed the reduction of AMPK phosphorylation caused by DENV infection, thus improving the cellular lipid environment. Moreover, the antiviral effect of brivanib could be reversed by AMPK inhibitor, Compound C. In addition, oral administration of brivianib (20-50 mg/kg/day) clearly improved the survival rate of DENV2 infection, and this effect was abolished in accompanied with Compound C (10mg/kg/day). Collectively, our study disclosed the mechanism of VEGFR2 in DENV2 and evaluated the antiviral ability of brivanib, which deserved more attention for clinical usage in DENV infection.
Collapse
|
16
|
Zhong L, Li Y, Xiong L, Wang W, Wu M, Yuan T, Yang W, Tian C, Miao Z, Wang T, Yang S. Small molecules in targeted cancer therapy: advances, challenges, and future perspectives. Signal Transduct Target Ther 2021; 6:201. [PMID: 34054126 PMCID: PMC8165101 DOI: 10.1038/s41392-021-00572-w] [Citation(s) in RCA: 782] [Impact Index Per Article: 195.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 02/23/2021] [Accepted: 03/15/2021] [Indexed: 02/07/2023] Open
Abstract
Due to the advantages in efficacy and safety compared with traditional chemotherapy drugs, targeted therapeutic drugs have become mainstream cancer treatments. Since the first tyrosine kinase inhibitor imatinib was approved to enter the market by the US Food and Drug Administration (FDA) in 2001, an increasing number of small-molecule targeted drugs have been developed for the treatment of malignancies. By December 2020, 89 small-molecule targeted antitumor drugs have been approved by the US FDA and the National Medical Products Administration (NMPA) of China. Despite great progress, small-molecule targeted anti-cancer drugs still face many challenges, such as a low response rate and drug resistance. To better promote the development of targeted anti-cancer drugs, we conducted a comprehensive review of small-molecule targeted anti-cancer drugs according to the target classification. We present all the approved drugs as well as important drug candidates in clinical trials for each target, discuss the current challenges, and provide insights and perspectives for the research and development of anti-cancer drugs.
Collapse
Affiliation(s)
- Lei Zhong
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Department of Pharmacy, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, People's Republic of China
| | - Yueshan Li
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Liang Xiong
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Wenjing Wang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Ming Wu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Ting Yuan
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Department of Pharmacy, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, People's Republic of China
| | - Wei Yang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Chenyu Tian
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Zhuang Miao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Tianqi Wang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Shengyong Yang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China.
| |
Collapse
|
17
|
Molecularly targeted therapy for advanced gastrointestinal noncolorectal cancer treatment: how to choose? Past, present, future. Anticancer Drugs 2021; 32:593-601. [PMID: 33929995 DOI: 10.1097/cad.0000000000001071] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Gastrointestinal cancer is a leading cause of death worldwide. Conventional cytotoxic chemotherapy has been the backbone of advanced gastrointestinal cancer treatment for decades and still represents a key element of the therapeutic armamentarium. However, only small increments in survival outcomes have been reached. New clinical trials are designed, including classic chemotherapy in association with either small-molecule inhibitors or mAb. During the past few years, remarkable progress in molecular biology of gastrointestinal noncolorectal cancers, the discovery of specific targets and the resulting development of systemic drugs that block critical kinases and several molecular pathways have all contributed to progress. New biological agents with molecularly targeted therapies are now available or currently included in clinical trials (EGFR inhibitors (i), antiangiogenic agents, c-METi, IDHi, FGFR2i, BRAFi, Pi3Ki/AKTi/mTORi, NTRKi). When we focus on the current state of precision medicine for gastrointestinal malignancies, it becomes apparent that there is a mixed history of success and failure. The aim of this review is to focus on the studies that have been completed to date with target therapies and to understand which of these are currently the accepted choice in clinical practice and which need further confirmation and approval for inclusion in guidelines. All these findings will enable to guide clinical practice for oncologists in the design of the next round of clinical trials.
Collapse
|
18
|
Recent advances of dual FGFR inhibitors as a novel therapy for cancer. Eur J Med Chem 2021; 214:113205. [PMID: 33556787 DOI: 10.1016/j.ejmech.2021.113205] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 01/06/2021] [Accepted: 01/13/2021] [Indexed: 12/14/2022]
Abstract
Fibroblast growth factor receptor (FGFR) includes four highly conserved transmembrane receptor tyrosine kinases (FGFR1-4). FGF and FGFR regulate many biological processes, such as angiogenesis, wound healing and tissue regeneration. The abnormal expression of FGFR is related to the tumorigenesis, tumor progression and drug resistance of anti-tumor treatments in many types of tumors. Nowadays there are many anti-cancer drugs targeting FGFR. However, traditional single-target anti-tumor drugs are easy to acquire drug resistance. The therapeutic effect can be enhanced by simultaneously inhibiting FGFR and another target (such as VEGFR, EGFR, PI3K, CSF-1R, etc.). We know drug combination can bring problems such as drug interactions. Therefore, the development of FGFR dual target inhibitors is an important direction. In this paper, we reviewed the research on dual FGFR inhibitors in recent years and made brief comments on them.
Collapse
|
19
|
Exploration of carbamide derived pyrimidine-thioindole conjugates as potential VEGFR-2 inhibitors with anti-angiogenesis effect. Eur J Med Chem 2020; 200:112457. [PMID: 32422489 DOI: 10.1016/j.ejmech.2020.112457] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 04/28/2020] [Accepted: 05/10/2020] [Indexed: 12/12/2022]
Abstract
The development of new small molecules from known structural motifs through molecular hybridization is one of the trends in drug discovery. In this connection, we have combined the two pharmacophoric units (pyrimidine and thioindole) in a single entity via molecular hybridization strategy along with introduction of urea functionality at C2 position of pyrimidine to increase the efficiency of H-bonding interactions. Among the synthesized conjugates 12a-aa, compound 12k was found to exhibit significant IC50 values 5.85, 7.87, 6.41 and 10.43 μM against MDA-MB-231 (breast), HepG2 (liver), A549 (lung) and PC-3 (prostate) cancer cell lines, respectively. All these compounds were further evaluated for their inhibitory activities against VEGFR-2 protein. The results specified that among the tested compounds, 12d, 12e, 12k, 12l, 12p, 12q, 12t and 12u prominently suppressed VEGFR-2, with IC50 values of 310-920 nM in association to the positive control (210 nM). Angiogenesis inhibition was evident by tube formation assay in HUVECs and cell-invasion by transwell assay. The mechanism of cellular toxicity on MDA-MB-231 was found through depolarisation of mitochondrial membrane potential, increased ROS production and subsequent DNA damage resulting in apoptosis induction. Moreover, clonogenic and wound healing assays designated the inhibition of colony formation and cell migration by 12k in a dose-dependent manner. Molecular docking studies also shown that compound 12k capably intermingled with catalytically active residues GLU-885, ASP-1046 of the VEGFR-2 through hydrogen-bonding interactions.
Collapse
|
20
|
Saha D, Kharbanda A, Yan W, Lakkaniga NR, Frett B, Li HY. The Exploration of Chirality for Improved Druggability within the Human Kinome. J Med Chem 2020; 63:441-469. [PMID: 31550151 PMCID: PMC10536157 DOI: 10.1021/acs.jmedchem.9b00640] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Chirality is important in drug discovery because stereoselective drugs can ameliorate therapeutic difficulties including adverse toxicity and poor pharmacokinetic profiles. The human kinome, a major druggable enzyme class has been exploited to treat a wide range of diseases. However, many kinase inhibitors are planar and overlap in chemical space, which leads to selectivity and toxicity issues. By exploring chirality within the kinome, a new iteration of kinase inhibitors is being developed to better utilize the three-dimensional nature of the kinase active site. Exploration into novel chemical space, in turn, will also improve drug solubility and pharmacokinetic profiles. This perspective explores the role of chirality to improve kinome druggability and will serve as a resource for pioneering kinase inhibitor development to address current therapeutic needs.
Collapse
Affiliation(s)
- Debasmita Saha
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, United States
| | - Anupreet Kharbanda
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, United States
| | - Wei Yan
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, United States
| | - Naga Rajiv Lakkaniga
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, United States
| | - Brendan Frett
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, United States
| | - Hong-Yu Li
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, United States
| |
Collapse
|
21
|
Jones RL, Ratain MJ, O'Dwyer PJ, Siu LL, Jassem J, Medioni J, DeJonge M, Rudin C, Sawyer M, Khayat D, Awada A, de Vos-Geelen JMPGM, Evans TRJ, Obel J, Brockstein B, DeGreve J, Baurain JF, Maki R, D'Adamo D, Dickson M, Undevia S, Geary D, Janisch L, Bedard PL, Abdul Razak AR, Kristeleit R, Vitfell-Rasmussen J, Walters I, Kaye SB, Schwartz G. Phase II randomised discontinuation trial of brivanib in patients with advanced solid tumours. Eur J Cancer 2019; 120:132-139. [PMID: 31522033 PMCID: PMC8852771 DOI: 10.1016/j.ejca.2019.07.024] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 07/20/2019] [Accepted: 07/23/2019] [Indexed: 01/29/2023]
Abstract
BACKGROUND Brivanib is a selective inhibitor of vascular endothelial growth factor and fibroblast growth factor (FGF) signalling. We performed a phase II randomised discontinuation trial of brivanib in 7 tumour types (soft-tissue sarcomas [STS], ovarian cancer, breast cancer, pancreatic cancer, non-small-cell lung cancer [NSCLC], gastric/esophageal cancer and transitional cell carcinoma [TCC]). PATIENTS AND METHODS During a 12-week open-label lead-in period, patients received brivanib 800 mg daily and were evaluated for FGF2 status by immunohistochemistry. Patients with stable disease at week 12 were randomised to brivanib or placebo. A study steering committee evaluated week 12 response to determine if enrolment in a tumour type would continue. The primary objective was progression-free survival (PFS) for brivanib versus placebo in patients with FGF2-positive tumours. RESULTS A total of 595 patients were treated, and stable disease was observed at the week 12 randomisation point in all tumour types. Closure decisions were made for breast cancer, pancreatic cancer, NSCLC, gastric cancer and TCC. Criteria for expansion were met for STS and ovarian cancer. In 53 randomised patients with STS and FGF2-positive tumours, the median PFS was 2.8 months for brivanib and 1.4 months for placebo (hazard ratio [HR]: 0.58, p = 0.08). For all randomised patients with sarcomas, the median PFS was 2.8 months (95% confidence interval [CI]: 1.4-4.0) for those treated with brivanib compared with 1.4 months (95% CI: 1.3-1.6) for placebo (HR = 0.64, 95% CI: 0.38-1.07; p = 0.09). In the 36 randomised patients with ovarian cancer and FGF2-positive tumours, the median PFS was 4.0 (95% CI: 2.6-4.2) months for brivanib and 2.0 months (95% CI: 1.2-2.7) for placebo (HR: 0.56, 95% CI: 0.26-1.22). For all randomised patients with ovarian cancer, the median PFS in those randomised to brivanib was 4.0 months (95% CI: 2.6-4.2) and was 2.0 months (95% CI: 1.2-2.7) in those randomised to placebo (HR = 0.54, 95% CI: 0.25-1.17; p = 0.11). CONCLUSION Brivanib demonstrated activity in STS and ovarian cancer with an acceptable safety profile. FGF2 expression, as defined in the protocol, is not a predictive biomarker of the efficacy of brivanib.
Collapse
Affiliation(s)
- Robin L Jones
- Royal Marsden Hospital, Institute of Cancer Research, London, United Kingdom.
| | | | | | | | | | - Jacques Medioni
- Hôpital Européen Georges Pompidou, Paris, France; Paris-Descartes University, Paris, France
| | - Maja DeJonge
- Erasmus University Medical Center, Rotterdam, the Netherlands
| | | | | | | | | | - Judith M P G M de Vos-Geelen
- Department of Internal Medicine, Division of Medical Oncology, GROW - School for Oncology and Developmental Biology, Maastricht UMC+, Maastricht, the Netherlands
| | - T R Jeffry Evans
- Beatson West of Scotland Cancer Centre, University of Glasgow, Glasgow, United Kingdom
| | - Jennifer Obel
- North Shore University Health System, Evanston, IL, USA
| | | | | | | | | | - David D'Adamo
- Eisai Inc, Woodcliff Lake, NJ Previously Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Mark Dickson
- Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | | | | | | | | | | | - Rebecca Kristeleit
- Royal Marsden Hospital, Institute of Cancer Research, London, United Kingdom
| | | | - Ian Walters
- Intensity Therapeutics Inc, Westport, CT Previously BMS, USA
| | - Stan B Kaye
- Royal Marsden Hospital, Institute of Cancer Research, London, United Kingdom
| | | |
Collapse
|
22
|
Mossenta M, Busato D, Baboci L, Cintio FD, Toffoli G, Bo MD. New Insight into Therapies Targeting Angiogenesis in Hepatocellular Carcinoma. Cancers (Basel) 2019; 11:E1086. [PMID: 31370258 PMCID: PMC6721310 DOI: 10.3390/cancers11081086] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 07/22/2019] [Accepted: 07/29/2019] [Indexed: 12/13/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is a malignancy characterized by neoangiogenesis that is determined by an augmented production of proangiogenesis factors by tumor and adjacent cells. This unbalanced angiogenesis process is a key feature of HCC carcinogenesis and progression. Proangiogenic factors also have a relevant role in the generation and maintenance of an immunosuppressive tumor microenvironment. Several therapeutic options for HCC treatment are based on the inhibition of angiogenesis, both in the early/intermediate stages of the disease and in the late stages of the disease. Conventional treatment options employing antiangiogenic approaches provide for the starving of tumors of their blood supply to avoid the refueling of oxygen and nutrients. An emerging alternative point of view is the normalization of vasculature leading to enhance tumor perfusion and oxygenation, potentially capable, when proposed in combination with other treatments, to improve delivery and efficacy of other therapies, including immunotherapy with checkpoint inhibitors. The introduction of novel biomarkers can be useful for the definition of the most appropriate dose and scheduling for these combination treatment approaches. The present review provides a wide description of the pharmaceutical compounds with an antiangiogenic effect proposed for HCC treatment and investigated in clinical trials, including antibodies and small-molecule kinase inhibitors.
Collapse
Affiliation(s)
- Monica Mossenta
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico di Aviano (CRO), Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS), 33081 Aviano (PN), Italy
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy
| | - Davide Busato
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico di Aviano (CRO), Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS), 33081 Aviano (PN), Italy
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy
| | - Lorena Baboci
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico di Aviano (CRO), Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS), 33081 Aviano (PN), Italy
| | - Federica Di Cintio
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico di Aviano (CRO), Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS), 33081 Aviano (PN), Italy
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy
| | - Giuseppe Toffoli
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico di Aviano (CRO), Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS), 33081 Aviano (PN), Italy.
| | - Michele Dal Bo
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico di Aviano (CRO), Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS), 33081 Aviano (PN), Italy
| |
Collapse
|
23
|
Lakkakula BVKS, Farran B, Lakkakula S, Peela S, Yarla NS, Bramhachari PV, Kamal MA, Saddala MS, Nagaraju GP. Small molecule tyrosine kinase inhibitors and pancreatic cancer—Trials and troubles. Semin Cancer Biol 2019; 56:149-167. [PMID: 30314681 DOI: 10.1016/j.semcancer.2018.09.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 09/18/2018] [Accepted: 09/29/2018] [Indexed: 12/20/2022]
|
24
|
A. M. Subbaiah M, Mandlekar S, Desikan S, Ramar T, Subramani L, Annadurai M, Desai SD, Sinha S, Jenkins SM, Krystal MR, Subramanian M, Sridhar S, Padmanabhan S, Bhutani P, Arla R, Singh S, Sinha J, Thakur M, Kadow JF, Meanwell NA. Design, Synthesis, and Pharmacokinetic Evaluation of Phosphate and Amino Acid Ester Prodrugs for Improving the Oral Bioavailability of the HIV-1 Protease Inhibitor Atazanavir. J Med Chem 2019; 62:3553-3574. [DOI: 10.1021/acs.jmedchem.9b00002] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
25
|
Exploration of novel pyrrolo[2,1-f][1,2,4]triazine derivatives with improved anticancer efficacy as dual inhibitors of c-Met/VEGFR-2. Eur J Med Chem 2018; 158:814-831. [DOI: 10.1016/j.ejmech.2018.09.050] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 09/05/2018] [Accepted: 09/16/2018] [Indexed: 12/11/2022]
|
26
|
Rautio J, Kärkkäinen J, Sloan KB. Prodrugs – Recent approvals and a glimpse of the pipeline. Eur J Pharm Sci 2017; 109:146-161. [DOI: 10.1016/j.ejps.2017.08.002] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 08/01/2017] [Accepted: 08/02/2017] [Indexed: 01/12/2023]
|
27
|
Cascioferro S, Parrino B, Spanò V, Carbone A, Montalbano A, Barraja P, Diana P, Cirrincione G. An overview on the recent developments of 1,2,4-triazine derivatives as anticancer compounds. Eur J Med Chem 2017; 142:328-375. [PMID: 28851503 DOI: 10.1016/j.ejmech.2017.08.009] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 07/31/2017] [Accepted: 08/02/2017] [Indexed: 02/06/2023]
Abstract
The synthesis, the antitumor activity, the SAR and, whenever described, the possible mode of action of 1,2,4-triazine derivatives, their N-oxides, N,N'-dioxides as well as the benzo- and hetero-fused systems are reported. Herein are treated derivatives disclosed to literature from the beginning of this century up to 2016. Among the three possible triazine isomers, 1,2,4-triazines are the most studied ones and many derivatives having remarkable antitumor activity have been reported in the literature and also patented reaching advanced phases of clinical trials.
Collapse
Affiliation(s)
- Stella Cascioferro
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Via Archirafi 32, 90123 Palermo, Italy
| | - Barbara Parrino
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Via Archirafi 32, 90123 Palermo, Italy
| | - Virginia Spanò
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Via Archirafi 32, 90123 Palermo, Italy
| | - Anna Carbone
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Via Archirafi 32, 90123 Palermo, Italy
| | - Alessandra Montalbano
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Via Archirafi 32, 90123 Palermo, Italy
| | - Paola Barraja
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Via Archirafi 32, 90123 Palermo, Italy
| | - Patrizia Diana
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Via Archirafi 32, 90123 Palermo, Italy
| | - Girolamo Cirrincione
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Via Archirafi 32, 90123 Palermo, Italy.
| |
Collapse
|
28
|
Perera TP, Jovcheva E, Mevellec L, Vialard J, De Lange D, Verhulst T, Paulussen C, Van De Ven K, King P, Freyne E, Rees DC, Squires M, Saxty G, Page M, Murray CW, Gilissen R, Ward G, Thompson NT, Newell DR, Cheng N, Xie L, Yang J, Platero SJ, Karkera JD, Moy C, Angibaud P, Laquerre S, Lorenzi MV. Discovery and Pharmacological Characterization of JNJ-42756493 (Erdafitinib), a Functionally Selective Small-Molecule FGFR Family Inhibitor. Mol Cancer Ther 2017; 16:1010-1020. [DOI: 10.1158/1535-7163.mct-16-0589] [Citation(s) in RCA: 156] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 12/28/2016] [Accepted: 03/15/2017] [Indexed: 11/16/2022]
|
29
|
Porta R, Borea R, Coelho A, Khan S, Araújo A, Reclusa P, Franchina T, Van Der Steen N, Van Dam P, Ferri J, Sirera R, Naing A, Hong D, Rolfo C. FGFR a promising druggable target in cancer: Molecular biology and new drugs. Crit Rev Oncol Hematol 2017; 113:256-267. [PMID: 28427515 DOI: 10.1016/j.critrevonc.2017.02.018] [Citation(s) in RCA: 158] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 02/08/2017] [Accepted: 02/15/2017] [Indexed: 12/11/2022] Open
Abstract
INTRODUCTION The Fibroblast Growth Factor Receptor (FGFR) family consists of Tyrosine Kinase Receptors (TKR) involved in several biological functions. Recently, alterations of FGFR have been reported to be important for progression and development of several cancers. In this setting, different studies are trying to evaluate the efficacy of different therapies targeting FGFR. AREAS COVERED This review summarizes the current status of treatments targeting FGFR, focusing on the trials that are evaluating the FGFR profile as inclusion criteria: Multi-Target, Pan-FGFR Inhibitors and anti-FGF (Fibroblast Growth Factor)/FGFR Monoclonal Antibodies. EXPERT OPINION Most of the TKR share intracellular signaling pathways; therefore, cancer cells tend to overcome the inhibition of one tyrosine kinase receptor by activating another. The future of TKI (Tyrosine Kinase Inhibitor) therapy will potentially come from multi-targeted TKIs that target different TKR simultaneously. It is crucial to understand the interaction of the FGF-FGFR axis with other known driver TKRs. Based on this, it is possible to develop therapeutic strategies targeting multiple connected TKRs at once. One correct step in this direction is the reassessment of multi target inhibitors considering the FGFR status of the tumor. Another opportunity arises from assessing the use of FGFR TKI on patients harboring FGFR alterations.
Collapse
Affiliation(s)
- Rut Porta
- Department of Medical Oncology, Catalan Institute of Oncology (ICO), Girona, Spain; Girona Biomedical Research Institute (IDIBGi), Girona, Spain; Department of Medical Sciences, School of Medicine, University of Girona, Girona, Spain
| | - Roberto Borea
- Phase I-Early Clinical Trials Unit, Oncology Department, Antwerp University Hospital (UZA) and Center for Oncological Research (CORE) Antwerp University, Edegem, Antwerp, Belgium(2)
| | - Andreia Coelho
- Phase I-Early Clinical Trials Unit, Oncology Department, Antwerp University Hospital (UZA) and Center for Oncological Research (CORE) Antwerp University, Edegem, Antwerp, Belgium(2)
| | - Shahanavaj Khan
- Nanomedicine and Biotechnology Research Unit, Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - António Araújo
- Department of Medical Oncology, Centro Hospitalar do Porto, Porto, Portugal
| | - Pablo Reclusa
- Phase I-Early Clinical Trials Unit, Oncology Department, Antwerp University Hospital (UZA) and Center for Oncological Research (CORE) Antwerp University, Edegem, Antwerp, Belgium(2)
| | - Tindara Franchina
- Medical Oncology Unit A.O. Papardo & Department of Human Pathology, University of Messina, Messina, Italy
| | - Nele Van Der Steen
- Center for Oncological Research (CORE), University of Antwerp, Wilrijk, Antwerp, Belgium; Department of Pathology, Antwerp University Hospital, Edegem, Antwerp, Belgium
| | - Peter Van Dam
- Phase I-Early Clinical Trials Unit, Oncology Department, Antwerp University Hospital (UZA) and Center for Oncological Research (CORE) Antwerp University, Edegem, Antwerp, Belgium(2)
| | - Jose Ferri
- Phase I-Early Clinical Trials Unit, Oncology Department, Antwerp University Hospital (UZA) and Center for Oncological Research (CORE) Antwerp University, Edegem, Antwerp, Belgium(2)
| | - Rafael Sirera
- Phase I-Early Clinical Trials Unit, Oncology Department, Antwerp University Hospital (UZA) and Center for Oncological Research (CORE) Antwerp University, Edegem, Antwerp, Belgium(2)
| | - Aung Naing
- Department of Investigational Cancer Therapeutics, MD Anderson Cancer Center, Houston, TX, USA
| | - David Hong
- Department of Investigational Cancer Therapeutics, MD Anderson Cancer Center, Houston, TX, USA
| | - Christian Rolfo
- Phase I-Early Clinical Trials Unit, Oncology Department, Antwerp University Hospital (UZA) and Center for Oncological Research (CORE) Antwerp University, Edegem, Antwerp, Belgium(2).
| |
Collapse
|
30
|
Yu T, Yang Y, Liu Y, Zhang Y, Xu H, Li M, Ponnusamy M, Wang K, Wang JX, Li PF. A FGFR1 inhibitor patent review: progress since 2010. Expert Opin Ther Pat 2016; 27:439-454. [PMID: 27976968 DOI: 10.1080/13543776.2017.1272574] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
INTRODUCTION FGFR1 is a well known molecular target for anticancer therapy. Many studies have proved that the regulation of FGFR1 activity is a promising therapeutic approach to treat a series of cancers. Therefore, the development of potent inhibitors has consequently become a key focus in the present drug discovery, and it is encouraging that several highly selective FGFR1 inhibitors have been identified from various sources in recent years. Areas covered: This article reviews patents and patent applications related to selective FGFR1 inhibitors published from 2010 to 2016. This summary highlights about 15 patents from different pharmaceutical companies and academic research groups. We used Baidu and NCBI search engines to find relevant patents as a search term. Expert opinion: In the past few years, considerable progress has been made in the identification and development of selective FGFR1 inhibitors in use. At present, at least 10 inhibitors of FGFR1 are in clinical trials, and several agents have shown encouraging results under experimental conditions. Given the fact that FGFR1 plays a crucial role in the regulation of cancer and other diseases, we hope that it will gain further attraction from pharmaceutical companies and encourage development of more novel, safe and efficient FGFR1 inhibitors in the future.
Collapse
Affiliation(s)
- Tao Yu
- a Institute for Translational Medicine , Qingdao University , Qingdao , People's Republic of China
| | - Yanyan Yang
- a Institute for Translational Medicine , Qingdao University , Qingdao , People's Republic of China
| | - Yan Liu
- b Food and Drug Administration of Linyi City , Hedong District Branch , Linyi , People's Republic of China
| | - Yinfeng Zhang
- a Institute for Translational Medicine , Qingdao University , Qingdao , People's Republic of China
| | - Hong Xu
- c Department of Orthodontics , Affiliated Hospital of Qingdao University , People's Republic of China
| | - Mengpeng Li
- a Institute for Translational Medicine , Qingdao University , Qingdao , People's Republic of China
| | - Murugavel Ponnusamy
- a Institute for Translational Medicine , Qingdao University , Qingdao , People's Republic of China
| | - Kun Wang
- a Institute for Translational Medicine , Qingdao University , Qingdao , People's Republic of China
| | - Jian-Xun Wang
- a Institute for Translational Medicine , Qingdao University , Qingdao , People's Republic of China
| | - Pei-Feng Li
- a Institute for Translational Medicine , Qingdao University , Qingdao , People's Republic of China
| |
Collapse
|
31
|
Niu M, Hong D, Ma TC, Chen XW, Han JH, Sun J, Xu K. Short-term and long-term efficacy of 7 targeted therapies for the treatment of advanced hepatocellular carcinoma: a network meta-analysis: Efficacy of 7 targeted therapies for AHCC. Medicine (Baltimore) 2016; 95:e5591. [PMID: 27930578 PMCID: PMC5266050 DOI: 10.1097/md.0000000000005591] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2016] [Revised: 10/26/2016] [Accepted: 11/16/2016] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND A variety of targeted drug therapies in clinical trials have been proven to be effective for the treatment of hepatocellular carcinoma (HCC). Our study aims to compare the short-term and long-term efficacies of different targeted drugs in advanced hepatocellular carcinoma (AHCC) treatment using a network meta-analysis approach. METHODS PubMed, Embase, Ovid, EBSCO, and Cochrane central register of controlled trials were searched for randomized controlled trials (RCTs) of different targeted therapies implemented to patients with AHCC. And the retrieval resulted in 7 targeted drugs, namely, sorafenib, ramucirumab, everolimus, brivanib, tivantinib, sunitinib, and sorafenib+erlotinib. Direct and indirect evidence were combined to evaluate stable disease (SD), progressive disease (PD), complete response (CR), partial response (PR), disease control rate (DCR), overall response ratio (ORR), overall survival (OS), and surface under the cumulative ranking curve (SUCRA) of patients with AHCC. RESULTS A total of 11 RCTs were incorporated into our analysis, including 6594 patients with AHCC, among which 1619 patients received placebo treatment and 4975 cases had targeted therapies. The results revealed that in comparison with placebo, sorafenib, and ramucirumab displayed better short-term efficacy in terms of PR and ORR, and brivanib was better in ORR. Regarding long-term efficacy, sorafenib and sorafenib+erlotinib treatments exhibited longer OS. The data of cluster analysis showed that ramucirumab or sorafenib+erlotinib presented relatively better short-term efficacy for the treatment of AHCC. CONCLUSION This network meta-analysis shows that ramucirumab and sorafenib+erlotinib may be the better targeted drugs for AHCC patients, and sorafenib+erlotinib achieved a better long-term efficacy.
Collapse
|
32
|
Berretta M, Rinaldi L, Di Benedetto F, Lleshi A, De Re V, Facchini G, De Paoli P, Di Francia R. Angiogenesis Inhibitors for the Treatment of Hepatocellular Carcinoma. Front Pharmacol 2016; 7:428. [PMID: 27881963 PMCID: PMC5101236 DOI: 10.3389/fphar.2016.00428] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 10/26/2016] [Indexed: 12/12/2022] Open
Abstract
Background: Angiogenesis inhibitors have become an important therapeutic approach in the treatment of hepatocellular carcinoma (HCC) patients. The therapeutic inhibition of angiogenesis of Sorafenib in increasing overall survival of patients with HCC is a fundamental element of the treatment of this disease. Considering the heterogeneous aspects of HCC and to boost therapeutic efficacy, prevail over drug resistance and lessen toxicity, adding antiangiogenic drugs to antiblastic chemotherapy (AC), radiation therapy or other targeted drugs have been evaluated. The matter is additionally complicated by the combination of antiangiogenesis with further AC or biologic drugs. To date, no planned approach to understand which patients are more responsive to a given type of antiangiogenic treatment is available. Conclusion: Large investments in the clinical research are essential to improve treatment response and minimize toxicities for patients with HCC. Future investigations will need to focus on utilizing patterns of genetic information to classify HCC into groups that display similar prognosis and treatment sensitivity, and combining targeted therapies with AC producing enhanced anti-tumor effect. In this review the current panel of available antiangiogenic therapies for the treatment of HCC have been analyzed. In addition current clinical trials are also reported herein.
Collapse
Affiliation(s)
| | - Luca Rinaldi
- Department of Medical, Surgical, Neurological, Metabolic and Geriatric Sciences, Second University of Naples Naples, Italy
| | - Fabrizio Di Benedetto
- Liver and Multivisceral Transplant Center, University of Modena and Reggio Emilia Modena, Italy
| | - Arben Lleshi
- Department of Medical Oncology, National Cancer Institute Aviano, Italy
| | - Vallì De Re
- Bioimmunotherapy of Human Cancers Unit, Centro di Riferimento Oncologico (CRO) National Cancer Institute Aviano, Italy
| | - Gaetano Facchini
- Division of Medical Oncology, Department of Uro-Gynaecological Oncology, Istituto Nazionale Tumori "Fondazione G. Pascale"-IRCCS Naples Naples, Italy
| | - Paolo De Paoli
- Scientific Directorate, Centro di Riferimento Oncologico (CRO) National Cancer Institute Aviano, Italy
| | - Raffaele Di Francia
- Department of Hematology, Istituto Nazionale Tumori "Fondazione G. Pascale"-IRCCS Naples Naples, Italy
| |
Collapse
|
33
|
Kettle JG, Wilson DM. Standing on the shoulders of giants: a retrospective analysis of kinase drug discovery at AstraZeneca. Drug Discov Today 2016; 21:1596-1608. [DOI: 10.1016/j.drudis.2016.06.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 05/05/2016] [Accepted: 06/07/2016] [Indexed: 11/26/2022]
|
34
|
Brizzi MP, Pignataro D, Tampellini M, Scagliotti GV, Di Maio M. Systemic treatment of hepatocellular carcinoma: why so many failures in the development of new drugs? Expert Rev Anticancer Ther 2016; 16:1053-62. [PMID: 27548441 DOI: 10.1080/14737140.2016.1227706] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
INTRODUCTION The increasing knowledge of the genomic landscape of hepatocellular carcinoma (HCC) and the development of molecular targeted therapies are a promising background for increasing the number of effective drugs for HCC patients. In recent years, many new drugs have been tested as an alternative to sorafenib or after sorafenib failure. AREAS COVERED In this review, our aim is to describe the randomized trials recently conducted in HCC patients, in order to understand the main reasons potentially related to the failures of many drugs. In addition, we briefly describe the main ongoing trials, that could potentially change the scenario of HCC treatment in the next years. Expert commentary: Heterogeneity of study populations, lack of understanding of critical drivers of tumor progression, risk of liver toxicity associated with experimental agents, flaws in trial design and marginal antitumoral potency can be considered the main reasons for failure of phase III clinical trials in HCC. Most ongoing trials are conducted without any molecular selection criteria, although many drugs could be probably better tested in a molecularly selected population. The knowledge of potential predictive factors for drug efficacy in patients with advanced HCC could improve the chance of obtaining positive results in clinical trials.
Collapse
Affiliation(s)
- Maria Pia Brizzi
- a Division of Medical Oncology, Department of Oncology , University of Turin, San Luigi Gonzaga Hospital , Turin , Italy
| | - Daniele Pignataro
- a Division of Medical Oncology, Department of Oncology , University of Turin, San Luigi Gonzaga Hospital , Turin , Italy
| | - Marco Tampellini
- a Division of Medical Oncology, Department of Oncology , University of Turin, San Luigi Gonzaga Hospital , Turin , Italy
| | - Giorgio Vittorio Scagliotti
- a Division of Medical Oncology, Department of Oncology , University of Turin, San Luigi Gonzaga Hospital , Turin , Italy
| | - Massimo Di Maio
- b Division of Medical Oncology, Department of Oncology , University of Turin, Mauriziano Hospital , Turin , Italy
| |
Collapse
|
35
|
Lazăr DC, Tăban S, Cornianu M, Faur A, Goldiş A. New advances in targeted gastric cancer treatment. World J Gastroenterol 2016; 22:6776-6799. [PMID: 27570417 PMCID: PMC4974579 DOI: 10.3748/wjg.v22.i30.6776] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 06/13/2016] [Accepted: 07/06/2016] [Indexed: 02/06/2023] Open
Abstract
Despite a decrease in incidence over past decades, gastric cancer remains a major global health problem. In the more recent period, survival has shown only minor improvement, despite significant advances in diagnostic techniques, surgical and chemotherapeutic approaches, the development of novel therapeutic agents and treatment by multidisciplinary teams. Because multiple genetic mutations, epigenetic alterations, and aberrant molecular signalling pathways are involved in the development of gastric cancers, recent research has attempted to determine the molecular heterogeneity responsible for the processes of carcinogenesis, spread and metastasis. Currently, some novel agents targeting a part of these dysfunctional molecular signalling pathways have already been integrated into the standard treatment of gastric cancer, whereas others remain in phases of investigation within clinical trials. It is essential to identify the unique molecular patterns of tumours and specific biomarkers to develop treatments targeted to the individual tumour behaviour. This review analyses the global impact of gastric cancer, as well as the role of Helicobacter pylori infection and the efficacy of bacterial eradication in preventing gastric cancer development. Furthermore, the paper discusses the currently available targeted treatments and future directions of research using promising novel classes of molecular agents for advanced tumours.
Collapse
|
36
|
Design, synthesis and biological evaluation of pyrazolylaminoquinazoline derivatives as highly potent pan-fibroblast growth factor receptor inhibitors. Bioorg Med Chem Lett 2016; 26:2594-9. [PMID: 27117427 DOI: 10.1016/j.bmcl.2016.04.028] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 03/25/2016] [Accepted: 04/12/2016] [Indexed: 11/20/2022]
Abstract
Fibroblast growth factor receptors (FGFRs) are important oncology targets due to the dysregulation of this signaling pathway in a wide variety of human cancers. We identified a series of pyrazolylaminoquinazoline derivatives as potent FGFR inhibitors with low nanomolar potency. The representative compound 29 strongly inhibited FGFR1-3 kinase activity and suppressed FGFR signaling transduction in FGFR-addicted cancer cells; FGFRs-driven cell proliferation was also strongly inhibited regardless of mechanistic complexity implicated in FGFR activation, which further confirmed that 29 was a potent pan-FGFR inhibitor. The flexibility of our structure offered the potential to preserve good affinity for mutant FGFR, which is important for developing TKIs with long-term efficacy.
Collapse
|
37
|
Zhou Y, Wang J, Gu Z, Wang S, Zhu W, Aceña JL, Soloshonok VA, Izawa K, Liu H. Next Generation of Fluorine-Containing Pharmaceuticals, Compounds Currently in Phase II-III Clinical Trials of Major Pharmaceutical Companies: New Structural Trends and Therapeutic Areas. Chem Rev 2016; 116:422-518. [PMID: 26756377 DOI: 10.1021/acs.chemrev.5b00392] [Citation(s) in RCA: 1890] [Impact Index Per Article: 210.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Yu Zhou
- Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences , 555 Zu Chong Zhi Road, Shanghai 201203, China
| | - Jiang Wang
- Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences , 555 Zu Chong Zhi Road, Shanghai 201203, China
| | - Zhanni Gu
- Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences , 555 Zu Chong Zhi Road, Shanghai 201203, China
| | - Shuni Wang
- Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences , 555 Zu Chong Zhi Road, Shanghai 201203, China
| | - Wei Zhu
- Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences , 555 Zu Chong Zhi Road, Shanghai 201203, China
| | - José Luis Aceña
- Department of Organic Chemistry I, Faculty of Chemistry, University of the Basque Country UPV/EHU , Paseo Manuel Lardizábal 3, 20018 San Sebastián, Spain.,Department of Organic Chemistry, Autónoma University of Madrid , Cantoblanco, 28049 Madrid, Spain
| | - Vadim A Soloshonok
- Department of Organic Chemistry I, Faculty of Chemistry, University of the Basque Country UPV/EHU , Paseo Manuel Lardizábal 3, 20018 San Sebastián, Spain.,IKERBASQUE, Basque Foundation for Science, María Díaz de Haro 3, 48013 Bilbao, Spain
| | - Kunisuke Izawa
- Hamari Chemicals Ltd., 1-4-29 Kunijima, Higashi-Yodogawa-ku, Osaka, Japan 533-0024
| | - Hong Liu
- Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences , 555 Zu Chong Zhi Road, Shanghai 201203, China
| |
Collapse
|
38
|
Schmidt B, Wei L, DePeralta DK, Hoshida Y, Tan PS, Sun X, Sventek JP, Lanuti M, Tanabe KK, Fuchs BC. Molecular subclasses of hepatocellular carcinoma predict sensitivity to fibroblast growth factor receptor inhibition. Int J Cancer 2015; 138:1494-505. [PMID: 26481559 DOI: 10.1002/ijc.29893] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Revised: 08/26/2015] [Accepted: 09/10/2015] [Indexed: 01/02/2023]
Abstract
A recent gene expression classification of hepatocellular carcinoma (HCC) includes a poor survival subclass termed S2 representing about one-third of all HCC in clinical series. S2 cells express E-cadherin and c-myc and secrete AFP. As the expression of fibroblast growth factor receptors (FGFRs) differs between S2 and non-S2 HCC, this study investigated whether molecular subclasses of HCC predict sensitivity to FGFR inhibition. S2 cell lines were significantly more sensitive (p < 0.001) to the FGFR inhibitors BGJ398 and AZD4547. BGJ398 decreased MAPK signaling in S2 but not in non-S2 cell lines. All cell lines expressed FGFR1 and FGFR2, but only S2 cell lines expressed FGFR3 and FGFR4. FGFR4 siRNA decreased proliferation by 44% or more in all five S2 cell lines (p < 0.05 for each cell line), a significantly greater decrease than seen with knockdown of FGFR1-3 with siRNA transfection. FGFR4 knockdown decreased MAPK signaling in S2 cell lines, but little effect was seen with knockdown of FGFR1-3. In conclusion, the S2 molecular subclass of HCC is sensitive to FGFR inhibition. FGFR4-MAPK signaling plays an important role in driving proliferation of a molecular subclass of HCC. This classification system may help to identify those patients who are most likely to benefit from inhibition of this pathway.
Collapse
Affiliation(s)
- Benjamin Schmidt
- Division of Surgical Oncology, Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, MA
| | - Lan Wei
- Division of Surgical Oncology, Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, MA
| | - Danielle K DePeralta
- Division of Surgical Oncology, Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, MA
| | - Yujin Hoshida
- Liver Cancer Program, Tisch Cancer Institute, Division of Liver Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Poh Seng Tan
- Liver Cancer Program, Tisch Cancer Institute, Division of Liver Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY.,Division of Gastroenterology and Hepatology, University Medicine Cluster, National University Health System, Singapore, Singapore
| | - Xiaochen Sun
- Liver Cancer Program, Tisch Cancer Institute, Division of Liver Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Janelle P Sventek
- Division of Surgical Oncology, Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, MA
| | - Michael Lanuti
- Division of Thoracic Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | - Kenneth K Tanabe
- Division of Surgical Oncology, Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, MA
| | - Bryan C Fuchs
- Division of Surgical Oncology, Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, MA
| |
Collapse
|
39
|
Porta C, Giglione P, Liguigli W, Paglino C. Dovitinib (CHIR258, TKI258): structure, development and preclinical and clinical activity. Future Oncol 2015; 11:39-50. [PMID: 25572783 DOI: 10.2217/fon.14.208] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Dovitinib is an oral multikinase inhibitor targeting FGF receptors, PDGF receptors and VEGF receptors. Its activity against FGF receptors suggests its usefulness in treating cancers after the failure of VEGF/VEGF receptor-targeting agents. The identified dose and schedule to be used in further studies was 500 mg orally for 5 days on and 2 days off. Biological considerations and the results achieved in a Phase I/II trial suggested its activity in advanced renal cell carcinoma patients pretreated with a tyrosine kinase inhibitor and an mTOR inhibitor. Surprisingly, in a randomized controlled Phase III trial versus sorafenib in the same setting, dovitinib failed to demonstrate any superiority. At present, dovitinib is being tested in different tumor types. However, molecular-based patient selection seems to be key to fully exploit the activity of this drug.
Collapse
Affiliation(s)
- Camillo Porta
- Medical Oncology, IRCCS San Matteo University Hospital Foundation, Piazzale C Golgi, 19, 27100 Pavia, Italy
| | | | | | | |
Collapse
|
40
|
Arulanandam R, Batenchuk C, Angarita FA, Ottolino-Perry K, Cousineau S, Mottashed A, Burgess E, Falls TJ, De Silva N, Tsang J, Howe GA, Bourgeois-Daigneault MC, Conrad DP, Daneshmand M, Breitbach CJ, Kirn DH, Raptis L, Sad S, Atkins H, Huh MS, Diallo JS, Lichty BD, Ilkow CS, Le Boeuf F, Addison CL, McCart JA, Bell JC. VEGF-Mediated Induction of PRD1-BF1/Blimp1 Expression Sensitizes Tumor Vasculature to Oncolytic Virus Infection. Cancer Cell 2015. [PMID: 26212250 DOI: 10.1016/j.ccell.2015.06.009] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Oncolytic viruses designed to attack malignant cells can in addition infect and destroy tumor vascular endothelial cells. We show here that this expanded tropism of oncolytic vaccinia virus to the endothelial compartment is a consequence of VEGF-mediated suppression of the intrinsic antiviral response. VEGF/VEGFR2 signaling through Erk1/2 and Stat3 leads to upregulation, nuclear localization, and activation of the transcription repressor PRD1-BF1/Blimp1. PRD1-BF1 does not contribute to the mitogenic effects of VEGF, but directly represses genes involved in type I interferon (IFN)-mediated antiviral signaling. In vivo suppression of VEGF signaling diminishes PRD1-BF1/Blimp1 expression in tumor vasculature and inhibits intravenously administered oncolytic vaccinia delivery to and consequent spread within the tumor.
Collapse
Affiliation(s)
- Rozanne Arulanandam
- Centre for Innovative Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
| | - Cory Batenchuk
- Centre for Innovative Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
| | - Fernando A Angarita
- Toronto General Research Institute (TGRI), University Health Network, Toronto, ON M5G 2M9, Canada
| | - Kathryn Ottolino-Perry
- Toronto General Research Institute (TGRI), University Health Network, Toronto, ON M5G 2M9, Canada
| | - Sophie Cousineau
- Centre for Innovative Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
| | - Amelia Mottashed
- Centre for Innovative Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
| | - Emma Burgess
- Centre for Innovative Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
| | - Theresa J Falls
- Centre for Innovative Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
| | - Naomi De Silva
- Centre for Innovative Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
| | - Jovian Tsang
- Centre for Innovative Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
| | - Grant A Howe
- Centre for Innovative Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
| | | | - David P Conrad
- Centre for Innovative Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
| | - Manijeh Daneshmand
- Centre for Innovative Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
| | | | - David H Kirn
- SillaJen Biotherapeutics, San Francisco, CA 94111-3380, USA
| | - Leda Raptis
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Subash Sad
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Harold Atkins
- Centre for Innovative Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
| | - Michael S Huh
- Centre for Innovative Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
| | - Jean-Simon Diallo
- Centre for Innovative Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
| | - Brian D Lichty
- McMaster Immunology Research Centre, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Carolina S Ilkow
- Centre for Innovative Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
| | - Fabrice Le Boeuf
- Centre for Innovative Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
| | - Christina L Addison
- Centre for Innovative Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
| | - J Andrea McCart
- Toronto General Research Institute (TGRI), University Health Network, Toronto, ON M5G 2M9, Canada; Department of Surgery, Mount Sinai Hospital, University of Toronto, Toronto, ON M5G 1X5, Canada
| | - John C Bell
- Centre for Innovative Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada.
| |
Collapse
|
41
|
Lee YC, Michael M, Zalcberg JR. An overview of experimental and investigational multikinase inhibitors for the treatment of metastatic colorectal cancer. Expert Opin Investig Drugs 2015. [PMID: 26212373 DOI: 10.1517/13543784.2015.1070483] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
42
|
Zhao Y, Adjei AA. Targeting Angiogenesis in Cancer Therapy: Moving Beyond Vascular Endothelial Growth Factor. Oncologist 2015; 20:660-73. [PMID: 26001391 DOI: 10.1634/theoncologist.2014-0465] [Citation(s) in RCA: 422] [Impact Index Per Article: 42.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Accepted: 03/06/2015] [Indexed: 12/22/2022] Open
Abstract
UNLABELLED Angiogenesis, or the formation of new capillary blood vessels, occurs primarily during human development and reproduction; however, aberrant regulation of angiogenesis is also a fundamental process found in several pathologic conditions, including cancer. As a process required for invasion and metastasis, tumor angiogenesis constitutes an important point of control of cancer progression. Although not yet completely understood, the complex process of tumor angiogenesis involves highly regulated orchestration of multiple signaling pathways. The proangiogenic signaling molecule vascular endothelial growth factor (VEGF) and its cognate receptor (VEGF receptor 2 [VEGFR-2]) play a central role in angiogenesis and often are highly expressed in human cancers, and initial clinical efforts to develop antiangiogenic treatments focused largely on inhibiting VEGF/VEGFR signaling. Such approaches, however, often lead to transient responses and further disease progression because angiogenesis is regulated by multiple pathways that are able to compensate for each other when single pathways are inhibited. The platelet-derived growth factor (PDGF) and PDGF receptor (PDGFR) and fibroblast growth factor (FGF) and FGF receptor (FGFR) pathways, for example, provide potential escape mechanisms from anti-VEGF/VEGFR therapy that could facilitate resumption of tumor growth. Accordingly, more recent treatments have focused on inhibiting multiple signaling pathways simultaneously. This comprehensive review discusses the limitations of inhibiting VEGF signaling alone as an antiangiogenic strategy, the importance of other angiogenic pathways including PDGF/PDGFR and FGF/FGFR, and the novel current and emerging agents that target multiple angiogenic pathways for the treatment of advanced solid tumors. IMPLICATIONS FOR PRACTICE Significant advances in cancer treatment have been achieved with the development of antiangiogenic agents, the majority of which have focused on inhibition of the vascular endothelial growth factor (VEGF) pathway. VEGF targeting alone, however, has not proven to be as efficacious as originally hoped, and it is increasingly clear that there are many interconnected and compensatory pathways that can overcome VEGF-targeted inhibition of angiogenesis. Maximizing the potential of antiangiogenic therapy is likely to require a broader therapeutic approach using a new generation of multitargeted antiangiogenic agents.
Collapse
Affiliation(s)
- Yujie Zhao
- Roswell Park Cancer Institute, Buffalo, New York, USA
| | - Alex A Adjei
- Roswell Park Cancer Institute, Buffalo, New York, USA
| |
Collapse
|
43
|
Popper HH, Ryska A, Tímár J, Olszewski W. Molecular testing in lung cancer in the era of precision medicine. Transl Lung Cancer Res 2015; 3:291-300. [PMID: 25806314 DOI: 10.3978/j.issn.2218-6751.2014.10.01] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Accepted: 10/08/2014] [Indexed: 12/16/2022]
Abstract
The clinical expectations how pathologists should submit lung cancer diagnosis have changed dramatically. Until mid 90-ties a clear separation between small cell lung carcinoma (SCLC) and non-small cell lung carcinoma (NSCLC) was mostly sufficient. With the invention of antiangiogenic treatment a differentiation between squamous and non-squamous NSCLC was requested. When epidermal growth factor receptor (EGFR) mutation was detected in patients with pulmonary adenocarcinomas and subsequent specific treatment with tyrosine kinase inhibitors (TKIs) was invented, sub-classification of NSCLC and molecular analysis of the tumor tissue for mutations was asked for. Pathologists no longer submit just a diagnosis, but instead are involved in a multidisciplinary team for lung cancer patient management. After EGFR several other driver genes such as echinoderm microtubule associated protein like 4-AL-Kinase 1 (EML4-ALK1), c-ros oncogene 1, receptor tyrosine kinase (ROS1), discoidin domain receptor tyrosine kinase 2 (DDR2), fibroblast growth factor receptor 1 (FGFR1) were discovered, and more to come. Due to new developments in bronchology (EUS, EBUS) the amount of tissue submitted for diagnosis and molecular analysis is decreasing, however, the genes to be analyzed are increasing. Many of these driver gene aberrations are inversions or translocations and thus require FISH analysis. Each of these analyses requires a certain amount of tumor cells or one to two tissue sections from an already limited amount of tissues or cells. In this respect new genetic test systems have been introduced such as next generation sequencing, which enables not only to detect multiple mutations in different genes, but also amplifications and fusion genes. As soon as these methods have been validated for routine molecular analysis this will enable the analysis of multiple genetic changes simultaneously. In this review we will focus on genetic aberrations in NSCLC, resistance to new target therapies, and also to methodological requirements for a meaningful evaluation of lung cancer tissue and cells.
Collapse
Affiliation(s)
- Helmut H Popper
- 1 Research Unit for Molecular Lung & Pleura Pathology, Institute of Pathology, Medical University of Graz, Austria ; 2 The Fingerland Department of Pathology, Charles University Faculty of Medicine and Faculty Hospital in Hradec Kralove, Czech Republic ; 3 Department of Pathology, Semmelweis University, Budapest, Molecular Oncology Research Group, HAS-SU, Budapest, Hungary ; 4 Department of Pathology, Cancer Center, 5 Roentgen Str. 02-781 Warsaw, Poland
| | - Ales Ryska
- 1 Research Unit for Molecular Lung & Pleura Pathology, Institute of Pathology, Medical University of Graz, Austria ; 2 The Fingerland Department of Pathology, Charles University Faculty of Medicine and Faculty Hospital in Hradec Kralove, Czech Republic ; 3 Department of Pathology, Semmelweis University, Budapest, Molecular Oncology Research Group, HAS-SU, Budapest, Hungary ; 4 Department of Pathology, Cancer Center, 5 Roentgen Str. 02-781 Warsaw, Poland
| | - József Tímár
- 1 Research Unit for Molecular Lung & Pleura Pathology, Institute of Pathology, Medical University of Graz, Austria ; 2 The Fingerland Department of Pathology, Charles University Faculty of Medicine and Faculty Hospital in Hradec Kralove, Czech Republic ; 3 Department of Pathology, Semmelweis University, Budapest, Molecular Oncology Research Group, HAS-SU, Budapest, Hungary ; 4 Department of Pathology, Cancer Center, 5 Roentgen Str. 02-781 Warsaw, Poland
| | - Wlodzimierz Olszewski
- 1 Research Unit for Molecular Lung & Pleura Pathology, Institute of Pathology, Medical University of Graz, Austria ; 2 The Fingerland Department of Pathology, Charles University Faculty of Medicine and Faculty Hospital in Hradec Kralove, Czech Republic ; 3 Department of Pathology, Semmelweis University, Budapest, Molecular Oncology Research Group, HAS-SU, Budapest, Hungary ; 4 Department of Pathology, Cancer Center, 5 Roentgen Str. 02-781 Warsaw, Poland
| |
Collapse
|
44
|
Tsimafeyeu I, Bratslavsky G. Fibroblast growth factor receptor 1 as a target for the therapy of renal cell carcinoma. Oncology 2015; 88:321-31. [PMID: 25678187 DOI: 10.1159/000370118] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Accepted: 11/24/2014] [Indexed: 11/19/2022]
Abstract
Dysregulation of fibroblast growth factor (FGF) signaling in renal cell carcinoma is now well understood, and it is becoming increasingly likely that certain tumors become dependent on an activation of this pathway for their growth and survival. Dissecting the FGF/FGF receptor (FGFR) pathway offers the hope of developing new therapeutic approaches that selectively target the FGF/FGFR axis in patients whose tumors are known to harbor FGF/FGFR dysregulation. In this review, we summarize the existing data on the role of FGFR1 in the pathogenesis of renal cell carcinoma and discuss methodological issues for drug investigation in this setting.
Collapse
|
45
|
Choi KJ, Baik IH, Ye SK, Lee YH. Molecular Targeted Therapy for Hepatocellular Carcinoma: Present Status and Future Directions. Biol Pharm Bull 2015; 38:986-91. [DOI: 10.1248/bpb.b15-00231] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Kyung-Ju Choi
- Department of Radiation Oncology, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine
| | - In Hye Baik
- Department of Radiation Oncology, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine
| | - Sang-Kyu Ye
- Department of Pharmacology, Seoul National University College of Medicine
| | - Yun-Han Lee
- Department of Radiation Oncology, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine
| |
Collapse
|
46
|
Tomao F, Papa A, Rossi L, Zaccarelli E, Caruso D, Zoratto F, Benedetti Panici P, Tomao S. Angiogenesis and antiangiogenic agents in cervical cancer. Onco Targets Ther 2014; 7:2237-48. [PMID: 25506227 PMCID: PMC4259513 DOI: 10.2147/ott.s68286] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Standard treatment of cervical cancer (CC) consists of surgery in the early stages and of chemoradiation in locally advanced disease. Metastatic CC has a poor prognosis and is usually treated with palliative platinum-based chemotherapy. Current chemotherapeutic regimens are associated with significant adverse effects and only limited activity, making identification of active and tolerable novel targeted agents a high priority. Angiogenesis is a complex process that plays a crucial role in the development of many types of cancer. The dominant role of angiogenesis in CC seems to be directly related to human papillomavirus-related inhibition of p53 and stabilization of hypoxia-inducible factor-1α. Both of these mechanisms are able to increase expression of vascular endothelial growth factor (VEGF). Activation of VEGF promotes endothelial cell proliferation and migration, favoring formation of new blood vessels and increasing permeability of existing blood vessels. Since bevacizumab, a recombinant humanized monoclonal antibody binding to all isoforms of VEGF, has been demonstrated to significantly improve survival in gynecologic cancer, some recent clinical research has explored the possibility of using novel therapies directed toward inhibition of angiogenesis in CC too. Here we review the main results from studies concerning the use of antiangiogenic drugs that are being investigated for the treatment of CC.
Collapse
Affiliation(s)
- Federica Tomao
- Department of Gynecology and Obstetrics, Sapienza University of Rome, Policlinico Umberto I, Rome, Italy
| | - Anselmo Papa
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Oncology Unit, ICOT, Latina, Italy
| | - Luigi Rossi
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Oncology Unit, ICOT, Latina, Italy
| | - Eleonora Zaccarelli
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Oncology Unit, ICOT, Latina, Italy
| | - Davide Caruso
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Oncology Unit, ICOT, Latina, Italy
| | - Federica Zoratto
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Oncology Unit, ICOT, Latina, Italy
| | - Pierluigi Benedetti Panici
- Department of Gynecology and Obstetrics, Sapienza University of Rome, Policlinico Umberto I, Rome, Italy
| | - Silverio Tomao
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Oncology Unit, ICOT, Latina, Italy
| |
Collapse
|
47
|
Latham AM, Kankanala J, Fearnley GW, Gage MC, Kearney MT, Homer-Vanniasinkam S, Wheatcroft SB, Fishwick CWG, Ponnambalam S. In silico design and biological evaluation of a dual specificity kinase inhibitor targeting cell cycle progression and angiogenesis. PLoS One 2014; 9:e110997. [PMID: 25393739 PMCID: PMC4230991 DOI: 10.1371/journal.pone.0110997] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Accepted: 09/24/2014] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Protein kinases play a central role in tumor progression, regulating fundamental processes such as angiogenesis, proliferation and metastasis. Such enzymes are an increasingly important class of drug target with small molecule kinase inhibitors being a major focus in drug development. However, balancing drug specificity and efficacy is problematic with off-target effects and toxicity issues. METHODOLOGY We have utilized a rational in silico-based approach to demonstrate the design and study of a novel compound that acts as a dual inhibitor of vascular endothelial growth factor receptor 2 (VEGFR2) and cyclin-dependent kinase 1 (CDK1). This compound acts by simultaneously inhibiting pro-angiogenic signal transduction and cell cycle progression in primary endothelial cells. JK-31 displays potent in vitro activity against recombinant VEGFR2 and CDK1/cyclin B proteins comparable to previously characterized inhibitors. Dual inhibition of the vascular endothelial growth factor A (VEGF-A)-mediated signaling response and CDK1-mediated mitotic entry elicits anti-angiogenic activity both in an endothelial-fibroblast co-culture model and a murine ex vivo model of angiogenesis. CONCLUSIONS We deduce that JK-31 reduces the growth of both human endothelial cells and human breast cancer cells in vitro. This novel synthetic molecule has broad implications for development of similar multi-kinase inhibitors with anti-angiogenic and anti-cancer properties. In silico design is an attractive and innovative method to aid such drug discovery.
Collapse
Affiliation(s)
- Antony M. Latham
- Endothelial Cell Biology Unit, School of Molecular & Cellular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | | | - Gareth W. Fearnley
- Endothelial Cell Biology Unit, School of Molecular & Cellular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Matthew C. Gage
- Leeds Institute of Cardiovascular & Metabolic Medicine, Faculty of Medicine & Health, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Mark T. Kearney
- Leeds Institute of Cardiovascular & Metabolic Medicine, Faculty of Medicine & Health, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Shervanthi Homer-Vanniasinkam
- Leeds Institute of Cardiovascular & Metabolic Medicine, Faculty of Medicine & Health, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Stephen B. Wheatcroft
- Leeds Institute of Cardiovascular & Metabolic Medicine, Faculty of Medicine & Health, University of Leeds, Leeds LS2 9JT, United Kingdom
| | | | - Sreenivasan Ponnambalam
- Endothelial Cell Biology Unit, School of Molecular & Cellular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
- * E-mail:
| |
Collapse
|
48
|
Kudo M, Han G, Finn RS, Poon RTP, Blanc JF, Yan L, Yang J, Lu L, Tak WY, Yu X, Lee JH, Lin SM, Wu C, Tanwandee T, Shao G, Walters IB, Dela Cruz C, Poulart V, Wang JH. Brivanib as adjuvant therapy to transarterial chemoembolization in patients with hepatocellular carcinoma: A randomized phase III trial. Hepatology 2014; 60:1697-707. [PMID: 24996197 DOI: 10.1002/hep.27290] [Citation(s) in RCA: 279] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Accepted: 06/27/2014] [Indexed: 02/05/2023]
Abstract
UNLABELLED Transarterial chemoembolization (TACE) is the current standard of treatment for unresectable intermediate-stage hepatocellular carcinoma (HCC). Brivanib, a selective dual inhibitor of vascular endothelial growth factor and fibroblast growth factor signaling, may improve the effectiveness of TACE when given as an adjuvant to TACE. In this multinational, randomized, double-blind, placebo-controlled, phase III study, 870 patients with TACE-eligible HCC were planned to be randomly assigned (1:1) after the first TACE to receive either brivanib 800 mg or placebo orally once-daily. The primary endpoint was overall survival (OS). Secondary endpoints included time to disease progression (TTDP; a composite endpoint based on development of extrahepatic spread or vascular invasion, deterioration of liver function or performance status, or death), time to extrahepatic spread or vascular invasion (TTES/VI), rate of TACE, and safety. Time to radiographic progression (TTP) and objective response rate were exploratory endpoints. The trial was terminated after randomization of 502 patients (brivanib, 249; placebo, 253) when two other phase III studies of brivanib in advanced HCC patients failed to meet OS objectives. At termination, median follow-up was approximately 16 months. Intention-to-treat analysis showed no improvement in OS with brivanib versus placebo (median, 26.4 [95% confidence interval {CI}: 19.1 to not reached] vs. 26.1 months [19.0-30.9]; hazard ratio [HR]: 0.90 [95% CI: 0.66-1.23]; log-rank P=0.5280). Brivanib improved TTES/VI (HR, 0.64 [95% CI: 0.45-0.90]), TTP (0.61 [0.48-0.77]), and rate of TACE (0.72 [0.61-0.86]), but not TTDP (0.94 [0.72-1.22]) versus placebo. Most frequent grade 3-4 adverse events included hyponatremia (brivanib, 18% vs. placebo, 5%) and hypertension (13% vs. 3%). CONCLUSIONS In this study, brivanib as adjuvant therapy to TACE did not improve OS.
Collapse
Affiliation(s)
- Masatoshi Kudo
- Department of Gastroenterology and Hepatology, Kinki University School of Medicine, Osaka, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Wang L, Stanley M, Boggs JW, Crawford TD, Bravo BJ, Giannetti AM, Harris SF, Magnuson SR, Nonomiya J, Schmidt S, Wu P, Ye W, Gould SE, Murray LJ, Ndubaku CO, Chen H. Fragment-based identification and optimization of a class of potent pyrrolo[2,1-f][1,2,4]triazine MAP4K4 inhibitors. Bioorg Med Chem Lett 2014; 24:4546-4552. [PMID: 25139565 DOI: 10.1016/j.bmcl.2014.07.071] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Revised: 07/24/2014] [Accepted: 07/28/2014] [Indexed: 01/27/2023]
Abstract
MAP4K4 has been shown to regulate key cellular processes that are tied to disease pathogenesis. In an effort to generate small molecule MAP4K4 inhibitors, a fragment-based screen was carried out and a pyrrolotriazine fragment with excellent ligand efficiency was identified. Further modification of this fragment guided by X-ray crystal structures and molecular modeling led to the discovery of a series of promising compounds with good structural diversity and physicochemical properties. These compounds exhibited single digit nanomolar potency and compounds 35 and 44 achieved good in vivo exposure.
Collapse
Affiliation(s)
- Lan Wang
- Department of Discovery Chemistry, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, United States
| | - Mark Stanley
- Department of Discovery Chemistry, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, United States
| | - Jason W Boggs
- Department of Drug Metabolism and Pharmacokinetics, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, United States
| | - Terry D Crawford
- Department of Discovery Chemistry, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, United States
| | - Brandon J Bravo
- Department of Biochemical and Cellular Pharmacology, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, United States
| | - Anthony M Giannetti
- Department of Biochemical and Cellular Pharmacology, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, United States
| | - Seth F Harris
- Department of Structural Biology, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, United States
| | - Steven R Magnuson
- Department of Discovery Chemistry, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, United States
| | - Jim Nonomiya
- Department of Biochemical and Cellular Pharmacology, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, United States
| | - Stephen Schmidt
- Department of Biochemical and Cellular Pharmacology, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, United States
| | - Ping Wu
- Department of Structural Biology, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, United States
| | - Weilan Ye
- Department of Molecular Oncology, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, United States
| | - Stephen E Gould
- Department of Molecular Oncology, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, United States
| | - Lesley J Murray
- Department of Drug Metabolism and Pharmacokinetics, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, United States
| | - Chudi O Ndubaku
- Department of Discovery Chemistry, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, United States.
| | - Huifen Chen
- Department of Discovery Chemistry, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, United States.
| |
Collapse
|
50
|
Marques AM, Turner A, de Mello RA. Personalizing medicine for metastatic colorectal cancer: current developments. World J Gastroenterol 2014; 20:10425-10431. [PMID: 25132758 PMCID: PMC4130849 DOI: 10.3748/wjg.v20.i30.10425] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Revised: 03/19/2014] [Accepted: 04/30/2014] [Indexed: 02/06/2023] Open
Abstract
Metastatic colorectal cancer (mCRC) is still one of the tumor types with the highest incidence and mortality. In 2012, colorectal cancer was the second most prevalence cancer among males (9%) and the third among females (8%). In this disease, early diagnosis is important to improve treatment outcomes. However, at the time of diagnosis, about one quarter of patients already have metastases, and overall survival of these patients at 5-years survival is very low. Because of these poor statistics, the development of new drugs against specific targets, including the pathway of angiogenesis, has witnessed a remarkable increase. So, targets therapies through epidermal growth factor and its receptor and also KRAS pathways modulation acquired a main role whether in association with standard chemotherapy and radiotherapy. With the current knowledge in the field of molecular biology, including genetic mutations and polymorphisms, we know better why patients respond so differently to the same treatments. So, in the future we can develop increasingly personalized treatments to the patient and not the disease. This review aims to summarize some molecular pathways and their relation to tumor growth, as well as novel targeted developing drugs and recently approved for mCRC.
Collapse
|