1
|
Gibney A, Kellett A. Gene Editing with Artificial DNA Scissors. Chemistry 2024; 30:e202401621. [PMID: 38984588 DOI: 10.1002/chem.202401621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/09/2024] [Accepted: 07/10/2024] [Indexed: 07/11/2024]
Abstract
Artificial metallo-nucleases (AMNs) are small molecule DNA cleavage agents, also known as DNA molecular scissors, and represent an important class of chemotherapeutic with high clinical potential. This review provides a primary level of exploration on the concepts key to this area including an introduction to DNA structure, function, recognition, along with damage and repair mechanisms. Building on this foundation, we describe hybrid molecules where AMNs are covalently attached to directing groups that provide molecular scissors with enhanced or sequence specific DNA damaging capabilities. As this research field continues to evolve, understanding the applications of AMNs along with synthetic conjugation strategies can provide the basis for future innovations, particularly for designing new artificial gene editing systems.
Collapse
Affiliation(s)
- Alex Gibney
- SSPC, The Science Foundation Ireland Research Centre for Pharmaceuticals, School of Chemical Sciences, Dublin City University, Glasnevin, Dublin, 9, Ireland
| | - Andrew Kellett
- SSPC, The Science Foundation Ireland Research Centre for Pharmaceuticals, School of Chemical Sciences, Dublin City University, Glasnevin, Dublin, 9, Ireland
| |
Collapse
|
2
|
Alqarni MH, Muharram MM, Alshahrani SM, Labrou NE. Copper-induced oxidative cleavage of glutathione transferase F1-1 from Zea mays. Int J Biol Macromol 2019; 128:493-498. [PMID: 30685307 DOI: 10.1016/j.ijbiomac.2019.01.128] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 12/04/2018] [Accepted: 01/23/2019] [Indexed: 11/16/2022]
Abstract
Study of the interaction of glutathione transferase F1-1 from Zea mays (ZmGSTF1-1) with Cu(II), in the presence of ascorbate showed that the enzyme was rapidly inactivated. The inactivation was time and Cu(II) concentration dependent. The rate of inactivation showed non-linear dependence on Cu(II) concentration, indicating that a reversible complex with the enzyme (KD 84.5 ± 6.5 μM) was formed. The inhibitors S-nitrobenzyl-glutathione or S-methyl-glutathione competes with Cu(II), suggesting the specificity of the chemical modification reaction. SDS-PAGE analysis of the inactivated enzyme showed that the enzyme is fragmented and two new bands of 13 and 11 kDa are formed. This shows that ZmGSTF1-1 was specifically cleaved at a single site, by the locally generated free radicals, through a Fenton-type reaction. Sequencing of the fragments allowed the identification of the Cu(II) binding site on ZmGSTF1-1. The three-dimensional structure of ZmGSTF1-1 reveals that the Cu(II) binding site is localized within the glutathione-binding site (G-site) and His40 and Gln53 are most likely the residues that provide the coordination sites for the Cu(II) binding. These findings were confirmed by site-directed mutagenesis. This copper-induced oxidative cleavage reaction of ZmGSTF1-1 may function as a detoxification route for Cu(II) for protecting plant cells from copper-induced deleterious effects.
Collapse
Affiliation(s)
- Mohammed Hamed Alqarni
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, 11942 Alkharj, Saudi Arabia
| | - Magdy Mohamed Muharram
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, 11942 Alkharj, Saudi Arabia; Department of Microbiology, College of Science, Al-Azhar University, Nasr City, 11884 Cairo, Egypt
| | - Saad Maria Alshahrani
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, 11942 Alkharj, Saudi Arabia
| | - Nikolaos E Labrou
- Laboratory of Enzyme Technology, Department of Biotechnology, School of Food, Biotechnology and Development, Agricultural University of Athens, 75 Iera Odos Street, GR-11855 Athens, Greece.
| |
Collapse
|
3
|
Schwizer F, Okamoto Y, Heinisch T, Gu Y, Pellizzoni MM, Lebrun V, Reuter R, Köhler V, Lewis JC, Ward TR. Artificial Metalloenzymes: Reaction Scope and Optimization Strategies. Chem Rev 2017; 118:142-231. [PMID: 28714313 DOI: 10.1021/acs.chemrev.7b00014] [Citation(s) in RCA: 534] [Impact Index Per Article: 66.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The incorporation of a synthetic, catalytically competent metallocofactor into a protein scaffold to generate an artificial metalloenzyme (ArM) has been explored since the late 1970's. Progress in the ensuing years was limited by the tools available for both organometallic synthesis and protein engineering. Advances in both of these areas, combined with increased appreciation of the potential benefits of combining attractive features of both homogeneous catalysis and enzymatic catalysis, led to a resurgence of interest in ArMs starting in the early 2000's. Perhaps the most intriguing of potential ArM properties is their ability to endow homogeneous catalysts with a genetic memory. Indeed, incorporating a homogeneous catalyst into a genetically encoded scaffold offers the opportunity to improve ArM performance by directed evolution. This capability could, in turn, lead to improvements in ArM efficiency similar to those obtained for natural enzymes, providing systems suitable for practical applications and greater insight into the role of second coordination sphere interactions in organometallic catalysis. Since its renaissance in the early 2000's, different aspects of artificial metalloenzymes have been extensively reviewed and highlighted. Our intent is to provide a comprehensive overview of all work in the field up to December 2016, organized according to reaction class. Because of the wide range of non-natural reactions catalyzed by ArMs, this was done using a functional-group transformation classification. The review begins with a summary of the proteins and the anchoring strategies used to date for the creation of ArMs, followed by a historical perspective. Then follows a summary of the reactions catalyzed by ArMs and a concluding critical outlook. This analysis allows for comparison of similar reactions catalyzed by ArMs constructed using different metallocofactor anchoring strategies, cofactors, protein scaffolds, and mutagenesis strategies. These data will be used to construct a searchable Web site on ArMs that will be updated regularly by the authors.
Collapse
Affiliation(s)
- Fabian Schwizer
- Department of Chemistry, Spitalstrasse 51, University of Basel , CH-4056 Basel, Switzerland
| | - Yasunori Okamoto
- Department of Chemistry, Spitalstrasse 51, University of Basel , CH-4056 Basel, Switzerland
| | - Tillmann Heinisch
- Department of Chemistry, Spitalstrasse 51, University of Basel , CH-4056 Basel, Switzerland
| | - Yifan Gu
- Searle Chemistry Laboratory, University of Chicago , 5735 S. Ellis Ave., Chicago, Illinois 60637, United States
| | - Michela M Pellizzoni
- Department of Chemistry, Spitalstrasse 51, University of Basel , CH-4056 Basel, Switzerland
| | - Vincent Lebrun
- Department of Chemistry, Spitalstrasse 51, University of Basel , CH-4056 Basel, Switzerland
| | - Raphael Reuter
- Department of Chemistry, Spitalstrasse 51, University of Basel , CH-4056 Basel, Switzerland
| | - Valentin Köhler
- Department of Chemistry, Spitalstrasse 51, University of Basel , CH-4056 Basel, Switzerland
| | - Jared C Lewis
- Searle Chemistry Laboratory, University of Chicago , 5735 S. Ellis Ave., Chicago, Illinois 60637, United States
| | - Thomas R Ward
- Department of Chemistry, Spitalstrasse 51, University of Basel , CH-4056 Basel, Switzerland
| |
Collapse
|
4
|
Mulla RS, Pitarch-Jarque J, García-España E, Desa T, Lurie-Luke E, Williams JAG. Monoamide Derivatives of EDTA Incorporating Pendent Carboxylates or Pyridyls: Synthesis, Metal Binding, and Crystal Structure of a Dinuclear Ca2+
Complex Featuring Bridging Na+
Ions. ChemistrySelect 2017. [DOI: 10.1002/slct.201700995] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
| | - Javier Pitarch-Jarque
- Instituto de Ciencia Molecular (ICMol); Universidad de Valencia; C/ Catedrático José Beltrán, 2 46980, Paterna Valencia Spain
| | - Enrique García-España
- Instituto de Ciencia Molecular (ICMol); Universidad de Valencia; C/ Catedrático José Beltrán, 2 46980, Paterna Valencia Spain
| | - Tanya Desa
- Procter and Gamble Technical Centres Limited, Rusham Park; Whitehall Lane, Egham Surrey TW20 9NW
| | - Elena Lurie-Luke
- Procter and Gamble Technical Centres Limited, Rusham Park; Whitehall Lane, Egham Surrey TW20 9NW
| | | |
Collapse
|
5
|
Metal assisted peptide bond hydrolysis: Chemistry, biotechnology and toxicological implications. Coord Chem Rev 2016. [DOI: 10.1016/j.ccr.2016.02.009] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
6
|
Abstract
Proteins are major targets for radicals and two-electron oxidants in biological systems due to their abundance and high rate constants for reaction. With highly reactive radicals damage occurs at multiple side-chain and backbone sites. Less reactive species show greater selectivity with regard to the residues targeted and their spatial location. Modification can result in increased side-chain hydrophilicity, side-chain and backbone fragmentation, aggregation via covalent cross-linking or hydrophobic interactions, protein unfolding and altered conformation, altered interactions with biological partners and modified turnover. In the presence of O2, high yields of peroxyl radicals and peroxides (protein peroxidation) are formed; the latter account for up to 70% of the initial oxidant flux. Protein peroxides can oxidize both proteins and other targets. One-electron reduction results in additional radicals and chain reactions with alcohols and carbonyls as major products; the latter are commonly used markers of protein damage. Direct oxidation of cysteine (and less commonly) methionine residues is a major reaction; this is typically faster than with H2O2, and results in altered protein activity and function. Unlike H2O2, which is rapidly removed by protective enzymes, protein peroxides are only slowly removed, and catabolism is a major fate. Although turnover of modified proteins by proteasomal and lysosomal enzymes, and other proteases (e.g. mitochondrial Lon), can be efficient, protein hydroperoxides inhibit these pathways and this may contribute to the accumulation of modified proteins in cells. Available evidence supports an association between protein oxidation and multiple human pathologies, but whether this link is causal remains to be established.
Collapse
Affiliation(s)
- Michael J Davies
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Blegdamsvej 3, Copenhagen 2200, Denmark
| |
Collapse
|
7
|
Abstract
Site-selective peptide/protein degradation through chemical cleavage methods is an important modification of biologically relevant macromolecules which complements enzymatic hydrolysis. In this review, recent progress in chemical, site-selective peptide bond cleavage is overviewed, with an emphasis on postulated mechanisms and their implications on reactivity, selectivity, and substrate scope.
Collapse
|
8
|
Stroobants K, Saadallah D, Bruylants G, Parac-Vogt TN. Thermodynamic study of the interaction between hen egg white lysozyme and Ce(IV)-Keggin polyoxotungstate as artificial protease. Phys Chem Chem Phys 2014; 16:21778-87. [PMID: 25199500 DOI: 10.1039/c4cp03183k] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The molecular interactions of the Keggin polyoxometalate [Me2NH2]10[Ce(PW11O39)2] (1), which promotes selective hydrolysis of hen egg white lysozyme (HEWL) under physiological conditions, were investigated in detail by isothermal titration calorimetry (ITC), (31)P NMR and circular dichroism (CD) spectroscopy. ITC experiments showed that mixing of 1 and HEWL at pH 7.4 and 25 or 37 °C resulted in complexes having 1 : 1 and 2 : 1 POM : HEWL stoichiometries, respectively, and thermodynamic profiles are in agreement with binding in the vicinity of the Trp28-Val29 and Asn44-Arg45 peptide bonds, which were previously shown to undergo selective hydrolysis by 1. Mixing of HEWL with (NH4)4Ce(SO4)4·4H2O salt indicated the absence of any binding accentuating the importance of the polyoxometalate scaffold for selective interaction with the HEWL surface. In contrast, the lacunary Na9[A-α-PW9O34] polyoxometalate showed an increased binding stoichiometry as compared to 1. Increasing the ionic strength resulted in thermodynamic signatures which indicate preservation of the interaction at the Trp28-Val29 site, while interaction at the Asn44-Arg45 appears disrupted due to competition with the salt ions. Decreasing the pH to 4.4 at 37 °C resulted in energetic contributions which suggest that binding at the Trp28-Val29 site is favored, while more pronounced binding at the Asn44-Arg45 site was anticipated when the pH was increased to 9.2. The absence of binding between 1 and α-lactalbumin (α-LA), a protein which is highly isostructural to HEWL but with an overall negative charge, was confirmed at pH 7.4 and 37 °C. The influence of the pH on the binding between 1 and α-LA was investigated, demonstrating that at lower pH values, where α-LA becomes more positively charged, a 1 : 1 interaction with 1 is observed.
Collapse
Affiliation(s)
- K Stroobants
- KU Leuven, Department of Chemistry, Celestijnenlaan 200F, B-3001, Leuven, Belgium.
| | | | | | | |
Collapse
|
9
|
Tanabe K, Taniguchi A, Matsumoto T, Oisaki K, Sohma Y, Kanai M. Asparagine-selective cleavage of peptide bonds through hypervalent iodine-mediated Hofmann rearrangement in neutral aqueous solution. Chem Sci 2014. [DOI: 10.1039/c3sc53037j] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
10
|
Charvátová O, Foley BL, Bern MW, Sharp JS, Orlando R, Woods RJ. Quantifying protein interface footprinting by hydroxyl radical oxidation and molecular dynamics simulation: application to galectin-1. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2008; 19:1692-705. [PMID: 18707901 PMCID: PMC2607067 DOI: 10.1016/j.jasms.2008.07.013] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/25/2008] [Revised: 07/10/2008] [Accepted: 07/14/2008] [Indexed: 05/13/2023]
Abstract
Biomolecular surface mapping methods offer an important alternative method for characterizing protein-protein and protein-ligand interactions in cases in which it is not possible to determine high-resolution three-dimensional (3D) structures of complexes. Hydroxyl radical footprinting offers a significant advance in footprint resolution compared with traditional chemical derivatization. Here we present results of footprinting performed with hydroxyl radicals generated on the nanosecond time scale by laser-induced photodissociation of hydrogen peroxide. We applied this emerging method to a carbohydrate-binding protein, galectin-1. Since galectin-1 occurs as a homodimer, footprinting was employed to characterize the interface of the monomeric subunits. Efficient analysis of the mass spectrometry data for the oxidized protein was achieved with the recently developed ByOnic (Palo Alto, CA) software that was altered to handle the large number of modifications arising from side-chain oxidation. Quantification of the level of oxidation has been achieved by employing spectral intensities for all of the observed oxidation states on a per-residue basis. The level of accuracy achievable from spectral intensities was determined by examination of mixtures of synthetic peptides related to those present after oxidation and tryptic digestion of galectin-1. A direct relationship between side-chain solvent accessibility and level of oxidation emerged, which enabled the prediction of the level of oxidation given the 3D structure of the protein. The precision of this relationship was enhanced through the use of average solvent accessibilities computed from 10 ns molecular dynamics simulations of the protein.
Collapse
Affiliation(s)
- Olga Charvátová
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Rd, Athens, Georgia, 30602, USA
| | - B. Lachele Foley
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Rd, Athens, Georgia, 30602, USA
| | - Marshall W. Bern
- Palo Alto Research Center, 3333 Coyote Hill Road, Palo Alto, California, 94304, USA
| | - Joshua S. Sharp
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Rd, Athens, Georgia, 30602, USA
| | - Ron Orlando
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Rd, Athens, Georgia, 30602, USA
| | - Robert J. Woods
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Rd, Athens, Georgia, 30602, USA
| |
Collapse
|
11
|
Baruch-Suchodolsky R, Fischer B. Soluble amyloid beta1-28-copper(I)/copper(II)/Iron(II) complexes are potent antioxidants in cell-free systems. Biochemistry 2008; 47:7796-806. [PMID: 18598056 DOI: 10.1021/bi800114g] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Amyloid beta (Abeta) is a central characteristic of Alzheimer's disease (AD). Currently, there is a long-standing dispute regarding the role of Abeta-metal ion (Zn, Cu, and Fe) complexes in AD pathogenesis. Here, we aim to decipher the connection between oxidative damage implicated in AD and Abeta-metal ion complexes. For this purpose we study, using ESR, the modulation of Cu/Fe-induced H 2O 2 decomposition by Abeta 1-28 (Abeta 28), a soluble model of Abeta 40/42. The addition of H 2O 2 to 0.6 nM-360 microM Abeta 28 solutions containing 100 microM Cu(II)/Cu(I)/Fe(II) at pH 6.6 results in a concentration-dependent sigmoidal decay of [*OH] with IC 50 values of 61, 59, and 84 microM, respectively. Furthermore, Abeta 28 reduces 90% of *OH production rate in the Cu(I)-H 2O 2 system in 5 min. Unlike soluble Abeta 28, Abeta 28-Cu aggregates exhibit poor antioxidant activity. The mode of antioxidant activity of soluble Abeta 28 is twofold. The primary (rapid) mechanism involves metal chelation, whereas the secondary (slow) mechanism involves (*)OH scavenging and oxidation of Cu(Fe)-coordinating ligands. On the basis of our findings, we propose that soluble Abeta may play a protective role in the early stages of AD, but not in healthy individuals, where Abeta's concentration is nanomolar. Yet, when Abeta-metal ion complexes undergo aggregation, they significantly lose their protective function and allow oxidative damage to occur.
Collapse
Affiliation(s)
- Rozena Baruch-Suchodolsky
- Department of Chemistry, Gonda-Goldschmied Medical Research Center, Bar-Ilan University, Ramat-Gan 52900, Israel
| | | |
Collapse
|
12
|
|
13
|
Andberg M, Jäntti J, Heilimo S, Pihkala P, Paananen A, Koskinen AMP, Söderlund H, Linder MB. Cleavage of recombinant proteins at poly-His sequences by Co(II) and Cu(II). Protein Sci 2007; 16:1751-61. [PMID: 17600148 PMCID: PMC2203371 DOI: 10.1110/ps.072846407] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Improved ways to cleave peptide chains at engineered sites easily and specifically would form useful tools for biochemical research. Uses of such methods include the activation or inactivation of enzymes or the removal of tags for enhancement of recombinant protein expression or tags used for purification of recombinant proteins. In this work we show by gel electrophoresis and mass spectroscopy that salts of Co(II) and Cu(II) can be used to cleave fusion proteins specifically at sites where sequences of His residues have been introduced by protein engineering. The His residues could be either consecutive or spaced with other amino acids in between. The cleavage reaction required the presence of low concentrations of ascorbate and in the case of Cu(II) also hydrogen peroxide. The amount of metal ions required for cleavage was very low; in the case of Cu(II) only one to two molar equivalents of Cu(II) to protein was required. In the case of Co(II), 10 molar equivalents gave optimal cleavage. The reaction occurred within minutes, at a wide pH range, and efficiently at temperatures ranging from 0 degrees C to 70 degrees C. The work described here can also have implications for understanding protein stability in vitro and in vivo.
Collapse
Affiliation(s)
- Martina Andberg
- VTT Technical Research Centre of Finland, Espoo FIN-02044 VTT, Finland
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Jones BJ, Vergne MJ, Bunk DM, Locascio LE, Hayes MA. Cleavage of Peptides and Proteins Using Light-Generated Radicals from Titanium Dioxide. Anal Chem 2007; 79:1327-32. [PMID: 17297930 DOI: 10.1021/ac0613737] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Protein identification and characterization often requires cleavage into distinct fragments. Current methods require proteolytic enzymes or chemical agents and typically a second reagent to discontinue cleavage. We have developed a selective cleavage process for peptides and proteins using light-generated radicals from titanium dioxide. The hydroxyl radicals, produced at the TiO(2) surface using UV light, are present for only hundreds of microseconds and are confined to a defined reagent zone. Peptides and proteins can be moved past the "reagent zone", and cleavage is tunable through residence time, illumination time, and intensity. Using this method, products are observed consistent with cleavage at proline residues. These initial experiments indicate the method is rapid, specific, and reproducible. In certain configurations, cleavage products are produced in less than 10 s. Reproducible product patterns consistent with cleavage of the peptide bond at proline for angiotensin I, Lys-bradykinin, and myoglobin are demonstrated using capillary electrophoresis. Mass characterization of fragments produced in the cleavage of angiotensin I was obtained using liquid chromatography-mass spectrometry. In addition to the evidence supporting cleavage at proline, enkephalin and peptide A-779, two peptides that do not contain proline, showed no evidence of cleavage under the same conditions.
Collapse
|
15
|
Sereikaite J, Jachno J, Santockyte R, Chmielevski P, Bumelis VA, Dienys G. Protein Scission by Metal Ion–Ascorbate System. Protein J 2006; 25:369-78. [PMID: 17024566 DOI: 10.1007/s10930-006-9014-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
About 14 proteins were tested for specific oxidative scission catalyzed by metal ions in the presence of ascorbate and oxidizing agents (O(2) or hydrogen peroxide). Only four of them were degraded by Fe(3+)/Fe(2+)- ascorbate, twelve - by Cu(2+)/Cu(+)-ascorbate and two proteins (alpha- and beta-caseins) were degraded by Pd(2+) ions. The rate and the intensity of degradation are very different for various proteins. For the most of tested proteins only a small fraction of molecules was degraded. None of them was degraded completely. Two possible reasons of protein stability against oxidative degradation may be proposed as follows: either there is no metal binding site in a protein molecule, or metal binding ligands of protein undergo a rapid oxidative modification and the metal ion is released from the binding site. Human growth hormone was cut specifically at two sites by Cu(2+)/Cu(+)-ascorbate system. At least one of amino acid residues of this protein was modified by formation of reactive carbonyl.
Collapse
Affiliation(s)
- Jolanta Sereikaite
- Department of Chemistry and Bioengineering, Vilnius Gediminas Technical University, LT-2040, Vilnius, Lithuania.
| | | | | | | | | | | |
Collapse
|
16
|
de Oliveira CPMS, Simplicio FI, de Lima VMR, Yuahasi K, Lopasso FP, Alves VAF, Abdalla DSP, Carrilho FJ, Laurindo FRM, de Oliveira MG. Oral administration of S-nitroso-N-acetylcysteine prevents the onset of non alcoholic fatty liver disease in rats. World J Gastroenterol 2006; 12:1905-1911. [PMID: 16609997 PMCID: PMC4087516 DOI: 10.3748/wjg.v12.i12.1905] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2005] [Revised: 07/02/2005] [Accepted: 07/20/2005] [Indexed: 02/06/2023] Open
Abstract
AIM To evaluate the potential of S-nitroso-N-acetylcysteine (SNAC) in inhibition of lipid peroxidation and the effect of oral SNAC administration in the prevention of nonalcoholic fatty liver disease (NAFLD) in an animal model. METHODS NAFLD was induced in Wistar male rats by choline-deficient diet for 4 wk. SNAC-treated animals (n=6) (1.4 mg/kg per day of SNAC, orally) were compared to 2 control groups: one (n=6) received PBS solution and the other (n=6) received NAC solution (7 mg/kg per day). Histological variables were semiquantitated with respect to macro and microvacuolar fat changes, its zonal distribution, foci of necrosis, portal and perivenular fibrosis, and inflammatory infiltrate with zonal distribution. LOOHs from samples of liver homogenates were quantified by HPLC. Nitrate levels in plasma of portal vein were assessed by chemiluminescence. Aqueous low-density lipoprotein (LDL) suspensions (200 microg protein/mL) were incubated with CuCl(2) (300 micromol/L) in the absence and presence of SNAC (300 micromol/L) for 15 h at 37 degree Celsius. Extent of LDL oxidation was assessed by fluorimetry. Linoleic acid (LA) (18.8 micromol/L) oxidation was induced by soybean lipoxygenase (SLO) (0.056 micromol/L) at 37 degree Celsius in the presence and absence of N-acetylcysteine (NAC) and SNAC (56 and 560 micromol/L) and monitored at 234 nm. RESULTS Animals in the control group developed moderate macro and microvesicular fatty changes in periportal area. SNAC-treated animals displayed only discrete histological alterations with absence of fatty changes and did not develop liver steatosis. The absence of NAFLD in the SNAC-treated group was positively correlated with a decrease in the concentration of LOOH in liver homogenate, compared to the control group (0.7+/-0.2 nmol/mg vs 3.2+/-0.4 nmol/mg protein, respectively, P<0.05), while serum levels of aminotransferases were unaltered. The ability of SNAC in preventing lipid peroxidation was confirmed in in vitro experiments using LA and LDL as model substrates. CONCLUSION Oral administration of SNAC prevents the onset of NAFLD in Wistar rats fed with choline-deficient diet. This effect is correlated with the ability of SNAC to block the propagation of lipid peroxidation in vitro and in vitro.
Collapse
|
17
|
Furuta T, Sakai M, Hayashi H, Asakawa T, Kataoka F, Fujii S, Suzuki T, Suzuki Y, Tanaka K, Fishkin N, Nakanishi K. Design and synthesis of artificial phospholipid for selective cleavage of integral membrane protein. Chem Commun (Camb) 2005:4575-7. [PMID: 16158119 DOI: 10.1039/b507917a] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An artificial phospholipid, possessing saturated alkyl chains as a membrane anchor and protein recognition site as well as an Fe(III)-EDTA moiety as a protein cleavable polar head group, was designed and synthesized based on the amidite method for the purpose of examination of cleavage of integral membrane proteins.
Collapse
Affiliation(s)
- Takumi Furuta
- Department of Synthetic Organic and Medicinal Chemistry, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Shizuoka 422-8526, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Lim J, Vachet RW. Using Mass Spectrometry To Study Copper−Protein Binding under Native and Non-Native Conditions: β-2-Microglobulin. Anal Chem 2004; 76:3498-504. [PMID: 15228316 DOI: 10.1021/ac049716t] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A method based on metal-catalyzed oxidation (MCO) reactions and mass spectrometry (MS) has been used to determine the Cu(II) binding sites in both native and unfolded conformations of beta-2-microglobulin (beta2m). Recent studies have shown that beta2m is destabilized and can form amyloid fibers in the presence of Cu(II). An increased affinity for Cu in unfolded states compared to that of the native state is suspected to facilitate overall protein destabilization. Cu-binding site information for native beta2m is difficult to obtain using traditional techniques because of its propensity to form amyloid fibers at relatively high protein concentrations in the presence of Cu and because of the nonspecific paramagnetic peak broadening observed in NMR analyses. In addition, Cu-binding information of unfolded beta2m is complicated by the high concentrations of denaturants (e.g., 8 M urea) needed to ensure protein unfolding. The MCO/MS approach has been successfully employed in this work to overcome these difficulties. The sensitivity of MS allowed the Cu-binding site of the native protein to be determined at the low concentrations of beta2m necessary to avoid amyloid fiber formation. Results indicate that the N-terminus of the protein and His31 are responsible for Cu(II) coordination in the native state. The MCO/MS method was also successful at determining the Cu-binding site in the presence of 8 M urea with the N-terminus, His31, His51, and His81 found to be Cu-bound in the unfolded state. This result supports the existence of a well-defined but different coordination structure in the unfolded state, which leads to the greater affinity for Cu(II) observed in the unfolded state of the protein. In general, it appears that the MCO/MS method is capable of providing Cu-binding site information for proteins that are difficult to study by traditional means.
Collapse
Affiliation(s)
- Jihyeon Lim
- Department of Chemistry, University of Massachusetts-Amherst, Amherst, MA 01003, USA
| | | |
Collapse
|
19
|
Polyakov NE, Leshina TV, Konovalova TA, Hand EO, Kispert LD. Inclusion complexes of carotenoids with cyclodextrins: 1H NMR, EPR, and optical studies. Free Radic Biol Med 2004; 36:872-80. [PMID: 15019972 DOI: 10.1016/j.freeradbiomed.2003.12.009] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2003] [Revised: 12/22/2003] [Accepted: 12/29/2003] [Indexed: 11/26/2022]
Abstract
Direct evidence of carotenoid/cyclodextrin inclusion complex formation was obtained for the water-soluble sodium salt of beta-caroten-8'-oic acid (IV) by using 1H NMR and UV-Vis absorption spectroscopy. It was shown that this carotenoid forms a stable 1:1 inclusion complex with beta-cyclodextrin (stability constant K11 approximately 1500 M(-1)). All other carotenoids under study in the presence of cyclodextrins (CDs) form large aggregates in aqueous solution as demonstrated by very broad absorption spectra and considerable change in color. By using the EPR spin trapping technique, the scavenging ability of IV toward OOH radicals was compared in DMSO and in the aqueous CD solution. A considerable decrease in PBN/OOH spin adduct yield was detected in the presence of uncomplexed IV because of a competing reaction of the carotenoid with OOH radical. No such decrease occurred in the presence of the IV/CD complex. Moreover, a small increase in spin adduct yield (pro-oxidant effect) is most likely due to the reaction of the carotenoid with Fe3+ to regenerate Fe2+, which in turn regenerates the OOH radical. Our data show that CD protects the carotenoid from reactive oxygen species. On the other hand, complexation with CD results in considerable decrease in antioxidant ability of the carotenoid.
Collapse
Affiliation(s)
- Nikolai E Polyakov
- Institute of Chemical Kinetics and Combustion, Novosibirsk 630090, Russia
| | | | | | | | | |
Collapse
|
20
|
Sequence-dependent cleavage of albumins with palladium(II) complexes: role of serine residue in controlling the high regioselectivity of protein cleavage. Inorganica Chim Acta 2002. [DOI: 10.1016/s0020-1693(02)00928-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
21
|
McMurry LM, Aldema-Ramos ML, Levy SB. Fe(2+)-tetracycline-mediated cleavage of the Tn10 tetracycline efflux protein TetA reveals a substrate binding site near glutamine 225 in transmembrane helix 7. J Bacteriol 2002; 184:5113-20. [PMID: 12193628 PMCID: PMC135328 DOI: 10.1128/jb.184.18.5113-5120.2002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
TetA specified by Tn10 is a class B member of a group of related bacterial transport proteins of 12 transmembrane alpha helices that mediate resistance to the antibiotic tetracycline. A tetracycline-divalent metal cation complex is expelled from the cell in exchange for a entering proton. The site(s) where tetracycline binds to this export pump is not known. We found that, when chelated to tetracycline, Fe(2+) cleaved the backbone of TetA predominantly at a single position, glutamine 225 in transmembrane helix 7. The related class D TetA protein from plasmid RA1 was cut at exactly the same position. There was no cleavage with glycylcycline, an analog of tetracycline that does not bind to TetA. The Fe(2+)-tetracycline complex was not detectably transported by TetA. However, cleavage products of the same size as with Fe(2+) occurred with Co(2+), known to be cotransported with tetracycline. The known substrate Mg (2+)-tetracycline interfered with cleavage by Fe(2+). These findings suggest that cleavage results from binding at a substrate-specific site. Fe(2+) is known to be able to cleave amide bonds in proteins at distances up to approximately 12 A. We conclude that the alpha carbon of glutamine 225 is probably within 12 A of the position of the Fe(2+) ion in the Fe(2+)-tetracycline complex bound to the protein.
Collapse
Affiliation(s)
- Laura M McMurry
- Center for Adaptation Genetics and Drug Resistance and Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts 02111, USA.
| | | | | |
Collapse
|
22
|
Luo S, Ishida H, Makino A, Mae T. Fe2+-catalyzed site-specific cleavage of the large subunit of ribulose 1,5-bisphosphate carboxylase close to the active site. J Biol Chem 2002; 277:12382-7. [PMID: 11821404 DOI: 10.1074/jbc.m111072200] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Previous work has demonstrated that the large subunit (rbcL) of ribulose 1,5-bisphosphate carboxylase/oxygenase (RuBisCo) from wheat is cleaved at Gly-329 by the Fe(2+)/ascorbate/H(2)O(2) system (Ishida, H., Makino, A., and Mae, T. (1999) J. Biol. Chem. 274, 5222-5226). In this study, we found that the rbcL could also be cleaved into several other fragments by increasing the incubation time or the Fe(2+) concentration. By combining immunoblotting with N-terminal amino acid sequencing, cleavage sites were identified at Gly-404, Gly-380, Gly-329, Ala-296, Asp-203, and Gly-122. Conformational analysis demonstrated that five of them are located in the alpha/beta-barrel, whereas Gly-122 is in the N-terminal domain but near the bound metal in the adjacent rbcL. All of these residues are at or very close to the active site and are just around the metal-binding site within a radius of 12 A. Furthermore, their C(alpha)H groups are completely or partially exposed to the bound metal. A radical scavenger, activation of RuBisCo, or binding of a reaction-intermediate analogue to the activated RuBisCo, inhibited the fragmentation. These results strongly suggest that the rbcL is cleaved by reactive oxygen species generated at the metal-binding site and that proximity and favorable orientation are probably the most important parameters in determining the cleavage sites.
Collapse
Affiliation(s)
- Shen Luo
- Department of Applied Plant Science, Graduate School of Agricultural Science, Tohoku University, 1-1 Tsutsumidori-Amamiyamachi, Sendai 981-8555, Japan
| | | | | | | |
Collapse
|
23
|
Rúa J, Soler J, Busto F, de Arriaga D. Specific and reversible inactivation of Phycomyces blakesleeanus isocitrate lyase by ascorbate-iron: role of two redox-active cysteines. Fungal Genet Biol 2002; 35:223-34. [PMID: 11929212 DOI: 10.1006/fgbi.2001.1324] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Phycomyces blakesleeanus isocitrate lyase (EC 4.1.3.1) is in vivo reversibly inactivated by hydrogen peroxide. The purified enzyme showed reversible inactivation by an ascorbate plus Fe(2+) system under aerobic conditions. Inactivation requires hydrogen peroxide; was prevented by catalase, EDTA, Mg(2+), isocitrate, GSH, DTT, or cysteine; and was reversed by thiols. The ascorbate served as a source of hydrogen peroxide and also reduced the Fe(3+) ions produced in a "site-specific" Fenton reaction. Two redox-active cysteine residues per enzyme subunit are targets of oxidative modification; one of them is located at the catalytic site and the other at the metal regulatory site. The oxidized enzyme showed covalent and conformational changes that led to inactivation, decreased thermal stability, and also increased inactivation by trypsin. These results represent an example of redox regulation of an enzymatic activity, which may play a role as a sensor of redox cellular status.
Collapse
Affiliation(s)
- Javier Rúa
- Departamento de Bioquímica y Biología Molecular, Universidad de León, León, 24007, Spain
| | | | | | | |
Collapse
|
24
|
Shin JM, Goldshleger R, Munson KB, Sachs G, Karlish SJ. Selective Fe2+-catalyzed oxidative cleavage of gastric H+,K+-ATPase: implications for the energy transduction mechanism of P-type cation pumps. J Biol Chem 2001; 276:48440-50. [PMID: 11585827 DOI: 10.1074/jbc.m106864200] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In the presence of ascorbate/H(2)O(2), Fe(2+) ions or the ATP-Fe(2+) complex catalyze selective cleavage of the alpha subunit of gastric H(+),K(+)-ATPase. The electrophoretic mobilities of the fragments and dependence of the cleavage patterns on E(1) and E(2) conformational states are essentially identical to those described previously for renal Na(+),K(+)-ATPase. The cleavage pattern of H(+),K(+)-ATPase by Fe(2+) ions is consistent with the existence of two Fe(2+) sites: site 1 within highly conserved sequences in the P and A domains, and site 2 at the cytoplasmic entrance to trans-membrane segments M3 and M1. The change in the pattern of cleavage catalyzed by Fe(2+) or the ATP-Fe(2+) complex induced by different ligands provides evidence for large conformational movements of the N, P, and A cytoplasmic domains of the enzyme. The results are consistent with the Ca(2+)-ATPase crystal structure (Protein Data Bank identification code; Toyoshima, C., Nakasako, M., Nomura, H., and Ogawa, H. (2000) Nature 405, 647-655), an E(1)Ca(2+) conformation, and a theoretical model of Ca(2+)-ATPase in an E(2) conformation (Protein Data Bank identification code ). Thus, it can be presumed that the movements of N, P, and A cytoplasmic domains, associated with the E(1) <--> E(2) transitions, are similar in all P-type ATPases. Fe(2+)-catalyzed cleavage patterns also reveal sequences involved in phosphate, Mg(2+), and ATP binding, which have not yet been shown in crystal structures, as well as changes which occur in E(1) <--> E(2) transitions, and subconformations induced by H(+),K(+)-ATPase-specific ligands such as SCH28080.
Collapse
Affiliation(s)
- J M Shin
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | | | | | |
Collapse
|
25
|
Qi D, Tann CM, Haring D, Distefano MD. Generation of new enzymes via covalent modification of existing proteins. Chem Rev 2001; 101:3081-111. [PMID: 11710063 DOI: 10.1021/cr000059o] [Citation(s) in RCA: 203] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- D Qi
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | | | | | | |
Collapse
|
26
|
Goldshleger R, Patchornik G, Shimon MB, Tal DM, Post RL, Karlish SJ. Structural organization and energy transduction mechanism of Na+,K+-ATPase studied with transition metal-catalyzed oxidative cleavage. J Bioenerg Biomembr 2001; 33:387-99. [PMID: 11762914 DOI: 10.1023/a:1010615422932] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
This chapter describes contributions of transition metal-catalyzed oxidative cleavage of Na+,K+-ATPase to our understanding of structure-function relations. In the presence of ascorbate/H2O2, specific cleavages are catalyzed by the bound metal and because more than one peptide bond close to the metal can be cleaved, this technique reveals proximity of the different cleavage positions within the native structure. Specific cleavages are catalyzed by Fe2+ bound at the cytoplasmic surface or by complexes of ATP-Fe2+, which directs the Fe2+ to the normal ATP-Mg2+ site. Fe2+- and ATP-Fe2+-catalyzed cleavages reveal large conformation-dependent changes in interactions between cytoplasmic domains, involving conserved cytoplasmic sequences, and a change of ligation of Mg2+ ions between E1P and E2P, which may be crucial in facilitating hydrolysis of E2P. The pattern of domain interactions in E1 and E2 conformations, and role of Mg2+ ions, may be common to all P-type pumps. Specific cleavages can also be catalyzed by Cu2+ ions, bound at the extracellular surfaces, or a hydrophobic Cu2+-diphenyl phenanthroline (DPP) complex, which directs the Cu2+ to the membrane-water interface. Cu2+ or Cu2+-DPP-catalyzed cleavages are providing information on alpha/beta subunit interactions and spatial organization of transmembrane segments. Transition metal-catalyzed cleavage could be widely used to investigate other P-type pumps and membrane proteins and, especially, ATP binding proteins.
Collapse
Affiliation(s)
- R Goldshleger
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovoth, Israel
| | | | | | | | | | | |
Collapse
|
27
|
Souza-Santos P, Ramos RS, Ferreira ST, Carvalho-Alves PC. Iron-induced oxidative damage of corn root plasma membrane H(+)-ATPase. BIOCHIMICA ET BIOPHYSICA ACTA 2001; 1512:357-66. [PMID: 11406113 DOI: 10.1016/s0005-2736(01)00341-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The effect of iron on the activity of the plasma membrane H(+)-ATPase (PMA) from corn root microsomal fraction (CRMF) was investigated. In the presence of either Fe(2+) or Fe(3+) (100-200 microM of FeSO(4) or FeCl(3), respectively), 80-90% inhibition of ATP hydrolysis by PMA was observed. Half-maximal inhibition was attained at 25 microM and 50 microM for Fe(2+) and Fe(3+), respectively. Inhibition of the ATPase activity was prevented in the presence of metal ion chelators such as EDTA, deferoxamine or o-phenanthroline in the incubation medium. However, preincubation of CRMF in the presence of 100 microM Fe(2+), but not with 100 microM Fe(3+), rendered the ATPase activity (measured in the presence of excess EDTA) irreversibly inhibited. Inhibition was also observed using a preparation further enriched in plasma membranes by gradient centrifugation. Addition of 0.5 mM ATP to the preincubation medium, either in the presence or in the absence of 5 mM MgCl(2), reduced the extent of irreversible inhibition of the H(+)-ATPase. Addition of 40 microM butylated hydroxytoluene and/or 5 mM dithiothreitol, or deoxygenation of the incubation medium by bubbling a stream of argon in the solution, also caused significant protection of the ATPase activity against irreversible inhibition by iron. Western blots of CRMF probed with a polyclonal antiserum against the yeast plasma membrane H(+)-ATPase showed a 100 kDa cross-reactive band, which disappeared in samples previously exposed to 500 microM Fe(2+). Interestingly, preservation of the 100 kDa band was observed when CRMF were exposed to Fe(2+) in the presence of either 5 mM dithiothreitol or 40 microM butylated hydroxytoluene. These results indicate that iron causes irreversible inhibition of the corn root plasma membrane H(+)-ATPase by oxidation of sulfhydryl groups of the enzyme following lipid peroxidation.
Collapse
Affiliation(s)
- P Souza-Santos
- Departamento de Bioquímica Médica, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, 21941-590, Rio de Janeiro, Brazil
| | | | | | | |
Collapse
|
28
|
Wei RR, Richardson JP. Identification of an RNA-binding Site in the ATP binding domain of Escherichia coli Rho by H2O2/Fe-EDTA cleavage protection studies. J Biol Chem 2001; 276:28380-7. [PMID: 11369775 DOI: 10.1074/jbc.m102444200] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Transcription factor Rho is a ring-shaped, homohexameric protein that causes transcript termination through actions on nascent RNAs that are coupled to ATP hydrolysis. The Rho polypeptide has a distinct RNA binding domain of known structure as well as an ATP binding domain for which a structure has been proposed based on homology modeling. Treatment of Rho with H2O2 in the presence of Fe-EDTA caused single-cut cleavage at a number of points that coincide with solvent-exposed loops in both the known and predicted structures, thereby providing support for the validity of the tertiary and quaternary structural models of Rho. The binding of ATP caused one distinct change in the cleavage pattern, a strong protection at a cleavage point in the P-loop of the ATP binding domain. Binding of RNA and single-stranded DNA (poly(dC)) caused strong protection at several accessible parts of the oligosaccharide/oligonucleotide binding (OB) fold in the RNA binding domain. RNA molecules but not DNA molecules also caused a strong, ATP-dependent protection at a cleavage site in the predicted Q-loop of the ATP binding domain. These results suggest that Rho has two distinct binding sites for RNA. Besides the site composed of multiples of the RNA binding domain, to which single-stranded DNA as well as RNA can bind, it has a separate, RNA-specific site on the Q-loop in the ATP binding domain. In the proposed quaternary structure of Rho, the Q-loops from the six subunits form the upper entrance to the hole in the ring-shaped hexamer through which the nascent transcript is translocated by actions coupled to ATP hydrolyses.
Collapse
Affiliation(s)
- R R Wei
- Department of Biology, Indiana University, Bloomington, Indiana 47405, USA
| | | |
Collapse
|
29
|
Hawkins CL, Davies MJ. Generation and propagation of radical reactions on proteins. BIOCHIMICA ET BIOPHYSICA ACTA 2001; 1504:196-219. [PMID: 11245785 DOI: 10.1016/s0005-2728(00)00252-8] [Citation(s) in RCA: 517] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The oxidation of proteins by free radicals is thought to play a major role in many oxidative processes within cells and is implicated in a number of human diseases as well as ageing. This review summarises information on the formation of radicals on peptides and proteins and how radical damage may be propagated and transferred within protein structures. The emphasis of this article is primarily on the deleterious actions of radicals generated on proteins, and their mechanisms of action, rather than on enzymatic systems where radicals are deliberately formed as transient intermediates. The final section of this review examines the control of protein oxidation and how such damage might be limited by antioxidants.
Collapse
Affiliation(s)
- C L Hawkins
- Heart Research Institute, 145 Missenden Road, Camperdown, 2050, Sydney, NSW, Australia
| | | |
Collapse
|
30
|
Richards FM, Lamed R, Wynn R, Patel D, Olack G. Methylene as a possible universal footprinting reagent that will include hydrophobic surface areas: overview and feasibility: properties of diazirine as a precursor. Protein Sci 2000; 9:2506-17. [PMID: 11206072 PMCID: PMC2144514 DOI: 10.1110/ps.9.12.2506] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Methylene is one of, if not the, most reactive organic chemical known. It has a very low specificity, which makes it essentially useless for synthesis, but suggests a possible role in protein footprinting with special importance in labeling solvent accessible nonpolar areas, identifying ligand binding sites, and outlining interaction areas on protomers that form homo or hetero oligomers in cellular assemblies. The singlet species is easily and conveniently formed by photolysis of diazirine. The reactions of interest are insertion into C-H bonds and addition to multiple bonds, both forming strong covalent bonds and stable compounds. Reaction with proteins and peptides is reported even in aqueous solutions where the vast majority of the reagent is used up in forming methanol. Species containing up to 5 to 10 extra :CH2 groups are easily detected by electrospray mass spectroscopy. In a mixture of a 14 Kd protein and a noninteracting 1.7 Kd peptide, the distribution of mass peaks in the electrospray spectra was close to that expected from random modification of the estimated solvent accessible area for the two molecules. For analysis at the single residue level, quantitation at labeling levels of one 13CH2 group per 10 to 20 kDa of protein appears to be possible with isotope ratio mass spectroscopy. In the absence of reactive solvents, photolysis of diazirine produces oily polymeric species that contain one or two nitrogen atoms, but not more, and are water soluble.
Collapse
Affiliation(s)
- F M Richards
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520-8114, USA.
| | | | | | | | | |
Collapse
|
31
|
|
32
|
Datwyler SA, Meares CF. Protein-protein interactions mapped by artificial proteases: where sigma factors bind to RNA polymerase. Trends Biochem Sci 2000; 25:408-14. [PMID: 10973050 DOI: 10.1016/s0968-0004(00)01652-2] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Interactions between proteins are important to understand but difficult to study. Conjugating a protein to a small artificial protease endows it with the ability to cut other proteins where it binds to them. Analysing the sites cut on the target proteins leads to new understanding of the structure of each complex. The binding of sigma factors to a common region on RNA polymerase provides an example.
Collapse
Affiliation(s)
- S A Datwyler
- Dept of Chemistry, University of California, One Shields Avenue, Davis, CA 95616-5295, USA
| | | |
Collapse
|
33
|
Lee J, Owens JT, Hwang I, Meares C, Kustu S. Phosphorylation-induced signal propagation in the response regulator ntrC. J Bacteriol 2000; 182:5188-95. [PMID: 10960104 PMCID: PMC94668 DOI: 10.1128/jb.182.18.5188-5195.2000] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/1999] [Accepted: 06/19/2000] [Indexed: 11/20/2022] Open
Abstract
The bacterial enhancer-binding protein NtrC is a well-studied response regulator in a two-component regulatory system. The amino (N)-terminal receiver domain of NtrC modulates the function of its adjacent output domain, which activates transcription by the sigma(54) holoenzyme. When a specific aspartate residue in the receiver domain of NtrC is phosphorylated, the dimeric protein forms an oligomer that is capable of ATP hydrolysis and transcriptional activation. A chemical protein cleavage method was used to investigate signal propagation from the phosphorylated receiver domain of NtrC, which acts positively, to its central output domain. The iron chelate reagent Fe-BABE was conjugated onto unique cysteines introduced into the N-terminal domain of NtrC, and the conjugated proteins were subjected to Fe-dependent cleavage with or without prior phosphorylation. Phosphorylation-dependent cleavage, which requires proximity and an appropriate orientation of the peptide backbone to the tethered Fe-EDTA, was particularly prominent with conjugated NtrC(D86C), in which the unique cysteine lies near the top of alpha-helix 4. Cleavage occurred outside the receiver domain itself and on the partner subunit of the derivatized monomer in an NtrC dimer. The results are commensurate with the hypothesis that alpha-helix 4 of the phosphorylated receiver domain of NtrC interacts with the beginning of the central domain for signal propagation. They imply that the phosphorylation-dependent interdomain and intermolecular interactions between the receiver domain of one subunit and the output domain of its partner subunit in an NtrC dimer precede-and may give rise to-the oligomerization needed for transcriptional activation.
Collapse
Affiliation(s)
- J Lee
- Department of Molecular and Cell Biology, University of California, Berkeley 94720-3204, USA
| | | | | | | | | |
Collapse
|
34
|
Spanggord RJ, Beal PA. Site-specific modification and RNA crosslinking of the RNA-binding domain of PKR. Nucleic Acids Res 2000; 28:1899-905. [PMID: 10756189 PMCID: PMC103299 DOI: 10.1093/nar/28.9.1899] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
RNA-dependent protein kinase (PKR) is an interferon-induced, RNA-activated enzyme that phosphorylates and inhibits the function of the translation initiation factor eIF-2. PKR is activated in vitro by binding RNA molecules with extensive duplex structure. To further define the nature of the RNA regulation of PKR, we have prepared and characterized site-specifically modified proteins consisting of the PKR 20 kDa RNA-binding domain (RBD). Here we show that the two cysteines found naturally in this domain can be altered by site-directed mutagenesis without loss of RNA binding affinity or the RNA-regulated kinase activity. Introduction of cysteine residues at other sites in the PKR RBD allows for site-specific modification with thiol-selective reagents. PKR RBD mutants reacted selectively with a maleimide to introduce a photoactivatable cross-linking aryl azide at three different positions in the protein. RNA crosslinking efficiency was found to be dependent on the amino acid modified, suggesting differences in access to the RNA from these positions in the protein. One of the amino acid modifications that led to crosslinking of the RNA is located at a residue known to be an autophosphorylation site, suggesting that autophosphorylation at this site could influence the RNA binding properties of PKR. The PKR RBD conjugates described here and other similar reagents prepared via these methods are applicable to future studies of PKR-RNA complexes using techniques such as photocrosslinking, fluorescence resonance energy transfer and affinity cleaving.
Collapse
Affiliation(s)
- R J Spanggord
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, UT 84112-0850, USA
| | | |
Collapse
|
35
|
Djuran MI, Milinković SU. Selective hydrolysis of the unactivated peptide bond in N-acetylated l-histidylglycine catalyzed by various palladium(II) complexes: dependence of the hydrolysis rate on the steric bulk of the catalyst. Polyhedron 2000. [DOI: 10.1016/s0277-5387(00)00342-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
36
|
Biswas R, Ledman DW, Fox RO, Altman S, Gopalan V. Mapping RNA-protein interactions in ribonuclease P from Escherichia coli using disulfide-linked EDTA-Fe. J Mol Biol 2000; 296:19-31. [PMID: 10656815 DOI: 10.1006/jmbi.1999.3443] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The protein subunit of Escherichia coli ribonuclease P (which has a cysteine residue at position 113) and its single cysteine-substituted mutant derivatives (S16C/C113S, K54C/C113S and K66C/C113S) have been modified using a sulfhydryl-specific iron complex of EDTA-2- aminoethyl 2-pyridyl disulfide (EPD-Fe). This reaction converts C5 protein, or its single cysteine-substituted mutant derivatives, into chemical nucleases which are capable of cleaving the cognate RNA ligand, M1 RNA, the catalytic RNA subunit of E. coli RNase P, in the presence of ascorbate and hydrogen peroxide. Cleavages in M1 RNA are expected to occur at positions proximal to the site of contact between the modified residue (in C5 protein) and the ribose units in M1 RNA. When EPD-Fe was used to modify residue Cys16 in C5 protein, hydroxyl radical-mediated cleavages occurred predominantly in the P3 helix of M1 RNA present in the reconstituted holoenzyme. C5 Cys54-EDTA-Fe produced cleavages on the 5' strand of the P4 pseudoknot of M1 RNA, while the cleavages promoted by C5 Cys66-EDTA-Fe were in the loop connecting helices P18 and P2 (J18/2) and the loop (J2/4) preceding the 3' strand of the P4 pseudoknot. However, hydroxyl radical-mediated cleavages in M1 RNA were not evident with Cys113-EDTA-Fe, perhaps indicative of Cys113 being distal from the RNA-protein interface in the RNase P holoenzyme. Our directed hydroxyl radical-mediated footprinting experiments indicate that conserved residues in the RNA and protein subunit of the RNase-P holoenzyme are adjacent to each other and provide structural information essential for understanding the assembly of RNase P.
Collapse
Affiliation(s)
- R Biswas
- Department of Biochemistry, The Ohio State University, Columbus, OH 43210, USA
| | | | | | | | | |
Collapse
|
37
|
Jing DH, Dong F, Latham GJ, von Hippel PH. Interactions of bacteriophage T4-coded primase (gp61) with the T4 replication helicase (gp41) and DNA in primosome formation. J Biol Chem 1999; 274:27287-98. [PMID: 10480949 DOI: 10.1074/jbc.274.38.27287] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
One primase (gp61) and six helicase (gp41) subunits interact to form the bacteriophage T4-coded primosome at the DNA replication fork. In order to map some of the detailed interactions of the primase within the primosome, we have constructed and characterized variants of the gp61 primase that carry kinase tags at either the N or the C terminus of the polypeptide chain. These tagged gp61 constructs have been probed using several analytical methods. Proteolytic digestion and protein kinase protection experiments show that specific interactions with single-stranded DNA and the T4 helicase hexamer significantly protect both the N- and the C-terminal regions of the T4 primase polypeptide chain against modification by these procedures and that this protection becomes more pronounced when the primase is assembled within the complete ternary primosome complex. Additional discrete sites of both protection and apparent hypersensitivity along the gp61 polypeptide chain have also been mapped by proteolytic footprinting reactions for the binary helicase-primase complex and in the three component primosome. These studies provide a detailed map of a number of gp61 contact positions within the primosome and reveal interactions that may be important in the structure and function of this central component of the T4 DNA replication complex.
Collapse
Affiliation(s)
- D H Jing
- Institute of Molecular Biology and Department of Chemistry, University of Oregon, Eugene, Oregon 97403, USA
| | | | | | | |
Collapse
|
38
|
Maleknia SD, Brenowitz M, Chance MR. Millisecond radiolytic modification of peptides by synchrotron X-rays identified by mass spectrometry. Anal Chem 1999; 71:3965-73. [PMID: 10500483 DOI: 10.1021/ac990500e] [Citation(s) in RCA: 179] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Radiolysis of peptide and protein solutions with high-energy X-ray beams induces stable, covalent modifications of amino acid residues that are useful for synchrotron protein footprinting. A series of 5-14 amino acid residue peptides of varied sequences were selected to study their synchrotron radiolysis chemistry. Radiolyzed peptide products were detected within 10 ms of exposure to a white light synchrotron X-ray beam. Mass spectrometry techniques were used to characterize radiolytic modification to amino acids cysteine (Cys), methionine (Met), phenylalanine (Phe), tyrosine (Tyr), tryptophan (Trp), proline (Pro), histidine (His), and leucine (Leu). A reactivity order of Cys, Met >> Phe, Tyr, > Trp > Pro > His, Leu was determined under aerobic reaction conditions from MS/MS analysis of the radiolyzed peptide products. Radiolysis of peptides in 18O-labeled water under aerobic conditions revealed that oxygenated radical species from air and water both contribute to the modification of amino acid side chains. Cysteine and methionine side chains reacted with hydroxyl radicals generated from radiolysis of water as well as molecular oxygen. Phenylalanine and tyrosine residues were modified predominantly by hydroxyl radicals, and the source of modification of proline was exclusively through molecular oxygen.
Collapse
Affiliation(s)
- S D Maleknia
- Albert Einstein Center for Synchrotron BioSciences, Department of Physiology & Biophysics, Albert Einstein College of Medicine of Yeshiva University, Bronx, New York 10461, USA.
| | | | | |
Collapse
|
39
|
Goldshleger R, Karlish SJ. The energy transduction mechanism of Na,K-ATPase studied with iron-catalyzed oxidative cleavage. J Biol Chem 1999; 274:16213-21. [PMID: 10347176 DOI: 10.1074/jbc.274.23.16213] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
This paper extends our recent report on specific iron-catalyzed oxidative cleavages of renal Na,K-ATPase and effects of E1 left arrow over right arrow E2 conformational transitions (Goldshleger, R. , and Karlish, S. J. D. (1997) Proc. Natl. Acad. Sci. U. S. A. 94, 9596-9601). The experiments indicate that only peptide bonds close to a bound Fe2+ ion are cleaved, and provide evidence on proximity of the different cleavage positions in the native enzyme. A sequence HFIH near trans-membrane segment M3 appears to be involved in Fe2+ binding. Previously we hypothesized that E2 and E1 conformations are characterized by formation or relaxation of interactions within the alpha subunit at or near highly conserved sequences, TGES in the minor cytoplasmic loop and CSDK, MVTGD, and VNDSPALKK in the major cytoplasmic loop. This concept has been tested by examining iron-catalyzed cleavage in both non-phosphorylated and phosphorylated conformations and effects of phosphate, vanadate, and ouabain. The results imply that both E1 left arrow over right arrow E2 and E1P left arrow over right arrow E2P transitions are indeed associated with formation and relaxation of interactions between cytoplasmic domains, comprising the minor loop plus N-terminal tail leading into M1 and major loop, respectively. Furthermore, it appears that either non-covalently or covalently bound phosphate bind near CSDK and MVTGD, and Mg2+ ions may bind to residues within TGES and VNDSPALKK and to bound phosphate. Thus cytoplasmic domain interactions seem to occur within or near the active site. We discuss the relationship between structural changes in the cytoplasmic domain and movements of trans-membrane segments that lead to cation transport. Presumably conformation-dependent formation and relaxation of domain interactions underlie energy transduction in all P-type pumps.
Collapse
Affiliation(s)
- R Goldshleger
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel
| | | |
Collapse
|
40
|
Site-specific hydrolysis of horse heart cytochrome c and apocytochrome c promoted by palladium(II) complex. Polyhedron 1999. [DOI: 10.1016/s0277-5387(99)00037-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
41
|
Parac TN, Ullmann GM, Kostić NM. New Regioselectivity in the Cleavage of Histidine-Containing Peptides by Palladium(II) Complexes Studied by Kinetic Experiments and Molecular Dynamics Simulations. J Am Chem Soc 1999. [DOI: 10.1021/ja982369i] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Tatjana N. Parac
- Contribution from the Department of Chemistry, Iowa State University, Ames, Iowa 50011, and Freie Universität Berlin, Institute für Kristallographie, Takustrasse 6, 14195 Berlin, Germany
| | - G. Matthias Ullmann
- Contribution from the Department of Chemistry, Iowa State University, Ames, Iowa 50011, and Freie Universität Berlin, Institute für Kristallographie, Takustrasse 6, 14195 Berlin, Germany
| | - Nenad M. Kostić
- Contribution from the Department of Chemistry, Iowa State University, Ames, Iowa 50011, and Freie Universität Berlin, Institute für Kristallographie, Takustrasse 6, 14195 Berlin, Germany
| |
Collapse
|
42
|
Shimon MB, Goldshleger R, Karlish SJ. Specific Cu2+-catalyzed oxidative cleavage of Na,K-ATPase at the extracellular surface. J Biol Chem 1998; 273:34190-5. [PMID: 9852080 DOI: 10.1074/jbc.273.51.34190] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
This paper describes specific Cu2+-catalyzed oxidative cleavage of alpha and beta subunits of Na,K-ATPase at the extracellular surface. Incubation of right side-out renal microsomal vesicles with Cu2+ ions, ascorbate, and H2O2 produces two major cleavages of the alpha subunit within the extracellular loop between trans-membrane segments M7 and M8 and L7/8. Minor cleavages are also detected in loops L9/10 and L5/6. In the beta subunit two cleavages are detected, one before the first S-S bridge and the other between the second and third S-S bridges. Na,K-ATPase and Rb+ occlusion are inactivated after incubation with Cu2+/ascorbate/H2O2. These observations are suggestive of a site-specific mechanism involving cleavage of peptide bonds close to a bound Cu2+ ion. This mechanism allows several inferences on subunit interactions and spatial organization. The two cleavage sites in L7/8 of the alpha subunit and two cleavage sites of the beta subunit identify interacting segments of the subunits. L7/8 is also close to L9/10 and to cation occlusion sites. Comparison of the locations of Cu2+-catalyzed cleavages with Fe2+-catalyzed cleavages (Goldshleger, R., and Karlish, S. J. D. (1997) Proc. Natl. Acad. Sci. U. S. A. 94, 9596-9601) suggests division of the membrane sector into two domains comprising M1-M6 and M7-M10/Mbeta, respectively.
Collapse
Affiliation(s)
- M B Shimon
- Biochemistry Department, Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | |
Collapse
|
43
|
Moreau VH, Castilho RF, Ferreira ST, Carvalho-Alves PC. Oxidative damage to sarcoplasmic reticulum Ca2+-ATPase AT submicromolar iron concentrations: evidence for metal-catalyzed oxidation. Free Radic Biol Med 1998; 25:554-60. [PMID: 9741592 DOI: 10.1016/s0891-5849(98)00084-7] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The sarcoplasmic reticulum (SR) calcium ATPase carries out active Ca2+ pumping at the expense of ATP hydrolysis. We have previously described the inhibition of SR ATPase by oxidative stress induced by the Fenton reaction (Fe2+ + H2O2 --> HO. + HO- + Fe3+). Inhibition was not related to peroxidation of the SR membrane nor to oxidation of ATPase thiols, and involved fragmentation of the ATPase polypeptide chain. The present study aims at further characterizing the mechanism of inhibition of the Ca2+-ATPase by oxygen reactive species at Fe2+ concentrations possibly found in pathological conditions of iron overload. ATP hydrolysis by SR vesicles was inhibited in a dose-dependent manner by micromolar concentrations of Fe2+, H2O2, and ascorbate. Measuring the rate constants of inactivation (k inact) at different Fe2+ concentrations in the presence of saturating concentrations of H2O2 and ascorbate (100 microM each) revealed a saturation profile with half-maximal inactivation rate at ca. 2 microM Fe2+. Inhibition was not affected by addition of 200 microM Ca2+ to the medium, indicating that it was not related to iron binding to the high affinity Ca2+ binding sites in the ATPase. Furthermore, inhibition was not prevented by the water-soluble hydroxyl radical scavengers mannitol or dimethylsulfoxide, nor by butylated hydroxytoluene (a lipid peroxidation blocker) or dithiothreitol (DTT). However, when Cu2+ was used instead of Fe2+ in the Fenton reaction, ATPase inhibition could be prevented by DTT. We propose that functional impairment of the Ca2+-pump may be related to oxidative protein fragmentation mediated by site-specific Fe2+ binding at submicromolar or low micromolar concentrations, which may occur in pathological conditions of iron overload.
Collapse
Affiliation(s)
- V H Moreau
- Departamento de Bioquímica Médica, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, RJ, Brazil
| | | | | | | |
Collapse
|
44
|
Affiliation(s)
- N Loizos
- The Rockefeller University Box 224, 1230 York Avenue, New York, NY 10021, USA
| | | |
Collapse
|
45
|
Parac TN, Kostic NM. Regioselective Cleavage by a Palladium(II) Aqua Complex of a Polypeptide in Different Overall Conformations. Inorg Chem 1998; 37:2141-2144. [PMID: 11670367 DOI: 10.1021/ic970616y] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Two molecules of the complex cis-[Pd(en)(H(2)O)(2)](2+) lose aqua ligands and bind to His5 and His9 residues in the nonadecapeptide that is the carboxy-terminal segment of the protein myohemerythrin. The known modes of palladium(II)-histidine coordination are detected by (1)H NMR spectroscopy. Only the [Pd(en)(H(2)O)](2+)group bound to His5 cleaves the polypeptide backbone; the group bound to His9 does not. Only the amide bond Val3-Pro4 is cleaved. This regioselectivity is attributed to electrostatic repulsion of the [Pd(en)(H(2)O)](2+)group by cationic lysine residues 6, 7, and 10 and the absence of repulsion by the residues "upstream" from His5. The polypeptide in a partially alpha-helical conformation and the tripeptide AcGly-Gly-His, which adopts many flexible conformations, are both cleaved at the second amide bond "upstream" from the histidine residue bearing the [Pd(en)(H(2)O)](2+) group. Moreover, the rate constants for the cleavages of these two peptides are virtually the same. Regioselectivity and kinetics of the cleavage of peptides by palladium(II) aqua complexes seems to be affected by the local secondary structure in the vicinity of the scissile bond. This study is a step toward our ultimate goal-design of artificial metallopeptidases.
Collapse
Affiliation(s)
- Tatjana N. Parac
- Department of Chemistry, Iowa State University, Ames, Iowa 50011
| | | |
Collapse
|
46
|
Léonetti JP, Wong K, Geiduschek EP. Core-sigma interaction: probing the interaction of the bacteriophage T4 gene 55 promoter recognition protein with E.coli RNA polymerase core. EMBO J 1998; 17:1467-75. [PMID: 9482743 PMCID: PMC1170494 DOI: 10.1093/emboj/17.5.1467] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The bacterial RNA polymerase sigma subunits are key participants in the early steps of RNA synthesis, conferring specificity of promoter recognition, facilitating promoter opening and promoter clearance, and responding to diverse transcriptional regulators. The T4 gene 55 protein (gp55), the sigma protein of the bacteriophage T4 late genes, is one of the smallest and most divergent members of this family. Protein footprinting was used to identify segments of gp55 that become buried upon binding to RNA polymerase core, and are therefore likely to constitute its interface with the core enzyme. Site-directed mutagenesis in two parts of this contact surface generated gene 55 proteins that are defective in polymerase-binding to different degrees. Alignment with the sequences of the sigma proteins and with a recently determined structure of a large segment of sigma70 suggests that the gp55 counterpart of sigma70 regions 2.1 and 2.2 is involved in RNA polymerase core binding, and that sigma70 and gp55 may be structurally similar in this region. The diverse phenotypes of the mutants implicate this region of gp55 in multiple aspects of sigma function.
Collapse
Affiliation(s)
- J P Léonetti
- Department of Biology and Center for Molecular Genetics, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0634, USA.
| | | | | |
Collapse
|
47
|
Takarada T, Takahashi R, Yashiro M, Komiyama M. Lanthanide ion-induced hydrolyses of alkyl esters and amides of ?-amino acids. J PHYS ORG CHEM 1998. [DOI: 10.1002/(sici)1099-1395(199801)11:1<41::aid-poc969>3.0.co;2-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
48
|
Xiaohua Chen, Xuemei Luo, Yongcheng Song, Shaozhen Zhou, Longgen Z. Hydrolysis of methionine-containing peptides in binuclear and mononuclear palladium(II) complexes. Polyhedron 1998. [DOI: 10.1016/s0277-5387(98)00010-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
49
|
Goldshleger R, Karlish SJ. Fe-catalyzed cleavage of the alpha subunit of Na/K-ATPase: evidence for conformation-sensitive interactions between cytoplasmic domains. Proc Natl Acad Sci U S A 1997; 94:9596-601. [PMID: 9275168 PMCID: PMC23229 DOI: 10.1073/pnas.94.18.9596] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Incubation of Na/K-ATPase with ascorbate plus H2O2 produces specific cleavage of the alpha subunit. Five fragments with intact C termini and complementary fragments with intact N termini were observed. The beta subunit is not cleaved. Cleavages depend on the presence of contaminant or added Fe2+ ions, as inferred by suppression of cleavages with nonspecific metal complexants (histidine, EDTA, phenanthroline) or the Fe3+-specific complexant desferrioxamine, or acceleration of cleavages by addition of low concentrations of Fe2+ but not of other heavy metal ions. Na/K-ATPase is inactivated in addition to cleavage, and both effects are insensitive to OH. radical scavengers. Cleavages are sensitive to conformation. In low ionic strength media (E2) or media containing Rb ions [E2(Rb)], cleavage is much faster than in high ionic strength media (E1) or media containing Na ions (E1Na). N-terminal fragments and two C-terminal fragments (N-terminals E214 and V712) have been identified by amino acid sequencing. Approximate positions of other cleavages were determined with specific antibodies. The results suggest that Fe2+ (or Fe3+) ions bind with high affinity at the cytoplasmic surface and catalyze cleavages of peptide bonds close to the Fe2+ (or Fe3+) ion. Thus, cleavage patterns can provide information on spatial organization of the polypeptide chain. We propose that highly conserved regions of the alpha subunit, within the minor and major cytoplasmic loops, interact in the E2 or E2(Rb) conformations but move apart in the E1 or E1Na conformations. We discuss implications of domain interactions for the energy transduction mechanism. Fe-catalyzed cleavages may be applicable to other P-type pumps or membrane proteins.
Collapse
Affiliation(s)
- R Goldshleger
- Biochemistry Department, Weizmann Institute of Science, Rehovot, 76100, Israel
| | | |
Collapse
|
50
|
Lykke-Andersen J, Garrett RA, Kjems J. Mapping metal ions at the catalytic centres of two intron-encoded endonucleases. EMBO J 1997; 16:3272-81. [PMID: 9214642 PMCID: PMC1169943 DOI: 10.1093/emboj/16.11.3272] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Divalent metal ions play a crucial role in forming the catalytic centres of DNA endonucleases. Substitution of Mg2+ ions by Fe2+ ions in two archaeal intron-encoded homing endonucleases, I-DmoI and I-PorI, yielded functional enzymes and enabled the generation of reactive hydroxyl radicals within the metal ion binding sites. Specific hydroxyl radical-induced cleavage was observed within, and immediately after, two conserved LAGLIDADG motifs in both proteins and at sites at, and near, the scissile phosphates of the corresponding DNA substrates. Titration of Fe2+-containing protein-DNA complexes with Ca2+ ions, which are unable to support endonucleolytic activity, was performed to distinguish between the individual metal ions in the complex. Mutations of single amino acids in this region impaired catalytic activity and caused the preferential loss of a subset of hydroxyl radical cleavages in both the protein and the DNA substrate, suggesting an active role in metal ion coordination for these amino acids. The data indicate that the endonucleases cleave their DNA substrates as monomeric enzymes, and contain a minimum of four divalent metal ions located at or near the catalytic centres of each endonuclease. The metal ions involved in cleaving the coding and the non-coding strand are positioned immediately after the N- and C-terminally located LAGLIDADG motifs, respectively. The dual protein/nucleic acid footprinting approach described here is generally applicable to other protein-nucleic acid complexes when the natural metal ion can be replaced by Fe2+.
Collapse
Affiliation(s)
- J Lykke-Andersen
- RNA Regulation Centre and Institute of Molecular Biology, Copenhagen University, Denmark
| | | | | |
Collapse
|