1
|
Chen C, Du S, Liu Z, Li W, Tao F, Qie X. Systematic characterisation of microplastics released from disposable medical devices using laser direct infrared spectroscopy. Anal Chim Acta 2025; 1355:343982. [PMID: 40274325 DOI: 10.1016/j.aca.2025.343982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 02/25/2025] [Accepted: 03/28/2025] [Indexed: 04/26/2025]
Abstract
BACKGROUND Human exposure to microplastics (MPs) is widespread, attracting significant attention from both the public and the scientific community. Although several direct and indirect exposure pathways have been investigated, the extent of MP exposure from disposable medical devices remains poorly understood and warrants further research. RESULTS This work indicates that many MPs (10-30 μm) were released during the simulated use of disposable medical devices. Two common medical devices-disposable infusion tubes and blood needles-were selected as the research subjects. Analysis utilizing laser direct infrared (LDIR) revealed that plastic released from infusion tubes primarily consisted of polyamide (PA), polyvinyl chloride (PVC), and polyethene terephthalate (PET), with an average total number (ATN) of 11.8 particles/mL. MPs released from blood collection needles mainly consisted of polyurethane (PU) and PET, with an ATN of 82.7 particles/mL. For a 0.9 % normal saline, the ATN released from the infusion tubes during the stimulating infusion scenario at room temperature (4 h) was approximately 16 particles/mL, primarily consisting of PA, PVC, and PET. Additionally, the release of MPs increased with rising temperatures. Under the same conditions, ATN release from the blood collection needles was approximately 84.4 particles/mL, mainly from PA, PVC, and PU. SIGNIFICANCE This implies that MPs can enter the bloodstream directly through infusion tubes and blood collection needles, highlighting the need for greater attention to the risk of patient exposure.
Collapse
Affiliation(s)
- Chuanfeng Chen
- Key Laboratory of Population Health Across Life Cycle, MOE, School of Public Health, Anhui Medical University, Hefei, 230032, China
| | - Shanshan Du
- Key Laboratory of Population Health Across Life Cycle, MOE, School of Public Health, Anhui Medical University, Hefei, 230032, China.
| | - Ziyan Liu
- Key Laboratory of Population Health Across Life Cycle, MOE, School of Public Health, Anhui Medical University, Hefei, 230032, China
| | - Wenfei Li
- Key Laboratory of Population Health Across Life Cycle, MOE, School of Public Health, Anhui Medical University, Hefei, 230032, China
| | - Fangbiao Tao
- Key Laboratory of Population Health Across Life Cycle, MOE, School of Public Health, Anhui Medical University, Hefei, 230032, China
| | - Xuejiao Qie
- Key Laboratory of Population Health Across Life Cycle, MOE, School of Public Health, Anhui Medical University, Hefei, 230032, China
| |
Collapse
|
2
|
Shukla S, Khanna S, Khanna K. Unveiling the toxicity of micro-nanoplastics: A systematic exploration of understanding environmental and health implications. Toxicol Rep 2025; 14:101844. [PMID: 39811819 PMCID: PMC11730953 DOI: 10.1016/j.toxrep.2024.101844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 11/21/2024] [Accepted: 11/28/2024] [Indexed: 01/16/2025] Open
Abstract
The surge in plastic production has spurred a global crisis as plastic pollution intensifies, with microplastics and nanoplastics emerging as notable environmental threats. Due to their miniature size, these particles are ubiquitous across ecosystems and pose severe hazards as they are ingested and bioaccumulate within organisms. Although global plastic production has reached an alarming 400.3 MTs, recycling efforts remain limited, with only 18.5 MTs being recycled. Currently, out of the total plastic waste, 49.6 % is converted into energy, 27 % is recycled, and 23.5 % is recovered as material, indicating a need for better waste management practices to combat the escalating pollution levels. Research studies on micro-nanoplastics have primarily concentrated on their environmental presence and laboratory-based toxicity studies. This review critically examines the sources and detection methods for micro-nanoplastics, emphasising their toxicological effects and ecological impacts. Organisms like zebrafish and rats serve as key models for studying these particle's bioaccumulative potential, showcasing adverse effects that extend to DNA damage, oxidative stress, and cellular apoptosis. Studies reveal that micro-nanoplastics can permeate biological barriers, including the blood-brain barrier, neurological imbalance, cardiac, respiratory, and dermatological disorders. These health risks, particularly relevant for humans, underscore the urgency for broader, real-world studies beyond controlled laboratory conditions. Additionally, the review discusses innovative energy-harvesting technologies as sustainable alternatives for plastic waste utilisation, particularly valuable for energy-deficient regions. These strategies aim to simultaneously address energy demands and mitigate plastic waste. This approach aligns with global sustainability goals, providing a promising avenue for both pollution reduction and energy generation. The review calls for further research to enhance detection techniques, assess long-term environmental impacts, and explore sustainable solutions that integrate energy recovery with pollution mitigation, especially in regions most affected by both energy shortages and increased plastic waste.
Collapse
Affiliation(s)
- Saurabh Shukla
- School of Forensic Sciences, Centurion University of Technology and Management, Bhubaneswar Campus, Bhubaneswar, Odisha 752050, India
| | - Sakshum Khanna
- School of Technology, Pandit Deendayal Energy University, Gandhinagar, Gujarat 382007, India
- Relx Pvt Ltd, Gurugram, Haryana 122002, India
| | - Kushagra Khanna
- Faculty of Pharmaceutical Sciences, UCSI University, Kuala Lumpur 56000, Malaysia
| |
Collapse
|
3
|
Geppner L, Hellner J, Henjakovic M. Effects of micro- and nanoplastics on blood cells in vitro and cardiovascular parameters in vivo, considering their presence in the human bloodstream and potential impact on blood pressure. ENVIRONMENTAL RESEARCH 2025; 273:121254. [PMID: 40024503 DOI: 10.1016/j.envres.2025.121254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 02/13/2025] [Accepted: 02/26/2025] [Indexed: 03/04/2025]
Abstract
The adverse effects of plastics on the environment, wildlife, and human health have been extensively studied, yet their production remains unavoidable due to the lack of viable alternatives. Environmental fragmentation of larger plastic particles generates microplastics (MPs, 0.1-5000 μm) and nanoplastics (NPs, 1-100 nm), which can enter the bloodstream through inhalation or ingestion. This review examines whether MPs and NPs influence blood pressure. To address this question, relevant studies were analyzed based on predefined criteria. Due to anatomical barriers and microcirculatory dynamics, only NPs and small MPs are expected to enter the bloodstream under physiological conditions, although pathological states may alter this. In vitro research indicates that MPs and NPs negatively affect erythrocytes and endothelial cells, while rodent models suggest potential cardiovascular effects. Plastic particles and fibers have been detected in human blood, thrombi, atherosclerotic plaques, and various tissues. However, validated data on plastic particle-related blood pressure changes remain lacking. Despite limitations in their applicability to human physiology, preclinical models suggest that MPs and NPs circulate in the bloodstream, interact with blood cells, and contribute to vascular damage. Mechanisms such as endothelial injury, platelet activation, inflammation, and MPs/NPs accumulation in atherosclerotic plaques may contribute to blood pressure elevation but are unlikely to be the exclusive cause of hypertension. Further research is needed to clarify the role of plastic particles in blood pressure regulation. Standardized detection methods, real-world scenario-related models, and targeted human studies are essential to assessing cardiovascular risks associated with MP and NP exposure.
Collapse
Affiliation(s)
- Liesa Geppner
- Department of Medicine, Faculty of Medicine and Dentistry, Danube Private University, Steiner Landstraße 124, 3500, Krems an der Donau, Austria; Vienna Doctoral School of Ecology and Evolution (VDSEE), University of Vienna, Djerassiplatz 1, 1030, Vienna, Austria
| | - Julius Hellner
- Department of Medicine, Faculty of Medicine and Dentistry, Danube Private University, Steiner Landstraße 124, 3500, Krems an der Donau, Austria
| | - Maja Henjakovic
- Department of Medicine, Faculty of Medicine and Dentistry, Danube Private University, Steiner Landstraße 124, 3500, Krems an der Donau, Austria.
| |
Collapse
|
4
|
Balestra V, Bellopede R. Explorations in the dark continent: Did microplastics and microfibres get here before us? THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 977:179328. [PMID: 40233628 DOI: 10.1016/j.scitotenv.2025.179328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 02/21/2025] [Accepted: 04/01/2025] [Indexed: 04/17/2025]
Abstract
Microplastic and microfibre pollution is a global concern, however, karst areas remain understudied. Because of their properties, these anthropogenic microparticles are particularly hazardous, and easily transportable, reaching also remote areas. The underground world, called also dark continent, is a treasure of information, and remained the last frontier of terrestrial exploration: many parts of the underground world have not yet been accessed. In the hypogeal environments, pollution is closely linked to the connections between surface and subterranean habitats, the hydrodynamics of the aquifer, geology, and local environmental conditions. This study aims to investigate, for the first time, the presence of microplastics and microfibres in unexplored caves, revealing how human activity could indirectly impact even the uncontaminated environments of the dark continent. Together with speleologists, we collected and investigated sediment samples from unexplored caves of the Abruzzo Region, Italy. Examined anthropogenic microparticles were counted and characterized by composition, size, shape, fluorescence, and colour, via microscopy and spectroscopy. Microplastic concentrations resulted low or absent, moreover, natural and regenerated microfibres ones were higher. Fibre-shape was the most common. Most of the microparticles were clear and fluorescent under UV light. Pollution sources in this area likely include atmospheric deposition, nearby human activities, roads, and garbage. These results highlight anthropogenic microparticle pollution exists in unexplored karst caves, which could impact subterranean habitats, species, and water resources. Given the link between surface and underground karst environments, more monitoring and protection are needed. This work encourages speleologists to collect samples during explorations too, as these rarely studied environments offer crucial insights into karst systems, potential threats, and conservation needs. Future long-term studies will clarify pollutant sources, transport, and effects on ecosystems.
Collapse
Affiliation(s)
- Valentina Balestra
- Department of Environment, Land and Infrastructure Engineering, Politecnico di Torino, Italy; Biologia Sotterranea Piemonte - Gruppo di Ricerca, Italy.
| | - Rossana Bellopede
- Department of Environment, Land and Infrastructure Engineering, Politecnico di Torino, Italy
| |
Collapse
|
5
|
Shen R, Xia P, Guo Y, Ji P, Yuan X, Wang L, Shuang S, Zhou L, Tong R, Zhang L, Liu D, Wang D. Effects of polystyrene microparticles exposures on spermatogenic cell differentiation and reproductive endpoints in male mice. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 373:126200. [PMID: 40185193 DOI: 10.1016/j.envpol.2025.126200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 03/27/2025] [Accepted: 04/02/2025] [Indexed: 04/07/2025]
Abstract
The widespread distribution of microplastics in the environment has raised concerns about their potential implications for human health. Microplastics accumulate in animals and humans, but the risks associated with these pollutants are not fully understood. This study aimed to investigate the effects of polystyrene microplastics on the male reproductive system. The 0.1 μm polystyrene (PS) could accumulate in the testicular tissue and spermatogonia GC-1, while 1 μm PS was not easy to enter and accumulate in the testicular tissue and cells. Mice continuously exposed for 3-months to 0.1 μm PS demonstrated lower fertility and inhibited spermatogonium differentiation compared to control mice. The 0.1 μm PS were dispersed throughout the seminiferous tubule of the testis. Metabolic reprogramming was found to be involved in these processes. Histone methylation and autophagy-related pathways showed significant differences following PS treatment in testis tissue and GC-1 cells. Our findings suggest that chronic exposure to 0.1 μm PS inhibited spermatogenic cell differentiation and impaired fertility in male mice. We propose that abnormal epigenetic modifications in 0.1 μm PS exposed mice contributed to the dysregulation of glycolytic enzymes, and that the impaired autophagic pathway exacerbated the accumulation of glycolytic enzymes further. Glycolysis plays a critical role in the regulation of spermatogenic cell differentiation, and its regulation partially alleviated the impairments associated with PS exposure. In conclusion, our findings suggest that chronic exposure to nanoplastics PS inhibited spermatogenic cell differentiation and impaired fertility in male mice via disrupted epigenetic modification and metabolic dysregulation.
Collapse
Affiliation(s)
- Rong Shen
- School of Basic Medical Sciences, Lanzhou University, Gansu, 730000, China
| | - Peng Xia
- School of Basic Medical Sciences, Lanzhou University, Gansu, 730000, China
| | - Yanan Guo
- School of Basic Medical Sciences, Lanzhou University, Gansu, 730000, China
| | - Pengfei Ji
- School of Basic Medical Sciences, Lanzhou University, Gansu, 730000, China
| | - Xinyi Yuan
- School of Basic Medical Sciences, Lanzhou University, Gansu, 730000, China
| | - Lu Wang
- The First Hospital of Lanzhou University, Lanzhou University, Gansu, 730000, China
| | - Si Shuang
- School of Basic Medical Sciences, Lanzhou University, Gansu, 730000, China
| | - Liwei Zhou
- School of Basic Medical Sciences, Lanzhou University, Gansu, 730000, China
| | - Ruizhi Tong
- The First Hospital of Lanzhou University, Lanzhou University, Gansu, 730000, China
| | - Lijuan Zhang
- Medical Experimental Center, Lanzhou University, Gansu, 730000, China
| | - Disheng Liu
- The First Hospital of Lanzhou University, Lanzhou University, Gansu, 730000, China.
| | - Degui Wang
- School of Basic Medical Sciences, Lanzhou University, Gansu, 730000, China.
| |
Collapse
|
6
|
Tang Y, Pershina D, Abdessalam S, Falk L, Liang Y, Hong SH, Yim UH, Yoon JY. Low-cost, multispectral machine learning classification of simulated airborne micro/nanoplastics. JOURNAL OF HAZARDOUS MATERIALS 2025; 488:137443. [PMID: 39899933 DOI: 10.1016/j.jhazmat.2025.137443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 01/19/2025] [Accepted: 01/28/2025] [Indexed: 02/05/2025]
Abstract
This study presents a novel smartphone-based, machine-learning-assisted multispectral classification method for identifying airborne micro- and nanoplastics (MNPs). Instead of commercial polymeric microspheres, coffee grinder-based cryogrinding generated nonuniform MNPs from real-world plastic products with highly irregular shapes and heterogenous size distributions. The low-cost handheld device comprises a smartphone, a spectral mask array made from plastic color films, and a discrete multiplexed illumination device. A stack of images was captured across multiple wavelength ranges, and the RGB ratios were extracted without using morphological information. An XGBoost model was trained on two datasets: dry and wet MNP samples passively collected on a glass slide, simulating two types of airborne MNPs. The model successfully distinguished plastics from clay with 89-99 % accuracy and classified six plastic types with 79-87 % accuracy for dry and wet MNPs. This method offers a promising toolkit for airborne MNP monitoring.
Collapse
Affiliation(s)
- Yisha Tang
- Department of Biomedical Engineering, The University of Arizona, Tucson, AZ 85721, United States
| | - Darya Pershina
- Department of Biomedical Engineering, The University of Arizona, Tucson, AZ 85721, United States
| | - Safiyah Abdessalam
- Department of Biomedical Engineering, The University of Arizona, Tucson, AZ 85721, United States
| | - Liam Falk
- Department of Applied Physics, The University of Arizona, Tucson, AZ 85721, United States
| | - Yan Liang
- Department of Chemistry and Biochemistry, The University of Arizona, Tucson, AZ 85721, United States
| | - Sang Hee Hong
- Korea Institute of Ocean Science and Technology, Geoje, Gyeongsangnam-do 53201, Republic of Korea
| | - Un Hyuk Yim
- Korea Institute of Ocean Science and Technology, Geoje, Gyeongsangnam-do 53201, Republic of Korea.
| | - Jeong-Yeol Yoon
- Department of Biomedical Engineering, The University of Arizona, Tucson, AZ 85721, United States.
| |
Collapse
|
7
|
Liu G, Bao Q, Zhang C, Zhong Y, Deng M, Huang Y, Ye Z, Jing J. PVC nanoplastics impair cardiac function via lysosomal and mitochondrial dysfunction. Biochem Biophys Res Commun 2025; 762:151736. [PMID: 40203654 DOI: 10.1016/j.bbrc.2025.151736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2025] [Revised: 03/25/2025] [Accepted: 03/30/2025] [Indexed: 04/11/2025]
Abstract
MICRO: and nanoplastics (MNPs) are emerging environmental pollutants that pose a significant threat to human health, with traces found in cardiac tissues. While previous studies have indicated that MNPs can cantribute to cardiac dysfunction, there is limited systematic investigation into how MNPs exposure affects various organelles. This study focuses on polyvinyl chloride nanoparticles (PVC NPs), one of the most common and persistent plastic pollutants in the environment. Our findings reveal that PVC NPs engage in organelle-specific interactions, predominantly accumulating in the lysosomes and mitochondria of cardiomyocytes. This targeted accumulation results in substantial disruptions to lysosomal autophagic flux and mitochondrial energy metabolism. These results offer new insights into the organelle-specific mechanisms behind PVC NP-induced cardiotoxicity, highlighting the distinct risks associated with this widespread environmental contaminant.
Collapse
Affiliation(s)
- Guoxia Liu
- School of Life Sciences, Faculty of Medicine, Tianjin University, Tianjin, 300072, China; Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310018, China
| | - Qimei Bao
- Postgraduate Training Base Alliance of Wenzhou Medical University (Zhejiang Cancer Hospital), Hangzhou, Zhejiang, 310022, China; Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HlM), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China
| | - Chunkai Zhang
- Postgraduate Training Base Alliance of Wenzhou Medical University (Zhejiang Cancer Hospital), Hangzhou, Zhejiang, 310022, China; Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HlM), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China
| | - Yuke Zhong
- Postgraduate Training Base Alliance of Wenzhou Medical University (Zhejiang Cancer Hospital), Hangzhou, Zhejiang, 310022, China; Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HlM), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China
| | - Mingcong Deng
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HlM), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China; Hangzhou Medical College, Hangzhou, 310013, China
| | - Yixing Huang
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HlM), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China; Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Zu Ye
- Postgraduate Training Base Alliance of Wenzhou Medical University (Zhejiang Cancer Hospital), Hangzhou, Zhejiang, 310022, China; Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HlM), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China; Zhejiang Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer, Hangzhou, Zhejiang, 310022, China; Guangxi Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Nanning, Guangxi, 530021, China; Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, Guangxi, 530021, China.
| | - Ji Jing
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310018, China; Zhejiang Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer, Hangzhou, Zhejiang, 310022, China.
| |
Collapse
|
8
|
Pettoello-Mantovani M, Bali D, Giardino I, Pop TL, Sevketoglu E, Konstantinidis G, Pastore M, Vural M. The Risk from Widespread Micro- and Nano-Plastic Contamination on a Global Scale and the Threat to Children's Health. J Pediatr 2025; 280:114512. [PMID: 39961376 DOI: 10.1016/j.jpeds.2025.114512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2025] [Accepted: 02/12/2025] [Indexed: 03/14/2025]
Affiliation(s)
- Massimo Pettoello-Mantovani
- European Pediatric Association, Union of National European Pediatric societies and Associations, Berlin, Germany; Italian Academy of Pediatrics, Milan, Italy; Department of Pediatrics, Institute for Scientific Research «Casa Sollievo», University of Foggia, Foggia, Italy.
| | - Donjeta Bali
- European Pediatric Association, Union of National European Pediatric societies and Associations, Berlin, Germany; Society of Pediatrics of Albania, Tirana, Albania
| | - Ida Giardino
- European Pediatric Association, Union of National European Pediatric societies and Associations, Berlin, Germany; Department of Clinical and Experimental Sciences, University of Foggia, Foggia, Italy
| | - Tudor Lucian Pop
- European Pediatric Association, Union of National European Pediatric societies and Associations, Berlin, Germany; Romanian Society of Social Pediatrics, Cluj, Romania; Second Pediatric Clinic, University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Esra Sevketoglu
- European Pediatric Association, Union of National European Pediatric societies and Associations, Berlin, Germany; Department of Pediatrics, University of Health Sciences, Istanbul, Turkey
| | - Georgios Konstantinidis
- European Pediatric Association, Union of National European Pediatric societies and Associations, Berlin, Germany; Department of Pediatrics, Faculty of Medicine, University of Novi Sad, Novi Sad, Serbia; Pediatric Society of Serbia, Belgrade, Serbia
| | - Maria Pastore
- European Pediatric Association, Union of National European Pediatric societies and Associations, Berlin, Germany; Department of Pediatrics, Institute for Scientific Research «Casa Sollievo», University of Foggia, Foggia, Italy
| | - Mehmet Vural
- European Pediatric Association, Union of National European Pediatric societies and Associations, Berlin, Germany; Department of Pediatrics, Cerrapasha University, Istanbul, Turkey; Turkish Pediatric Association, Istanbul, Turkey
| |
Collapse
|
9
|
Huang X, Yu J, Chen X, Hou W, Liu H, Kim Y. Spatiotemporal variations, source apportionment, and cross-regional impacts of microplastics in surface seawater of Chinese Marginal Seas. MARINE POLLUTION BULLETIN 2025; 214:117807. [PMID: 40073530 DOI: 10.1016/j.marpolbul.2025.117807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 01/13/2025] [Accepted: 03/07/2025] [Indexed: 03/14/2025]
Abstract
Microplastics (MPs) are widely distributed as a global pollutant, with dynamic patterns driven by horizontal diffusion and vertical mixing in marine ecosystems across different hydrological seasons and regions. This study employed MATLAB for image processing and interactive operations to extract data from existing studies on the Chinese Marginal Seas conducted from 2016 to 2022, focusing on the distribution, sources, and transport processes of MPs. The results revealed that the Bohai Sea exhibited the highest pollution levels during both the rainy (9328.30 particles/m3) and dry (8665.80 particles/m3) seasons. The Yangtze River Estuary, the Pearl River Estuary, and the Bohai Bay are three hotspot regions that may significantly contribute to the enrichment of MPs in surrounding seas. The distance-similarity decay relationship indicated stronger correlations in the South China Sea and Bohai Sea during the rainy season, and in the East China Sea during the dry season. Derived from the analysis using the Positive Matrix Factorization model, it was found that, apart from the South China Sea where PE and PAN proportions were higher, PE and PP dominated the MP composition. Highly polluting and difficult-to-degrade industrial manufacturing and plastic packaging were identified as the primary sources, while the Bohai Sea and Yellow Sea posed higher transport risks, may serve as sources of pollution to the surrounding regions.
Collapse
Affiliation(s)
- Xudong Huang
- College of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Jianghua Yu
- College of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China.
| | - Xi Chen
- Marine Ecology Laboratory, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China.
| | - Wanli Hou
- College of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Haiyang Liu
- College of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Youngchul Kim
- Department of Environmental Engineering, Hanseo University, Seosan City 356-706, Republic of Korea
| |
Collapse
|
10
|
Bu W, Yu M, Ma X, Shen Z, Ruan J, Qu Y, Huang R, Xue P, Ma Y, Tang J, Zhao X. Gender-specific effects of prenatal polystyrene nanoparticle exposure on offspring lung development. Toxicol Lett 2025; 407:1-16. [PMID: 40088994 DOI: 10.1016/j.toxlet.2025.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 02/21/2025] [Accepted: 03/08/2025] [Indexed: 03/17/2025]
Abstract
Nanoplastics are widely present in the environment. Exposure to environmental pollutants during pregnancy can have adverse effects on fetal development and health. Establishing a link between nanoplastics and Bronchopulmonary Dysplasia (BPD) requires further investigation. In this study, we examined the impact of prenatal exposure to 80 nm polystyrene nanoparticles (PS-NPs) on offspring lung development, taking into account potential gender-specific effects. Pregnant female mice were exposed to PS-NPs through oropharyngeal aspiration, and critical data on lung development were collected at postnatal days 1, 7, and 21. We found that exposure to PS-NPs reduced birth weight in female offspring and significantly increased lung weight in both male and female offspring by PND 21. Maternal exposure led to a reduction in alveolar numbers across offspring, with distinct underlying mechanisms observed between sexes. In female offspring, the reduction in alveolar numbers was linked to disrupted surfactant protein expression, significant inflammation, and increased apoptosis and fibrosis. In male offspring, impaired angiogenesis was the primary factor contributing to the increased risk of BPD. The impact on alveolar development was substantial in both genders. This study underscores the gender-specific impacts of prenatal nanoplastic exposure on lung development and offers new evidence and direction for future research on the cross-generational respiratory toxicity of PS-NPs.
Collapse
Affiliation(s)
- Wenxia Bu
- Department of Occupational Medicine and Environmental Toxicology, Nantong Key Laboratory of Environmental Toxicology, School of Public Health, Nantong University, Nantong 226019, China
| | - Mengjiao Yu
- Department of Occupational Medicine and Environmental Toxicology, Nantong Key Laboratory of Environmental Toxicology, School of Public Health, Nantong University, Nantong 226019, China
| | - Xinyi Ma
- Department of Occupational Medicine and Environmental Toxicology, Nantong Key Laboratory of Environmental Toxicology, School of Public Health, Nantong University, Nantong 226019, China
| | - Zhaoping Shen
- Department of Occupational Medicine and Environmental Toxicology, Nantong Key Laboratory of Environmental Toxicology, School of Public Health, Nantong University, Nantong 226019, China
| | - Jialing Ruan
- Department of Occupational Medicine and Environmental Toxicology, Nantong Key Laboratory of Environmental Toxicology, School of Public Health, Nantong University, Nantong 226019, China
| | - Yi Qu
- Department of Occupational Medicine and Environmental Toxicology, Nantong Key Laboratory of Environmental Toxicology, School of Public Health, Nantong University, Nantong 226019, China
| | - Ruiyao Huang
- Department of Clinical Medicine, Nantong University Xinglin College, Nantong 226000, China
| | - Peng Xue
- Department of Occupational Medicine and Environmental Toxicology, Nantong Key Laboratory of Environmental Toxicology, School of Public Health, Nantong University, Nantong 226019, China
| | - Yuanyuan Ma
- Department of Occupational Medicine and Environmental Toxicology, Nantong Key Laboratory of Environmental Toxicology, School of Public Health, Nantong University, Nantong 226019, China.
| | - Juan Tang
- Department of Occupational Medicine and Environmental Toxicology, Nantong Key Laboratory of Environmental Toxicology, School of Public Health, Nantong University, Nantong 226019, China.
| | - Xinyuan Zhao
- Department of Occupational Medicine and Environmental Toxicology, Nantong Key Laboratory of Environmental Toxicology, School of Public Health, Nantong University, Nantong 226019, China.
| |
Collapse
|
11
|
Du W, Xu K, Wang S, Gao X, Jiang M, Lv X, Zhou Q, Ma P, Yang X, Wang S, Chen M. Exposure to polystyrene microplastics with different functional groups: Implications for blood pressure and heart. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 372:126009. [PMID: 40057161 DOI: 10.1016/j.envpol.2025.126009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 03/03/2025] [Accepted: 03/05/2025] [Indexed: 04/01/2025]
Abstract
The association between microplastics (MPs) exposure and cardiovascular disease is largely unknown. It is still unclear what effects MPs exposure have on blood pressure and how it affects the heart. As MPs age, their surfaces undergo modifications that may alter how the MPs interact with cells, which may affect the extent of their toxic effects. Here, we used three different surface functional-group polystyrene microplastics (PS-MPs), and exposed 5-week-old SD rats to them over 42 days. Compared with the control group, the mean blood pressure of the MPs exposed rats increased by 22-40%. Exposure to PS-MPs caused oxidative damage to the heart, and induced cardiomyocyte hypertrophy. More interestingly, MPs modified by functional groups induced enhanced adverse effects than unmodified PS-MPs, with amino-modified PS-MPs exhibiting more significant blood pressure elevation and myocardial hypertrophy. Proteomic analysis of cardiac differential proteins focused on factor XII activation, negative regulation of proteolysis, collectively pointed to the downregulation of kininogen. We demonstrated that MPs exposure induced ERK activation, the down-regulation of bradykinin, and inhibition of the downstream nitric oxide signaling pathway. This study demonstrates the different effects of MPs with different functional groups on blood pressure elevation and myocardial hypertrophy, and sheds light on the mechanisms responsible for microplastic-induced cardiovascular toxicity.
Collapse
Affiliation(s)
- Wanting Du
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, Hubei, China
| | - Ke Xu
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, Hubei, China
| | - Shuxin Wang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, Hubei, China
| | - Xiao Gao
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, Hubei, China
| | - Mengling Jiang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, Hubei, China
| | - Xiaojing Lv
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, Hubei, China
| | - Qi Zhou
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, Hubei, China
| | - Ping Ma
- Key Laboratory of Environmental Related Diseases and One Health, Xianning Medical College, Hubei University of Science and Technology, Xianning, 437100, China
| | - Xu Yang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, Hubei, China; Key Laboratory of Environmental Related Diseases and One Health, Xianning Medical College, Hubei University of Science and Technology, Xianning, 437100, China
| | - Shaohui Wang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, Hubei, China
| | - Mingqing Chen
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, Hubei, China.
| |
Collapse
|
12
|
Liu J, Xia P, Qu Y, Zhang X, Shen R, Yang P, Tan H, Chen H, Deng Y. Long-Term Exposure to Environmentally Realistic Doses of Starch-Based Microplastics Suggests Widespread Health Effects. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:9867-9878. [PMID: 40202198 DOI: 10.1021/acs.jafc.4c10855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/10/2025]
Abstract
There is a growing consensus on addressing the global plastic pollution problem by advocating for bioplastics. While starch-based plastics are prevalent, the potential health implications of starch-based microplastics (SMPs) remain largely unexplored. This is particularly concerning given their potential for accidental ingestion and subsequent interference with blood glucose metabolism. Our research provides the first investigation into the distribution and adverse effects of long-term exposure to environmentally relevant doses of SMPs in female mice, approximately 14-81 particles per mouse per day. After three months of exposure, SMPs were found to infiltrate the liver, intestine, and ovarian tissues, causing microstructural lesions. Exposure to SMPs also resulted in elevated blood glucose levels, increased hepatic oxidative stress, and disrupted lipid metabolism. A multiomics analysis further uncovered abnormalities in gene expression and microbiota, as well as enriched pathways related to insulin regulation and circadian rhythms in the exposed mice. Our results indicate that prolonged exposure to environmentally relevant doses of SMPs can have widespread health effects in mice, potentially disrupting circadian rhythms by inducing insulin resistance. This suggests that the safety of bioplastics requires further evaluation before their large-scale application in food packages.
Collapse
Affiliation(s)
- Jing Liu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Peng Xia
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Yi Qu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Xue Zhang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Ruqin Shen
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China
| | - Pan Yang
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Hongli Tan
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility/Guangzhou Key Laboratory of Traditional Chinese Medicine & Disease Susceptibility/Guangdong-Hong Kong-Macao Universities Joint Laboratory for the Internationalization of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, China
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou 510632, China
| | - Hexia Chen
- School of Environment and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222005, China
| | - Yongfeng Deng
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| |
Collapse
|
13
|
Li D, Li P, Shi Y, Sheerin ED, Zhang Z, Yang L, Xiao L, Hill C, Gordon C, Ruether M, Pepper J, Sader JE, Morris MA, Wang JJ, Boland JJ. Stress-induced phase separation in plastics drives the release of amorphous polymer micropollutants into water. Nat Commun 2025; 16:3814. [PMID: 40268905 DOI: 10.1038/s41467-025-58898-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 04/03/2025] [Indexed: 04/25/2025] Open
Abstract
Residual stress is an intrinsic property of semicrystalline plastics such as polypropylene and polyethylene. However, there is no fundamental understanding of the role intrinsic residual stress plays in the generation of plastic pollutants that threaten the environment and human health. Here, we show that the processing-induced compressive residual stress typically found in polypropylene and polyethylene plastics forces internal nano and microscale segregation of low molecular weight (MW) amorphous polymer droplets onto the plastic's surface. Squeeze flow simulations reveal this stress-driven volumetric flow is consistent with that of a Bingham plastic material, with a temperature-dependent threshold yield stress. We confirm that flow is thermally activated and stress dependent, with a reduced energy barrier at higher compressive stresses. Transfer of surface segregated droplets into water generates amorphous polymer micropollutants (APMPs) that are denatured, with structure and composition different from that of traditional polycrystalline microplastics. Studies with water-containing plastic bottles show that the highly compressed bottle neck and mouth regions are predominantly responsible for the release of APMPs. Our findings reveal a stress-induced mechanism of plastic degradation and underscore the need to modify current plastic processing technologies to reduce residual stress levels and suppress phase separation of low MW APMPs in plastics.
Collapse
Affiliation(s)
- Dunzhu Li
- Jiyang College, Zhejiang A&F University, Zhuji, China.
- AMBER Research Centre and Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN), Trinity College Dublin, Dublin, Ireland.
- Department of Civil, Structural and Environmental Engineering, Trinity College Dublin, Dublin, Ireland.
| | - Peijing Li
- School of Mathematics and Statistics, The University of Melbourne, Victoria, Australia
| | - Yunhong Shi
- Department of Civil, Structural and Environmental Engineering, Trinity College Dublin, Dublin, Ireland
| | - Emmet D Sheerin
- AMBER Research Centre and Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN), Trinity College Dublin, Dublin, Ireland
- School of Chemistry, Trinity College Dublin, Dublin, Ireland
| | - Zihan Zhang
- Department of Civil, Structural and Environmental Engineering, Trinity College Dublin, Dublin, Ireland
| | - Luming Yang
- AMBER Research Centre and Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN), Trinity College Dublin, Dublin, Ireland
- Department of Civil, Structural and Environmental Engineering, Trinity College Dublin, Dublin, Ireland
| | - Liwen Xiao
- Department of Civil, Structural and Environmental Engineering, Trinity College Dublin, Dublin, Ireland.
- TrinityHaus, Trinity College Dublin, Dublin, Ireland.
| | - Christopher Hill
- AMBER Research Centre and Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN), Trinity College Dublin, Dublin, Ireland
- School of Chemistry, Trinity College Dublin, Dublin, Ireland
| | - Conall Gordon
- AMBER Research Centre and Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN), Trinity College Dublin, Dublin, Ireland
- School of Chemistry, Trinity College Dublin, Dublin, Ireland
| | - Manuel Ruether
- School of Chemistry, Trinity College Dublin, Dublin, Ireland
| | - Joshua Pepper
- AMBER Research Centre and Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN), Trinity College Dublin, Dublin, Ireland
- School of Chemistry, Trinity College Dublin, Dublin, Ireland
| | - John E Sader
- Graduate Aerospace Laboratories and Department of Applied Physics, California Institute of Technology, Pasadena, USA
| | - Michael A Morris
- AMBER Research Centre and Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN), Trinity College Dublin, Dublin, Ireland
- School of Chemistry, Trinity College Dublin, Dublin, Ireland
| | - Jing Jing Wang
- AMBER Research Centre and Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN), Trinity College Dublin, Dublin, Ireland.
| | - John J Boland
- AMBER Research Centre and Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN), Trinity College Dublin, Dublin, Ireland.
- School of Chemistry, Trinity College Dublin, Dublin, Ireland.
| |
Collapse
|
14
|
Liu D, Shimizu M. Ingesting chitosan can promote excretion of microplastics. Sci Rep 2025; 15:14041. [PMID: 40268980 DOI: 10.1038/s41598-025-96393-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Accepted: 03/27/2025] [Indexed: 04/25/2025] Open
Abstract
Recently, the presence of microplastics (MPs) in common foods such as salt and beverages has been widely reported Microplastics (MPs) have been widely reported in common foods, including salt and beverages. MPs spread through the food chain and are eventually ingested into the human body through the diet. They have been found to accumulate in human feces, blood, and liver tissues, raising concerns about the effects of continuous intake of foods containing MP on the body. We examined whether rats could rapidly excrete polyethylene MPs (average particle size of 200 μm) when the MPs and were mixed with non-digestive dietary materials in their feed (indigestible dextrin, lactosucrose, chitosan, and eggshell membrane proteins). The group that ingested chitosan showed significant changes, including increased fecal weight, increased MP excretion rate, and decreased intestinal MP retention rate. The MP excretion rates in feces 0-144 h after ingestion were 83.7% ± 3.8% in the control group and 115.6% ± 4.5% in the chitosan group. These findings indicate that chitosan effectively promotes the expulsion of polyethylene MPs. The addition of chitosan to food may reduce the potential harm caused by MPa to a variety of organisms, including humans.
Collapse
Affiliation(s)
- Di Liu
- Graduate School of Science and Technology, Tokai University, 3-20-1 Orido, Shimizu, 424- 8610, Shizuoka, Japan
- Institute Oceanic Research and Development, Tokai University, 3-20-1 Orido, Shimizu, 424- 8610, Shizuoka, Japan
| | - Muneshige Shimizu
- Graduate School of Science and Technology, Tokai University, 3-20-1 Orido, Shimizu, 424- 8610, Shizuoka, Japan.
- Institute Oceanic Research and Development, Tokai University, 3-20-1 Orido, Shimizu, 424- 8610, Shizuoka, Japan.
| |
Collapse
|
15
|
Amberg S, Mitrano DM. Exploring the Essential Use Concept for Primary Microplastics Regulation in the EU. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025. [PMID: 40245254 DOI: 10.1021/acs.est.4c10830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/19/2025]
Abstract
With the increasing prevalence of plastic pollution, including microplastics (MPs, particles <5 mm), the pursuit of safer and more sustainable alternatives gains increasing traction. While a substantial portion of MPs in the environment arises from the degradation of plastic litter and the wear of polymer-containing materials (secondary MPs), deliberate incorporation of MPs in certain products (primary MPs) also represents a considerable source, and targeted measures can be implemented to minimize human exposure and environmental releases. Improved policies for managing macroplastic waste help mitigate secondary MPs, but addressing primary MPs requires distinct strategies. Globally, various approaches, such as bans or restrictions on primary MPs, have been proposed, including the recent EU regulation under REACH, which groups intentionally added MPs together based on their diverse uses and properties. However, applying the Essential Use Concept (EUC) provides a more refined regulatory approach; balancing environmental health, technical feasibility, and innovation. This perspective explores the potential, challenges, and limitations of implementing the EUC for primary MPs. By examining four use cases─controlled-release medicines, agricultural seed coatings, personal care products, and artificial turf infill─we highlight how the EUC can prioritize essential and beneficial applications while phasing out nonessential uses.
Collapse
Affiliation(s)
- Stefano Amberg
- Department of Environmental Systems Science, ETH Zurich, Universitätstrasse 16, 8092 Zurich, Switzerland
| | - Denise M Mitrano
- Department of Environmental Systems Science, ETH Zurich, Universitätstrasse 16, 8092 Zurich, Switzerland
| |
Collapse
|
16
|
Wael H, Vanessa EB, Mantoura N, Antonios DE. Tiny pollutants, big consequences: investigating the influence of nano- and microplastics on soil properties and plant health with mitigation strategies. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2025; 27:860-877. [PMID: 40111751 DOI: 10.1039/d4em00688g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
The impact of nanoplastics (NPs) and microplastics (MPs) on ecosystems and human health has recently emerged as a significant challenge within the United Nations Agenda 2030, drawing global attention. This paper provides a critical analysis of the influence of plastic particles on plants and soils, with the majority of data collected from recent studies, primarily over the past five years. The absorption and translocation mechanisms of NPs/MPs in plants are first described, followed by an explanation of their effects-especially particles like PE, PS, PVC, PLA, and PES, as well as those contaminated with heavy metals-on plant growth, physiology, germination, oxidative stress, and nutrient uptake. The study also links the characteristics of plastics (size, shape, concentration, type, degradability) to changes in the physical, chemical, and microbial properties of soils. Various mitigation strategies, including physical, chemical, and biological processes, are explored to understand how they address these changes. However, further research, including both laboratory and field investigations, is urgently needed to address knowledge gaps, particularly regarding the long-term effects of MPs, their underlying mechanisms, ecotoxicological impacts, and the complex interactions between MPs and soil properties. This research is crucial for advancing sustainability from various perspectives and should contribute significantly toward achieving sustainable development goals (SDGs).
Collapse
Affiliation(s)
- H Wael
- Chemical Engineering Department, Faculty of Engineering, University of Balamand, Koura Campus, Kelhat P.O. Box 33, 1355, Lebanon.
| | - E B Vanessa
- Chemical Engineering Department, Faculty of Engineering, University of Balamand, Koura Campus, Kelhat P.O. Box 33, 1355, Lebanon.
| | - N Mantoura
- FOE Dean's Office, Faculty of Engineering, University of Balamand, Koura Campus, Kelhat P.O. Box 100, Lebanon
| | - D Elie Antonios
- Laboratoire Chimie de la Matière Condensée de Paris LCMCP, Sorbonne Université, UPMC Paris 06, 4 Place Jussieu, 75005 Paris, France
- Solnil, 95 Rue de la République, Marseille 13002, France
| |
Collapse
|
17
|
Chen CY, Chen SY, Liao CM. Regional and population-scale trends in human inhalation exposure to airborne microplastics: Implications for health risk assessment. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 371:125950. [PMID: 40032226 DOI: 10.1016/j.envpol.2025.125950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 02/27/2025] [Accepted: 02/27/2025] [Indexed: 03/05/2025]
Abstract
Growing evidence shows that breathing microplastics (MPs)-polluted air increases the risk of pulmonary health effects. However, a complete understanding of how inhaled MPs distribute within the human respiratory tract (HRT) remains insufficient. This study developed a physiologically-based kinetic HRT model to evaluate the deposition and clearance of MPs over time and at varying concentrations based on their aerodynamic diameter (AD). We quantified the contributions of AD-specific MPs to inhalation exposure trends using literature-based atmospheric MP pollution data from 2015 to 2022. Exposure assessments were conducted in data-rich settings, including megacities, urban-rural, and age-specific populations. Our analysis revealed that all suspended MPs had ADs less than 70 μm, with fragments, fibers, and spheres in decreasing order of prevalence. Modeling results demonstrated a pronounced variation (∼1010 magnitudes) in internal MP burdens across airway regions during long-term exposure. On average, inhaled MPs larger than 40 μm accumulated exclusively in extrathoracic and bronchi regions, whereas MPs with ADs of 0.1-5 μm were the primary contributors to internal burdens. We identified nasal airflow rate as the most sensitive factor influencing internal burdens of MPs larger than 1 μm. Furthermore, our findings showed that infants, children, and the elderly were more vulnerable to short-term exposure, whereas adolescents and adults were of greater concern with long-term exposure. These insights provide valuable guidance for policy decisions on targeting interventions to at-risk regions or susceptible populations.
Collapse
Affiliation(s)
- Chi-Yun Chen
- Department of Environmental and Global Health, College of Public Health and Health Professions, University of Florida, Gainesville, FL, 32610, United States; Center for Environmental and Human Toxicology, University of Florida, FL, 32608, United States.
| | - Si-Yu Chen
- Department of Bioenvironmental Systems Engineering, National Taiwan University, Taipei, 10617, Taiwan
| | - Chung-Min Liao
- Department of Bioenvironmental Systems Engineering, National Taiwan University, Taipei, 10617, Taiwan.
| |
Collapse
|
18
|
Cui H, Jiang X, Cao J, Yang W, Yang B, Li M. Comparative Analysis of Metabolic Dysfunctions Associated with Pristine and Aged Polyethylene Microplastic Exposure via the Liver-Gut Axis in Mice. ACS NANO 2025; 19:14272-14283. [PMID: 40189833 DOI: 10.1021/acsnano.5c00945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2025]
Abstract
The accumulation of plastic waste in the environment has raised widespread concern about the impact of microplastics (MPs) on human and environmental health, particularly regarding aged MPs. This study investigated the effects of subchronic dietary intake on pristine and aged polyethylene microplastics (PE-MPs) in C57BL/6J mice. Results revealed that both pristine and aged PE-MPs, at doses of 0.01 and 1 mg/day, induced plasma metabolic changes primarily associated with lipid metabolism and digestive processes. These alterations were reflected in the expression changes of proteins involved in unsaturated fatty acid pathways in the liver as well as a reduction in beneficial gut microbiota. Key contributors in the toxicity of aged PE-MPs included ATP-binding cassette transporters, gut bacteria alterations (notably Lactobacillus, Akkermansia, Parasutterella, and Turicibacter), and significantly altered proteins related to fatty acid elongation, such as acyl-CoA thioesterase enzyme family and elongation of very long chain fatty acid protein 5. These disruptions exacerbated lipid metabolism disorders, potentially contributing to metabolic diseases. Additionally, decreased levels of glutathione S-transferase A proteins, along with reduced hepatic glutathione and increased reactive oxygen species in both the small intestine and liver, suggested that aged PE-MPs aggravated hepatic and intestinal damage through oxidative stress. These findings indicated that aged PE-MPs caused more severe hepatic dysfunction and gut microbiota disruption. This effect was likely mediated by the transfer of fatty acids and signaling molecules through the gut-liver axis, ultimately leading to hepatic lipid metabolism disorders and oxidative stress.
Collapse
Affiliation(s)
- Haiyan Cui
- State Key Laboratory of Water Pollution Control and Green Resource Recycling, School of Environment, Nanjing University, Nanjing 210023, China
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Xiaofeng Jiang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jing Cao
- State Key Laboratory of Water Pollution Control and Green Resource Recycling, School of Environment, Nanjing University, Nanjing 210023, China
| | - Weishu Yang
- State Key Laboratory of Water Pollution Control and Green Resource Recycling, School of Environment, Nanjing University, Nanjing 210023, China
| | - Bin Yang
- State Key Laboratory of Water Pollution Control and Green Resource Recycling, School of Environment, Nanjing University, Nanjing 210023, China
| | - Mei Li
- State Key Laboratory of Water Pollution Control and Green Resource Recycling, School of Environment, Nanjing University, Nanjing 210023, China
| |
Collapse
|
19
|
Ma H, Zhang C, Zhang Z, Zhou Z, Xu Y, Xi M, Zhu K, Jia H. Understanding the structure, distribution, and retention of nanoplastics in montmorillonite nanopore by multi-scale computational simulations. WATER RESEARCH 2025; 282:123638. [PMID: 40239372 DOI: 10.1016/j.watres.2025.123638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Revised: 03/27/2025] [Accepted: 04/11/2025] [Indexed: 04/18/2025]
Abstract
The interfacial adsorption, aggregation and deposition processes of nanoplastics (NPs) on clay mineral surfaces critically regulate their environmental mobility, transformation pathways, and ecotoxicological risks in aquatic ecosystems. A quantitative understanding of the nanoscale interfacial processes is essential. This study employs molecular dynamics (MD) simulations and density functional theory (DFT) calculations to elucidate the aggregation and deposition mechanisms of three types of NPs in their pristine and aged states in the nanopore solution of montmorillonite (Mt). In the wet environment, NPs tend to form aggregates in the nanopore and migrate in solution, increasing environmental risk, while in the dry environment, NPs are more likely to deposit on the basal surface to form larger aggregates, consequently reducing their mobility. Results show hydrophobic interactions play as the primary driving force for the aggregation of pristine NPs, and both hydrophilic and hydrophobic interactions contribute to the aggregation of aged NPs. Aged NPs exhibit stronger binding affinity to Mt through mechanism such as Ca²⁺ bridging and hydrogen bonding, compared to their pristine counterparts. DFT calculations further reveal the formation of hydrogen bonds between the hydroxyl groups of aged NPs and the tetrahedral oxygen atoms in Mt. Through atomic-level characterization of interfacial processes, this work establishes a predictive framework for NP environmental behavior by resolving migration dynamics and retention processes in nanopore water.
Collapse
Affiliation(s)
- Haozhe Ma
- College of Natural Resources and Environment, Northwest A & F University, Xianyang 712100, China
| | - Chi Zhang
- College of Natural Resources and Environment, Northwest A & F University, Xianyang 712100, China; Key Laboratory of Low-Carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs, Xianyang 712100, China.
| | - Ziheng Zhang
- College of Natural Resources and Environment, Northwest A & F University, Xianyang 712100, China
| | - Zhiyu Zhou
- College of Natural Resources and Environment, Northwest A & F University, Xianyang 712100, China
| | - Yongliang Xu
- College of Natural Resources and Environment, Northwest A & F University, Xianyang 712100, China
| | - Mengning Xi
- College of Natural Resources and Environment, Northwest A & F University, Xianyang 712100, China
| | - Kecheng Zhu
- College of Natural Resources and Environment, Northwest A & F University, Xianyang 712100, China; Key Laboratory of Low-Carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs, Xianyang 712100, China
| | - Hanzhong Jia
- College of Natural Resources and Environment, Northwest A & F University, Xianyang 712100, China; Key Laboratory of Low-Carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs, Xianyang 712100, China
| |
Collapse
|
20
|
Ye G, Li M, Huang H, Avellán-Llaguno RD, Chen J, Chen G, Huang Q. Polystyrene microplastic exposure induces selective accumulation of antibiotic resistance genes in gut microbiota and its potential health risks. Int J Biol Macromol 2025; 309:142983. [PMID: 40220806 DOI: 10.1016/j.ijbiomac.2025.142983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 03/11/2025] [Accepted: 04/07/2025] [Indexed: 04/14/2025]
Abstract
As emerging pollutants, antibiotic resistance genes (ARGs) and microplastics threaten the environment and human health. Gut microbiota is a hotspot for ARG emergence and spread. However, effects of microplastic exposure on the emergence and spread of gut microbial ARGs are unclear. Therefore, metagenomics was used to characterize polystyrene microplastics (PS)-induced ARG alterations in rat gut microbiota and their health risks, and to identify key ARG hosts and pathways as intervention targets. We found that PS exposure not only induced selective accumulation of glycopeptide and aminoglycoside ARGs, but also promoted mobility risks of glycopeptide and macrolide-lincosamide-streptogramin ARGs in gut microbiota. Metagenomic reassembly identified microbes belonging to Firmicutes (particularly order Clostridiales, such as speices Lachnospiraceae bacterium 3-1 and MD335) as major ARG hosts. Meanwhile, genera Enterococcus, Clostridioides and Streptococcus were main ARG hosts among human pathogens. Furthermore, glycopeptide and aminoglycoside ARGs were highly correlated with VanS/VanR signaling and its regulatory pathways of vancomycin resistance and peptidoglycan metabolism, amino sugar and nucleotide sugar metabolism, and CpxR signaling and its regulatory remodeling of cell envelope peptidoglycans and proteins in gut microbiota upon PS exposure. This study provides novel insights and intervention targets involved in PS-induced changes in gut microbial ARGs and their health risks.
Collapse
Affiliation(s)
- Guozhu Ye
- Xiamen Key Laboratory of Indoor Air and Health, Center for Excellence in Regional Atmospheric Environment, Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Minghui Li
- College of Pharmacy, Daqing Campus, Harbin Medical University, Daqing 163319, China
| | - Haining Huang
- Xiamen Key Laboratory of Indoor Air and Health, Center for Excellence in Regional Atmospheric Environment, Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Ricardo David Avellán-Llaguno
- Xiamen Key Laboratory of Indoor Air and Health, Center for Excellence in Regional Atmospheric Environment, Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Jinsheng Chen
- Xiamen Key Laboratory of Indoor Air and Health, Center for Excellence in Regional Atmospheric Environment, Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Guoyou Chen
- College of Pharmacy, Daqing Campus, Harbin Medical University, Daqing 163319, China.
| | - Qiansheng Huang
- Xiamen Key Laboratory of Indoor Air and Health, Center for Excellence in Regional Atmospheric Environment, Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China.
| |
Collapse
|
21
|
My TTA, Dat ND, Hung NQ, Thuy TTT, Hang PTT, Luu ND. Microplastic abundance and characteristics in bivalves from tam Giang-Cau Hai and O Loan Lagoons, coastal regions in Central Vietnam: Implication on human health. MARINE POLLUTION BULLETIN 2025; 216:117937. [PMID: 40209440 DOI: 10.1016/j.marpolbul.2025.117937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 02/24/2025] [Accepted: 04/02/2025] [Indexed: 04/12/2025]
Abstract
Four common bivalves, including white clam (Meretrix lusoria), lined clam (Paratapes undulatus), oysters (Crassostrea gigas), and green mussels (Perna viridi), which are commonly consumed in Central Vietnam, were collected from Tam Giang-Cau Hai and O Loan Coastal Lagoons. The samples were investigated for the presence of microplastics (MPs) in their tissues. The average number of MPs determined in white clams, lined clams, oysters, and green mussels in Central Vietnam varies from 0.3 to 0.9 per g-ww and from 0.9 to 5.6 per individual. Fibers, fragments, and pellets were found with various proportions concerning. Fibers were the most common shape, making up 36-74 % of the total microplastics, followed by fragments accounting for 16-47 %. The most prevalent colors were white-transparent and black-grey, comprising 49-81 % of the MPs. Regarding the microplastics found in the bivalve tissues, 78-80 % were <500 μm. Given chemical analysis, rayon accounted for 38 % of the microplastics discovered in bivalve tissues; closely PET (13 %), PA (10 %), and PP (10 %) were followed. This study offers valuable insights into the microplastic contamination concerned by bivalve consumption in Thua Thien Hue and Phu Yen, Central Vietnam; the results estimate the annual intakes are between 5000 and 10,000 particles per person. Unprecedentedly addressed in the literature, these findings contribute to a better understanding of microplastic pollution in Vietnam. The results altogether provide solid shreds of evidence for the MP contamination in Vietnam-based seafood, thus encouraging further attempts for plausible socio-economical regulations and raising public awareness on the issue.
Collapse
Affiliation(s)
- Tran Thi Ai My
- Department of Chemistry, University of Sciences, Hue University, Hue 530000, Viet Nam.
| | - Nguyen Duy Dat
- Faculty of Chemical & Food Technology, Ho Chi Minh City University of Technology and Education, Thu Duc, Ho Chi Minh 700000, Viet Nam
| | - Nguyen Quoc Hung
- CASE Center of Analytical Services and Experimentation HCMc, Ho Chi Minh 700000, Viet Nam
| | - Ton Thi Thanh Thuy
- Department of Chemistry, University of Sciences, Hue University, Hue 530000, Viet Nam
| | - Phan Thi Thuy Hang
- Department of Biology, University of Sciences, Hue University, Hue 530000, Viet Nam
| | - Nguyen Duy Luu
- Department of Chemistry, University of Sciences, Hue University, Hue 530000, Viet Nam; Department of Pharmaceutical, Da Nang University of Medical Technology and Pharmacy, Da Nang 550000, Viet Nam
| |
Collapse
|
22
|
Ashokkumar V, Chandramughi VP, Mohanty K, Gummadi SN. Microplastic pollution: Critical analysis of global hotspots and their impact on health and ecosystems. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 381:124995. [PMID: 40186977 DOI: 10.1016/j.jenvman.2025.124995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 01/06/2025] [Accepted: 03/13/2025] [Indexed: 04/07/2025]
Abstract
This paper examines microplastic hotspots and their drastic effects on human health and the environment pointing out microplastic pollution as one of the biggest global issues. Besides, it analyses the key sources including industrial effluent discharge, littered plastic wastes, and deterioration of synthetic products together with pathways and routes of exposure. The review also focuses on microplastic contamination in food systems such as meat, plant-based products, dairy, and seafood, detailing their entry into the food chain via soil, water, and air. On the other hand, this work also focuses on human health issues including cellular absorption, and bioaccumulation, which results in tissue oxidative stress, inflammation, hormonal imbalance and adverse long-term effects, including carcinogenicity and organ toxicity. The ultimate effects of microplastic pollution on the condition of the soil, water, and fauna and flora of the ecosystem, highlighting on the need for the prevention measures, were also addressed. This paper seeks to critically ascertain the problems posed by microplastics, including their slow biodegradation limit, the absence of proper regulations, and lack of a universally accepted standard. It also highlights that microplastic pollution requires interdisciplinary analyses, future studies, and high standards-compliant policies and regulations. This work raises the alarm for a collective international effort to protect the public health, food, and the earth.
Collapse
Affiliation(s)
- Veeramuthu Ashokkumar
- Center for Waste Management and Renewable Energy, SDC, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 600077, India.
| | - V P Chandramughi
- Center for Waste Management and Renewable Energy, SDC, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 600077, India
| | - Kaustubha Mohanty
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati, 781039, India
| | - Sathyanarayana N Gummadi
- Applied and Industrial Microbiology Laboratory, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, 600 036, India
| |
Collapse
|
23
|
Prajapati A, Jadhao P, Kumar AR. Atmospheric microplastics deposition in a central Indian city: Distribution, characteristics and seasonal variations. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 374:126183. [PMID: 40185191 DOI: 10.1016/j.envpol.2025.126183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 02/15/2025] [Accepted: 04/01/2025] [Indexed: 04/07/2025]
Abstract
Atmospheric microplastics (AMPs) transport and deposition in urban areas contribute to microplastics pollution. The present study investigates AMPs deposition, characteristics, potential sources, and the influence of meteorological factors in a central Indian city. AMPs were collected over three land-use types, viz. institutional, commercial, and industrial areas, during four seasons: summer, monsoon, autumn, and winter. The deposition flux of microplastics ranged from 212.53 ± 52.32 to 543.25 ± 71.23 particles/m2/day. The AMPs were predominantly fibres (87.84 %), followed by films (5.43 %), with particle size <1000 μm contributed 43.67 %. The predominant polymer types identified were polyethylene terephthalate (PET, 37.39 %), nylon (20.49 %), and polypropylene (PP, 10.27 %). Higher deposition fluxes were recorded in summer, with 491.06 ± 73.37 particles/m2/day. Correlation analysis revealed a negative correlation between rainfall and AMPs deposition, suggesting a potential cleaning role of rainfall. The estimated annual deposition flux of AMPs in Nagpur city was 3.22 × 1013 particles. Higher AMPs deposition was attributed to plastic waste littering, industrial emissions, and textiles. The estimated mean annual inhalation exposures of AMPs of size 50-250 μm for children and adults were 7375.84 ± 1312.89 and 3738.17 ± 665.39 MPs/kg-bw/year, respectively. The findings of this study contribute to understanding the fate of AMPs and its implications for human exposure. The findings underscore the importance of reducing and managing plastic waste.
Collapse
Affiliation(s)
- Archana Prajapati
- CSIR-National Environmental Engineering Research Institute, Nagpur, Maharashtra, 440020, India; Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur, Maharashtra, 440033, India
| | - Pradip Jadhao
- CSIR-National Environmental Engineering Research Institute, Nagpur, Maharashtra, 440020, India; Acadamy of Scientific and Innovative Research (AcSIR), Ghaziabad, New Delhi, 201002, India
| | - Asirvatham Ramesh Kumar
- CSIR-National Environmental Engineering Research Institute, Nagpur, Maharashtra, 440020, India; Acadamy of Scientific and Innovative Research (AcSIR), Ghaziabad, New Delhi, 201002, India.
| |
Collapse
|
24
|
Vanetti C, Broggiato M, Pezzana S, Clerici M, Fenizia C. Effects of microplastics on the immune system: How much should we worry? Immunol Lett 2025; 272:106976. [PMID: 39900298 DOI: 10.1016/j.imlet.2025.106976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/22/2025] [Accepted: 01/31/2025] [Indexed: 02/05/2025]
Abstract
Plastics are everywhere. It is widely recognized that they represent a global problem, the extent of which is yet to be defined. Humans are broadly exposed to plastics, whose effects and consequences are poorly characterized so far. The main route of exposure is via alimentary and respiratory intake. Plastics pollutions may come from both: water and food contamination itself, and their packaging. The smaller sizes (i.e. microplastics <150 µm - MPs) are considered to be the most pervasive of living organisms and, therefore, potentially the most harmful. As humans occupy one of the apex positions of the food chain, we are exposed to bioaccumulation and biomagnification effects of MPs. In fact, MPs are commonly found in human stools and blood. However, there are no data available yet on their ability to accumulate and to produce detrimental consequences on biological systems. Even though the effects of plastics pollution are poorly studied in mammals, including humans, they appear to have inflammatory effects, which is rather concerning as many etiologies of disease are based on a pro-inflammatory status.
Collapse
Affiliation(s)
- Claudia Vanetti
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Martina Broggiato
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Stefania Pezzana
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Mario Clerici
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy; Fondazione Don Carlo Gnocchi, IRCCS Milan Italy
| | - Claudio Fenizia
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| |
Collapse
|
25
|
Wang K, Liu X, Chadwick DR, Yan C, Reay M, Ge T, Ding F, Wang J, Qi R, Xiao M, Jiang R, Chen Y, Ma J, Lloyd C, Evershed RP, Luo Y, Zhu Y, Zhang F, Jones DL. The agricultural plastic paradox: Feeding more, harming more? ENVIRONMENT INTERNATIONAL 2025; 198:109416. [PMID: 40215920 DOI: 10.1016/j.envint.2025.109416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 03/25/2025] [Accepted: 03/25/2025] [Indexed: 04/26/2025]
Abstract
Agricultural plastic film mulch (PFM) covers ca. 50 million hectares of the Earth's surface and has revolutionized agriculture, particularly in arid and semi-arid regions, by improving crop yields, water use efficiency, farmer incomes and feeding an extra 85 million people in China alone. However, concerns are growing about the impact of PFM-derived microplastics (MP) on soil quality, the food chain, and the environment. Here we show that current research on the effects of MP in agricultural soils is limited by inconsistent methodologies and unrealistic experimental concentrations, leading to major uncertainty in assessing the true risks associated with PFM use. Furthermore, we highlight the need for standardized protocols, experiments using realistic MP concentrations, and a better understanding of the relative contribution of PFM to MP pollution to develop informed policies. Furthermore, while biodegradable alternatives show promise, their significantly higher costs (2-3 times that of conventional LDPE PFM) and variable performance across different agricultural environments present economic and practical challenges that must be addressed through targeted policy incentives and continued technological innovation. Our findings suggest that while further research is conducted, managing PFM to reduce environmental impact, rather than imposing ill-informed bans on plastic use, is crucial to balance food security and sustainable development goals. Exploring "zero-leakage" instead of "zero-use" approaches to PFM should be the primary aim to help mitigate potential risks while preserving the substantial benefits of this agricultural technology.
Collapse
Affiliation(s)
- Kai Wang
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences; National Academy of Agriculture Green Development; Key Laboratory of Plant-Soil Interactions of Ministry of Education, National Observation and Research Station of Agriculture Green Development (Quzhou, Hebei), China Agricultural University, Beijing 100193, PR China
| | - Xuejun Liu
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences; National Academy of Agriculture Green Development; Key Laboratory of Plant-Soil Interactions of Ministry of Education, National Observation and Research Station of Agriculture Green Development (Quzhou, Hebei), China Agricultural University, Beijing 100193, PR China
| | - David R Chadwick
- School of Environmental and Natural Sciences, Bangor University, Bangor LL57 2UW, UK
| | - Changrong Yan
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Michaela Reay
- School of Chemistry, University of Bristol, Bristol BS8 1TH, UK
| | - Tida Ge
- State Key Laboratory for Quality and Safety of Agro-Products, International Science and Technology Cooperation Base for the Regulation of Soil Biological Functions and One Health of Zhejiang Province, Ningbo University, Ningbo 315211, PR China
| | - Fan Ding
- College of Land and Environment, Shenyang Agricultural University, Shenyang 110086, PR China
| | - Jingkuan Wang
- College of Land and Environment, Shenyang Agricultural University, Shenyang 110086, PR China
| | - Ruimin Qi
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, PR China
| | - Mouliang Xiao
- State Key Laboratory for Quality and Safety of Agro-Products, International Science and Technology Cooperation Base for the Regulation of Soil Biological Functions and One Health of Zhejiang Province, Ningbo University, Ningbo 315211, PR China; State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Hangzhou 311300, PR China
| | - Rui Jiang
- Research Center for Cultural Landscape Protection and Ecological Restoration, China-Portugal Belt and Road Cooperation Laboratory of Cultural Heritage Conservation Science, Gold Mantis School of Architecture, Soochow University, Suzhou 215006, PR China
| | - Yanling Chen
- College of Resources and Environment, Qingdao Agricultural University, Qingdao, Shandong 266109, PR China
| | - Ji Ma
- College of Economics and Management, China Agricultural University, Beijing 10083, PR China
| | - Charlotte Lloyd
- School of Chemistry, University of Bristol, Bristol BS8 1TH, UK
| | | | - Yongming Luo
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, PR China
| | - Yongguan Zhu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, PR China
| | - Fusuo Zhang
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences; National Academy of Agriculture Green Development; Key Laboratory of Plant-Soil Interactions of Ministry of Education, National Observation and Research Station of Agriculture Green Development (Quzhou, Hebei), China Agricultural University, Beijing 100193, PR China
| | - Davey L Jones
- School of Environmental and Natural Sciences, Bangor University, Bangor LL57 2UW, UK.
| |
Collapse
|
26
|
Choi YH, Park N, Kim J, Park SA, Jung J, Song JS, Choi YH, Kim DH. Microplastic contamination in artificial tears in South Korea: Potential for direct ocular exposure. Cont Lens Anterior Eye 2025; 48:102325. [PMID: 39532599 DOI: 10.1016/j.clae.2024.102325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 10/23/2024] [Accepted: 11/03/2024] [Indexed: 11/16/2024]
Abstract
PURPOSE To investigate microplastics (MP) contamination in artificial tear (AT) products. METHOD Five hyaluronic acid ATs (two multi-use and three disposable ATs) were used to gauge MP levels in three scenarios: 1) initial drop and remaining liquid after opening the lid upward; 2) remaining liquid after opening the lid downward and discarding two drops; and 3) remaining liquid after opening the lid downward and discarding half of it. Raman spectroscopy was used to identify the quantity, morphological characteristics, and composition of MPs. Scanning electron microscopy/energy dispersive spectroscopy was used to examine the surface traits and elements of MPs and ATs. RESULTS MPs were detected in 4 out of 5 ATs in the initial drops, containing 0.50 ± 0.65 particles/30 mL, whereas the remaining solution had 0.75 ± 0.72 particles/30 mL. After discarding two drops, 0.14 ± 0.35 particles/30 mL were present in the remaining solution. No MPs were detected after discarding half drops. Most MPs were transparent (95 %), irregular fragments (55 %) sized 10-20 μm (35 %), and made of polyethylene (95 %). If patients use the first drops of ATs four times a day for a year, individuals can be exposed to 730.0 particles. This exposure can be reduced to 204.4 particles by discarding the first two drops before use. CONCLUSION MPs are observed in commercially available ATs, and human eyes may be directly exposed to MPs through the use of ATs.
Collapse
Affiliation(s)
- Yun-Hee Choi
- Department of Ophthalmology, Korea University College of Medicine, Seoul, South Korea; School of Health and Environmental Science, Korea University, Seoul, South Korea
| | - Nayoon Park
- Department of Ophthalmology, Korea University College of Medicine, Seoul, South Korea
| | - Juyang Kim
- Korea Institute of Analytical Science and Technology, Seoul, South Korea
| | - Seul-Ah Park
- Korea Institute of Analytical Science and Technology, Seoul, South Korea
| | - Jaehak Jung
- Korea Institute of Analytical Science and Technology, Seoul, South Korea
| | - Jong Suk Song
- Department of Ophthalmology, Korea University College of Medicine, Seoul, South Korea
| | - Yoon-Hyeong Choi
- School of Health and Environmental Science, Korea University, Seoul, South Korea.
| | - Dong Hyun Kim
- Department of Ophthalmology, Korea University College of Medicine, Seoul, South Korea.
| |
Collapse
|
27
|
Khairul Anuar SZ, Nordin AH, Nur Husna SM, Yusoff AH, Paiman SH, Md Noor SF, Nordin ML, Ali SN, Nazir Syah Ismail YM. Recent advances in recycling and upcycling of hazardous plastic waste: A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 380:124867. [PMID: 40068335 DOI: 10.1016/j.jenvman.2025.124867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 02/11/2025] [Accepted: 03/04/2025] [Indexed: 04/12/2025]
Abstract
Plastic is a widely used material across various industries, including construction, packaging, healthcare, and automotive, among others. Global plastic production was estimated at 311 million tonnes in 2014 and is expected to double within two decades, continuing to rise towards 2050. As plastic pollution poses significant environmental and health risks, effective recycling and upcycling strategies are crucial for sustainable waste management. This paper explores the impact of plastic waste on public health and ecosystems, reviews chemical, mechanical, and biological recycling methods, and examines upcycling approaches. It also addresses key challenges such as limitations in chemical upcycling, scaling up carbonization, and inefficiencies in sorting and processing for mechanical recycling. Additionally, recent innovations-including enzymatic depolymerization for PET recycling, upcycling plastic waste into advanced carbon materials like graphene and carbon nanotubes, photochemical and photocatalytic upcycling, PVC recycling via Cl-transfer systems, and advancements in mechanical recycling for multi-layer plastics-are discussed to highlight emerging solutions in plastic waste management. By addressing these challenges and gaps, this paper provides valuable insights into advancing plastic waste management through innovative recycling and upcycling technologies, paving the way for more sustainable and environmentally friendly solutions to combat global plastic pollution.
Collapse
Affiliation(s)
| | - Abu Hassan Nordin
- Faculty of Applied Sciences, Universiti Teknologi MARA (UiTM), Arau, 02600, Perlis, Malaysia; Gold, Rare Earth and Material Technopreneurship Centre (GREAT), Faculty of Bioengineering and Technology, Universiti Malaysia Kelantan, Jeli, Kelantan, 17600, Malaysia.
| | - Siti Muhamad Nur Husna
- Department of Primary Care Medicine, Faculty of Medicine, Universiti Malaya, Wilayah Persekutuan Kuala Lumpur, 50603, Malaysia
| | - Abdul Hafidz Yusoff
- Gold, Rare Earth and Material Technopreneurship Centre (GREAT), Faculty of Bioengineering and Technology, Universiti Malaysia Kelantan, Jeli, Kelantan, 17600, Malaysia
| | - Syafikah Huda Paiman
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore; Three Summit Ventures Pte.Ltd., Singapore
| | - Siti Fadilla Md Noor
- Department of Chemical Engineering, Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, Skudai, 81310, Johor, Malaysia
| | - Muhammad Luqman Nordin
- Faculty of Pharmacy, Universiti Malaya, Wilayah Persekutuan Kuala Lumpur, 50603, Malaysia
| | - Siti Nurlia Ali
- Faculty of Applied Sciences, Universiti Teknologi MARA (UiTM), Arau, 02600, Perlis, Malaysia
| | - Ya Mohammad Nazir Syah Ismail
- Department of Chemical Engineering, Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, Skudai, 81310, Johor, Malaysia; Department of Environment Johor, Pusat Perdagangan Danga Utama, Wisma Alam Sekitar, 46, Jalan Pertama, 81300, Johor Bahru, Johor, Malaysia
| |
Collapse
|
28
|
Li B, Li M, Du D, Tang B, Yi W, He M, Liu R, Yu H, Yu Y, Zheng J. Characteristics and influencing factors of microplastics entering human blood through intravenous injection. ENVIRONMENT INTERNATIONAL 2025; 198:109377. [PMID: 40139033 DOI: 10.1016/j.envint.2025.109377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 03/11/2025] [Accepted: 03/13/2025] [Indexed: 03/29/2025]
Abstract
The presence of microplastics in the human body and their potential health risks have drawn widespread attention in recent years. Microplastics have been detected in human blood, though their pathways of entry remain unclear. This study employed Raman spectroscopy and energy dispersive spectroscopy to evaluate the microplastic release characteristics of intravenous medical devices, aiming to investigate the influencing factors and the risk of microplastics entering the bloodstream. The results showed that microplastics were found in three widely-used medical devices, with abundances ranging from 0.44 to 2.00 items/n. Polyethylene, polypropylene (46.2 %), fragments (96.7 %), and white (86.8 %) were the predominant characteristics. Factors such as brand, specifications, and usage scenarios influence microplastic release, leading to differences in detection rates among different medical devices (0-100%). Repeated use significantly increases the risk of microplastic release (p < 0.05). Notably, built-in filtration membranes do not completely retain microplastics and may pose a risk of shedding fibers themselves. Using the exposure assessment model, the estimated microplastic release per person per year was 3.75 items for syringe, 6.22 items for infusion set, and 0.35 items for vein detained needle. Overall, although the amount of microplastics entering the human body through intravenous injection is significantly lower than that from dietary exposure and other pathways, the risk of direct entry into the bloodstream remains a concern. This research provides critical evidence for understanding the direct pathways and risks of microplastic exposure in human blood from plastic medical devices, offering significant scientific value for assessing exposure pathways and the safety of medical device use.
Collapse
Affiliation(s)
- Bowen Li
- The Key Laboratory of Environmental Pollution Health Risk Assessment, Research Center of Emerging Contaminants, South China Institute of Environmental Sciences, Ministry of Ecology and Environment of the People's Republic of China, Guangzhou 510655, China
| | - Min Li
- The Key Laboratory of Environmental Pollution Health Risk Assessment, Research Center of Emerging Contaminants, South China Institute of Environmental Sciences, Ministry of Ecology and Environment of the People's Republic of China, Guangzhou 510655, China
| | - Dongwei Du
- The Key Laboratory of Environmental Pollution Health Risk Assessment, Research Center of Emerging Contaminants, South China Institute of Environmental Sciences, Ministry of Ecology and Environment of the People's Republic of China, Guangzhou 510655, China
| | - Bin Tang
- The Key Laboratory of Environmental Pollution Health Risk Assessment, Research Center of Emerging Contaminants, South China Institute of Environmental Sciences, Ministry of Ecology and Environment of the People's Republic of China, Guangzhou 510655, China
| | - Wenwen Yi
- The Key Laboratory of Environmental Pollution Health Risk Assessment, Research Center of Emerging Contaminants, South China Institute of Environmental Sciences, Ministry of Ecology and Environment of the People's Republic of China, Guangzhou 510655, China; School of Public Health, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 561113, China
| | - Miaoni He
- The Key Laboratory of Environmental Pollution Health Risk Assessment, Research Center of Emerging Contaminants, South China Institute of Environmental Sciences, Ministry of Ecology and Environment of the People's Republic of China, Guangzhou 510655, China; Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, Nanning 530021, China
| | - Ruijuan Liu
- The Key Laboratory of Environmental Pollution Health Risk Assessment, Research Center of Emerging Contaminants, South China Institute of Environmental Sciences, Ministry of Ecology and Environment of the People's Republic of China, Guangzhou 510655, China
| | - Hairui Yu
- The Key Laboratory of Environmental Pollution Health Risk Assessment, Research Center of Emerging Contaminants, South China Institute of Environmental Sciences, Ministry of Ecology and Environment of the People's Republic of China, Guangzhou 510655, China
| | - Yunjiang Yu
- The Key Laboratory of Environmental Pollution Health Risk Assessment, Research Center of Emerging Contaminants, South China Institute of Environmental Sciences, Ministry of Ecology and Environment of the People's Republic of China, Guangzhou 510655, China
| | - Jing Zheng
- The Key Laboratory of Environmental Pollution Health Risk Assessment, Research Center of Emerging Contaminants, South China Institute of Environmental Sciences, Ministry of Ecology and Environment of the People's Republic of China, Guangzhou 510655, China.
| |
Collapse
|
29
|
Gan HJ, Chen S, Yao K, Lin XY, Juhasz AL, Zhou D, Li HB. Simulated Microplastic Release from Cutting Boards and Evaluation of Intestinal Inflammation and Gut Microbiota in Mice. ENVIRONMENTAL HEALTH PERSPECTIVES 2025; 133:47004. [PMID: 40042913 PMCID: PMC11980920 DOI: 10.1289/ehp15472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 01/21/2025] [Accepted: 01/29/2025] [Indexed: 04/10/2025]
Abstract
BACKGROUND Plastic cutting boards are commonly used in food preparation, increasing human exposure to microplastics (MPs). However, the health implications are still not well understood. OBJECTIVES The objective of this study was to assess the impacts of long-term exposure to MPs released from cutting boards on intestinal inflammation and gut microbiota. METHODS MPs were incorporated into mouse diets by cutting the food on polypropylene (PP), polyethylene (PE), and willow wooden (WB) cutting boards, and the diets were fed to mice over periods of 4 and 12 wk. Serum levels of C-reactive protein (CRP), tumor necrosis factor-α (TNF-α ), interleukin-10 (IL-10), lipopolysaccharide (LPS, an endotoxin), and carcinoembryonic antigen (CEA), along with ileum and colon levels of interleukin-1β (IL-1 β ), TNF-α , malondialdehyde (MDA), superoxide dismutase (SOD), secretory immunoglobulin A (sIgA), and myosin light chain kinase (MLCK), were measured using mouse enzyme-linked immunosorbent assay (ELISA) kits. The mRNA expression of mucin 2 and intestinal tight junction proteins in mouse ileum and colon tissues was quantified using real-time quantitative reverse transcription polymerase chain reaction. Fecal microbiota, fecal metabolomics, and liver metabolomics were characterized. RESULTS PP and PE cutting boards released MPs, with concentrations reaching 1,088 ± 95.0 and 1,211 ± 322 μ g / g in diets, respectively, and displaying mean particle sizes of 10.4 ± 0.96 vs. 27.4 ± 1.45 μ m . Mice fed diets prepared on PP cutting boards for 12 wk exhibited significantly higher serum levels of LPS, CRP, TNF-α , IL-10, and CEA, as well as higher levels of IL-1β , TNF-α , MDA, SOD, and MLCK in the ileum and colon compared with mice fed diets prepared on WB cutting boards. These mice also showed lower relative expression of Occludin and Zonula occludens-1 in the ileum and colon. In contrast, mice exposed to diets prepared on PE cutting boards for 12 wk did not show evident inflammation; however, there was a significant decrease in the relative abundance of Firmicutes and an increase in Desulfobacterota compared with those fed diets prepared on WB cutting boards, and exposure to diets prepared on PE cutting boards over 12 wk also altered mouse fecal and liver metabolites compared with those fed diets prepared on WB cutting boards. DISCUSSION The findings suggest that MPs from PP cutting boards impair intestinal barrier function and induce inflammation, whereas those from PE cutting boards affect the gut microbiota, gut metabolism, and liver metabolism in the mouse model. These findings offer crucial insights into the safe use of plastic cutting boards. https://doi.org/10.1289/EHP15472.
Collapse
Affiliation(s)
- Hai-Jun Gan
- State Key Laboratory of Pollution Control and Resource Reuse, Jiangsu Key Laboratory of Vehicle Emissions Control, School of Environment, Nanjing University, Nanjing, China
| | - Shan Chen
- State Key Laboratory of Pollution Control and Resource Reuse, Jiangsu Key Laboratory of Vehicle Emissions Control, School of Environment, Nanjing University, Nanjing, China
| | - Ke Yao
- State Key Laboratory of Pollution Control and Resource Reuse, Jiangsu Key Laboratory of Vehicle Emissions Control, School of Environment, Nanjing University, Nanjing, China
| | - Xin-Ying Lin
- State Key Laboratory of Pollution Control and Resource Reuse, Jiangsu Key Laboratory of Vehicle Emissions Control, School of Environment, Nanjing University, Nanjing, China
| | - Albert L. Juhasz
- Future Industries Institute, University of South Australia, Mawson Lakes, South Australia, Australia
| | - Dongmei Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, Jiangsu Key Laboratory of Vehicle Emissions Control, School of Environment, Nanjing University, Nanjing, China
| | - Hong-Bo Li
- State Key Laboratory of Pollution Control and Resource Reuse, Jiangsu Key Laboratory of Vehicle Emissions Control, School of Environment, Nanjing University, Nanjing, China
| |
Collapse
|
30
|
Bishop B, Webber WS, Atif SM, Ley A, Pankratz KA, Kostelecky R, Colgan SP, Dinarello CA, Zhang W, Li S. Micro- and nano-plastics induce inflammation and cell death in human cells. Front Immunol 2025; 16:1528502. [PMID: 40230834 PMCID: PMC11995046 DOI: 10.3389/fimmu.2025.1528502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 03/11/2025] [Indexed: 04/16/2025] Open
Abstract
Introduction The presence of micro- and nano-plastics (MNPLs) in the environment has increased significantly in the past decades. However, the direct impact of MNPL particles on human health remains unclear. Methods In this study, we utilized a modified extraction method with a previously reported staining technique to develop a novel approach for identifying individual plastics in mixtures of MNPLs of commercial and environmental origins to be able to investigate their impacts on human cell inflammation and cell death. Polypropylene (PP), polyethylene (PE), polystyrene (PS), and polyethylene terephthalate (PET) were the plastics analyzed. The plastic composition of the environmental MNPLs was characterized using multiple analytical techniques, including Fourier transform infrared spectroscopy, confocal imaging, scanning electron microscopy, and X-ray diffraction. Results We found that both commercial and environmental MNPLs, especially PET, impose a strong inflammatory response on various human cells and tissues. At 1 mg/mL, they robustly stimulate inflammatory IL-1β and IL-6 secretion in a time-dependent manner. Importantly, we observed that the MNPLs induced variable inflammatory responses in cells depending on their plastic composition. Environmental samples rich in PET showed a strong dose-dependent response and induced IL-1β secretion at doses as low as 100 ng/mL. In addition, MNPLs can induce human cell death with or without obviously altering the cell morphology. Discussion These findings are significant because they represent the first instance of authentic MNPLs being collected from ecological water samples for characterization and the first time the direct influences of commercial and environmental MNPLs have been compared in human cell studies. The methods developed in this study provide a foundation for future research to isolate MNPLs from the environment and explore their potential impacts on human health and disease development.
Collapse
Affiliation(s)
- Brandon Bishop
- Department of Chemistry, University of Colorado Boulder, Boulder, CO, United States
| | - William S. Webber
- Department of Medicine, University of Colorado Denver Anschutz Medical Campus, Aurora, CO, United States
| | - Shaikh M. Atif
- Division of Allergy and Clinical Immunology, Department of Medicine, University of Colorado Denver Anschutz Medical Campus, Aurora, CO, United States
| | - Ashley Ley
- Department of Chemistry, University of Colorado Boulder, Boulder, CO, United States
| | - Karl A. Pankratz
- Department of Medicine, University of Colorado Denver Anschutz Medical Campus, Aurora, CO, United States
| | - Rachael Kostelecky
- Mucosal Inflammation Program, Division of Gastroenterology and Hepatology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Sean P. Colgan
- Mucosal Inflammation Program, Division of Gastroenterology and Hepatology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Charles A. Dinarello
- Department of Medicine, University of Colorado Denver Anschutz Medical Campus, Aurora, CO, United States
| | - Wei Zhang
- Department of Chemistry, University of Colorado Boulder, Boulder, CO, United States
| | - Suzhao Li
- Department of Medicine, University of Colorado Denver Anschutz Medical Campus, Aurora, CO, United States
| |
Collapse
|
31
|
Xiao B, Yang W, Dong H, Liu T, Li C, Wang Y, Gao D, Han G, Kiran F, Wang A, Jin Y, Yuan Y, Chen H. Co-Exposure to Polystyrene Microplastics and Bisphenol A Contributes to the Formation of Liver Fibrosis in Mice through Inhibition of the BMAL1/E-Cad Signaling Pathway. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:7405-7422. [PMID: 40073227 DOI: 10.1021/acs.jafc.4c08790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/14/2025]
Abstract
The food safety risks posed by exposure to polystyrene microplastics (PS-MPs) and bisphenol A (BPA) have become an issue worldwide. However, the toxic effects of PS-MPs and BPA coexposure on the mammalian liver remain elusive. In this study, we found that PS-MPs and BPA coexposure have synergistic toxic effects on AML12 cells and the mouse liver. Histopathological staining revealed excessive accumulation of the extracellular matrix in the coexposure liver. Co-exposure to PS-MPs and BPA downregulated Bmal1 and E-cad both in vitro and in vivo. Additionally, Bmal1-/- AML12 cells and liver-specific Bmal1-/- mice exhibited significantly reduced E-cad levels, with no significant reduction under PS-MPs and BPA coexposure. Notably, overexpression of BMAL1 and CLOCK significantly enhanced luciferase activity driven by the E-cad gene intron region (containing an E-box cis-element). These results demonstrated that coexposure to PS-MPs and BPA contributed to the development of liver fibrosis by inhibiting the BMAL1/E-cad signaling pathway.
Collapse
Affiliation(s)
- Bonan Xiao
- Northwest A&F University, Yangling, Shaanxi 712100, China
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Wanghao Yang
- Northwest A&F University, Yangling, Shaanxi 712100, China
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Hao Dong
- Northwest A&F University, Yangling, Shaanxi 712100, China
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Tian Liu
- Northwest A&F University, Yangling, Shaanxi 712100, China
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Chao Li
- Northwest A&F University, Yangling, Shaanxi 712100, China
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yiqun Wang
- Northwest A&F University, Yangling, Shaanxi 712100, China
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Dengke Gao
- Northwest A&F University, Yangling, Shaanxi 712100, China
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Guohao Han
- Northwest A&F University, Yangling, Shaanxi 712100, China
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Fouzia Kiran
- Northwest A&F University, Yangling, Shaanxi 712100, China
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Aihua Wang
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling, Shaanxi 712100, China
- Department of Preventative Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yaping Jin
- Northwest A&F University, Yangling, Shaanxi 712100, China
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yalin Yuan
- Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Huatao Chen
- Northwest A&F University, Yangling, Shaanxi 712100, China
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
32
|
Mognetti B, Cecone C, Fancello K, Saraceni A, Cottone E, Bovolin P. Interaction of Polystyrene Nanoplastics with Biomolecules and Environmental Pollutants: Effects on Human Hepatocytes. Int J Mol Sci 2025; 26:2899. [PMID: 40243532 PMCID: PMC11988602 DOI: 10.3390/ijms26072899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 03/17/2025] [Accepted: 03/20/2025] [Indexed: 04/18/2025] Open
Abstract
The inevitable exposure of humans to micro/nanoplastics has become a pressing global environmental issue, with growing concerns regarding their impact on health. While the direct effects of micro/nanoplastics on human health remain largely unknown, increasing attention is being given to their potential role as carriers of environmental pollutants and organic substances. This study investigates the direct toxicity of 500 nm polystyrene nanoplastics (NPs) on human hepatocytes (HepG2) in vitro, both alone and in combination with cadmium (Cd), a hazardous heavy metal and a prevalent environmental pollutant. One-hour exposure to 100 µg/mL of NPs causes a significant increase in ROS production (+25% compared to control) but cell viability remains unaffected even at concentrations much higher than environmental levels. Interestingly, NPs significantly reduce Cd cytotoxicity at LC50 concentrations (cell viability compared to control: 55.4% for 50 µM Cd, 66.9% for 50 µM Cd + 10 µg/mL NPs, 68.4% for 50 µM Cd + 100 µg/mL NPs). Additionally, NPs do not alter the cellular lipid content after short-term exposure (24 h). However, when Cd and fatty acids are added to the medium, NPs appear to sequester fatty acids, reducing their availability and impairing their uptake by cells in a dose-dependent manner. We confirmed by Dynamic Light Scattering and Scanning Electron Microscopy the interaction between NPs, Cd and free fatty acids. Although polystyrene NPs exhibited minimal cytotoxicity in our experimental model, collectively our findings suggest that predicting the effects of cell exposure to NPs is extremely challenging, due to the potential interaction between NPs, environmental pollutants and specific components of the biological matrix.
Collapse
Affiliation(s)
- Barbara Mognetti
- Department of Life Sciences and Systems Biology, University of Turin, Via Accademia Albertina 13, 10123 Turin, Italy; (K.F.); (A.S.); (E.C.); (P.B.)
- SUSPLAS@UniTo, Sustainable Plastic Scientific Hub, University of Turin, 10100 Turin, Italy;
| | - Claudio Cecone
- SUSPLAS@UniTo, Sustainable Plastic Scientific Hub, University of Turin, 10100 Turin, Italy;
- Department of Chemistry, University of Turin, Via Pietro Giuria 7, 10125 Turin, Italy
| | - Katia Fancello
- Department of Life Sciences and Systems Biology, University of Turin, Via Accademia Albertina 13, 10123 Turin, Italy; (K.F.); (A.S.); (E.C.); (P.B.)
| | - Astrid Saraceni
- Department of Life Sciences and Systems Biology, University of Turin, Via Accademia Albertina 13, 10123 Turin, Italy; (K.F.); (A.S.); (E.C.); (P.B.)
| | - Erika Cottone
- Department of Life Sciences and Systems Biology, University of Turin, Via Accademia Albertina 13, 10123 Turin, Italy; (K.F.); (A.S.); (E.C.); (P.B.)
| | - Patrizia Bovolin
- Department of Life Sciences and Systems Biology, University of Turin, Via Accademia Albertina 13, 10123 Turin, Italy; (K.F.); (A.S.); (E.C.); (P.B.)
- SUSPLAS@UniTo, Sustainable Plastic Scientific Hub, University of Turin, 10100 Turin, Italy;
| |
Collapse
|
33
|
Beier JI, Luo J, Vanderpuye CM, Brizendine P, Muddasani P, Bolatimi O, Heinig SA, Ekuban FA, Siddiqui H, Ekuban A, Gripshover TC, Wahlang B, Watson WH, Cave MC. Environmental Pollutants, Occupational Exposures, and Liver Disease. Semin Liver Dis 2025. [PMID: 40118102 DOI: 10.1055/a-2540-2861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/23/2025]
Abstract
Environmental pollutants significantly impact liver disease development, progression, and outcomes. This review examines the complex relationship between environmental exposures and liver pathology, from malignant conditions like hepatocellular carcinoma to steatotic and cholestatic liver diseases. Key environmental factors include air pollutants, volatile organic compounds, persistent organic pollutants, heavy metals, and per- and polyfluoroalkyl substances. These compounds can act through multiple mechanisms, including endocrine disruption, metabolic perturbation, oxidative stress, and direct hepatotoxicity. The impact of these exposures is often modified by factors such as sex, diet, and genetic predisposition. Recent research has revealed that even low-level exposures to certain chemicals can significantly affect liver health, particularly when combined with other risk factors. The emergence of exposomics as a research tool promises to enhance our understanding of how environmental factors influence liver disease. Importantly, exposure effects can vary by demographic and socioeconomic factors, highlighting environmental justice concerns. Implementation of this knowledge in clinical practice requires new diagnostic approaches, healthcare system adaptations, and increased awareness among medical professionals. In conclusion, this review provides a comprehensive examination of current evidence linking environmental exposures to liver disease and discusses implications for clinical practice and public health policy.
Collapse
Affiliation(s)
- Juliane I Beier
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Jianzhu Luo
- Department of Medicine, University of Louisville School of Medicine, Louisville, Kentucky
| | | | - Paxton Brizendine
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, Kentucky
| | - Pooja Muddasani
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Oluwanifemiesther Bolatimi
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, Kentucky
| | - Shannon A Heinig
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Frederick A Ekuban
- Department of Medicine, University of Louisville School of Medicine, Louisville, Kentucky
| | - Hamda Siddiqui
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Abigail Ekuban
- Department of Medicine, University of Louisville School of Medicine, Louisville, Kentucky
| | - Tyler C Gripshover
- Department of Medicine, University of Louisville School of Medicine, Louisville, Kentucky
| | - Banrida Wahlang
- Department of Medicine, University of Louisville School of Medicine, Louisville, Kentucky
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, Kentucky
| | - Walter H Watson
- Department of Medicine, University of Louisville School of Medicine, Louisville, Kentucky
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, Kentucky
| | - Matthew C Cave
- Department of Medicine, University of Louisville School of Medicine, Louisville, Kentucky
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, Kentucky
| |
Collapse
|
34
|
Li X, Cao H, Yang Q, Yu S, Huang L, Liu Q, Xiao X, Chen S, Ruan J, Zhao X, Su L, Fang Y. Sex differences in cardiac fibrosis induced by gestational exposure to polystyrene nanoplastics in mice offspring. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2025; 27:694-705. [PMID: 39932057 DOI: 10.1039/d4em00642a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
The increasing accumulation of plastics in the environment has raised concerns regarding their potential health hazards. Nanoplastics (NPs) can get transported across the placental barrier, resulting in detrimental effects on developing offspring. To date, the effects of maternal exposure to NPs during pregnancy on the cardiac toxicity in adult offspring have not been conclusively evaluated. Herein, the potential for cardiac injury in the progeny of adult mice that were gestationally exposed to 80 nm polystyrene NPs (PS-NPs) at different doses (0, 0.5, 1, and 5 µg µL-1) through oropharyngeal aspiration was investigated. Gestational exposure to PS-NPs resulted in cardiac fibrosis and cardiomyocyte apoptosis, and induced an increase in malondialdehyde (MDA) levels in adult offspring hearts, which were sex-specific and dose-dependent. The mRNA expression levels of estrogen receptor (ER)-related genes, such as Esr1, Esr2, and GPER1, were found to be significantly decreased on exposure to low-dose PS-NPs but elevated on exposure to high-dose PS-NPs in offspring hearts. Furthermore, the magnitude of this elevation in male offspring significantly exceeded compared to that of the female offspring. Additionally, the expression levels of Esr2 and GPER1 in male offspring that were gestationally exposed to high-dose PS-NPs were found to be higher than those observed in female offspring. The observed sex difference in cardiac fibrosis may be correlated with oxidative stress and changes in ER-related gene expression in the offspring's heart. Overall, our study demonstrated that gestational PS-NP exposure induces significant cardiac injury in adult offspring, providing crucial data on the transgenerational effects of PS-NP exposure in mice.
Collapse
Affiliation(s)
- Xin Li
- Shangrao Key Laboratory of Health Hazards and Bioprevention of Heavy Metals, Jiangxi Medical College, Shangrao, China.
| | - Haotian Cao
- Institute for Applied Research in Public Health, Department of Occupational Medicine and Environmental Toxicology, Nantong Key Laboratory of Environmental Toxicology, School of Public Health, Nantong University, Nantong 226019, China.
| | - Qianqian Yang
- Shangrao Key Laboratory of Health Hazards and Bioprevention of Heavy Metals, Jiangxi Medical College, Shangrao, China.
| | - Siqi Yu
- Shangrao Key Laboratory of Health Hazards and Bioprevention of Heavy Metals, Jiangxi Medical College, Shangrao, China.
| | - Lizheng Huang
- Shangrao Key Laboratory of Health Hazards and Bioprevention of Heavy Metals, Jiangxi Medical College, Shangrao, China.
| | - Qiao Liu
- Shangrao Key Laboratory of Health Hazards and Bioprevention of Heavy Metals, Jiangxi Medical College, Shangrao, China.
| | - Xinyi Xiao
- Shangrao Key Laboratory of Health Hazards and Bioprevention of Heavy Metals, Jiangxi Medical College, Shangrao, China.
| | - Siqi Chen
- Shangrao Key Laboratory of Health Hazards and Bioprevention of Heavy Metals, Jiangxi Medical College, Shangrao, China.
| | - Jialing Ruan
- Institute for Applied Research in Public Health, Department of Occupational Medicine and Environmental Toxicology, Nantong Key Laboratory of Environmental Toxicology, School of Public Health, Nantong University, Nantong 226019, China.
| | - Xinyuan Zhao
- Institute for Applied Research in Public Health, Department of Occupational Medicine and Environmental Toxicology, Nantong Key Laboratory of Environmental Toxicology, School of Public Health, Nantong University, Nantong 226019, China.
| | - Liling Su
- Shangrao Key Laboratory of Health Hazards and Bioprevention of Heavy Metals, Jiangxi Medical College, Shangrao, China.
| | - Yihu Fang
- Shangrao Key Laboratory of Health Hazards and Bioprevention of Heavy Metals, Jiangxi Medical College, Shangrao, China.
| |
Collapse
|
35
|
Pal A, Chakraborty S. Hidden hazards: microplastics in intravenous admixtures and their path into the body. ENVIRONMENTAL MONITORING AND ASSESSMENT 2025; 197:400. [PMID: 40089948 DOI: 10.1007/s10661-025-13850-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Accepted: 03/05/2025] [Indexed: 03/18/2025]
Abstract
Microplastics (MPs) have been detected in all environmental spheres, from the Arctic to the deepest ocean trenches, and have also infiltrated the internal organs of the human body through ingestion, inhalation, and other exposure routes. While various commercial products have been identified as origin of MPs, leading to bans and awareness campaigns, their presence in medical treatments remains underexplored. This study investigates MPs in intravenous (IV) admixtures, which are stored in plastic containers before administration. The hypothesis suggests that prolonged storage may degrade container walls, leading to the release of MPs into the solutions. Analysis of 11 IV admixtures with the help of a stereomicroscope revealed a significant presence of fibre and fragment particles, with 99% of detected MPs measuring less than 100 µm. Polymers identified through a micro FTIR included polypropylene-polyethylene (PP-PE) copolymer, polypropylene (PP) homopolymer, polyvinylpyrrolidone (PVP), and polyurethane (PU). The abundance of MPs increased with storage duration, with older solutions exhibiting more surface roughness, indicating progressive degradation of plastic materials over time. These findings highlight an overlooked route of MP exposure, directly introducing these particles into the human body during medical treatments. Given the increasing use of IV therapies worldwide, further research is essential to assess the health risks posed by MPs in medical solutions. Regulatory measures should be considered to minimize contamination and ensure patient safety.
Collapse
Affiliation(s)
- Anushree Pal
- Department of Civil and Environmental Engineering, Birla Institute of Technology, Ranchi, Jharkhand, 835215, India
| | - Sukalyan Chakraborty
- Department of Civil and Environmental Engineering, Birla Institute of Technology, Ranchi, Jharkhand, 835215, India.
| |
Collapse
|
36
|
Zhang H, Sheng X, Li L, Xu A, Lai Y, Liu J. Quantitative tracking of the transformation of micro- and nanoplastics in simulated human body fluid. JOURNAL OF HAZARDOUS MATERIALS 2025; 486:136992. [PMID: 39724717 DOI: 10.1016/j.jhazmat.2024.136992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 12/17/2024] [Accepted: 12/23/2024] [Indexed: 12/28/2024]
Abstract
Micro- and nanoplastics (MNPs) are widespread in the environment and food, posing ingestion risks through various pathways. However, their transformation in human body fluids (SBFs), especially the formation of secondary nanoparticles (NPs), is not well understood due to inadequate quantification methods. This study proposed a robust method for quantifying eight common MNPs using pressurized liquid extraction (PLE) for pretreatment and pyrolysis gas chromatography-quadrupole time-of-flight mass spectrometry (Py-GC-QTOF-MS) for analysis. The method demonstrated high performance with recoveries over 90.9 % and a detection limit down to 0.01 mg/L. Most sample matrices did not interfere with MNP quantification, though poly(3-hydroxybutyrate) and polyethylene required background noise deduction. High recoveries in SBFs (>79.0 %) further confirmed the practicality of this method. Utilizing this method, it was found that only a few MPs were able to release secondary NPs within the simulated digestive system, with the maximum proportion of released NPs less than 2.1 %, suggesting a negligible health risk from secondary NPs. Besides, ester structure was found not to promote the formation of secondary NPs but did affect surface morphology and functional groups to a certain extent. We anticipate that this work will open opportunities for the health risk assessment of MNPs.
Collapse
Affiliation(s)
- Huyang Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, China; School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xueying Sheng
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, China
| | - Liuyang Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, China; School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Anran Xu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, China; School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yujian Lai
- Department of Environmental Science and Engineering, School of Energy and Environmental Engineering, The University of Science and Technology Beijing, Beijing 100083, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, China; School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China.
| | - Jingfu Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, China; School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China; Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Health and Environment, Jianghan University, Wuhan 430056, China
| |
Collapse
|
37
|
Dmitrowicz A, Kierys A, Siedlecka A, Zbucki Ł, Sienkiewicz A. Screening method for differentiation of plastic and non-plastic microparticles contaminating store-bought rice. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 329:125496. [PMID: 39622118 DOI: 10.1016/j.saa.2024.125496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 11/22/2024] [Accepted: 11/24/2024] [Indexed: 01/29/2025]
Abstract
This article presents a simple and low-cost screening method based on optical microscopy and FT-IR spectroscopy for assessing microparticles found in rice. Five brands of rice packed in paper and foil bags from both the European Union (EU) and non-EU region were tested. Microparticles of various shapes have been found in the rice regardless of the packaging type and origin of the rice. The content of microparticles varies depending on the sample, from 2 to even 12 items per 1 g of rice. Overall, the abundance of microparticles is higher in the case of rice packed in foil bags. Not all identified microparticles are microplastics, but those that are microplastics cannot be directly linked to the composition of the rice package. For a cursory analysis aimed at distinguishing the infrared spectra of non-plastic microparticles (i.e. rice, paper or cellulose) from microplastics, it is sufficient only to analyse the absorption bands above 2800 cm-1.
Collapse
Affiliation(s)
- Aleksandra Dmitrowicz
- Regional Research Centre on Environment, Agriculture and Innovative Technologies EKO-AGRO-TECH, John Paul II University in Biała Podlaska, Sidorska 95/97, 21-500 Biała Podlaska, Poland
| | - Agnieszka Kierys
- Maria Curie-Sklodowska University, Institute of Chemical Sciences, Faculty of Chemistry, Department of Physical Chemistry, M. Curie-Sklodowska Sq. 3, 20-031 Lublin, Poland
| | - Agnieszka Siedlecka
- Faculty of Economic Sciences, John Paul II University in Biała Podlaska, Sidorska 95/97, 21-500 Biala Podlaska, Poland
| | - Łukasz Zbucki
- Faculty of Economic Sciences, John Paul II University in Biała Podlaska, Sidorska 95/97, 21-500 Biala Podlaska, Poland
| | - Andrzej Sienkiewicz
- Maria Curie-Sklodowska University, Institute of Chemical Sciences, Faculty of Chemistry, Department of Physical Chemistry, M. Curie-Sklodowska Sq. 3, 20-031 Lublin, Poland.
| |
Collapse
|
38
|
Liu C, Zhao Y, Zhang W, Dao JJ, Li Q, Huang J, Li ZF, Ma YK, Qiao CM, Cui C, Chen SX, Yu L, Shen YQ, Zhao WJ. Targeted activation of ErbB4 receptor ameliorates neuronal deficits and neuroinflammation in a food-borne polystyrene microplastic exposed mouse model. J Neuroinflammation 2025; 22:86. [PMID: 40089796 PMCID: PMC11910855 DOI: 10.1186/s12974-025-03406-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Accepted: 03/04/2025] [Indexed: 03/17/2025] Open
Abstract
The impact of polystyrene microplastics (PS-MPs) on the nervous system has been documented in the literature. Numerous studies have demonstrated that the activation of the epidermal growth factor receptor 4 (ErbB4) is crucial in neuronal injury and regeneration processes. This study investigated the role of targeted activation of ErbB4 receptor through a small molecule agonist, 4-bromo-1-hydroxy-2-naphthoic acid (C11H7BrO3, E4A), in mitigating PS-MPs-induced neuronal injury. The findings revealed that targeted activation of ErbB4 receptor significantly ameliorated cognitive behavioral deficits in mice exposed to PS-MPs. Furthermore, E4A treatment upregulated the expression of dedicator of cytokinesis 3 (DOCK3) and Sirtuin 3 (SIRT3) and mitigated mitochondrial and synaptic dysfunction within the hippocampus of PS-MPs-exposed mice. E4A also diminished the activation of the TLR4-NF-κB-NLRP3 signaling pathway, consequently reducing neuroinflammation. In vitro experiments demonstrated that E4A partially alleviated PS-MPs-induced hippocampal neuronal injury and its effects on microglial inflammation. In conclusion, the findings of this study indicate that targeted activation of ErbB4 receptor may mitigate neuronal damage and subsequent neuroinflammation, thereby alleviating hippocampal neuronal injury induced by PS-MPs exposure and ameliorating cognitive dysfunction. These results offer valuable insights for the development of potential therapeutic strategies.
Collapse
Affiliation(s)
- Chong Liu
- MOE Medical Basic Research Innovation Center for Gut Microbiota and Chronic Diseases, Department of Cell Biology, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
| | - Yan Zhao
- School of Basic Medical Sciences, Experimental Center for Medical Research, Neurologic Disorders and Regeneration Repair Lab of Shandong Higher Education, Shandong Second Medical University, Weifang, Shandong, China
| | - Wei Zhang
- MOE Medical Basic Research Innovation Center for Gut Microbiota and Chronic Diseases, Department of Cell Biology, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
- Department of Pathogen Biology, Guizhou Nursing Vocational College, Guiyang, Guizhou, China
| | - Ji-Ji Dao
- MOE Medical Basic Research Innovation Center for Gut Microbiota and Chronic Diseases, Department of Cell Biology, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
| | - Qian Li
- MOE Medical Basic Research Innovation Center for Gut Microbiota and Chronic Diseases, Department of Cell Biology, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
| | - Jia Huang
- School of Basic Medical Sciences, Experimental Center for Medical Research, Neurologic Disorders and Regeneration Repair Lab of Shandong Higher Education, Shandong Second Medical University, Weifang, Shandong, China
| | - Zhen-Feng Li
- Experimental Center for Medical Research, Shandong Second Medical University, Weifang, Shandong, China
| | - Yu-Ke Ma
- Rehabilitation Therapy, Medical School, Weifang University of Science and Technology, Weifang, Shandong, China
| | - Chen-Meng Qiao
- MOE Medical Basic Research Innovation Center for Gut Microbiota and Chronic Diseases, Department of Neurodegeneration and Neuroinjury, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
| | - Chun Cui
- MOE Medical Basic Research Innovation Center for Gut Microbiota and Chronic Diseases, Department of Neurodegeneration and Neuroinjury, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
| | - Shuang-Xi Chen
- The First Affiliated Hospital, Department of Neurology, Multi-Omics Research Center for Brain Disorders, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Li Yu
- School of Basic Medical Sciences, Experimental Center for Medical Research, Neurologic Disorders and Regeneration Repair Lab of Shandong Higher Education, Shandong Second Medical University, Weifang, Shandong, China
| | - Yan-Qin Shen
- MOE Medical Basic Research Innovation Center for Gut Microbiota and Chronic Diseases, Department of Neurodegeneration and Neuroinjury, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
| | - Wei-Jiang Zhao
- MOE Medical Basic Research Innovation Center for Gut Microbiota and Chronic Diseases, Department of Cell Biology, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China.
- Department of Cell Biology, Wuxi School of Medicine, Jiangnan University, 1800 Lihu Dadao, Binhu District, Wuxi, Jiangsu, 214122, P.R. China.
| |
Collapse
|
39
|
Jahedi F, Haghighi Fard NJ, Ahmadi M, Takdastan A, Shoushtari MH, Dehbandi R, Turner A. Microplastics in urine, sputum and lung lavage fluid from patients with respiratory illnesses. ENVIRONMENTAL RESEARCH 2025; 274:121278. [PMID: 40054555 DOI: 10.1016/j.envres.2025.121278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 02/05/2025] [Accepted: 02/28/2025] [Indexed: 03/16/2025]
Abstract
Because of the ubiquity of microplastics (MPs) in the environment there are concerns regarding human exposure. In this study, MPs have been determined in three physiological fluids: urine, sputum and bronchoalveolar fluid (BALF); from 30 adult patients in Iran with respiratory conditions. A total of nine small (20-100 μm) and mainly green and red fibres of polyethylene, polypropylene and polystyrene construction were detected in urine samples of eight participants. By contrast, 358 MPs that were dominated by small, white and transparent fibres, but also included larger (100-500 μm) fibres and fragments and spherules of various sizes, were detected in sputum samples. Here, a broader range of polymers was identified but polyurethane was dominant. In BALF samples, 123 MPs were detected that included a higher proportion of larger fibres, along with fragments and spherules. The colour distribution of these MPs was similar to that of sputum samples but polymer distribution was closer to that of urine samples. These observations suggest that MPs that are inhaled and ingested might be fractionated differently though the body. Further research is required to elucidate how particles larger than theoretical limits (set by filtration mechanisms) are present in physiological fluids, what fractionation processes are present, and whether ingested or inhaled MPs are responsible for acute and chronic health impacts.
Collapse
Affiliation(s)
- Faezeh Jahedi
- Department of Environmental Health Engineering, School of Health, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Neamatollah Jaafarzadeh Haghighi Fard
- Department of Environmental Health Engineering, School of Health, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Environmental Technologies Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - Mehdi Ahmadi
- Department of Environmental Health Engineering, School of Health, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Environmental Technologies Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Afshin Takdastan
- Department of Environmental Health Engineering, School of Health, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Environmental Technologies Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Maryam Haddadzadeh Shoushtari
- Air Pollution and Respiratory Disease Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Reza Dehbandi
- Department of Chemical Engineering, University of Science and Technology of Mazandaran, Behshahr, Iran; School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, B15 2TT, Birmingham, United Kingdom
| | - Andrew Turner
- School of Geography, Earth and Environmental Sciences, University of Plymouth, Drake Circus, Plymouth, PL4 8AA, United Kingdom.
| |
Collapse
|
40
|
P SP, Tanushree P. Synergistic human health risks of microplastics and co-contaminants: A quantitative risk assessment in water. JOURNAL OF HAZARDOUS MATERIALS 2025; 491:137809. [PMID: 40081056 DOI: 10.1016/j.jhazmat.2025.137809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 01/29/2025] [Accepted: 02/28/2025] [Indexed: 03/15/2025]
Abstract
The pervasive presence of microplastics (MPs) in aquatic environments, coupled with their potential to act as vectors for toxic contaminants, raises significant concerns for human health. This study quantifies the health risks associated with the ingestion of microplastics and their co-contaminants in aquatic medium, considering both individual and interactive effects. The analysis encompasses four MP types (PP, PS, PET, PE) and prevalent contaminants including heavy metals (Cr, Cu, Ni, Pb), polycyclic aromatic hydrocarbons (PAHs, expressed as BaP equivalents), and plastic additives (DEHP, DBP, BPA)-to calculate individual Hazard Quotient (HQ), interaction-based Hazard Index (HIint), individual Incremental Lifetime Cancer Risk (ILCR), and interaction-based ILCR (ILCRint). The mean concentration of MPs in aqueous media was determined to be 2.19 mg/L (95 % CI), and Chronic Daily Intake (CDI) values were derived from particle counts converted to mass using polymer-specific densities. Reference Dose (RfD) values were calculated using the Weight of Evidence (WoE) approach, which integrates findings from rodent toxicity studies, identifying PP and PS as having low RfD values 25 × 10⁻⁴ mg/kg bw/day and 8 × 10⁻⁴ mg/kg bw/day, respectively. HQ-based toxicity rankings indicated the order of risk as PP > PS > PE > PET. Findings revealed a pronounced HIint of 18.646 × 10³ and 16.649 × 10⁶ at the 50th and 90th percentiles in children, underscoring significant synergistic effects from combined exposure to MPs and leached plastic additives. Co-contaminant scenarios further escalated health risks, with HI values reaching 52.236 in the presence of heavy metals and 53.141 with PAHs. The maximum allowable MP concentration, considering additive leaching, was estimated at 0.011 mg/L. This research highlights the need for firstly understanding the transformations of microplastic in the aquatic medium along with co-contaminants and framing regulatory measures and improved monitoring to protect human health from the growing threat of microplastic pollution. By integrating exposure modeling, dose-response assessment, and Monte Carlo simulations, the study delivers a robust framework for environmental health guidelines. It emphasizes the complex, multifaceted risks MPs pose and their associated contaminants, calling for innovative solutions to safeguard public health against this pervasive environmental challenge.
Collapse
Affiliation(s)
- Swathi Priya P
- Department of Civil Engineering, Indian Institute of Technology Madras, India
| | - Parsai Tanushree
- Department of Civil Engineering, Indian Institute of Technology Madras, India.
| |
Collapse
|
41
|
Chang YH, Chong WWF, Liew CS, Wong KY, Tan HY, Woon KS, Tan JP, Mong GR. Unveiling the energy dynamics of plastic and sludge co-pyrolysis: A review and bibliometric exploration on catalysts and bioenergy generation potential. JOURNAL OF ANALYTICAL AND APPLIED PYROLYSIS 2025; 186:106885. [DOI: 10.1016/j.jaap.2024.106885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
42
|
Liu J, Zheng L. Microplastic migration and transformation pathways and exposure health risks. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 368:125700. [PMID: 39824338 DOI: 10.1016/j.envpol.2025.125700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 01/11/2025] [Accepted: 01/14/2025] [Indexed: 01/20/2025]
Abstract
Plastics play a crucial role in modern life, but improper use and disposal have resulted in microplastics becoming widespread in the environment, raising significant concerns about both the environment and human health. Extensive research has explored the transformation mechanisms, bioaccumulation, ecological impacts, and health risks associated with microplastics. The present review first analyzes the migration, transformation, and degradation pathways of microplastics on a global scale, and then synthesizes current knowledge on the types, sources, and migration pathways of microplastics in soil, atmosphere, and aquatic environments, emphasizing transformation mechanisms like photo-aging and microbial degradation, and detailing their ecological and human health impacts. Additionally, this review examines gaps in current research and identifies critical areas needing further study, such as key control points in microplastic degradation processes and the mechanisms underlying health risks to populations. The aim is to provide a comprehensive reference for advancing microplastic pollution control, ecological protection efforts, and health risk assessment frameworks.
Collapse
Affiliation(s)
- Jianfu Liu
- Department of Environmental Science and Engineering, Xiamen University of Technology, Xiamen, Fujian, 361024, China; Laboratory of Environmental Biotechnology, Xiamen University of Technology, Xiamen, Fujian, 361024, China
| | - Liang Zheng
- Department of Pathology and Laboratory Medicine, The University of Kansas Medical Center, Kansas City, KS, 66160, USA.
| |
Collapse
|
43
|
Qiu Y, Mintenig S, Barchiesi M, Koelmans AA. Using artificial intelligence tools for data quality evaluation in the context of microplastic human health risk assessments. ENVIRONMENT INTERNATIONAL 2025; 197:109341. [PMID: 39987688 DOI: 10.1016/j.envint.2025.109341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 02/05/2025] [Accepted: 02/17/2025] [Indexed: 02/25/2025]
Abstract
Concerns about the negative impacts of microplastics on human health are increasing in society, while exposure and risk assessments require high-quality, reliable data. Although quality assurance and -control (QA/QC) frameworks exist to evaluate the reliability of data for these purposes, manually assessing studies is too time-consuming and prone to inconsistencies due to semantic ambiguities and evaluator bias. The rapid growth of microplastic studies makes manually screening relevant data practically unfeasible. This study explores the potential of artificial intelligence (AI), specifically large language models (LLMs) such as OpenAI's ChatGPT and Google's Gemini, to streamline and standardize the QA/QC screening of data in microplastics research. We developed specific prompts based on previously published QA/QC criteria for the analysis of microplastics in drinking water and its sources, and used these to instruct AI tools to evaluate 73 studies published between 2011 and 2024. Our approach demonstrated the effectiveness of AI in extracting relevant information, interpreting the reliability of studies, and replicating human assessments. The findings indicate that AI-assisted assessments show promise in improving speed, consistency and applicability in QA/QC tasks, as well as in ranking studies or datasets based on their suitability for exposure and risk assessments. This groundbreaking application of LLMs in the environmental sciences suggests that AI can play a vital role in harmonizing microplastics risk assessments within regulatory frameworks and demonstrates how to meet the demands of an increasingly data-intensive application domain.
Collapse
Affiliation(s)
- Yanning Qiu
- Aquatic Ecology and Water Quality Management Group, Wageningen University and Research, P.O. Box 47 6700 AA Wageningen, the Netherlands.
| | - Svenja Mintenig
- Aquatic Ecology and Water Quality Management Group, Wageningen University and Research, P.O. Box 47 6700 AA Wageningen, the Netherlands
| | - Margherita Barchiesi
- Aquatic Ecology and Water Quality Management Group, Wageningen University and Research, P.O. Box 47 6700 AA Wageningen, the Netherlands
| | - Albert A Koelmans
- Aquatic Ecology and Water Quality Management Group, Wageningen University and Research, P.O. Box 47 6700 AA Wageningen, the Netherlands
| |
Collapse
|
44
|
Liang B, Huang X, Li Z, Huang Y, Deng Y, Chen X, Zhong Y, Yang X, Feng Y, Bai R, Fan B, Xian H, Li H, Tang S, Huang Z. Polystyrene nanoplastics trigger ferroptosis in Nrf2-deficient gut via ether phospholipid accumulation. ENVIRONMENT INTERNATIONAL 2025; 197:109367. [PMID: 40080957 DOI: 10.1016/j.envint.2025.109367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 03/02/2025] [Accepted: 03/03/2025] [Indexed: 03/15/2025]
Abstract
The widespread environmental presence of nanoplastics (NPs) raises significant concerns about their health impacts, particularly on the gastrointestinal system, as NPs are primarily ingested. While previous studies have linked NP-induced intestinal toxicity to oxidative stress and reactive oxygen species (ROS) accumulation, the specific mechanisms of cell death remain unclear. Here, we showed that environmentally relevant concentrations of polystyrene nanoplastics (PS-NPs) induced ferroptosis, a form of lipid peroxidation-driven cell death, in intestinal epithelial cells. Using intestinal epithelial-specific Nrf2-deficient mice (Nrf2fl/fl-VilCre+) and human intestinal epithelial Caco-2 cells, we demonstrated that Nrf2, a key oxidative stress regulator, play a protective role against PS-NP-induced ferroptosis. PS-NP exposure disrupted ether phospholipid metabolism, leading to the accumulation of polyunsaturated fatty acid-ether phospholipids and heightened lipid peroxidation in the intestines of Nrf2fl/fl-VilCre+ mice. This accumulation increased the susceptibility of intestinal epithelial cells to ferroptosis. Additionally, a high-fat diet further exacerbated this effect, suggesting that individuals with reduced NRF2 activity and poor dietary habits may be especially vulnerable to PS-NP-induced intestinal damage. Our findings offered new insights into the molecular mechanisms of NP-induced intestinal toxicity and underscored the health risks posed by environmental PS-NP exposure, particularly in populations with compromised antioxidant defenses.
Collapse
Affiliation(s)
- Boxuan Liang
- National Medical Products Administration (NMPA) Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Xiyun Huang
- National Medical Products Administration (NMPA) Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Zhiming Li
- National Medical Products Administration (NMPA) Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Yuji Huang
- National Medical Products Administration (NMPA) Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China; Department of Cardiovascular Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yanhong Deng
- National Medical Products Administration (NMPA) Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Xiaoqing Chen
- National Medical Products Administration (NMPA) Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Yizhou Zhong
- National Medical Products Administration (NMPA) Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China; Department of Cardiovascular Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Xiaohong Yang
- National Medical Products Administration (NMPA) Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Yu Feng
- National Medical Products Administration (NMPA) Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Ruobing Bai
- National Medical Products Administration (NMPA) Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Bingchi Fan
- National Medical Products Administration (NMPA) Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Hongyi Xian
- National Medical Products Administration (NMPA) Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Hao Li
- National Medical Products Administration (NMPA) Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Shiyue Tang
- National Medical Products Administration (NMPA) Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Zhenlie Huang
- National Medical Products Administration (NMPA) Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China; Department of Cardiovascular Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
45
|
Su Z, Kong R, Huang C, Wang K, Liu C, Gu X, Wang HL. Exposure to polystyrene nanoplastics causes anxiety and depressive-like behavior and down-regulates EAAT2 expression in mice. Arch Toxicol 2025:10.1007/s00204-025-04002-6. [PMID: 40019525 DOI: 10.1007/s00204-025-04002-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Accepted: 02/19/2025] [Indexed: 03/01/2025]
Abstract
Microplastics exposure can induce brain dysfunction like cognitive impairment, Parkinson's disease, and autism spectrum disorders. In this study, we aimed to investigate the effects of Polystyrene nanoplastics (NPS) on anxiety and depression in mice. First, Polystyrene nanoplastics (NPS) (10 mg/kg) were administered orally daily for two months starting at PND 21. Subsequently, behavioral tests about anxiety and depression were conducted, including the open field test, the elevated plus maze, the forced swimming test, and the tail suspension test. The results showed that NPS induced anxiety and depression-like behaviors in mice. The mPFC played a pivotal role in the etiology of anxiety and depression, in which nanoplastics led to impaired synaptic transmission and reduced neuronal activity in vivo in mPFC. Furthermore, the astrocyte marker GFAP was abnormally increased as observed in mPFC. The abnormal activation of astrocytes results in impaired glutamate recycling through decreasing the expression of the glutamate transporter protein EAAT2 after NPS exposure. In order to ascertain the function of EAAT2, the EAAT2 activator (LDN-212320) was employed to stimulate the expression of EAAT2. Following the activation of EAAT2, synaptic transmission, and anxiety and depressive behavior were rescued in the mice. Polystyrene nanoplastics induce anxiety and depressive-like behavior in mice possibly inhibiting astrocyte EAAT2 expression. Specific activation EAAT2 of astrocytes rescue anxiety and depressive behavior in nanoplastics exposed mice.
Collapse
Affiliation(s)
- Ziyang Su
- Engineering Research Center of Bio-Process, Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Baohe District, No. 193 of Tunxi Road, 230009, Hefei, Anhui, People's Republic of China
- School of Food and Biological Engineering, Hefei University of Technology, No 485 Danxia Road, Hefei, Anhui, 230601, People's Republic of China
- Anhui Provincial International Science and Technology Cooperation Base for Major Metabolic Diseases and Nutritional Interventions, School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Rui Kong
- Engineering Research Center of Bio-Process, Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Baohe District, No. 193 of Tunxi Road, 230009, Hefei, Anhui, People's Republic of China
- School of Food and Biological Engineering, Hefei University of Technology, No 485 Danxia Road, Hefei, Anhui, 230601, People's Republic of China
- Anhui Provincial International Science and Technology Cooperation Base for Major Metabolic Diseases and Nutritional Interventions, School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Chengqing Huang
- Engineering Research Center of Bio-Process, Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Baohe District, No. 193 of Tunxi Road, 230009, Hefei, Anhui, People's Republic of China
- School of Food and Biological Engineering, Hefei University of Technology, No 485 Danxia Road, Hefei, Anhui, 230601, People's Republic of China
- Anhui Provincial International Science and Technology Cooperation Base for Major Metabolic Diseases and Nutritional Interventions, School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Kun Wang
- Engineering Research Center of Bio-Process, Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Baohe District, No. 193 of Tunxi Road, 230009, Hefei, Anhui, People's Republic of China
- School of Food and Biological Engineering, Hefei University of Technology, No 485 Danxia Road, Hefei, Anhui, 230601, People's Republic of China
- Anhui Provincial International Science and Technology Cooperation Base for Major Metabolic Diseases and Nutritional Interventions, School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Chenhao Liu
- Engineering Research Center of Bio-Process, Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Baohe District, No. 193 of Tunxi Road, 230009, Hefei, Anhui, People's Republic of China
- School of Food and Biological Engineering, Hefei University of Technology, No 485 Danxia Road, Hefei, Anhui, 230601, People's Republic of China
- Anhui Provincial International Science and Technology Cooperation Base for Major Metabolic Diseases and Nutritional Interventions, School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Xiaozhen Gu
- Engineering Research Center of Bio-Process, Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Baohe District, No. 193 of Tunxi Road, 230009, Hefei, Anhui, People's Republic of China
- School of Food and Biological Engineering, Hefei University of Technology, No 485 Danxia Road, Hefei, Anhui, 230601, People's Republic of China
- Anhui Provincial International Science and Technology Cooperation Base for Major Metabolic Diseases and Nutritional Interventions, School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Hui-Li Wang
- Engineering Research Center of Bio-Process, Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Baohe District, No. 193 of Tunxi Road, 230009, Hefei, Anhui, People's Republic of China.
- School of Food and Biological Engineering, Hefei University of Technology, No 485 Danxia Road, Hefei, Anhui, 230601, People's Republic of China.
- Anhui Provincial International Science and Technology Cooperation Base for Major Metabolic Diseases and Nutritional Interventions, School of Food and Biological Engineering, Hefei University of Technology, Hefei, China.
| |
Collapse
|
46
|
Ayassamy P. Ocean plastic pollution: a human and biodiversity loop. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2025; 47:91. [PMID: 40014189 DOI: 10.1007/s10653-025-02373-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Accepted: 01/21/2025] [Indexed: 02/28/2025]
Abstract
This study offers an updated analysis of the effects of ocean plastic accumulation on human health and biodiversity within the food chain, covering the period from 2018 to 2023. Through a comprehensive review of relevant literature, a framework has been developed to visually illustrate the progression of plastics through the food chain. This framework emphasizes the intricate connections among four key elements: humans, plastics, biodiversity, and the food chain. By examining the cycle of challenges encountered during the phases of production, consumption, and disposal, the research reveals how these stages are interrelated. This perspective not only delineates the complexities involved but also identifies potential solutions, particularly by incorporating circular economy principles. Consequently, the study highlights the importance of understanding the impact of plastics on the food chain while proposing strategies grounded in circular economy concepts to mitigate plastic pollution throughout the three stages.
Collapse
Affiliation(s)
- Prisca Ayassamy
- Department of Construction Engineering, École Technologie Supérieure (ETS), 1100 Notre-Dame St W, Montreal, QC, H3C 1K3, Canada.
- Department of Management, Université Laval, 2325 Rue de l'Université, Québec, QC, G1V 0A6, Canada.
| |
Collapse
|
47
|
Tafazoli S, Shuster DB, Shahrokhinia A, Rijal S, Ruhamya DM, Dubray KA, Morefield DJ, Reuther JF. Cationic Nanoparticle Networks (CNNs) with Remarkably Efficient, Simultaneous Adsorption of Microplastics and PFAS. ACS APPLIED MATERIALS & INTERFACES 2025; 17:10732-10744. [PMID: 39927791 PMCID: PMC11843541 DOI: 10.1021/acsami.4c21249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 01/29/2025] [Accepted: 02/03/2025] [Indexed: 02/11/2025]
Abstract
Of the past decade, micro/nanoplastics (MP/NP) and per- and polyfluoroalkyl substances (PFAS) have become two of the most pervasive persistent organic pollutants leading to significant accumulation within waterways. Various sorbent materials have been evaluated for PFAS and MP/NP removal, but their simultaneous removal has rarely been explored. Herein, we report a library of polymer-based, cationic nanoparticle networks (CNN) with systematic variation in surface charge density, polymer molecular weight, and nanoparticle size for the removal of anionic MP/NP and PFAS from aqueous solutions. These materials are synthesized in three, one-pot steps starting with polymerization-induced self-assembly (PISA) followed by rapid photocuring and quaternary ammonium salt formation resulting in 3D networks consisting solely of cationic polymer nanoparticles. Our best performing CNN material demonstrated record-high MP removal capacities of Qmax = 1865 mg/g and KF = 58.0 (mg/g)(L/mg)1/n based on Langmuir and Freundlich isotherm model estimations, respectively. Furthermore, the CNN materials demonstrated efficient removal of NPs and MPs in complex water media, such as in seawater and at different pH values, demonstrating the overall material applicability. Finally, simultaneous and efficient removal of MPs and perfluorooctanoic acid (PFOA) was accomplished with similar Qmax (MP) = 478.4 mg/g and Qmax (PFOA) = 134.6 mg/g allowing for dual use.
Collapse
Affiliation(s)
- Shayesteh Tafazoli
- Department
of Chemistry, University of Massachusetts
Lowell, Lowell, Massachusetts 01854, United States
| | - Dylan B. Shuster
- Department
of Chemistry, University of Massachusetts
Lowell, Lowell, Massachusetts 01854, United States
| | - Ali Shahrokhinia
- Department
of Chemistry, University of Massachusetts
Lowell, Lowell, Massachusetts 01854, United States
- BASF
Corporation, AMIC, DZ3, 1609 Biddle Avenue, Wyandotte, Michigan 48192, United States
| | - Sahaj Rijal
- Department
of Chemistry, University of Massachusetts
Lowell, Lowell, Massachusetts 01854, United States
| | - Dorcas M. Ruhamya
- Department
of Chemistry, University of Massachusetts
Lowell, Lowell, Massachusetts 01854, United States
| | - Kamryn A. Dubray
- Department
of Chemistry, University of Massachusetts
Lowell, Lowell, Massachusetts 01854, United States
| | - David J. Morefield
- Department
of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - James F. Reuther
- Department
of Chemistry, University of Massachusetts
Lowell, Lowell, Massachusetts 01854, United States
| |
Collapse
|
48
|
da Silva Antunes JC, Sobral P, Branco V, Martins M. Uncovering layer by layer the risk of nanoplastics to the environment and human health. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2025; 28:63-121. [PMID: 39670667 DOI: 10.1080/10937404.2024.2424156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
Nanoplastics (NPs), defined as plastic particles with dimensions less than 100 nm, have emerged as a persistent environmental contaminant with potential risk to both environment and human health. Nanoplastics might translocate across biological barriers and accumulate in vital organs, leading to inflammatory responses, oxidative stress, and genotoxicity, already reported in several organisms. Disruptions to cellular functions, hormonal balance, and immune responses were also linked to NPs exposure in in vitro assays. Further, NPs have been found to adsorb other pollutants, such as persistent organic pollutants (POPs), and leach additives potentially amplifying their advere impacts, increasing the threat to organisms greater than NPs alone. However, NPs toxic effects remain largely unexplored, requiring further research to elucidate potential risks to human health, especially their accumulation, degradation, migration, interactions with the biological systems and long-term consequences of chronic exposure to these compounds. This review provides an overview of the current state-of-art regarding NPs interactions with environmental pollutants and with biological mechanisms and toxicity within cells.
Collapse
Affiliation(s)
- Joana Cepeda da Silva Antunes
- MARE-NOVA - Marine and Environmental Sciences Centre & ARNET - Aquatic Research Network Associated Laboratory, Department of Sciences and Environmental Engineering, NOVA School of Science and Technology, NOVA University of Lisbon, Caparica, Portugal
| | - Paula Sobral
- MARE-NOVA - Marine and Environmental Sciences Centre & ARNET - Aquatic Research Network Associated Laboratory, Department of Sciences and Environmental Engineering, NOVA School of Science and Technology, NOVA University of Lisbon, Caparica, Portugal
| | - Vasco Branco
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisboa, Portugal
| | - Marta Martins
- MARE-NOVA - Marine and Environmental Sciences Centre & ARNET - Aquatic Research Network Associated Laboratory, Department of Sciences and Environmental Engineering, NOVA School of Science and Technology, NOVA University of Lisbon, Caparica, Portugal
| |
Collapse
|
49
|
Xiao C, Zhou J, Xiong W, Ye X. The coexistence characteristics of microplastics and heavy metals in rhizomes of traditional Chinese medicine in mulch planting area. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2025; 47:74. [PMID: 39937393 DOI: 10.1007/s10653-025-02393-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 02/05/2025] [Indexed: 02/13/2025]
Abstract
Rhizomatous traditional Chinese medicines (RTCMs) are widely crushed into powder and swallowed directly as medicine and food or health products to treat various diseases; however, they may contain toxic microplastics (MPs) and heavy metals. Currently, there are no reports on the detection of MPs and MP-heavy metal synergies in RTCMs. In this study, we selected eight representative RTCMs to investigate the abundance, types, sizes, and polymers of MP and heavy metals and to assess the level of contamination of MPs and synergies between MPs and heavy metals in RTCMs. The abundance of MPs in different RTCM ranged from 20.83 to 43.65 items/g. The dominant type was fragment (95.43%), and the dominant particle size was < 0.5 mm (73.72%) in MPs. Polyurethane (PU) (29.21%) and acrylics (ACR 13.53%) were the dominant polymers of MP. MP polymers showed obvious correlations with type and particle size: PU was enriched in 0-50-mm and 100-300-mm fragments, whereas ethylene vinyl acetate and ACR were enriched in 0-30-mm fibers. The heavy metals arsenic (As), lead (Pb), and chromium (Cr) were found to be more susceptible to synergistic contamination with MPs in RTCMs compared to other heavy metals. The estimated daily intake (EDI) of the MPs and heavy metals for RG (Rehmannia glutinosa) and RAY (Rhizoma atractylodis) were higher than others. The results showed that MP pollution is common in RTCMs and carries the potential risk of heavy metal or MP poisoning in humans who consume RTCMs.
Collapse
Affiliation(s)
- Cong Xiao
- School of Civil Engineering, Architecture and Enivironment, Hubei University of Technology, Wuhan, 430068, China.
- Hubei Key Laboratory of Environmental Soil and Ecological Restoration for River-Lakes, Wuhan, 430068, China.
| | - Jiabin Zhou
- School of Civil Engineering, Architecture and Enivironment, Hubei University of Technology, Wuhan, 430068, China
| | - Wen Xiong
- School of Civil Engineering, Architecture and Enivironment, Hubei University of Technology, Wuhan, 430068, China
- Hubei Key Laboratory of Environmental Soil and Ecological Restoration for River-Lakes, Wuhan, 430068, China
| | - Xiaochuan Ye
- Hubei Key Laboratory of Resources and Chemistry of Chinese Medicine, School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China
| |
Collapse
|
50
|
Chi J, Patterson JS, Jin Y, Kim KJ, Lalime N, Hawley D, Lewis F, Li L, Wang X, Campen MJ, Cui JY, Gu H. Metabolic Reprogramming in Gut Microbiota Exposed to Polystyrene Microplastics. Biomedicines 2025; 13:446. [PMID: 40002859 PMCID: PMC11853289 DOI: 10.3390/biomedicines13020446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 01/26/2025] [Accepted: 02/08/2025] [Indexed: 02/27/2025] Open
Abstract
Background: Microplastics (MPs) are small plastic fragments with diameters less than 5 mm in size and are prevalent in everyday essentials and consumables. Large global plastic production has now led to a flooding of MPs in our natural environment. Due to their detrimental impacts on the planet's ecosystems and potentially our health, MPs have emerged as a significant public health concern. In this pilot study, we hypothesize that MPs exposure will negatively affect gut microbiota composition and function, in which metabolic reprogramming plays an important role. Methods: Using in vitro experiments, three bacterial strains (Escherichia coli MG1655, Nissle 1917, and Lactobacillus rhamnosus) were selected to investigate the impacts of MPs exposure. The bacterial strains were individually cultured in an anaerobic chamber and exposed to 1 µm polystyrene MPs at various concentrations (0, 10, 20, 50, 100, and 500 µg/mL) in the culture medium. Results: MPs exposure reduced the growth of all three bacterial strains in a dose-dependent manner. Liquid chromatography mass spectrometry (LC-MS)-based untargeted metabolomics revealed significant differences in multiple metabolic pathways, such as sulfur metabolism and amino sugar and nucleotide sugar metabolism. In addition, we extracted gut microbiota from C57BL/6 mice, and 16S rRNA sequencing results showed a significant upregulation of Lactobacillales and a significant reduction in Erysipelotrichales due to MPs exposure. Furthermore, targeted and untargeted metabolomics corroborated the in vitro results and revealed alterations in microbial tryptophan metabolism and energy producing pathways, such as glycolysis/gluconeogenesis and the pentose phosphate pathway. Conclusions: These findings provide evidence that MPs exposure causes comprehensive changes to healthy gut microbiota, which may also provide insights into the mechanistic effects of MPs exposure in humans.
Collapse
Affiliation(s)
- Jinhua Chi
- College of Health Solutions, Arizona State University, Phoenix, AZ 85004, USA; (J.C.); (J.S.P.); (L.L.)
- Center for Translational Science, Florida International University, Port St. Lucie, FL 34987, USA;
| | - Jeffrey S. Patterson
- College of Health Solutions, Arizona State University, Phoenix, AZ 85004, USA; (J.C.); (J.S.P.); (L.L.)
| | - Yan Jin
- Center for Translational Science, Florida International University, Port St. Lucie, FL 34987, USA;
| | - Kyle Joohyung Kim
- Department of Environmental & Occupational Health Sciences, University of Washington, Seattle, WA 98195, USA; (K.J.K.); (J.Y.C.)
| | - Nicole Lalime
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ 85287, USA;
| | - Daniella Hawley
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA; (D.H.); (X.W.)
| | - Freeman Lewis
- Environmental Health Sciences, Florida International University, Miami, FL 33199, USA;
| | - Lingjun Li
- College of Health Solutions, Arizona State University, Phoenix, AZ 85004, USA; (J.C.); (J.S.P.); (L.L.)
| | - Xuan Wang
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA; (D.H.); (X.W.)
| | - Matthew J. Campen
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences, Albuquerque, NM 87106, USA;
| | - Julia Yue Cui
- Department of Environmental & Occupational Health Sciences, University of Washington, Seattle, WA 98195, USA; (K.J.K.); (J.Y.C.)
| | - Haiwei Gu
- College of Health Solutions, Arizona State University, Phoenix, AZ 85004, USA; (J.C.); (J.S.P.); (L.L.)
- Center for Translational Science, Florida International University, Port St. Lucie, FL 34987, USA;
| |
Collapse
|