1
|
Dhar N, Anchieta A, Arnold I, Eriksen RL, Subbarao KV, Raina R, Klosterman SJ. Contrasting Roles of Plant GATA21/22 Transcriptional Regulators in Defense Against Fungal and Bacterial Pathogens. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2025:MPMI08240095SC. [PMID: 39928575 DOI: 10.1094/mpmi-08-24-0095-sc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/12/2025]
Abstract
The GATA family of transcriptional regulators is broadly conserved between plant and animal kingdoms. Here, we report that some of the GATA genes are suppressed in Arabidopsis during fungal and bacterial infections. However, strikingly, GATA21 and GATA22 encode positive regulators of defense against necrotrophic fungal pathogens while acting antagonistically against hemibiotrophic bacterial pathogens. Following infection by Verticillium dahliae, the gata21 and gata22 mutants exhibit defective growth in bolt length and in total silique number. These results suggest that GATA21 and GATA22 regulate growth and reproduction in Arabidopsis both during normal growth and in response to infection by pathogens. Because the GATA family is conserved, our findings have broad implications for the role of GATA transcription regulators in integrating signals from biotic interactions with those for growth and development. [Formula: see text] Copyright © 2025 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Nikhilesh Dhar
- Department of Biology, Syracuse University, Syracuse, NY 13210, U.S.A
- Department of Plant Pathology, University of California-Davis, Davis, CA 95616, U.S.A
| | - Amy Anchieta
- Sam Farr United States Crop Improvement and Protection Research Center, United States Department of Agriculture, Agricultural Research Service, Salinas, CA 93905, U.S.A
| | - Isaac Arnold
- Department of Biology, Syracuse University, Syracuse, NY 13210, U.S.A
| | - Renée L Eriksen
- Sam Farr United States Crop Improvement and Protection Research Center, United States Department of Agriculture, Agricultural Research Service, Salinas, CA 93905, U.S.A
| | - Krishna V Subbarao
- Department of Plant Pathology, University of California-Davis, Davis, CA 95616, U.S.A
| | - Ramesh Raina
- Department of Biology, Syracuse University, Syracuse, NY 13210, U.S.A
| | - Steven J Klosterman
- Sam Farr United States Crop Improvement and Protection Research Center, United States Department of Agriculture, Agricultural Research Service, Salinas, CA 93905, U.S.A
| |
Collapse
|
2
|
Khan S, Khan AA. Hypoparathyroidism: diagnosis, management and emerging therapies. Nat Rev Endocrinol 2025; 21:360-374. [PMID: 39905273 DOI: 10.1038/s41574-024-01075-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/29/2024] [Indexed: 02/06/2025]
Abstract
Hypoparathyroidism is characterized by inadequate parathyroid hormone (PTH) secretion or action and results in hypocalcaemia, and can lead to hyperphosphataemia and hypercalciuria. Most cases of hypoparathyroidism occur as a complication of surgery, with the remainder due to causes including autoimmune disease, genetic causes, infiltrative diseases, mineral deposition or due to abnormalities in serum levels of magnesium. Hypoparathyroidism can cause multisystem disease, with long-term complications resulting from ectopic calcification as well as renal complications with nephrocalcinosis, nephrolithiasis and renal impairment in addition to respiratory, cardiac or neurological manifestations. Conventional therapy consists of oral calcium salts and active vitamin D but it has limitations, including fluctuations in serum levels of calcium and a high pill burden, and can increase the risk of long-term complications. By contrast, PTH replacement therapy can effectively achieve normal serum levels of calcium, and lower serum levels of phosphate. The long-acting PTH analogue, palopegteriparatide, has been shown to normalize urine levels of calcium. In addition, PTH replacement therapy reduces the pill burden. Palopegteriparatide is also associated with improved quality of life in comparison to conventional therapy. This Review summarizes current recommendations regarding the pathophysiology, evaluation and management of hypoparathyroidism and also references the 2022 international hypoparathyroidism guidelines. Palopegteriparatide has now been approved as PTH replacement therapy for hypoparathyroidism. Emerging therapies will also be presented in this Review.
Collapse
Affiliation(s)
- Sarah Khan
- Trillium Health Partners, University of Toronto, Toronto, Ontario, Canada
| | | |
Collapse
|
3
|
Chen Y, Wan Y, Pei X, Wei Z, Wang T, Zhang J, Chen L. GATA3 differentially regulates the transcriptome via zinc finger 2-modulated phase separation. Cell Rep 2025; 44:115702. [PMID: 40372915 DOI: 10.1016/j.celrep.2025.115702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 02/28/2025] [Accepted: 04/24/2025] [Indexed: 05/17/2025] Open
Abstract
Phase separation (PS) underlies gene control by transcription factors. However, little is known about whether and how DNA-binding domains (DBDs) regulate the PS for transcription factors to differentially regulate the transcriptome. The transcription factor GATA3, a master immune regulator, is frequently mutated in breast cancer. Here, we report that GATA3 undergoes DBD-modulated PS to mediate the formation of chromatin condensates. We show that the DBD regulates the GATA3 PS through its zinc finger 2 (ZnF2) domain, which provides positive charges for multivalent electrostatic interactions mainly via two arginine amino acids, R329 and R330. Compared with breast-cancer-associated GATA3 without ZnF2-defective mutations, breast cancer GATA3 with ZnF2-defective mutations causes aberrant ZnF2-modulated PS and condensate formation to remodel the differentially regulated transcriptome, resulting in a favorable prognosis for patients and reduced tumor growth in mice. Therefore, GATA3 demonstrates a principle of how a transcription factor differentially regulates the transcriptome via DBD-modulated PS.
Collapse
Affiliation(s)
- Yatao Chen
- Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Affiliated Cancer Hospital of Nanjing Medical University, Nanjing 210009, China; Department of Biochemistry, School of Life Sciences, Nanjing Normal University, Nanjing 210023, China; Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou 310022, China
| | - Yajie Wan
- Department of Biochemistry, School of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Xiaoying Pei
- Department of Biochemistry, School of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Ziqi Wei
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou 310022, China
| | - Tan Wang
- Department of Biochemistry, School of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Jun Zhang
- Department of Biochemistry, School of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Liming Chen
- Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Affiliated Cancer Hospital of Nanjing Medical University, Nanjing 210009, China; Jiangsu Key Laboratory of Innovative Cancer Diagnosis & Therapeutics, Cancer Institute of Jiangsu Province, Nanjing 210009, China.
| |
Collapse
|
4
|
Alikarami F, Xie HM, Riedel SS, Goodrow HT, Barrett DR, Mahdavi L, Lenard A, Chen C, Yamauchi T, Danis E, Cao Z, Tran VL, Jung MM, Li Y, Huang H, Shi J, Tan K, Teachey DT, Bresnick EH, Neff TA, Bernt KM. GATA2 links stemness to chemotherapy resistance in acute myeloid leukemia. Blood 2025; 145:2179-2195. [PMID: 39841459 PMCID: PMC12105726 DOI: 10.1182/blood.2024025761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 12/03/2024] [Accepted: 12/19/2024] [Indexed: 01/23/2025] Open
Abstract
ABSTRACT Stemness-associated cell states are linked to chemotherapy resistance in acute myeloid leukemia (AML). We uncovered a direct mechanistic link between expression of the stem cell transcription factor GATA2 and drug resistance. The GATA-binding protein 2 (GATA2) plays a central role in blood stem cell generation and maintenance. We find substantial intrapatient and interpatient variability in GATA2 expression across samples from patients with AML. GATA2 expression varies by molecular subtype and has been linked to outcome. In a murine model, KMT2A-MLL3-driven AML originating from a stem cell or immature progenitor cell population has higher Gata2 expression and is more resistant to the standard AML chemotherapy agent doxorubicin. Deletion of Gata2 resulted in a more robust induction of p53 after exposure to doxorubicin. Chromatin immunoprecipitation sequencing, RNA sequencing, and functional studies revealed that GATA2 regulates the expression of RASSF4, a modulator of the p53 inhibitor MDM2 (mouse double minute 2). GATA2 and RASSF4 are anticorrelated in human cell lines and in bulk and single-cell expression data sets from patients with AML. Knockdown of Rassf4 in Gata2-low cells resulted in doxorubicin or nutlin-3 resistance. Conversely, overexpression of Rassf4 results in sensitization of cells expressing high levels of Gata2. Finally, doxorubicin and nutlin-3 are synergistic in Gata2-high murine AML and in samples from patients with AML. We discovered a previously unappreciated role for GATA2 in dampening p53-mediated apoptosis via transcriptional regulation of RASSF4, a modulator of MDM2. This role for GATA2 directly links the expression of a stemness-associated transcription factor to chemotherapy resistance.
Collapse
MESH Headings
- GATA2 Transcription Factor/genetics
- GATA2 Transcription Factor/metabolism
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/pathology
- Leukemia, Myeloid, Acute/metabolism
- Humans
- Drug Resistance, Neoplasm/genetics
- Animals
- Mice
- Doxorubicin/pharmacology
- Neoplastic Stem Cells/metabolism
- Neoplastic Stem Cells/pathology
- Tumor Suppressor Protein p53/metabolism
- Tumor Suppressor Protein p53/genetics
- Gene Expression Regulation, Leukemic
- Cell Line, Tumor
- Tumor Suppressor Proteins/genetics
- Tumor Suppressor Proteins/metabolism
- Proto-Oncogene Proteins c-mdm2/metabolism
Collapse
Affiliation(s)
- Fatemeh Alikarami
- Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA
- Division of Pediatric Oncology, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Hongbo M. Xie
- Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA
- Department of Biomedical and Health Informatics, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Simone S. Riedel
- Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA
- Division of Pediatric Oncology, Children's Hospital of Philadelphia, Philadelphia, PA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Haley T. Goodrow
- Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA
- Division of Pediatric Oncology, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Declan R. Barrett
- Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA
- Division of Pediatric Oncology, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Leila Mahdavi
- Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA
- Division of Pediatric Oncology, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Alexandra Lenard
- Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA
- Division of Pediatric Oncology, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Changya Chen
- Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA
- Division of Pediatric Oncology, Children's Hospital of Philadelphia, Philadelphia, PA
- Division of Experimental Hematology, State Key Laboratory, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Taylor Yamauchi
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Etienne Danis
- University of Colorado Cancer Center, University of Colorado Anschutz Medical Campus, Aurora, CO
- Department of Biomedical Informatics, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Zhendong Cao
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Vu L. Tran
- Wisconsin Blood Cancer Research Institute, Department of Cell and Regenerative Biology, Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI
| | - Mabel Minji Jung
- Wisconsin Blood Cancer Research Institute, Department of Cell and Regenerative Biology, Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI
| | - Yapeng Li
- Department of Immunology and Genomic Medicine, National Jewish Health, Denver, CO
| | - Hua Huang
- Department of Immunology and Genomic Medicine, National Jewish Health, Denver, CO
| | - Junwei Shi
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
- Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Kai Tan
- Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA
- Division of Pediatric Oncology, Children's Hospital of Philadelphia, Philadelphia, PA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA
- Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
- Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - David T. Teachey
- Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA
- Division of Pediatric Oncology, Children's Hospital of Philadelphia, Philadelphia, PA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Emery H. Bresnick
- Wisconsin Blood Cancer Research Institute, Department of Cell and Regenerative Biology, Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI
| | - Tobias A. Neff
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Kathrin M. Bernt
- Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA
- Division of Pediatric Oncology, Children's Hospital of Philadelphia, Philadelphia, PA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
5
|
Ver Heul AM, Mack M, Zamidar L, Tamari M, Yang TL, Trier AM, Kim DH, Janzen-Meza H, Van Dyken SJ, Hsieh CS, Karo JM, Sun JC, Kim BS. RAG suppresses group 2 innate lymphoid cells. eLife 2025; 13:RP98287. [PMID: 40326866 PMCID: PMC12055012 DOI: 10.7554/elife.98287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2025] Open
Abstract
Antigen specificity is the central trait distinguishing adaptive from innate immune function. Assembly of antigen-specific T cell and B cell receptors occurs through V(D)J recombination mediated by the Recombinase Activating Gene endonucleases RAG1 and RAG2 (collectively called RAG). In the absence of RAG, mature T and B cells do not develop and thus RAG is critically associated with adaptive immune function. In addition to adaptive T helper 2 (Th2) cells, group 2 innate lymphoid cells (ILC2s) contribute to type 2 immune responses by producing cytokines like Interleukin-5 (IL-5) and IL-13. Although it has been reported that RAG expression modulates the function of innate natural killer (NK) cells, whether other innate immune cells such as ILC2s are affected by RAG remains unclear. We find that in RAG-deficient mice, ILC2 populations expand and produce increased IL-5 and IL-13 at steady state and contribute to increased inflammation in atopic dermatitis (AD)-like disease. Furthermore, we show that RAG modulates ILC2 function in a cell-intrinsic manner independent of the absence or presence of adaptive T and B lymphocytes. Lastly, employing multiomic single cell analyses of RAG1 lineage-traced cells, we identify key transcriptional and epigenomic ILC2 functional programs that are suppressed by a history of RAG expression. Collectively, our data reveal a novel role for RAG in modulating innate type 2 immunity through suppression of ILC2s.
Collapse
Affiliation(s)
- Aaron M Ver Heul
- Division of Allergy and Immunology, Department of Medicine, Washington University School of MedicineSt. LouisUnited States
| | - Madison Mack
- Immunology and Inflammation Research Therapeutic Area, SanofiCambridgeUnited States
| | - Lydia Zamidar
- Kimberly and Eric J. Waldman Department of Dermatology, Icahn School of Medicine at Mount SinaiNew YorkUnited States
- Mark Lebwohl Center for Neuroinflammation and Sensation, Icahn School of Medicine at Mount SinaiNew YorkUnited States
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount SinaiNew YorkUnited States
- Friedman Brain Institute, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | - Masato Tamari
- Kimberly and Eric J. Waldman Department of Dermatology, Icahn School of Medicine at Mount SinaiNew YorkUnited States
- Mark Lebwohl Center for Neuroinflammation and Sensation, Icahn School of Medicine at Mount SinaiNew YorkUnited States
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount SinaiNew YorkUnited States
- Friedman Brain Institute, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | - Ting-Lin Yang
- Division of Dermatology, Department of Medicine, Washington University School of MedicineSt. LouisUnited States
| | - Anna M Trier
- Division of Dermatology, Department of Medicine, Washington University School of MedicineSt. LouisUnited States
| | - Do-Hyun Kim
- Department of Pathology and Immunology, Washington University School of MedicineSt. LouisUnited States
- Department of Life Science, College of Natural Sciences, Hanyang UniversitySeoulRepublic of Korea
| | - Hannah Janzen-Meza
- Division of Allergy and Immunology, Department of Medicine, Washington University School of MedicineSt. LouisUnited States
| | - Steven J Van Dyken
- Department of Pathology and Immunology, Washington University School of MedicineSt. LouisUnited States
| | - Chyi-Song Hsieh
- Division of Rheumatology, Department of Medicine, Washington University School of MedicineSt. LouisUnited States
| | - Jenny M Karo
- Immunology and Microbial Pathogenesis Program, Graduate School of Medical Sciences, Weill Cornell Medical CollegeNew YorkUnited States
- Immunology Program, Memorial Sloan Kettering Cancer CenterNew YorkUnited States
| | - Joseph C Sun
- Immunology and Microbial Pathogenesis Program, Graduate School of Medical Sciences, Weill Cornell Medical CollegeNew YorkUnited States
- Immunology Program, Memorial Sloan Kettering Cancer CenterNew YorkUnited States
| | - Brian S Kim
- Kimberly and Eric J. Waldman Department of Dermatology, Icahn School of Medicine at Mount SinaiNew YorkUnited States
- Mark Lebwohl Center for Neuroinflammation and Sensation, Icahn School of Medicine at Mount SinaiNew YorkUnited States
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount SinaiNew YorkUnited States
- Friedman Brain Institute, Icahn School of Medicine at Mount SinaiNew YorkUnited States
- Allen Discovery Center for Neuroimmune Interactions, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| |
Collapse
|
6
|
Hernandez-Castro LE, Cook EAJ, Matika O, Mengele IJ, Motto SK, Bwatota SF, Zirra-Shallangwa B, Pong-Wong R, Prendergast J, Mrode R, Toye PG, Komwihangilo DM, Lyatuu E, Karani BE, Nangekhe G, Mwai AO, Shirima GM, Bronsvoort BMDC. Genetic estimates and genome-wide association studies of antibody response in Tanzanian dairy cattle. Front Genet 2025; 16:1497355. [PMID: 40342962 PMCID: PMC12060032 DOI: 10.3389/fgene.2025.1497355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 03/03/2025] [Indexed: 05/11/2025] Open
Abstract
Identifying the genetic determinants of host defence against infectious pathogens is central to enhancing disease resilience and therapeutic efficacy in livestock. Here, we investigated immune response heritability to important infectious diseases affecting smallholder dairy cattle using variance component analysis. We also conducted genome-wide association studies (GWAS) to identify genetic variants that may help understand the underlying biology of these health traits. By assessing 668,911 single-nucleotide polymorphisms (SNPs) genotyped in 2,045 crossbred cattle sampled from six regions of Tanzania, we identified high levels of interregional admixture and European introgression, which may increase infectious disease susceptibility relative to indigenous breeds. Heritability estimates were low to moderate, ranging from 0.03 (SE ± 0.06) to 0.44 (SE ± 0.07), depending on the health trait. GWAS results revealed several loci associated with seropositivity to the viral diseases Rift Valley fever and bovine viral diarrhoea, the protozoan parasites Neospora caninum and Toxoplasma gondii, and the bacterial pathogens Brucella sp, Leptospira hardjo, and Coxiella burnetii. The identified quantitative trait loci mapped to genes involved in immune defence, tumour suppression, neurological processes, and cell exocytosis. We propose that our results provide a basis for future understanding of the cellular pathways contributing to general and taxon-specific infection responses, and for advancing selective breeding and therapeutic target design.
Collapse
Affiliation(s)
- Luis E. Hernandez-Castro
- Centre for Tropical Livestock Genetics and Health (CTLGH), Roslin Institute, University of Edinburgh, Roslin, United Kingdom
- The Roslin Institute and The Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Edinburgh, United Kingdom
| | - Elizabeth Anne Jessie Cook
- International Livestock Research Institute (ILRI), Nairobi, Kenya
- Centre for Tropical Livestock Genetics and Health (CTLGH), ILRI Kenya, Nairobi, Kenya
| | - Oswald Matika
- Centre for Tropical Livestock Genetics and Health (CTLGH), Roslin Institute, University of Edinburgh, Roslin, United Kingdom
- The Roslin Institute and The Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Edinburgh, United Kingdom
| | - Isaac Joseph Mengele
- Department of Global Health and Bio-Medical Sciences, School of Life Science and Bioengineering, The Nelson Mandela African Institution of Science and Technology, Arusha, Tanzania
- Tanzania Veterinary Laboratory Agency, Central Veterinary Laboratory, Dar es Salaam, Tanzania
| | - Shabani Kiyabo Motto
- Department of Global Health and Bio-Medical Sciences, School of Life Science and Bioengineering, The Nelson Mandela African Institution of Science and Technology, Arusha, Tanzania
- Tanzania Veterinary Laboratory Agency, Central Veterinary Laboratory, Dar es Salaam, Tanzania
| | - Shedrack Festo Bwatota
- Department of Global Health and Bio-Medical Sciences, School of Life Science and Bioengineering, The Nelson Mandela African Institution of Science and Technology, Arusha, Tanzania
| | - Bibiana Zirra-Shallangwa
- The Roslin Institute and The Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Edinburgh, United Kingdom
| | - Ricardo Pong-Wong
- The Roslin Institute and The Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Edinburgh, United Kingdom
| | - James Prendergast
- Centre for Tropical Livestock Genetics and Health (CTLGH), Roslin Institute, University of Edinburgh, Roslin, United Kingdom
- The Roslin Institute and The Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Edinburgh, United Kingdom
| | | | - Philip G. Toye
- International Livestock Research Institute (ILRI), Nairobi, Kenya
- Centre for Tropical Livestock Genetics and Health (CTLGH), ILRI Kenya, Nairobi, Kenya
| | | | - Eliamoni Lyatuu
- International Livestock Research Institute (ILRI), Dar es Salaam, Tanzania
| | - Benedict E. Karani
- International Livestock Research Institute (ILRI), Nairobi, Kenya
- Centre for Tropical Livestock Genetics and Health (CTLGH), ILRI Kenya, Nairobi, Kenya
| | - Getrude Nangekhe
- International Livestock Research Institute (ILRI), Nairobi, Kenya
- Centre for Tropical Livestock Genetics and Health (CTLGH), ILRI Kenya, Nairobi, Kenya
| | - Ally Okeyo Mwai
- International Livestock Research Institute (ILRI), Nairobi, Kenya
| | - Gabriel Mkilema Shirima
- Department of Global Health and Bio-Medical Sciences, School of Life Science and Bioengineering, The Nelson Mandela African Institution of Science and Technology, Arusha, Tanzania
| | - Barend Mark de Clare Bronsvoort
- Centre for Tropical Livestock Genetics and Health (CTLGH), Roslin Institute, University of Edinburgh, Roslin, United Kingdom
- The Roslin Institute and The Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
7
|
Liu J, Wu B, Wan S, Jin Y, Yang L, Wu M, Xing J, Zhang J, Chen X, Yu A. Upregulation of TRPS1 promotes proliferation, migration, and invasion in ovarian clear cell carcinoma and correlates with poor patient prognosis. J Ovarian Res 2025; 18:73. [PMID: 40197498 PMCID: PMC11974011 DOI: 10.1186/s13048-025-01603-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Accepted: 01/17/2025] [Indexed: 04/10/2025] Open
Abstract
OBJECTIVE Tricho-rhino-phalangeal syndrome-1 (TRPS1), an atypical GATA transcription factor, plays a critical role in diverse physiological and pathological processes and holds potential as a biomarker for diseases and targeted tumor therapies. This study explores TRPS1 expression in ovarian clear cell carcinoma (OCCC), its correlation with patient prognosis, and its involvement in OCCC pathogenesis. RESEARCH OBJECTIVES AND METHODS To investigate TRPS1 expression, we analyzed ovarian tissues from 50 OCCC patients and 25 normal tissues (from patients with uterine leiomyoma) via immunohistochemistry. Statistical methods, including Chi-square tests, Kaplan-Meier survival analysis, and Cox regression, were employed to evaluate the correlation between TRPS1 expression and clinicopathological parameters. In OCCC cell lines (TOV21G and ES-2), TRPS1 expression was quantified using qRT-PCR and Western blot. Functional studies were conducted by silencing TRPS1 in TOV21G cells with small interfering RNA and inducing overexpression in ES-2 cells using a plasmid. Cellular proliferation and migration were assessed through CCK-8, colony formation, and Transwell assays. Finally, Western blot analysis was performed to investigate the link between TRPS1 and EMT-related molecular pathways. RESULTS TRPS1 protein expression was significantly higher in OCCC tissues compared to normal tissues and was positively associated with lymph node metastasis and advanced clinical stage. High TRPS1 expression was linked to shorter overall and recurrence-free survival in OCCC patients. In vitro, TRPS1 knockdown suppressed cell proliferation, migration, and invasion, accompanied by reduced levels of invasion-promoting proteins (N-cadherin, MMP2, MMP9) and increased expression of the invasion-inhibiting protein E-cadherin. Conversely, TRPS1 overexpression promoted the expression of invasion-promoting proteins. CONCLUSIONS TRPS1 is overexpressed in OCCC and is associated with poor prognosis, serving as an independent predictor of patient outcomes. Its elevated expression enhances OCCC cell proliferation, migration, and invasion by regulating proteins involved in the epithelial-to-mesenchymal transition (EMT) pathway. These findings highlight TRPS1 as a critical player in OCCC pathogenesis and a potential biomarker and therapeutic target for disease management.
Collapse
Affiliation(s)
- Jingfang Liu
- Department of Gynecological Oncology, Hangzhou Institute of Medicine (HIM), Zhejiang Cancer Hospital, Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China
| | - Beier Wu
- Department of Gynecological Oncology, Hangzhou Institute of Medicine (HIM), Zhejiang Cancer Hospital, Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China
- Postgraduate Training Base Alliance of Wenzhou Medical University (Zhejiang Cancer Hospital), Hangzhou, Zhejiang, 310022, China
| | - Shihan Wan
- Department of Gynecological Oncology, Hangzhou Institute of Medicine (HIM), Zhejiang Cancer Hospital, Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China
- Postgraduate Training Base Alliance of Wenzhou Medical University (Zhejiang Cancer Hospital), Hangzhou, Zhejiang, 310022, China
| | - Yanlu Jin
- Department of Gynecological Oncology, Hangzhou Institute of Medicine (HIM), Zhejiang Cancer Hospital, Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China
| | - Li Yang
- Department of Gynecological Oncology, Hangzhou Institute of Medicine (HIM), Zhejiang Cancer Hospital, Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China
| | - Meijuan Wu
- Department of Gynecological Oncology, Hangzhou Institute of Medicine (HIM), Zhejiang Cancer Hospital, Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China
| | - Jie Xing
- Department of Gynecological Oncology, Hangzhou Institute of Medicine (HIM), Zhejiang Cancer Hospital, Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China
| | - Jiejie Zhang
- Department of Gynecological Oncology, Hangzhou Institute of Medicine (HIM), Zhejiang Cancer Hospital, Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China
| | - Xin Chen
- Department of Gynecological Oncology, Hangzhou Institute of Medicine (HIM), Zhejiang Cancer Hospital, Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China
| | - Aijun Yu
- Department of Gynecological Oncology, Hangzhou Institute of Medicine (HIM), Zhejiang Cancer Hospital, Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China.
- Department of Gynecological Oncology, Institute of Basic Medicine and Cancer (IBMC), Zhejiang Cancer Hospital, Chinese Academy of Sciences, Hangzhou, China.
| |
Collapse
|
8
|
Chow PCK, Bentley PJ. Development necessitates evolutionarily conserved factors. Sci Rep 2025; 15:9910. [PMID: 40121259 PMCID: PMC11929755 DOI: 10.1038/s41598-025-92541-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Accepted: 02/28/2025] [Indexed: 03/25/2025] Open
Abstract
Early-stage generalised transcription factors in biological development are often evolutionarily conserved across species. Here, we find for the first time that similar factors functionally emerge in an alternative medium of development. Through comprehensively analysing a Neural Cellular Automata (NCA) model of morphogenesis, we find multiple properties of the hidden units that are functionally analogous to early factors in biological development. We test the generalisation abilities of our model through transfer learning of other morphologies and find that developmental strategies learnt by the model are reused to grow new body forms by conserving its early generalised factors. Our paper therefore provides evidence that nature did not become locked into one arbitrary method of developing multicellular organisms: the use of early generalised factors as fundamental control mechanisms and the resulting necessity for evolutionary conservation of those factors may be fundamental to development, regardless of the details of how development is implemented.
Collapse
Affiliation(s)
- Paco C K Chow
- Department of Computer Science, University College London, WC1E 6BT, London, UK.
| | - Peter J Bentley
- Department of Computer Science, University College London, WC1E 6BT, London, UK
| |
Collapse
|
9
|
Ugay D, Batey RT, Wuttke DS. A Distinct Mechanism of RNA Recognition by the Transcription Factor GATA1. Biochemistry 2025; 64:1193-1198. [PMID: 39999571 PMCID: PMC11925050 DOI: 10.1021/acs.biochem.4c00818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 02/11/2025] [Accepted: 02/13/2025] [Indexed: 02/27/2025]
Abstract
Several human transcription factors (TFs) have been reported to directly bind RNA through noncanonical RNA-binding domains; however, most of these TFs remain to be further validated as bona fide RNA-binding proteins (RBPs). Our systematic analysis of RBP discovery data sets reveals a varied set of candidate TF-RBPs that encompass most TF families. These candidate RBPs include members of the GATA family that are essential factors in embryonic development. Investigation of the RNA-binding features of GATA1, a major hematopoietic TF, reveals robust sequence independent binding to RNAs in vitro. Moreover, RNA binding by GATA1 is competitive with DNA binding, which occurs through a shared binding surface spanning the DNA-binding domain and arginine-rich motif (ARM)-like domain. We show that the ARM-like domain contributes substantially to high-affinity DNA binding and electrostatically to plastic RNA recognition, suggesting that the separable RNA-binding domain assigned to the ARM-domain in GATA1 is an oversimplification of a more complex recognition network. These biochemical data demonstrate a unified integration of DNA- and RNA-binding surfaces within GATA1, whereby the ARM-like domain provides an electrostatic surface for RNA binding but does not fully dominate GATA1-RNA interactions, which may also apply to other TF-RBPs. This competitive DNA/RNA binding activity using overlapping nucleic acid binding regions points to the possibility of RNA-mediated regulation of the GATA1 function during hematopoiesis. Our study highlights the multifunctionality of DNA-binding domains in RNA recognition and supports the need for robust characterization of predicted noncanonical RNA-binding domains such as ARM-like domains.
Collapse
Affiliation(s)
- Daniella
A. Ugay
- Department of Biochemistry, 596 UCB, University of Colorado, Boulder, Colorado 80309, United States
| | - Robert T. Batey
- Department of Biochemistry, 596 UCB, University of Colorado, Boulder, Colorado 80309, United States
| | - Deborah S. Wuttke
- Department of Biochemistry, 596 UCB, University of Colorado, Boulder, Colorado 80309, United States
| |
Collapse
|
10
|
Ortega R, Martin-González A, Gutiérrez JC. Tetrahymena thermophila glutathione-S-transferase superfamily: an eco-paralogs gene network differentially responding to various environmental abiotic stressors and an update on this gene family in ciliates. Front Genet 2025; 16:1538168. [PMID: 40125531 PMCID: PMC11925944 DOI: 10.3389/fgene.2025.1538168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Accepted: 02/06/2025] [Indexed: 03/25/2025] Open
Abstract
Glutathione S-transferases constitute a superfamily of enzymes involved mainly, but not exclusively, in the detoxification of xenobiotic compounds that are considered environmental pollutants. In this work, an updated analysis of putative cytosolic glutathione S-transferases (cGST) from ciliate protozoa is performed although this analysis is mainly focused on Tetrahymena thermophila. Among ciliates, the genus Tetrahymena has the highest number (58 on average) of cGST genes. As in mammals, the Mu class of cGST is present in all analyzed ciliates and is the majority class in Tetrahymena species. After an analysis of the occurrence of GST domains in T. thermophila, out of the 54 GSTs previously considered to be Mu class, six of them have been discarded as they do not have recognizable GST domains. In addition, there is one GST species-specific and another GST-EF1G (elongation factor 1 gamma). A structural analysis of T. thermophila GSTs has shown a wide variety of β-sheets/α-helix patterns, one of the most abundant being the canonical thioredoxin-folding pattern. Within the categories of bZIP and C4 zinc finger transcription factors, potential binding sites for c-Jun and c-Fos are abundant (32% as average), along with GATA-1 (71% average) in the T. thermophila GST gene promoters. The alignment of all MAPEG (Membrane Associated Proteins involved in Eicosanoid and Glutathione metabolism) GST protein sequences from Tetrahymena species shows that this family is divided into two well-defined clans. The phylogenetic analysis of T. thermophila GSTs has shown that a cluster of 19 Mu-class GST genes are phylogenetic predecessors of members from the omega, theta and zeta classes. This means that the current GST phylogenetic model needs to be modified. Sixteen T. thermophila GST genes, together with two clusters including three genes each with very high identity, have been selected for qRT-PCR analysis under stress from eleven different environmental stressors. This analysis has revealed that there are GST genes that respond selectively and/or differentially to each stressor, independently of the GST class to which it belongs. Most of them respond to the two more toxic metal(loid)s used (Cd or As).
Collapse
Affiliation(s)
| | | | - Juan-Carlos Gutiérrez
- Department of Genetics, Physiology and Microbiology, Faculty of Biology, Complutense University of Madrid, Madrid, Spain
| |
Collapse
|
11
|
Uthamacumaran A. Cell Fate Dynamics Reconstruction Identifies TPT1 and PTPRZ1 Feedback Loops as Master Regulators of Differentiation in Pediatric Glioblastoma-Immune Cell Networks. Interdiscip Sci 2025; 17:59-85. [PMID: 39420135 DOI: 10.1007/s12539-024-00657-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 09/09/2024] [Accepted: 09/10/2024] [Indexed: 10/19/2024]
Abstract
Pediatric glioblastoma is a complex dynamical disease that is difficult to treat due to its multiple adaptive behaviors driven largely by phenotypic plasticity. Integrated data science and network theory pipelines offer novel approaches to studying glioblastoma cell fate dynamics, particularly phenotypic transitions over time. Here we used various single-cell trajectory inference algorithms to infer signaling dynamics regulating pediatric glioblastoma-immune cell networks. We identified GATA2, PTPRZ1, TPT1, MTRNR2L1/2, OLIG1/2, SOX11, FXYD6, SEZ6L, PDGFRA, EGFR, S100B, WNT, TNF α , and NF-kB as critical transition genes or signals regulating glioblastoma-immune network dynamics, revealing potential clinically relevant targets. Further, we reconstructed glioblastoma cell fate attractors and found complex bifurcation dynamics within glioblastoma phenotypic transitions, suggesting that a causal pattern may be driving glioblastoma evolution and cell fate decision-making. Together, our findings have implications for developing targeted therapies against glioblastoma, and the continued integration of quantitative approaches and artificial intelligence (AI) to understand pediatric glioblastoma tumor-immune interactions.
Collapse
Affiliation(s)
- Abicumaran Uthamacumaran
- Department of Physics (Alumni), Concordia University, Montréal, H4B 1R6, Canada.
- Department of Psychology (Alumni), Concordia University, Montréal, H4B 1R6, Canada.
- Oxford Immune Algorithmics, Reading, RG1 8EQ, UK.
| |
Collapse
|
12
|
Pan S, Long S, Cai L, Wen J, Lin W, Chen G. Identification and in vivo functional analysis of a novel missense mutation in GATA3 causing hypoparathyroidism, sensorineural deafness and renal dysplasia syndrome in a Chinese family. Endocrine 2025; 87:1194-1203. [PMID: 39505798 DOI: 10.1007/s12020-024-04087-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 10/26/2024] [Indexed: 11/08/2024]
Abstract
PURPOSE Hypoparathyroidism, sensorineural deafness, and renal dysplasia (HDR) syndrome is a rare autosomal dominant genetic disease associated with mutations in the GATA3 gene, which encodes GATA3 that plays essential roles in vertebrate development. This study aimed to identify and report the pathogenic mutation in GATA3 in a Chinese family diagnosed with HDR syndrome and determine its functional impacts in vivo. SUBJECTS AND METHODS The clinical features of a 25-year-old male patient with HDR syndrome and his parents were collected. GATA3 gene exome sequencing and Sanger sequencing were performed on the proband and his family, respectively. Functional analyses of GATA3 were performed using bioinformatics tools and zebrafish assays to determine pathogenicity and phenotype spectrum. RESULTS A novel, heterozygous, missense mutation in exon 4 of the GATA3 gene, c.863 G > A, p.Cys288Tyr, in the proband and his mother who presented the complete HDR triad, was predicted to be deleterious by in silico tools. 3D structure modeling showed that the variant caused significant structural changes. In vivo studies using a zebrafish animal model revealed the deleterious impact of the variant on the gill buds, otoliths, and pronephros. CONCLUSION We identified a novel missense mutation, GATA3 p.Cys288Tyr, within a family with HDR syndrome and delineated it as a loss-of-function variant in vivo. This expands the spectrum of GATA3 mutations associated with HDR syndrome in the Chinese population and mimics HDR-related changes in vivo.
Collapse
Affiliation(s)
- Shuyao Pan
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, Fujian, 350001, China
| | - Shushu Long
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, Fujian, 350001, China
| | - Liangchun Cai
- Department of Endocrinology, Fujian Provincial Hospital, Fuzhou, Fujian, 350001, China
| | - Junping Wen
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, Fujian, 350001, China
- Department of Endocrinology, Fujian Provincial Hospital, Fuzhou, Fujian, 350001, China
| | - Wei Lin
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, Fujian, 350001, China.
- Department of Endocrinology, Fujian Provincial Hospital, Fuzhou, Fujian, 350001, China.
| | - Gang Chen
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, Fujian, 350001, China.
- Department of Endocrinology, Fujian Provincial Hospital, Fuzhou, Fujian, 350001, China.
| |
Collapse
|
13
|
Zodanu GKE, Hwang JH, Mudery J, Sisniega C, Kang X, Wang LK, Barsegian A, Biniwale RM, Si MS, Halnon NJ, UCLA Congenital Heart Defects-BioCore Faculty, Grody WW, Satou GM, Van Arsdell GS, Nelson SF, Touma M. Whole-Exome Sequencing Identifies Novel GATA5/6 Variants in Right-Sided Congenital Heart Defects. Int J Mol Sci 2025; 26:2115. [PMID: 40076735 PMCID: PMC11901071 DOI: 10.3390/ijms26052115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 02/21/2025] [Accepted: 02/24/2025] [Indexed: 03/14/2025] Open
Abstract
One out of every hundred live births present with congenital heart abnormalities caused by the aberrant development of the embryonic cardiovascular system. The conserved zinc finger transcription factor proteins, which include GATA binding protein 5 (GATA5) and GATA binding protein (GATA6) play important roles in embryonic development and their inactivation may result in congenital heart defects (CHDs). In this study, we performed genotypic-phenotypic analyses in two families affected by right-sided CHD diagnosed by echocardiography imaging. Proband A presented with pulmonary valve stenosis, and proband B presented with complex CHD involving the right heart structures. For variant detection, we employed whole-genome single-nucleotide polymorphism (SNP) microarray and family-based whole-exome sequencing (WES) studies. Proband A is a full-term infant who was admitted to the neonatal intensive care unit (NICU) at five days of life for pulmonary valve stenosis (PVS). Genomic studies revealed a normal SNP microarray; however, quad WES analysis identified a novel heterozygous [Chr20:g.61041597C>G (p.Arg237Pro)] variant in the GATA5 gene. Further analysis confirmed that the novel variant was inherited from the mother but was absent in the father and the maternal uncle with a history of heart murmur. Proband B was born prematurely at 35 weeks gestation with a prenatally diagnosed complex CHD. A postnatal evaluation revealed right-sided heart defects including pulmonary atresia with intact ventricular septum (PA/IVS), right ventricular hypoplasia, tricuspid valve hypoplasia, hypoplastic main and bilateral branch pulmonary arteries, and possible coronary sinusoids. Cardiac catheterization yielded anatomy and hemodynamics unfavorable to repair. Hence, heart transplantation was indicated. Upon genomic testing, a normal SNP microarray was observed, while trio WES analysis identified a novel heterozygous [Chr18:c.1757C>T (p.Pro586Leu)] variant in the GATA6 gene. This variant was inherited from the father, who carries a clinical diagnosis of tetralogy of Fallot. These findings provide new insights into novel GATA5/6 variants, elaborate on the genotypic and phenotypic association, and highlight the critical role of GATA5 and GATA6 transcription factors in a wide spectrum of right-sided CHDs.
Collapse
Affiliation(s)
- Gloria K. E. Zodanu
- Neonatal Congenital Heart Laboratory, Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA; (G.K.E.Z.); (J.H.H.); (X.K.); (A.B.)
- Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA; (R.M.B.); (N.J.H.); (W.W.G.); (G.M.S.)
| | - John H. Hwang
- Neonatal Congenital Heart Laboratory, Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA; (G.K.E.Z.); (J.H.H.); (X.K.); (A.B.)
- Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA; (R.M.B.); (N.J.H.); (W.W.G.); (G.M.S.)
| | - Jordan Mudery
- Neonatal Congenital Heart Laboratory, Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA; (G.K.E.Z.); (J.H.H.); (X.K.); (A.B.)
- Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA; (R.M.B.); (N.J.H.); (W.W.G.); (G.M.S.)
| | - Carlos Sisniega
- Neonatal Congenital Heart Laboratory, Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA; (G.K.E.Z.); (J.H.H.); (X.K.); (A.B.)
- Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA; (R.M.B.); (N.J.H.); (W.W.G.); (G.M.S.)
| | - Xuedong Kang
- Neonatal Congenital Heart Laboratory, Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA; (G.K.E.Z.); (J.H.H.); (X.K.); (A.B.)
- Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA; (R.M.B.); (N.J.H.); (W.W.G.); (G.M.S.)
| | - Lee-Kai Wang
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Alexander Barsegian
- Neonatal Congenital Heart Laboratory, Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA; (G.K.E.Z.); (J.H.H.); (X.K.); (A.B.)
- Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA; (R.M.B.); (N.J.H.); (W.W.G.); (G.M.S.)
| | - Reshma M. Biniwale
- Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA; (R.M.B.); (N.J.H.); (W.W.G.); (G.M.S.)
- Department of Surgery, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA;
| | - Ming-Sing Si
- Department of Surgery, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA;
| | - Nancy J. Halnon
- Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA; (R.M.B.); (N.J.H.); (W.W.G.); (G.M.S.)
| | | | - Wayne W. Grody
- Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA; (R.M.B.); (N.J.H.); (W.W.G.); (G.M.S.)
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Gary M. Satou
- Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA; (R.M.B.); (N.J.H.); (W.W.G.); (G.M.S.)
| | - Glen S. Van Arsdell
- Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA; (R.M.B.); (N.J.H.); (W.W.G.); (G.M.S.)
- Department of Surgery, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA;
| | - Stanly F. Nelson
- Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA; (R.M.B.); (N.J.H.); (W.W.G.); (G.M.S.)
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Marlin Touma
- Neonatal Congenital Heart Laboratory, Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA; (G.K.E.Z.); (J.H.H.); (X.K.); (A.B.)
- Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA; (R.M.B.); (N.J.H.); (W.W.G.); (G.M.S.)
- Molecular Biology Institute, University of California, Los Angeles, CA 90095, USA
- Children’s Discovery and Innovation Institute, University of California, Los Angeles, CA 90095, USA
- Eli and Edyth Broad Stem Cell Research Center, University of California, Los Angeles, CA 90095, USA
- Cardiovascular Research Laboratories, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
14
|
Li Z, Zhang S, Guo S, Li A, Wang Y. Regulation of MareA Gene on Monascus Growth and Metabolism Under Different Nitrogen Sources. J Basic Microbiol 2025; 65:e2400611. [PMID: 39538412 DOI: 10.1002/jobm.202400611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/14/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024]
Abstract
Monascus is a widely used natural microorganism in our country, which can produce useful secondary metabolites. Studies have shown that the nitrogen source directly affects the growth, reproduction, and secondary metabolites of Monascus. As a global transcriptional regulator of nitrogen metabolism, MareA gene is involved in the regulation of secondary metabolism. In this study, we found the MareA gene that is highly homologous to the AreA gene sequence, and used MareA to obtain ΔMareA and OE-MareA. Three strains were cultured with glutamine, urea, NaNO3, and (NH4)2SO4 nitrogen sources. The Monascus pigments and related genes were analyzed by solid-state fermentation under different nitrogen sources. The results showed that the pigment production of the ΔMareA decreased, but the OE-MareA did the opposite. The secondary metabolites of the three strains were analyzed by HPLC and expression level of pigment biosytnthesis gene was determined by RT-qPCR. The relative expression levels of four key Monascus pigment genes in ΔMareA were significantly upregulated in mppE gene, but downregulated in MpPKS5, mppG, and mppD genes. Monascus pigment genes were increased in OE-MareA. In terms of growth regulation, the expression of VosA and LaeA genes was significantly reduced in ΔMareA, while OE-MareA significantly promoted the expression of GprD genes. The pigment production and gene expression in ΔMareA were significantly lower than that of C100, while the opposite was true of OE-MareA when NaNO3 was added to the culture medium. In conclusion, MareA gene had different regulatory effects on Monascus growth and pigments metabolism under different nitrogen sources.
Collapse
Affiliation(s)
- Zhuolan Li
- State Key Laboratory of Food Nutrition and Safety, College of Food Science & Engineering, Tianjin University of Science & Technology, Tianjin, People's Republic of China
| | - Sicheng Zhang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science & Engineering, Tianjin University of Science & Technology, Tianjin, People's Republic of China
| | - Shixin Guo
- State Key Laboratory of Food Nutrition and Safety, College of Food Science & Engineering, Tianjin University of Science & Technology, Tianjin, People's Republic of China
| | - Ailing Li
- State Key Laboratory of Food Nutrition and Safety, College of Food Science & Engineering, Tianjin University of Science & Technology, Tianjin, People's Republic of China
| | - Yurong Wang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science & Engineering, Tianjin University of Science & Technology, Tianjin, People's Republic of China
| |
Collapse
|
15
|
Bacha R, Alwisi N, Ismail R, Pedersen S, Al-Mansoori L. Unveiling GATA3 Signaling Pathways in Health and Disease: Mechanisms, Implications, and Therapeutic Potential. Cells 2024; 13:2127. [PMID: 39768217 PMCID: PMC11674286 DOI: 10.3390/cells13242127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 12/11/2024] [Accepted: 12/14/2024] [Indexed: 01/11/2025] Open
Abstract
GATA binding protein 3 (GATA3), a member of the GATA family transcription factors, is a key player in various physiological and pathological conditions. It is known for its ability to bind to the DNA sequence "GATA", which enables its key role in critical processes in multiple tissues and organs including the immune system, endocrine system, and nervous system. GATA3 also modulates cell differentiation, proliferation, and apoptosis via controlling gene expression. In physiological instances, GATA3 is crucial for maintaining immunological homeostasis by mediating the development of naïve T cells into T helper 2 (Th2). In addition, GATA3 has been demonstrated to play a variety of cellular roles in the growth and maintenance of mammary gland, neuronal, and renal tissues. Conversely, the presence of impaired GATA3 is associated with a variety of diseases, including neurodegenerative diseases, autoimmune diseases, and cancers. Additionally, the altered expression of GATA3 contributes to the worsening of disease progression in hematological malignancies, such as T-cell lymphomas. Therefore, this review explores the multifaceted roles and signaling pathways of GATA3 in health and disease, with a particular emphasis on its potential as a therapeutic and prognostic target for the effective management of diseases.
Collapse
Affiliation(s)
- Rim Bacha
- College of Medicine, QU Health, Qatar University, Doha P.O. Box 2713, Qatar; (R.B.); (N.A.); (R.I.)
- Biomedical Research Center, Qatar University, Doha P.O. Box 2713, Qatar
- College of Health Sciences, Qatar University, Doha P.O. Box 2713, Qatar
| | - Nouran Alwisi
- College of Medicine, QU Health, Qatar University, Doha P.O. Box 2713, Qatar; (R.B.); (N.A.); (R.I.)
| | - Rana Ismail
- College of Medicine, QU Health, Qatar University, Doha P.O. Box 2713, Qatar; (R.B.); (N.A.); (R.I.)
| | - Shona Pedersen
- College of Medicine, QU Health, Qatar University, Doha P.O. Box 2713, Qatar; (R.B.); (N.A.); (R.I.)
| | - Layla Al-Mansoori
- Biomedical Research Center, Qatar University, Doha P.O. Box 2713, Qatar
| |
Collapse
|
16
|
Nazari E, Khalili-Tanha G, Pourali G, Khojasteh-Leylakoohi F, Azari H, Dashtiahangar M, Fiuji H, Yousefli Z, Asadnia A, Maftooh M, Akbarzade H, Nassiri M, Hassanian SM, Ferns GA, Peters GJ, Giovannetti E, Batra J, Khazaei M, Avan A. The diagnostic and prognostic value of C1orf174 in colorectal cancer. BIOIMPACTS : BI 2024; 15:30566. [PMID: 40256241 PMCID: PMC12008501 DOI: 10.34172/bi.30566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 09/12/2024] [Accepted: 09/23/2024] [Indexed: 04/22/2025]
Abstract
Introduction Colorectal cancer (CRC) is among the lethal cancers, indicating the need for the identification of novel biomarkers for the detection of patients in earlier stages. RNA and microRNA sequencing were analyzed using bioinformatics and machine learning algorithms to identify differentially expressed genes (DEGs), followed by validation in CRC patients. Methods The genome-wide RNA sequencing of 631 samples, comprising 398 patients and 233 normal cases was extracted from the Cancer Genome Atlas (TCGA). The DEGs were identified using DESeq package in R. Survival analysis was evaluated using Kaplan-Meier analysis to identify prognostic biomarkers. Predictive biomarkers were determined by machine learning algorithms such as Deep learning, Decision Tree, and Support Vector Machine. The biological pathways, protein-protein interaction (PPI), the co-expression of DEGs, and the correlation between DEGs and clinical data were evaluated. Additionally, the diagnostic markers were assessed with a combioROC package. Finally, the candidate tope score gene was validated by Real-time PCR in CRC patients. Results The survival analysis revealed five novel prognostic genes, including KCNK13, C1orf174, CLEC18A, SRRM5, and GPR89A. Thirty-nine upregulated, 40 downregulated genes, and 20 miRNAs were detected by SVM with high accuracy and AUC. The upregulation of KRT20 and FAM118A genes and the downregulation of LRAT and PROZ genes had the highest coefficient in the advanced stage. Furthermore, our findings showed that three miRNAs (mir-19b-1, mir-326, and mir-330) upregulated in the advanced stage. C1orf174, as a novel gene, was validated using RT-PCR in CRC patients. The combineROC curve analysis indicated that the combination of C1orf174-AKAP4-DIRC1-SKIL-Scan29A4 can be considered as diagnostic markers with sensitivity, specificity, and AUC values of 0.90, 0.94, and 0.92, respectively. Conclusion Machine learning algorithms can be used to Identify key dysregulated genes/miRNAs involved in the pathogenesis of diseases, leading to the detection of patients in earlier stages. Our data also demonstrated the prognostic value of C1orf174 in colorectal cancer.
Collapse
Affiliation(s)
- Elham Nazari
- Proteomics Research Center, Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ghazaleh Khalili-Tanha
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ghazaleh Pourali
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Hanieh Azari
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Hamid Fiuji
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam U.M.C., VU. University Medical Center (VUMC), Amsterdam, The Netherlands
| | - Zahra Yousefli
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Alireza Asadnia
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mina Maftooh
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- College of Medicine, University of Warith Al-Anbiyaa, Karbala, Iraq
| | - Hamed Akbarzade
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammadreza Nassiri
- Recombinant Proteins Research Group, The Research Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Seyed Mahdi Hassanian
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Gordon A Ferns
- Brighton & Sussex Medical School, Division of Medical Education, Falmer, Brighton, Sussex BN1 9PH, UK
| | - Godefridus J Peters
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam U.M.C., VU. University Medical Center (VUMC), Amsterdam, The Netherlands
- Professor In Biochemistry, Medical University of Gdansk,Gdansk, Poland
| | - Elisa Giovannetti
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam U.M.C., VU. University Medical Center (VUMC), Amsterdam, The Netherlands
- Cancer Pharmacology Lab, AIRC Start up Unit, Fondazione Pisana per La Scienza, Pisa, Italy
| | - Jyotsna Batra
- Centre for Genomics and Personalised Health, Queensland University of Technology, Brisbane 4059, Australia
- Faculty of Health, School of Biomedical Sciences, Queensland University of Technology, Brisbane 4059, Australia
| | - Majid Khazaei
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Avan
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Faculty of Health, School of Biomedical Sciences, Queensland University of Technology, Brisbane 4059, Australia
| |
Collapse
|
17
|
Keske A, Polaki US, Matson DR. Immunohistochemical Analysis of GATA2 Expression in Endometrium and its Relationship with Hormone Receptor Expression in Benign and Premalignant Endometrial Disorders. Reprod Sci 2024:10.1007/s43032-024-01730-5. [PMID: 39443360 DOI: 10.1007/s43032-024-01730-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 10/13/2024] [Indexed: 10/25/2024]
Abstract
The GATA gene family encodes highly conserved zinc-finger transcription factors that facilitate the development and function of multiple organ systems including the uterus. In the endometrium, GATA2 functions in a positive autoregulatory loop with the progesterone receptor (PGR) and colocalizes with PGR on chromatin to promote PGR transcriptional programs. GATA2 also has PGR-independent functions that maintain endometrial cell identity, and GATA2 transcripts reportedly are down-regulated in endometrial disorders including endometriosis. This event is accompanied by a reciprocal increase in GATA6. Here, we applied custom anti-GATA2 monoclonal antibodies and performed GATA2 immunohistochemistry (IHC) on patient endometrial tissues corresponding to proliferative, secretory, inactive, and hormone-treated endometrium, as well as endometriosis and endometrial atypical hyperplasia/endometrioid intraepithelial neoplasia (EAH/EIN). We also performed IHC for the estrogen receptor, PGR, and GATA6 in relevant groups. The results reveal a tight correlation between GATA2 and PGR expression in the glandular and stromal cells of benign endometrium. GATA2 expression is markedly reduced in stromal but not glandular cells in endometriosis and EAH/EIN. This reduction in GATA2 expression does not lead to a detectable increase in GATA6 expression in endometriosis. Although average glandular GATA2 expression was preserved in endometriosis and EAH/EIN cases, its expression was decoupled from PGR, implying that alternative pathways regulate GATA2 levels in these disorders. Our findings indicate that GATA2 dysregulation is a feature of endometriosis and EAH/EIN, and support a model whereby loss of stromal GATA2 in these disorders contributes to their progesterone insensitivity.
Collapse
Affiliation(s)
- Aysenur Keske
- Department of Pathology and Laboratory Medicine, University of Wisconsin - Madison, Madison, Wisconsin, USA
| | - Usha S Polaki
- Department of Pathology and Laboratory Medicine, University of Wisconsin - Madison, Madison, Wisconsin, USA
| | - Daniel R Matson
- Department of Pathology and Laboratory Medicine, University of Wisconsin - Madison, Madison, Wisconsin, USA.
| |
Collapse
|
18
|
Begolli R, Patouna A, Vardakas P, Xagara A, Apostolou K, Kouretas D, Giakountis A. Deciphering the Landscape of GATA-Mediated Transcriptional Regulation in Gastric Cancer. Antioxidants (Basel) 2024; 13:1267. [PMID: 39456519 PMCID: PMC11504088 DOI: 10.3390/antiox13101267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/11/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024] Open
Abstract
Gastric cancer (GC) is an asymptomatic malignancy in early stages, with an invasive and cost-ineffective diagnostic toolbox that contributes to severe global mortality rates on an annual basis. Ectopic expression of the lineage survival transcription factors (LS-TFs) GATA4 and 6 promotes stomach oncogenesis. However, LS-TFs also govern important physiological roles, hindering their direct therapeutic targeting. Therefore, their downstream target genes are particularly interesting for developing cancer-specific molecular biomarkers or therapeutic agents. In this work, we couple inducible knockdown systems with chromatin immunoprecipitation and RNA-seq to thoroughly detect and characterize direct targets of GATA-mediated transcriptional regulation in gastric cancer cells. Our experimental and computational strategy provides evidence that both factors regulate the expression of several coding and non-coding RNAs that in turn mediate for their cancer-promoting phenotypes, including but not limited to cell cycle, apoptosis, ferroptosis, and oxidative stress response. Finally, the diagnostic and prognostic potential of four metagene signatures consisting of selected GATA4/6 target transcripts is evaluated in a multi-cancer panel of ~7000 biopsies from nineteen tumor types, revealing elevated specificity for gastrointestinal tumors. In conclusion, our integrated strategy uncovers the landscape of GATA-mediated coding and non-coding transcriptional regulation, providing insights regarding their molecular and clinical function in gastric cancer.
Collapse
Affiliation(s)
- Rodiola Begolli
- Laboratory of Molecular Biology and Genomics, Department of Biochemistry and Biotechnology, University of Thessaly, Biopolis, Mezourlo, 41500 Larissa, Greece
| | - Anastasia Patouna
- Laboratory of Animal Physiology, Department of Biochemistry and Biotechnology, University of Thessaly, Biopolis, Mezourlo, 41500 Larissa, Greece
| | - Periklis Vardakas
- Laboratory of Animal Physiology, Department of Biochemistry and Biotechnology, University of Thessaly, Biopolis, Mezourlo, 41500 Larissa, Greece
| | - Anastasia Xagara
- Laboratory of Oncology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Biopolis, Mezourlo, 41110 Larissa, Greece
| | - Kleanthi Apostolou
- Laboratory of Molecular Biology and Genomics, Department of Biochemistry and Biotechnology, University of Thessaly, Biopolis, Mezourlo, 41500 Larissa, Greece
| | - Demetrios Kouretas
- Laboratory of Animal Physiology, Department of Biochemistry and Biotechnology, University of Thessaly, Biopolis, Mezourlo, 41500 Larissa, Greece
| | - Antonis Giakountis
- Laboratory of Molecular Biology and Genomics, Department of Biochemistry and Biotechnology, University of Thessaly, Biopolis, Mezourlo, 41500 Larissa, Greece
| |
Collapse
|
19
|
He Y, Hu J, Freitas R, Gu J, Ji G, Zhang Y. Trace-level Gabapentin can induce cardiovascular developmental toxicity through apoptosis in zebrafish larvae. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 358:124526. [PMID: 38992826 DOI: 10.1016/j.envpol.2024.124526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 06/26/2024] [Accepted: 07/08/2024] [Indexed: 07/13/2024]
Abstract
Gabapentin (GBP), an antiepileptic drug to treat epilepsy and neuropathic pain, has become an emerging pollutant in aquatic environments. Previous results suggested that GBP can cause a potential toxicity on the heart development of zebrafish but its cardiovascular effects are still not clear. In the current study, zebrafish embryos were exposed to GBP at environmental relevant concentrations (0, 0.1, 10 and 1000 μg/L) to assess its impact on cardiovascular systems during the early life stage of zebrafish. GBP exposure induced an increase in heartbeat rate and blood flow. The development of blood vessels was also affected with the vascular width significantly decreased at 10 μg/L and higher concentration of GBP. GBP exposure led to an abnormal vascular development by inhibiting the expression of relevant genes (flk1, vegfr-3, gata1, vegfα, and vegfr-2). Furthermore, GBP at 0.1 μg/L elevated the levels of reactive oxygen species and antioxidant enzyme. The vascular cell apoptosis was promoted through genes like p53, bad, and bcl2. However, these adverse effects were reversible with the antioxidant N-acetyl-L-cysteine, highlighting the crucial role of oxidative damage in GBP induced vascular toxicity. This research offers new perspectives on the adverse outcome pathways of antiepileptic drugs in non-target aquatic organisms.
Collapse
Affiliation(s)
- Yide He
- School of Environmental Science and Engineering, Nanjing Tech University, Jiangsu, 211816, PR China; Sino-Portuguese Joint International Laboratory of Aquatic Toxicology, Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816, Jiangsu Province, PR China
| | - Jun Hu
- School of Environmental Science and Engineering, Nanjing Tech University, Jiangsu, 211816, PR China; Sino-Portuguese Joint International Laboratory of Aquatic Toxicology, Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816, Jiangsu Province, PR China
| | - Rosa Freitas
- Sino-Portuguese Joint International Laboratory of Aquatic Toxicology, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal; Department of Biology & CESAM, University of Aveiro, Aveiro, 3810193, Portugal
| | - Jie Gu
- Nanjing Institute of Environmental Science, Ministry of Ecology and Environment, Nanjing, 210042, Jiangsu, PR China
| | - Guixiang Ji
- Nanjing Institute of Environmental Science, Ministry of Ecology and Environment, Nanjing, 210042, Jiangsu, PR China
| | - Yongjun Zhang
- School of Environmental Science and Engineering, Nanjing Tech University, Jiangsu, 211816, PR China; Sino-Portuguese Joint International Laboratory of Aquatic Toxicology, Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816, Jiangsu Province, PR China.
| |
Collapse
|
20
|
Fatema K, Haidar Z, Tanim MTH, Nath SD, Sajib AA. Unveiling the link between arsenic toxicity and diabetes: an in silico exploration into the role of transcription factors. Toxicol Res 2024; 40:653-672. [PMID: 39345741 PMCID: PMC11436564 DOI: 10.1007/s43188-024-00255-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 04/10/2024] [Accepted: 07/10/2024] [Indexed: 10/01/2024] Open
Abstract
Arsenic-induced diabetes, despite being a relatively newer finding, is now a growing area of interest, owing to its multifaceted nature of development and the diversity of metabolic conditions that result from it, on top of the already complicated manifestation of arsenic toxicity. Identification and characterization of the common and differentially affected cellular metabolic pathways and their regulatory components among various arsenic and diabetes-associated complications may aid in understanding the core molecular mechanism of arsenic-induced diabetes. This study, therefore, explores the effects of arsenic on human cell lines through 14 transcriptomic datasets containing 160 individual samples using in silico tools to take a systematic, deeper look into the pathways and genes that are being altered. Among these, we especially focused on the role of transcription factors due to their diverse and multifaceted roles in biological processes, aiming to comprehensively investigate the underlying mechanism of arsenic-induced diabetes as well as associated health risks. We present a potential mechanism heavily implying the involvement of the TGF-β/SMAD3 signaling pathway leading to cell cycle alterations and the NF-κB/TNF-α, MAPK, and Ca2+ signaling pathways underlying the pathogenesis of arsenic-induced diabetes. This study also presents novel findings by suggesting potential associations of four transcription factors (NCOA3, PHF20, TFDP1, and TFDP2) with both arsenic toxicity and diabetes; five transcription factors (E2F5, ETS2, EGR1, JDP2, and TFE3) with arsenic toxicity; and one transcription factor (GATA2) with diabetes. The novel association of the transcription factors and proposed mechanism in this study may serve as a take-off point for more experimental evidence needed to understand the in vivo cellular-level diabetogenic effects of arsenic. Supplementary Information The online version contains supplementary material available at 10.1007/s43188-024-00255-y.
Collapse
Affiliation(s)
- Kaniz Fatema
- Department of Genetic Engineering & Biotechnology, University of Dhaka, Dhaka, 1000 Bangladesh
| | - Zinia Haidar
- Department of Genetic Engineering & Biotechnology, University of Dhaka, Dhaka, 1000 Bangladesh
| | - Md Tamzid Hossain Tanim
- Department of Genetic Engineering & Biotechnology, University of Dhaka, Dhaka, 1000 Bangladesh
| | - Sudipta Deb Nath
- Department of Genetic Engineering & Biotechnology, University of Dhaka, Dhaka, 1000 Bangladesh
| | - Abu Ashfaqur Sajib
- Department of Genetic Engineering & Biotechnology, University of Dhaka, Dhaka, 1000 Bangladesh
| |
Collapse
|
21
|
Shaw NC, Chen K, Farley KO, Hedges M, Forbes C, Baynam G, Lassmann T, Fear VS. Identifying SETBP1 haploinsufficiency molecular pathways to improve patient diagnosis using induced pluripotent stem cells and neural disease modelling. Mol Autism 2024; 15:42. [PMID: 39350244 PMCID: PMC11443744 DOI: 10.1186/s13229-024-00625-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 09/23/2024] [Indexed: 10/04/2024] Open
Abstract
BACKGROUND SETBP1 Haploinsufficiency Disorder (SETBP1-HD) is characterised by mild to moderate intellectual disability, speech and language impairment, mild motor developmental delay, behavioural issues, hypotonia, mild facial dysmorphisms, and vision impairment. Despite a clear link between SETBP1 mutations and neurodevelopmental disorders the precise role of SETBP1 in neural development remains elusive. We investigate the functional effects of three SETBP1 genetic variants including two pathogenic mutations p.Glu545Ter and SETBP1 p.Tyr1066Ter, resulting in removal of SKI and/or SET domains, and a point mutation p.Thr1387Met in the SET domain. METHODS Genetic variants were introduced into induced pluripotent stem cells (iPSCs) and subsequently differentiated into neurons to model the disease. We measured changes in cellular differentiation, SETBP1 protein localisation, and gene expression changes. RESULTS The data indicated a change in the WNT pathway, RNA polymerase II pathway and identified GATA2 as a central transcription factor in disease perturbation. In addition, the genetic variants altered the expression of gene sets related to neural forebrain development matching characteristics typical of the SETBP1-HD phenotype. LIMITATIONS The study investigates changes in cellular function in differentiation of iPSC to neural progenitor cells as a human model of SETBP1 HD disorder. Future studies may provide additional information relevant to disease on further neural cell specification, to derive mature neurons, neural forebrain cells, or brain organoids. CONCLUSIONS We developed a human SETBP1-HD model and identified perturbations to the WNT and POL2RA pathway, genes regulated by GATA2. Strikingly neural cells for both the SETBP1 truncation mutations and the single nucleotide variant displayed a SETBP1-HD-like phenotype.
Collapse
Affiliation(s)
- Nicole C Shaw
- The Kids Research Institute of Australia, The University of Western Australia, Nedlands, WA, Australia
| | - Kevin Chen
- The Kids Research Institute of Australia, The University of Western Australia, Nedlands, WA, Australia
| | - Kathryn O Farley
- The Kids Research Institute of Australia, The University of Western Australia, Nedlands, WA, Australia
| | - Mitchell Hedges
- The Kids Research Institute of Australia, The University of Western Australia, Nedlands, WA, Australia
| | - Catherine Forbes
- The Kids Research Institute of Australia, The University of Western Australia, Nedlands, WA, Australia
| | - Gareth Baynam
- Rare Care Centre, Perth Children's Hospital, Nedlands, WA, Australia
| | - Timo Lassmann
- The Kids Research Institute of Australia, The University of Western Australia, Nedlands, WA, Australia
| | - Vanessa S Fear
- The Kids Research Institute of Australia, The University of Western Australia, Nedlands, WA, Australia.
| |
Collapse
|
22
|
Lam F, Leisegang MS, Brandes RP. LncRNAs Are Key Regulators of Transcription Factor-Mediated Endothelial Stress Responses. Int J Mol Sci 2024; 25:9726. [PMID: 39273673 PMCID: PMC11395311 DOI: 10.3390/ijms25179726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/04/2024] [Accepted: 09/06/2024] [Indexed: 09/15/2024] Open
Abstract
The functional role of long noncoding RNAs in the endothelium is highly diverse. Among their many functions, regulation of transcription factor activity and abundance is one of the most relevant. This review summarizes the recent progress in the research on the lncRNA-transcription factor axes and their implications for the vascular endothelium under physiological and pathological conditions. The focus is on transcription factors critical for the endothelial response to external stressors, such as hypoxia, inflammation, and shear stress, and their lncRNA interactors. These regulatory interactions will be exemplified by a selected number of lncRNAs that have been identified in the endothelium under physiological and pathological conditions that are influencing the activity or protein stability of important transcription factors. Thus, lncRNAs can add a layer of cell type-specific function to transcription factors. Understanding the interaction of lncRNAs with transcription factors will contribute to elucidating cardiovascular disease pathologies and the development of novel therapeutic approaches.
Collapse
Affiliation(s)
- Frederike Lam
- Goethe University, Institute for Cardiovascular Physiology, Frankfurt, Germany
- German Center of Cardiovascular Research (DZHK), Partner Site RheinMain, Frankfurt, Germany
| | - Matthias S Leisegang
- Goethe University, Institute for Cardiovascular Physiology, Frankfurt, Germany
- German Center of Cardiovascular Research (DZHK), Partner Site RheinMain, Frankfurt, Germany
| | - Ralf P Brandes
- Goethe University, Institute for Cardiovascular Physiology, Frankfurt, Germany
- German Center of Cardiovascular Research (DZHK), Partner Site RheinMain, Frankfurt, Germany
| |
Collapse
|
23
|
Sam J, Torregroza I, Evans T. Gata6 functions in zebrafish endoderm to regulate late differentiating arterial pole cardiogenesis. Development 2024; 151:dev202895. [PMID: 39133135 PMCID: PMC11423812 DOI: 10.1242/dev.202895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 07/30/2024] [Indexed: 08/13/2024]
Abstract
Mutations in GATA6 are associated with congenital heart disease, most notably conotruncal structural defects. However, how GATA6 regulates cardiac morphology during embryogenesis is undefined. We used knockout and conditional mutant zebrafish alleles to investigate the spatiotemporal role of gata6 during cardiogenesis. Loss of gata6 specifically impacts atrioventricular valve formation and recruitment of epicardium, with a prominent loss of arterial pole cardiac cells, including those of the ventricle and outflow tract. However, there are no obvious defects in cardiac progenitor cell specification, proliferation or death. Conditional loss of gata6 starting at 24 h is sufficient to disrupt the addition of late differentiating cardiomyocytes at the arterial pole, with decreased expression levels of anterior secondary heart field (SHF) markers spry4 and mef2cb. Conditional loss of gata6 in the endoderm is sufficient to phenocopy the straight knockout, resulting in a significant loss of ventricular and outflow tract tissue. Exposure to a Dusp6 inhibitor largely rescues the loss of ventricular cells in gata6-/- larvae. Thus, gata6 functions in endoderm are mediated by FGF signaling to regulate the addition of anterior SHF progenitor derivatives during heart formation.
Collapse
Affiliation(s)
- Jessica Sam
- Department of Surgery, Weill Cornell Medicine, New York, NY 10065, USA
- Weill Cornell Graduate School of Medical Sciences, New York, NY 10065, USA
| | - Ingrid Torregroza
- Department of Surgery, Weill Cornell Medicine, New York, NY 10065, USA
| | - Todd Evans
- Department of Surgery, Weill Cornell Medicine, New York, NY 10065, USA
- Hartman Institute for Therapeutic Organ Regeneration, Weill Cornell Medicine, New York, NY 10065, USA
- Center for Genomic Health, Weill Cornell Medicine, New York, NY 10065, USA
| |
Collapse
|
24
|
Gusella A, Martignoni G, Giacometti C. Behind the Curtain of Abnormal Placentation in Pre-Eclampsia: From Molecular Mechanisms to Histological Hallmarks. Int J Mol Sci 2024; 25:7886. [PMID: 39063129 PMCID: PMC11277090 DOI: 10.3390/ijms25147886] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/09/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024] Open
Abstract
Successful human pregnancy needs several highly controlled steps to guarantee an oocyte's fertilization, the embryo's pre-implantation development, and its subsequent implantation into the uterine wall. The subsequent placenta development ensures adequate fetal nutrition and oxygenation, with the trophoblast being the first cell lineage to differentiate during this process. The placenta sustains the growth of the fetus by providing it with oxygen and nutrients and removing waste products. It is not surprising that issues with the early development of the placenta can lead to common pregnancy disorders, such as recurrent miscarriage, fetal growth restriction, pre-eclampsia, and stillbirth. Understanding the normal development of the human placenta is essential for recognizing and contextualizing any pathological aberrations that may occur. The effects of these issues may not become apparent until later in pregnancy, during the mid or advanced stages. This review discusses the process of the embryo implantation phase, the molecular mechanisms involved, and the abnormalities in those mechanisms that are thought to contribute to the development of pre-eclampsia. The review also covers the histological hallmarks of pre-eclampsia as found during the examination of placental tissue from pre-eclampsia patients.
Collapse
Affiliation(s)
- Anna Gusella
- Pathology Unit, Department of Diagnostic Services, ULLS 6 Euganea, 35131 Padova, Italy;
| | - Guido Martignoni
- Department of Pathology, Pederzoli Hospital, 37019 Peschiera del Garda, Italy;
- Department of Diagnostic and Public Health, Section of Pathology, University of Verona, 37129 Verona, Italy
| | - Cinzia Giacometti
- Department of Pathology, Pederzoli Hospital, 37019 Peschiera del Garda, Italy;
| |
Collapse
|
25
|
Branco A, Rayabaram J, Miranda CC, Fernandes-Platzgummer A, Fernandes TG, Sajja S, da Silva CL, Vemuri MC. Advances in ex vivo expansion of hematopoietic stem and progenitor cells for clinical applications. Front Bioeng Biotechnol 2024; 12:1380950. [PMID: 38846805 PMCID: PMC11153805 DOI: 10.3389/fbioe.2024.1380950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 04/25/2024] [Indexed: 06/09/2024] Open
Abstract
As caretakers of the hematopoietic system, hematopoietic stem cells assure a lifelong supply of differentiated populations that are responsible for critical bodily functions, including oxygen transport, immunological protection and coagulation. Due to the far-reaching influence of the hematopoietic system, hematological disorders typically have a significant impact on the lives of individuals, even becoming fatal. Hematopoietic cell transplantation was the first effective therapeutic avenue to treat such hematological diseases. Since then, key use and manipulation of hematopoietic stem cells for treatments has been aspired to fully take advantage of such an important cell population. Limited knowledge on hematopoietic stem cell behavior has motivated in-depth research into their biology. Efforts were able to uncover their native environment and characteristics during development and adult stages. Several signaling pathways at a cellular level have been mapped, providing insight into their machinery. Important dynamics of hematopoietic stem cell maintenance were begun to be understood with improved comprehension of their metabolism and progressive aging. These advances have provided a solid platform for the development of innovative strategies for the manipulation of hematopoietic stem cells. Specifically, expansion of the hematopoietic stem cell pool has triggered immense interest, gaining momentum. A wide range of approaches have sprouted, leading to a variety of expansion systems, from simpler small molecule-based strategies to complex biomimetic scaffolds. The recent approval of Omisirge, the first expanded hematopoietic stem and progenitor cell product, whose expansion platform is one of the earliest, is predictive of further successes that might arise soon. In order to guarantee the quality of these ex vivo manipulated cells, robust assays that measure cell function or potency need to be developed. Whether targeting hematopoietic engraftment, immunological differentiation potential or malignancy clearance, hematopoietic stem cells and their derivatives need efficient scaling of their therapeutic potency. In this review, we comprehensively view hematopoietic stem cells as therapeutic assets, going from fundamental to translational.
Collapse
Affiliation(s)
- André Branco
- Department of Bioengineering and Institute for Bioengineering and Biosciences (iBB), Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Janakiram Rayabaram
- Protein and Cell Analysis, Biosciences Division, Invitrogen Bioservices, Thermo Fisher Scientific, Bangalore, India
| | - Cláudia C. Miranda
- Department of Bioengineering and Institute for Bioengineering and Biosciences (iBB), Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
- AccelBio, Collaborative Laboratory to Foster Translation and Drug Discovery, Cantanhede, Portugal
| | - Ana Fernandes-Platzgummer
- Department of Bioengineering and Institute for Bioengineering and Biosciences (iBB), Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Tiago G. Fernandes
- Department of Bioengineering and Institute for Bioengineering and Biosciences (iBB), Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Suchitra Sajja
- Protein and Cell Analysis, Biosciences Division, Invitrogen Bioservices, Thermo Fisher Scientific, Bangalore, India
| | - Cláudia L. da Silva
- Department of Bioengineering and Institute for Bioengineering and Biosciences (iBB), Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | | |
Collapse
|
26
|
Yang Y, Song S, Li S, Kang J, Li Y, Zhao N, Ye D, Qin F, Du Y, Sun J, Yu T, Wu H. GATA4 regulates the transcription of MMP9 to suppress the invasion and migration of breast cancer cells via HDAC1-mediated p65 deacetylation. Cell Death Dis 2024; 15:289. [PMID: 38653973 PMCID: PMC11039647 DOI: 10.1038/s41419-024-06656-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 04/07/2024] [Accepted: 04/08/2024] [Indexed: 04/25/2024]
Abstract
GATA-binding protein 4 (GATA4) is recognized for its significant roles in embryogenesis and various cancers. Through bioinformatics and clinical data, it appears that GATA4 plays a role in breast cancer development. Yet, the specific roles and mechanisms of GATA4 in breast cancer progression remain elusive. In this study, we identify GATA4 as a tumor suppressor in the invasion and migration of breast cancer. Functionally, GATA4 significantly reduces the transcription of MMP9. On a mechanistic level, GATA4 diminishes MMP9 transcription by interacting with p65 at the NF-κB binding site on the MMP9 promoter. Additionally, GATA4 promotes the recruitment of HDAC1, amplifying the bond between p65 and HDAC1. This leads to decreased acetylation of p65, thus inhibiting p65's transcriptional activity on the MMP9 promoter. Moreover, GATA4 hampers the metastasis of breast cancer in vivo mouse model. In summary, our research unveils a novel mechanism wherein GATA4 curtails breast cancer cell metastasis by downregulating MMP9 expression, suggesting a potential therapeutic avenue for breast cancer metastasis.
Collapse
Affiliation(s)
- Yuxi Yang
- School of Bioengineering & Key Laboratory of Protein Modification and Disease, Liaoning Province, Dalian University of Technology, Dalian, 116024, China
| | - Shuangshuang Song
- School of Bioengineering & Key Laboratory of Protein Modification and Disease, Liaoning Province, Dalian University of Technology, Dalian, 116024, China
| | - Shujing Li
- School of Bioengineering & Key Laboratory of Protein Modification and Disease, Liaoning Province, Dalian University of Technology, Dalian, 116024, China
| | - Jie Kang
- School of Bioengineering & Key Laboratory of Protein Modification and Disease, Liaoning Province, Dalian University of Technology, Dalian, 116024, China
| | - Yulin Li
- School of Bioengineering & Key Laboratory of Protein Modification and Disease, Liaoning Province, Dalian University of Technology, Dalian, 116024, China
| | - Nannan Zhao
- Cancer Hospital of Dalian University of Technology, Shenyang, 110042, China
| | - Dongman Ye
- Cancer Hospital of Dalian University of Technology, Shenyang, 110042, China
| | - Fengying Qin
- Cancer Hospital of Dalian University of Technology, Shenyang, 110042, China
| | - Yixin Du
- School of Bioengineering & Key Laboratory of Protein Modification and Disease, Liaoning Province, Dalian University of Technology, Dalian, 116024, China
| | - Jing Sun
- Cancer Hospital of Dalian University of Technology, Shenyang, 110042, China.
| | - Tao Yu
- Cancer Hospital of Dalian University of Technology, Shenyang, 110042, China.
| | - Huijian Wu
- School of Bioengineering & Key Laboratory of Protein Modification and Disease, Liaoning Province, Dalian University of Technology, Dalian, 116024, China.
| |
Collapse
|
27
|
Ignatova TN, Chaitin HJ, Kukekov NV, Suslov ON, Dulatova GI, Hanafy KA, Vrionis FD. Gliomagenesis is orchestrated by the Oct3/4 regulatory network. J Neurosurg Sci 2024; 68:148-156. [PMID: 34342203 DOI: 10.23736/s0390-5616.21.05437-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND Glioblastoma multiforme (GBM) is a lethal brain tumor characterized by developmental hierarchical phenotypic heterogeneity, therapy resistance and recurrent growth. Neural stem cells (NSCs) from human central nervous system (CNS), and glioblastoma stem cells from patient-derived GBM (pdGSC) samples were cultured in both 2D well-plate and 3D monoclonal neurosphere culture system (pdMNCS). The pdMNCS model shows promise to establish a relevant 3D-tumor environment that maintains GBM cells in the stem cell phase within suspended neurospheres. METHODS Utilizing the pdMNCS, we examined GBM cell-lines for a wide spectrum of developmental cancer stem cell markers, including the early blastocyst inner-cell mass (ICM)-specific Nanog, Oct3/4,B, and CD133. RESULTS We observed that MNCS epigenotype is recapitulated using gliomasphere-derived cells. CD133, the marker of GSC is robustly expressed in 3D-gliomaspheres and localized within the plasma membrane compartment. Conversely, gliomasphere cultures grown in conventional 2D culture quickly lost CD133 expression, indicating its variable expression is dependent on cell-culture conditions. Incomplete differentiation of cytoskeleton microtubules and intermediate filaments (IFs) of patient derived cells, similar to commercially available GBM cell lines, was seen. Subsequently, in order to determine whether Oct3/4 it was necessary for CD133 expression and cancer stemness, we transfected 2D and 3D culture with siRNA against Oct3/4 and found a significant reduction in gliomasphere formation. CONCLUSIONS These results suggest that expression of Oct3/4,A- and CD133 suppress differentiation of GSCs.
Collapse
Affiliation(s)
- Tatyana N Ignatova
- Department of Neurosurgery, University of Tennessee, Health Science Center, Memphis, TN, USA
- Marcus Neuroscience Institute, Boca Raton Regional Hospital and Florida Atlantic University, Boca Raton, FL, USA
| | - Hersh J Chaitin
- College of Medicine, Florida Atlantic University, Boca Raton, FL, USA
| | - Nickolay V Kukekov
- Department of Pathology and Center for Neurobiology and Behavior, Columbia University College of Physicians and Surgeons, New York, NY, USA
| | - Oleg N Suslov
- McKnight Brain Institute, Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Galina I Dulatova
- Department of Neurosurgery, University of Tennessee, Health Science Center, Memphis, TN, USA
| | - Khalid A Hanafy
- Marcus Neuroscience Institute, Boca Raton Regional Hospital and Florida Atlantic University, Boca Raton, FL, USA
| | - Frank D Vrionis
- Marcus Neuroscience Institute, Boca Raton Regional Hospital and Florida Atlantic University, Boca Raton, FL, USA -
| |
Collapse
|
28
|
Li X, Wang Z, Wang Q, Akhmet N, Zhu H, Guo Z, Pan C, Lan X, Zhang S. Relationships between the mutations of the goat GATA binding protein 4 gene and growth traits. Gene 2024; 898:148095. [PMID: 38128793 DOI: 10.1016/j.gene.2023.148095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 11/30/2023] [Accepted: 12/18/2023] [Indexed: 12/23/2023]
Abstract
Osteogenesis is a complex multilevel process regulated by multiple genes. The GATA binding protein 4 (GATA4) gene has been extensively studied for its pivotal role in bone genesis and bone differentiation. However, its relationship with the growth traits of Shaanbei white cashmere (SBWC) and Guizhou black (GB) goats remains unclear. This work aims to investigate the potential influence of genetic mutations in the GATA4 gene on the growth traits goats. Thus, two Insertion/deletion (InDel) polymorphisms (8-bp-InDel and 9-bp-InDel) were screened and detected in a total of 1161 goats (including 980 SBWC goats and 181 GB goats) using PCR and agarose gel electrophoresis. The analyses revealed that there were two genotypes (ID and DD) for these two loci. In SBWC goats, 8-bp-InDel and 9-bp-InDel loci were significantly associated with heart girth (HG) and hip width (HW). Notably, individuals with DD genotype of 8-bp-InDel locus were superior while those with DD genotype of 9-bp-InDel locus were inferior. Correlation analyses of the four combined genotypes revealed significant associations with cannon circumference (CC), body height (BH), HG and HW. This work provides a foundation for the application of molecular marker-assisted selection (MAS) in goat breeding programs. Furthermore, the findings highlight the potential of the GATA4 gene and its genetic variations as valuable indicators for selecting goats with desirable growth traits.
Collapse
Affiliation(s)
- Xin Li
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Zhiying Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Qian Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Nazar Akhmet
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Haijing Zhu
- Life Science Research Center, Shaanxi Provincial Engineering and Technology Research Center of Cashmere Goats, Yulin University, Yulin 719000, China
| | - Zhengang Guo
- Bijie Institute of Animal Husbandry and Veterinary Science, Guizhou Province,Bijie 551700, China
| | - Chuanying Pan
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Xianyong Lan
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China.
| | - Sihuan Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China; College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui 230036, China.
| |
Collapse
|
29
|
Yue X, Luo Y, Wang J, Huang D. Monogenic Diabetes with GATA6 Mutations: Characterization of a Novel Family and a Comprehensive Analysis of the GATA6 Clinical and Genetics Traits. Mol Biotechnol 2024; 66:467-474. [PMID: 37204622 PMCID: PMC10881634 DOI: 10.1007/s12033-023-00761-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 04/26/2023] [Indexed: 05/20/2023]
Abstract
Monogenic diabetes caused by GATA6 mutations were almost described as neonatal diabetes, and the phenotypic spectrum has expanded since then. Our study underscores the broad phenotypic spectrum by reporting a de novo GATA6 mutation in a family. Furthermore, we reviewed related literature to summarize the clinical and genetic characteristics of monogenic diabetes with GATA6 mutations (n = 39) in order to improve clinicians' understanding of the disease. We conclude that the GATA6 missense mutation (c. 749G > T, p. Gly250Val) is not reported presently, characterized by adult-onset diabetes with pancreatic dysplasia and located in transcriptional activation region. Carries with GATA6 mutations (n = 55) have a variable spectrum of diabetes, ranging from neonatal (72.7%), childhood-onset (20%) to adults-onset (7.5%). 83.5% of patients with abnormal pancreatic development. Heart and hepatobillary defects are the most common abnormalities of extrapancreatic features. Most mutations with GATA6 are loss of function (LOF, 71.8%) and located in functional region. Functional studies mostly support loss-of-function as the pathophysiological mechanism. In conclusion, there are various types of diabetes with GATA6 mutations, which can also occur in adult diabetes. Phenotypic defects with GATA6 mutations are most frequently malformations of pancreas and heart. This highlights the importance of comprehensive clinical evaluation of identified carriers to evaluate their full phenotypic spectrum.
Collapse
Affiliation(s)
- Xing Yue
- Department of Metabolism and Endocrinology, The Third Hospital of Changsha, Laodongxi Road #176, Changsha, 410011, Hunan, People's Republic of China.
| | - Yaheng Luo
- Department of Metabolism and Endocrinology, The Third Hospital of Changsha, Laodongxi Road #176, Changsha, 410011, Hunan, People's Republic of China
| | - Jing Wang
- Department of Metabolism and Endocrinology, The Third Hospital of Changsha, Laodongxi Road #176, Changsha, 410011, Hunan, People's Republic of China
| | - Debin Huang
- Department of Metabolism and Endocrinology, The Third Hospital of Changsha, Laodongxi Road #176, Changsha, 410011, Hunan, People's Republic of China.
| |
Collapse
|
30
|
Payne S, Neal A, De Val S. Transcription factors regulating vasculogenesis and angiogenesis. Dev Dyn 2024; 253:28-58. [PMID: 36795082 PMCID: PMC10952167 DOI: 10.1002/dvdy.575] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 02/06/2023] [Accepted: 02/06/2023] [Indexed: 02/17/2023] Open
Abstract
Transcription factors (TFs) play a crucial role in regulating the dynamic and precise patterns of gene expression required for the initial specification of endothelial cells (ECs), and during endothelial growth and differentiation. While sharing many core features, ECs can be highly heterogeneous. Differential gene expression between ECs is essential to pattern the hierarchical vascular network into arteries, veins and capillaries, to drive angiogenic growth of new vessels, and to direct specialization in response to local signals. Unlike many other cell types, ECs have no single master regulator, instead relying on differing combinations of a necessarily limited repertoire of TFs to achieve tight spatial and temporal activation and repression of gene expression. Here, we will discuss the cohort of TFs known to be involved in directing gene expression during different stages of mammalian vasculogenesis and angiogenesis, with a primary focus on development.
Collapse
Affiliation(s)
- Sophie Payne
- Department of Physiology, Anatomy and GeneticsInstitute of Developmental and Regenerative Medicine, University of OxfordOxfordUK
| | - Alice Neal
- Department of Physiology, Anatomy and GeneticsInstitute of Developmental and Regenerative Medicine, University of OxfordOxfordUK
| | - Sarah De Val
- Department of Physiology, Anatomy and GeneticsInstitute of Developmental and Regenerative Medicine, University of OxfordOxfordUK
| |
Collapse
|
31
|
Zhao Y, Deng W, Wang Z, Wang Y, Zheng H, Zhou K, Xu Q, Bai L, Liu H, Ren Z, Jiang Z. Genetics of congenital heart disease. Clin Chim Acta 2024; 552:117683. [PMID: 38030030 DOI: 10.1016/j.cca.2023.117683] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/22/2023] [Accepted: 11/24/2023] [Indexed: 12/01/2023]
Abstract
During embryonic development, the cardiovascular system and the central nervous system exhibit a coordinated developmental process through intricate interactions. Congenital heart disease (CHD) refers to structural or functional abnormalities that occur during embryonic or prenatal heart development and is the most common congenital disorder. One of the most common complications in CHD patients is neurodevelopmental disorders (NDD). However, the specific mechanisms, connections, and precise ways in which CHD co-occurs with NDD remain unclear. According to relevant research, both genetic and non-genetic factors are significant contributors to the co-occurrence of sporadic CHD and NDD. Genetic variations, such as chromosomal abnormalities and gene mutations, play a role in the susceptibility to both CHD and NDD. Further research should aim to identify common molecular mechanisms that underlie the co-occurrence of CHD and NDD, possibly originating from shared genetic mutations or shared gene regulation. Therefore, this review article summarizes the current advances in the genetics of CHD co-occurring with NDD, elucidating the application of relevant gene detection techniques. This is done with the aim of exploring the genetic regulatory mechanisms of CHD co-occurring with NDD at the gene level and promoting research and treatment of developmental disorders related to the cardiovascular and central nervous systems.
Collapse
Affiliation(s)
- Yuanqin Zhao
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, International Joint Laboratory for Arteriosclerotic Disease Research of Hunan Province, University of South China, Hengyang 421001, China.
| | - Wei Deng
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, International Joint Laboratory for Arteriosclerotic Disease Research of Hunan Province, University of South China, Hengyang 421001, China.
| | - Zhaoyue Wang
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, International Joint Laboratory for Arteriosclerotic Disease Research of Hunan Province, University of South China, Hengyang 421001, China.
| | - Yanxia Wang
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, International Joint Laboratory for Arteriosclerotic Disease Research of Hunan Province, University of South China, Hengyang 421001, China.
| | - Hongyu Zheng
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, International Joint Laboratory for Arteriosclerotic Disease Research of Hunan Province, University of South China, Hengyang 421001, China.
| | - Kun Zhou
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, International Joint Laboratory for Arteriosclerotic Disease Research of Hunan Province, University of South China, Hengyang 421001, China.
| | - Qian Xu
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, International Joint Laboratory for Arteriosclerotic Disease Research of Hunan Province, University of South China, Hengyang 421001, China.
| | - Le Bai
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, International Joint Laboratory for Arteriosclerotic Disease Research of Hunan Province, University of South China, Hengyang 421001, China.
| | - Huiting Liu
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, International Joint Laboratory for Arteriosclerotic Disease Research of Hunan Province, University of South China, Hengyang 421001, China.
| | - Zhong Ren
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, International Joint Laboratory for Arteriosclerotic Disease Research of Hunan Province, University of South China, Hengyang 421001, China.
| | - Zhisheng Jiang
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, International Joint Laboratory for Arteriosclerotic Disease Research of Hunan Province, University of South China, Hengyang 421001, China.
| |
Collapse
|
32
|
Zhang K, Man X, Hu X, Tan P, Su J, Abbas MN, Cui H. GATA binding protein 6 regulates apoptosis in silkworms through interaction with poly (ADP-ribose) polymerase. Int J Biol Macromol 2024; 256:128515. [PMID: 38040165 DOI: 10.1016/j.ijbiomac.2023.128515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 11/26/2023] [Accepted: 11/28/2023] [Indexed: 12/03/2023]
Abstract
The GATA family of genes plays various roles in crucial biological processes, such as development, cell differentiation, and disease progression. However, the roles of GATA in insects have not been thoroughly explored. In this study, a genome-wide characterization of the GATA gene family in the silkworm, Bombyx mori, was conducted, revealing lineage-specific expression profiles. Notably, GATA6 is ubiquitously expressed across various developmental stages and tissues, with predominant expression in the midgut, ovaries, and Malpighian tubules. Overexpression of GATA6 inhibits cell growth and promotes apoptosis, whereas, in contrast, knockdown of PARP mitigates the apoptotic effects driven by GATA6 overexpression. Co-immunoprecipitation (co-IP) has demonstrated that GATA6 can interact with Poly (ADP-ribose) polymerase (PARP), suggesting that GATA6 may induce cell apoptosis by activating the enzyme's activity. These findings reveal a dynamic and regulatory relationship between GATA6 and PARP, suggesting a potential role for GATA6 as a key regulator in apoptosis through its interaction with PARP. This research deepens the understanding of the diverse roles of the GATA family in insects, shedding light on new avenues for studies in sericulture and pest management.
Collapse
Affiliation(s)
- Kui Zhang
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, Chongqing 400715, China.
| | - Xu Man
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, Chongqing 400715, China
| | - Xin Hu
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, Chongqing 400715, China
| | - Peng Tan
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, Chongqing 400715, China
| | - Jingjing Su
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, Chongqing 400715, China
| | - Muhammad Nadeem Abbas
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, Chongqing 400715, China
| | - Hongjuan Cui
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, Chongqing 400715, China.
| |
Collapse
|
33
|
Tao Y, Yang L, Han D, Zhao C, Song W, Wang H, Li X, Wang L. A GATA3 gene mutation that causes incorrect splicing and HDR syndrome: a case study and literature review. Front Genet 2023; 14:1254556. [PMID: 37693317 PMCID: PMC10485837 DOI: 10.3389/fgene.2023.1254556] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 08/15/2023] [Indexed: 09/12/2023] Open
Abstract
Hypoparathyroidism, deafness, and renal dysplasia (HDR) syndrome is an infrequent autosomal dominant genetic disorder caused by haploinsufficiency of the GATA binding protein 3 (GATA3) gene. In this report, we present a case study of a 6-year-old female patient manifesting seizures, tetany, hypoparathyroidism, and sensorineural hearing loss. A heterozygous variant, c.1050 + 2T>C, in the GATA3 gene was discovered by genetic testing. Moreover, a minigene splicing experiment revealed that the aforementioned variation causes incorrect splicing and premature cessation of protein synthesis. The clinical profile of the patient closely resembles the well-known phenomenology of HDR syndrome, supporting the association between the condition and the GATA3 variant. The challenges in early diagnosis highlight the importance of employing next-generation sequencing for timely detection of rare diseases. Additionally, this research contributes to a deeper understanding of the genotype-phenotype correlations in HDR syndrome, underscoring the critical need for improved diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Yilun Tao
- Medical Genetic Center, Changzhi Maternal and Child Health Care Hospital, Changzhi, Shanxi, China
| | - Lin Yang
- Department of Pediatrics, Changzhi Maternal and Child Health Care Hospital, Changzhi, Shanxi, China
| | - Dong Han
- Medical Genetic Center, Changzhi Maternal and Child Health Care Hospital, Changzhi, Shanxi, China
| | - Chen Zhao
- Department of Pediatrics, Changzhi Maternal and Child Health Care Hospital, Changzhi, Shanxi, China
| | - Wenxia Song
- Obstetrics Department, Changzhi Maternal and Child Health Care Hospital, Changzhi, Shanxi, China
| | - Haiwei Wang
- Science and Education Division, Changzhi Maternal and Child Health Care Hospital, Changzhi, Shanxi, China
| | - Xiaoze Li
- Medical Genetic Center, Changzhi Maternal and Child Health Care Hospital, Changzhi, Shanxi, China
| | - Lihong Wang
- Department of Pediatrics, Changzhi Maternal and Child Health Care Hospital, Changzhi, Shanxi, China
| |
Collapse
|
34
|
Santos EW, Dias CC, Fock RA, Paredes-Gamero EJ, Zheng YM, Wang YX, Borelli P. Protein restriction impairs the response activation/responsivity of MAPK signaling pathway of hematopoietic stem cells. Nutr Res 2023; 116:12-23. [PMID: 37320947 DOI: 10.1016/j.nutres.2023.05.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 05/11/2023] [Accepted: 05/20/2023] [Indexed: 06/17/2023]
Abstract
Protein restriction (PR) leads to bone marrow hypoplasia with changes in stromal cellularity components of the extracellular matrix in hematopoietic stem cells (HSCs). However, the underlying signaling mechanisms are poorly understood. We hypothesize that PR impairs the HSC mitogen-activated protein kinase (MAPK) signaling pathway response activation. Our aim is to evaluate the activation of MAPK and interleukin-3 (IL-3) proteins in HSC to explain PR-induced bone marrow hypoplasia, which causes altered proliferation and differentiation. C57BL/6 male mice were subjected to a low-protein diet (2% protein) or normoproteic (12% protein). PKC, PLCγ2, CaMKII, AKT, STAT3/5, ERK1/2, JNK, and p38d phosphorylation were evaluated by flow cytometry, and GATA1/2, PU.1, C/EBPα, NF-E2, and Ikz-3 genes (mRNAs) assessed by quantitative real-time-polymerase chain reaction. Pathway proteins, such as PLCγ2, JAK2, STAT3/5, PKC, and RAS do not respond to the IL-3 stimulus in PR, leading to lower activation of ERK1/2 and Ca2+ signaling pathways, consequently lowering the production of hematopoietic transcription factors. Colony forming units granulocyte-macrophage and colony forming units macrophage formation are impaired in PR even after being stimulated with IL-3. Long-term hematopoietic stem cells, short-term hematopoietic stem cells, granulocyte myeloid progenitor, and megakaryocyte-erythroid progenitor cells were significantly reduced in PR animals. This study shows for the first time that activation of MAPK pathway key proteins in HSCs is impaired in cases of PR. Several pathway proteins, such as PLCγ2, JAK2, STAT3, PKC, and RAS do not respond to IL-3 stimulation, leading to lower activation of extracellular signal-regulated protein kinase 1/2 and consequently lower production of hematopoietic transcription factors GATA1/2, PU.1, C/EBPa, NF-E2, and Ikz3. These changes result in a reduction in colony-forming units, proliferation, and differentiation, leading to hypocellularity.
Collapse
Affiliation(s)
- Ed Wilson Santos
- Department of Molecular and Cellular Physiology, Albany Medical College, NY, USA; Experimental Hematology Laboratory, Department of Clinical e Toxicological Analyses, Faculty of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo, Brazil.
| | - Carolina Carvalho Dias
- Experimental Hematology Laboratory, Department of Clinical e Toxicological Analyses, Faculty of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo, Brazil.
| | - Ricardo Ambrósio Fock
- Experimental Hematology Laboratory, Department of Clinical e Toxicological Analyses, Faculty of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo, Brazil.
| | - Edgar Julian Paredes-Gamero
- Faculty of Pharmaceutical Sciences, Food and Nutrition (FACFAN), Federal University of Mato Grosso do Sul, 79070-900, Campo Grande, Mato Grosso do Sul, Brazil.
| | - Yun-Min Zheng
- Department of Molecular and Cellular Physiology, Albany Medical College, NY, USA.
| | - Yong-Xiao Wang
- Department of Molecular and Cellular Physiology, Albany Medical College, NY, USA.
| | - Primavera Borelli
- Experimental Hematology Laboratory, Department of Clinical e Toxicological Analyses, Faculty of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo, Brazil.
| |
Collapse
|
35
|
Yang L, Fan Q, Wang J, Yang X, Yuan J, Li Y, Sun X, Wang Y. TRPS1 regulates the opposite effect of progesterone via RANKL in endometrial carcinoma and breast carcinoma. Cell Death Discov 2023; 9:185. [PMID: 37344459 DOI: 10.1038/s41420-023-01484-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 06/05/2023] [Accepted: 06/14/2023] [Indexed: 06/23/2023] Open
Abstract
Medroxyprogesterone (MPA) has therapeutic effect on endometrial carcinoma (EC), while it could promote the carcinogenesis of breast cancer (BC) by activating receptor activator of NF-kB ligand (RANKL). However, the selective mechanism of MPA in endometrium and breast tissue remains obscure. Multiomics analysis of chromatin immunoprecipitation sequencing (ChIP-seq) and RNA sequencing (RNA-seq) were performed in cell lines derived from endometrial cancer and mammary tumor to screen the differential co-regulatory factors of progesterone receptor (PR). Dual-luciferase assays and ChIP-PCR assays were used to validate the transcriptional regulation. Co-immunoprecipitation (Co-IP) and immunofluorescence assays were carried out to explore molecular interactions between PR, the cofactor transcriptional repressor GATA binding 1 (TRPS1), and histone deacetylase 2 (HDAC2). Subsequently, human endometrial cancer/breast cancer xenograft models were established to investigate the regulation effect of cofactor TRPS1 in vivo. In the current study, we found that MPA downregulated RANKL expression in a time- and dose-dependent manner in EC, while had the opposite effect on BC. Then PR could recruit cofactor TRPS1 to the promoter of RANKL, leading to histone deacetylation of RANKL to repress its transcription in EC, whereas MPA disassociated the PR/TRPS1/HDAC2 complex to enhance RANKL histone acetylation in BC. Therefore, TRPS1, the coregulator recruited by PR played a critical role in the selective mechanism of progesterone in EC and BC and could become a potential candidate for targeted therapy to improve the anticancer effect of MPA on EC and avoid its carcinogenic effect on BC.
Collapse
Affiliation(s)
- Linlin Yang
- Department of Gynecological Oncology, The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Municipal Key Clinical Specialty, Shanghai, China
- Shanghai Key Laboratory of Embryo Original Disease, Shanghai, China
| | - Qiong Fan
- Department of Gynecological Oncology, The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Municipal Key Clinical Specialty, Shanghai, China
- Shanghai Key Laboratory of Embryo Original Disease, Shanghai, China
| | - Jing Wang
- Department of Gynecological Oncology, The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Municipal Key Clinical Specialty, Shanghai, China
- Shanghai Key Laboratory of Embryo Original Disease, Shanghai, China
| | - Xiaoming Yang
- Department of Gynecological Oncology, The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Municipal Key Clinical Specialty, Shanghai, China
- Shanghai Key Laboratory of Embryo Original Disease, Shanghai, China
| | - Jiangjing Yuan
- Department of Gynecological Oncology, The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Municipal Key Clinical Specialty, Shanghai, China
- Shanghai Key Laboratory of Embryo Original Disease, Shanghai, China
| | - Yuhong Li
- Department of Gynecological Oncology, The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Municipal Key Clinical Specialty, Shanghai, China
- Shanghai Key Laboratory of Embryo Original Disease, Shanghai, China
| | - Xiao Sun
- Department of Gynecological Oncology, The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
- Shanghai Municipal Key Clinical Specialty, Shanghai, China.
- Shanghai Key Laboratory of Embryo Original Disease, Shanghai, China.
| | - Yudong Wang
- Department of Gynecological Oncology, The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
- Shanghai Municipal Key Clinical Specialty, Shanghai, China.
- Shanghai Key Laboratory of Embryo Original Disease, Shanghai, China.
| |
Collapse
|
36
|
Jalili V, Cremona MA, Palluzzi F. Rescuing biologically relevant consensus regions across replicated samples. BMC Bioinformatics 2023; 24:240. [PMID: 37286963 PMCID: PMC10246347 DOI: 10.1186/s12859-023-05340-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 05/16/2023] [Indexed: 06/09/2023] Open
Abstract
BACKGROUND Protein-DNA binding sites of ChIP-seq experiments are identified where the binding affinity is significant based on a given threshold. The choice of the threshold is a trade-off between conservative region identification and discarding weak, but true binding sites. RESULTS We rescue weak binding sites using MSPC, which efficiently exploits replicates to lower the threshold required to identify a site while keeping a low false-positive rate, and we compare it to IDR, a widely used post-processing method for identifying highly reproducible peaks across replicates. We observe several master transcription regulators (e.g., SP1 and GATA3) and HDAC2-GATA1 regulatory networks on rescued regions in K562 cell line. CONCLUSIONS We argue the biological relevance of weak binding sites and the information they add when rescued by MSPC. An implementation of the proposed extended MSPC methodology and the scripts to reproduce the performed analysis are freely available at https://genometric.github.io/MSPC/ ; MSPC is distributed as a command-line application and an R package available from Bioconductor ( https://doi.org/doi:10.18129/B9.bioc.rmspc ).
Collapse
Affiliation(s)
- Vahid Jalili
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| | - Marzia A Cremona
- Department of Operations and Decision Systems, Université Laval, Quebec, Canada.
- CHU de Québec - Université Laval Research Center, Quebec, Canada.
| | - Fernando Palluzzi
- Department of Brain and Behavioral Sciences, Università di Pavia, Pavia, Italy.
| |
Collapse
|
37
|
Toyama T, Kudryashova TV, Ichihara A, Lenna S, Looney A, Shen Y, Jiang L, Teos L, Avolio T, Lin D, Kaplan U, Marden G, Dambal V, Goncharov D, Delisser H, Lafyatis R, Seta F, Goncharova EA, Trojanowska M. GATA6 coordinates cross-talk between BMP10 and oxidative stress axis in pulmonary arterial hypertension. Sci Rep 2023; 13:6593. [PMID: 37087509 PMCID: PMC10122657 DOI: 10.1038/s41598-023-33779-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 04/19/2023] [Indexed: 04/24/2023] Open
Abstract
Pulmonary arterial hypertension (PAH) is a life-threatening condition characterized by a progressive increase in pulmonary vascular resistance leading to right ventricular failure and often death. Here we report that deficiency of transcription factor GATA6 is a shared pathological feature of PA endothelial (PAEC) and smooth muscle cells (PASMC) in human PAH and experimental PH, which is responsible for maintenance of hyper-proliferative cellular phenotypes, pulmonary vascular remodeling and pulmonary hypertension. We further show that GATA6 acts as a transcription factor and direct positive regulator of anti-oxidant enzymes, and its deficiency in PAH/PH pulmonary vascular cells induces oxidative stress and mitochondrial dysfunction. We demonstrate that GATA6 is regulated by the BMP10/BMP receptors axis and its loss in PAECs and PASMC in PAH supports BMPR deficiency. In addition, we have established that GATA6-deficient PAEC, acting in a paracrine manner, increase proliferation and induce other pathological changes in PASMC, supporting the importance of GATA6 in pulmonary vascular cell communication. Treatment with dimethyl fumarate resolved oxidative stress and BMPR deficiency, reversed hemodynamic changes caused by endothelial Gata6 loss in mice, and inhibited proliferation and induced apoptosis in human PAH PASMC, strongly suggesting that targeting GATA6 deficiency may provide a therapeutic advance for patients with PAH.
Collapse
Affiliation(s)
- Tetsuo Toyama
- Arthritis and Autoimmune Diseases Center, Boston University School of Medicine, 75 E. Newton St. Evans Building, Boston, MA, 02118, USA
| | - Tatiana V Kudryashova
- Pittsburgh Lung, Blood and Heart Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Division of Pulmonary, Allergy and Critical Care, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Division of Pulmonary, Critical Care, and Sleep Medicine, Davis School of Medicine, University of California, Davis, CA, USA
| | - Asako Ichihara
- Arthritis and Autoimmune Diseases Center, Boston University School of Medicine, 75 E. Newton St. Evans Building, Boston, MA, 02118, USA
| | - Stefania Lenna
- Arthritis and Autoimmune Diseases Center, Boston University School of Medicine, 75 E. Newton St. Evans Building, Boston, MA, 02118, USA
| | - Agnieszka Looney
- Arthritis and Autoimmune Diseases Center, Boston University School of Medicine, 75 E. Newton St. Evans Building, Boston, MA, 02118, USA
| | - Yuanjun Shen
- Pittsburgh Lung, Blood and Heart Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Division of Pulmonary, Critical Care, and Sleep Medicine, Davis School of Medicine, University of California, Davis, CA, USA
| | - Lifeng Jiang
- Division of Pulmonary, Critical Care, and Sleep Medicine, Davis School of Medicine, University of California, Davis, CA, USA
| | - Leyla Teos
- Division of Pulmonary, Critical Care, and Sleep Medicine, Davis School of Medicine, University of California, Davis, CA, USA
| | - Theodore Avolio
- Pittsburgh Lung, Blood and Heart Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Derek Lin
- Division of Pulmonary, Critical Care, and Sleep Medicine, Davis School of Medicine, University of California, Davis, CA, USA
| | - Ulas Kaplan
- Arthritis and Autoimmune Diseases Center, Boston University School of Medicine, 75 E. Newton St. Evans Building, Boston, MA, 02118, USA
| | - Grace Marden
- Arthritis and Autoimmune Diseases Center, Boston University School of Medicine, 75 E. Newton St. Evans Building, Boston, MA, 02118, USA
| | - Vrinda Dambal
- Arthritis and Autoimmune Diseases Center, Boston University School of Medicine, 75 E. Newton St. Evans Building, Boston, MA, 02118, USA
| | - Dmitry Goncharov
- Pittsburgh Lung, Blood and Heart Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Division of Pulmonary, Critical Care, and Sleep Medicine, Davis School of Medicine, University of California, Davis, CA, USA
| | - Horace Delisser
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Robert Lafyatis
- Division of Rheumatology and Clinical Rheumatology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Francesca Seta
- Arthritis and Autoimmune Diseases Center, Boston University School of Medicine, 75 E. Newton St. Evans Building, Boston, MA, 02118, USA
| | - Elena A Goncharova
- Pittsburgh Lung, Blood and Heart Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
- Division of Pulmonary, Allergy and Critical Care, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
- Division of Pulmonary, Critical Care, and Sleep Medicine, Davis School of Medicine, University of California, Davis, CA, USA.
- The Genome and Biomedical Science Facility (GBSF), Rm 6523, 451 Health Sciences Drive, Davis, CA, 95616, USA.
| | - Maria Trojanowska
- Arthritis and Autoimmune Diseases Center, Boston University School of Medicine, 75 E. Newton St. Evans Building, Boston, MA, 02118, USA.
| |
Collapse
|
38
|
Yang X, Mei C, Nie H, Zhou J, Ou C, He X. Expression profile and prognostic values of GATA family members in kidney renal clear cell carcinoma. Aging (Albany NY) 2023; 15:2170-2188. [PMID: 36961416 PMCID: PMC10085589 DOI: 10.18632/aging.204607] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 03/08/2023] [Indexed: 03/25/2023]
Abstract
To investigate the possible diagnostic and prognostic biomarkers of kidney renal clear cell carcinoma (KIRC), an integrated study of accumulated data was conducted to obtain more reliable information and more feasible measures. Using the Tumor Immune Estimation Resource (TIMER), University of Alabama at Birmingham Cancer Data Analysis Portal (UALCAN), Human Protein Atlas (HPA), Kaplan-Meier plotter database, Gene Expression Profiling Interactive Analysis (GEPIA2) database, cBioPortal, and Metascape, we analyzed the expression profiles and prognoses of six members of the GATA family in patients with KIRC. Compared to normal samples, KIRC samples showed significantly lower GATA2/3/6 mRNA and protein expression levels. KIRC's pathological grades, clinical stages, and lymph node metastases were closely related to GATA2 and GATA5 levels. Patients with KIRC and high GATA2 and GATA5 expression had better overall survival (OS) and recurrence-free survival (RFS), while those with higher expression of GATA3/4/6 had worse outcomes. The role and underlying mechanisms of the GATA family in cell cycle, cell proliferation, metabolic processes, and other aspects were evaluated based on Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) enrichment analyses. Furthermore, we found that infiltrating immune cells were highly correlated with GATA expression profiles. These results showed that GATA family members may serve as prognostic biomarkers and therapeutic targets for KIRC.
Collapse
Affiliation(s)
- Xuejie Yang
- Department of Pathology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Cheng Mei
- Department of Blood Transfusion, Xiangya Hospital, Clinical Transfusion Research Center, Central South University, Changsha 410008, Hunan, China
| | - Hui Nie
- Department of Pathology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Jianhua Zhou
- Department of Pathology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Chunlin Ou
- Department of Pathology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Xiaoyun He
- Departments of Ultrasound Imaging, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| |
Collapse
|
39
|
Lin KC, Yeh JN, Shao PL, Chiang JY, Sung PH, Huang CR, Chen YL, Yip HK, Guo J. Jaggeds/Notches promote endothelial-mesenchymal transition-mediated pulmonary arterial hypertension via upregulation of the expression of GATAs. J Cell Mol Med 2023; 27:1110-1130. [PMID: 36942326 PMCID: PMC10098301 DOI: 10.1111/jcmm.17723] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 02/23/2023] [Accepted: 02/25/2023] [Indexed: 03/23/2023] Open
Abstract
This study tested the hypothesis that Jagged2/Notches promoted the endothelial-mesenchymal transition (endMT)-mediated pulmonary arterial hypertension (PAH) (i.e. induction by monocrotaline [MCT]/63 mg/kg/subcutaneous injection) through increasing the expression of GATA-binding factors which were inhibited by propylthiouracil (PTU) (i.e. 0.1% in water for daily drinking since Day 5 after PAH induction) in rodent. As compared with the control (i.e. HUVECs), the protein expressions of GATAs (3/4/6) and endMT markers (Snail/Zeb1/N-cadherin/vimentin/fibronectin/α-SMA/p-Smad2) were significantly reduced, whereas the endothelial-phenotype markers (CD31/E-cadherin) were significantly increased in silenced JAG2 gene or in silenced GATA3 gene of HUVECs (all p < 0.001). As compared with the control, the protein expressions of intercellular signallings (GATAs [3/4/6], Jagged1/2, notch1/2 and Snail/Zeb1/N-cadherin/vimentin/fibronectin/α-SMA/p-Smad2) were significantly upregulated in TGF-ß/monocrotaline-treated HUVECs that were significantly reversed by PTU treatment (all p < 0.001). By Day 42, the results of animal study demonstrated that the right-ventricular systolic-blood-pressure (RVSBP), RV weight (RVW) and lung injury/fibrotic scores were significantly increased in MCT group than sham-control (SC) that were reversed in MCT + PTU groups, whereas arterial oxygen saturation (%) and vasorelaxation/nitric oxide production of PA exhibited an opposite pattern of RVW among the groups (all p < 0.0001). The protein expressions of hypertrophic (ß-MHC)/pressure-overload (BNP)/oxidative-stress (NOX-1/NOX-2) biomarkers in RV and the protein expressions of intercellular signalling (GATAs3/4/6, Jagged1/2, notch1/2) and endMT markers (Snail/Zeb1/N-cadherin/vimentin/fibronectin/TGF-ß/α-SMA/p-Smad2) in lung parenchyma displayed an identical pattern of RVW among the groups (all p < 0.0001). Jagged-Notch-GATAs signalling, endMT markers and RVSBP that were increased in PAH were suppressed by PTU.
Collapse
Affiliation(s)
- Kun-Chen Lin
- Department of Anesthesiology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Jui-Ning Yeh
- Department of Cardiology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Pei-Lin Shao
- Department of Nursing, Asia University, Kaohsiung, Taiwan
| | - John Y Chiang
- Department of Computer Science and Engineering, National Sun Yat-Sen University, Kaohsiung, Taiwan
- Department of Healthcare Administration and Medical Informatics, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Pei-Hsun Sung
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
- Center for Shockwave Medicine and Tissue Engineering, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Chi-Ruei Huang
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
- Center for Shockwave Medicine and Tissue Engineering, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Yi-Ling Chen
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Hon-Kan Yip
- Department of Nursing, Asia University, Kaohsiung, Taiwan
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
- Center for Shockwave Medicine and Tissue Engineering, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
- Division of Cardiology, Department of Internal Medicine, Xiamen Chang Gung Hospital, Xiamen, China
| | - Jun Guo
- Department of Cardiology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| |
Collapse
|
40
|
Bai YM, Yang F, Luo P, Xie LL, Chen JH, Guan YD, Zhou HC, Xu TF, Hao HW, Chen B, Zhao JH, Liang CL, Dai LY, Geng QS, Wang JG. Single-cell transcriptomic dissection of the cellular and molecular events underlying the triclosan-induced liver fibrosis in mice. Mil Med Res 2023; 10:7. [PMID: 36814339 PMCID: PMC9945401 DOI: 10.1186/s40779-023-00441-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 01/16/2023] [Indexed: 02/24/2023] Open
Abstract
BACKGROUND Triclosan [5-chloro-2-(2,4-dichlorophenoxy) phenol, TCS], a common antimicrobial additive in many personal care and health care products, is frequently detected in human blood and urine. Therefore, it has been considered an emerging and potentially toxic pollutant in recent years. Long-term exposure to TCS has been suggested to exert endocrine disruption effects, and promote liver fibrogenesis and tumorigenesis. This study was aimed at clarifying the underlying cellular and molecular mechanisms of hepatotoxicity effect of TCS at the initiation stage. METHODS C57BL/6 mice were exposed to different dosages of TCS for 2 weeks and the organ toxicity was evaluated by various measurements including complete blood count, histological analysis and TCS quantification. Single cell RNA sequencing (scRNA-seq) was then carried out on TCS- or mock-treated mouse livers to delineate the TCS-induced hepatotoxicity. The acquired single-cell transcriptomic data were analyzed from different aspects including differential gene expression, transcription factor (TF) regulatory network, pseudotime trajectory, and cellular communication, to systematically dissect the molecular and cellular events after TCS exposure. To verify the TCS-induced liver fibrosis, the expression levels of key fibrogenic proteins were examined by Western blotting, immunofluorescence, Masson's trichrome and Sirius red staining. In addition, normal hepatocyte cell MIHA and hepatic stellate cell LX-2 were used as in vitro cell models to experimentally validate the effects of TCS by immunological, proteomic and metabolomic technologies. RESULTS We established a relatively short term TCS exposure murine model and found the TCS mainly accumulated in the liver. The scRNA-seq performed on the livers of the TCS-treated and control group profiled the gene expressions of > 76,000 cells belonging to 13 major cell types. Among these types, hepatocytes and hepatic stellate cells (HSCs) were significantly increased in TCS-treated group. We found that TCS promoted fibrosis-associated proliferation of hepatocytes, in which Gata2 and Mef2c are the key driving TFs. Our data also suggested that TCS induced the proliferation and activation of HSCs, which was experimentally verified in both liver tissue and cell model. In addition, other changes including the dysfunction and capillarization of endothelial cells, an increase of fibrotic characteristics in B plasma cells, and M2 phenotype-skewing of macrophage cells, were also deduced from the scRNA-seq analysis, and these changes are likely to contribute to the progression of liver fibrosis. Lastly, the key differential ligand-receptor pairs involved in cellular communications were identified and we confirmed the role of GAS6_AXL interaction-mediated cellular communication in promoting liver fibrosis. CONCLUSIONS TCS modulates the cellular activities and fates of several specific cell types (including hepatocytes, HSCs, endothelial cells, B cells, Kupffer cells and liver capsular macrophages) in the liver, and regulates the ligand-receptor interactions between these cells, thereby promoting the proliferation and activation of HSCs, leading to liver fibrosis. Overall, we provide the first comprehensive single-cell atlas of mouse livers in response to TCS and delineate the key cellular and molecular processes involved in TCS-induced hepatotoxicity and fibrosis.
Collapse
Affiliation(s)
- Yun-Meng Bai
- Department of Nephrology, Shenzhen Key Laboratory of Kidney Diseases, and Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People’s Hospital, the First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, 518020 China
| | - Fan Yang
- Department of Urology, Shenzhen People’s Hospital, the First Affiliated Hospital, Southern University Science and Technology, the Second Clinical Medical College, Jinan University, Shenzhen, 518020 China
- Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University, Guangzhou, 510632 China
| | - Piao Luo
- Department of Urology, Shenzhen People’s Hospital, the First Affiliated Hospital, Southern University Science and Technology, the Second Clinical Medical College, Jinan University, Shenzhen, 518020 China
| | - Lu-Lin Xie
- Department of Urology, Shenzhen People’s Hospital, the First Affiliated Hospital, Southern University Science and Technology, the Second Clinical Medical College, Jinan University, Shenzhen, 518020 China
| | - Jun-Hui Chen
- Department of Nephrology, Shenzhen Key Laboratory of Kidney Diseases, and Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People’s Hospital, the First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, 518020 China
| | - Yu-Dong Guan
- Department of Urology, Shenzhen People’s Hospital, the First Affiliated Hospital, Southern University Science and Technology, the Second Clinical Medical College, Jinan University, Shenzhen, 518020 China
| | - Hong-Chao Zhou
- Department of Urology, Shenzhen People’s Hospital, the First Affiliated Hospital, Southern University Science and Technology, the Second Clinical Medical College, Jinan University, Shenzhen, 518020 China
| | - Teng-Fei Xu
- Department of Urology, Shenzhen People’s Hospital, the First Affiliated Hospital, Southern University Science and Technology, the Second Clinical Medical College, Jinan University, Shenzhen, 518020 China
| | - Hui-Wen Hao
- Department of Urology, Shenzhen People’s Hospital, the First Affiliated Hospital, Southern University Science and Technology, the Second Clinical Medical College, Jinan University, Shenzhen, 518020 China
| | - Bing Chen
- Department of Urology, Shenzhen People’s Hospital, the First Affiliated Hospital, Southern University Science and Technology, the Second Clinical Medical College, Jinan University, Shenzhen, 518020 China
- Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University, Guangzhou, 510632 China
| | - Jia-Hui Zhao
- Department of Urology, Shenzhen People’s Hospital, the First Affiliated Hospital, Southern University Science and Technology, the Second Clinical Medical College, Jinan University, Shenzhen, 518020 China
- Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University, Guangzhou, 510632 China
| | - Cai-Ling Liang
- Department of Urology, Shenzhen People’s Hospital, the First Affiliated Hospital, Southern University Science and Technology, the Second Clinical Medical College, Jinan University, Shenzhen, 518020 China
| | - Ling-Yun Dai
- Department of Nephrology, Shenzhen Key Laboratory of Kidney Diseases, and Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People’s Hospital, the First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, 518020 China
- Department of Urology, Shenzhen People’s Hospital, the First Affiliated Hospital, Southern University Science and Technology, the Second Clinical Medical College, Jinan University, Shenzhen, 518020 China
| | - Qing-Shan Geng
- Department of Nephrology, Shenzhen Key Laboratory of Kidney Diseases, and Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People’s Hospital, the First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, 518020 China
- Department of Urology, Shenzhen People’s Hospital, the First Affiliated Hospital, Southern University Science and Technology, the Second Clinical Medical College, Jinan University, Shenzhen, 518020 China
| | - Ji-Gang Wang
- Department of Nephrology, Shenzhen Key Laboratory of Kidney Diseases, and Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People’s Hospital, the First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, 518020 China
- Department of Urology, Shenzhen People’s Hospital, the First Affiliated Hospital, Southern University Science and Technology, the Second Clinical Medical College, Jinan University, Shenzhen, 518020 China
- Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700 China
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515 China
- Center for Reproductive Medicine, Dongguan Maternal and Child Health Care Hospital, Southern Medical University, Dongguan, 523125 Guangdong China
| |
Collapse
|
41
|
Over-Expressed GATA-1S, the Short Isoform of the Hematopoietic Transcriptional Factor GATA-1, Inhibits Ferroptosis in K562 Myeloid Leukemia Cells by Preventing Lipid Peroxidation. Antioxidants (Basel) 2023; 12:antiox12030537. [PMID: 36978786 PMCID: PMC10045147 DOI: 10.3390/antiox12030537] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 02/15/2023] [Accepted: 02/18/2023] [Indexed: 02/23/2023] Open
Abstract
Ferroptosis is a recently recognized form of regulated cell death involving lipid peroxidation. Glutathione peroxidase 4 (GPX4) plays a central role in the regulation of ferroptosis through the suppression of lipid peroxidation generation. Connections have been reported between ferroptosis, lipid metabolism, cancer onset, and drug resistance. Recently, interest has grown in ferroptosis induction as a potential strategy to overcome drug resistance in hematological malignancies. GATA-1 is a key transcriptional factor controlling hematopoiesis-related gene expression. Two GATA-1 isoforms, the full-length protein (GATA-1FL) and a shorter isoform (GATA-1S), are described. A balanced GATA-1FL/GATA-1S ratio helps to control hematopoiesis, with GATA-1S overexpression being associated with hematological malignancies by promoting proliferation and survival pathways in hematopoietic precursors. Recently, optical techniques allowed us to highlight different lipid profiles associated with the expression of GATA-1 isoforms, thus raising the hypothesis that ferroptosis-regulated processes could be involved. Lipidomic and functional analysis were conducted to elucidate these mechanisms. Studies on lipid peroxidation production, cell viability, cell death, and gene expression were used to evaluate the impact of GPX4 inhibition. Here, we provide the first evidence that over-expressed GATA-1S prevents K562 myeloid leukemia cells from lipid peroxidation-induced ferroptosis. Targeting ferroptosis is a promising strategy to overcome chemoresistance. Therefore, our results could provide novel potential therapeutic approaches and targets to overcome drug resistance in hematological malignancies.
Collapse
|
42
|
Nagel S. The Role of IRX Homeobox Genes in Hematopoietic Progenitors and Leukemia. Genes (Basel) 2023; 14:genes14020297. [PMID: 36833225 PMCID: PMC9957183 DOI: 10.3390/genes14020297] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/17/2023] [Accepted: 01/20/2023] [Indexed: 01/24/2023] Open
Abstract
IRX genes are members of the TALE homeobox gene class and encode six related transcription factors (IRX1-IRX6) controlling development and cell differentiation of several tissues in humans. Classification of TALE homeobox gene expression patterns for the hematopoietic compartment, termed TALE-code, has revealed exclusive IRX1 activity in pro-B-cells and megakaryocyte erythroid progenitors (MEPs), highlighting its specific contribution to developmental processes at these early stages of hematopoietic lineage differentiation. Moreover, aberrant expression of IRX homeobox genes IRX1, IRX2, IRX3 and IRX5 has been detected in hematopoietic malignancies, including B-cell precursor acute lymphoblastic leukemia (BCP-ALL), T-cell ALL, and some subtypes of acute myeloid leukemia (AML). Expression analyses of patient samples and experimental studies using cell lines and mouse models have revealed oncogenic functions in cell differentiation arrest and upstream and downstream genes, thus, revealing normal and aberrant regulatory networks. These studies have shown how IRX genes play key roles in the development of both normal blood and immune cells, and hematopoietic malignancies. Understanding their biology serves to illuminate developmental gene regulation in the hematopoietic compartment, and may improve diagnostic classification of leukemias in the clinic and reveal new therapeutic targets and strategies.
Collapse
Affiliation(s)
- Stefan Nagel
- Department of Human and Animal Cell Cultures, Leibniz-Institute DSMZ, 38124 Braunschweig, Germany
| |
Collapse
|
43
|
Yang S, Wang L, Wu Y, Wu A, Huang F, Tang X, Kantawong F, Anuchapreeda S, Qin D, Mei Q, Chen J, Huang X, Zhang C, Wu J. Apoptosis in megakaryocytes: Safeguard and threat for thrombopoiesis. Front Immunol 2023; 13:1025945. [PMID: 36685543 PMCID: PMC9845629 DOI: 10.3389/fimmu.2022.1025945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 12/09/2022] [Indexed: 01/06/2023] Open
Abstract
Platelets, generated from precursor megakaryocytes (MKs), are central mediators of hemostasis and thrombosis. The process of thrombopoiesis is extremely complex, regulated by multiple factors, and related to many cellular events including apoptosis. However, the role of apoptosis in thrombopoiesis has been controversial for many years. Some researchers believe that apoptosis is an ally of thrombopoiesis and platelets production is apoptosis-dependent, while others have suggested that apoptosis is dispensable for thrombopoiesis, and is even inhibited during this process. In this review, we will focus on this conflict, discuss the relationship between megakaryocytopoiesis, thrombopoiesis and apoptosis. In addition, we also consider why such a vast number of studies draw opposite conclusions of the role of apoptosis in thrombopoiesis, and try to figure out the truth behind the mystery. This review provides more comprehensive insights into the relationship between megakaryocytopoiesis, thrombopoiesis, and apoptosis and finds some clues for the possible pathological mechanisms of platelet disorders caused by abnormal apoptosis.
Collapse
Affiliation(s)
- Shuo Yang
- School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Long Wang
- School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Yuesong Wu
- School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Anguo Wu
- School of Pharmacy, Southwest Medical University, Luzhou, China
- Institute of Cardiovascular Research, the Key Laboratory of Medical Electrophysiology, Ministry of Education of China, Medical Key Laboratory for Drug Discovery and Druggability Evaluation of Sichuan Province, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Luzhou, China
| | - Feihong Huang
- School of Pharmacy, Southwest Medical University, Luzhou, China
- Institute of Cardiovascular Research, the Key Laboratory of Medical Electrophysiology, Ministry of Education of China, Medical Key Laboratory for Drug Discovery and Druggability Evaluation of Sichuan Province, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Luzhou, China
| | - Xiaoqin Tang
- School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Fahsai Kantawong
- Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
| | - Songyot Anuchapreeda
- Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
| | - Dalian Qin
- School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Qibing Mei
- School of Pharmacy, Southwest Medical University, Luzhou, China
- School of Chinese Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Jianping Chen
- School of Chinese Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Xinwu Huang
- School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Chunxiang Zhang
- Institute of Cardiovascular Research, the Key Laboratory of Medical Electrophysiology, Ministry of Education of China, Medical Key Laboratory for Drug Discovery and Druggability Evaluation of Sichuan Province, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Luzhou, China
| | - Jianming Wu
- School of Pharmacy, Southwest Medical University, Luzhou, China
- Institute of Cardiovascular Research, the Key Laboratory of Medical Electrophysiology, Ministry of Education of China, Medical Key Laboratory for Drug Discovery and Druggability Evaluation of Sichuan Province, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Luzhou, China
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| |
Collapse
|
44
|
Mannstadt M, Cianferotti L, Gafni RI, Giusti F, Kemp EH, Koch CA, Roszko KL, Yao L, Guyatt GH, Thakker RV, Xia W, Brandi ML. Hypoparathyroidism: Genetics and Diagnosis. J Bone Miner Res 2022; 37:2615-2629. [PMID: 36375809 DOI: 10.1002/jbmr.4667] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 07/22/2022] [Accepted: 07/31/2022] [Indexed: 01/05/2023]
Abstract
This narrative report summarizes diagnostic criteria for hypoparathyroidism and describes the clinical presentation and underlying genetic causes of the nonsurgical forms. We conducted a comprehensive literature search from January 2000 to January 2021 and included landmark articles before 2000, presenting a comprehensive update of these topics and suggesting a research agenda to improve diagnosis and, eventually, the prognosis of the disease. Hypoparathyroidism, which is characterized by insufficient secretion of parathyroid hormone (PTH) leading to hypocalcemia, is diagnosed on biochemical grounds. Low albumin-adjusted calcium or ionized calcium with concurrent inappropriately low serum PTH concentration are the hallmarks of the disease. In this review, we discuss the characteristics and pitfalls in measuring calcium and PTH. We also undertook a systematic review addressing the utility of measuring calcium and PTH within 24 hours after total thyroidectomy to predict long-term hypoparathyroidism. A summary of the findings is presented here; results of the detailed systematic review are published separately in this issue of JBMR. Several genetic disorders can present with hypoparathyroidism, either as an isolated disease or as part of a syndrome. A positive family history and, in the case of complex diseases, characteristic comorbidities raise the clinical suspicion of a genetic disorder. In addition to these disorders' phenotypic characteristics, which include autoimmune diseases, we discuss approaches for the genetic diagnosis. © 2022 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Michael Mannstadt
- Endocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Luisella Cianferotti
- Bone Metabolic Diseases Unit, Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
| | - Rachel I Gafni
- National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | | | | | - Christian A Koch
- Department of Medicine/Endocrinology, Fox Chase Cancer Center, Philadelphia, PA, USA.,Department of Medicine/Endocrinology, The University of Tennessee Health Science Center, Memphis, TN, USA
| | - Kelly L Roszko
- National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - Liam Yao
- Department of Health Research Methods, Evidence, and Impact, and Department of Medicine, McMaster University, Hamilton, Canada
| | - Gordon H Guyatt
- Department of Health Research Methods, Evidence, and Impact, and Department of Medicine, McMaster University, Hamilton, Canada
| | - Rajesh V Thakker
- Academic Endocrine Unit, Radcliffe Department of Medicine, University of Oxford, Oxford Centre for Diabetes, Endocrinology and Metabolism (OCDEM), Churchill Hospital, Headington, Oxford, UK.,Oxford National Institute for Health Research (NIHR) Biomedical Research Centre, Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, Oxford, UK
| | - Weibo Xia
- Department of Endocrinology, Peking Union Medical Collage Hospital, Beijing, China
| | - Maria-Luisa Brandi
- Fondazione Italiana sulla Ricerca sulle Malattie dell'Osso (F.I.R.M.O. Foundation), Florence, Italy
| |
Collapse
|
45
|
Besnard F, Leclerc H, Boussaha M, Grohs C, Jewell N, Pinton A, Barasc H, Jourdain J, Femenia M, Dorso L, Strugnell B, Floyd T, Danchin C, Guatteo R, Cassart D, Hubin X, Mattalia S, Boichard D, Capitan A. Detailed analysis of mortality rates in the female progeny of 1,001 Holstein bulls allows the discovery of new dominant genetic defects. J Dairy Sci 2022; 106:439-451. [DOI: 10.3168/jds.2022-22365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 07/29/2022] [Indexed: 11/06/2022]
|
46
|
Bideyan L, López Rodríguez M, Priest C, Kennelly JP, Gao Y, Ferrari A, Rajbhandari P, Feng AC, Tevosian SG, Smale ST, Tontonoz P. Hepatic GATA4 regulates cholesterol and triglyceride homeostasis in collaboration with LXRs. Genes Dev 2022; 36:1129-1144. [PMID: 36522129 PMCID: PMC9851399 DOI: 10.1101/gad.350145.122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 12/02/2022] [Indexed: 12/16/2022]
Abstract
GATA4 is a transcription factor known for its crucial role in the development of many tissues, including the liver; however, its role in adult liver metabolism is unknown. Here, using high-throughput sequencing technologies, we identified GATA4 as a transcriptional regulator of metabolism in the liver. GATA4 expression is elevated in response to refeeding, and its occupancy is increased at enhancers of genes linked to fatty acid and lipoprotein metabolism. Knocking out GATA4 in the adult liver (Gata4LKO) decreased transcriptional activity at GATA4 binding sites, especially during feeding. Gata4LKO mice have reduced plasma HDL cholesterol and increased liver triglyceride levels. The expression of a panel of GATA4 binding genes involved in hepatic cholesterol export and triglyceride hydrolysis was down-regulated in Gata4LKO mice. We further demonstrate that GATA4 collaborates with LXR nuclear receptors in the liver. GATA4 and LXRs share a number of binding sites, and GATA4 was required for the full transcriptional response to LXR activation. Collectively, these results show that hepatic GATA4 contributes to the transcriptional control of hepatic and systemic lipid homeostasis.
Collapse
Affiliation(s)
- Lara Bideyan
- Department of Pathology and Laboratory Medicine, University of California at Los Angeles, Los Angeles, USA
- Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, USA
| | - Maykel López Rodríguez
- Department of Pathology and Laboratory Medicine, University of California at Los Angeles, Los Angeles, USA
- Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, USA
| | - Christina Priest
- Department of Pathology and Laboratory Medicine, University of California at Los Angeles, Los Angeles, USA
- Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, USA
| | - John P Kennelly
- Department of Pathology and Laboratory Medicine, University of California at Los Angeles, Los Angeles, USA
- Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, USA
| | - Yajing Gao
- Department of Pathology and Laboratory Medicine, University of California at Los Angeles, Los Angeles, USA
- Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, USA
| | - Alessandra Ferrari
- Department of Pathology and Laboratory Medicine, University of California at Los Angeles, Los Angeles, USA
- Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, USA
| | - Prashant Rajbhandari
- Department of Pathology and Laboratory Medicine, University of California at Los Angeles, Los Angeles, USA
- Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, USA
| | - An-Chieh Feng
- Department of Microbiology, Immunology, and Molecular Genetics, University of California at Los Angeles, Los Angeles, USA
| | - Sergei G Tevosian
- Department of Physiological Sciences, University of Florida, Gainesville, Florida 32610, USA
| | - Stephen T Smale
- Department of Microbiology, Immunology, and Molecular Genetics, University of California at Los Angeles, Los Angeles, USA
| | - Peter Tontonoz
- Department of Pathology and Laboratory Medicine, University of California at Los Angeles, Los Angeles, USA
- Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, USA
| |
Collapse
|
47
|
Sladeček S, Radaszkiewicz KA, Bőhmová M, Gybeľ T, Radaszkiewicz TW, Pacherník J. Dual specificity phosphatase 7 drives the formation of cardiac mesoderm in mouse embryonic stem cells. PLoS One 2022; 17:e0275860. [PMID: 36227898 PMCID: PMC9560500 DOI: 10.1371/journal.pone.0275860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 09/23/2022] [Indexed: 11/18/2022] Open
Abstract
Dual specificity phosphatase 7 (DUSP7) is a protein belonging to a broad group of phosphatases that can dephosphorylate phosphoserine/phosphothreonine as well as phosphotyrosine residues within the same substrate. DUSP7 has been linked to the negative regulation of mitogen activated protein kinases (MAPK), and in particular to the regulation of extracellular signal-regulated kinases 1 and 2 (ERK1/2). MAPKs play an important role in embryonic development, where their duration, magnitude, and spatiotemporal activity must be strictly controlled by other proteins, among others by DUSPs. In this study, we focused on the effect of DUSP7 depletion on the in vitro differentiation of mouse embryonic stem (ES) cells. We showed that even though DUSP7 knock-out ES cells do retain some of their basic characteristics, when it comes to differentiation, they preferentially differentiate towards neural cells, while the formation of early cardiac mesoderm is repressed. Therefore, our data indicate that DUSP7 is necessary for the correct formation of neuroectoderm and cardiac mesoderm during the in vitro differentiation of ES cells.
Collapse
Affiliation(s)
- Stanislava Sladeček
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | | | - Martina Bőhmová
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Tomáš Gybeľ
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | | | - Jiří Pacherník
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
- * E-mail:
| |
Collapse
|
48
|
Giannopoulou AI, Kanakoglou DS, Papavassiliou AG, Piperi C. Insights into the multi-faceted role of Pioneer transcription factors in glioma formation and progression with targeting options. Biochim Biophys Acta Rev Cancer 2022; 1877:188801. [PMID: 36113627 DOI: 10.1016/j.bbcan.2022.188801] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 08/30/2022] [Accepted: 09/07/2022] [Indexed: 11/16/2022]
Abstract
Pioneer transcription factors (TFs) present an important subtype of transcription factors which are vital for cell programming during embryonic development and cellular memory during mitotic growth, as well as cell fate reprogramming. Pioneer TFs can engage specific target binding sites on nucleosomal DNA to attract chromatin remodeling complexes, cofactors, and other transcription factors, ultimately controlling gene expression by shaping locally the epigenome. The priority of binding that they exhibit in contrast to other transcription factors and their involvement in crucial events regarding cell fate, has implicated their aberrant function in the pathogenesis of several disorders including carcinogenesis. Emerging experimental data indicate that certain Pioneer TFs are highly implicated in gliomas development, in neoplastic cell proliferation, angiogenic processes, resistance to therapy, and patient survival. Herein, we describe the main structural characteristics and functional mechanisms of pioneer TFs, focusing on their central role in the pathogenesis and progression of gliomas. We further highlight the current treatment options ranging from natural agents (oleanolic acid) to a variety of chemical compounds (APR-246, COTI-2) and discuss potential delivery systems, including nanoparticles, viral vectors, and intracellular protein delivery techniques.
Collapse
Affiliation(s)
- Angeliki-Ioanna Giannopoulou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece,.
| | - Dimitrios S Kanakoglou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece,.
| | - Athanasios G Papavassiliou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece,.
| | - Christina Piperi
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece,.
| |
Collapse
|
49
|
Nishi K, Fu W, Kiyama R. Novel estrogen-responsive genes (ERGs) for the evaluation of estrogenic activity. PLoS One 2022; 17:e0273164. [PMID: 35976950 PMCID: PMC9385026 DOI: 10.1371/journal.pone.0273164] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 08/03/2022] [Indexed: 11/19/2022] Open
Abstract
Estrogen action is mediated by various genes, including estrogen-responsive genes (ERGs). ERGs have been used as reporter-genes and markers for gene expression. Gene expression profiling using a set of ERGs has been used to examine statistically reliable transcriptomic assays such as DNA microarray assays and RNA sequencing (RNA-seq). However, the quality of ERGs has not been extensively examined. Here, we obtained a set of 300 ERGs that were newly identified by six sets of RNA-seq data from estrogen-treated and control human breast cancer MCF-7 cells. The ERGs exhibited statistical stability, which was based on the coefficient of variation (CV) analysis, correlation analysis, and examination of the functional association with estrogen action using database searches. A set of the top 30 genes based on CV ranking were further evaluated quantitatively by RT-PCR and qualitatively by a functional analysis using the GO and KEGG databases and by a mechanistic analysis to classify ERα/β-dependent or ER-independent types of transcriptional regulation. The 30 ERGs were characterized according to (1) the enzymes, such as metabolic enzymes, proteases, and protein kinases, (2) the genes with specific cell functions, such as cell-signaling mediators, tumor-suppressors, and the roles in breast cancer, (3) the association with transcriptional regulation, and (4) estrogen-responsiveness. Therefore, the ERGs identified here represent various cell functions and cell signaling pathways, including estrogen signaling, and thus, may be useful to evaluate estrogenic activity.
Collapse
Affiliation(s)
- Kentaro Nishi
- Department of Life Science, Faculty of Life Science, Kyushu Sangyo University Matsukadai, Higashi-ku, Fukuoka, Japan
| | - Wenqiang Fu
- Department of Life Science, Faculty of Life Science, Kyushu Sangyo University Matsukadai, Higashi-ku, Fukuoka, Japan
| | - Ryoiti Kiyama
- Department of Life Science, Faculty of Life Science, Kyushu Sangyo University Matsukadai, Higashi-ku, Fukuoka, Japan
| |
Collapse
|
50
|
Ye Z, Chen G, Hou C, Jiang Z, Wang E, Wang J. LMCD1 facilitates the induction of pluripotency via cell proliferation, metabolism, and epithelial-mesenchymal transition. Cell Biol Int 2022; 46:1409-1422. [PMID: 35842772 DOI: 10.1002/cbin.11858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 02/22/2022] [Accepted: 03/06/2022] [Indexed: 11/08/2022]
Abstract
Somatic cell reprogramming was achieved by lentivirus mediated overexpression of four transcription factors called OSKM: OCT3/4, SOX2, KLF4, and c-MYC but it was not very efficient. Here, we reported that the transcription factor, LMCD1 (LIM and cysteine rich domains 1) together with OSKM can induce reprogramming of human dermal fibroblasts into induced pluripotent stem cells (iPSCs) more efficiently than OSKM alone. At the same time, the number of iPSCs clones were reduced when we knocked down LMCD1. Further study showed that LMCD1 can enhance the cell proliferation, the glycolytic capability, the epithelial-mesenchymal transition (EMT), and reduce the epigenetic barrier by upregulating epigenetic factors (EZH2, WDR5, BMI1, and KDM2B) in the early stage of reprogramming, making the cells more accessible to gain pluripotency. Additional research suggested that LMCD1 can not only inhibit the developmental gene GATA6, but also promote multiple signaling pathways, such as AKT and glycolysis, which are closely related to reprogramming efficiency. Therefore, we identified the novel function of the transcription factor LMCD1, which reduces the barriers of the reprogramming from somatic to pluripotent cells in several ways in the early stage of reprogramming.
Collapse
Affiliation(s)
- Zhikai Ye
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, China.,School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, People's Republic of China
| | - Ge Chen
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, China
| | - Cuicui Hou
- College of Chemistry, Jilin University, Changchun, Jilin, People's Republic of China
| | - Zhenlong Jiang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, China
| | - Erkang Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, China.,School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, People's Republic of China
| | - Jin Wang
- Department of Chemistry, Physics and Applied Mathematics, State University of New York at Stony Brook, Stony Brook, New York, USA
| |
Collapse
|