1
|
Lei C, Sun W, Wang K, Weng R, Kan X, Li R. Artificial intelligence-assisted diagnosis of early gastric cancer: present practice and future prospects. Ann Med 2025; 57:2461679. [PMID: 39928093 PMCID: PMC11812113 DOI: 10.1080/07853890.2025.2461679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 12/09/2024] [Accepted: 01/23/2025] [Indexed: 02/11/2025] Open
Abstract
Gastric cancer (GC) occupies the first few places in the world among tumors in terms of incidence and mortality, causing serious harm to human health, and at the same time, its treatment greatly consumes the health care resources of all countries in the world. The diagnosis of GC is usually based on histopathologic examination, and it is very important to be able to detect and identify cancerous lesions at an early stage, but some endoscopists' lack of diagnostic experience and fatigue at work lead to a certain rate of under diagnosis. The rapid and striking development of Artificial intelligence (AI) has helped to enhance the ability to extract abnormal information from endoscopic images to some extent, and more and more researchers are applying AI technology to the diagnosis of GC. This initiative has not only improved the detection rate of early gastric cancer (EGC), but also significantly improved the survival rate of patients after treatment. This article reviews the results of various AI-assisted diagnoses of EGC in recent years, including the identification of EGC, the determination of differentiation type and invasion depth, and the identification of borders. Although AI has a better application prospect in the early diagnosis of ECG, there are still major challenges, and the prospects and limitations of AI application need to be further discussed.
Collapse
Affiliation(s)
- Changda Lei
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Suzhou Medical College, Soochow University, Suzhou, China
| | - Wenqiang Sun
- Suzhou Medical College, Soochow University, Suzhou, China
- Department of Neonatology, Children’s Hospital of Soochow University, Suzhou, China
| | - Kun Wang
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Suzhou Medical College, Soochow University, Suzhou, China
| | - Ruixia Weng
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Suzhou Medical College, Soochow University, Suzhou, China
| | - Xiuji Kan
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Suzhou Medical College, Soochow University, Suzhou, China
| | - Rui Li
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
2
|
Zhou S, Xie Y, Feng X, Li Y, Shen L, Chen Y. Artificial intelligence in gastrointestinal cancer research: Image learning advances and applications. Cancer Lett 2025; 614:217555. [PMID: 39952597 DOI: 10.1016/j.canlet.2025.217555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 01/31/2025] [Accepted: 02/11/2025] [Indexed: 02/17/2025]
Abstract
With the rapid advancement of artificial intelligence (AI) technologies, including deep learning, large language models, and neural networks, these methodologies are increasingly being developed and integrated into cancer research. Gastrointestinal tumors are characterized by complexity and heterogeneity, posing significant challenges for early detection, diagnostic accuracy, and the development of personalized treatment strategies. The application of AI in digestive oncology has demonstrated its transformative potential. AI not only alleviates the diagnostic burden on clinicians, but it improves tumor screening sensitivity, specificity, and accuracy. Additionally, AI aids the detection of biomarkers such as microsatellite instability and mismatch repair, supports intraoperative assessments of tumor invasion depth, predicts treatment responses, and facilitates the design of personalized treatment plans to potentially significantly enhance patient outcomes. Moreover, the integration of AI with multiomics analyses and imaging technologies has led to substantial advancements in foundational research on the tumor microenvironment. This review highlights the progress of AI in gastrointestinal oncology over the past 5 years with focus on early tumor screening, diagnosis, molecular marker identification, treatment planning, and prognosis predictions. We also explored the potential of AI to enhance medical imaging analyses to aid tumor detection and characterization as well as its role in automating and refining histopathological assessments.
Collapse
Affiliation(s)
- Shengyuan Zhou
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education, Beijing), Peking University Cancer Hospital and Institute, Beijing, China
| | - Yi Xie
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education, Beijing), Peking University Cancer Hospital and Institute, Beijing, China
| | - Xujiao Feng
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education, Beijing), Peking University Cancer Hospital and Institute, Beijing, China
| | - Yanyan Li
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education, Beijing), Peking University Cancer Hospital and Institute, Beijing, China
| | - Lin Shen
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education, Beijing), Peking University Cancer Hospital and Institute, Beijing, China
| | - Yang Chen
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education, Beijing), Peking University Cancer Hospital and Institute, Beijing, China; Department of Gastrointestinal Cancer, Beijing GoBroad Hospital, Beijing, 102200, China.
| |
Collapse
|
3
|
Nathani P, Sharma P. Role of Artificial Intelligence in the Detection and Management of Premalignant and Malignant Lesions of the Esophagus and Stomach. Gastrointest Endosc Clin N Am 2025; 35:319-353. [PMID: 40021232 DOI: 10.1016/j.giec.2024.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2025]
Abstract
The advent of artificial intelligence (AI) and deep learning algorithms, particularly convolutional neural networks, promises to address pitfalls, bridging the care for patients at high risk with improved detection (computer-aided detection [CADe]) and characterization (computer-aided diagnosis [CADx]) of lesions. This review describes the available artificial intelligence (AI) technology and the current data on AI tools for screening esophageal squamous cell cancer, Barret's esophagus-related neoplasia, and gastric cancer. These tools outperformed endoscopists in many situations. Recent randomized controlled trials have demonstrated the successful application of AI tools in clinical practice with improved outcomes.
Collapse
Affiliation(s)
- Piyush Nathani
- Department of Gastroenterology, University of Kansas School of Medicine, Kansas City, KS, USA.
| | - Prateek Sharma
- Department of Gastroenterology, University of Kansas School of Medicine, Kansas City, KS, USA; Kansas City Veteran Affairs Medical Center, Kansas City, MO, USA
| |
Collapse
|
4
|
Dinis-Ribeiro M, Libânio D, Uchima H, Spaander MCW, Bornschein J, Matysiak-Budnik T, Tziatzios G, Santos-Antunes J, Areia M, Chapelle N, Esposito G, Fernandez-Esparrach G, Kunovsky L, Garrido M, Tacheci I, Link A, Marcos P, Marcos-Pinto R, Moreira L, Pereira AC, Pimentel-Nunes P, Romanczyk M, Fontes F, Hassan C, Bisschops R, Feakins R, Schulz C, Triantafyllou K, Carneiro F, Kuipers EJ. Management of epithelial precancerous conditions and early neoplasia of the stomach (MAPS III): European Society of Gastrointestinal Endoscopy (ESGE), European Helicobacter and Microbiota Study Group (EHMSG) and European Society of Pathology (ESP) Guideline update 2025. Endoscopy 2025. [PMID: 40112834 DOI: 10.1055/a-2529-5025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
At a population level, the European Society of Gastrointestinal Endoscopy (ESGE), the European Helicobacter and Microbiota Study Group (EHMSG), and the European Society of Pathology (ESP) suggest endoscopic screening for gastric cancer (and precancerous conditions) in high-risk regions (age-standardized rate [ASR] > 20 per 100 000 person-years) every 2 to 3 years or, if cost-effectiveness has been proven, in intermediate risk regions (ASR 10-20 per 100 000 person-years) every 5 years, but not in low-risk regions (ASR < 10).ESGE/EHMSG/ESP recommend that irrespective of country of origin, individual gastric risk assessment and stratification of precancerous conditions is recommended for first-time gastroscopy. ESGE/EHMSG/ESP suggest that gastric cancer screening or surveillance in asymptomatic individuals over 80 should be discontinued or not started, and that patients' comorbidities should be considered when treatment of superficial lesions is planned.ESGE/EHMSG/ESP recommend that a high quality endoscopy including the use of virtual chromoendoscopy (VCE), after proper training, is performed for screening, diagnosis, and staging of precancerous conditions (atrophy and intestinal metaplasia) and lesions (dysplasia or cancer), as well as after endoscopic therapy. VCE should be used to guide the sampling site for biopsies in the case of suspected neoplastic lesions as well as to guide biopsies for diagnosis and staging of gastric precancerous conditions, with random biopsies to be taken in the absence of endoscopically suspected changes. When there is a suspected early gastric neoplastic lesion, it should be properly described (location, size, Paris classification, vascular and mucosal pattern), photodocumented, and two targeted biopsies taken.ESGE/EHMSG/ESP do not recommend routine performance of endoscopic ultrasonography (EUS), computed tomography (CT), magnetic resonance imaging (MRI), or positron emission tomography (PET)-CT prior to endoscopic resection unless there are signs of deep submucosal invasion or if the lesion is not considered suitable for endoscopic resection.ESGE/EHMSG/ESP recommend endoscopic submucosal dissection (ESD) for differentiated gastric lesions clinically staged as dysplastic (low grade and high grade) or as intramucosal carcinoma (of any size if not ulcerated or ≤ 30 mm if ulcerated), with EMR being an alternative for Paris 0-IIa lesions of size ≤ 10 mm with low likelihood of malignancy.ESGE/EHMSG/ESP suggest that a decision about ESD can be considered for malignant lesions clinically staged as having minimal submucosal invasion if differentiated and ≤ 30 mm; or for malignant lesions clinically staged as intramucosal, undifferentiated and ≤ 20 mm; and in both cases with no ulcerative findings.ESGE/EHMSG/ESP recommends patient management based on the following histological risk after endoscopic resection: Curative/very low-risk resection (lymph node metastasis [LNM] risk < 0.5 %-1 %): en bloc R0 resection; dysplastic/pT1a, differentiated lesion, no lymphovascular invasion, independent of size if no ulceration and ≤ 30 mm if ulcerated. No further staging procedure or treatment is recommended.Curative/low-risk resection (LNM risk < 3 %): en bloc R0 resection; lesion with no lymphovascular invasion and: a) pT1b, invasion ≤ 500 µm, differentiated, size ≤ 30 mm; or b) pT1a, undifferentiated, size ≤ 20 mm and no ulceration. Staging should be completed, and further treatment is generally not necessary, but a multidisciplinary discussion is required. Local-risk resection (very low risk of LNM but increased risk of local persistence/recurrence): Piecemeal resection or tumor-positive horizontal margin of a lesion otherwise meeting curative/very low-risk criteria (or meeting low-risk criteria provided that there is no submucosal invasive tumor at the resection margin in the case of piecemeal resection or tumor-positive horizontal margin for pT1b lesions [invasion ≤ 500 µm; well-differentiated; size ≤ 30 mm, and VM0]). Endoscopic surveillance/re-treatment is recommended rather than other additional treatment. High-risk resection (noncurative): Any lesion with any of the following: (a) a positive vertical margin (if carcinoma) or lymphovascular invasion or deep submucosal invasion (> 500 µm from the muscularis mucosae); (b) poorly differentiated lesions if ulceration or size > 20 mm; (c) pT1b differentiated lesions with submucosal invasion ≤ 500 µm with size > 30 mm; or (d) intramucosal ulcerative lesion with size > 30 mm. Complete staging and strong consideration for additional treatments (surgery) in multidisciplinary discussion.ESGE/EHMSG/ESP suggest the use of validated endoscopic classifications of atrophy (e. g. Kimura-Takemoto) or intestinal metaplasia (e. g. endoscopic grading of gastric intestinal metaplasia [EGGIM]) to endoscopically stage precancerous conditions and stratify the risk for gastric cancer.ESGE/EHMSG/ESP recommend that biopsies should be taken from at least two topographic sites (2 biopsies from the antrum/incisura and 2 from the corpus, guided by VCE) in two separate, clearly labeled vials. Additional biopsy from the incisura is optional.ESGE/EHMSG/ESP recommend that patients with extensive endoscopic changes (Kimura C3 + or EGGIM 5 +) or advanced histological stages of atrophic gastritis (severe atrophic changes or intestinal metaplasia, or changes in both antrum and corpus, operative link on gastritis assessment/operative link on gastric intestinal metaplasia [OLGA/OLGIM] III/IV) should be followed up with high quality endoscopy every 3 years, irrespective of the individual's country of origin.ESGE/EHMSG/ESP recommend that no surveillance is proposed for patients with mild to moderate atrophy or intestinal metaplasia restricted to the antrum, in the absence of endoscopic signs of extensive lesions or other risk factors (family history, incomplete intestinal metaplasia, persistent H. pylori infection). This group constitutes most individuals found in clinical practice.ESGE/EHMSG/ESP recommend H. pylori eradication for patients with precancerous conditions and after endoscopic or surgical therapy.ESGE/EHMSG/ESP recommend that patients should be advised to stop smoking and low-dose daily aspirin use may be considered for the prevention of gastric cancer in selected individuals with high risk for cardiovascular events.
Collapse
Affiliation(s)
- Mário Dinis-Ribeiro
- Precancerous Lesions and Early Cancer Management Group, Research Center of IPO Porto (CI-IPOP)/CI-IPOP@RISE (Health Research Group), Portuguese Institute of Oncology of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC), Porto, Portugal
- Gastroenterology Department, Portuguese Institute of Oncology of Porto, Porto, Portugal
| | - Diogo Libânio
- Precancerous Lesions and Early Cancer Management Group, Research Center of IPO Porto (CI-IPOP)/CI-IPOP@RISE (Health Research Group), Portuguese Institute of Oncology of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC), Porto, Portugal
- Gastroenterology Department, Portuguese Institute of Oncology of Porto, Porto, Portugal
| | - Hugo Uchima
- Endoscopy Unit Gastroenterology Department Hospital Universitari Germans Trias i Pujol, Badalona, Spain
- Endoscopy Unit, Teknon Medical Center, Barcelona, Spain
| | - Manon C W Spaander
- Department of Gastroenterology and Hepatology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Jan Bornschein
- Medical Research Council Translational Immune Discovery Unit (MRC TIDU), Weatherall Institute of Molecular Medicine (WIMM), Radcliffe Department of Medicine, University of Oxford, Oxford, UK
- Translational Gastroenterology and Liver Unit, Nuffield Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Tamara Matysiak-Budnik
- Department of Hepato-Gastroenterology & Digestive Oncology, Institut des Maladies de l'Appareil Digestif, Centre Hospitalier Universitaire de Nantes Nantes, France
- INSERM, Center for Research in Transplantation and Translational Immunology, University of Nantes, Nantes, France
| | - Georgios Tziatzios
- Agia Olga General Hospital of Nea Ionia Konstantopouleio, Athens, Greece
| | - João Santos-Antunes
- Gastroenterology Department, Centro Hospitalar S. João, Porto, Portugal
- Faculty of Medicine, University of Porto, Portugal
- University of Porto, Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Instituto de Investigação e Inovação na Saúde (I3S), Porto, Portugal
| | - Miguel Areia
- Gastroenterology Department, Portuguese Oncology Institute of Coimbra (IPO Coimbra), Coimbra, Portugal
- Precancerous Lesions and Early Cancer Management Group, Research Center of IPO Porto (CI-IPOP)/CI-IPOP@RISE (Health Research Group), RISE@CI-IPO, (Health Research Network), Portuguese Institute of Oncology of Porto (IPO Porto), Porto, Portugal
| | - Nicolas Chapelle
- Department of Hepato-Gastroenterology & Digestive Oncology, Institut des Maladies de l'Appareil Digestif, Centre Hospitalier Universitaire de Nantes Nantes, France
- INSERM, Center for Research in Transplantation and Translational Immunology, University of Nantes, Nantes, France
| | - Gianluca Esposito
- Department of Medical-Surgical Sciences and Translational Medicine, Sant'Andrea Hospital, Sapienza University of Rome, Italy
| | - Gloria Fernandez-Esparrach
- Gastroenterology Department, ICMDM, Hospital Clínic, Universitat de Barcelona, Barcelona, Spain
- Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain
- Instituto de Investigaciones Biomédicas August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Spain
| | - Lumir Kunovsky
- 2nd Department of Internal Medicine - Gastroenterology and Geriatrics, University Hospital Olomouc, Faculty of Medicine and Dentistry, Palacky University Olomouc, Olomouc, Czech Republic
- Department of Surgery, University Hospital Brno, Faculty of Medicine, Masaryk University, Brno, Czech Republic
- Department of Gastroenterology and Digestive Endoscopy, Masaryk Memorial Cancer Institute, Brno, Czech Republic
| | - Mónica Garrido
- Gastroenterology Department, Portuguese Institute of Oncology of Porto, Porto, Portugal
| | - Ilja Tacheci
- Gastroenterology, Second Department of Internal Medicine, University Hospital Hradec Kralove, Faculty of Medicine in Hradec Kralove, Charles University of Prague, Czech Republic
| | | | - Pedro Marcos
- Department of Gastroenterology, Pêro da Covilhã Hospital, Covilhã, Portugal
- Department of Medical Sciences, Faculty of Health Sciences, University of Beira Interior, Covilhã, Portugal
| | - Ricardo Marcos-Pinto
- Precancerous Lesions and Early Cancer Management Group, Research Center of IPO Porto (CI-IPOP)/CI-IPOP@RISE (Health Research Group), RISE@CI-IPO, (Health Research Network), Portuguese Institute of Oncology of Porto (IPO Porto), Porto, Portugal
- Gastroenterology Department, Centro Hospitalar do Porto, Porto, Portugal
- Institute of Biomedical Sciences Abel Salazar, University of Porto, Porto, Portugal
| | - Leticia Moreira
- Gastroenterology Department, ICMDM, Hospital Clínic, Universitat de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Spain
| | - Ana Carina Pereira
- Precancerous Lesions and Early Cancer Management Group, Research Center of IPO Porto (CI-IPOP)/CI-IPOP@RISE (Health Research Group), Portuguese Institute of Oncology of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC), Porto, Portugal
| | - Pedro Pimentel-Nunes
- Precancerous Lesions and Early Cancer Management Group, Research Center of IPO Porto (CI-IPOP)/CI-IPOP@RISE (Health Research Group), RISE@CI-IPO, (Health Research Network), Portuguese Institute of Oncology of Porto (IPO Porto), Porto, Portugal
- Department of Surgery and Physiology, Faculty of Medicine, University of Porto (FMUP), Portugal
- Gastroenterology and Clinical Research, Unilabs Portugal
| | - Marcin Romanczyk
- Department of Gastroenterology, Faculty of Medicine, Academy of Silesia, Katowice, Poland
- Endoterapia, H-T. Centrum Medyczne, Tychy, Poland
| | - Filipa Fontes
- Precancerous Lesions and Early Cancer Management Group, Research Center of IPO Porto (CI-IPOP)/CI-IPOP@RISE (Health Research Group), Portuguese Institute of Oncology of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC), Porto, Portugal
- Public Health and Forensic Sciences, and Medical Education Department, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Cesare Hassan
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
- IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Raf Bisschops
- Department of Gastroenterology and Hepatology, UZ Leuven, Leuven, Belgium
- Department of Translational Research in Gastrointestinal Diseases (TARGID), KU Leuven, Leuven, Belgium
| | - Roger Feakins
- Department of Cellular Pathology, Royal Free London NHS Foundation Trust, London, United Kingdom
- University College London, London, United Kingdom
| | - Christian Schulz
- Department of Medicine II, University Hospital, LMU Munich, Germany
| | - Konstantinos Triantafyllou
- Hepatogastroenterology Unit, Second Department of Internal Medicine-Propaedeutic, Medical School, National and Kapodistrian University of Athens, Attikon University General Hospital, Athens, Greece
| | - Fatima Carneiro
- Institute of Molecular Pathology and Immunology at the University of Porto (IPATIMUP), Porto, Portugal
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, Porto, Portugal
- Pathology Department, Centro Hospitalar de São João and Faculty of Medicine, Porto, Portugal
| | - Ernst J Kuipers
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| |
Collapse
|
5
|
Aftab M, Mehmood F, Sahibzada KI, Zhang C, Jiang Y, Liu K. Attention-Enhanced Multi-Task Deep Learning Model for Classification and Segmentation of Esophageal Lesions. ACS OMEGA 2025; 10:10468-10479. [PMID: 40124037 PMCID: PMC11923690 DOI: 10.1021/acsomega.4c10763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 02/14/2025] [Accepted: 02/19/2025] [Indexed: 03/25/2025]
Abstract
Accurate detection and segmentation of esophageal lesions are crucial for diagnosing and treating gastrointestinal diseases. However, early detection of esophageal cancer remains challenging, contributing to a reduced five-year survival rate among patients. This paper introduces a novel multitask deep learning model for automatic diagnosis that integrates classification and segmentation tasks to assist endoscopists effectively. Our approach leverages the MobileNetV2 deep learning architecture enhanced with a mutual attention module, significantly improving the model's performance in determining the locations of esophageal lesions. Unlike traditional models, the proposed model is designed not to replace endoscopists but to empower them to correct false predictions when provided with additional Supporting Information. We evaluated the proposed model on three well-known data sets: Early Esophageal Cancer (EEC), CVC-ClinicDB, and KVASIR. The experimental results demonstrate promising performance, achieving high classification accuracies of 98.72% (F1-score: 98.08%) on CVC-ClinicDB, 98.95% (F1-score: 98.32%) on KVASIR, and 99.12% (F1-score: 99.00%) on our generated EEC data set. Compared to state-of-the-art models, our classification results show significant improvement. For the segmentation task, the model attained a Dice coefficient of 92.73% and an Intersection over Union (IoU) of 91.54%. These findings suggest that the proposed multitask deep learning model can effectively assist endoscopists in evaluating esophageal lesions, thereby alleviating their workload and enhancing diagnostic precision.
Collapse
Affiliation(s)
- Muhammad Aftab
- Pathophysiology
Department, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
- Tianjian
Laboratory of Advanced Biomedical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
- China-US
(Henan) Hormel Cancer Institute, Zhengzhou, Henan 450000, China
| | - Faisal Mehmood
- Department
of Civil and Transportation Engineering, Shenzhen University, Shenzhen 518060, China
| | - Kashif Iqbal Sahibzada
- College
of Bioengineering, Henan University of Technology, Zhengzhou 450001, China
- Department
of Health Professional Technologies, The
University of Lahore, Lahore 54000, Pakistan
| | - Chengjuan Zhang
- Center
of Bio-Repository, The Affiliated Cancer
Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, Henan 450008, China
| | - Yanan Jiang
- Pathophysiology
Department, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
- Tianjian
Laboratory of Advanced Biomedical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
- China-US
(Henan) Hormel Cancer Institute, Zhengzhou, Henan 450000, China
- State
Key Laboratory of Metabolic Dysregulation & the Prevention and
Treatment of Esophageal Cancer, Zhengzhou, Henan 450000, China
- The
Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou, Henan 450000, China
| | - Kangdong Liu
- Pathophysiology
Department, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
- Tianjian
Laboratory of Advanced Biomedical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
- China-US
(Henan) Hormel Cancer Institute, Zhengzhou, Henan 450000, China
- State
Key Laboratory of Metabolic Dysregulation & the Prevention and
Treatment of Esophageal Cancer, Zhengzhou, Henan 450000, China
- The
Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou, Henan 450000, China
| |
Collapse
|
6
|
Shi JY, Yue SJ, Chen HS, Fang FY, Wang XL, Xue JJ, Zhao Y, Li Z, Sun C. Global output of clinical application research on artificial intelligence in the past decade: a scientometric study and science mapping. Syst Rev 2025; 14:62. [PMID: 40089747 PMCID: PMC11909824 DOI: 10.1186/s13643-025-02779-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Accepted: 01/27/2025] [Indexed: 03/17/2025] Open
Abstract
BACKGROUND Artificial intelligence (AI) has shown immense potential in the field of medicine, but its actual effectiveness and safety still need to be validated through clinical trials. Currently, the research themes, methodologies, and development trends of AI-related clinical trials remain unclear, and further exploration of these studies will be crucial for uncovering AI's practical application potential and promoting its broader adoption in clinical settings. OBJECTIVE To analyze the current status, hotspots, and trends of published clinical research on AI applications. METHODS Publications related to AI clinical applications were retrieved from the Web of Science database. Relevant data were extracted using VOSviewer 1.6.17 to generate visual cooperation network maps for countries, organizations, authors, and keywords. Burst citation detection for keywords and citations was performed using CiteSpace 5.8.R3 to identify sudden surges in citation frequency within a short period, and the theme evolution was analyzed using SciMAT to track the development and trends of research topics over time. RESULTS A total of 22,583 articles were obtained from the Web of Science database. Seven-hundred and thirty-five AI clinical application research were published by 1764 institutions from 53 countries. The majority of publications were contributed by the United States, China, and the UK. Active collaborations were noted among leading authors, particularly those from developed countries. The publications mainly focused on evaluating the application value of AI technology in the fields of disease diagnosis and classification, disease risk prediction and management, assisted surgery, and rehabilitation. Deep learning and chatbot technologies were identified as emerging research hotspots in recent studies on AI applications. CONCLUSIONS A total of 735 articles on AI in clinical research were analyzed, with publication volume and citation counts steadily increasing each year. Institutions and researchers from the United States contributed the most to the research output in this field. Key areas of focus included AI applications in surgery, rehabilitation, disease diagnosis, risk prediction, and health management, with emerging trends in deep learning and chatbots. This study also provides detailed and intuitive information about important articles, journals, core authors, institutions, and topics in the field through visualization maps, which will help researchers quickly understand the current status, hotspots, and trends of artificial intelligence clinical application research. Future clinical trials of artificial intelligence should strengthen scientific design, ethical compliance, and interdisciplinary and international cooperation and pay more attention to its practical clinical value and reliable application in diverse scenarios.
Collapse
Affiliation(s)
- Ji-Yuan Shi
- School of Nursing, Beijing University of Chinese Medicine, Beijing, China
- Collaborating Centre of Joanna Briggs Institute, Beijing University of Chinese Medicine, Beijing, China
| | - Shu-Jin Yue
- School of Nursing, Beijing University of Chinese Medicine, Beijing, China
| | - Hong-Shuang Chen
- Nursing Department, Chinese Academy of Medical Sciences and Peking Union Medical Hospital, Beijing, 100144, China
| | - Fei-Yu Fang
- School of Nursing, Chinese Academy of Medical Sciences and Peking Union Medical School, Beijing, China
| | - Xue-Lian Wang
- Nursing Department, Institute of Geriatric Medicine, National Center of Gerontology, Beijing Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Jia-Jun Xue
- School of Nursing, Chinese Academy of Medical Sciences and Peking Union Medical School, Beijing, China
| | - Yang Zhao
- School of Nursing, Southern Medical University, Guangzhou, China
| | - Zheng Li
- School of Nursing, Chinese Academy of Medical Sciences and Peking Union Medical School, Beijing, China.
| | - Chao Sun
- School of Nursing, Beijing University of Chinese Medicine, Beijing, China.
- Nursing Department, Institute of Geriatric Medicine, National Center of Gerontology, Beijing Hospital, Chinese Academy of Medical Sciences, Beijing, China.
| |
Collapse
|
7
|
Ramoni D, Scuricini A, Carbone F, Liberale L, Montecucco F. Artificial intelligence in gastroenterology: Ethical and diagnostic challenges in clinical practice. World J Gastroenterol 2025; 31:102725. [PMID: 40093670 PMCID: PMC11886536 DOI: 10.3748/wjg.v31.i10.102725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 01/16/2025] [Accepted: 01/23/2025] [Indexed: 02/26/2025] Open
Abstract
This article discusses the manuscript recently published in the World Journal of Gastroenterology, which explores the application of deep learning models in decision-making processes via wireless capsule endoscopy. Integrating artificial intelligence (AI) into gastrointestinal disease diagnosis represents a transformative step toward precision medicine, enhancing real-time accuracy in detecting multi-category lesions at earlier stages, including small bowel lesions and precancerous polyps, ultimately improving patient outcomes. However, the use of AI in clinical settings raises ethical considerations that extend beyond technological potential. Issues of patient privacy, data security, and potential diagnostic biases require careful attention. AI models must prioritize diverse and representative datasets to mitigate inequities and ensure diagnostic accuracy across populations. Furthermore, balancing AI with clinical expertise is crucial, positioning AI as a supportive tool rather than a replacement for physician judgment. Addressing these ethical challenges will support the responsible deployment of AI, through equitable contribution to patient-centered care.
Collapse
Affiliation(s)
- Davide Ramoni
- Department of Internal Medicine, University of Genoa, Genoa 16132, Italy
| | | | - Federico Carbone
- Department of Internal Medicine, University of Genoa, Genoa 16132, Italy
- First Clinic of Internal Medicine, Department of Internal Medicine, Italian Cardiovascular Network, IRCCS Ospedale Policlinico San Martino, Genoa 16132, Italy
| | - Luca Liberale
- Department of Internal Medicine, University of Genoa, Genoa 16132, Italy
- First Clinic of Internal Medicine, Department of Internal Medicine, Italian Cardiovascular Network, IRCCS Ospedale Policlinico San Martino, Genoa 16132, Italy
| | - Fabrizio Montecucco
- Department of Internal Medicine, University of Genoa, Genoa 16132, Italy
- First Clinic of Internal Medicine, Department of Internal Medicine, Italian Cardiovascular Network, IRCCS Ospedale Policlinico San Martino, Genoa 16132, Italy
| |
Collapse
|
8
|
Li B, Du YY, Tan WM, He DL, Qi ZP, Yu HH, Shi Q, Ren Z, Cai MY, Yan B, Cai SL, Zhong YS. Effect of computer aided detection system on esophageal neoplasm diagnosis in varied levels of endoscopists. NPJ Digit Med 2025; 8:160. [PMID: 40082585 PMCID: PMC11906877 DOI: 10.1038/s41746-025-01532-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 02/19/2025] [Indexed: 03/16/2025] Open
Abstract
A computer-aided detection (CAD) system for early esophagus carcinoma identification during endoscopy with narrow-band imaging (NBI) was evaluated in a large-scale, prospective, tandem, randomized controlled trial to assess its effectiveness. The study was registered at the Chinese Clinical Trial Registry (ChiCTR2100050654, 2021/09/01). Involving 3400 patients were randomly assigned to either routine (routine-first) or CAD-assisted (CAD-first) NBI endoscopy, followed by the other procedure, with targeted biopsies taken at the end of the second examination. The primary outcome was the diagnosis of 1 or more neoplastic lesion of esophagus during the first examination. The CAD-first group demonstrated a significantly higher neoplastic lesion detection rate (3.12%) compared to the routine-first group (1.59%) with a relative detection ratio of 1.96 (P = 0.0047). Subgroup analysis revealed a higher detection rate in junior endoscopists using CAD-first, while no significant difference was observed for senior endoscopists. The CAD system significantly improved esophageal neoplasm detection, particularly benefiting junior endoscopists.
Collapse
Affiliation(s)
- Bing Li
- Endoscopy Center, Zhongshan Hospital of Fudan University, Shanghai, China
| | - Yan-Yun Du
- Endoscopy Center, Zhongshan Hospital of Fudan University, Shanghai, China
| | - Wei-Min Tan
- School of Computer Science, Shanghai Key Laboratory of Intelligent Information Processing, Fudan University, Shanghai, China
| | - Dong-Li He
- Endoscopy Center, Xuhui Hospital, Zhongshan Hospital of Fudan University, Shanghai, China
| | - Zhi-Peng Qi
- Endoscopy Center, Zhongshan Hospital of Fudan University, Shanghai, China
| | - Hon-Ho Yu
- Department of Gastroenterology, Kiang Wu Hospital, Macau SAR, China
| | - Qiang Shi
- Endoscopy Center, Zhongshan Hospital of Fudan University, Shanghai, China
| | - Zhong Ren
- Endoscopy Center, Zhongshan Hospital of Fudan University, Shanghai, China
| | - Ming-Yan Cai
- Endoscopy Center, Zhongshan Hospital of Fudan University, Shanghai, China
| | - Bo Yan
- School of Computer Science, Shanghai Key Laboratory of Intelligent Information Processing, Fudan University, Shanghai, China.
| | - Shi-Lun Cai
- Endoscopy Center, Zhongshan Hospital of Fudan University, Shanghai, China.
- Endoscopy Center, Xuhui Hospital, Zhongshan Hospital of Fudan University, Shanghai, China.
| | - Yun-Shi Zhong
- Endoscopy Center, Zhongshan Hospital of Fudan University, Shanghai, China.
- Endoscopy Center, Xuhui Hospital, Zhongshan Hospital of Fudan University, Shanghai, China.
- Endoscopy Center, Shanghai Geriatric Medical Center, Shanghai, China.
| |
Collapse
|
9
|
Ebigbo A, Messmann H, Lee SH. Artificial Intelligence Applications in Image-Based Diagnosis of Early Esophageal and Gastric Neoplasms. Gastroenterology 2025:S0016-5085(25)00471-8. [PMID: 40043857 DOI: 10.1053/j.gastro.2025.01.253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 01/14/2025] [Accepted: 01/22/2025] [Indexed: 04/03/2025]
Abstract
Artificial intelligence (AI) holds the potential to transform the management of upper gastrointestinal (GI) conditions, such as Barrett's esophagus, esophageal squamous cell cancer, and early gastric cancer. Advancements in deep learning and convolutional neural networks offer improved diagnostic accuracy and reduced diagnostic variability across different clinical settings, particularly where human error or fatigue may impair diagnostic precision. Deep learning models have shown the potential to improve early cancer detection and lesion characterization, predict invasion depth, and delineate lesion margins with remarkable accuracy, all contributing to effective treatment planning. Several challenges, however, limit the broad application of AI in GI endoscopy, particularly in the upper GI tract. Subtle lesion morphology and restricted diversity in training datasets, which are often sourced from specialized centers, may constrain the generalizability of AI models in various clinical settings. Furthermore, the "black box" nature of some AI systems can impede explainability and clinician trust. To address these issues, efforts are underway to incorporate multimodal data, such as combining endoscopic and histopathologic imaging, to bolster model robustness and transparency. In the future, AI promises substantial advancements in automated real-time endoscopic guidance, personalized risk assessment, and optimized biopsy decision making. As it evolves, it would substantially impact not only early diagnosis and prognosis, but also the cost-effectiveness of managing upper GI diseases, ultimately leading to improved patient outcomes and more efficient health care delivery.
Collapse
Affiliation(s)
- Alanna Ebigbo
- Department of Gastroenterology, University Hospital Augsburg, Augsburg, Germany.
| | - Helmut Messmann
- Department of Gastroenterology, University Hospital Augsburg, Augsburg, Germany.
| | - Sung Hak Lee
- Department of Hospital Pathology, College of Medicine, The Catholic University of Korea, Seoul, South Korea; Seoul St. Mary's Hospital, Seoul, South Korea.
| |
Collapse
|
10
|
Feng J, Zhang Y, Feng Z, Ma H, Gou Y, Wang P, Feng Y, Wang X, Huang X. A prospective and comparative study on improving the diagnostic accuracy of early gastric cancer based on deep convolutional neural network real-time diagnosis system (with video). Surg Endosc 2025; 39:1874-1884. [PMID: 39843600 DOI: 10.1007/s00464-025-11527-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 01/02/2025] [Indexed: 01/24/2025]
Abstract
BACKGROUND Endoscopic diagnosis of early gastric cancer (EGC) is a challenge. It is not clear whether deep convolutional neural network (DCNN) model could improve the endoscopists' diagnostic performance. METHODS We established a DCNN-assisted system and found that accuracy of diagnosis is higher than endoscopists. We prospectively collected an independent image test set of 1289 images and a video test set of 130 patients from three endoscopic centers to compare the diagnostic efficacy of 12 endoscopists before and after DCNN model assistance. Accuracy, sensitivity, specificity, time, and AUC were the main indicators for comparison. RESULTS The DCNN model discriminated EGC from the control group (including ulcers and chronic gastritis) with an AUC of 0.917, a sensitivity of 93.38% (95% CI 91.09-95.12%), and a specificity of 90.07% (95% CI 87.59-92.10%) in the image dataset. The video test dataset have an AUC of 0.930, a sensitivity of 96.92% (95% CI 88.83-99.78%), and a specificity of 89.23% (95% CI 79.11-94.98%). The diagnostic performance of novice endoscopists was comparable to those of expert endoscopists with the DCNN model's assistance (accuracy: 95.22 vs. 96.16%) in image test dataset. In the video test, the novice endoscopists, accuracy after DCNN assistance was also improved from 79.36 to 86.41%, and from 86.28 to 91.03% for expert endoscopists. The mean pairwise kappa value of endoscopists was increased significantly with the DCNN model's assistance (0.705-0.753 vs.0.767-0.890) in image testing, and (0.657-0.793 vs. 0.738-0.905) in video testing. The diagnostic duration reduced considerably with the assistance of the DCNN model from 7.09 ± 0.6 s to 5.05 ± 0.55 s in image test, and from 2392.17 ± 7.77 s to2378.34 ± 23.51 s in video test. CONCLUSION We developed a DCNN-assisted diagnostic system. And the system can improve the diagnostic performance of endoscopists and help novice endoscopists achieve diagnostic accuracy comparable to that of expert endoscopists.
Collapse
Affiliation(s)
- Jie Feng
- Department of Gastroenterology, Lanzhou University Second Hospital, Lanzhou, Gansu Province, China.
- Digestive Endoscopy Engineering Research and Development Center of Gansu Province, Lanzhou, Gansu Province, China.
| | - Yaoping Zhang
- Department of Gastroenterology, Lanzhou University Second Hospital, Lanzhou, Gansu Province, China
- Digestive Endoscopy Engineering Research and Development Center of Gansu Province, Lanzhou, Gansu Province, China
| | - Zhijun Feng
- Southern Medical University, Guangzhou, Guangdong Province, China
| | - Huiming Ma
- Department of Gastroenterology, Lanzhou University Second Hospital, Lanzhou, Gansu Province, China
- Digestive Endoscopy Engineering Research and Development Center of Gansu Province, Lanzhou, Gansu Province, China
| | - Yani Gou
- Department of Gastroenterology, Lanzhou University Second Hospital, Lanzhou, Gansu Province, China
| | - Pengfei Wang
- Department of Gastroenterology, Lanzhou University Second Hospital, Lanzhou, Gansu Province, China
| | - Yanhu Feng
- Department of Gastroenterology, Lanzhou University Second Hospital, Lanzhou, Gansu Province, China
| | - Xiang Wang
- Department of Gastroenterology, Lanzhou University Second Hospital, Lanzhou, Gansu Province, China
| | - Xiaojun Huang
- Department of Gastroenterology, Lanzhou University Second Hospital, Lanzhou, Gansu Province, China
- Digestive Endoscopy Engineering Research and Development Center of Gansu Province, Lanzhou, Gansu Province, China
| |
Collapse
|
11
|
Zhong J, Zhu T, Huang Y. Reporting Quality of AI Intervention in Randomized Controlled Trials in Primary Care: Systematic Review and Meta-Epidemiological Study. J Med Internet Res 2025; 27:e56774. [PMID: 39998876 PMCID: PMC11897677 DOI: 10.2196/56774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 12/21/2024] [Accepted: 01/22/2025] [Indexed: 02/27/2025] Open
Abstract
BACKGROUND The surge in artificial intelligence (AI) interventions in primary care trials lacks a study on reporting quality. OBJECTIVE This study aimed to systematically evaluate the reporting quality of both published randomized controlled trials (RCTs) and protocols for RCTs that investigated AI interventions in primary care. METHODS PubMed, Embase, Cochrane Library, MEDLINE, Web of Science, and CINAHL databases were searched for RCTs and protocols on AI interventions in primary care until November 2024. Eligible studies were published RCTs or full protocols for RCTs exploring AI interventions in primary care. The reporting quality was assessed using CONSORT-AI (Consolidated Standards of Reporting Trials-Artificial Intelligence) and SPIRIT-AI (Standard Protocol Items: Recommendations for Interventional Trials-Artificial Intelligence) checklists, focusing on AI intervention-related items. RESULTS A total of 11,711 records were identified. In total, 19 published RCTs and 21 RCT protocols for 35 trials were included. The overall proportion of adequately reported items was 65% (172/266; 95% CI 59%-70%) and 68% (214/315; 95% CI 62%-73%) for RCTs and protocols, respectively. The percentage of RCTs and protocols that reported a specific item ranged from 11% (2/19) to 100% (19/19) and from 10% (2/21) to 100% (21/21), respectively. The reporting of both RCTs and protocols exhibited similar characteristics and trends. They both lack transparency and completeness, which can be summarized in three aspects: without providing adequate information regarding the input data, without mentioning the methods for identifying and analyzing performance errors, and without stating whether and how the AI intervention and its code can be accessed. CONCLUSIONS The reporting quality could be improved in both RCTs and protocols. This study helps promote the transparent and complete reporting of trials with AI interventions in primary care.
Collapse
Affiliation(s)
- Jinjia Zhong
- School of General Practice and Continuing Education, Capital Medical University, Beijing, China
| | - Ting Zhu
- School of General Practice and Continuing Education, Capital Medical University, Beijing, China
| | - Yafang Huang
- School of General Practice and Continuing Education, Capital Medical University, Beijing, China
| |
Collapse
|
12
|
Li Y, Liu F, Cai Q, Deng L, Ouyang Q, Zhang XHF, Zheng J. Invasion and metastasis in cancer: molecular insights and therapeutic targets. Signal Transduct Target Ther 2025; 10:57. [PMID: 39979279 PMCID: PMC11842613 DOI: 10.1038/s41392-025-02148-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 12/24/2024] [Accepted: 01/16/2025] [Indexed: 02/22/2025] Open
Abstract
The progression of malignant tumors leads to the development of secondary tumors in various organs, including bones, the brain, liver, and lungs. This metastatic process severely impacts the prognosis of patients, significantly affecting their quality of life and survival rates. Research efforts have consistently focused on the intricate mechanisms underlying this process and the corresponding clinical management strategies. Consequently, a comprehensive understanding of the biological foundations of tumor metastasis, identification of pivotal signaling pathways, and systematic evaluation of existing and emerging therapeutic strategies are paramount to enhancing the overall diagnostic and treatment capabilities for metastatic tumors. However, current research is primarily focused on metastasis within specific cancer types, leaving significant gaps in our understanding of the complex metastatic cascade, organ-specific tropism mechanisms, and the development of targeted treatments. In this study, we examine the sequential processes of tumor metastasis, elucidate the underlying mechanisms driving organ-tropic metastasis, and systematically analyze therapeutic strategies for metastatic tumors, including those tailored to specific organ involvement. Subsequently, we synthesize the most recent advances in emerging therapeutic technologies for tumor metastasis and analyze the challenges and opportunities encountered in clinical research pertaining to bone metastasis. Our objective is to offer insights that can inform future research and clinical practice in this crucial field.
Collapse
Affiliation(s)
- Yongxing Li
- Department of Urology, Urologic Surgery Center, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- State Key Laboratory of Trauma and Chemical Poisoning, Third Military Medical University (Army Medical University), Chongqing, China
| | - Fengshuo Liu
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, USA
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
- McNair Medical Institute, Baylor College of Medicine, Houston, TX, USA
- Graduate School of Biomedical Science, Cancer and Cell Biology Program, Baylor College of Medicine, Houston, TX, USA
| | - Qingjin Cai
- Department of Urology, Urologic Surgery Center, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- State Key Laboratory of Trauma and Chemical Poisoning, Third Military Medical University (Army Medical University), Chongqing, China
| | - Lijun Deng
- Department of Medicinal Chemistry, Third Military Medical University (Army Medical University), Chongqing, China
| | - Qin Ouyang
- Department of Medicinal Chemistry, Third Military Medical University (Army Medical University), Chongqing, China.
| | - Xiang H-F Zhang
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, USA.
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, USA.
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA.
- McNair Medical Institute, Baylor College of Medicine, Houston, TX, USA.
| | - Ji Zheng
- Department of Urology, Urologic Surgery Center, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, China.
- State Key Laboratory of Trauma and Chemical Poisoning, Third Military Medical University (Army Medical University), Chongqing, China.
| |
Collapse
|
13
|
Sui J, Luo JS, Xiong C, Tang CY, Peng YH, Zhou R. Bibliometric analysis on the top one hundred cited studies on gastrointestinal endoscopy. World J Gastrointest Endosc 2025; 17:100219. [PMID: 39850908 PMCID: PMC11752471 DOI: 10.4253/wjge.v17.i1.100219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 11/24/2024] [Accepted: 12/23/2024] [Indexed: 01/16/2025] Open
Abstract
BACKGROUND Gastrointestinal endoscopy has been widely used in the diagnosis and treatment of gastrointestinal diseases. A great many of studies on gastrointestinal endoscopy have been done. AIM To analyze the characteristics of top 100 cited articles on gastrointestinal endoscopy. METHODS A bibliometric analysis was conducted. The publications and their features were extracted from the Web of Science Core Collection, Science Citation Index-Expanded database. Excel, Web of Science database and SPSS software were used to perform the statistical description and analysis. VOSviewer software and MapChart were responsible for the visualizations. RESULTS The top 100 cited articles were published between 1976 and 2022. The guidelines (52%) and clinical trials (37%) are the main article types, and average publication year of the guidelines is much later than that of the clinical trials (2015 vs 1998). Among the clinical trials, diagnostic study (27.0%), cohort study (21.6%), case series (13.5%) and cross-sectional study (10.8%) account for a large proportion. Average citations of different study types and designs of the enrolled studies are of no significant differences. Most of the 100 articles were published by European authors and recorded by the endoscopic journals (65%). Top journals in medicine, such as the Lancet, New England Journal of Medicine and JAMA, also reported studies in this field. The hot spots of involved diseases include neoplasm or cancer-related diseases, inflammatory diseases, obstructive diseases, gastrointestinal hemorrhage and ulcer. Endoscopic surgery, endoscopic therapy and stent placement are frequently studied. CONCLUSION Our research contributes to delineating the field and identifying the characteristics of the most highly cited articles. It is noteworthy that there is a significantly smaller number of clinical trials included compared to guidelines, indicating potential areas for future high-quality clinical trials.
Collapse
Affiliation(s)
- Jing Sui
- Department of Anesthesiology, Deyang People’s Hospital, Deyang 618000, Sichuan Province, China
| | - Jian-Sheng Luo
- Department of Anesthesiology, Deyang People’s Hospital, Deyang 618000, Sichuan Province, China
| | - Chao Xiong
- Department of Anesthesiology, Deyang People’s Hospital, Deyang 618000, Sichuan Province, China
| | - Chun-Yong Tang
- Department of Anesthesiology, Deyang People’s Hospital, Deyang 618000, Sichuan Province, China
| | - Yan-Hua Peng
- Department of Anesthesiology, Deyang People’s Hospital, Deyang 618000, Sichuan Province, China
- Department of Anesthesiology, Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan Province, China
| | - Rui Zhou
- Department of Anesthesiology and Perioperative Medicine, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai 200434, China
| |
Collapse
|
14
|
Huang L, Xu M, Li Y, Dong Z, Lin J, Wang W, Wu L, Yu H. Gastric neoplasm detection of computer-aided detection-assisted esophagogastroduodenoscopy changes with implement scenarios: a real-world study. J Gastroenterol Hepatol 2024; 39:2787-2795. [PMID: 39469909 DOI: 10.1111/jgh.16784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/27/2024] [Accepted: 10/10/2024] [Indexed: 10/30/2024]
Abstract
BACKGROUND AND AIM The implementation of computer-aided detection (CAD) devices in esophagogastroduodenoscopy (EGD) could autonomously identify gastric precancerous lesions and neoplasms and reduce the miss rate of gastric neoplasms in prospective trials. However, there is still insufficient evidence of their use in real-life clinical practice. METHODS A real-world, two-center study was conducted at Wenzhou Central Hospital (WCH) and Renmin Hospital of Wuhan University (RHWU). High biopsy rate and low biopsy rate strategies were adopted, and CAD devices were applied in 2019 and 2021 at WCH and RHWU, respectively. We compared differences in gastric precancerous and neoplasm detection of EGD before and after the use of CAD devices in the first half of the year. RESULTS A total of 33 885 patients were included and 32 886 patients were ultimately analyzed. In WCH of which biopsy rate >95%, with the implementation of CAD, more the number of early gastric cancer divided by all gastric neoplasm (EGC/GN) (0.35% vs 0.59%, P = 0.028, OR [95% CI] = 1.65 [1.0-2.60]) was found, while gastric neoplasm detection rate (1.39% vs 1.36%, P = 0.897, OR [95% CI] = 0.98 [0.76-1.26]) remained stable. In RHWU of which biopsy rate <20%, the gastric neoplasm detection rate (1.78% vs 3.23%, P < 0.001, OR [95% CI] = 1.84 [1.33-2.54]) nearly doubled after the implementation of CAD, while there was no significant change in the EGC/GN. CONCLUSION The application of CAD devices devoted to distinct increases in gastric neoplasm detection according to different biopsy strategies, which implied that CAD devices demonstrated assistance on gastric neoplasm detection while varied effectiveness according to different implementation scenarios.
Collapse
Affiliation(s)
- Li Huang
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, China
- Key Laboratory of Hubei Province for Digestive System Disease, Renmin Hospital of Wuhan University, Wuhan, China
- Hubei Provincial Clinical Research Center for Digestive Disease Minimally Invasive Incision, Renmin Hospital of Wuhan University, Wuhan, China
- Engineering Research Center for Artificial Intelligence Endoscopy Interventional Treatment of Hubei Province, Renmin Hospital of Wuhan University, Wuhan, China
| | - Ming Xu
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, China
- Key Laboratory of Hubei Province for Digestive System Disease, Renmin Hospital of Wuhan University, Wuhan, China
- Hubei Provincial Clinical Research Center for Digestive Disease Minimally Invasive Incision, Renmin Hospital of Wuhan University, Wuhan, China
- Engineering Research Center for Artificial Intelligence Endoscopy Interventional Treatment of Hubei Province, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yanxia Li
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, China
- Key Laboratory of Hubei Province for Digestive System Disease, Renmin Hospital of Wuhan University, Wuhan, China
- Hubei Provincial Clinical Research Center for Digestive Disease Minimally Invasive Incision, Renmin Hospital of Wuhan University, Wuhan, China
- Engineering Research Center for Artificial Intelligence Endoscopy Interventional Treatment of Hubei Province, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zehua Dong
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, China
- Key Laboratory of Hubei Province for Digestive System Disease, Renmin Hospital of Wuhan University, Wuhan, China
- Hubei Provincial Clinical Research Center for Digestive Disease Minimally Invasive Incision, Renmin Hospital of Wuhan University, Wuhan, China
- Engineering Research Center for Artificial Intelligence Endoscopy Interventional Treatment of Hubei Province, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jiejun Lin
- Department of Gastroenterology, Wenzhou Sixth People's Hospital, Wenzhou Central Hospital Medical Group, Wenzhou, China
| | - Wen Wang
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, China
- Key Laboratory of Hubei Province for Digestive System Disease, Renmin Hospital of Wuhan University, Wuhan, China
- Hubei Provincial Clinical Research Center for Digestive Disease Minimally Invasive Incision, Renmin Hospital of Wuhan University, Wuhan, China
- Engineering Research Center for Artificial Intelligence Endoscopy Interventional Treatment of Hubei Province, Renmin Hospital of Wuhan University, Wuhan, China
| | - Lianlian Wu
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, China
- Key Laboratory of Hubei Province for Digestive System Disease, Renmin Hospital of Wuhan University, Wuhan, China
- Hubei Provincial Clinical Research Center for Digestive Disease Minimally Invasive Incision, Renmin Hospital of Wuhan University, Wuhan, China
- Engineering Research Center for Artificial Intelligence Endoscopy Interventional Treatment of Hubei Province, Renmin Hospital of Wuhan University, Wuhan, China
| | - Honggang Yu
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, China
- Key Laboratory of Hubei Province for Digestive System Disease, Renmin Hospital of Wuhan University, Wuhan, China
- Hubei Provincial Clinical Research Center for Digestive Disease Minimally Invasive Incision, Renmin Hospital of Wuhan University, Wuhan, China
- Engineering Research Center for Artificial Intelligence Endoscopy Interventional Treatment of Hubei Province, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
15
|
Li S, Xu M, Meng Y, Sun H, Zhang T, Yang H, Li Y, Ma X. The application of the combination between artificial intelligence and endoscopy in gastrointestinal tumors. MEDCOMM – ONCOLOGY 2024; 3. [DOI: 10.1002/mog2.91] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 09/03/2024] [Indexed: 01/04/2025]
Abstract
AbstractGastrointestinal (GI) tumors have always been a major type of malignant tumor and a leading cause of tumor‐related deaths worldwide. The main principles of modern medicine for GI tumors are early prevention, early diagnosis, and early treatment, with early diagnosis being the most effective measure. Endoscopy, due to its ability to visualize lesions, has been one of the primary modalities for screening, diagnosing, and treating GI tumors. However, a qualified endoscopist often requires long training and extensive experience, which to some extent limits the wider use of endoscopy. With advances in data science, artificial intelligence (AI) has brought a new development direction for the endoscopy of GI tumors. AI can quickly process large quantities of data and images and improve diagnostic accuracy with some training, greatly reducing the workload of endoscopists and assisting them in early diagnosis. Therefore, this review focuses on the combined application of endoscopy and AI in GI tumors in recent years, describing the latest research progress on the main types of tumors and their performance in clinical trials, the application of multimodal AI in endoscopy, the development of endoscopy, and the potential applications of AI within it, with the aim of providing a reference for subsequent research.
Collapse
Affiliation(s)
- Shen Li
- Department of Biotherapy Cancer Center, West China Hospital, West China Medical School Sichuan University Chengdu China
| | - Maosen Xu
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, West China Hospital, National Clinical Research, Sichuan University Chengdu Sichuan China
| | - Yuanling Meng
- West China School of Stomatology Sichuan University Chengdu Sichuan China
| | - Haozhen Sun
- College of Life Sciences Sichuan University Chengdu Sichuan China
| | - Tao Zhang
- Department of Biotherapy Cancer Center, West China Hospital, West China Medical School Sichuan University Chengdu China
| | - Hanle Yang
- Department of Biotherapy Cancer Center, West China Hospital, West China Medical School Sichuan University Chengdu China
| | - Yueyi Li
- Department of Biotherapy Cancer Center, West China Hospital, West China Medical School Sichuan University Chengdu China
| | - Xuelei Ma
- Department of Biotherapy Cancer Center, West China Hospital, West China Medical School Sichuan University Chengdu China
| |
Collapse
|
16
|
Boers TGW, Fockens KN, van der Putten JA, Jaspers TJM, Kusters CHJ, Jukema JB, Jong MR, Struyvenberg MR, de Groof J, Bergman JJ, de With PHN, van der Sommen F. Foundation models in gastrointestinal endoscopic AI: Impact of architecture, pre-training approach and data efficiency. Med Image Anal 2024; 98:103298. [PMID: 39173410 DOI: 10.1016/j.media.2024.103298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/18/2024] [Accepted: 08/06/2024] [Indexed: 08/24/2024]
Abstract
Pre-training deep learning models with large data sets of natural images, such as ImageNet, has become the standard for endoscopic image analysis. This approach is generally superior to training from scratch, due to the scarcity of high-quality medical imagery and labels. However, it is still unknown whether the learned features on natural imagery provide an optimal starting point for the downstream medical endoscopic imaging tasks. Intuitively, pre-training with imagery closer to the target domain could lead to better-suited feature representations. This study evaluates whether leveraging in-domain pre-training in gastrointestinal endoscopic image analysis has potential benefits compared to pre-training on natural images. To this end, we present a dataset comprising of 5,014,174 gastrointestinal endoscopic images from eight different medical centers (GastroNet-5M), and exploit self-supervised learning with SimCLRv2, MoCov2 and DINO to learn relevant features for in-domain downstream tasks. The learned features are compared to features learned on natural images derived with multiple methods, and variable amounts of data and/or labels (e.g. Billion-scale semi-weakly supervised learning and supervised learning on ImageNet-21k). The effects of the evaluation is performed on five downstream data sets, particularly designed for a variety of gastrointestinal tasks, for example, GIANA for angiodyplsia detection and Kvasir-SEG for polyp segmentation. The findings indicate that self-supervised domain-specific pre-training, specifically using the DINO framework, results into better performing models compared to any supervised pre-training on natural images. On the ResNet50 and Vision-Transformer-small architectures, utilizing self-supervised in-domain pre-training with DINO leads to an average performance boost of 1.63% and 4.62%, respectively, on the downstream datasets. This improvement is measured against the best performance achieved through pre-training on natural images within any of the evaluated frameworks. Moreover, the in-domain pre-trained models also exhibit increased robustness against distortion perturbations (noise, contrast, blur, etc.), where the in-domain pre-trained ResNet50 and Vision-Transformer-small with DINO achieved on average 1.28% and 3.55% higher on the performance metrics, compared to the best performance found for pre-trained models on natural images. Overall, this study highlights the importance of in-domain pre-training for improving the generic nature, scalability and performance of deep learning for medical image analysis. The GastroNet-5M pre-trained weights are made publicly available in our repository: huggingface.co/tgwboers/GastroNet-5M_Pretrained_Weights.
Collapse
Affiliation(s)
- Tim G W Boers
- Eindhoven University of Technology, Groene Loper 3, 5612 AE Eindhoven, The Netherlands.
| | - Kiki N Fockens
- Amsterdam UMC, Location VUmc, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
| | | | - Tim J M Jaspers
- Eindhoven University of Technology, Groene Loper 3, 5612 AE Eindhoven, The Netherlands
| | - Carolus H J Kusters
- Eindhoven University of Technology, Groene Loper 3, 5612 AE Eindhoven, The Netherlands
| | - Jelmer B Jukema
- Amsterdam UMC, Location VUmc, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
| | - Martijn R Jong
- Amsterdam UMC, Location VUmc, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
| | | | - Jeroen de Groof
- Amsterdam UMC, Location VUmc, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
| | - Jacques J Bergman
- Amsterdam UMC, Location VUmc, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
| | - Peter H N de With
- Eindhoven University of Technology, Groene Loper 3, 5612 AE Eindhoven, The Netherlands
| | - Fons van der Sommen
- Eindhoven University of Technology, Groene Loper 3, 5612 AE Eindhoven, The Netherlands
| |
Collapse
|
17
|
Khosravi M, Jasemi SK, Hayati P, Javar HA, Izadi S, Izadi Z. Transformative artificial intelligence in gastric cancer: Advancements in diagnostic techniques. Comput Biol Med 2024; 183:109261. [PMID: 39488054 DOI: 10.1016/j.compbiomed.2024.109261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 09/30/2024] [Accepted: 10/07/2024] [Indexed: 11/04/2024]
Abstract
Gastric cancer represents a significant global health challenge with elevated incidence and mortality rates, highlighting the need for advancements in diagnostic and therapeutic strategies. This review paper addresses the critical need for a thorough synthesis of the role of artificial intelligence (AI) in the management of gastric cancer. It provides an in-depth analysis of current AI applications, focusing on their contributions to early diagnosis, treatment planning, and outcome prediction. The review identifies key gaps and limitations in the existing literature by examining recent studies and technological developments. It aims to clarify the evolution of AI-driven methods and their impact on enhancing diagnostic accuracy, personalizing treatment strategies, and improving patient outcomes. The paper emphasizes the transformative potential of AI in overcoming the challenges associated with gastric cancer management and proposes future research directions to further harness AI's capabilities. Through this synthesis, the review underscores the importance of integrating AI technologies into clinical practice to revolutionize gastric cancer management.
Collapse
Affiliation(s)
- Mobina Khosravi
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran; USERN Office, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Seyedeh Kimia Jasemi
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran; USERN Office, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Parsa Hayati
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran; USERN Office, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Hamid Akbari Javar
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran; USERN Office, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Saadat Izadi
- Department of Computer Engineering and Information Technology, Razi University, Kermanshah, Iran; USERN Office, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Zhila Izadi
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran; USERN Office, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
18
|
Labaki C, Uche-Anya EN, Berzin TM. Artificial Intelligence in Gastrointestinal Endoscopy. Gastroenterol Clin North Am 2024; 53:773-786. [PMID: 39489586 DOI: 10.1016/j.gtc.2024.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2024]
Abstract
Recent advancements in artificial intelligence (AI) have significantly impacted the field of gastrointestinal (GI) endoscopy, with applications spanning a wide range of clinical indications. The central goals for AI in GI endoscopy are to improve endoscopic procedural performance and quality assessment, optimize patient outcomes, and reduce administrative burden. Despite early progress, such as Food and Drug Administration approval of the first computer-aided polyp detection system in 2021, there are numerous important challenges to be faced on the path toward broader adoption of AI algorithms in clinical endoscopic practice.
Collapse
Affiliation(s)
- Chris Labaki
- Department of Internal Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, 300 Brookline Avenue, Boston, MA, USA
| | - Eugenia N Uche-Anya
- Division of Gastroenterology, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street, Boston, MA, USA
| | - Tyler M Berzin
- Center for Advanced Endoscopy, Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, MA, USA.
| |
Collapse
|
19
|
Matta S, Lamard M, Zhang P, Le Guilcher A, Borderie L, Cochener B, Quellec G. A systematic review of generalization research in medical image classification. Comput Biol Med 2024; 183:109256. [PMID: 39427426 DOI: 10.1016/j.compbiomed.2024.109256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 09/17/2024] [Accepted: 10/06/2024] [Indexed: 10/22/2024]
Abstract
Numerous Deep Learning (DL) classification models have been developed for a large spectrum of medical image analysis applications, which promises to reshape various facets of medical practice. Despite early advances in DL model validation and implementation, which encourage healthcare institutions to adopt them, a fundamental questions remain: how can these models effectively handle domain shift? This question is crucial to limit DL models performance degradation. Medical data are dynamic and prone to domain shift, due to multiple factors. Two main shift types can occur over time: (1) covariate shift mainly arising due to updates to medical equipment and (2) concept shift caused by inter-grader variability. To mitigate the problem of domain shift, existing surveys mainly focus on domain adaptation techniques, with an emphasis on covariate shift. More generally, no work has reviewed the state-of-the-art solutions while focusing on the shift types. This paper aims to explore existing domain generalization methods for DL-based classification models through a systematic review of literature. It proposes a taxonomy based on the shift type they aim to solve. Papers were searched and gathered on Scopus till 10 April 2023, and after the eligibility screening and quality evaluation, 77 articles were identified. Exclusion criteria included: lack of methodological novelty (e.g., reviews, benchmarks), experiments conducted on a single mono-center dataset, or articles not written in English. The results of this paper show that learning based methods are emerging, for both shift types. Finally, we discuss future challenges, including the need for improved evaluation protocols and benchmarks, and envisioned future developments to achieve robust, generalized models for medical image classification.
Collapse
Affiliation(s)
- Sarah Matta
- Université de Bretagne Occidentale, Brest, Bretagne, 29200, France; Inserm, UMR 1101, Brest, F-29200, France.
| | - Mathieu Lamard
- Université de Bretagne Occidentale, Brest, Bretagne, 29200, France; Inserm, UMR 1101, Brest, F-29200, France
| | - Philippe Zhang
- Université de Bretagne Occidentale, Brest, Bretagne, 29200, France; Inserm, UMR 1101, Brest, F-29200, France; Evolucare Technologies, Villers-Bretonneux, F-80800, France
| | | | | | - Béatrice Cochener
- Université de Bretagne Occidentale, Brest, Bretagne, 29200, France; Inserm, UMR 1101, Brest, F-29200, France; Service d'Ophtalmologie, CHRU Brest, Brest, F-29200, France
| | | |
Collapse
|
20
|
Katal S, York B, Gholamrezanezhad A. AI in radiology: From promise to practice - A guide to effective integration. Eur J Radiol 2024; 181:111798. [PMID: 39471551 DOI: 10.1016/j.ejrad.2024.111798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 10/03/2024] [Accepted: 10/19/2024] [Indexed: 11/01/2024]
Abstract
While Artificial Intelligence (AI) has the potential to transform the field of diagnostic radiology, important obstacles still inhibit its integration into clinical environments. Foremost among them is the inability to integrate clinical information and prior and concurrent imaging examinations, which can lead to diagnostic errors that could irreversibly alter patient care. For AI to succeed in modern clinical practice, model training and algorithm development need to account for relevant background information that may influence the presentation of the patient in question. While AI is often remarkably accurate in distinguishing binary outcomes-hemorrhage vs. no hemorrhage; fracture vs. no fracture-the narrow scope of current training datasets prevents AI from examining the entire clinical context of the image in question. In this article, we provide an overview of the ways in which failure to account for clinical data and prior imaging can adversely affect AI interpretation of imaging studies. We then showcase how emerging techniques such as multimodal fusion and combined neural networks can take advantage of both clinical and imaging data, as well as how development strategies like domain adaptation can ensure greater generalizability of AI algorithms across diverse and dynamic clinical environments.
Collapse
Affiliation(s)
- Sanaz Katal
- Department of Medical Imaging, St. Vincent's Hospital Melbourne, 41 Victoria Parade, Fitzroy, VIC 3065, USA
| | - Benjamin York
- Department of Radiology, Los Angeles General Medical Center, 1200 N State Street, Los Angeles, CA 90033, USA.
| | - Ali Gholamrezanezhad
- Department of Radiology, Los Angeles General Medical Center, 1200 N State Street, Los Angeles, CA 90033, USA
| |
Collapse
|
21
|
Lee H, Chung JW, Yun SC, Jung SW, Yoon YJ, Kim JH, Cha B, Kayasseh MA, Kim KO. Validation of Artificial Intelligence Computer-Aided Detection on Gastric Neoplasm in Upper Gastrointestinal Endoscopy. Diagnostics (Basel) 2024; 14:2706. [PMID: 39682614 DOI: 10.3390/diagnostics14232706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 11/22/2024] [Accepted: 11/25/2024] [Indexed: 12/18/2024] Open
Abstract
BACKGROUND/OBJECTIVES Gastric cancer ranks fifth for incidence and fourth in the leading causes of mortality worldwide. In this study, we aimed to validate previously developed artificial intelligence (AI) computer-aided detection (CADe) algorithm, called ALPHAON® in detecting gastric neoplasm. METHODS We used the retrospective data of 500 still images, including 5 benign gastric ulcers, 95 with gastric cancer, and 400 normal images. Thereby we validated the CADe algorithm measuring accuracy, sensitivity, and specificity with the result of receiver operating characteristic curves (ROC) and area under curve (AUC) in addition to comparing the diagnostic performance status of four expert endoscopists, four trainees, and four beginners from two university-affiliated hospitals with CADe algorithm. After a washing-out period of over 2 weeks, endoscopists performed gastric detection on the same dataset of the 500 endoscopic images again marked by ALPHAON®. RESULTS The CADe algorithm presented high validity in detecting gastric neoplasm with accuracy (0.88, 95% CI: 0.85 to 0.91), sensitivity (0.93, 95% CI: 0.88 to 0.98), specificity (0.87, 95% CI: 0.84 to 0.90), and AUC (0.962). After a washing-out period of over 2 weeks, overall validity improved in the trainee and beginner groups with the assistance of ALPHAON®. Significant improvement was present, especially in the beginner group (accuracy 0.94 (0.93 to 0.96) p < 0.001, sensitivity 0.87 (0.82 to 0.92) p < 0.001, specificity 0.96 (0.95 to 0.97) p < 0.001). CONCLUSIONS The high validation performance state of the CADe algorithm system was verified. Also, ALPHAON® has demonstrated its potential to serve as an endoscopic educator for beginners improving and making progress in sensitivity and specificity.
Collapse
Affiliation(s)
- Hannah Lee
- Division of Gastroenterology, Department of Internal Medicine, Gachon University, Gil Medical Center, Incheon 21565, Republic of Korea
| | - Jun-Won Chung
- Division of Gastroenterology, Department of Internal Medicine, Gachon University, Gil Medical Center, Incheon 21565, Republic of Korea
| | - Sung-Cheol Yun
- Division of Biostatistics, Center for Medical Research and Information, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
| | - Sung Woo Jung
- Division of Gastroenterology, Department of Internal Medicine, Korea University College of Medicine, Ansan 15355, Republic of Korea
| | | | - Ji Hee Kim
- CAIMI Co., Ltd., Incheon 22004, Republic of Korea
| | - Boram Cha
- Division of Gastroenterology, Department of Internal Medicine, Inha University Hospital, Inha University School of Medicine, Incheon 22332, Republic of Korea
| | - Mohd Azzam Kayasseh
- Division of Gastroenterology, Dr. Sulaiman AI Habib Medical Group, Dubai Healthcare City, Dubai 51431, United Arab Emirates
| | - Kyoung Oh Kim
- Division of Gastroenterology, Department of Internal Medicine, Gachon University, Gil Medical Center, Incheon 21565, Republic of Korea
| |
Collapse
|
22
|
Liu Z, Zhang H, Zhang M, Qu C, Li L, Sun Y, Ma X. Compare three deep learning-based artificial intelligence models for classification of calcified lumbar disc herniation: a multicenter diagnostic study. Front Surg 2024; 11:1458569. [PMID: 39569028 PMCID: PMC11576459 DOI: 10.3389/fsurg.2024.1458569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 10/21/2024] [Indexed: 11/22/2024] Open
Abstract
Objective To develop and validate an artificial intelligence diagnostic model for identifying calcified lumbar disc herniation based on lateral lumbar magnetic resonance imaging(MRI). Methods During the period from January 2019 to March 2024, patients meeting the inclusion criteria were collected. All patients had undergone both lumbar spine MRI and computed tomography(CT) examinations, with regions of interest (ROI) clearly marked on the lumbar sagittal MRI images. The participants were then divided into separate sets for training, testing, and external validation. Ultimately, we developed a deep learning model using the ResNet-34 algorithm model and evaluated its diagnostic efficacy. Results A total of 1,224 eligible patients were included in this study, consisting of 610 males and 614 females, with an average age of 53.34 ± 10.61 years. Notably, the test datasets displayed an impressive classification accuracy rate of 91.67%, whereas the external validation datasets achieved a classification accuracy rate of 88.76%. Among the test datasets, the ResNet34 model outperformed other models, yielding the highest area under the curve (AUC) of 0.96 (95% CI: 0.93, 0.99). Additionally, the ResNet34 model also exhibited superior performance in the external validation datasets, exhibiting an AUC of 0.88 (95% CI: 0.80, 0.93). Conclusion In this study, we established a deep learning model with excellent performance in identifying calcified intervertebral discs, thereby offering a valuable and efficient diagnostic tool for clinical surgeons.
Collapse
Affiliation(s)
- Zhiming Liu
- Department of Spine Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Hao Zhang
- Department of Spine Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Min Zhang
- Department of Neonatology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Changpeng Qu
- Department of Spine Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Lei Li
- Department of Spine Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Yihao Sun
- Department of Spine Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Xuexiao Ma
- Department of Spine Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| |
Collapse
|
23
|
Lin J, Zhu S, Gao X, Liu X, Xu C, Xu Z, Zhu J. Evaluation of super resolution technology for digestive endoscopic images. Heliyon 2024; 10:e38920. [PMID: 39430485 PMCID: PMC11489312 DOI: 10.1016/j.heliyon.2024.e38920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 09/25/2024] [Accepted: 10/02/2024] [Indexed: 10/22/2024] Open
Abstract
Object This study aims to evaluate the value of super resolution (SR) technology in augmenting the quality of digestive endoscopic images. Methods In the retrospective study, we employed two advanced SR models, i.e., SwimIR and ESRGAN. Two discrete datasets were utilized, with training conducted using the dataset of the First Affiliated Hospital of Soochow University (12,212 high-resolution images) and evaluation conducted using the HyperKvasir dataset (2,566 low-resolution images). Furthermore, an assessment of the impact of enhanced low-resolution images was conducted using a 5-point Likert scale from the perspectives of endoscopists. Finally, two endoscopic image classification tasks were employed to evaluate the effect of SR technology on computer vision (CV). Results SwinIR demonstrated superior performance, which achieved a PSNR of 32.60, an SSIM of 0.90, and a VIF of 0.47 in test set. 90 % of endoscopists supported that SR preprocessing moderately ameliorated the readability of endoscopic images. For CV, enhanced images bolstered the performance of convolutional neural networks, whether in the classification task of Barrett's esophagus (improved F1-score: 0.04) or Mayo Endoscopy Score (improved F1-score: 0.04). Conclusions SR technology demonstrates the capacity to produce high-resolution endoscopic images. The approach enhanced clinical readability and CV models' performance of low-resolution endoscopic images.
Collapse
Affiliation(s)
- Jiaxi Lin
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Suzhou Clinical Center of Digestive Diseases, Suzhou, China
- Key Laboratory of Hepatoaplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Shiqi Zhu
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Suzhou Clinical Center of Digestive Diseases, Suzhou, China
- Key Laboratory of Hepatoaplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xin Gao
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Suzhou Clinical Center of Digestive Diseases, Suzhou, China
- Key Laboratory of Hepatoaplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xiaolin Liu
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Suzhou Clinical Center of Digestive Diseases, Suzhou, China
- Key Laboratory of Hepatoaplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Chunfang Xu
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Suzhou Clinical Center of Digestive Diseases, Suzhou, China
| | - Zhonghua Xu
- Department of Orthopedics, Jintan Affiliated Hospital to Jiangsu University, Changzhou, China
| | - Jinzhou Zhu
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Suzhou Clinical Center of Digestive Diseases, Suzhou, China
- Key Laboratory of Hepatoaplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
24
|
Huang R, Li A, Ge H, Liu L, Cheng L, Zhang M, Cheng H. Impacts and Pathways of Behavioral Activation on Psychological Distress Among Patients Diagnosed With Esophageal and Gastric Cancer in China: A Randomized Controlled Trial. Cancer Med 2024; 13:e70314. [PMID: 39404168 PMCID: PMC11475026 DOI: 10.1002/cam4.70314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 07/03/2024] [Accepted: 09/27/2024] [Indexed: 10/19/2024] Open
Abstract
OBJECTIVE The objective of this study is to investigate the efficacy of behavioral activation (BA), a novel psychological intervention, in ameliorating psychological distress and anxiety symptoms among patients diagnosed with esophageal and gastric cancer, as well as the mediating role of self-efficacy between BA and psychological distress. METHODS A total of 139 patients diagnosed with esophageal and gastric cancer were recruited in China from March 2023 to October 2023 and randomly assigned to either the BA plus care as usual group (BA+CAU group) or the care as usual group (CAU group). Pre- and post-intervention questionnaires, including the Psychological Distress Thermometer (DT), Generalized anxiety disorder 7-item (GAD-7) Scale, General Self-Efficacy Scale (GSES) and the activation subscale of Behavioral Activation for Depression Scale (BADS-A), were administered. RESULTS Generalized estimating equation analyses revealed that, compared to usual care alone, combining BA with usual care significantly ameliorated psychological distress, anxiety as well as improved self-efficacy and activation. The mediation analysis revealed that self-efficacy served as a mediator in the relationship between activation and psychological distress. CONCLUSIONS BA primarily based on telephone or WeChat can not only directly ameliorates psychological distress and anxiety symptoms in patients with esophageal cancer and gastric cancer but also indirectly alleviates psychological distress by enhancing self-efficacy. The study also demonstrates the potential of BA in cancer patients, a skill that can be effectively acquired by primary care workers without specialized training and implemented more flexible. TRIAL REGISTRATION NCT06348940.
Collapse
Affiliation(s)
- Runze Huang
- Department of OncologyThe Second Affiliated Hospital of Anhui Medical UniversityHefeiAnhuiChina
- Anhui Medical UniversityHefeiAnhuiChina
| | - Anlong Li
- Department of OncologyThe Second Affiliated Hospital of Anhui Medical UniversityHefeiAnhuiChina
- Anhui Medical UniversityHefeiAnhuiChina
| | - Han Ge
- Anhui Medical UniversityHefeiAnhuiChina
- School of NursingAnhui Medical UniversityHefeiAnhuiChina
| | - Lijun Liu
- Department of OncologyThe Second Affiliated Hospital of Anhui Medical UniversityHefeiAnhuiChina
- Anhui Medical UniversityHefeiAnhuiChina
| | - Ling Cheng
- Medical Intensive Care UnitThe First Affiliated Hospital of Anhui University of Chinese MedicineHefeiAnhuiChina
| | - Mingjun Zhang
- Department of OncologyThe Second Affiliated Hospital of Anhui Medical UniversityHefeiAnhuiChina
| | - Huaidong Cheng
- Department of OncologyThe Second Affiliated Hospital of Anhui Medical UniversityHefeiAnhuiChina
- The Third School of Clinical MedicineSouthern Medical UniversityGuangzhouPeople's Republic of China
- Department of OncologyShenzhen Hospital of Southern Medical UniversityShenzhenGuangdongChina
| |
Collapse
|
25
|
Sriraman H, Badarudeen S, Vats S, Balasubramanian P. A Systematic Review of Real-Time Deep Learning Methods for Image-Based Cancer Diagnostics. J Multidiscip Healthc 2024; 17:4411-4425. [PMID: 39281299 PMCID: PMC11397255 DOI: 10.2147/jmdh.s446745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 07/17/2024] [Indexed: 09/18/2024] Open
Abstract
Deep Learning (DL) drives academics to create models for cancer diagnosis using medical image processing because of its innate ability to recognize difficult-to-detect patterns in complex, noisy, and massive data. The use of deep learning algorithms for real-time cancer diagnosis is explored in depth in this work. Real-time medical diagnosis determines the illness or condition that accounts for a patient's symptoms and outward physical manifestations within a predetermined time frame. With a waiting period of anywhere between 5 days and 30 days, there are currently several ways, including screening tests, biopsies, and other prospective methods, that can assist in discovering a problem, particularly cancer. This article conducts a thorough literature review to understand how DL affects the length of this waiting period. In addition, the accuracy and turnaround time of different imaging modalities is evaluated with DL-based cancer diagnosis. Convolutional neural networks are critical for real-time cancer diagnosis, with models achieving up to 99.3% accuracy. The effectiveness and cost of the infrastructure required for real-time image-based medical diagnostics are evaluated. According to the report, generalization problems, data variability, and explainable DL are some of the most significant barriers to using DL in clinical trials. Making DL applicable for cancer diagnosis will be made possible by explainable DL.
Collapse
Affiliation(s)
- Harini Sriraman
- School of Computer Science and Engineering, Vellore Institute of Technology, Chennai, 600127, India
| | - Saleena Badarudeen
- School of Computer Science and Engineering, Vellore Institute of Technology, Chennai, 600127, India
| | - Saransh Vats
- School of Computer Science and Engineering, Vellore Institute of Technology, Chennai, 600127, India
| | - Prakash Balasubramanian
- School of Computer Science and Engineering, Vellore Institute of Technology, Chennai, 600127, India
| |
Collapse
|
26
|
Shukla A, Chaudhary R, Nayyar N. Role of artificial intelligence in gastrointestinal surgery. Artif Intell Cancer 2024; 5:97317. [DOI: 10.35713/aic.v5.i2.97317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/11/2024] [Accepted: 07/17/2024] [Indexed: 09/05/2024] Open
Abstract
Artificial intelligence is rapidly evolving and its application is increasing day-by-day in the medical field. The application of artificial intelligence is also valuable in gastrointestinal diseases, by calculating various scoring systems, evaluating radiological images, preoperative and intraoperative assistance, processing pathological slides, prognosticating, and in treatment responses. This field has a promising future and can have an impact on many management algorithms. In this minireview, we aimed to determine the basics of artificial intelligence, the role that artificial intelligence may play in gastrointestinal surgeries and malignancies, and the limitations thereof.
Collapse
Affiliation(s)
- Ankit Shukla
- Department of Surgery, Dr Rajendra Prasad Government Medical College, Kangra 176001, Himachal Pradesh, India
| | - Rajesh Chaudhary
- Department of Renal Transplantation, Dr Rajendra Prasad Government Medical College, Kangra 176001, India
| | - Nishant Nayyar
- Department of Radiology, Dr Rajendra Prasad Government Medical College, Kangra 176001, Himachal Pradesh, India
| |
Collapse
|
27
|
Ishihara R. Surveillance for metachronous cancers after endoscopic resection of esophageal squamous cell carcinoma. Clin Endosc 2024; 57:559-570. [PMID: 38725400 PMCID: PMC11474468 DOI: 10.5946/ce.2023.263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/15/2023] [Accepted: 12/17/2023] [Indexed: 10/03/2024] Open
Abstract
The literature pertaining to surveillance following treatment for esophageal squamous cell carcinoma (SCC) was reviewed and summarized, encompassing the current status and future perspectives. Analysis of the standardized mortality and incidence ratios for these cancers indicates an elevated risk of cancer in the oral cavity, pharynx, larynx, and lungs among patients with esophageal SCC compared to the general population. To enhance the efficacy of surveillance for these metachronous cancers, risk stratification is needed. Various factors, including multiple Lugol-voiding lesions, multiple foci of dilated vascular areas, young age, and high mean corpuscular volume, have been identified as predictors of metachronous SCCs. Current practice involves stratifying the risk of metachronous esophageal and head/neck SCCs based on the presence of multiple Lugol-voiding lesions. Endoscopic surveillance, scheduled 6-12 months post-endoscopic resection, has demonstrated effectiveness, with over 90% of metachronous esophageal SCCs treatable through minimally invasive modalities. Narrow-band imaging emerges as the preferred surveillance method for esophageal and head/neck SCC based on comparative studies of various imaging techniques. Innovative approaches, such as artificial intelligence-assisted detection systems and radiofrequency ablation of high-risk background mucosa, may improve outcomes in patients following endoscopic resection.
Collapse
Affiliation(s)
- Ryu Ishihara
- Department of Gastrointestinal Oncology, Osaka International Cancer Institute, Osaka, Japan
| |
Collapse
|
28
|
Zhou R, Liu J, Zhang C, Zhao Y, Su J, Niu Q, Liu C, Guo Z, Cui Z, Zhong X, Zhao W, Li J, Zhang X, Wang H, Sun S, Ma R, Chen X, Xu X, Zhu Y, Li Z, Zuo X, Li Y. Efficacy of a real-time intelligent quality-control system for the detection of early upper gastrointestinal neoplasms: a multicentre, single-blinded, randomised controlled trial. EClinicalMedicine 2024; 75:102803. [PMID: 39281103 PMCID: PMC11402435 DOI: 10.1016/j.eclinm.2024.102803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 08/07/2024] [Accepted: 08/13/2024] [Indexed: 09/18/2024] Open
Abstract
Background Oesophagogastroduodenoscopy (OGD) quality and identification of the early upper gastrointestinal (UGI) neoplasm play an important role in detecting the UGI neoplasm. However, the optimal method for quality control in daily OGD procedures is currently lacking. We aimed to evaluate the efficacy of a real-time intelligent quality-control system (IQCS), which combines OGD quality control with lesion detection of early UGI neoplasms. Methods We performed a multicentre, single-blinded, randomised controlled trial at 6 hospitals in China. Patients aged 40-80 years old who underwent painless OGD were screened for enrolment in this study. Patients with a history of advanced UGI cancer, stenosis, or obstruction in UGI tract were excluded. Eligible subjects were randomly assigned (1:1) to either the routine or IQCS group to undergo standard OGD examination and OGD examination aided by IQCS, respectively. Patients were masked to the randomisation status. The primary outcome was the detection of early UGI neoplasms. All analyses were done on a per-protocol basis. This trial is registered with ClinicalTrials.gov, NCT04720924. Findings Between January 16, 2021 and December 23, 2022, 1840 patients were randomised (IQCS group: 919, routine group: 921). The full analysis set consisted of 914 in the IQCS group and 915 in the routine group. The early UGI neoplasms detection rate in the IQCS group (6.1%, 56/914) was significantly higher than in the routine group (2.3%, 21/915; P = 0.0001). The IQCS group had fewer blind spots (2.3 vs. 6.2, P < 0.0001). The IQCS group had higher stomach cleanliness on cardia or fundus (99.5% vs. 87.9%, P < 0.0001), body (98.9% vs. 88.0%, P < 0.0001), angulus (99.8% vs. 88.4%, P < 0.0001) and antrum or pylorus (100.0% vs. 87.4%, P < 0.0001). The inspection time (576.2 vs. 574.5s, P = 0.91) and biopsy rate (57.2% vs. 56.6%, P = 0.83) were not different between the groups. The early UGI neoplasms detection rate in the IQCS group increased in both non-academic centres (RR = 3.319, 95% CI 1.277-9.176; P = 0.0094) and academic centres (RR = 2.416, 95% CI 1.301-4.568; P = 0.0034). The same improvements were observed for both less-experienced endoscopists (RR = 2.650, 95% CI 1.330-5.410; P = 0.0034) and experienced endoscopists (RR = 2.710, 95% CI 1.226-6.205; P = 0.010). No adverse events or serious adverse events were reported in the two groups. Interpretation The IQCS improved the OGD quality and increased early UGI neoplasm detection in different hospital types and endoscopist experiences. IQCS could play an important role in primary basic hospitals and non-expert endoscopists to improve the diagnostic accuracy of early UGI neoplasms. The effectiveness of IQCS in real-world clinical settings needs a larger population validation. Funding Key R&D Program of Shandong Province, China (Major Scientific and Technological Innovation Project), National Natural Science Foundation of China, the Taishan Scholars Program of Shandong Province, the National Key Research and Development Program of China, and the Shandong Provincial Natural Science Foundation.
Collapse
Affiliation(s)
- Ruchen Zhou
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong, China
- Laboratory of Translational Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong, China
- Robot Engineering Laboratory for Precise Diagnosis and Therapy of GI Tumor, Qilu Hospital of Shandong University, Jinan, Shandong, China
- Shandong Provincial Clinical Research Centre for Digestive Disease, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Jing Liu
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong, China
- Laboratory of Translational Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong, China
- Robot Engineering Laboratory for Precise Diagnosis and Therapy of GI Tumor, Qilu Hospital of Shandong University, Jinan, Shandong, China
- Shandong Provincial Clinical Research Centre for Digestive Disease, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Chenchen Zhang
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong, China
- Laboratory of Translational Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong, China
- Robot Engineering Laboratory for Precise Diagnosis and Therapy of GI Tumor, Qilu Hospital of Shandong University, Jinan, Shandong, China
- Shandong Provincial Clinical Research Centre for Digestive Disease, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Yusha Zhao
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong, China
- Laboratory of Translational Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong, China
- Robot Engineering Laboratory for Precise Diagnosis and Therapy of GI Tumor, Qilu Hospital of Shandong University, Jinan, Shandong, China
- Shandong Provincial Clinical Research Centre for Digestive Disease, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Jingran Su
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong, China
- Laboratory of Translational Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong, China
- Robot Engineering Laboratory for Precise Diagnosis and Therapy of GI Tumor, Qilu Hospital of Shandong University, Jinan, Shandong, China
- Shandong Provincial Clinical Research Centre for Digestive Disease, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Qiong Niu
- Department of Gastroenterology, Binzhou Medical University Hospital, Binzhou, Shandong, China
- The First School of Clinical Medicine of Binzhou Medical University, Binzhou, Shandong, China
| | - Chengxia Liu
- Department of Gastroenterology, Binzhou Medical University Hospital, Binzhou, Shandong, China
- The First School of Clinical Medicine of Binzhou Medical University, Binzhou, Shandong, China
| | - Zhuang Guo
- Central Hospital of Shengli Oilfield, Dongying, Shandong, China
| | - Zhenqin Cui
- Central Hospital of Shengli Oilfield, Dongying, Shandong, China
| | | | | | - Jing Li
- Linyi People's Hospital, Dezhou, Shandong, China
| | | | | | - Shidong Sun
- PKUCare Luzhong Hospital, Zibo, Shandong, China
| | - Ruiguang Ma
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong, China
- Laboratory of Translational Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong, China
- Robot Engineering Laboratory for Precise Diagnosis and Therapy of GI Tumor, Qilu Hospital of Shandong University, Jinan, Shandong, China
- Shandong Provincial Clinical Research Centre for Digestive Disease, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Xinyu Chen
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong, China
- Laboratory of Translational Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong, China
- Robot Engineering Laboratory for Precise Diagnosis and Therapy of GI Tumor, Qilu Hospital of Shandong University, Jinan, Shandong, China
- Shandong Provincial Clinical Research Centre for Digestive Disease, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Xinyan Xu
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong, China
- Laboratory of Translational Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong, China
- Robot Engineering Laboratory for Precise Diagnosis and Therapy of GI Tumor, Qilu Hospital of Shandong University, Jinan, Shandong, China
- Shandong Provincial Clinical Research Centre for Digestive Disease, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Yiqing Zhu
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong, China
- Laboratory of Translational Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong, China
- Robot Engineering Laboratory for Precise Diagnosis and Therapy of GI Tumor, Qilu Hospital of Shandong University, Jinan, Shandong, China
- Shandong Provincial Clinical Research Centre for Digestive Disease, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Zhen Li
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong, China
- Laboratory of Translational Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong, China
- Robot Engineering Laboratory for Precise Diagnosis and Therapy of GI Tumor, Qilu Hospital of Shandong University, Jinan, Shandong, China
- Shandong Provincial Clinical Research Centre for Digestive Disease, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Xiuli Zuo
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong, China
- Laboratory of Translational Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong, China
- Robot Engineering Laboratory for Precise Diagnosis and Therapy of GI Tumor, Qilu Hospital of Shandong University, Jinan, Shandong, China
- Shandong Provincial Clinical Research Centre for Digestive Disease, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Yanqing Li
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong, China
- Laboratory of Translational Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong, China
- Robot Engineering Laboratory for Precise Diagnosis and Therapy of GI Tumor, Qilu Hospital of Shandong University, Jinan, Shandong, China
- Shandong Provincial Clinical Research Centre for Digestive Disease, Qilu Hospital of Shandong University, Jinan, Shandong, China
| |
Collapse
|
29
|
Kikuchi R, Okamoto K, Ozawa T, Shibata J, Ishihara S, Tada T. Endoscopic Artificial Intelligence for Image Analysis in Gastrointestinal Neoplasms. Digestion 2024; 105:419-435. [PMID: 39068926 DOI: 10.1159/000540251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 07/02/2024] [Indexed: 07/30/2024]
Abstract
BACKGROUND Artificial intelligence (AI) using deep learning systems has recently been utilized in various medical fields. In the field of gastroenterology, AI is primarily implemented in image recognition and utilized in the realm of gastrointestinal (GI) endoscopy. In GI endoscopy, computer-aided detection/diagnosis (CAD) systems assist endoscopists in GI neoplasm detection or differentiation of cancerous or noncancerous lesions. Several AI systems for colorectal polyps have already been applied in colonoscopy clinical practices. In esophagogastroduodenoscopy, a few CAD systems for upper GI neoplasms have been launched in Asian countries. The usefulness of these CAD systems in GI endoscopy has been gradually elucidated. SUMMARY In this review, we outline recent articles on several studies of endoscopic AI systems for GI neoplasms, focusing on esophageal squamous cell carcinoma (ESCC), esophageal adenocarcinoma (EAC), gastric cancer (GC), and colorectal polyps. In ESCC and EAC, computer-aided detection (CADe) systems were mainly developed, and a recent meta-analysis study showed sensitivities of 91.2% and 93.1% and specificities of 80% and 86.9%, respectively. In GC, a recent meta-analysis study on CADe systems demonstrated that their sensitivity and specificity were as high as 90%. A randomized controlled trial (RCT) also showed that the use of the CADe system reduced the miss rate. Regarding computer-aided diagnosis (CADx) systems for GC, although RCTs have not yet been conducted, most studies have demonstrated expert-level performance. In colorectal polyps, multiple RCTs have shown the usefulness of the CADe system for improving the polyp detection rate, and several CADx systems have been shown to have high accuracy in colorectal polyp differentiation. KEY MESSAGES Most analyses of endoscopic AI systems suggested that their performance was better than that of nonexpert endoscopists and equivalent to that of expert endoscopists. Thus, endoscopic AI systems may be useful for reducing the risk of overlooking lesions and improving the diagnostic ability of endoscopists.
Collapse
Affiliation(s)
- Ryosuke Kikuchi
- Department of Surgical Oncology, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kazuaki Okamoto
- Department of Surgical Oncology, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Tsuyoshi Ozawa
- Tomohiro Tada the Institute of Gastroenterology and Proctology, Saitama, Japan
- AI Medical Service Inc., Tokyo, Japan
| | - Junichi Shibata
- Tomohiro Tada the Institute of Gastroenterology and Proctology, Saitama, Japan
- AI Medical Service Inc., Tokyo, Japan
| | - Soichiro Ishihara
- Department of Surgical Oncology, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Tomohiro Tada
- Department of Surgical Oncology, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
- Tomohiro Tada the Institute of Gastroenterology and Proctology, Saitama, Japan
- AI Medical Service Inc., Tokyo, Japan
| |
Collapse
|
30
|
Uema R, Hayashi Y, Kizu T, Igura T, Ogiyama H, Yamada T, Takeda R, Nagai K, Inoue T, Yamamoto M, Yamaguchi S, Kanesaka T, Yoshihara T, Kato M, Yoshii S, Tsujii Y, Shinzaki S, Takehara T. A novel artificial intelligence-based endoscopic ultrasonography diagnostic system for diagnosing the invasion depth of early gastric cancer. J Gastroenterol 2024; 59:543-555. [PMID: 38713263 PMCID: PMC11217111 DOI: 10.1007/s00535-024-02102-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 03/30/2024] [Indexed: 05/08/2024]
Abstract
BACKGROUND We developed an artificial intelligence (AI)-based endoscopic ultrasonography (EUS) system for diagnosing the invasion depth of early gastric cancer (EGC), and we evaluated the performance of this system. METHODS A total of 8280 EUS images from 559 EGC cases were collected from 11 institutions. Within this dataset, 3451 images (285 cases) from one institution were used as a development dataset. The AI model consisted of segmentation and classification steps, followed by the CycleGAN method to bridge differences in EUS images captured by different equipment. AI model performance was evaluated using an internal validation dataset collected from the same institution as the development dataset (1726 images, 135 cases). External validation was conducted using images collected from the other 10 institutions (3103 images, 139 cases). RESULTS The area under the curve (AUC) of the AI model in the internal validation dataset was 0.870 (95% CI: 0.796-0.944). Regarding diagnostic performance, the accuracy/sensitivity/specificity values of the AI model, experts (n = 6), and nonexperts (n = 8) were 82.2/63.4/90.4%, 81.9/66.3/88.7%, and 68.3/60.9/71.5%, respectively. The AUC of the AI model in the external validation dataset was 0.815 (95% CI: 0.743-0.886). The accuracy/sensitivity/specificity values of the AI model (74.1/73.1/75.0%) and the real-time diagnoses of experts (75.5/79.1/72.2%) in the external validation dataset were comparable. CONCLUSIONS Our AI model demonstrated a diagnostic performance equivalent to that of experts.
Collapse
Affiliation(s)
- Ryotaro Uema
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, 2-2, Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Yoshito Hayashi
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, 2-2, Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Takashi Kizu
- Department of Gastroenterology, Yao Municipal Hospital, Yao, 581-0069, Japan
| | - Takumi Igura
- Department of Gastroenterology, Sumitomo Hospital, Osaka, 530-0005, Japan
| | - Hideharu Ogiyama
- Department of Gastroenterology, Ikeda Municipal Hospital, Ikeda, 563-0025, Japan
| | - Takuya Yamada
- Department of Gastroenterology, Osaka Rosai Hospital, Sakai, 591-8025, Japan
| | - Risato Takeda
- Department of Gastroenterology, Itami City Hospital, Itami, 664-0015, Japan
| | - Kengo Nagai
- Department of Gastroenterology, Suita Municipal Hospital, Suita, 564-0018, Japan
| | - Takuya Inoue
- Department of Gastroenterology, Osaka General Medical Center, Osaka, 558-8558, Japan
| | - Masashi Yamamoto
- Department of Gastroenterology, Toyonaka Municipal Hospital, Toyonaka, 560-8565, Japan
| | - Shinjiro Yamaguchi
- Department of Gastroenterology, Kansai Rosai Hospital, Amagasaki, 660-0064, Japan
| | - Takashi Kanesaka
- Department of Gastrointestinal Oncology, Osaka International Cancer Institute, Osaka, 540-0008, Japan
| | - Takeo Yoshihara
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, 2-2, Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Minoru Kato
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, 2-2, Yamadaoka, Suita, Osaka, 565-0871, Japan
- Department of Gastrointestinal Oncology, Osaka International Cancer Institute, Osaka, 540-0008, Japan
| | - Shunsuke Yoshii
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, 2-2, Yamadaoka, Suita, Osaka, 565-0871, Japan
- Department of Gastrointestinal Oncology, Osaka International Cancer Institute, Osaka, 540-0008, Japan
| | - Yoshiki Tsujii
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, 2-2, Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Shinichiro Shinzaki
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, 2-2, Yamadaoka, Suita, Osaka, 565-0871, Japan
- Department of Gastroenterology, Faculty of Medicine, Hyogo Medical University, Nishinomiya, 663-8501, Japan
| | - Tetsuo Takehara
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, 2-2, Yamadaoka, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
31
|
Matsubayashi CO, Cheng S, Hulchafo I, Zhang Y, Tada T, Buxbaum JL, Ochiai K. Artificial intelligence for gastric cancer in endoscopy: From diagnostic reasoning to market. Dig Liver Dis 2024; 56:1156-1163. [PMID: 38763796 DOI: 10.1016/j.dld.2024.04.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 04/15/2024] [Accepted: 04/16/2024] [Indexed: 05/21/2024]
Abstract
Recognition of gastric conditions during endoscopy exams, including gastric cancer, usually requires specialized training and a long learning curve. Besides that, the interobserver variability is frequently high due to the different morphological characteristics of the lesions and grades of mucosal inflammation. In this sense, artificial intelligence tools based on deep learning models have been developed to support physicians to detect, classify, and predict gastric lesions more efficiently. Even though a growing number of studies exists in the literature, there are multiple challenges to bring a model to practice in this field, such as the need for more robust validation studies and regulatory hurdles. Therefore, the aim of this review is to provide a comprehensive assessment of the current use of artificial intelligence applied to endoscopic imaging to evaluate gastric precancerous and cancerous lesions and the barriers to widespread implementation of this technology in clinical routine.
Collapse
Affiliation(s)
- Carolina Ogawa Matsubayashi
- Endoscopy Unit, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, University of São Paulo, São Paulo, Brasil; AI Medical Service Inc., Tokyo, Japan.
| | - Shuyan Cheng
- Department of Population Health Science, Weill Cornell Medical College, New York, NY 10065, USA
| | - Ismael Hulchafo
- Columbia University School of Nursing, New York, NY 10032, USA
| | - Yifan Zhang
- Department of Population Health Science, Weill Cornell Medical College, New York, NY 10065, USA
| | - Tomohiro Tada
- AI Medical Service Inc., Tokyo, Japan; Department of Surgical Oncology, Faculty of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - James L Buxbaum
- Division of Gastrointestinal and Liver Diseases, Keck School of Medicine of the University of Southern California, Los Angeles, California, USA
| | - Kentaro Ochiai
- Department of Surgical Oncology, Faculty of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan; Department of Colon and Rectal Surgery, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
32
|
Zeng X, Yang L, Dong Z, Gong D, Li Y, Deng Y, Du H, Li X, Xu Y, Luo C, Wang J, Tao X, Zhang C, Zhu Y, Jiang R, Yao L, Wu L, Jin P, Yu H. The effect of incorporating domain knowledge with deep learning in identifying benign and malignant gastric whitish lesions: A retrospective study. J Gastroenterol Hepatol 2024; 39:1343-1351. [PMID: 38414305 DOI: 10.1111/jgh.16525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/22/2024] [Accepted: 02/05/2024] [Indexed: 02/29/2024]
Abstract
BACKGROUND AND AIM Early whitish gastric neoplasms can be easily misdiagnosed; differential diagnosis of gastric whitish lesions remains a challenge. We aim to build a deep learning (DL) model to diagnose whitish gastric neoplasms and explore the effect of adding domain knowledge in model construction. METHODS We collected 4558 images from two institutions to train and test models. We first developed two sole DL models (1 and 2) using supervised and semi-supervised algorithms. Then we selected diagnosis-related features through literature research and developed feature-extraction models to determine features including boundary, surface, roundness, depression, and location. Then predictions of the five feature-extraction models and sole DL model were combined and inputted into seven machine-learning (ML) based fitting-diagnosis models. The optimal model was selected as ENDOANGEL-WD (whitish-diagnosis) and compared with endoscopists. RESULTS Sole DL 2 had higher sensitivity (83.12% vs 68.67%, Bonferroni adjusted P = 0.024) than sole DL 1. Adding domain knowledge, the decision tree performed best among the seven ML models, achieving higher specificity than DL 1 (84.38% vs 72.27%, Bonferroni adjusted P < 0.05) and higher accuracy than DL 2 (80.47%, Bonferroni adjusted P < 0.001) and was selected as ENDOANGEL-WD. ENDOANGEL-WD showed better accuracy compared with 10 endoscopists (75.70%, P < 0.001). CONCLUSIONS We developed a novel system ENDOANGEL-WD combining domain knowledge and traditional DL to detect gastric whitish neoplasms. Adding domain knowledge improved the performance of traditional DL, which provided a novel solution for establishing diagnostic models for other rare diseases potentially.
Collapse
Affiliation(s)
- Xiaoquan Zeng
- Renmin Hospital of Wuhan University, Wuhan, China
- Key Laboratory of Hubei Province for Digestive System Disease, Renmin Hospital of Wuhan University, Wuhan, China
- Hubei Provincial Clinical Research Center for Digestive Disease Minimally Invasive Incision, Renmin Hospital of Wuhan University, Wuhan, China
- Engineering Research Center for Artificial lntelligence Endoscopy Interventional Treatment of Hubei Province, Wuhan, China
| | - Lang Yang
- Department of Gastroenterology, The Seventh Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Zehua Dong
- Renmin Hospital of Wuhan University, Wuhan, China
- Key Laboratory of Hubei Province for Digestive System Disease, Renmin Hospital of Wuhan University, Wuhan, China
- Hubei Provincial Clinical Research Center for Digestive Disease Minimally Invasive Incision, Renmin Hospital of Wuhan University, Wuhan, China
- Engineering Research Center for Artificial lntelligence Endoscopy Interventional Treatment of Hubei Province, Wuhan, China
| | - Dexin Gong
- Renmin Hospital of Wuhan University, Wuhan, China
- Key Laboratory of Hubei Province for Digestive System Disease, Renmin Hospital of Wuhan University, Wuhan, China
- Hubei Provincial Clinical Research Center for Digestive Disease Minimally Invasive Incision, Renmin Hospital of Wuhan University, Wuhan, China
- Engineering Research Center for Artificial lntelligence Endoscopy Interventional Treatment of Hubei Province, Wuhan, China
| | - Yanxia Li
- Renmin Hospital of Wuhan University, Wuhan, China
- Key Laboratory of Hubei Province for Digestive System Disease, Renmin Hospital of Wuhan University, Wuhan, China
- Hubei Provincial Clinical Research Center for Digestive Disease Minimally Invasive Incision, Renmin Hospital of Wuhan University, Wuhan, China
- Engineering Research Center for Artificial lntelligence Endoscopy Interventional Treatment of Hubei Province, Wuhan, China
| | - Yunchao Deng
- Renmin Hospital of Wuhan University, Wuhan, China
- Key Laboratory of Hubei Province for Digestive System Disease, Renmin Hospital of Wuhan University, Wuhan, China
- Hubei Provincial Clinical Research Center for Digestive Disease Minimally Invasive Incision, Renmin Hospital of Wuhan University, Wuhan, China
- Engineering Research Center for Artificial lntelligence Endoscopy Interventional Treatment of Hubei Province, Wuhan, China
| | - Hongliu Du
- Renmin Hospital of Wuhan University, Wuhan, China
- Key Laboratory of Hubei Province for Digestive System Disease, Renmin Hospital of Wuhan University, Wuhan, China
- Hubei Provincial Clinical Research Center for Digestive Disease Minimally Invasive Incision, Renmin Hospital of Wuhan University, Wuhan, China
- Engineering Research Center for Artificial lntelligence Endoscopy Interventional Treatment of Hubei Province, Wuhan, China
| | - Xun Li
- Renmin Hospital of Wuhan University, Wuhan, China
- Key Laboratory of Hubei Province for Digestive System Disease, Renmin Hospital of Wuhan University, Wuhan, China
- Hubei Provincial Clinical Research Center for Digestive Disease Minimally Invasive Incision, Renmin Hospital of Wuhan University, Wuhan, China
- Engineering Research Center for Artificial lntelligence Endoscopy Interventional Treatment of Hubei Province, Wuhan, China
| | - Youming Xu
- Renmin Hospital of Wuhan University, Wuhan, China
- Key Laboratory of Hubei Province for Digestive System Disease, Renmin Hospital of Wuhan University, Wuhan, China
- Hubei Provincial Clinical Research Center for Digestive Disease Minimally Invasive Incision, Renmin Hospital of Wuhan University, Wuhan, China
- Engineering Research Center for Artificial lntelligence Endoscopy Interventional Treatment of Hubei Province, Wuhan, China
| | - Chaijie Luo
- Renmin Hospital of Wuhan University, Wuhan, China
- Key Laboratory of Hubei Province for Digestive System Disease, Renmin Hospital of Wuhan University, Wuhan, China
- Hubei Provincial Clinical Research Center for Digestive Disease Minimally Invasive Incision, Renmin Hospital of Wuhan University, Wuhan, China
- Engineering Research Center for Artificial lntelligence Endoscopy Interventional Treatment of Hubei Province, Wuhan, China
| | - Junxiao Wang
- Renmin Hospital of Wuhan University, Wuhan, China
- Key Laboratory of Hubei Province for Digestive System Disease, Renmin Hospital of Wuhan University, Wuhan, China
- Hubei Provincial Clinical Research Center for Digestive Disease Minimally Invasive Incision, Renmin Hospital of Wuhan University, Wuhan, China
- Engineering Research Center for Artificial lntelligence Endoscopy Interventional Treatment of Hubei Province, Wuhan, China
| | - Xiao Tao
- Renmin Hospital of Wuhan University, Wuhan, China
- Key Laboratory of Hubei Province for Digestive System Disease, Renmin Hospital of Wuhan University, Wuhan, China
- Hubei Provincial Clinical Research Center for Digestive Disease Minimally Invasive Incision, Renmin Hospital of Wuhan University, Wuhan, China
- Engineering Research Center for Artificial lntelligence Endoscopy Interventional Treatment of Hubei Province, Wuhan, China
| | - Chenxia Zhang
- Renmin Hospital of Wuhan University, Wuhan, China
- Key Laboratory of Hubei Province for Digestive System Disease, Renmin Hospital of Wuhan University, Wuhan, China
- Hubei Provincial Clinical Research Center for Digestive Disease Minimally Invasive Incision, Renmin Hospital of Wuhan University, Wuhan, China
- Engineering Research Center for Artificial lntelligence Endoscopy Interventional Treatment of Hubei Province, Wuhan, China
| | - Yijie Zhu
- Renmin Hospital of Wuhan University, Wuhan, China
- Key Laboratory of Hubei Province for Digestive System Disease, Renmin Hospital of Wuhan University, Wuhan, China
- Hubei Provincial Clinical Research Center for Digestive Disease Minimally Invasive Incision, Renmin Hospital of Wuhan University, Wuhan, China
- Engineering Research Center for Artificial lntelligence Endoscopy Interventional Treatment of Hubei Province, Wuhan, China
| | - Ruiqing Jiang
- Renmin Hospital of Wuhan University, Wuhan, China
- Key Laboratory of Hubei Province for Digestive System Disease, Renmin Hospital of Wuhan University, Wuhan, China
- Hubei Provincial Clinical Research Center for Digestive Disease Minimally Invasive Incision, Renmin Hospital of Wuhan University, Wuhan, China
- Engineering Research Center for Artificial lntelligence Endoscopy Interventional Treatment of Hubei Province, Wuhan, China
| | - Liwen Yao
- Renmin Hospital of Wuhan University, Wuhan, China
- Key Laboratory of Hubei Province for Digestive System Disease, Renmin Hospital of Wuhan University, Wuhan, China
- Hubei Provincial Clinical Research Center for Digestive Disease Minimally Invasive Incision, Renmin Hospital of Wuhan University, Wuhan, China
- Engineering Research Center for Artificial lntelligence Endoscopy Interventional Treatment of Hubei Province, Wuhan, China
| | - Lianlian Wu
- Renmin Hospital of Wuhan University, Wuhan, China
- Key Laboratory of Hubei Province for Digestive System Disease, Renmin Hospital of Wuhan University, Wuhan, China
- Hubei Provincial Clinical Research Center for Digestive Disease Minimally Invasive Incision, Renmin Hospital of Wuhan University, Wuhan, China
- Engineering Research Center for Artificial lntelligence Endoscopy Interventional Treatment of Hubei Province, Wuhan, China
| | - Peng Jin
- Department of Gastroenterology, The Seventh Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Honggang Yu
- Renmin Hospital of Wuhan University, Wuhan, China
- Key Laboratory of Hubei Province for Digestive System Disease, Renmin Hospital of Wuhan University, Wuhan, China
- Hubei Provincial Clinical Research Center for Digestive Disease Minimally Invasive Incision, Renmin Hospital of Wuhan University, Wuhan, China
- Engineering Research Center for Artificial lntelligence Endoscopy Interventional Treatment of Hubei Province, Wuhan, China
| |
Collapse
|
33
|
Song J, Zhang J, Liu G, Guo Z, Liao H, Feng W, Lin W, Li L, Zhang Y, Yang Y, Liu B, Luo R, Chen H, Wang S, Liu JH. PET/CT deep learning prognosis for treatment decision support in esophageal squamous cell carcinoma. Insights Imaging 2024; 15:161. [PMID: 38913225 PMCID: PMC11196479 DOI: 10.1186/s13244-024-01737-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 06/02/2024] [Indexed: 06/25/2024] Open
Abstract
OBJECTIVES The clinical decision-making regarding choosing surgery alone (SA) or surgery followed by postoperative adjuvant chemotherapy (SPOCT) in esophageal squamous cell carcinoma (ESCC) remains controversial. We aim to propose a pre-therapy PET/CT image-based deep learning approach to improve the survival benefit and clinical management of ESCC patients. METHODS This retrospective multicenter study included 837 ESCC patients from three institutions. Prognostic biomarkers integrating six networks were developed to build an ESCC prognosis (ESCCPro) model and predict the survival probability of ESCC patients treated with SA and SPOCT. Patients who did not undergo surgical resection were in a control group. Overall survival (OS) was the primary end-point event. The expected improvement in survival prognosis with the application of ESCCPro to assign treatment protocols was estimated by comparing the survival of patients in each subgroup. Seven clinicians with varying experience evaluated how ESCCPro performed in assisting clinical decision-making. RESULTS In this retrospective multicenter study, patients receiving SA had a median OS 9.2 months longer than controls. No significant differences in survival were found between SA patients with predicted poor outcomes and the controls (p > 0.05). It was estimated that if ESCCPro was used to determine SA and SPOCT eligibility, the median OS in the ESCCPro-recommended SA group and SPOCT group would have been 15.3 months and 24.9 months longer, respectively. In addition, ESCCPro also significantly improved prognosis accuracy, certainty, and the efficiency of clinical experts. CONCLUSION ESCCPro assistance improved the survival benefit of ESCC patients and the clinical decision-making among the two treatment approaches. CRITICAL RELEVANCE STATEMENT The ESCCPro model for treatment decision-making is promising to improve overall survival in ESCC patients undergoing surgical resection and patients undergoing surgery followed by postoperative adjuvant chemotherapy. KEY POINTS ESCC is associated with a poor prognosis and unclear ideal treatments. ESCCPro predicts the survival of patients with ESCC and the expected benefit from SA. ESCCPro improves clinicians' stratification of patients' prognoses.
Collapse
Affiliation(s)
- Jiangdian Song
- School of Health Management, China Medical University, Shenyang, China.
| | - Jie Zhang
- Department of Medical Imaging, Zhuhai People's Hospital (Zhuhai Clinical Medical College of Jinan University), Zhuhai, China
| | - Guichao Liu
- The Fifth Affiliated Hospital of Sun Yat-Sen University, Guangdong, China
| | - Zhexu Guo
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors China Medical University, Ministry of Education, Shenyang, China
- Department of VIP In-Patient Ward, The First Hospital of China Medical University, Shenyang, China
| | - Hongxian Liao
- Department of Medical Imaging, Zhuhai People's Hospital (Zhuhai Clinical Medical College of Jinan University), Zhuhai, China
| | - Wenhui Feng
- Department of Medical Imaging, Zhuhai People's Hospital (Zhuhai Clinical Medical College of Jinan University), Zhuhai, China
| | - Wenxiang Lin
- Department of Medical Imaging, Zhuhai People's Hospital (Zhuhai Clinical Medical College of Jinan University), Zhuhai, China
| | - Lei Li
- Department of Medical Imaging, Zhuhai People's Hospital (Zhuhai Clinical Medical College of Jinan University), Zhuhai, China
| | - Yi Zhang
- Department of Medical Imaging, Zhuhai People's Hospital (Zhuhai Clinical Medical College of Jinan University), Zhuhai, China
| | - Yuxiang Yang
- Department of Radiology, The Second People's Hospital of Xiangzhou, Zhuhai, China
| | - Bin Liu
- Department of Radiology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Ruibang Luo
- Department of Computer Science, The University of Hong Kong, Hong Kong, Hong Kong
| | - Hao Chen
- Department of Gastroenterology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China.
| | - Siyun Wang
- Department of Oncology, Cancer Center, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China.
| | - Jian-Hua Liu
- Department of Oncology, Cancer Center, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China.
| |
Collapse
|
34
|
Bangolo A, Wadhwani N, Nagesh VK, Dey S, Tran HHV, Aguilar IK, Auda A, Sidiqui A, Menon A, Daoud D, Liu J, Pulipaka SP, George B, Furman F, Khan N, Plumptre A, Sekhon I, Lo A, Weissman S. Impact of artificial intelligence in the management of esophageal, gastric and colorectal malignancies. Artif Intell Gastrointest Endosc 2024; 5:90704. [DOI: 10.37126/aige.v5.i2.90704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/28/2024] [Accepted: 03/04/2024] [Indexed: 05/11/2024] Open
Abstract
The incidence of gastrointestinal malignancies has increased over the past decade at an alarming rate. Colorectal and gastric cancers are the third and fifth most commonly diagnosed cancers worldwide but are cited as the second and third leading causes of mortality. Early institution of appropriate therapy from timely diagnosis can optimize patient outcomes. Artificial intelligence (AI)-assisted diagnostic, prognostic, and therapeutic tools can assist in expeditious diagnosis, treatment planning/response prediction, and post-surgical prognostication. AI can intercept neoplastic lesions in their primordial stages, accurately flag suspicious and/or inconspicuous lesions with greater accuracy on radiologic, histopathological, and/or endoscopic analyses, and eliminate over-dependence on clinicians. AI-based models have shown to be on par, and sometimes even outperformed experienced gastroenterologists and radiologists. Convolutional neural networks (state-of-the-art deep learning models) are powerful computational models, invaluable to the field of precision oncology. These models not only reliably classify images, but also accurately predict response to chemotherapy, tumor recurrence, metastasis, and survival rates post-treatment. In this systematic review, we analyze the available evidence about the diagnostic, prognostic, and therapeutic utility of artificial intelligence in gastrointestinal oncology.
Collapse
Affiliation(s)
- Ayrton Bangolo
- Department of Internal Medicine, Palisades Medical Center, North Bergen, NJ 07047, United States
| | - Nikita Wadhwani
- Department of Internal Medicine, Palisades Medical Center, North Bergen, NJ 07047, United States
| | - Vignesh K Nagesh
- Department of Internal Medicine, Palisades Medical Center, North Bergen, NJ 07047, United States
| | - Shraboni Dey
- Department of Internal Medicine, Palisades Medical Center, North Bergen, NJ 07047, United States
| | - Hadrian Hoang-Vu Tran
- Department of Internal Medicine, Palisades Medical Center, North Bergen, NJ 07047, United States
| | - Izage Kianifar Aguilar
- Department of Internal Medicine, Palisades Medical Center, North Bergen, NJ 07047, United States
| | - Auda Auda
- Department of Medicine, Palisades Medical Center, North Bergen, NJ 07047, United States
| | - Aman Sidiqui
- Department of Internal Medicine, Palisades Medical Center, North Bergen, NJ 07047, United States
| | - Aiswarya Menon
- Department of Internal Medicine, Palisades Medical Center, North Bergen, NJ 07047, United States
| | - Deborah Daoud
- Department of Medicine, Palisades Medical Center, North Bergen, NJ 07047, United States
| | - James Liu
- Department of Internal Medicine, Palisades Medical Center, North Bergen, NJ 07047, United States
| | - Sai Priyanka Pulipaka
- Department of Medicine, Palisades Medical Center, North Bergen, NJ 07047, United States
| | - Blessy George
- Department of Internal Medicine, Palisades Medical Center, North Bergen, NJ 07047, United States
| | - Flor Furman
- Department of Internal Medicine, Palisades Medical Center, North Bergen, NJ 07047, United States
| | - Nareeman Khan
- Department of Internal Medicine, Palisades Medical Center, North Bergen, NJ 07047, United States
| | - Adewale Plumptre
- Department of Internal Medicine, Palisades Medical Center, North Bergen, NJ 07047, United States
| | - Imranjot Sekhon
- Department of Internal Medicine, Palisades Medical Center, North Bergen, NJ 07047, United States
| | - Abraham Lo
- Department of Medicine, Palisades Medical Center, North Bergen, NJ 07047, United States
| | - Simcha Weissman
- Department of Internal Medicine, Palisades Medical Center, North Bergen, NJ 07047, United States
| |
Collapse
|
35
|
Zhang Y, Deng Y, Zou Q, Jing B, Cai P, Tian X, Yang Y, Li B, Liu F, Li Z, Liu Z, Feng S, Peng T, Dong Y, Wang X, Ruan G, He Y, Cui C, Li J, Luo X, Huang H, Chen H, Li S, Sun Y, Xie C, Wang L, Li C, Cai Q. Artificial intelligence for diagnosis and prognosis prediction of natural killer/T cell lymphoma using magnetic resonance imaging. Cell Rep Med 2024; 5:101551. [PMID: 38697104 PMCID: PMC11148767 DOI: 10.1016/j.xcrm.2024.101551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 03/05/2024] [Accepted: 04/11/2024] [Indexed: 05/04/2024]
Abstract
Accurate diagnosis and prognosis prediction are conducive to early intervention and improvement of medical care for natural killer/T cell lymphoma (NKTCL). Artificial intelligence (AI)-based systems are developed based on nasopharynx magnetic resonance imaging. The diagnostic systems achieve areas under the curve of 0.905-0.960 in detecting malignant nasopharyngeal lesions and distinguishing NKTCL from nasopharyngeal carcinoma in independent validation datasets. In comparison to human radiologists, the diagnostic systems show higher accuracies than resident radiologists and comparable ones to senior radiologists. The prognostic system shows promising performance in predicting survival outcomes of NKTCL and outperforms several clinical models. For patients with early-stage NKTCL, only the high-risk group benefits from early radiotherapy (hazard ratio = 0.414 vs. late radiotherapy; 95% confidence interval, 0.190-0.900, p = 0.022), while progression-free survival does not differ in the low-risk group. In conclusion, AI-based systems show potential in assisting accurate diagnosis and prognosis prediction and may contribute to therapeutic optimization for NKTCL.
Collapse
Affiliation(s)
- YuChen Zhang
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, P.R. China; Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
| | - YiShu Deng
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, P.R. China; Information Technology Center, Sun Yat-sen University Cancer Center, Guangzhou 510060, P.R. China; School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510006, P.R. China
| | - QiHua Zou
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, P.R. China; Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
| | - BingZhong Jing
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, P.R. China; Information Technology Center, Sun Yat-sen University Cancer Center, Guangzhou 510060, P.R. China
| | - PeiQiang Cai
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, P.R. China; Department of Radiology, Sun Yat-Sen University Cancer Center, Guangzhou, P.R. China
| | - XiaoPeng Tian
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, P.R. China; Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
| | - Yu Yang
- Department of Lymphadenoma and Head & Neck Medical Oncology, Fujian Provincial Cancer Hospital & Institute, Fuzhou, P.R. China
| | - BingZong Li
- Department of Hematology, The Second Affiliated Hospital of Suzhou University, Jiangsu, P.R. China
| | - Fang Liu
- Department of Pathology, The First People's Hospital of Foshan, Foshan, P.R. China
| | - ZhiHua Li
- Department of Oncology, Sun Yat-sen Memorial Hospital, Guangzhou, Guangdong, P.R. China
| | - ZaiYi Liu
- Department of Radiology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, P.R. China; Guangdong Provincial Key Laboratory of Artificial Intelligence in Medical Image Analysis and Application, Guangzhou 510080, P.R. China
| | - ShiTing Feng
- Department of Radiology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, P.R. China
| | - TingSheng Peng
- Department of Pathology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, P.R. China
| | - YuJun Dong
- Department of Hematology, Peking University First Hospital, Beijing 100034, P.R. China
| | - XinYan Wang
- Department of Radiology, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, P.R. China
| | - GuangYing Ruan
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, P.R. China; Department of Radiology, Sun Yat-Sen University Cancer Center, Guangzhou, P.R. China
| | - Yun He
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, P.R. China; Department of Radiology, Sun Yat-Sen University Cancer Center, Guangzhou, P.R. China
| | - ChunYan Cui
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, P.R. China; Department of Radiology, Sun Yat-Sen University Cancer Center, Guangzhou, P.R. China
| | - Jiao Li
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, P.R. China; Department of Radiology, Sun Yat-Sen University Cancer Center, Guangzhou, P.R. China
| | - Xiao Luo
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, P.R. China; Department of Radiology, Sun Yat-Sen University Cancer Center, Guangzhou, P.R. China
| | - HuiQiang Huang
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, P.R. China; Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
| | - HaoHua Chen
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, P.R. China; Information Technology Center, Sun Yat-sen University Cancer Center, Guangzhou 510060, P.R. China
| | - SongQi Li
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, P.R. China
| | - Ying Sun
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, P.R. China; Department of Radiation Oncology, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
| | - ChuanMiao Xie
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, P.R. China; Department of Radiology, Sun Yat-Sen University Cancer Center, Guangzhou, P.R. China.
| | - Liang Wang
- Department of Hematology, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, P.R. China.
| | - ChaoFeng Li
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, P.R. China; Information Technology Center, Sun Yat-sen University Cancer Center, Guangzhou 510060, P.R. China.
| | - QingQing Cai
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, P.R. China; Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China.
| |
Collapse
|
36
|
Chen Y, Gao R, Jing D, Shi L, Kuang F, Jing R. Classification and prediction of chemoradiotherapy response and survival from esophageal carcinoma histopathology images. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 312:124030. [PMID: 38368818 DOI: 10.1016/j.saa.2024.124030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 01/27/2024] [Accepted: 02/08/2024] [Indexed: 02/20/2024]
Abstract
Whole slide imaging (WSI) of Hematoxylin and Eosin-stained biopsy specimens has been used to predict chemoradiotherapy (CRT) response and overall survival (OS) of esophageal squamous cell carcinoma (ESCC) patients. This retrospective study collected 279 specimens in 89 non-surgical ESCC patients through endoscopic biopsy between January 2010 and January 2019. These patients were divided into a CRT response group (CR + PR group) and a CRT non-response group (SD + PD group). The WSIs have segmented approximately 1,206,000 non-overlapping patches. Two experienced pathologists manually delineated the eight types of tissues on 32 WSIs, including esophagus tumor cell (TUM), cancer-associated stroma (CAS), normal epithelium layer (NEL), smooth muscle (MUS), lymphocytes (LYM), Red cells (RED), debris (DEB), uneven areas (UNE). The chemoradiotherapy response prediction models were built using maximum relevance-minimum redundancy (MRMR) feature selection and least absolute shrinkage and selection operator (LASSO) regression. However, pathological features with p < 0.1 were selected and integrated to be further screened using a LASSO Cox regression model to build a multivariate Cox proportional hazards model for predicting the OS. The testing accuracy of the tissue classification model was 91.3 %. The pathological model created using two CAS in-depth features and eight TUM in-depth features performed best for the prediction of treatment response and achieved an AUC of 0.744. For the prediction of OS, the testing AUC of this model at one year and three years were 0.675 and 0.870, respectively. The TUM model showed the highest AUC at one year (0.712). With its high accuracy rate, the deep learning model has the potential to transform from bench to bedside in clinical practice, improve patient's quality of life, and prolong the OS rate.
Collapse
Affiliation(s)
- Yu Chen
- Department of Oncology, Xiangya Hospital National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Ruihuan Gao
- Department of Oncology, Xiangya Hospital National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Di Jing
- Department of Oncology, Xiangya Hospital National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Liting Shi
- Department of Radiology, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian 271016, China
| | - Feng Kuang
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Xiamen University, Teaching Hospital of Fujian Medical University, Xiamen, China
| | - Ran Jing
- Department of Cardiovascular Medicine, Xiangya Hospital National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, 410008 Changsha, China.
| |
Collapse
|
37
|
Li S, Li Z, Xue K, Zhou X, Ding C, Shao Y, Zhang S, Ruan T, Zheng M, Sun J. GC-CDSS: Personalized gastric cancer treatment recommendations system based on knowledge graph. Int J Med Inform 2024; 185:105402. [PMID: 38467099 DOI: 10.1016/j.ijmedinf.2024.105402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 02/25/2024] [Accepted: 03/05/2024] [Indexed: 03/13/2024]
Abstract
BACKGROUND Gastric cancer (GC) is one of the most common malignant tumors in the world, posing a serious threat to human health. Currently, gastric cancer treatment strategies emphasize a multidisciplinary team (MDT) consultation approach. However, there are numerous treatment guidelines and insights from clinical trials. The application of AI-based Clinical Decision Support System (CDSS) in tumor diagnosis and screening is increasing rapidly. OBJECTIVE The purpose of this study is to (1) summarize the treatment decision process for GC according to the treatment guidelines in China, and then create a knowledge graph (KG) for GC, (2) based on aforementioned KG, built a CDSS and conducted an initial feasibility evaluation for the current system. METHODS Firstly, we summarized the decision-making process for treatment of GC. Then, we extracted relevant decision nodes and relationships and utilized Neo4j to create the KG. After obtaining the initial node features for building the graph embedding model, graph embedding algorithm, such as Node2Vec and GraphSAGE, were used to construct the GC-CDSS. At last, a retrospective cohort study was used to compare the consistency between GC-CDSS and MDT in treatment decision making. RESULTS In current study, we introduce a GC-CDSS, which is constructed based on Chinese GC treatment guidelines knowledge graph (KG). In the KG, we define four types of nodes and four types of relationships, and it comprise a total of 207 nodes and 300 relationships. Regarding GC-CDSS, the system is capable of providing dynamic and personalized diagnostic and treatment recommendations based on the patient's condition. Furthermore, a retrospective cohort study is conducted to compare GC-CDSS recommendations with those of the MDT group, the overall consistency rate of treatment recommendations between the auxiliary decision system and MDT team is 92.96%. CONCLUSIONS We construct a GC treatment support system, GC-CDSS, based on KG. The GC-CDSS may help oncologists make treatment decisions more efficient and promote standardization in primary healthcare settings.
Collapse
Affiliation(s)
- Shuchun Li
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai 200025, China; Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai 200025, China
| | - Zhiang Li
- Department of Computer Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Kui Xue
- Shanghai Artificial Intelligence Laboratory, Shanghai 200232, China
| | - Xueliang Zhou
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai 200025, China; Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai 200025, China
| | - Chengsheng Ding
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai 200025, China; Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai 200025, China
| | - Yanfei Shao
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai 200025, China; Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai 200025, China
| | - Sen Zhang
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai 200025, China; Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai 200025, China
| | - Tong Ruan
- Department of Computer Science and Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Minhua Zheng
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai 200025, China; Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai 200025, China.
| | - Jing Sun
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai 200025, China; Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai 200025, China.
| |
Collapse
|
38
|
Guo F, Meng H. Application of artificial intelligence in gastrointestinal endoscopy. Arab J Gastroenterol 2024; 25:93-96. [PMID: 38228443 DOI: 10.1016/j.ajg.2023.12.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 09/06/2023] [Accepted: 12/30/2023] [Indexed: 01/18/2024]
Abstract
Endoscopy is an important method for diagnosing gastrointestinal (GI) diseases. In this study, we provide an overview of the advances in artificial intelligence (AI) technology in the field of GI endoscopy over recent years, including esophagus, stomach, large intestine, and capsule endoscopy (small intestine). AI-assisted endoscopy shows high accuracy, sensitivity, and specificity in the detection and diagnosis of GI diseases at all levels. Hence, AI will make a breakthrough in the field of GI endoscopy in the near future. However, AI technology currently has some limitations and is still in the preclinical stages.
Collapse
Affiliation(s)
- Fujia Guo
- The first Affiliated Hospital, Dalian Medical University, Dalian 116044, China
| | - Hua Meng
- The first Affiliated Hospital, Dalian Medical University, Dalian 116044, China.
| |
Collapse
|
39
|
Palomba G, Fernicola A, Corte MD, Capuano M, De Palma GD, Aprea G. Artificial intelligence in screening and diagnosis of surgical diseases: A narrative review. AIMS Public Health 2024; 11:557-576. [PMID: 39027395 PMCID: PMC11252578 DOI: 10.3934/publichealth.2024028] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/29/2024] [Accepted: 04/02/2024] [Indexed: 07/20/2024] Open
Abstract
Artificial intelligence (AI) is playing an increasing role in several fields of medicine. It is also gaining popularity among surgeons as a valuable screening and diagnostic tool for many conditions such as benign and malignant colorectal, gastric, thyroid, parathyroid, and breast disorders. In the literature, there is no review that groups together the various application domains of AI when it comes to the screening and diagnosis of main surgical diseases. The aim of this review is to describe the use of AI in these settings. We performed a literature review by searching PubMed, Web of Science, Scopus, and Embase for all studies investigating the role of AI in the surgical setting, published between January 01, 2000, and June 30, 2023. Our focus was on randomized controlled trials (RCTs), meta-analysis, systematic reviews, and observational studies, dealing with large cohorts of patients. We then gathered further relevant studies from the reference list of the selected publications. Based on the studies reviewed, it emerges that AI could strongly enhance the screening efficiency, clinical ability, and diagnostic accuracy for several surgical conditions. Some of the future advantages of this technology include implementing, speeding up, and improving the automaticity with which AI recognizes, differentiates, and classifies the various conditions.
Collapse
Affiliation(s)
- Giuseppe Palomba
- Department of Clinical Medicine and Surgery, University of Naples, “Federico II”, Sergio Pansini 5, 80131, Naples, Italy
| | - Agostino Fernicola
- Department of Clinical Medicine and Surgery, University of Naples, “Federico II”, Sergio Pansini 5, 80131, Naples, Italy
| | - Marcello Della Corte
- Azienda Ospedaliera Universitaria San Giovanni di Dio e Ruggi d'Aragona - OO. RR. Scuola Medica Salernitana, Salerno, Italy
| | - Marianna Capuano
- Department of Clinical Medicine and Surgery, University of Naples, “Federico II”, Sergio Pansini 5, 80131, Naples, Italy
| | - Giovanni Domenico De Palma
- Department of Clinical Medicine and Surgery, University of Naples, “Federico II”, Sergio Pansini 5, 80131, Naples, Italy
| | - Giovanni Aprea
- Department of Clinical Medicine and Surgery, University of Naples, “Federico II”, Sergio Pansini 5, 80131, Naples, Italy
| |
Collapse
|
40
|
Rogers MP, Janjua HM, Walczak S, Baker M, Read M, Cios K, Velanovich V, Pietrobon R, Kuo PC. Artificial Intelligence in Surgical Research: Accomplishments and Future Directions. Am J Surg 2024; 230:82-90. [PMID: 37981516 DOI: 10.1016/j.amjsurg.2023.10.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 10/22/2023] [Indexed: 11/21/2023]
Abstract
MINI-ABSTRACT The study introduces various methods of performing conventional ML and their implementation in surgical areas, and the need to move beyond these traditional approaches given the advent of big data. OBJECTIVE Investigate current understanding and future directions of machine learning applications, such as risk stratification, clinical data analytics, and decision support, in surgical practice. SUMMARY BACKGROUND DATA The advent of the electronic health record, near unlimited computing, and open-source computational packages have created an environment for applying artificial intelligence, machine learning, and predictive analytic techniques to healthcare. The "hype" phase has passed, and algorithmic approaches are being developed for surgery patients through all stages of care, involving preoperative, intraoperative, and postoperative components. Surgeons must understand and critically evaluate the strengths and weaknesses of these methodologies. METHODS The current body of AI literature was reviewed, emphasizing on contemporary approaches important in the surgical realm. RESULTS AND CONCLUSIONS The unrealized impacts of AI on clinical surgery and its subspecialties are immense. As this technology continues to pervade surgical literature and clinical applications, knowledge of its inner workings and shortcomings is paramount in determining its appropriate implementation.
Collapse
Affiliation(s)
- Michael P Rogers
- Department of Surgery, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | - Haroon M Janjua
- Department of Surgery, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | - Steven Walczak
- School of Information & Florida Center for Cybersecurity, University of South Florida, Tampa, FL, USA
| | - Marshall Baker
- Department of Surgery, Loyola University Medical Center, Maywood, IL, USA
| | - Meagan Read
- Department of Surgery, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | - Konrad Cios
- Department of Surgery, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | - Vic Velanovich
- Department of Surgery, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | | | - Paul C Kuo
- Department of Surgery, University of South Florida Morsani College of Medicine, Tampa, FL, USA.
| |
Collapse
|
41
|
Aamir A, Iqbal A, Jawed F, Ashfaque F, Hafsa H, Anas Z, Oduoye MO, Basit A, Ahmed S, Abdul Rauf S, Khan M, Mansoor T. Exploring the current and prospective role of artificial intelligence in disease diagnosis. Ann Med Surg (Lond) 2024; 86:943-949. [PMID: 38333305 PMCID: PMC10849462 DOI: 10.1097/ms9.0000000000001700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 12/28/2023] [Indexed: 02/10/2024] Open
Abstract
Artificial intelligence (AI) refers to the simulation of human intelligence processes by machines, especially computer systems, providing assistance in a variety of patient care and health systems. The aim of this review is to contribute valuable insights to the ongoing discourse on the transformative potential of AI in healthcare, providing a nuanced understanding of its current applications, future possibilities, and associated challenges. The authors conducted a literature search on the current role of AI in disease diagnosis and its possible future applications using PubMed, Google Scholar, and ResearchGate within 10 years. Our investigation revealed that AI, encompassing machine-learning and deep-learning techniques, has become integral to healthcare, facilitating immediate access to evidence-based guidelines, the latest medical literature, and tools for generating differential diagnoses. However, our research also acknowledges the limitations of current AI methodologies in disease diagnosis and explores uncertainties and obstacles associated with the complete integration of AI into clinical practice. This review has highlighted the critical significance of integrating AI into the medical healthcare framework and meticulously examined the evolutionary trajectory of healthcare-oriented AI from its inception, delving into the current state of development and projecting the extent of reliance on AI in the future. The authors have found that central to this study is the exploration of how the strategic integration of AI can accelerate the diagnostic process, heighten diagnostic accuracy, and enhance overall operational efficiency, concurrently relieving the burdens faced by healthcare practitioners.
Collapse
Affiliation(s)
- Ali Aamir
- Department of Medicine, Dow University of Health Sciences
| | - Arham Iqbal
- Department of Medicine, Dow International Medical College, Karachi, Pakistan
| | - Fareeha Jawed
- Department of Medicine, Dow University of Health Sciences
| | - Faiza Ashfaque
- Department of Medicine, Dow University of Health Sciences
| | - Hafiza Hafsa
- Department of Medicine, Dow University of Health Sciences
| | - Zahra Anas
- Department of Medicine, Dow University of Health Sciences
| | - Malik Olatunde Oduoye
- Department of Research, Medical Research Circle, Bukavu, Democratic Republic of Congo
| | - Abdul Basit
- Department of Medicine, Dow University of Health Sciences
| | - Shaheer Ahmed
- Department of Medicine, Dow University of Health Sciences
| | | | - Mushkbar Khan
- Liaquat National Hospital and Medical College, Pakistan
| | | |
Collapse
|
42
|
Cobanaj M, Corti C, Dee EC, McCullum L, Boldrini L, Schlam I, Tolaney SM, Celi LA, Curigliano G, Criscitiello C. Advancing equitable and personalized cancer care: Novel applications and priorities of artificial intelligence for fairness and inclusivity in the patient care workflow. Eur J Cancer 2024; 198:113504. [PMID: 38141549 PMCID: PMC11362966 DOI: 10.1016/j.ejca.2023.113504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 12/13/2023] [Indexed: 12/25/2023]
Abstract
Patient care workflows are highly multimodal and intertwined: the intersection of data outputs provided from different disciplines and in different formats remains one of the main challenges of modern oncology. Artificial Intelligence (AI) has the potential to revolutionize the current clinical practice of oncology owing to advancements in digitalization, database expansion, computational technologies, and algorithmic innovations that facilitate discernment of complex relationships in multimodal data. Within oncology, radiation therapy (RT) represents an increasingly complex working procedure, involving many labor-intensive and operator-dependent tasks. In this context, AI has gained momentum as a powerful tool to standardize treatment performance and reduce inter-observer variability in a time-efficient manner. This review explores the hurdles associated with the development, implementation, and maintenance of AI platforms and highlights current measures in place to address them. In examining AI's role in oncology workflows, we underscore that a thorough and critical consideration of these challenges is the only way to ensure equitable and unbiased care delivery, ultimately serving patients' survival and quality of life.
Collapse
Affiliation(s)
- Marisa Cobanaj
- National Center for Radiation Research in Oncology, OncoRay, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Chiara Corti
- Breast Oncology Program, Dana-Farber Brigham Cancer Center, Boston, MA, USA; Harvard Medical School, Boston, MA, USA; Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology, IRCCS, Milan, Italy; Department of Oncology and Hematology-Oncology (DIPO), University of Milan, Milan, Italy.
| | - Edward C Dee
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Lucas McCullum
- Department of Radiation Oncology, MD Anderson Cancer Center, Houston, TX, USA
| | - Laura Boldrini
- Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology, IRCCS, Milan, Italy; Department of Oncology and Hematology-Oncology (DIPO), University of Milan, Milan, Italy
| | - Ilana Schlam
- Department of Hematology and Oncology, Tufts Medical Center, Boston, MA, USA; Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Sara M Tolaney
- Breast Oncology Program, Dana-Farber Brigham Cancer Center, Boston, MA, USA; Harvard Medical School, Boston, MA, USA; Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Leo A Celi
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA; Laboratory for Computational Physiology, Massachusetts Institute of Technology, Cambridge, MA, USA; Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Giuseppe Curigliano
- Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology, IRCCS, Milan, Italy; Department of Oncology and Hematology-Oncology (DIPO), University of Milan, Milan, Italy
| | - Carmen Criscitiello
- Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology, IRCCS, Milan, Italy; Department of Oncology and Hematology-Oncology (DIPO), University of Milan, Milan, Italy
| |
Collapse
|
43
|
Libanio D, Antonelli G, Marijnissen F, Spaander MC, Hassan C, Dinis-Ribeiro M, Areia M. Combined gastric and colorectal cancer endoscopic screening may be cost-effective in Europe with the implementation of artificial intelligence: an economic evaluation. Eur J Gastroenterol Hepatol 2024; 36:155-161. [PMID: 38131423 DOI: 10.1097/meg.0000000000002680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
BACKGROUND/AIMS Endoscopic screening for gastric cancer (GC) is not recommended in low-intermediate incidence countries. Artificial intelligence (AI) has high accuracy in GC detection and might increase the cost-effectiveness of screening strategies. We aimed to assess the cost-effectiveness of AI for GC detection in settings with different GC incidence and different accuracies of AI systems. METHODS Cost-effectiveness analysis (using Markov model) comparing different screening strategies (no screening versus single esophagogastroduodenoscopy (EGD) at 50 years versus stand-alone EGD every 5/10 years versus combined EGD and screening colonoscopy once or twice per decade in Netherlands, Italy and Portugal) with variable AI accuracy settings. The primary outcome was the incremental cost-effectiveness ratio of the different strategies versus no screening. Deterministic and probabilistic sensitivity analyses were conducted. RESULTS Without AI, one single EGD at 50 years (Netherlands, Italy, Portugal), EGD combined with screening colonoscopy once per decade (Italy and Portugal) and EGD combined with screening colonoscopy twice per decade (Portugal) are cost-effective when compared with no screening. If AI increases the accuracy of EGD by at least 1% in comparison to the accuracy of white-light endoscopy accuracy (89%), combined screening twice per decade also becomes cost-effective in Italy. If AI accuracy reaches at least 96%, combined screening once per decade is also cost-effective in the Netherlands. DISCUSSION In European countries, AI-assisted EGD may improve the cost-effectiveness of GC screening with combined EGD and screening colonoscopy. The actual effect of AI on cost-effectiveness may vary dependent on the accuracy and costs of the AI system.
Collapse
Affiliation(s)
- Diogo Libanio
- Department of Gastroenterology, Porto Comprehensive Cancer Center/ RISE@CI-IPOP (Health Research Network)
- MEDCIDS, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Giulio Antonelli
- Gastroenterology and Digestive Endoscopy Unit, Ospedale dei Castelli Hospital, Ariccia
- Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza University of Rome, Rome, Italy
| | - Fleur Marijnissen
- Department of Gastroenterology and Hepatology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Maanon Cw Spaander
- Department of Gastroenterology and Hepatology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Cesare Hassan
- Department of Biomedical Sciences, Humanitas University
- IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Mario Dinis-Ribeiro
- Department of Gastroenterology, Porto Comprehensive Cancer Center/ RISE@CI-IPOP (Health Research Network)
- MEDCIDS, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Miguel Areia
- Gastroenterology Department, Portuguese Oncology Institute of Coimbra, Coimbra, Portugal
| |
Collapse
|
44
|
Wu X, Wu H, Miao S, Cao G, Su H, Pan J, Xu Y. Deep learning prediction of esophageal squamous cell carcinoma invasion depth from arterial phase enhanced CT images: a binary classification approach. BMC Med Inform Decis Mak 2024; 24:3. [PMID: 38167058 PMCID: PMC10759510 DOI: 10.1186/s12911-023-02386-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 12/04/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND Precise prediction of esophageal squamous cell carcinoma (ESCC) invasion depth is crucial not only for optimizing treatment plans but also for reducing the need for invasive procedures, consequently lowering complications and costs. Despite this, current techniques, which can be invasive and costly, struggle with achieving the necessary precision, highlighting a pressing need for more effective, non-invasive alternatives. METHOD We developed ResoLSTM-Depth, a deep learning model to distinguish ESCC stages T1-T2 from T3-T4. It integrates ResNet-18 and Long Short-Term Memory (LSTM) networks, leveraging their strengths in spatial and sequential data processing. This method uses arterial phase CT scans from ESCC patients. The dataset was meticulously segmented by an experienced radiologist for effective training and validation. RESULTS Upon performing five-fold cross-validation, the ResoLSTM-Depth model exhibited commendable performance with an accuracy of 0.857, an AUC of 0.901, a sensitivity of 0.884, and a specificity of 0.828. These results were superior to the ResNet-18 model alone, where the average accuracy is 0.824 and the AUC is 0.879. Attention maps further highlighted influential features for depth prediction, enhancing model interpretability. CONCLUSION ResoLSTM-Depth is a promising tool for ESCC invasion depth prediction. It offers potential for improvement in the staging and therapeutic planning of ESCC.
Collapse
Affiliation(s)
- Xiaoli Wu
- Department of Gastroenterology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Hao Wu
- Department of Gastroenterology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Shouliang Miao
- Department of Radiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Guoquan Cao
- Department of Radiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Huang Su
- Department of Gastroenterology, Wenzhou Central Hospital, Wenzhou, Zhejiang, China
| | - Jie Pan
- Department of Gastroenterology, Wenzhou Central Hospital, Wenzhou, Zhejiang, China
| | - Yilun Xu
- Department of Gastroenterology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
| |
Collapse
|
45
|
Liu B, Sun C, Zhao X, Liu L, Liu S, Ma H. The value of multimodality MR in T staging evaluation after neoadjuvant therapy for rectal cancer. Technol Health Care 2024; 32:615-627. [PMID: 37393447 PMCID: PMC10977434 DOI: 10.3233/thc-220798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 03/29/2023] [Indexed: 07/03/2023]
Abstract
BACKGROUND Surgery is the preferred treatment for rectal cancer, but surgical treatment alone sometimes does not achieve satisfactory results. OBJECTIVE To explore the value of multimodal Magnetic Resonance (MR) images in evaluating T staging of rectal cancer after neoadjuvant therapy and to compare and analyze with pathological results. METHODS This study retrospectively analyzed 232 patients with stage T3, T4 rectal cancer between January 1, 2017 and October 31, 2022. MR examination was performed within 3 days before surgery. Different MR sequences were used for mrT staging of rectal cancer after neoadjuvant therapy and compared with pathological pT staging. The accuracy of different MR sequences in evaluating T staging of rectal cancer was calculated, and the consistency between the two was analyzed by kappa test. The sensitivity, specificity, negative predictive value and positive predictive value of different MR sequences in evaluating rectal cancer invading mesorectal fascia after neoadjuvant therapy were calculated. RESULTS A total of 232 patients with rectal cancer were included in the study. The accuracy of high-resolution T2 WI in evaluating T staging of rectal cancer after neoadjuvant therapy was 49.57%, and the Kappa value was 0.261. The accuracy of high-resolution T2WI combined with diffusion weighted imaging (DWI) in evaluating T staging of rectal cancer after neoadjuvant therapy was 61.64%, and the Kappa value was 0.411. The accuracy of high-resolution combined with DCE-MR images in evaluating T staging of rectal cancer after neoadjuvant therapy was 80.60%, and the Kappa value was 0.706. The sensitivity and specificity of high-resolution t2-weighted imaging (HR-T2WI) combined with dynamic contrast-enhancement magnetic resonance (DCE-MR) in evaluating the invasion of mesorectal fascia were 83.46% and 95.33%, respectively. CONCLUSION Compared with HR-T2WI combined with DWI images for mrT staging of rectal cancer after neoadjuvant chemoradiotherapy (N-CRT), HR-T2WI combined with DCE-M has the highest accuracy in evaluating mrT staging of rectal cancer after neoadjuvant therapy (80.60%), and has a high consistency with pathological pT staging. It is the best sequence for T staging of rectal cancer after neoadjuvant therapy. At the same time, the sequence has high sensitivity and specificity in evaluating mesorectal fascia invasion, which can provide accurate perioperative information for the formulation of surgical plan.
Collapse
Affiliation(s)
- Bin Liu
- Department of Radiology, The Second Hospital of Qinhuangdao, Qinhuangdao, Hebei, China
| | - Chuan Sun
- Department of Radiology, The Second Hospital of Qinhuangdao, Qinhuangdao, Hebei, China
| | - Xinyu Zhao
- Department of Radiology, The Second Hospital of Qinhuangdao, Qinhuangdao, Hebei, China
| | - Lingyu Liu
- Department of Radiology, The Second Hospital of Qinhuangdao, Qinhuangdao, Hebei, China
| | - Shuang Liu
- Department of Radiology, The Second Hospital of Qinhuangdao, Qinhuangdao, Hebei, China
| | - Haichuan Ma
- Department of Radiology, The Second Hospital of Qinhuangdao, Qinhuangdao, Hebei, China
| |
Collapse
|
46
|
Zou J, Shen YK, Wu SN, Wei H, Li QJ, Xu SH, Ling Q, Kang M, Liu ZL, Huang H, Chen X, Wang YX, Liao XL, Tan G, Shao Y. Prediction Model of Ocular Metastases in Gastric Adenocarcinoma: Machine Learning-Based Development and Interpretation Study. Technol Cancer Res Treat 2024; 23:15330338231219352. [PMID: 38233736 PMCID: PMC10865948 DOI: 10.1177/15330338231219352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 10/10/2023] [Accepted: 11/08/2023] [Indexed: 01/19/2024] Open
Abstract
Background: Although gastric adenocarcinoma (GA) related ocular metastasis (OM) is rare, its occurrence indicates a more severe disease. We aimed to utilize machine learning (ML) to analyze the risk factors of GA-related OM and predict its risks. Methods: This is a retrospective cohort study. The clinical data of 3532 GA patients were collected and randomly classified into training and validation sets in a ratio of 7:3. Those with or without OM were classified into OM and non-OM (NOM) groups. Univariate and multivariate logistic regression analyses and least absolute shrinkage and selection operator were conducted. We integrated the variables identified through feature importance ranking and further refined the selection process using forward sequential feature selection based on random forest (RF) algorithm before incorporating them into the ML model. We applied six ML algorithms to construct the predictive GA model. The area under the receiver operating characteristic (ROC) curve indicated the model's predictive ability. Also, we established a network risk calculator based on the best performance model. We used Shapley additive interpretation (SHAP) to identify risk factors and to confirm the interpretability of the black box model. We have de-identified all patient details. Results: The ML model, consisting of 13 variables, achieved an optimal predictive performance using the gradient boosting machine (GBM) model, with an impressive area under the curve (AUC) of 0.997 in the test set. Utilizing the SHAP method, we identified crucial factors for OM in GA patients, including LDL, CA724, CEA, AFP, CA125, Hb, CA153, and Ca2+. Additionally, we validated the model's reliability through an analysis of two patient cases and developed a functional online web prediction calculator based on the GBM model. Conclusion: We used the ML method to establish a risk prediction model for GA-related OM and showed that GBM performed best among the six ML models. The model may identify patients with GA-related OM to provide early and timely treatment.
Collapse
Affiliation(s)
- Jie Zou
- Department of Ophthalmology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Jiangxi Branch of National Clinical Research Center for Ocular Disease, Nanchang, Jiangxi, People's Republic of China
| | - Yan-Kun Shen
- Department of Ophthalmology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Jiangxi Branch of National Clinical Research Center for Ocular Disease, Nanchang, Jiangxi, People's Republic of China
| | - Shi-Nan Wu
- Department of Ophthalmology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Jiangxi Branch of National Clinical Research Center for Ocular Disease, Nanchang, Jiangxi, People's Republic of China
- Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Eye Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, People's Republic of China
| | - Hong Wei
- Department of Ophthalmology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Jiangxi Branch of National Clinical Research Center for Ocular Disease, Nanchang, Jiangxi, People's Republic of China
| | - Qing-Jian Li
- Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Eye Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, People's Republic of China
| | - San Hua Xu
- Department of Ophthalmology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Jiangxi Branch of National Clinical Research Center for Ocular Disease, Nanchang, Jiangxi, People's Republic of China
| | - Qian Ling
- Department of Ophthalmology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Jiangxi Branch of National Clinical Research Center for Ocular Disease, Nanchang, Jiangxi, People's Republic of China
| | - Min Kang
- Department of Ophthalmology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Jiangxi Branch of National Clinical Research Center for Ocular Disease, Nanchang, Jiangxi, People's Republic of China
| | - Zhao-Lin Liu
- Department of Ophthalmology, the First Affiliated Hospital of University of South China, Hunan Branch of National Clinical Research Center for Ocular Disease, Hengyan, Hunan Province, People's Republic of China
| | - Hui Huang
- Department of Ophthalmology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Jiangxi Branch of National Clinical Research Center for Ocular Disease, Nanchang, Jiangxi, People's Republic of China
| | - Xu Chen
- Department of Ophthalmology and Visual Sciences, Maastricht University, Maastricht, Limburg Province, Netherlands
| | - Yi-Xin Wang
- School of Optometry and Vision Sciences, Cardiff University, Cardiff, UK
| | - Xu-Lin Liao
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, People's Republic of China
| | - Gang Tan
- Department of Ophthalmology, the First Affiliated Hospital of University of South China, Hunan Branch of National Clinical Research Center for Ocular Disease, Hengyan, Hunan Province, People's Republic of China
| | - Yi Shao
- Department of Ophthalmology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Jiangxi Branch of National Clinical Research Center for Ocular Disease, Nanchang, Jiangxi, People's Republic of China
- Current affiliation: Department of Ophthalmology, Eye & ENT Hospital of Fudan University, Shanghai, China
| |
Collapse
|
47
|
Li X, Wu Q, Wang M, Wu K. Uncertainty-aware network for fine-grained and imbalanced reflux esophagitis grading. Comput Biol Med 2024; 168:107751. [PMID: 38016373 DOI: 10.1016/j.compbiomed.2023.107751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 10/22/2023] [Accepted: 11/20/2023] [Indexed: 11/30/2023]
Abstract
Computer-aided diagnosis (CAD) assists endoscopists in analyzing endoscopic images, reducing misdiagnosis rates and enabling timely treatment. A few studies have focused on CAD for gastroesophageal reflux disease, but CAD studies on reflux esophagitis (RE) are still inadequate. This paper presents a CAD study on RE using a dataset collected from hospital, comprising over 3000 images. We propose an uncertainty-aware network with handcrafted features, utilizing representation and classifier decoupling with metric learning to address class imbalance and achieve fine-grained RE classification. To enhance interpretability, the network estimates uncertainty through test time augmentation. The experimental results demonstrate that the proposed network surpasses previous methods, achieving an accuracy of 90.2% and an F1 score of 90.1%.
Collapse
Affiliation(s)
- Xingcun Li
- School of Management, Huazhong University of Science and Technology, Wuhan, 430074, China.
| | - Qinghua Wu
- School of Management, Huazhong University of Science and Technology, Wuhan, 430074, China.
| | - Mi Wang
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Kun Wu
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| |
Collapse
|
48
|
Huang YY, Deng YS, Liu Y, Qiang MY, Qiu WZ, Xia WX, Jing BZ, Feng CY, Chen HH, Cao X, Zhou JY, Huang HY, Zhan ZJ, Deng Y, Tang LQ, Mai HQ, Sun Y, Xie CM, Guo X, Ke LR, Lv X, Li CF. A deep learning-based semiautomated workflow for triaging follow-up MR scans in treated nasopharyngeal carcinoma. iScience 2023; 26:108347. [PMID: 38125021 PMCID: PMC10730347 DOI: 10.1016/j.isci.2023.108347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/08/2023] [Accepted: 10/24/2023] [Indexed: 12/23/2023] Open
Abstract
It is imperative to optimally utilize virtues and obviate defects of fully automated analysis and expert knowledge in new paradigms of healthcare. We present a deep learning-based semiautomated workflow (RAINMAN) with 12,809 follow-up scans among 2,172 patients with treated nasopharyngeal carcinoma from three centers (ChiCTR.org.cn, Chi-CTR2200056595). A boost of diagnostic performance and reduced workload was observed in RAINMAN compared with the original manual interpretations (internal vs. external: sensitivity, 2.5% [p = 0.500] vs. 3.2% [p = 0.031]; specificity, 2.9% [p < 0.001] vs. 0.3% [p = 0.302]; workload reduction, 79.3% vs. 76.2%). The workflow also yielded a triaging performance of 83.6%, with increases of 1.5% in sensitivity (p = 1.000) and 0.6%-1.3% (all p < 0.05) in specificity compared to three radiologists in the reader study. The semiautomated workflow shows its unique superiority in reducing radiologist's workload by eliminating negative scans while retaining the diagnostic performance of radiologists.
Collapse
Affiliation(s)
- Ying-Ying Huang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou 510060, China
- Department of Radiology, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Yi-Shu Deng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou 510060, China
- Department of Information, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
- School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510006, China
| | - Yang Liu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou 510060, China
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Meng-Yun Qiang
- Department of Radiation Oncology, Cancer Hospital of The University of Chinese Academy of Sciences, Hangzhou 310005, China
| | - Wen-Ze Qiu
- Department of Radiation Oncology, The Affiliated Cancer Hospital of Guangzhou Medical University, Guangzhou 510095, China
| | - Wei-Xiong Xia
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou 510060, China
- Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Bing-Zhong Jing
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou 510060, China
- Department of Information, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Chen-Yang Feng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou 510060, China
- Department of Information, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Hao-Hua Chen
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou 510060, China
- Department of Information, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Xun Cao
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou 510060, China
- Department of Critical Care Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Jia-Yu Zhou
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou 510060, China
- Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Hao-Yang Huang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou 510060, China
- Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Ze-Jiang Zhan
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou 510060, China
- Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Ying Deng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou 510060, China
- Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Lin-Quan Tang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou 510060, China
- Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Hai-Qiang Mai
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou 510060, China
- Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Ying Sun
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou 510060, China
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Chuan-Miao Xie
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou 510060, China
- Department of Radiology, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Xiang Guo
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou 510060, China
- Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Liang-Ru Ke
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou 510060, China
- Department of Radiology, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Xing Lv
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou 510060, China
- Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Chao-Feng Li
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou 510060, China
- Department of Information, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| |
Collapse
|
49
|
Xin Y, Zhang Q, Liu X, Li B, Mao T, Li X. Application of artificial intelligence in endoscopic gastrointestinal tumors. Front Oncol 2023; 13:1239788. [PMID: 38144533 PMCID: PMC10747923 DOI: 10.3389/fonc.2023.1239788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 11/17/2023] [Indexed: 12/26/2023] Open
Abstract
With an increasing number of patients with gastrointestinal cancer, effective and accurate early diagnostic clinical tools are required provide better health care for patients with gastrointestinal cancer. Recent studies have shown that artificial intelligence (AI) plays an important role in the diagnosis and treatment of patients with gastrointestinal tumors, which not only improves the efficiency of early tumor screening, but also significantly improves the survival rate of patients after treatment. With the aid of efficient learning and judgment abilities of AI, endoscopists can improve the accuracy of diagnosis and treatment through endoscopy and avoid incorrect descriptions or judgments of gastrointestinal lesions. The present article provides an overview of the application status of various artificial intelligence in gastric and colorectal cancers in recent years, and the direction of future research and clinical practice is clarified from a clinical perspective to provide a comprehensive theoretical basis for AI as a promising diagnostic and therapeutic tool for gastrointestinal cancer.
Collapse
Affiliation(s)
| | | | | | | | | | - Xiaoyu Li
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
50
|
Jiang AR, Wen LM, Ding JW, Zou RZ, Nie XB, Lin H, Chen J, Zhang WS, Dan LY, Zhu YX, Ren CM, Wu YY, Sheng LL, Chen DR, Liao GB, Zhao HY, Li JJ, Zuo Y, Chen J, Bai JY, Xu LB, Yu S. Magnifying image-enhanced endoscopy-only mode boosted early cancer diagnostic efficiency: a multicenter randomized controlled trial. Gastrointest Endosc 2023; 98:934-943.e4. [PMID: 37400038 DOI: 10.1016/j.gie.2023.06.068] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 05/30/2023] [Accepted: 06/27/2023] [Indexed: 07/05/2023]
Abstract
BACKGROUND AND AIMS Magnifying image-enhanced endoscopy (MIEE) is an advanced endoscopy with image enhancement and magnification used in preoperative examination. However, its impact on the detection rate is unknown. METHODS We conducted an open-label, randomized, parallel (1:1:1), controlled trial in 6 hospitals in China. Patients were recruited between February 14, 2022 and July 30, 2022. Eligible patients were aged ≥18 years and undergoing gastroscopy in outpatient departments. Participants were randomly assigned to the MIEE-only mode (o-MIEE) group, white-light endoscopy-only mode (o-WLE) group, and MIEE when necessary mode (n-MIEE) group (initial WLE followed by switching to another endoscope with MIEE if necessary). Biopsy sampling of suspicious lesions of the lesser curvature of the gastric antrum was performed. Primary and secondary aims were to compare detection rates and positive predictive value (PPV) of early cancer and precancerous lesions in these 3 modes, respectively. RESULTS A total of 5100 recruited patients were randomly assigned to the o-MIEE (n = 1700), o-WLE (n = 1700), and n-MIEE (n = 1700) groups. In the o-MIEE, o-WLE, and n-MIEE groups, 29 (1.51%; 95% confidence interval [CI], 1.05-2.16), 4 (.21%; 95% CI, .08-.54), and 8 (.43%; 95% CI, .22-.85) early cancers were found, respectively (P < .001). The PPV for early cancer was higher in the o-MIEE group compared with the o-WLE and n-MIEE groups (63.04%, 33.33%, and 38.1%, respectively; P = .062). The same trend was seen for precancerous lesions (36.67%, 10.00%, and 21.74%, respectively). CONCLUSIONS The o-MIEE mode resulted in a significant improvement in diagnosing early upper GI cancer and precancerous lesions; thus, it could be used for opportunistic screening. (Clinical trial registration number: ChiCTR2200064174.).
Collapse
Affiliation(s)
- Ai-Rui Jiang
- Department of Gastroenterology, the Second Affiliated Hospital, Army Medical University, Chongqing, China; Department of Gastroenterology, The People's Hospital of Wansheng District, Chongqing, China
| | - Li-Ming Wen
- Department of Gastroenterology, Sichuan MianYang 404 Hospital, Sichuan, China
| | - Jian-Wei Ding
- Department of Gastroenterology, The People's Hospital of Tongliang District, Chongqing, China
| | - Rui-Zheng Zou
- Department of Gastroenterology, The People's Hospital of Chongqing LiangJiang New Area, Chongqing, China
| | - Xu-Biao Nie
- Department of Gastroenterology, the Second Affiliated Hospital, Army Medical University, Chongqing, China
| | - Hui Lin
- Department of Gastroenterology, the Second Affiliated Hospital, Army Medical University, Chongqing, China; Department of Epidemiology, Army Medical University, Chongqing, China
| | - Jing Chen
- Department of Gastroenterology, Chongqing University Three Gorges Hospital, Chongqing, China
| | - Wei-Sen Zhang
- Department of Gastroenterology, The Affiliated Hospital of Guizhou Medical University, Guizhou, China
| | - Liang-Ying Dan
- Department of Gastroenterology, The People's Hospital of Tongliang District, Chongqing, China
| | - Yu-Xia Zhu
- Department of Gastroenterology, The People's Hospital of Chongqing LiangJiang New Area, Chongqing, China
| | - Chun-Mei Ren
- Department of Gastroenterology, Sichuan MianYang 404 Hospital, Sichuan, China
| | - Ying-Yang Wu
- Department of Gastroenterology, the Second Affiliated Hospital, Army Medical University, Chongqing, China
| | - Lin-Lin Sheng
- Department of Gastroenterology, the Second Affiliated Hospital, Army Medical University, Chongqing, China
| | - Ding-Rong Chen
- Department of Gastroenterology, the Second Affiliated Hospital, Army Medical University, Chongqing, China
| | - Guo-Bin Liao
- Department of Gastroenterology, the Second Affiliated Hospital, Army Medical University, Chongqing, China; Department of Gastroenterology, The 901 Hospital of Chinese People's Liberation Army Joint Service Support Unit, Hefei, China
| | - Hai-Yan Zhao
- Department of Gastroenterology, the Second Affiliated Hospital, Army Medical University, Chongqing, China
| | - Jian-Jun Li
- Department of Gastroenterology, the Second Affiliated Hospital, Army Medical University, Chongqing, China
| | - Ying Zuo
- Department of Gastroenterology, the Second Affiliated Hospital, Army Medical University, Chongqing, China
| | - Jie Chen
- Department of Gastroenterology, the Second Affiliated Hospital, Army Medical University, Chongqing, China
| | - Jian-Ying Bai
- Department of Gastroenterology, the Second Affiliated Hospital, Army Medical University, Chongqing, China
| | - Liang-Bi Xu
- Department of Gastroenterology, The Affiliated Hospital of Guizhou Medical University, Guizhou, China
| | - Shuang Yu
- Department of Gastroenterology, Chongqing University Three Gorges Hospital, Chongqing, China
| |
Collapse
|