1
|
Yu X, Lu D, Qi X, Paudel RR, Lin H, Holloman BL, Jin F, Xu L, Ding L, Peng W, Wang MC, Chen X, Wang J. Development of a RIPK1 degrader to enhance antitumor immunity. Nat Commun 2024; 15:10683. [PMID: 39681571 DOI: 10.1038/s41467-024-55006-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 11/28/2024] [Indexed: 12/18/2024] Open
Abstract
The scaffolding function of receptor interacting protein kinase 1 (RIPK1) confers intrinsic and extrinsic resistance to immune checkpoint blockades (ICBs) and emerges as a promising target for improving cancer immunotherapies. To address the challenge posed by a poorly defined binding pocket within the intermediate domain of RIPK1, here we harness proteolysis targeting chimera (PROTAC) technology to develop a RIPK1 degrader, LD4172. LD4172 exhibits potent and selective RIPK1 degradation both in vitro and in vivo. Degradation of RIPK1 by LD4172 triggers immunogenic cell death, enhances tumor-infiltrating lymphocyte responses, and sensitizes tumors to anti-PD1 therapy in female C57BL/6J mice. This work reports a RIPK1 degrader that serves as a chemical probe for investigating the scaffolding functions of RIPK1 and as a potential therapeutic agent to enhance tumor responses to ICBs therapy.
Collapse
Affiliation(s)
- Xin Yu
- The Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, TX, USA
- Center for NextGen Therapeutics, Baylor College of Medicine, Houston, TX, USA
| | - Dong Lu
- The Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, TX, USA.
| | - Xiaoli Qi
- The Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, TX, USA
- Center for NextGen Therapeutics, Baylor College of Medicine, Houston, TX, USA
| | - Rishi Ram Paudel
- The Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, TX, USA
- Center for NextGen Therapeutics, Baylor College of Medicine, Houston, TX, USA
| | - Hanfeng Lin
- The Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, TX, USA
- Center for NextGen Therapeutics, Baylor College of Medicine, Houston, TX, USA
| | - Bryan L Holloman
- The Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, TX, USA
- Center for NextGen Therapeutics, Baylor College of Medicine, Houston, TX, USA
| | - Feng Jin
- The Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, TX, USA
| | - Longyong Xu
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
- Department of Experimental Therapeutics, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Lang Ding
- Howard Hughes Medical Institute, Janelia Research Campus, Ashburn, VA, USA
| | - Weiyi Peng
- Department of Biology and Biochemistry, University of Houston, Houston, TX, USA
| | - Meng C Wang
- Howard Hughes Medical Institute, Janelia Research Campus, Ashburn, VA, USA
| | - Xi Chen
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
- Department of Experimental Therapeutics, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
- James P. Allison Institute, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Jin Wang
- The Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, TX, USA.
- Center for NextGen Therapeutics, Baylor College of Medicine, Houston, TX, USA.
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
2
|
Guo Q, Jin Y, Chen X, Ye X, Shen X, Lin M, Zeng C, Zhou T, Zhang J. NF-κB in biology and targeted therapy: new insights and translational implications. Signal Transduct Target Ther 2024; 9:53. [PMID: 38433280 PMCID: PMC10910037 DOI: 10.1038/s41392-024-01757-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 01/16/2024] [Accepted: 01/19/2024] [Indexed: 03/05/2024] Open
Abstract
NF-κB signaling has been discovered for nearly 40 years. Initially, NF-κB signaling was identified as a pivotal pathway in mediating inflammatory responses. However, with extensive and in-depth investigations, researchers have discovered that its role can be expanded to a variety of signaling mechanisms, biological processes, human diseases, and treatment options. In this review, we first scrutinize the research process of NF-κB signaling, and summarize the composition, activation, and regulatory mechanism of NF-κB signaling. We investigate the interaction of NF-κB signaling with other important pathways, including PI3K/AKT, MAPK, JAK-STAT, TGF-β, Wnt, Notch, Hedgehog, and TLR signaling. The physiological and pathological states of NF-κB signaling, as well as its intricate involvement in inflammation, immune regulation, and tumor microenvironment, are also explicated. Additionally, we illustrate how NF-κB signaling is involved in a variety of human diseases, including cancers, inflammatory and autoimmune diseases, cardiovascular diseases, metabolic diseases, neurological diseases, and COVID-19. Further, we discuss the therapeutic approaches targeting NF-κB signaling, including IKK inhibitors, monoclonal antibodies, proteasome inhibitors, nuclear translocation inhibitors, DNA binding inhibitors, TKIs, non-coding RNAs, immunotherapy, and CAR-T. Finally, we provide an outlook for research in the field of NF-κB signaling. We hope to present a stereoscopic, comprehensive NF-κB signaling that will inform future research and clinical practice.
Collapse
Affiliation(s)
- Qing Guo
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, No. 270, Dong'an Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yizi Jin
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, No. 270, Dong'an Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xinyu Chen
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med-X Stem Cell Research Center, Shanghai Cancer Institute & Department of Urology, Ren Ji Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200127, PR China
| | - Xiaomin Ye
- Department of Cardiology, the First Affiliated Hospital of Sun Yat-Sen University, 58 Zhongshan 2nd Road, Guangzhou, 510080, China
| | - Xin Shen
- Department of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mingxi Lin
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, No. 270, Dong'an Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Cheng Zeng
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, No. 270, Dong'an Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Teng Zhou
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, No. 270, Dong'an Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jian Zhang
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, No. 270, Dong'an Road, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
| |
Collapse
|
3
|
Urwyler-Rösselet C, Tanghe G, Devos M, Hulpiau P, Saeys Y, Declercq W. Functions of the RIP kinase family members in the skin. Cell Mol Life Sci 2023; 80:285. [PMID: 37688617 PMCID: PMC10492769 DOI: 10.1007/s00018-023-04917-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 07/08/2023] [Accepted: 08/08/2023] [Indexed: 09/11/2023]
Abstract
The receptor interacting protein kinases (RIPK) are a family of serine/threonine kinases that are involved in the integration of various stress signals. In response to several extracellular and/or intracellular stimuli, RIP kinases engage signaling cascades leading to the activation of NF-κB and mitogen-activated protein kinases, cell death, inflammation, differentiation and Wnt signaling and can have kinase-dependent and kinase-independent functions. Although it was previously suggested that seven RIPKs are part of the RIPK family, phylogenetic analysis indicates that there are only five genuine RIPKs. RIPK1 and RIPK3 are mainly involved in controlling and executing necroptosis in keratinocytes, while RIPK4 controls proliferation and differentiation of keratinocytes and thereby can act as a tumor suppressor in skin. Therefore, in this review we summarize and discuss the functions of RIPKs in skin homeostasis as well as the signaling pathways involved.
Collapse
Affiliation(s)
- Corinne Urwyler-Rösselet
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
- VIB Center for Inflammation Research, Ghent, Belgium
- Department of Biology, Institute of Molecular Health Sciences, ETH Zurich, 8093, Zurich, Switzerland
| | - Giel Tanghe
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
- VIB Center for Inflammation Research, Ghent, Belgium
| | - Michael Devos
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
- VIB Center for Inflammation Research, Ghent, Belgium
| | - Paco Hulpiau
- VIB Center for Inflammation Research, Ghent, Belgium
- Howest University of Applied Sciences, Brugge, Belgium
| | - Yvan Saeys
- VIB Center for Inflammation Research, Ghent, Belgium
- Department of Applied Mathematics and Computer Science, Ghent University, Ghent, Belgium
| | - Wim Declercq
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium.
- VIB Center for Inflammation Research, Ghent, Belgium.
| |
Collapse
|
4
|
Wang X, Xiao Y, Dong Y, Wang Z, Yi J, Wang J, Wang X, Zhou H, Zhang L, Shi Y. A20 interacts with mTORC2 to inhibit the mTORC2/Akt/Rac1 signaling axis in hepatocellular carcinoma cells. Cancer Gene Ther 2023; 30:424-436. [PMID: 36411371 DOI: 10.1038/s41417-022-00562-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 11/01/2022] [Accepted: 11/08/2022] [Indexed: 11/23/2022]
Abstract
A20 acts as a tumor suppressor in hepatocellular carcinoma, especially inhibiting metastasis of the malignant cells. However, the mechanisms whereby A20 plays the inhibitory roles are not understood completely. Rac1 signaling is essential for cell migration in hepatocellular carcinoma metastasis. Nevertheless, it is not known whether and how A20 inhibits Rac1 signaling to suppress the migration of hepatocellular carcinoma cell. Thereby, we analyzed the relationship between A20 and Rac1 activation, as well as the activity of Akt and mTORC2, two signaling components upstream of Rac1, using gain and loss of function experiments. We found that the overexpression of A20 repressed, while the knockdown or knockout of A20 promoted, the activation of Rac1, Akt and mTORC2 in hepatocellular carcinoma cells. Moreover, the inhibitory effect of A20 on the mTORC2/Akt/Rac1 signaling axis was due to the interaction between A20 and mTORC2 complex. The binding of A20 to mTORC2 was mediated by the ZnF7 domain of A20 and M1 ubiquitin chain in the mTORC2 complex. Furthermore, A20 inhibited metastasis of hepatocellular carcinoma cells via restraining mTORC2 in a hepatocellular carcinoma xenograft mouse model. These findings revealed the relationship between A20 and mTORC2, and explained the molecular mechanisms of A20 in inhibition of hepatocellular carcinoma metastasis.
Collapse
Affiliation(s)
- Xinyu Wang
- Department of Immunology and Shandong Key Laboratory of Infection and Immunity, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Ying Xiao
- Laboratory of Cellular and Molecular Medicine, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yanlei Dong
- Department of Immunology and Shandong Key Laboratory of Infection and Immunity, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Zhida Wang
- Department of Clinical Laboratory, Shandong Second Provincial General Hospital, Jinan, China
| | - Jing Yi
- Department of Immunology and Shandong Key Laboratory of Infection and Immunity, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Jianing Wang
- Department of Immunology and Shandong Key Laboratory of Infection and Immunity, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Xiaoyan Wang
- Department of Immunology and Shandong Key Laboratory of Infection and Immunity, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Huaiyu Zhou
- Department of Pathogen Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Lining Zhang
- Department of Immunology and Shandong Key Laboratory of Infection and Immunity, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Yongyu Shi
- Department of Immunology and Shandong Key Laboratory of Infection and Immunity, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China.
| |
Collapse
|
5
|
Martens A, Hertens P, Priem D, Rinotas V, Meletakos T, Gennadi M, Van Hove L, Louagie E, Coudenys J, De Muynck A, Gaublomme D, Sze M, van Hengel J, Catrysse L, Hoste E, Zajac JD, Davey RA, Van Hoorebeke L, Hochepied T, Bertrand MJM, Armaka M, Elewaut D, van Loo G. A20 controls RANK-dependent osteoclast formation and bone physiology. EMBO Rep 2022; 23:e55233. [PMID: 36194667 PMCID: PMC9724664 DOI: 10.15252/embr.202255233] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 09/07/2022] [Accepted: 09/22/2022] [Indexed: 11/05/2022] Open
Abstract
The anti-inflammatory protein A20 serves as a critical brake on NF-κB signaling and NF-κB-dependent inflammation. In humans, polymorphisms in or near the TNFAIP3/A20 gene have been associated with several inflammatory disorders, including rheumatoid arthritis (RA), and experimental studies in mice have demonstrated that myeloid-specific A20 deficiency causes the development of a severe polyarthritis resembling human RA. Myeloid A20 deficiency also promotes osteoclastogenesis in mice, suggesting a role for A20 in the regulation of osteoclast differentiation and bone formation. We show here that osteoclast-specific A20 knockout mice develop severe osteoporosis, but not inflammatory arthritis. In vitro, osteoclast precursor cells from A20 deficient mice are hyper-responsive to RANKL-induced osteoclastogenesis. Mechanistically, we show that A20 is recruited to the RANK receptor complex within minutes of ligand binding, where it restrains NF-κB activation independently of its deubiquitinating activity but through its zinc finger (ZnF) 4 and 7 ubiquitin-binding functions. Together, these data demonstrate that A20 acts as a regulator of RANK-induced NF-κB signaling to control osteoclast differentiation, assuring proper bone development and turnover.
Collapse
Affiliation(s)
- Arne Martens
- Center for Inflammation Research VIBGhentBelgium
- Department of Biomedical Molecular BiologyGhent UniversityGhentBelgium
| | - Pieter Hertens
- Center for Inflammation Research VIBGhentBelgium
- Department of Biomedical Molecular BiologyGhent UniversityGhentBelgium
| | - Dario Priem
- Center for Inflammation Research VIBGhentBelgium
- Department of Biomedical Molecular BiologyGhent UniversityGhentBelgium
| | - Vagelis Rinotas
- Biomedical Sciences Research Center 'Alexander Fleming'VariGreece
| | | | - Meropi Gennadi
- Biomedical Sciences Research Center 'Alexander Fleming'VariGreece
| | - Lisette Van Hove
- Center for Inflammation Research VIBGhentBelgium
- Department of Biomedical Molecular BiologyGhent UniversityGhentBelgium
| | - Els Louagie
- Center for Inflammation Research VIBGhentBelgium
- Department of RheumatologyGhent University HospitalGhentBelgium
| | - Julie Coudenys
- Center for Inflammation Research VIBGhentBelgium
- Department of RheumatologyGhent University HospitalGhentBelgium
| | | | - Djoere Gaublomme
- Center for Inflammation Research VIBGhentBelgium
- Department of RheumatologyGhent University HospitalGhentBelgium
| | - Mozes Sze
- Center for Inflammation Research VIBGhentBelgium
- Department of Biomedical Molecular BiologyGhent UniversityGhentBelgium
| | | | - Leen Catrysse
- Center for Inflammation Research VIBGhentBelgium
- Department of Biomedical Molecular BiologyGhent UniversityGhentBelgium
| | - Esther Hoste
- Center for Inflammation Research VIBGhentBelgium
- Department of Biomedical Molecular BiologyGhent UniversityGhentBelgium
| | - Jeffrey D Zajac
- Department of Medicine, Austin HealthUniversity of MelbourneHeidelbergVictoriaAustralia
| | - Rachel A Davey
- Department of Medicine, Austin HealthUniversity of MelbourneHeidelbergVictoriaAustralia
| | | | - Tino Hochepied
- Center for Inflammation Research VIBGhentBelgium
- Department of Biomedical Molecular BiologyGhent UniversityGhentBelgium
| | - Mathieu J M Bertrand
- Center for Inflammation Research VIBGhentBelgium
- Department of Biomedical Molecular BiologyGhent UniversityGhentBelgium
| | - Marietta Armaka
- Biomedical Sciences Research Center 'Alexander Fleming'VariGreece
| | - Dirk Elewaut
- Center for Inflammation Research VIBGhentBelgium
- Department of RheumatologyGhent University HospitalGhentBelgium
| | - Geert van Loo
- Center for Inflammation Research VIBGhentBelgium
- Department of Biomedical Molecular BiologyGhent UniversityGhentBelgium
| |
Collapse
|
6
|
Zhu G, Cheng Z, Wang Q, Lin C, Lin P, He R, Chen H, Hoffman RM, Ye J. TRAF6 regulates the signaling pathway influencing colorectal cancer function by ubiquitination mechanisms. Cancer Sci 2022; 113:1393-1405. [PMID: 35179811 PMCID: PMC8990288 DOI: 10.1111/cas.15302] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 02/10/2022] [Accepted: 02/12/2022] [Indexed: 12/24/2022] Open
Abstract
Tumor necrosis factor receptor‐associated factor‐6 (TRAF6) is a ubiquitin E3 ligase. TRAF6 plays an important role in tumor invasion and metastasis. However, the specific mechanism by which TRAF6 promotes colorectal cancer (CRC) metastasis is incompletely understood. This study aimed to determine whether TRAF6 affects the LPS‐NF‐κB‐VEGF‐C signaling pathway through ubiquitination, which plays a role in colorectal cancer metastasis. Here, our results showed that TRAF6 affected lymphangiogenesis through the LPS‐NF‐κB‐VEGF‐C signaling pathway. Using ubiquitination experiments, we found that TRAF6 was mainly ubiquitinated with the K63‐linked chains, and LPS promoted ubiquitination of TRAF6 and K63‐linked chains. More importantly, TRAF6 124mut is the main ubiquitination site of TRAF6 interacting with K63‐linked chains. TRAF6 affected the migration, invasion, and lymphatic metastasis of colorectal cancer through its ubiquitination. In subcutaneous xenograft models, TRAF6 124mut inhibited tumor growth. In conclusion, our results provide new insight for studying the mechanism of lymphangiogenesis in colorectal cancer to promote cancer metastasis, which may provide new ideas for tumor immunotherapy.
Collapse
Affiliation(s)
- Guangwei Zhu
- Department of Gastrointestinal Surgery, Section, Institute of Abdominal Surgery, Key Laboratory of accurate diagnosis and treatment of cancer, The First Hospital Affiliated to Fujian Medical University, Fuzhou, 350005, China
| | - Zhibin Cheng
- Department of Gastrointestinal Surgery, Section, Institute of Abdominal Surgery, Key Laboratory of accurate diagnosis and treatment of cancer, The First Hospital Affiliated to Fujian Medical University, Fuzhou, 350005, China
| | - Qin Wang
- Department of Gastrointestinal Surgery, Section, Institute of Abdominal Surgery, Key Laboratory of accurate diagnosis and treatment of cancer, The First Hospital Affiliated to Fujian Medical University, Fuzhou, 350005, China
| | - Chunlin Lin
- Department of Gastrointestinal Surgery, Section, Institute of Abdominal Surgery, Key Laboratory of accurate diagnosis and treatment of cancer, The First Hospital Affiliated to Fujian Medical University, Fuzhou, 350005, China.,Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou, 350000, China
| | - Penghang Lin
- Department of Gastrointestinal Surgery, Section, Institute of Abdominal Surgery, Key Laboratory of accurate diagnosis and treatment of cancer, The First Hospital Affiliated to Fujian Medical University, Fuzhou, 350005, China.,Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou, 350000, China
| | - Ruofan He
- Department of Gastrointestinal Surgery, Section, Institute of Abdominal Surgery, Key Laboratory of accurate diagnosis and treatment of cancer, The First Hospital Affiliated to Fujian Medical University, Fuzhou, 350005, China.,Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou, 350000, China
| | - Hui Chen
- Department of Gastrointestinal Surgery, Section, Institute of Abdominal Surgery, Key Laboratory of accurate diagnosis and treatment of cancer, The First Hospital Affiliated to Fujian Medical University, Fuzhou, 350005, China.,Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou, 350000, China
| | - Robert M Hoffman
- AntiCancer, Inc, San Diego, CA, U.S.A.,Department of Surgery, University of California, San Diego, CA, U.S.A
| | - Jianxin Ye
- Department of Gastrointestinal Surgery, Section, Institute of Abdominal Surgery, Key Laboratory of accurate diagnosis and treatment of cancer, The First Hospital Affiliated to Fujian Medical University, Fuzhou, 350005, China
| |
Collapse
|
7
|
Son M, Wang AG, Tu HL, Metzig MO, Patel P, Husain K, Lin J, Murugan A, Hoffmann A, Tay S. NF-κB responds to absolute differences in cytokine concentrations. Sci Signal 2021; 14. [PMID: 34211635 DOI: 10.1126/scisignal.aaz4382] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Cells receive a wide range of dynamic signaling inputs during immune regulation, but how gene regulatory networks measure such dynamic inputs is not well understood. Here, we used microfluidic single-cell analysis and mathematical modeling to study how the NF-κB pathway responds to immune inputs that vary over time such as increasing, decreasing, or fluctuating cytokine signals. We found that NF-κB activity responded to the absolute difference in cytokine concentration and not to the concentration itself. Our analyses revealed that negative feedback by the regulatory proteins A20 and IκBα enabled differential responses to changes in cytokine dose by providing a short-term memory of previous cytokine concentrations and by continuously resetting kinase cycling and receptor abundance. Investigation of NF-κB target gene expression showed that cells exhibited distinct transcriptional responses under different dynamic cytokine profiles. Our results demonstrate how cells use simple network motifs and transcription factor dynamics to efficiently extract information from complex signaling environments.
Collapse
Affiliation(s)
- Minjun Son
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA.,Institute for Genomics and Systems Biology, University of Chicago, Chicago, IL 60637, USA
| | - Andrew G Wang
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | - Hsiung-Lin Tu
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA.,Institute of Chemistry, Academia Sinica, Taipei 11529, Taiwan
| | - Marie Oliver Metzig
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA 90095, USA.,Institute for Quantitative and Computational Biosciences, University of California, Los Angeles, CA 90095, USA
| | - Parthiv Patel
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | - Kabir Husain
- James Franck Institute and Department of Physics, University of Chicago, Chicago, IL 60637, USA
| | - Jing Lin
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | - Arvind Murugan
- James Franck Institute and Department of Physics, University of Chicago, Chicago, IL 60637, USA
| | - Alexander Hoffmann
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA 90095, USA.,Institute for Quantitative and Computational Biosciences, University of California, Los Angeles, CA 90095, USA
| | - Savaş Tay
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA.,Institute for Genomics and Systems Biology, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
8
|
Engin A. Protein Kinase-Mediated Decision Between the Life and Death. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1275:1-33. [PMID: 33539010 DOI: 10.1007/978-3-030-49844-3_1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Protein kinases are intracellular signaling enzymes that catalyze the phosphorylation of specific residues in their target substrate proteins. They play important role for regulation of life and death decisions. The complexity of the relationship between death receptors and protein kinases' cell death decision-making mechanisms create many difficulties in the treatment of various diseases. The most of fifteen different cell death pathways, which are reported by Nomenclature Committee on Cell Death (NCCD) are protein kinase signal transduction-mediated negative or positive selections. Tumor necrosis factor (TNF) as a main player of death pathways is a dual-functioning molecule in that it can promote both cell survival or cell death. All apoptotic and necrotic signal transductions are conveyed through death domain-containing death receptors, which are expressed on the surface of nearly all human cells. In humans, eight members of the death receptor family have been identified. While the interaction of TNF with TNF Receptor 1 (TNFR1) activates various signal transduction pathways, different death receptors activate three main signal transduction pathways: nuclear factor kappa B (NF-ĸB)-mediated differentiation or pro-inflammatory cytokine synthesis, mitogen-activated protein kinase (MAPK)-mediated stress response and caspase-mediated apoptosis. The link between the NF-ĸB and the c-Jun NH2-terminal kinase (JNK) pathways comprise another check-point to regulate cell death. TNF-α also promotes the "receptor-interacting serine/threonine protein kinase 1" (RIPK1)/RIPK3/ mixed lineage kinase domain-like pseudokinase (MLKL)-dependent necrosis. Thus, necrosome is mainly comprised of MLKL, RIPK3 and, in some cases, RIPK1. In fact, RIPK1 is at the crossroad between life and death, downstream of various receptors as a regulator of endoplasmic reticulum stress-induced death. TNFR1 signaling complex (TNF-RSC), which contains multiple kinase activities, promotes phosphorylation of transforming growth factor β-activated kinase 1 (TAK1), inhibitor of nuclear transcription factor κB (IκB) kinase (IKK) α/IKKβ, IκBα, and NF-κB. IKKs affect cell-survival pathways in NF-κB-independent manner. Toll-like receptor (TLR) stimulation triggers various signaling pathways dependent on myeloid differentiation factor-88 (MyD88), Interleukin-1 receptor (IL-1R)-associated kinase (IRAK1), IRAK2 and IRAK4, lead to post-translational activation of nucleotide and oligomerization domain (NLRP3). Thereby, cell fate decisions following TLR signaling is parallel with death receptor signaling. Inhibition of IKKα/IKKβ or its upstream activators sensitize cells to death by inducing RIPK1-dependent apoptosis or necroptosis. During apoptosis, several kinases of the NF-κB pathway, including IKK1 and NF-κB essential modulator (NEMO), are cleaved by cellular caspases. This event can terminate the NF-κB-derived survival signals. In both canonical and non-canonical pathways, IKK is key to NF-κB activation. Whereas, the activation process of IKK, the functions of NEMO ubiquitination, IKK-related non-canonical pathway and the nuclear transportation of NEMO and functions of IKKα are still debated in cell death. In addition, cluster of differentiation 95 (CD95)-mediated non-apoptotic signaling and CD95- death-inducing signaling complex (DISC) interactions are waiting for clarification.
Collapse
Affiliation(s)
- Atilla Engin
- Department of General Surgery, Faculty of Medicine, Gazi University, Besevler, Ankara, Turkey.
| |
Collapse
|
9
|
Ko HJ, Jo YH, Patnaik BB, Park KB, Kim CE, Keshavarz M, Jang HA, Lee YS, Han YS. IKKγ/NEMO Is Required to Confer Antimicrobial Innate Immune Responses in the Yellow Mealworm, Tenebrio Molitor. Int J Mol Sci 2020; 21:ijms21186734. [PMID: 32937897 PMCID: PMC7555931 DOI: 10.3390/ijms21186734] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 08/31/2020] [Accepted: 09/07/2020] [Indexed: 12/14/2022] Open
Abstract
IKKγ/NEMO is the regulatory subunit of the IκB kinase (IKK) complex, which regulates the NF-κB signaling pathway. Within the IKK complex, IKKγ/NEMO is the non-catalytic subunit, whereas IKKα and IKKβ are the structurally related catalytic subunits. In this study, TmIKKγ was screened from the Tenebrio molitor RNA-Seq database and functionally characterized using RNAi screening for its role in regulating T. molitor antimicrobial peptide (AMP) genes after microbial challenges. The TmIKKγ transcript is 1521 bp that putatively encodes a polypeptide of 506 amino acid residues. TmIKKγ contains a NF-κB essential modulator (NEMO) and a leucine zipper domain of coiled coil region 2 (LZCC2). A phylogenetic analysis confirmed its homology to the red flour beetle, Tribolium castaneum IKKγ (TcIKKγ). The expression of TmIKKγ mRNA showed that it might function in diverse tissues of the insect, with a higher expression in the hemocytes and the fat body of the late-instar larvae. TmIKKγ mRNA expression was induced by Escherichia coli, Staphylococcus aureus, and Candida albicans challenges in the whole larvae and in tissues such as the hemocytes, gut and fat body. The knockdown of TmIKKγ mRNA significantly reduced the survival of the larvae after microbial challenges. Furthermore, we investigated the tissue-specific induction patterns of fourteen T. molitor AMP genes in TmIKKγ mRNA-silenced individuals after microbial challenges. In general, the mRNA expression of TmTenecin1, -2, and -4; TmDefensin1 and -2; TmColeoptericin1 and 2; and TmAttacin1a, 1b, and 2 were found to be downregulated in the hemocytes, gut, and fat body tissues in the TmIKKγ-silenced individuals after microbial challenges. Under similar conditions, TmRelish (NF-κB transcription factor) mRNA was also found to be downregulated. Thus, TmIKKγ is an important factor in the antimicrobial innate immune response of T. molitor.
Collapse
Affiliation(s)
- Hye Jin Ko
- Department of Applied Biology, Institute of Environmentally-Friendly Agriculture (IEFA), College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61186, Korea; (H.J.K.); (Y.H.J.); (K.B.P.); (C.E.K.); (M.K.); (H.A.J.)
| | - Yong Hun Jo
- Department of Applied Biology, Institute of Environmentally-Friendly Agriculture (IEFA), College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61186, Korea; (H.J.K.); (Y.H.J.); (K.B.P.); (C.E.K.); (M.K.); (H.A.J.)
| | - Bharat Bhusan Patnaik
- School of Biotech Sciences, Trident Academy of Creative Technology (TACT), Chandrasekharpur, Bhubaneswar, Odisha 751024, India;
- P.G. Department of Bio-Sciences and Bio-Technology, Fakir Mohan University, Nuapadhi, Balasore, Odisha 756089, India
| | - Ki Beom Park
- Department of Applied Biology, Institute of Environmentally-Friendly Agriculture (IEFA), College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61186, Korea; (H.J.K.); (Y.H.J.); (K.B.P.); (C.E.K.); (M.K.); (H.A.J.)
| | - Chang Eun Kim
- Department of Applied Biology, Institute of Environmentally-Friendly Agriculture (IEFA), College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61186, Korea; (H.J.K.); (Y.H.J.); (K.B.P.); (C.E.K.); (M.K.); (H.A.J.)
| | - Maryam Keshavarz
- Department of Applied Biology, Institute of Environmentally-Friendly Agriculture (IEFA), College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61186, Korea; (H.J.K.); (Y.H.J.); (K.B.P.); (C.E.K.); (M.K.); (H.A.J.)
| | - Ho Am Jang
- Department of Applied Biology, Institute of Environmentally-Friendly Agriculture (IEFA), College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61186, Korea; (H.J.K.); (Y.H.J.); (K.B.P.); (C.E.K.); (M.K.); (H.A.J.)
| | - Yong Seok Lee
- School of Biotechnology and Life Sciences, College of Natural Sciences, Soonchunhyang University, 22 Soonchunhyangro, Shinchang-Myeon, Asan, Chungchungnam-do 31538, Korea;
| | - Yeon Soo Han
- Department of Applied Biology, Institute of Environmentally-Friendly Agriculture (IEFA), College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61186, Korea; (H.J.K.); (Y.H.J.); (K.B.P.); (C.E.K.); (M.K.); (H.A.J.)
- Correspondence: ; Tel.: +82-62-530-2072
| |
Collapse
|
10
|
Hou J, Zhuo H, Chen X, Cheng J, Zheng W, Zhong M, Cai J. MiR-139-5p negatively regulates PMP22 to repress cell proliferation by targeting the NF-κB signaling pathway in gastric cancer. Int J Biol Sci 2020; 16:1218-1229. [PMID: 32174796 PMCID: PMC7053325 DOI: 10.7150/ijbs.40338] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Accepted: 01/18/2020] [Indexed: 12/28/2022] Open
Abstract
Gastric cancer (GC) is one of the most common malignant tumors worldwide. Peripheral myelin protein 22 (PMP22) is a 22-kDa tetraspan glycoprotein that is predominantly expressed by myelinating Schwann cells. However, recent studies have shown that PMP22 is closely related to cell proliferation and tumorigenesis in different cancers. In this study, we discovered a new miRNA that regulates PMP22 and gastric cancer cell prolifration. Our bioinformatics analysis suggested that there is a conserved miRNA recognition site for miR-139-5p on the 3' UTR of PMP22. Interestingly, our results showed overexpression of miR-139-5p significantly suppressed growth and prolifration in GC cells and inhibited tumor growth in nude mice xenografted with GC cells. MiR-139-5p suppressed the activity of a luciferase reporter containing the PMP22-3' UTR, and the ectopic expression of PMP22 rescued the miR-139-5p-mediated inhibition of cell proliferation in GC cells. Mechanistically, miR-139-5p may negatively regulate PMP22 to repress cell proliferation by targeting the NF-κB signaling pathway in gastric cancer. Finally, overexpression of miR-139-5p significantly inhibited tumor growth in nude mice xenografted with GC cells.and the miR-139-5p levels were inversely correlated with PMP22 expression in nude mice tumor. Taken together, our data suggest an important regulatory role of miR-139-5p in gastric cancer, suggesting that miR-139-5p and PMP22 might be important diagnostic or therapeutic targets for gastric cancer and other human diseases.
Collapse
Affiliation(s)
- Jingjing Hou
- Department of Gastrointestinal Surgery, Zhongshan Hospital of Xiamen University, Xiamen, Fujian 361004, China.,Institute of Gastrointestinal Oncology, Medical college of Xiamen University, Xiamen, Fujian 361004, China.,Xiamen Municipal Key Laboratory of Gastrointestinal Oncology, Xiamen 361004, Fujian, China
| | - Huiqin Zhuo
- Department of Gastrointestinal Surgery, Zhongshan Hospital of Xiamen University, Xiamen, Fujian 361004, China.,Institute of Gastrointestinal Oncology, Medical college of Xiamen University, Xiamen, Fujian 361004, China.,Xiamen Municipal Key Laboratory of Gastrointestinal Oncology, Xiamen 361004, Fujian, China
| | - Xin Chen
- Department of Gastrointestinal Surgery, Zhongshan Hospital of Xiamen University, Xiamen, Fujian 361004, China.,Institute of Gastrointestinal Oncology, Medical college of Xiamen University, Xiamen, Fujian 361004, China.,Xiamen Municipal Key Laboratory of Gastrointestinal Oncology, Xiamen 361004, Fujian, China
| | - Jia Cheng
- Department of Gastrointestinal Surgery, Zhongshan Hospital of Xiamen University, Xiamen, Fujian 361004, China.,Institute of Gastrointestinal Oncology, Medical college of Xiamen University, Xiamen, Fujian 361004, China.,Xiamen Municipal Key Laboratory of Gastrointestinal Oncology, Xiamen 361004, Fujian, China
| | - Wei Zheng
- Department of Gastrointestinal Surgery, Zhongshan Hospital of Xiamen University, Xiamen, Fujian 361004, China.,Institute of Gastrointestinal Oncology, Medical college of Xiamen University, Xiamen, Fujian 361004, China.,Xiamen Municipal Key Laboratory of Gastrointestinal Oncology, Xiamen 361004, Fujian, China
| | - Mengya Zhong
- Department of Gastrointestinal Surgery, Zhongshan Hospital of Xiamen University, Xiamen, Fujian 361004, China.,Institute of Gastrointestinal Oncology, Medical college of Xiamen University, Xiamen, Fujian 361004, China.,Xiamen Municipal Key Laboratory of Gastrointestinal Oncology, Xiamen 361004, Fujian, China
| | - Jianchun Cai
- Department of Gastrointestinal Surgery, Zhongshan Hospital of Xiamen University, Xiamen, Fujian 361004, China.,Institute of Gastrointestinal Oncology, Medical college of Xiamen University, Xiamen, Fujian 361004, China.,Xiamen Municipal Key Laboratory of Gastrointestinal Oncology, Xiamen 361004, Fujian, China
| |
Collapse
|
11
|
Zhou Q, Cheng C, Wei Y, Yang J, Zhou W, Song Q, Ke M, Yan W, Zheng L, Zhang Y, Huang K. USP15 potentiates NF-κB activation by differentially stabilizing TAB2 and TAB3. FEBS J 2020; 287:3165-3183. [PMID: 31903660 DOI: 10.1111/febs.15202] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 10/29/2019] [Accepted: 01/03/2020] [Indexed: 12/25/2022]
Abstract
Tumor necrosis factor α (TNFα)- and interleukin 1β (IL-1β)-induced nuclear factor-κB (NF-κB) activation play key roles in inflammation, immunity, and cancer development. Here, we identified one of the deubiquitinating enzymes (DUBs), ubiquitin-specific protease 15 (USP15), as a positive regulator in both TNFα- and IL-1β-induced NF-κB activation. Overexpression of USP15 potentiated TNFα- or IL-1β-triggered NF-κB activation and downstream gene transcription, whereas knockdown of USP15 had opposite effects. Mechanistically, upon TNFα stimulation, USP15 showed an enhanced interaction with transforming growth factor-β activated kinase-1 (TAK1)-TAK1 binding protein (TAB) complex to inhibit the proteolysis of TAB2/3 by different pathways. Apart from deubiquitination dependently inducing cleavage of lysine 48-linked TAB2 ubiquitination, USP15 also DUB independently inhibited lysosome-associated TAB2 degradation, thus enhanced TAB2 stabilization. For TAB3, USP15 inhibited NBR1-mediated selective autophagic TAB3 degradation independent of its deubiquitinating activity. Together, our results reveal a novel USP15-mediated mechanism through which efficient NF-κB activation is achieved by differentially maintaining the TAB2/3 stability.
Collapse
Affiliation(s)
- Qiaoqiao Zhou
- Tongji School of Pharmacy, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Cheng Cheng
- Tongji School of Pharmacy, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Yujuan Wei
- Tongji School of Pharmacy, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Jing Yang
- Tongji School of Pharmacy, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Wanzhu Zhou
- Tongji School of Pharmacy, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Qiuyi Song
- Tongji School of Pharmacy, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Mengxiang Ke
- Tongji School of Pharmacy, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Wanyao Yan
- Tongji School of Pharmacy, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Ling Zheng
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, China
| | - Yu Zhang
- Tongji School of Pharmacy, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Kun Huang
- Tongji School of Pharmacy, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| |
Collapse
|
12
|
Banach-Orłowska M, Wyszyńska R, Pyrzyńska B, Maksymowicz M, Gołąb J, Miączyńska M. Cholesterol restricts lymphotoxin β receptor-triggered NF-κB signaling. Cell Commun Signal 2019; 17:171. [PMID: 31878945 PMCID: PMC6933913 DOI: 10.1186/s12964-019-0460-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 10/10/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Lymphotoxin β receptor (LTβR) plays important roles in the development of the immune system and immune response. At the cellular level, ligand-bound LTβR activates the pro-inflammatory NF-κB pathway but the detailed mechanisms regulating its signaling remain unknown. Understanding them is of high importance since LTβR and its ligands are promising therapeutic targets. Here, we studied the consequences of perturbed cellular cholesterol content on LTβR-induced NF-κB signaling. METHODS To modulate cholesterol availability and/or level in lung carcinoma A549 and H2228, and endothelial HUVEC cells different treatment regimens with filipin, methyl-β-cyclodextrin and simvastatin were applied. LTβR localization was studied by confocal microscopy. The activity of LTβR-induced NF-κB pathway was assessed by measuring the levels of NF-κB pathway inhibitor IκBα and phosphorylation of RelA transcription factor by Western blotting. The NF-κB transcriptional response, production of chemokines and adhesion molecules were examined by qRT-PCR, ELISA, and Western blotting, respectively. Adherence of different types of primary immune cells to epithelial A549 cells and endothelial HUVECs was measured fluorometrically. Interactions of LTβR with its protein partners were investigated by immunoprecipitation. RESULTS We showed that filipin-mediated sequestration of cholesterol or its depletion from the plasma membrane with methyl-β-cyclodextrin impaired LTβR internalization and potentiated LTβR-dependent activation of the canonical branch of the NF-κB pathway. The latter was manifested by enhanced degradation of IκBα inhibitor, elevated RelA phosphorylation, substantial increase in the expression of NF-κB target genes encoding, among others, cytokines and adhesion molecules known to play important roles in immune response. It was followed by robust secretion of CXCL8 and upregulation of ICAM1, that favored the adhesion of immune cells (NK and T cells, neutrophils) to A549 cells and HUVECs. Mechanistically, we showed that cholesterol depletion stabilized interactions of ligand-stimulated LTβR with modified forms of TRAF2 and NEMO proteins. CONCLUSIONS Our results showed that the reduction of the plasma membrane content of cholesterol or its sequestration strongly potentiated signaling outcome initiated by LTβR. Thus, drugs modulating cholesterol levels could potentially improve efficacy of LTβR-based therapies. Video abstract.
Collapse
Affiliation(s)
- Magdalena Banach-Orłowska
- Laboratory of Cell Biology, International Institute of Molecular and Cell Biology, 02-109, Warsaw, Poland.
| | - Renata Wyszyńska
- Laboratory of Cell Biology, International Institute of Molecular and Cell Biology, 02-109, Warsaw, Poland
| | - Beata Pyrzyńska
- Department of Immunology, Medical University of Warsaw, Warsaw, Poland
| | - Małgorzata Maksymowicz
- Laboratory of Cell Biology, International Institute of Molecular and Cell Biology, 02-109, Warsaw, Poland
| | - Jakub Gołąb
- Department of Immunology, Medical University of Warsaw, Warsaw, Poland
| | - Marta Miączyńska
- Laboratory of Cell Biology, International Institute of Molecular and Cell Biology, 02-109, Warsaw, Poland
| |
Collapse
|
13
|
Kreckel J, Anany MA, Siegmund D, Wajant H. TRAF2 Controls Death Receptor-Induced Caspase-8 Processing and Facilitates Proinflammatory Signaling. Front Immunol 2019; 10:2024. [PMID: 31555268 PMCID: PMC6727177 DOI: 10.3389/fimmu.2019.02024] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 08/09/2019] [Indexed: 12/22/2022] Open
Abstract
Tumor necrosis factor (TNF) receptor associated factor-2 (TRAF2) knockout (KO) cells were generated to investigate the role of TRAF2 in signaling by TNFR1 and the CD95-type death receptors (DRs) TRAILR1/2 and CD95. To prevent negative selection effects arising from the increased cell death sensitivity of TRAF2-deficient cells, cell lines were used for the generation of the TRAF2 KO variants that were protected from DR-induced apoptosis downstream of caspase-8 activation. As already described in the literature, TRAF2 KO cells displayed enhanced constitutive alternative NFκB signaling and reduced TNFR1-induced activation of the classical NFκB pathway. There was furthermore a significant but only partial reduction in CD95-type DR-induced upregulation of the proinflammatory NFκB-regulated cytokine interleukin-8 (IL8), which could be reversed by reexpression of TRAF2. In contrast, expression of the TRAF2-related TRAF1 protein failed to functionally restore TRAF2 deficiency. TRAF2 deficiency resulted furthermore in enhanced procaspase-8 processing by DRs, but this surprisingly came along with a reduction in net caspase-8 activity. In sum, our data argue for (i) a non-obligate promoting function of TRAF2 in proinflammatory DR signaling and (ii) a yet unrecognized stabilizing effect of TRAF2 on caspase-8 activity.
Collapse
Affiliation(s)
- Jennifer Kreckel
- Division of Molecular Internal Medicine, Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany
| | - Mohammed A Anany
- Division of Molecular Internal Medicine, Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany.,Division of Genetic Engineering and Biotechnology, Department of Microbial Biotechnology, National Research Centre, Giza, Egypt
| | - Daniela Siegmund
- Division of Molecular Internal Medicine, Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany
| | - Harald Wajant
- Division of Molecular Internal Medicine, Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany
| |
Collapse
|
14
|
Liao Y, Cao L, Wang F, Pang R. miR‐605‐5p promotes invasion and proliferation by targeting TNFAIP3 in non–small‐cell lung cancer. J Cell Biochem 2019; 121:779-787. [PMID: 31452243 DOI: 10.1002/jcb.29323] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 06/27/2019] [Indexed: 01/31/2023]
Affiliation(s)
- Youxia Liao
- Department of Intensive Care Unit, Wuhan Third Hospital Tongren Hospital of Wuhan University Wuhan Hubei China
| | - Lirong Cao
- Teaching and Research Division of Surgical Medicine Hubei College of Chinese Medicine Jingzhou China
| | - Fang Wang
- Tongji Medical College Huazhong University of Science and Technology Wuhan China
| | - Rong Pang
- Operating Room Huai’an Second People's Hospital and The Affiliated Huai’an Hospital of Xuzhou Medical University Huai’an China
| |
Collapse
|
15
|
Abstract
Ubiquitination (also known as ubiquitylation) is a post-translational modification that creates versatility in cell signalling and regulates a multitude of cellular processes. Its versatility lies in the capacity to form eight different inter-ubiquitin linkages through the seven lysine residues of ubiquitin and through its N-terminal methionine (M1). The latter, referred to as linear or M1 linkage, is created by the linear ubiquitin chain assembly complex (LUBAC), the only E3 ligase known to date that is capable of forming linear ubiquitin chains de novo Linear ubiquitin chains are crucial modulators of innate and adaptive immune responses, and act by regulating inflammatory and cell death signalling. In this Cell Science at a Glance article and the accompanying poster, we review the current knowledge on the role of LUBAC and linear ubiquitination in immune signalling and human physiology. We specifically focus on the role for LUBAC in signalling that is induced by the cytokine tumour necrosis factor (TNF) and its role in inflammation, gene activation and cell death. Furthermore, we highlight the roles of deubiquitinases (DUBs) that cleave M1 linkages and add an additional layer in the control of LUBAC-mediated immune signalling.
Collapse
Affiliation(s)
- Maureen Spit
- Centre for Cell Death, Cancer, and Inflammation (CCCI), UCL Cancer Institute, University College London, 72 Huntley Street, London WC1E 6DD, UK
| | - Eva Rieser
- Centre for Cell Death, Cancer, and Inflammation (CCCI), UCL Cancer Institute, University College London, 72 Huntley Street, London WC1E 6DD, UK
| | - Henning Walczak
- Centre for Cell Death, Cancer, and Inflammation (CCCI), UCL Cancer Institute, University College London, 72 Huntley Street, London WC1E 6DD, UK
| |
Collapse
|
16
|
Song D, Zhao J, Deng W, Liao Y, Hong X, Hou J. Tannic acid inhibits NLRP3 inflammasome-mediated IL-1β production via blocking NF-κB signaling in macrophages. Biochem Biophys Res Commun 2018; 503:3078-3085. [PMID: 30126633 DOI: 10.1016/j.bbrc.2018.08.096] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 08/13/2018] [Indexed: 11/19/2022]
Abstract
The NLRP3 inflammasome rapidly responds to many infections and stress signals and is involved in the pathogenesis of numerous inflammatory disease processes. Tannic acid plays a role in antioxidant, antifungal and antitumor activities. Here, we reported that tannic acid inhibited NLRP3 inflammasome activation by blocking NF-κB signaling to suppress IL-1β secretion. We found that the BMDMs (bone marrow-derived macrophages cells) pre-treated with tannic acid blocked caspase-1 cleavage and inhibited IL-1β secretion in a NLRP3-dependent manner, and suppressed NF-κB signaling activation by inhibiting NF-κB/P65 nuclear localization, suggesting that tannic acid inhibited NLRP3 inflammasome activation. These investigations revealed that tannic acid inhibited NLRP3 inflammasome activation via blocking NF-κB signaling in macrophages, providing us with evidence that tannic acid may be a potent inhibitor for NLRP3-driven diseases.
Collapse
Affiliation(s)
- Dan Song
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, 361102, China
| | - Jiabao Zhao
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, 361102, China; Department of Gastrointestinal Surgery, Zhongshan Hospital of Xiamen University, Xiamen, Fujian, 361004, China
| | - Weixian Deng
- Respiratory Medicine, Second Affiliated Hospital of Xiamen Medical College, Xiamen, Fujian, 361000, China
| | - Yueting Liao
- Blood Transfusion Department, Zhongshan Hospital of Xiamen University, Xiamen, Fujian, 361004, China
| | - Xuehui Hong
- Department of Gastrointestinal Surgery, Zhongshan Hospital of Xiamen University, Xiamen, Fujian, 361004, China; Department of Gastrointestinal Surgery, Institute of Gastrointestinal Oncology, Medical College of Xiamen University, Xiamen, Fujian, 361004, China.
| | - Jingjing Hou
- Department of Gastrointestinal Surgery, Zhongshan Hospital of Xiamen University, Xiamen, Fujian, 361004, China; Department of Gastrointestinal Surgery, Institute of Gastrointestinal Oncology, Medical College of Xiamen University, Xiamen, Fujian, 361004, China; State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, 361102, China.
| |
Collapse
|
17
|
A20 regulates canonical wnt-signaling through an interaction with RIPK4. PLoS One 2018; 13:e0195893. [PMID: 29718933 PMCID: PMC5931457 DOI: 10.1371/journal.pone.0195893] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 04/02/2018] [Indexed: 01/06/2023] Open
Abstract
A20 is a ubiquitin-editing enzyme that is known to regulate inflammatory signaling and cell death. However, A20 mutations are also frequently found in multiple malignancies suggesting a potential role as a tumor suppressor as well. We recently described a novel role for A20 in regulating the wnt-beta-catenin signaling pathway and suppressing colonic tumor development in mice. The underlying mechanisms for this phenomenon are unclear. To study this, we first generated A20 knockout cell lines by genome-editing techniques. Using these cells, we show that loss of A20 causes dysregulation of wnt-dependent gene expression by RNAseq. Mechanistically, A20 interacts with a proximal signaling component of the wnt-signaling pathway, receptor interacting protein kinase 4 (RIPK4), and regulation of wnt-signaling by A20 occurs through RIPK4. Finally, similar to the mechanism by which A20 regulates other members of the receptor interacting protein kinase family, A20 modifies ubiquitin chains on RIPK4 suggesting a possible molecular mechanism for A20’s control over the wnt-signaling pathway.
Collapse
|
18
|
Ogura K, Terasaki Y, Miyoshi-Akiyama T, Terasaki M, Moss J, Noda M, Yahiro K. Vibrio cholerae Cholix Toxin-Induced HepG2 Cell Death is Enhanced by Tumor Necrosis Factor-Alpha Through ROS and Intracellular Signal-Regulated Kinases. Toxicol Sci 2018; 156:455-468. [PMID: 28087840 DOI: 10.1093/toxsci/kfx009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Cholix toxin (Cholix) from Vibrio cholerae is a potent virulence factor exhibiting ADP-ribosyltransferase activity on eukaryotic elongation factor 2 (eEF2) of host cells, resulting in the inhibition of protein synthesis. Administration of Cholix or its homologue Pseudomonas exotoxin A (PEA) to mice causes lethal hepatocyte damage. In this study, we demonstrate cytotoxicity of Cholix on human hepatocytes in the presence of tumor necrosis factor α (TNF-α), which has been reported to play a fatal role in PEA administered to mice. Compared with incubating HepG2 cells with Cholix alone, co-treatment with TNF-α and Cholix (TNF-α/Cholix) significantly enhanced the activation of caspases, cytochrome c release from mitochondria into cytoplasm, and poly-ADP-ribose polymerase (PARP) cleavage, while incubation with TNF-α alone or co-treatment with TNF-α/catalytically inactive Cholix did not. In the early stage of cell death, Cholix increased phosphorylation of mitogen-activated protein kinases (e.g., p38, ERK, JNK) and Akt, which was not affected by TNF-α alone. MAPK inhibitors (SP600125, SB20852, and U0126) suppressed PARP cleavage induced by TNF-α/Cholix. Protein kinase inhibitor Go6976 suppressed JNK phosphorylation and PARP cleavage by TNF-α/Cholix. In contrast, PKC activator PMA in the absence of TNF-α promoted Cholix-induced PARP cleavage. Reactive oxygen species (ROS) inhibitor, N-acetyl cysteine (NAC), suppressed TNF-α/Cholix-induced JNK and ERK phosphorylation, resulting in inhibition of PARP cleavage. These data suggest that ROS and JNK pathways are important mediators of TNF-α/Cholix-induced HepG2 cell death.
Collapse
Affiliation(s)
- Kohei Ogura
- Department of Molecular Infectiology, Graduate School of Medicine, Chiba University, Chiba, Japan.,Pathogenic Microbe Laboratory, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - Yasuhiro Terasaki
- Department of Analytic Human Pathology, Nippon Medical School, Tokyo, Japan
| | - Tohru Miyoshi-Akiyama
- Pathogenic Microbe Laboratory, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - Mika Terasaki
- Department of Analytic Human Pathology, Nippon Medical School, Tokyo, Japan
| | - Joel Moss
- Cardiovascular and Pulmonary Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892-1590
| | - Masatoshi Noda
- Department of Molecular Infectiology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Kinnosuke Yahiro
- Department of Molecular Infectiology, Graduate School of Medicine, Chiba University, Chiba, Japan
| |
Collapse
|
19
|
Varfolomeev E, Vucic D. Intracellular regulation of TNF activity in health and disease. Cytokine 2018; 101:26-32. [DOI: 10.1016/j.cyto.2016.08.035] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Revised: 08/30/2016] [Accepted: 08/31/2016] [Indexed: 01/27/2023]
|
20
|
Maubach G, Schmädicke AC, Naumann M. NEMO Links Nuclear Factor-κB to Human Diseases. Trends Mol Med 2017; 23:1138-1155. [PMID: 29128367 DOI: 10.1016/j.molmed.2017.10.004] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 10/16/2017] [Accepted: 10/19/2017] [Indexed: 12/13/2022]
Abstract
The nuclear factor (NF)-κB essential modulator (NEMO) is a key regulator in NF-κB-mediated signaling. By transmitting extracellular or intracellular signals, NEMO can control NF-κB-regulated genes. NEMO dysfunction is associated with inherited diseases such as incontinentia pigmenti (IP), ectodermal dysplasia, anhidrotic, with immunodeficiency (EDA-ID), and some cancers. We focus on molecular studies, human case reports, and mouse models emphasizing the significance of NEMO molecular interactions and modifications in health and diseases. This knowledge opens new opportunities to engineer suitable drugs that may putatively target precise NEMO functions attributable to various diseases, while leaving other functions intact, and eliminating cytotoxicity. Indeed, with the advent of novel gene editing tools such as clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein (Cas)9, treating some inherited diseases may in the long run, become a reality.
Collapse
Affiliation(s)
- Gunter Maubach
- Institute of Experimental Internal Medicine, Otto von Guericke University, Magdeburg, Germany
| | - Ann-Christin Schmädicke
- Institute of Experimental Internal Medicine, Otto von Guericke University, Magdeburg, Germany
| | - Michael Naumann
- Institute of Experimental Internal Medicine, Otto von Guericke University, Magdeburg, Germany.
| |
Collapse
|
21
|
Hou J, Jiang S, Zhao J, Zhu D, Zhao X, Cai JC, Zhang SQ. N-Myc-Interacting Protein Negatively Regulates TNF-α-Induced NF-κB Transcriptional Activity by Sequestering NF-κB/p65 in the Cytoplasm. Sci Rep 2017; 7:14579. [PMID: 29109532 PMCID: PMC5674077 DOI: 10.1038/s41598-017-15074-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 10/20/2017] [Indexed: 12/18/2022] Open
Abstract
NF-κB is a major regulator of gene transcription involved in immune, inflammation, apoptosis and stress responses. However, the regulation of NF-κB is not completely understood. Here, we report that the N-Myc and STATs Interactor (NMI), an IFN-inducible protein, is an important negative regulator of NF-κB activity. We found that NMI negatively regulates TNF-α-induced IL-6 and IL-1β production in HeLa cells. Overexpression of NMI inhibits NF-κB transcriptional activity, in contrast, depletion of NMI by shRNA increases NF-κB transcriptional activity. Mechanistically, NMI associates with NF-κB/p65 and inhibits NF-κB/p65 nuclear translocation and thereby negatively regulates NF-κB/p65 transcriptional activity. Taken together, our results demonstrate that NMI modulates the NF-κB signaling pathway by sequestering NF-κB/p65 in the cytoplasm, resulting in reduced IL-6 and IL-1β production after TNF-α stimulation. Treatment with IFNα in the presence of NMI leads to increased apoptosis in tumor cells. These findings reveal a novel mechanism by which NMI regulates NF-κB activity.
Collapse
Affiliation(s)
- Jingjing Hou
- State Key Laboratory of Cellular Stress Biology and School of Life Sciences, Xiamen University, Xiamen, Fujian, 361102, China
- Institute of Gastrointestinal Oncology, Medical College of Xiamen University, Xiamen, Fujian, 361004, China
- Department of Gastrointestinal Surgery, Zhongshan Hospital of Xiamen University, Xiamen, Fujian, 361004, China
| | - Shihao Jiang
- State Key Laboratory of Cellular Stress Biology and School of Life Sciences, Xiamen University, Xiamen, Fujian, 361102, China
| | - Jiabao Zhao
- State Key Laboratory of Cellular Stress Biology and School of Life Sciences, Xiamen University, Xiamen, Fujian, 361102, China
| | - Dong Zhu
- State Key Laboratory of Cellular Stress Biology and School of Life Sciences, Xiamen University, Xiamen, Fujian, 361102, China
| | - Xinmeng Zhao
- State Key Laboratory of Cellular Stress Biology and School of Life Sciences, Xiamen University, Xiamen, Fujian, 361102, China
| | - Jian-Chun Cai
- Institute of Gastrointestinal Oncology, Medical College of Xiamen University, Xiamen, Fujian, 361004, China
- Department of Gastrointestinal Surgery, Zhongshan Hospital of Xiamen University, Xiamen, Fujian, 361004, China
| | - Si Qing Zhang
- State Key Laboratory of Cellular Stress Biology and School of Life Sciences, Xiamen University, Xiamen, Fujian, 361102, China.
| |
Collapse
|
22
|
Alleviating Promotion of Inflammation and Cancer Induced by Nonsteroidal Anti-Inflammatory Drugs. Int J Inflam 2017; 2017:9632018. [PMID: 28573063 PMCID: PMC5442344 DOI: 10.1155/2017/9632018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Accepted: 03/23/2017] [Indexed: 12/16/2022] Open
Abstract
Clinical Relevance Nonsteroidal Anti-Inflammatory Drugs (NSAIDs) including aspirin are of intensive use nowadays. These drugs exert their activity via the metabolism of arachidonic acid (AA) by cyclooxygenase inhibition. Though beneficial for health in some instances, both unspecific and specific cyclooxygenase inhibitor activity interfere with AA metabolism producing also proinflammatory lipids that may promote cancer. Materials and Methods This review is based on available literature on clinical uses, biochemical investigations, molecular medicine, pharmacology, toxicity, and epidemiology-clinical studies on NSAIDs and other drugs that may be used accordingly, which was collected from electronic (SciFinder, Medline, Science Direct, and ACS among others) and library searches of books and journals. Results Relevant literature supports the notion that NDSAID use may also promote proinflammatory biochemical events that are also related to precancerous predisposition. Several agents are proposed that may be employed in immediate future to supplement and optimize treatment with NSAIDs. In this way serious side effects arising from promotion of inflammation and cancer, especially in chronic NSAID users and high risk groups of patients, could be avoided.
Collapse
|
23
|
Ghorbani S, Talebi F, Ghasemi S, Jahanbazi Jahan Abad A, Vojgani M, Noorbakhsh F. miR-181 interacts with signaling adaptor molecule DENN/MADD and enhances TNF-induced cell death. PLoS One 2017; 12:e0174368. [PMID: 28323882 PMCID: PMC5360339 DOI: 10.1371/journal.pone.0174368] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 03/08/2017] [Indexed: 12/21/2022] Open
Abstract
MicroRNAs are small noncoding RNAs, which regulate the expression of protein coding transcripts through mRNA degradation or translational inhibition. Numerous reports have highlighted the role of miRNAs in regulating cell death pathways including the expression of genes involved in the induction of apoptosis. Tumor necrosis factor alpha (TNF-α) is a proinflammatory cytokine which can send pro-death signals through its receptor TNFR1. Diverse adaptor molecules including DENN/MADD adaptor protein have been shown to modulate TNF-α pro-death signaling via recruitment of MAP kinases to TNFR1 and activation of pro-survival NFκB signaling. Herein, we investigated the role of microRNA-181 (miR-181) in regulating DENN/MADD expression levels and its subsequent effects on TNF-α-induced cell death. Using bioinformatics analyses followed by luciferase reporter assays we showed that miR-181 interacts with the 3’ UTR of DENN/MADD transcripts. miR-181 overexpression also led to decreased endogenous DENN/MADD mRNA levels in L929 murine fibroblasts. Flow cytometric analysis of miR-181 transfected cells showed this miRNA accentuates mitochondrial membrane potential loss caused by TNF-α. These findings were associated with enhanced apoptosis of L929 cells following TNF-α treatment. Overall, these data point to the potential role of miR-181 in regulating TNF-α pro-death signaling, which could be of importance from pathogenesis and therapeutic perspectives in inflammatory disorders associated with tissue degeneration and cell death.
Collapse
Affiliation(s)
- Samira Ghorbani
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Shefa Neuroscience Research Institute, Khatam Al-Anbia Hospital, Tehran, Iran
| | - Farideh Talebi
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Sedigheh Ghasemi
- Shefa Neuroscience Research Institute, Khatam Al-Anbia Hospital, Tehran, Iran
| | | | - Mohammed Vojgani
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Farshid Noorbakhsh
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran
- * E-mail:
| |
Collapse
|
24
|
Hadisaputri YE, Miyazaki T, Yokobori T, Sohda M, Sakai M, Ozawa D, Hara K, Honjo H, Kumakura Y, Kuwano H. TNFAIP3 overexpression is an independent factor for poor survival in esophageal squamous cell carcinoma. Int J Oncol 2017; 50:1002-1010. [PMID: 28197630 DOI: 10.3892/ijo.2017.3869] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 01/24/2017] [Indexed: 11/06/2022] Open
Abstract
Tumor necrosis factor α induced protein 3 (TNFAIP3) is a protein that is induced by TNF-mediated NF-κB activation and has a dual function in regulating NF-κB. TNFAIP3 is associated with inflammatory carcinogenesis in many cancer types. However, the clinical significance of TNFAIP3 expression and function in esophageal squamous cell carcinoma (ESCC) has not yet been reported. We examined 149 ESCC tissue specimens to determine the clinical significance of TNFAIP3 by immunohistochemistry. Western blot analyses were used to detect TNFAIP3 expression in TE-1, TE-8, TE-15 and KYSE-70 ESCC cells and in Het-1A, a non-cancerous esophageal cell line. TNFAIP3 protein knockdown was conducted using small-interfering RNA to investigate its impact on cell proliferation, migration and invasion. Significant correlations between TNFAIP3 expression and differentiation (P=0.04) among clinicopathological characteristics of ESCC patients were demonstrated, and high TNFAIP3 expression was associated with poor survival (P=0.02). Moreover, multivariate analysis result showed that high TNFAIP3 expression was an independent factor for poor survival (P=0.04). In vitro analysis showed high expression of TNFAIP3 protein in TE-15 cells and low expression in Het-1A cells. Furthermore, the proliferation, migration and invasion of TE-15 cells after TNFAIP3 suppression by siRNA were significantly reduced. These findings suggest that TNFAIP3 protein may be an independent prognostic marker for poor survival, and a promising target for ESCC therapy.
Collapse
Affiliation(s)
- Yuni Elsa Hadisaputri
- Department of General Surgical Science, Gunma University, Graduate School of Medicine, Maebashi, Gunma 371-8511, Japan
| | - Tatsuya Miyazaki
- Department of General Surgical Science, Gunma University, Graduate School of Medicine, Maebashi, Gunma 371-8511, Japan
| | - Takehiko Yokobori
- Department of Molecular and Cellular Pharmacology, Gunma University, Graduate School of Medicine, Maebashi, Gunma 371-8511, Japan
| | - Makoto Sohda
- Department of General Surgical Science, Gunma University, Graduate School of Medicine, Maebashi, Gunma 371-8511, Japan
| | - Makoto Sakai
- Department of General Surgical Science, Gunma University, Graduate School of Medicine, Maebashi, Gunma 371-8511, Japan
| | - Daigo Ozawa
- Department of General Surgical Science, Gunma University, Graduate School of Medicine, Maebashi, Gunma 371-8511, Japan
| | - Keigo Hara
- Department of General Surgical Science, Gunma University, Graduate School of Medicine, Maebashi, Gunma 371-8511, Japan
| | - Hiroaki Honjo
- Department of General Surgical Science, Gunma University, Graduate School of Medicine, Maebashi, Gunma 371-8511, Japan
| | - Yuji Kumakura
- Department of General Surgical Science, Gunma University, Graduate School of Medicine, Maebashi, Gunma 371-8511, Japan
| | - Hiroyuki Kuwano
- Department of General Surgical Science, Gunma University, Graduate School of Medicine, Maebashi, Gunma 371-8511, Japan
| |
Collapse
|
25
|
Wegner KW, Saleh D, Degterev A. Complex Pathologic Roles of RIPK1 and RIPK3: Moving Beyond Necroptosis. Trends Pharmacol Sci 2017; 38:202-225. [PMID: 28126382 DOI: 10.1016/j.tips.2016.12.005] [Citation(s) in RCA: 130] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 12/09/2016] [Accepted: 12/15/2016] [Indexed: 02/07/2023]
Abstract
A process of regulated necrosis, termed necroptosis, has been recognized as a major contributor to cell death and inflammation occurring under a wide range of pathologic settings. The core event in necroptosis is the formation of the detergent-insoluble 'necrosome' complex of homologous Ser/Thr kinases, receptor protein interacting kinase 1 (RIPK1) and receptor interacting protein kinase 3 (RIPK3), which promotes phosphorylation of a key prodeath effector, mixed lineage kinase domain-like (MLKL), by RIPK3. Core necroptosis mediators are under multiple controls, which have been a subject of intense investigation. Additional, non-necroptotic functions of these factors, primarily in controlling apoptosis and inflammatory responses, have also begun to emerge. This review will provide an overview of the current understanding of the human disease relevance of this pathway, and potential therapeutic strategies, targeting necroptosis mediators in various pathologies.
Collapse
Affiliation(s)
- Kelby W Wegner
- Master of Science in Biomedical Sciences Program, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Danish Saleh
- Medical Scientist Training Program and Program in Neuroscience, Sackler Graduate School, Tufts University, Boston, MA 02111, USA
| | - Alexei Degterev
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA 02111, USA.
| |
Collapse
|
26
|
Bettermann K. NF-κB and Its Implication in Liver Health and Cancer Development. MECHANISMS OF MOLECULAR CARCINOGENESIS – VOLUME 1 2017:87-114. [DOI: 10.1007/978-3-319-53659-0_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
27
|
Kaur A, Sultan SHA, Murugaiah V, Pathan AA, Alhamlan FS, Karteris E, Kishore U. Human C1q Induces Apoptosis in an Ovarian Cancer Cell Line via Tumor Necrosis Factor Pathway. Front Immunol 2016; 7:599. [PMID: 28066412 PMCID: PMC5174108 DOI: 10.3389/fimmu.2016.00599] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 11/30/2016] [Indexed: 11/23/2022] Open
Abstract
Complement protein C1q is the first recognition subcomponent of the complement classical pathway that plays a vital role in the clearance of immune complexes, pathogens, and apoptotic cells. C1q also has a homeostatic role involving immune and non-immune cells; these functions not necessarily involve complement activation. Recently, C1q has been shown to be expressed locally in the microenvironment of a range of human malignant tumors, where it can promote cancer cell adhesion, migration, and proliferation, without involving complement activation. C1q has been shown to be present in the ascitic fluid formed during ovarian cancers. In this study, we have examined the effects of human C1q and its globular domain on an ovarian cancer cell line, SKOV3. We show that C1q and the recombinant globular head modules induce apoptosis in SKOV3 cells in a time-dependent manner. C1q expression was not detectable in the SKOV3 cells. Exogenous treatment with C1q and globular head modules at the concentration of 10 µg/ml induced apoptosis in approximately 55% cells, as revealed by immunofluorescence microscopy and FACS. The qPCR and caspase analysis suggested that C1q and globular head modules activated tumor necrosis factor (TNF)-α and upregulated Fas. The genes of mammalian target of rapamycin (mTOR), RICTOR, and RAPTOR survival pathways, which are often overexpressed in majority of the cancers, were significantly downregulated within few hours of the treatment of SKOV3 cells with C1q and globular head modules. In conclusion, C1q, via its globular domain, induced apoptosis in an ovarian cancer cell line SKOV3 via TNF-α induced apoptosis pathway involving upregulation of Bax and Fas. This study highlights a potentially protective role of C1q in certain cancers.
Collapse
Affiliation(s)
- Anuvinder Kaur
- Biosciences, College of Health and Life Sciences, Brunel University London , Uxbridge , UK
| | - Sami H A Sultan
- Biosciences, College of Health and Life Sciences, Brunel University London , Uxbridge , UK
| | - Valarmathy Murugaiah
- Biosciences, College of Health and Life Sciences, Brunel University London , Uxbridge , UK
| | - Ansar A Pathan
- Biosciences, College of Health and Life Sciences, Brunel University London , Uxbridge , UK
| | - Fatimah S Alhamlan
- Department of infection and Immunity, King Faisal Specialist Hospital and Research Centre , Riyadh , Saudi Arabia
| | - Emmanouil Karteris
- Biosciences, College of Health and Life Sciences, Brunel University London, Uxbridge, UK; Institute of Environment, Heath and Societies, Brunel University London, Uxbridge, UK
| | - Uday Kishore
- Biosciences, College of Health and Life Sciences, Brunel University London , Uxbridge , UK
| |
Collapse
|
28
|
Abstract
A20 (TNFAIP3), known to inhibit NF-κB function by deubiquitinating-specific NF-κB signaling molecules, has been found in many cell types of the immune system. Recent findings suggest that A20 is essential for the development and functional performance of dendritic cell, B cell, T cell and macrophage. A number of studies further demonstrate that these cells are crucial in the pathogenesis of autoimmune diseases, such as type 1 diabetes, systemic lupus erythematosus, inflammatory bowel disease, ankylosing arthritis, Sjögren's syndrome and rheumatoid arthritis. In this article, we focus on the recent advances on the roles of A20 in autoimmune diseases and discuss the therapeutic significance of these new findings.
Collapse
|
29
|
Super-resolution microscopy reveals a preformed NEMO lattice structure that is collapsed in incontinentia pigmenti. Nat Commun 2016; 7:12629. [PMID: 27586688 PMCID: PMC5025789 DOI: 10.1038/ncomms12629] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 07/18/2016] [Indexed: 12/26/2022] Open
Abstract
The NF-κB pathway has critical roles in cancer, immunity and inflammatory responses. Understanding the mechanism(s) by which mutations in genes involved in the pathway cause disease has provided valuable insight into its regulation, yet many aspects remain unexplained. Several lines of evidence have led to the hypothesis that the regulatory/sensor protein NEMO acts as a biological binary switch. This hypothesis depends on the formation of a higher-order structure, which has yet to be identified using traditional molecular techniques. Here we use super-resolution microscopy to reveal the existence of higher-order NEMO lattice structures dependent on the presence of polyubiquitin chains before NF-κB activation. Such structures may permit proximity-based trans-autophosphorylation, leading to cooperative activation of the signalling cascade. We further show that NF-κB activation results in modification of these structures. Finally, we demonstrate that these structures are abrogated in cells derived from incontinentia pigmenti patients. NEMO is a member of the IKK complex that binds ubiquitin, involved in NF-κB signalling and proposed to form higher order structures. Here the authors use super-resolution microscopy to detect the presence of NEMO lattices in cells, that are modified by NF-κB treatment and abrogated by mutations affecting NEMO ubiquitin binding.
Collapse
|
30
|
Drube S, Weber F, Göpfert C, Loschinski R, Rothe M, Boelke F, Diamanti MA, Löhn T, Ruth J, Schütz D, Häfner N, Greten FR, Stumm R, Hartmann K, Krämer OH, Dudeck A, Kamradt T. TAK1 and IKK2, novel mediators of SCF-induced signaling and potential targets for c-Kit-driven diseases. Oncotarget 2016; 6:28833-50. [PMID: 26353931 PMCID: PMC4745695 DOI: 10.18632/oncotarget.5008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 08/20/2015] [Indexed: 12/25/2022] Open
Abstract
NF-κB activation depends on the IKK complex consisting of the catalytically active IKK1 and 2 subunits and the scaffold protein NEMO. Hitherto, IKK2 activation has always been associated with IκBα degradation, NF-κB activation, and cytokine production. In contrast, we found that in SCF-stimulated primary bone marrow-derived mast cells (BMMCs), IKK2 is alternatively activated. Mechanistically, activated TAK1 mediates the association between c-Kit and IKK2 and therefore facilitates the Lyn-dependent IKK2 activation which suffices to mediate mitogenic signaling but, surprisingly, does not result in NF-κB activation. Moreover, the c-Kit-mediated and Lyn-dependent IKK2 activation is targeted by MyD88-dependent pathways leading to enhanced IKK2 activation and therefore to potentiated effector functions. In neoplastic cells, expressing constitutively active c-Kit mutants, activated TAK1 and IKKs do also not induce NF-κB activation but mediate uncontrolled proliferation, resistance to apoptosis and enables IL-33 to mediate c-Kit-dependent signaling. Together, we identified the formation of the c-Kit-Lyn-TAK1 signalosome which mediates IKK2 activation. Unexpectedly, this IKK activation is uncoupled from the NF-κB-machinery but is critical to modulate functional cell responses in primary-, and mediates uncontrolled proliferation and survival of tumor-mast cells. Therefore, targeting TAK1 and IKKs might be a novel approach to treat c-Kit-driven diseases.
Collapse
Affiliation(s)
- Sebastian Drube
- Institut für Immunologie, Universitätsklinikum Jena, Jena, Germany
| | - Franziska Weber
- Institut für Immunologie, Universitätsklinikum Jena, Jena, Germany
| | | | - Romy Loschinski
- Institut für Immunologie, Universitätsklinikum Jena, Jena, Germany
| | - Mandy Rothe
- Institut für Immunologie, Universitätsklinikum Jena, Jena, Germany
| | - Franziska Boelke
- Institut für Immunologie, Universitätsklinikum Jena, Jena, Germany
| | - Michaela A Diamanti
- Georg-Speyer-Haus, Institute for Tumorbiology and Experimental Therapy, Frankfurt, Germany
| | - Tobias Löhn
- Institut für Immunologie, Universitätsklinikum Jena, Jena, Germany
| | - Julia Ruth
- Institut für Immunologie, Universitätsklinikum Jena, Jena, Germany
| | - Dagmar Schütz
- Institut für Pharmakologie, Universitätsklinikum Jena, Jena, Germany
| | - Norman Häfner
- Gynäkologische Molekularbiologie, Klinik für Frauenheilkunde und Geburtshilfe, Jena, Germany
| | - Florian R Greten
- Georg-Speyer-Haus, Institute for Tumorbiology and Experimental Therapy, Frankfurt, Germany
| | - Ralf Stumm
- Institut für Pharmakologie, Universitätsklinikum Jena, Jena, Germany
| | - Karin Hartmann
- Klinik und Poliklinik für Dermatologie und Venerologie, Universität zu Köln, Köln, Germany
| | - Oliver H Krämer
- Institut für Toxikologie, Universitätsmedizin Mainz, Mainz, Germany
| | - Anne Dudeck
- Institute for Immunology, Technische Universität Dresden, Medical Faculty Carl Gustav Carus, Dresden, Germany
| | - Thomas Kamradt
- Institut für Immunologie, Universitätsklinikum Jena, Jena, Germany
| |
Collapse
|
31
|
Justus SJ, Ting AT. Cloaked in ubiquitin, a killer hides in plain sight: the molecular regulation of RIPK1. Immunol Rev 2016; 266:145-60. [PMID: 26085213 DOI: 10.1111/imr.12304] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In the past decade, studies have shown how instrumental programmed cell death (PCD) can be in innate and adaptive immune responses. PCD can be a means to maintain homeostasis, prevent or promote microbial pathogenesis, and drive autoimmune disease and inflammation. The molecular machinery regulating these cell death programs has been examined in detail, although there is still much to be explored. A master regulator of programmed cell death and innate immunity is receptor-interacting protein kinase 1 (RIPK1), which has been implicated in orchestrating various pathologies via the induction of apoptosis, necroptosis, and nuclear factor-κB-driven inflammation. These and other roles for RIPK1 have been reviewed elsewhere. In a reflection of the ability of tumor necrosis factor (TNF) to induce either survival or death response, this molecule in the TNF pathway can transduce either a survival or a death signal. The intrinsic killing capacity of RIPK1 is usually kept in check by the chains of ubiquitin, enabling it to serve in a prosurvival capacity. In this review, the intricate regulatory mechanisms responsible for restraining RIPK1 from killing are discussed primarily in the context of the TNF signaling pathway and how, when these mechanisms are disrupted, RIPK1 is free to unveil its program of cellular demise.
Collapse
Affiliation(s)
- Scott J Justus
- Department of Medicine, Icahn School of Medicine at Mount Sinai, Immunology Institute and Tisch Cancer Institute, New York, NY, USA.,Graduate School of Biological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Adrian T Ting
- Department of Medicine, Icahn School of Medicine at Mount Sinai, Immunology Institute and Tisch Cancer Institute, New York, NY, USA
| |
Collapse
|
32
|
Sisto M, Barca A, Lofrumento DD, Lisi S. Downstream activation of NF-κB in the EDA-A1/EDAR signalling in Sjögren's syndrome and its regulation by the ubiquitin-editing enzyme A20. Clin Exp Immunol 2016; 184:183-96. [PMID: 26724675 DOI: 10.1111/cei.12764] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/29/2015] [Indexed: 12/11/2022] Open
Abstract
Sjögren's syndrome (SS) is an autoimmune disease and the second most common chronic systemic rheumatic disorder. Prevalence of primary SS in the general population has been estimated to be approximately 1-3%, whereas secondary SS has been observed in 10-20% of patients with rheumatoid arthritis, systemic lupus erythematosus (SLE) and scleroderma. Despite this, its exact aetiology and pathogenesis are largely unexplored. Nuclear factor-kappa B (NF-κB) signalling mechanisms provide central controls in SS, but how these pathways intersect the pathological features of this disease is unclear. The ubiquitin-editing enzyme A20 (tumour necrosis factor-α-induced protein 3, TNFAIP3) serves as a critical inhibitor on NF-κB signalling. In humans, polymorphisms in the A20 gene or a deregulated expression of A20 are often associated with several inflammatory disorders, including SS. Because A20 controls the ectodysplasin-A1 (EDA-A1)/ectodysplasin receptor (EDAR) signalling negatively, and the deletion of A20 results in excessive EDA1-induced NF-κB signalling, this work investigates the expression levels of EDA-A1 and EDAR in SS human salivary glands epithelial cells (SGEC) and evaluates the hypothesis that SS SGEC-specific deregulation of A20 results in excessive EDA1-induced NF-κB signalling in SS. Our approach, which combines the use of siRNA-mediated gene silencing and quantitative pathway analysis, was used to elucidate the role of the A20 target gene in intracellular EDA-A1/EDAR/NF-κB pathway in SS SGEC, holding significant promise for compound selection in drug discovery.
Collapse
Affiliation(s)
- M Sisto
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, Section of Human Anatomy and Histology, University of Bari Medical School, Bari, Italy
| | - A Barca
- Neuropathology Unit, Institute of Experimental Neurology and Division of Neuroscience, IRCCS San Raffaele Scientific Institute (Section of Lecce), Milan, Italy
| | - D D Lofrumento
- Department of Biological and Environmental Sciences and Technologies, Section of Human Anatomy, University of Salento, Lecce, Italy
| | - S Lisi
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, Section of Human Anatomy and Histology, University of Bari Medical School, Bari, Italy
| |
Collapse
|
33
|
Abstract
The excitement surrounding checkpoint inhibitors in the treatment of patients with cancer exemplifies a triumph of the long-term value of investing in basic science and fundamental questions of T-cell signaling. The pharmaceutical future actively embraces ways of making more patients’ cancers responsive to these inhibitors. Such a process will be aided by elucidation of signaling and regulation. With thousands of articles spread across almost 30 years, this commentary can touch only on portions of the canonical picture of T-cell signaling and provide a few parables from work on mammalian (or mechanistic) target of rapamycin (mTOR) pathways as they link to early and later phases of lymphocyte activation. The piece will turn a critical eye to some issues with models about these pathways in T cells. Many of the best insights lie in the future despite all that is uncovered already, but a contention is that further therapeutic successes will be fostered by dealing with disparities among findings and attention to the temporal, spatial, and stochastic aspects of T-cell responses. Finally, thoughts on some (though not all) items urgently needed for future progress will be mooted.
Collapse
Affiliation(s)
- Mark Boothby
- Department of Pathology, Microbiology & Immunology, Vanderbilt University, Nashville, TN, USA
| |
Collapse
|
34
|
Kupka S, Reichert M, Draber P, Walczak H. Formation and removal of poly-ubiquitin chains in the regulation of tumor necrosis factor-induced gene activation and cell death. FEBS J 2016; 283:2626-39. [PMID: 26749412 DOI: 10.1111/febs.13644] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Revised: 12/21/2015] [Accepted: 01/05/2016] [Indexed: 12/17/2022]
Abstract
Tumor necrosis factor (TNF) is a potent cytokine known for its involvement in inflammation, repression of tumorigenesis and activation of immune cells. Consequently, accurate regulation of the TNF signaling pathway is crucial for preventing the potent noxious effects of TNF. These pathological conditions include chronic inflammation, septic shock, cachexia and cancer. The TNF signaling cascade utilizes a complex network of post-translational modifications to control the cellular response following its activation. Next to phosphorylation, the ubiquitination of signaling complex components is probably the most important modification. This process is mediated by a specialist class of enzymes, the ubiquitin ligases. Equally important is the class of dedicated ubiquitin-specific proteases, the deubiquitinases. Together with ubiquitin binding proteins, this ubiquitination-deubiquitination system enables the dynamics of signaling complexes. In TNF signaling, these dynamics translate into the precise regulation of the induction of gene activation or cell death. Here, we review and discuss current knowledge of TNF signaling regulation by the ubiquitin system.
Collapse
Affiliation(s)
- Sebastian Kupka
- Centre for Cell Death, Cancer, and Inflammation (CCCI), UCL Cancer Institute, University College London, London, UK
| | - Matthias Reichert
- Centre for Cell Death, Cancer, and Inflammation (CCCI), UCL Cancer Institute, University College London, London, UK
| | - Peter Draber
- Centre for Cell Death, Cancer, and Inflammation (CCCI), UCL Cancer Institute, University College London, London, UK
| | - Henning Walczak
- Centre for Cell Death, Cancer, and Inflammation (CCCI), UCL Cancer Institute, University College London, London, UK
| |
Collapse
|
35
|
Recruitment of A20 by the C-terminal domain of NEMO suppresses NF-κB activation and autoinflammatory disease. Proc Natl Acad Sci U S A 2016; 113:1612-7. [PMID: 26802121 DOI: 10.1073/pnas.1518163113] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Receptor-induced NF-κB activation is controlled by NEMO, the NF-κB essential modulator. Hypomorphic NEMO mutations result in X-linked ectodermal dysplasia with anhidrosis and immunodeficiency, also referred to as NEMO syndrome. Here we describe a distinct group of patients with NEMO C-terminal deletion (ΔCT-NEMO) mutations. Individuals harboring these mutations develop inflammatory skin and intestinal disease in addition to ectodermal dysplasia with anhidrosis and immunodeficiency. Both primary cells from these patients, as well as reconstituted cell lines with this deletion, exhibited increased IκB kinase (IKK) activity and production of proinflammatory cytokines. Unlike previously described loss-of-function mutations, ΔCT-NEMO mutants promoted increased NF-κB activation in response to TNF and Toll-like receptor stimulation. Investigation of the underlying mechanisms revealed impaired interactions with A20, a negative regulator of NF-κB activation, leading to prolonged accumulation of K63-ubiquitinated RIP within the TNFR1 signaling complex. Recruitment of A20 to the C-terminal domain of NEMO represents a novel mechanism limiting NF-κB activation by NEMO, and its absence results in autoinflammatory disease.
Collapse
|
36
|
Fredericksen F, Villalba M, Olavarría VH. Characterization of bovine A20 gene: Expression mediated by NF-κB pathway in MDBK cells infected with bovine viral diarrhea virus-1. Gene 2016; 581:117-29. [PMID: 26809100 DOI: 10.1016/j.gene.2016.01.030] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Revised: 12/03/2015] [Accepted: 01/17/2016] [Indexed: 02/06/2023]
Abstract
Cytokine production for immunological process is tightly regulated at the transcriptional and posttranscriptional levels. The NF-κB signaling pathway maintains immune homeostasis in the cell through the participation of molecules such as A20 (TNFAIP3), which is a key regulatory factor in the immune response, hematopoietic differentiation, and immunomodulation. Although A20 has been identified in mammals, and despite recent efforts to identify A20 members in other higher vertebrates, relatively little is known about the composition of this regulator in other classes of vertebrates, particularly for bovines. In this study, the genetic context of bovine A20 was explored and compared against homologous genes in the human, mouse, chicken, dog, and zebrafish chromosomes. Through in silico analysis, several regions of interest were found conserved between even phylogenetically distant species. Additionally, a protein-deduced sequence of bovine A20 evidenced many conserved domains in humans and mice. Furthermore, all potential amino acid residues implicated in the active site of A20 were conserved. Finally, bovine A20 mRNA expression as mediated by the bovine viral diarrhea virus and poly (I:C) was evaluated. These analyses evidenced a strong fold increase in A20 expression following virus exposure, a phenomenon blocked by a pharmacological NF-κB inhibitor (BAY 117085). Interestingly, A20 mRNA had a half-life of only 32min, likely due to adenylate- and uridylate-rich elements in the 3'-untranslated region. Collectively, these data identify bovine A20 as a regulator of immune marker expression. Finally, this is the first report to find the bovine viral diarrhea virus modulating bovine A20 activation through the NF-κB pathway.
Collapse
Affiliation(s)
- Fernanda Fredericksen
- Facultad de Ciencias, Instituto de Bioquímica y Microbiología, Universidad Austral de Chile, Campus Isla Teja S/N, Valdivia, Chile
| | - Melina Villalba
- Facultad de Ciencias, Instituto de Bioquímica y Microbiología, Universidad Austral de Chile, Campus Isla Teja S/N, Valdivia, Chile
| | - Víctor H Olavarría
- Facultad de Ciencias, Instituto de Bioquímica y Microbiología, Universidad Austral de Chile, Campus Isla Teja S/N, Valdivia, Chile.
| |
Collapse
|
37
|
Braun FCM, van den Brandt J, Thomas S, Lange S, Schrank J, Gand C, Przybylski GK, Schmoeckel K, Bröker BM, Schmidt CA, Grabarczyk P. In Vivo Silencing of A20 via TLR9-Mediated Targeted SiRNA Delivery Potentiates Antitumor Immune Response. PLoS One 2015; 10:e0135444. [PMID: 26327508 PMCID: PMC4556692 DOI: 10.1371/journal.pone.0135444] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 07/23/2015] [Indexed: 11/23/2022] Open
Abstract
A20 is an ubiquitin-editing enzyme that ensures the transient nature of inflammatory signaling pathways induced by cytokines like TNF-α and IL-1 or pathogens via Toll-like receptor (TLR) pathways. It has been identified as a negative regulator of dendritic cell (DC) maturation and attenuator of their immunostimulatory properties. Ex vivo A20-depleted dendritic cells showed enhanced expression of pro-inflammatory cytokines and costimulatory molecules, which resulted in hyperactivation of tumor-infiltrating T lymphocytes and inhibition of regulatory T cells. In the present study, we demonstrate that a synthetic molecule consisting of a CpG oligonucleotide TLR9 agonist linked to A20-specific siRNAs silences its expression in TLR9+ mouse dendritic cells in vitro and in vivo. In the B16 mouse melanoma tumor model, silencing of A20 enhances the CpG-triggered induction of NFκB activity followed by elevated expression of IL-6, TNF-α and IL-12. This leads to potentiated antitumor immune responses manifested by increased numbers of tumor-specific cytotoxic T cells, high levels of tumor cell apoptosis and delayed tumor growth. Our findings confirm the central role of A20 in controlling the immunostimulatory potency of DCs and provide a strategy for simultaneous A20 silencing and TLR activation in vivo.
Collapse
Affiliation(s)
- Floriane C. M. Braun
- Clinic of Internal Medicine C, Department of Molecular Hematology, University Medicine Greifswald, Greifswald, Germany
| | - Jens van den Brandt
- Central Core & Research Facility of Laboratory Animals, University of Greifswald, Greifswald, Germany
| | - Sören Thomas
- Clinic of Internal Medicine C, Department of Molecular Hematology, University Medicine Greifswald, Greifswald, Germany
| | - Sandra Lange
- Clinic of Internal Medicine C, Department of Molecular Hematology, University Medicine Greifswald, Greifswald, Germany
| | - Juliane Schrank
- Clinic of Internal Medicine C, Department of Molecular Hematology, University Medicine Greifswald, Greifswald, Germany
| | - Claudia Gand
- Clinic of Internal Medicine C, Department of Molecular Hematology, University Medicine Greifswald, Greifswald, Germany
| | - Grzegorz K. Przybylski
- Clinic of Internal Medicine C, Department of Molecular Hematology, University Medicine Greifswald, Greifswald, Germany
- Institute of Human Genetics, Polish Academy of Sciences, Poznan, Poland
| | - Katrin Schmoeckel
- Institute of Immunology and Transfusion Medicine, University of Greifswald, Greifswald, Germany
| | - Barbara M. Bröker
- Institute of Immunology and Transfusion Medicine, University of Greifswald, Greifswald, Germany
| | - Christian A. Schmidt
- Clinic of Internal Medicine C, Department of Molecular Hematology, University Medicine Greifswald, Greifswald, Germany
| | - Piotr Grabarczyk
- Clinic of Internal Medicine C, Department of Molecular Hematology, University Medicine Greifswald, Greifswald, Germany
- * E-mail:
| |
Collapse
|
38
|
Besbes A, Le Goff S, Antunes A, Terrade A, Hong E, Giorgini D, Taha MK, Deghmane AE. Hyperinvasive Meningococci Induce Intra-nuclear Cleavage of the NF-κB Protein p65/RelA by Meningococcal IgA Protease. PLoS Pathog 2015; 11:e1005078. [PMID: 26241037 PMCID: PMC4524725 DOI: 10.1371/journal.ppat.1005078] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Accepted: 07/10/2015] [Indexed: 11/30/2022] Open
Abstract
Differential modulation of NF-κB during meningococcal infection is critical in innate immune response to meningococcal disease. Non-invasive isolates of Neisseria meningitidis provoke a sustained NF-κB activation in epithelial cells. However, the hyperinvasive isolates of the ST-11 clonal complex (ST-11) only induce an early NF-κB activation followed by a sustained activation of JNK and apoptosis. We show that this temporal activation of NF-κB was caused by specific cleavage at the C-terminal region of NF-κB p65/RelA component within the nucleus of infected cells. This cleavage was mediated by the secreted 150 kDa meningococcal ST-11 IgA protease carrying nuclear localisation signals (NLS) in its α-peptide moiety that allowed efficient intra-nuclear transport. In a collection of non-ST-11 healthy carriage isolates lacking NLS in the α-peptide, secreted IgA protease was devoid of intra-nuclear transport. This part of iga polymorphism allows non-invasive isolates lacking NLS, unlike hyperinvasive ST-11 isolates of N. meningitides habouring NLS in their α-peptide, to be carried asymptomatically in the human nasopharynx through selective eradication of their ability to induce apoptosis in infected epithelial cells.
Collapse
Affiliation(s)
- Anissa Besbes
- Institut Pasteur, Invasive Bacterial Infections Unit, Paris, France
| | - Salomé Le Goff
- Institut Pasteur, Invasive Bacterial Infections Unit, Paris, France
| | - Ana Antunes
- Institut Pasteur, Invasive Bacterial Infections Unit, Paris, France
| | - Aude Terrade
- Institut Pasteur, Invasive Bacterial Infections Unit, Paris, France
| | - Eva Hong
- Institut Pasteur, Invasive Bacterial Infections Unit, Paris, France
| | - Dario Giorgini
- Institut Pasteur, Invasive Bacterial Infections Unit, Paris, France
| | | | | |
Collapse
|
39
|
Emerging Roles for RIPK1 and RIPK3 in Pathogen-Induced Cell Death and Host Immunity. Curr Top Microbiol Immunol 2015; 403:37-75. [PMID: 26385769 DOI: 10.1007/82_2015_449] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Receptor-interacting protein kinases 1 and 3 (RIPK1 and RIPK3 ) are homologous serine-threonine kinases that were recognized for their roles in directing programmed necrotic cell death or necroptosis under a broad range of pathologic settings. Emerging evidence suggests new physiologic roles for RIPK1 and RIPK3 in mediating cell death of innate immune responses. Our review discusses current evidence on the mechanisms and the impact of RIPK1- and/or RIPK3-dependent cell death in responses to a variety of viral and bacterial pathogens. Furthermore, the discussion also summarizes emerging roles for RIPK1 and RIPK3 in other facets of host immunity, including the maintenance of epithelial barrier function and pro-inflammatory processes that may, in some cases, manifest independent of cell death. Finally, we briefly consider the therapeutic opportunities in targeting RIPK1- and RIPK3-dependent processes in infection and immunity.
Collapse
|
40
|
Abstract
During development, stress, infection, or normal homeostasis, billions of cells die on a daily basis, and the responsibility of clearing these cellular corpses lies with the phagocytes of innate immune system. This process, termed efferocytosis , is critical for the prevention of inflammation and autoimmunity , as well as modulation of the adaptive immune response. Defective clearance of dead cells is characteristic of many human autoimmune or autoinflammatory disorders, such as systemic lupus erythematosus (SLE), atherosclerosis, and diabetes. The mechanisms that phagocytes employ to sense, engulf, and process dead cells for an appropriate immune response have been an area of great interest. However, insight into novel mechanisms of programmed cell death , such as necroptosis, has shed light on the fact that while the diner (or phagocyte) is important, the meal itself (the type of dead cell) can play a crucial role in shaping the pursuant immune response.
Collapse
Affiliation(s)
- Jennifer Martinez
- Immunity, Inflammation, and Disease Laboratory, National Institute of Environmental Health Sciences, 111 T.W. Alexander Drive, Research Triangle Park, NC, 27709, USA.
| |
Collapse
|
41
|
Mathematical Modeling of Pro- and Anti-Inflammatory Signaling in Macrophages. Processes (Basel) 2014. [DOI: 10.3390/pr3010001] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
42
|
Abstract
Cell proliferation and cell death are integral elements in maintaining homeostatic balance in metazoans. Disease pathologies ensue when these processes are disturbed. A plethora of evidence indicates that malfunction of cell death can lead to inflammation, autoimmunity, or immunodeficiency. Programmed necrosis or necroptosis is a form of nonapoptotic cell death driven by the receptor interacting protein kinase 3 (RIPK3) and its substrate, mixed lineage kinase domain-like (MLKL). RIPK3 partners with its upstream adaptors RIPK1, TRIF, or DAI to signal for necroptosis in response to death receptor or Toll-like receptor stimulation, pathogen infection, or sterile cell injury. Necroptosis promotes inflammation through leakage of cellular contents from damaged plasma membranes. Intriguingly, many of the signal adaptors of necroptosis have dual functions in innate immune signaling. This unique signature illustrates the cooperative nature of necroptosis and innate inflammatory signaling pathways in managing cell and organismal stresses from pathogen infection and sterile tissue injury.
Collapse
Affiliation(s)
- Francis Ka-Ming Chan
- Department of Pathology, Immunology and Microbiology Program, University of Massachusetts Medical School, Worcester, Massachusetts 01605;
| | | | | |
Collapse
|
43
|
RIP kinases: key decision makers in cell death and innate immunity. Cell Death Differ 2014; 22:225-36. [PMID: 25146926 DOI: 10.1038/cdd.2014.126] [Citation(s) in RCA: 193] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2014] [Revised: 07/17/2014] [Accepted: 07/21/2014] [Indexed: 01/05/2023] Open
Abstract
Innate immunity represents the first line of defence against invading pathogens. It consists of an initial inflammatory response that recruits white blood cells to the site of infection in an effort to destroy and eliminate the pathogen. Some pathogens replicate within host cells, and cell death by apoptosis is an important effector mechanism to remove the replication niche for such microbes. However, some microbes have evolved evasive strategies to block apoptosis, and in these cases host cells may employ further countermeasures, including an inflammatory form of cell death know as necroptosis. This review aims to highlight the importance of the RIP kinase family in controlling these various defence strategies. RIP1 is initially discussed as a key component of death receptor signalling and in the context of dictating whether a cell triggers a pathway of pro-inflammatory gene expression or cell death by apoptosis. The molecular and functional interplay of RIP1 and RIP3 is described, especially with respect to mediating necroptosis and as key mediators of inflammation. The function of RIP2, with particular emphasis on its role in NOD signalling, is also explored. Special attention is given to emphasizing the physiological and pathophysiological contexts for these various functions of RIP kinases.
Collapse
|
44
|
Abstract
The NF-κB family of inducible transcription factors is activated in response to a variety of stimuli. Amongst the best-characterized inducers of NF-κB are members of the TNF family of cytokines. Research on NF-κB and TNF have been tightly intertwined for more than 25 years. Perhaps the most compelling examples of the interconnectedness of NF-κB and the TNF have come from analysis of knock-out mice that are unable to activate NF-κB. Such mice die embryonically, however, deletion of TNF or TNFR1 can rescue the lethality thereby illustrating the important role of NF-κB as the key regulator of transcriptional responses to TNF. The physiological connections between NF-κB and TNF cytokines are numerous and best explored in articles focusing on a single TNF family member. Instead, in this review, we explore general mechanisms of TNF cytokine signaling, with a focus on the upstream signaling events leading to activation of the so-called canonical and noncanonical NF-κB pathways by TNFR1 and CD40, respectively.
Collapse
Affiliation(s)
- Matthew S Hayden
- Department of Microbiology and Immunology, Columbia University, College of Physicians & Surgeons, New York, NY 10032, USA; Department of Dermatology, Columbia University, College of Physicians & Surgeons, New York, NY 10032, USA.
| | - Sankar Ghosh
- Department of Microbiology and Immunology, Columbia University, College of Physicians & Surgeons, New York, NY 10032, USA.
| |
Collapse
|
45
|
Alternative expression pattern of MALT1-A20-NF-κB in patients with rheumatoid arthritis. J Immunol Res 2014; 2014:492872. [PMID: 24971370 PMCID: PMC4058209 DOI: 10.1155/2014/492872] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Accepted: 04/27/2014] [Indexed: 12/29/2022] Open
Abstract
Rheumatoid arthritis (RA) is an inflammatory autoimmune disorder; abnormal T cell immunity plays a critical role in the development of RA. Recently, A20 was identified as a key negative regulator for T cell activation and inflammatory signaling and may be involved in RA pathogenesis. In this study, we analyzed the expression level of A20, NF-κB, and A20 regulatory factor mucosa-associated lymphoid tissue lymphoma translocation gene 1 (MALT1) in patients with RA. Real-time PCR was used to determine the expression level of MALT1, MALT-V1, A20, and NF-κB genes in RA and healthy individuals (HI). Significantly lower A20 expression was found in RA patients compared with those in the healthy group, while NF-κB overexpression could be detected in patients with RA. Moreover, the MALT1 and MALT1-V1 expression level was downregulated in RA patients. A positive correlation between MALT1 and A20 and MALT1-V1 and A20 was found in patients with RA, and a tendency towards a negative correlation was found between MALT1 and NF-κB, MALT1-V1 and NF-κB, and A20 and NF-κB. In conclusion, we first characterized the alternative expression pattern of MALT1, A20, and NF-κB in RA, which may be related to abnormal T cell activation.
Collapse
|
46
|
RIPK1 blocks early postnatal lethality mediated by caspase-8 and RIPK3. Cell 2014; 157:1189-202. [PMID: 24813850 DOI: 10.1016/j.cell.2014.04.018] [Citation(s) in RCA: 535] [Impact Index Per Article: 48.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Revised: 04/07/2014] [Accepted: 04/14/2014] [Indexed: 11/22/2022]
Abstract
Receptor-interacting protein kinase (RIPK)-1 is involved in RIPK3-dependent and -independent signaling pathways leading to cell death and/or inflammation. Genetic ablation of ripk1 causes postnatal lethality, which was not prevented by deletion of ripk3, caspase-8, or fadd. However, animals that lack RIPK1, RIPK3, and either caspase-8 or FADD survived weaning and matured normally. RIPK1 functions in vitro to limit caspase-8-dependent, TNFR-induced apoptosis, and animals lacking RIPK1, RIPK3, and TNFR1 survive to adulthood. The role of RIPK3 in promoting lethality in ripk1(-/-) mice suggests that RIPK3 activation is inhibited by RIPK1 postbirth. Whereas TNFR-induced RIPK3-dependent necroptosis requires RIPK1, cells lacking RIPK1 were sensitized to necroptosis triggered by poly I:C or interferons. Disruption of TLR (TRIF) or type I interferon (IFNAR) signaling delayed lethality in ripk1(-/-)tnfr1(-/-) mice. These results clarify the complex roles for RIPK1 in postnatal life and provide insights into the regulation of FADD-caspase-8 and RIPK3-MLKL signaling by RIPK1.
Collapse
|
47
|
Yang S, Wang B, Tang LS, Siednienko J, Callanan JJ, Moynagh PN. Pellino3 targets RIP1 and regulates the pro-apoptotic effects of TNF-α. Nat Commun 2014; 4:2583. [PMID: 24113711 DOI: 10.1038/ncomms3583] [Citation(s) in RCA: 123] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Accepted: 09/10/2013] [Indexed: 10/26/2022] Open
Abstract
Tumour necrosis factor-α (TNF) can activate NF-κB to induce pro-inflammatory genes but can also stimulate the caspase cascade to promote apoptosis. Here we show that deficiency of the ubiquitin E3 ligase, Pellino3, sensitizes cells to TNF-induced apoptosis without inhibiting the NF-κB pathway. Suppressed expression of Pellino3 leads to enhanced formation of the death-induced signalling complex, complex II, in response to TNF. We show that Pellino3 targets RIP1, in a TNF-dependent manner, to inhibit TNF-induced complex II formation and caspase 8-mediated cleavage of RIP1 in response to TNF/cycloheximide co-stimulation. Pellino3-deficient mice also show increased sensitivity to TNF-induced apoptosis and greatly increased lethality in response to TNF administration. These findings define Pellino3 as a novel regulator of TNF signalling and an important determining factor in dictating whether TNF induces cell survival or death.
Collapse
Affiliation(s)
- Shuo Yang
- Department of Biology, Institute of Immunology, National University of Ireland Maynooth, Maynooth, County Kildare, Ireland
| | | | | | | | | | | |
Collapse
|
48
|
Bertolusso R, Tian B, Zhao Y, Vergara L, Sabree A, Iwanaszko M, Lipniacki T, Brasier AR, Kimmel M. Dynamic cross talk model of the epithelial innate immune response to double-stranded RNA stimulation: coordinated dynamics emerging from cell-level noise. PLoS One 2014; 9:e93396. [PMID: 24710104 PMCID: PMC3977818 DOI: 10.1371/journal.pone.0093396] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Accepted: 03/04/2014] [Indexed: 01/01/2023] Open
Abstract
We present an integrated dynamical cross-talk model of the epithelial innate immune response (IIR) incorporating RIG-I and TLR3 as the two major pattern recognition receptors (PRR) converging on the RelA and IRF3 transcriptional effectors. bioPN simulations reproduce biologically relevant gene-and protein abundance measurements in response to time course, gene silencing and dose-response perturbations both at the population and single cell level. Our computational predictions suggest that RelA and IRF3 are under auto- and cross-regulation. We predict, and confirm experimentally, that RIG-I mRNA expression is controlled by IRF7. We also predict the existence of a TLR3-dependent, IRF3-independent transcription factor (or factors) that control(s) expression of MAVS, IRF3 and members of the IKK family. Our model confirms the observed dsRNA dose-dependence of oscillatory patterns in single cells, with periods of 1-3 hr. Model fitting to time series, matched by knockdown data suggests that the NF-κB module operates in a different regime (with different coefficient values) than in the TNFα-stimulation experiments. In future studies, this model will serve as a foundation for identification of virus-encoded IIR antagonists and examination of stochastic effects of viral replication. Our model generates simulated time series, which reproduce the noisy oscillatory patterns of activity (with 1-3 hour period) observed in individual cells. Our work supports the hypothesis that the IIR is a phenomenon that emerged by evolution despite highly variable responses at an individual cell level.
Collapse
Affiliation(s)
- Roberto Bertolusso
- Department of Statistics, Rice University, Houston, Texas, United States of America
| | - Bing Tian
- Department of Internal Medicine, University of Texas Medical Branch (UTMB), Galveston, Texas, United States of America
| | - Yingxin Zhao
- Department of Internal Medicine, University of Texas Medical Branch (UTMB), Galveston, Texas, United States of America
- Sealy Center for Molecular Medicine, UTMB, Galveston, Texas, United States of America
- Institute for Translational Sciences, UTMB, Galveston, Texas, United States of America
| | - Leoncio Vergara
- Center for Biomedical Engineering, UTMB, Galveston, Texas, United States of America
| | - Aqeeb Sabree
- Department of Statistics, Rice University, Houston, Texas, United States of America
| | - Marta Iwanaszko
- Systems Engineering Group, Silesian University of Technology, Gliwice, Poland
| | - Tomasz Lipniacki
- Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw, Poland
| | - Allan R. Brasier
- Department of Internal Medicine, University of Texas Medical Branch (UTMB), Galveston, Texas, United States of America
- Sealy Center for Molecular Medicine, UTMB, Galveston, Texas, United States of America
- Institute for Translational Sciences, UTMB, Galveston, Texas, United States of America
| | - Marek Kimmel
- Department of Statistics, Rice University, Houston, Texas, United States of America
- Systems Engineering Group, Silesian University of Technology, Gliwice, Poland
| |
Collapse
|
49
|
Tarantino N, Tinevez JY, Crowell EF, Boisson B, Henriques R, Mhlanga M, Agou F, Israël A, Laplantine E. TNF and IL-1 exhibit distinct ubiquitin requirements for inducing NEMO-IKK supramolecular structures. J Cell Biol 2014; 204:231-45. [PMID: 24446482 PMCID: PMC3897181 DOI: 10.1083/jcb.201307172] [Citation(s) in RCA: 320] [Impact Index Per Article: 29.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Accepted: 12/09/2013] [Indexed: 11/22/2022] Open
Abstract
Nuclear factor κB (NF-κB) essential modulator (NEMO), a regulatory component of the IκB kinase (IKK) complex, controls NF-κB activation through its interaction with ubiquitin chains. We show here that stimulation with interleukin-1 (IL-1) and TNF induces a rapid and transient recruitment of NEMO into punctate structures that are anchored at the cell periphery. These structures are enriched in activated IKK kinases and ubiquitinated NEMO molecules, which suggests that they serve as organizing centers for the activation of NF-κB. These NEMO-containing structures colocalize with activated TNF receptors but not with activated IL-1 receptors. We investigated the involvement of nondegradative ubiquitination in the formation of these structures, using cells deficient in K63 ubiquitin chains or linear ubiquitin chain assembly complex (LUBAC)-mediated linear ubiquitination. Our results indicate that, unlike TNF, IL-1 requires K63-linked and linear ubiquitin chains to recruit NEMO into higher-order complexes. Thus, different mechanisms are involved in the recruitment of NEMO into supramolecular complexes, which appear to be essential for NF-κB activation.
Collapse
Affiliation(s)
- Nadine Tarantino
- Unité de Signalisation Moléculaire et Activation Cellulaire and Laboratoire Trafic Membranaire et Division Cellulaire, Institut Pasteur, Centre National de la Recherche Scientifique URA 2582, Paris 75015, France
| | - Jean-Yves Tinevez
- Plateforme d’Imagerie Dynamique and Computational Imaging and Modeling Group, Institut Pasteur, Paris 75015, France
| | - Elizabeth Faris Crowell
- Unité de Signalisation Moléculaire et Activation Cellulaire and Laboratoire Trafic Membranaire et Division Cellulaire, Institut Pasteur, Centre National de la Recherche Scientifique URA 2582, Paris 75015, France
| | - Bertrand Boisson
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY 10065
| | - Ricardo Henriques
- Plateforme d’Imagerie Dynamique and Computational Imaging and Modeling Group, Institut Pasteur, Paris 75015, France
- Gene Expression and Biophysics Unit, Instituto de Medicina Molecular, Faculdade de Medicina Universidade de Lisboa, Lisboa, 1649-028 Portugal
- Medical Research Council Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, England, UK
| | - Musa Mhlanga
- Gene Expression and Biophysics Unit, Instituto de Medicina Molecular, Faculdade de Medicina Universidade de Lisboa, Lisboa, 1649-028 Portugal
- Gene Expression and Biophysics Group, Synthetic Biology Emerging Research Area, Biosciences Unit, Council for Scientific and Industrial Research, Pretoria, Gauteng 0001, South Africa
| | - Fabrice Agou
- Unité de Signalisation Moléculaire et Activation Cellulaire and Laboratoire Trafic Membranaire et Division Cellulaire, Institut Pasteur, Centre National de la Recherche Scientifique URA 2582, Paris 75015, France
| | - Alain Israël
- Unité de Signalisation Moléculaire et Activation Cellulaire and Laboratoire Trafic Membranaire et Division Cellulaire, Institut Pasteur, Centre National de la Recherche Scientifique URA 2582, Paris 75015, France
| | - Emmanuel Laplantine
- Unité de Signalisation Moléculaire et Activation Cellulaire and Laboratoire Trafic Membranaire et Division Cellulaire, Institut Pasteur, Centre National de la Recherche Scientifique URA 2582, Paris 75015, France
| |
Collapse
|
50
|
Tumour immunogenicity, antigen presentation and immunological barriers in cancer immunotherapy. ACTA ACUST UNITED AC 2014; 2014. [PMID: 24634791 DOI: 10.1155/2014/734515] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Since the beginning of the 20th century, scientists have tried to stimulate the anti-tumour activities of the immune system to fight against cancer. However, the scientific effort devoted on the development of cancer immunotherapy has not been translated into the expected clinical success. On the contrary, classical anti-neoplastic treatments such as surgery, radiotherapy and chemotherapy are the first line of treatment. Nevertheless, there is compelling evidence on the immunogenicity of cancer cells, and the capacity of the immune system to expand cancer-specific effector cytotoxic T cells. However, the effective activation of anti-cancer T cell responses strongly depends on efficient tumour antigen presentation from professional antigen presenting cells such as dendritic cells (DCs). Several strategies have been used to boost DC antigen presenting functions, but at the end cancer immunotherapy is not as effective as would be expected according to preclinical models. In this review we comment on these discrepancies, focusing our attention on the contribution of regulatory T cells and myeloid-derived suppressor cells to the lack of therapeutic success of DC-based cancer immunotherapy.
Collapse
|