1
|
Mohamed I, Gautam M, Abosheaishaa H, Hussain S, Kumar K, Kotak A, Baugh M, Qureshi R, Jaber F, Dahiya DS, Alba L, Duong N. Growth hormone augmentation in metabolic dysfunction-associated steatotic liver disease: a systematic review and meta-analysis of randomized controlled trials. Eur J Gastroenterol Hepatol 2024; 36:1259-1266. [PMID: 38973533 DOI: 10.1097/meg.0000000000002819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/09/2024]
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is characterized by hepatic steatosis and metabolic dysregulation. Growth hormone (GH) augmentation has emerged as a potential therapeutic intervention for treating MASLD. This systematic review and meta-analysis aimed to evaluate the impact of GH augmentation on different parameters of MASLD. A systematic literature search identified randomized controlled trials investigating GH augmentation in MASLD patients. Search results were screened via Covidence and the Risk of Bias 2 tool was used to assess bias in randomized controlled trials. Statistical analysis utilized RevMan v5.3. We combined dichotomous outcomes employing odds ratios and continuous outcomes utilizing mean difference (MD), each with a 95% confidence interval (CI). Statistical significance was indicated by a P -value less than 0.05. Heterogeneity was evaluated using I2 tests. Our results showed that GH augmentation resulted in a significant reduction in both relative (MD: -46.26; 95% CI: -71.52, -21.00; P = 0.0003) and absolute (MD: -5.15; 95% CI: -7.93, -2.37; P = 0.0003) hepatic fat fraction. GH augmentation significantly reduced alanine aminotransferase (MD: -5.97; 95% CI: -10.31, -1.62; P = 0.007) and gamma-glutamyl transferase (MD: -16.18; 95% CI: -30.76, -1.59; P = 0.03) levels. No significant changes were observed in hemoglobin A1c, C-reactive protein, fasting serum glucose, BMI, triglycerides, and low-density lipoprotein cholesterol levels. Our meta-analysis highlights GH augmentation as a promising therapy for reducing liver steatosis and improving liver enzyme levels in MASLD patients. Further large-scale trials are warranted to examine the long-term effects, safety profiles, and potential impact on various measures.
Collapse
Affiliation(s)
- Islam Mohamed
- Department of Internal Medicine, University of Missouri-Kansas City, Kansas City, Missouri
| | - Misha Gautam
- Department of Internal Medicine, University of Missouri-Kansas City, Kansas City, Missouri
| | - Hazem Abosheaishaa
- Department of Internal Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Sophia Hussain
- School of Medicine, University of Missouri-Kansas City, Kansas City, Missouri
| | - Kopal Kumar
- School of Medicine, University of Missouri-Kansas City, Kansas City, Missouri
| | - Anaya Kotak
- School of Medicine, University of Missouri-Kansas City, Kansas City, Missouri
| | - Macy Baugh
- School of Medicine, University of Missouri-Kansas City, Kansas City, Missouri
| | - Raabia Qureshi
- School of Medicine, University of Missouri-Kansas City, Kansas City, Missouri
| | - Fouad Jaber
- Department of Internal Medicine, University of Missouri-Kansas City, Kansas City, Missouri
| | | | - Laura Alba
- Department of Gastroenterology and Hepatology, University of Missouri-Kansas City, Kansas City, Missouri
| | - Nikki Duong
- Department of Gastroenterology and Hepatology, Stanford University, Stanford, California, USA
| |
Collapse
|
2
|
Gui R, Li W, Li Z, Wang H, Wu Y, Jiao W, Zhao G, Shen Y, Wang L, Zhang J, Chen S, Hao L, Cheng Y. Effects and potential mechanisms of IGF1/IGF1R in the liver fibrosis: A review. Int J Biol Macromol 2023; 251:126263. [PMID: 37567540 DOI: 10.1016/j.ijbiomac.2023.126263] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 08/07/2023] [Accepted: 08/08/2023] [Indexed: 08/13/2023]
Abstract
Liver fibrosis is a wound-healing response due to persistent liver damage and it may progress to cirrhosis and even liver cancer if no intervention is given. In the current cognition, liver fibrosis is reversible. So, it is of great significance to explore the related gene targets or biomarker for anti-fibrosis of liver. Insulin like growth factor 1 (IGF1) and IGF1 receptor (IGF1R) are mainly expressed in the liver tissues and play critical roles in the liver function. The present review summarized the role of IGF1/IGF1R and its signaling system in liver fibrosis and illustrated the potential mechanisms including DNA damage repair, cell senescence, lipid metabolism and oxidative stress that may be involved in this process according to the studies on the fibrosis of liver or other organs. In particular, the roles of IGF1 and IGF1R in DNA damage repair were elaborated, including membrane-localized and nucleus-localized IGF1R. In addition, for each of the potential mechanism in anti-fibrosis of liver, the signaling pathways of the IGF1/IGF1R mediated and the cell species in liver acted by IGF1 and IGF1R under different conditions were included. The data in this review will support for the study about the effect of IGF1/IGF1R on liver fibrosis induced by various factors, meanwhile, provide a basis for the study of liver fibrosis to focus on the communications between the different kinds of liver cells.
Collapse
Affiliation(s)
- Ruirui Gui
- NHC Key Laboratory of Radiobiology, College of Public Health, Jilin University, Changchun 130021, China
| | - Wanqiao Li
- NHC Key Laboratory of Radiobiology, College of Public Health, Jilin University, Changchun 130021, China
| | - Zhipeng Li
- NHC Key Laboratory of Radiobiology, College of Public Health, Jilin University, Changchun 130021, China
| | - Hongbin Wang
- NHC Key Laboratory of Radiobiology, College of Public Health, Jilin University, Changchun 130021, China
| | - Yuchen Wu
- NHC Key Laboratory of Radiobiology, College of Public Health, Jilin University, Changchun 130021, China
| | - Wenlin Jiao
- NHC Key Laboratory of Radiobiology, College of Public Health, Jilin University, Changchun 130021, China
| | - Gang Zhao
- NHC Key Laboratory of Radiobiology, College of Public Health, Jilin University, Changchun 130021, China
| | - Yannan Shen
- NHC Key Laboratory of Radiobiology, College of Public Health, Jilin University, Changchun 130021, China
| | - Luping Wang
- NHC Key Laboratory of Radiobiology, College of Public Health, Jilin University, Changchun 130021, China
| | - Jialu Zhang
- NHC Key Laboratory of Radiobiology, College of Public Health, Jilin University, Changchun 130021, China
| | - Sihan Chen
- NHC Key Laboratory of Radiobiology, College of Public Health, Jilin University, Changchun 130021, China
| | - Linlin Hao
- College of Animal Science, Jilin University, Changchun, Jilin 130062, China.
| | - Yunyun Cheng
- NHC Key Laboratory of Radiobiology, College of Public Health, Jilin University, Changchun 130021, China.
| |
Collapse
|
3
|
Dichtel LE, Corey KE, Haines MS, Chicote ML, Kimball A, Colling C, Simon TG, Long MT, Husseini J, Bredella MA, Miller KK. The GH/IGF-1 Axis Is Associated With Intrahepatic Lipid Content and Hepatocellular Damage in Overweight/Obesity. J Clin Endocrinol Metab 2022; 107:e3624-e3632. [PMID: 35779256 PMCID: PMC9387707 DOI: 10.1210/clinem/dgac405] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Indexed: 01/25/2023]
Abstract
CONTEXT Obesity is a state of relative growth hormone (GH) deficiency, and GH has been identified as a candidate disease-modifying target in nonalcoholic fatty liver disease (NAFLD) because of its lipolytic and anti-inflammatory properties. However, the GH/IGF-1 axis has not been well characterized in NAFLD. OBJECTIVE We aimed to investigate serum GH and IGF-1 levels in relation to intrahepatic lipid content (IHL) and markers of hepatocellular damage and fibrosis in NAFLD. METHODS This cross-sectional study included 102 adults (43% women; age 19-67; BMI ≥ 25 kg/m2) without type 2 diabetes. IHL was measured by magnetic resonance spectroscopy; NAFLD was defined by ≥ 5% IHL. Peak-stimulated GH in response to GH releasing hormone and arginine was assessed as was serum IGF-1 (LC/MS). RESULTS There was no difference in mean age, BMI, or sex distribution in NAFLD vs controls. Mean (± SD) IHL was higher in NAFLD vs controls (21.8 ± 13.3% vs 2.9 ± 1.1%, P < 0.0001). Mean peak-stimulated GH was lower in NAFLD vs controls (9.0 ± 6.3 vs 15.4 ± 11.2 ng/mL, P = 0.003), including after controlling for age, sex, visceral adipose tissue, and fasting glucose. In a stepwise model, peak-stimulated GH predicted 14.6% of the variability in IHL (P = 0.004). Higher peak-stimulated GH was also associated with lower ALT. Higher serum IGF-1 levels were associated with lower risk of liver fibrosis by Fibrosis-4 scores. CONCLUSION Individuals with NAFLD have lower peak-stimulated GH levels but similar IGF-1 levels as compared to controls. Higher peak-stimulated GH levels are associated with lower IHL and less hepatocellular damage. Higher IGF-1 levels are associated with more favorable fibrosis risk scores. These data implicate GH and IGF-1 as potential disease modifiers in the development and progression of NAFLD.
Collapse
Affiliation(s)
- Laura E Dichtel
- Correspondence: Laura Dichtel, MD, Neuroendocrine Unit, Massachusetts General Hospital, 55 Fruit Street, BUL457, Boston, MA 02114, USA.
| | - Kathleen E Corey
- Division of Gastroenterology, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
| | - Melanie S Haines
- Neuroendocrine Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
| | - Mark L Chicote
- Neuroendocrine Unit, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Allison Kimball
- Neuroendocrine Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
| | - Caitlin Colling
- Neuroendocrine Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
| | - Tracey G Simon
- Division of Gastroenterology, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
| | - Michelle T Long
- Section of Gastroenterology, Boston Medical Center, Boston University School of Medicine, Boston, MA, USA
| | - Jad Husseini
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, 02114, USA
| | - Miriam A Bredella
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, 02114, USA
| | - Karen K Miller
- Neuroendocrine Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
| |
Collapse
|
4
|
Phase I/II Clinical Trial of Autologous Activated Platelet-Rich Plasma (aaPRP) in the Treatment of Severe Coronavirus Disease 2019 (COVID-19) Patients. Int J Inflam 2021; 2021:5531873. [PMID: 34306612 PMCID: PMC8285191 DOI: 10.1155/2021/5531873] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 06/07/2021] [Accepted: 06/30/2021] [Indexed: 12/15/2022] Open
Abstract
Background The outbreak of Coronavirus Disease 2019 (COVID-19) has been increasing rapidly. This disease causes an increase in proinflammatory cytokine production that leads to cytokine storm or cytokine release syndrome (CRS). Autologous activated platelet-rich plasma (aaPRP) contains various types of growth factors and anti-inflammatory cytokines that may have the potential to suppress CRS. This study of phase I/II trial was aimed to evaluate the safety and efficacy of aaPRP to treat severe COVID-19 patients. Methods A total of 10 severe COVID-19 patients from Koja Regional Public Hospital (Koja RPH) were admitted to the intensive care unit (ICU). All patients received aaPRP administration three times. Primary outcomes involving the duration of hospitalization, oxygen needs, time of recovery, and mortality were observed. Secondary outcomes involving C-reactive protein (CRP), neutrophil, lymphocyte, and lymphocyte-to-CRP (LCR) and neutrophil-lymphocyte ratio (NLR) were analyzed. Results All patients were transferred to the ICU with a median duration of 9 days. All patients received oxygen at enrollment and nine of ten patients recovered from the ICU and transferred to the ward room. There was one patient who passed away in the ICU due to heart failure. The results of secondary outcomes showed that CRP value and lymphocytes counts were significantly decreased while neutrophils, LCR, and NLR were slightly increased after aaPRP administration. Conclusions Our results of the phase I/II trial demonstrated that the use of aaPRP in severe COVID-19 patients was safe and not associated with serious adverse events, which showed that aaPRP was a promising adjunctive therapy for severe COVID-19 patients.
Collapse
|
5
|
Stanley TL, Fourman LT, Zheng I, McClure CM, Feldpausch MN, Torriani M, Corey KE, Chung RT, Lee H, Kleiner DE, Hadigan CM, Grinspoon SK. Relationship of IGF-1 and IGF-Binding Proteins to Disease Severity and Glycemia in Nonalcoholic Fatty Liver Disease. J Clin Endocrinol Metab 2021; 106:e520-e533. [PMID: 33125080 PMCID: PMC7823253 DOI: 10.1210/clinem/dgaa792] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Indexed: 12/11/2022]
Abstract
CONTEXT Growth hormone (GH) and IGF-1 help regulate hepatic glucose and lipid metabolism, and reductions in these hormones may contribute to development of nonalcoholic fatty liver disease (NAFLD). OBJECTIVE To assess relationships between hepatic expression of IGF1 and IGF-binding proteins (IGFBPs) and measures of glycemia and liver disease in adults with NAFLD. Secondarily to assess effects of GH-releasing hormone (GHRH) on circulating IGFBPs. DESIGN Analysis of data from a randomized clinical trial of GHRH. SETTING Two US academic medical centers. PARTICIPANTS Participants were 61 men and women 18 to 70 years of age with HIV-infection, ≥5% hepatic fat fraction, including 39 with RNA-Seq data from liver biopsy. MAIN OUTCOME MEASURES Hepatic steatosis, inflammation, and fibrosis by histopathology and measures of glucose homeostasis. RESULTS Hepatic IGF1 mRNA was significantly lower in individuals with higher steatosis and NAFLD Activity Score (NAS) and was inversely related to glucose parameters, independent of circulating IGF-1. Among the IGFBPs, IGFBP2 and IGFBP4 were lower and IGFBP6 and IGFBP7 (also known as IGFBP-related protein 1) were higher with increasing steatosis. Hepatic IGFBP6 and IGFBP7 mRNA levels were positively associated with NAS. IGFBP7 mRNA increased with increasing fibrosis. Hepatic IGFBP1 mRNA was inversely associated with glycemia and insulin resistance, with opposite relationships present for IGFBP3 and IGFBP7. GHRH increased circulating IGFBP-1 and IGFBP-3, but decreased IGFBP-2 and IGFBP-6. CONCLUSIONS These data demonstrate novel relationships of IGF-1 and IGFBPs with NAFLD severity and glucose control, with divergent roles seen for different IGFBPs. Moreover, the data provide new information on the complex effects of GHRH on IGFBPs.
Collapse
Affiliation(s)
- Takara L Stanley
- Metabolism Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Lindsay T Fourman
- Metabolism Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Isabel Zheng
- Metabolism Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Colin M McClure
- Metabolism Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Meghan N Feldpausch
- Metabolism Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Martin Torriani
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Kathleen E Corey
- Liver Center, Gastroenterology Division, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Raymond T Chung
- Liver Center, Gastroenterology Division, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Hang Lee
- Biostatistics Center, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - David E Kleiner
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Colleen M Hadigan
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - Steven K Grinspoon
- Metabolism Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
- Correspondence and Reprint Requests: Steven K. Grinspoon, MD, Professor of Medicine, Harvard Medical School, MGH Endowed Chair in Neuroendocrinology and Metabolism, Chief, Metabolism Unit, Massachusetts General Hospital, 55 Fruit Street 5LON207, Boston, MA 02114, United States. E-mail:
| |
Collapse
|
6
|
Martín-Estal I, Castilla-Cortázar I, Castorena-Torres F. The Placenta as a Target for Alcohol During Pregnancy: The Close Relation with IGFs Signaling Pathway. Rev Physiol Biochem Pharmacol 2021; 180:119-153. [PMID: 34159446 DOI: 10.1007/112_2021_58] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Alcohol is one of the most consumed drugs in the world, even during pregnancy. Its use is a risk factor for developing adverse outcomes, e.g. fetal death, miscarriage, fetal growth restriction, and premature birth, also resulting in fetal alcohol spectrum disorders. Ethanol metabolism induces an oxidative environment that promotes the oxidation of lipids and proteins, triggers DNA damage, and advocates mitochondrial dysfunction, all of them leading to apoptosis and cellular injury. Several organs are altered due to this harmful behavior, the brain being one of the most affected. Throughout pregnancy, the human placenta is one of the most important organs for women's health and fetal development, as it secretes numerous hormones necessary for a suitable intrauterine environment. However, our understanding of the human placenta is very limited and even more restricted is the knowledge of the impact of toxic substances in its development and fetal growth. So, could ethanol consumption during this period have wounding effects in the placenta, compromising proper fetal organ development? Several studies have demonstrated that alcohol impairs various signaling cascades within G protein-coupled receptors and tyrosine kinase receptors, mainly through its action on insulin and insulin-like growth factor 1 (IGF-1) signaling pathway. This last cascade is involved in cell proliferation, migration, and differentiation and in placentation. This review tries to examine the current knowledge and gaps in our existing understanding of the ethanol effects in insulin/IGFs signaling pathway, which can explain the mechanism to elucidate the adverse actions of ethanol in the maternal-fetal interface of mammals.
Collapse
Affiliation(s)
- Irene Martín-Estal
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey, NL, Mexico
| | | | | |
Collapse
|
7
|
Hosnedlova B, Vernerova K, Kizek R, Bozzi R, Kadlec J, Curn V, Kouba F, Fernandez C, Machander V, Horna H. Associations between IGF1, IGFBP2 and TGFß3 Genes Polymorphisms and Growth Performance of Broiler Chicken Lines. Animals (Basel) 2020; 10:E800. [PMID: 32380764 PMCID: PMC7277336 DOI: 10.3390/ani10050800] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/22/2020] [Accepted: 04/23/2020] [Indexed: 01/18/2023] Open
Abstract
Marker-assisted selection based on fast and accurate molecular analysis of individual genes is considered an acceptable tool in the speed-up of the genetic improvement of production performance in chickens. The objective of this study was to detect the single nucleotide polymorphisms (SNPs) in the IGF1, IGFBP2 and TGFß3 genes, and to investigate their associations with growth performance (body weight (BW) and average daily gain (ADG) at 14, 21, 28, 35 and 42 days of age) and carcass traits in broilers. Performance (carcass) data (weight before slaughter; weights of the trunk, giblets, abdominal fat, breast muscle and thigh muscle; slaughter value and slaughter percentage), as well as blood samples for DNA extraction and SNP analysis, were obtained from 97 chickens belonging to two different lines (Hubbard F15 and Cobb E) equally divided between the two sexes. The genotypes were detected using polymerase chain reaction- restriction fragment length polymorphism (PCR-RFLP) methods with specific primers and restrictase for each gene. The statistical analysis discovered significant associations (p < 0.05) between the TGFβ3 SNP and the following parameters: BW at 21, 28 and 35 days, trunk weight and slaughter value. Association analysis of BWs (at 21, 28 and 35 days) and SNPs was always significant for codominant, dominant and overdominant genetic models, showing a possible path for genomic selection in these chicken lines. Slaughter value was significant for codominant, recessive and overdominant patterns, whereas other carcass traits were not influenced by SNPs. Based on the results of this study, we suggested that the TGFβ3 gene could be used as a candidate gene marker for chicken growth traits in the Hubbard F15 and Cobb E population selection programs, whereas for carcass traits further investigation is needed.
Collapse
Affiliation(s)
- Bozena Hosnedlova
- Veterinary Research Institute, Hudcova 296/70, 621 00 Brno, Czech Republic;
| | - Katerina Vernerova
- Biotechnological Centre, Faculty of Agriculture, University of South Bohemia in České Budějovice, Studentská 1668, 370 05 České Budějovice, Czech Republic; (K.V.); (V.C.)
| | - Rene Kizek
- Veterinary Research Institute, Hudcova 296/70, 621 00 Brno, Czech Republic;
- Department of Human Pharmacology and Toxicology, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences Brno, Palackého 1946/1, 612 42 Brno, Czech Republic
- Department of Biomedical and Environmental Analyses, Faculty of Pharmacy with Division of Laboratory Medicine, Wroclaw Medical University, Borowska 211, 50-556 Wroclaw, Poland
| | - Riccardo Bozzi
- Food, Environment and Forestry, Animal Science Section, Department of Agriculture, University of Florence, Via delle Cascine, 5, 50144 Firenze, Italy;
| | - Jaromir Kadlec
- Department of Agricultural Products’ Quality, Faculty of Agriculture, University of South Bohemia in České Budějovice, Studentská 1668, 370 05 České Budějovice, Czech Republic;
| | - Vladislav Curn
- Biotechnological Centre, Faculty of Agriculture, University of South Bohemia in České Budějovice, Studentská 1668, 370 05 České Budějovice, Czech Republic; (K.V.); (V.C.)
| | - Frantisek Kouba
- State Veterinary Administration, Regional Veterinary Administration of the South Bohemian Region, Severní 9, 370 10 České Budějovice, Czech Republic;
| | - Carlos Fernandez
- School of Pharmacy and Life Sciences, Robert Gordon University, Garthdee Road, Aberdeen AB10 7QB, UK;
| | - Vlastislav Machander
- International Testing of Poultry, Ústrašice 63, 390 02 Tábor, Czech Republic; (V.M.); (H.H.)
| | - Hana Horna
- International Testing of Poultry, Ústrašice 63, 390 02 Tábor, Czech Republic; (V.M.); (H.H.)
| |
Collapse
|
8
|
Castilla-Cortázar I, Aguirre GA, Femat-Roldán G, Martín-Estal I, Espinosa L. Is insulin-like growth factor-1 involved in Parkinson's disease development? J Transl Med 2020; 18:70. [PMID: 32046737 PMCID: PMC7014772 DOI: 10.1186/s12967-020-02223-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 01/10/2020] [Indexed: 02/09/2023] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder that results in the death of dopaminergic neurons within the substantia nigra pars compacta and the reduction in dopaminergic control over striatal output neurons, leading to a movement disorder most commonly characterized by akinesia or bradykinesia, rigidity and tremor. Also, PD is less frequently depicted by sensory symptoms (pain and tingling), hyposmia, sleep alterations, depression and anxiety, and abnormal executive and working memory related functions. On the other hand, insulin-like growth factor 1 (IGF-1) is an endocrine, paracrine and autocrine hormone with several functions including tissue growth and development, insulin-like activity, proliferation, pro-survival, anti-aging, antioxidant and neuroprotection, among others. Herein this review tries to summarize all experimental and clinical data to understand the pathophysiology and development of PD, as well as its clear association with IGF-1, supported by several lines of evidence: (1) IGF-1 decreases with age, while aging is the major risk for PD establishment and development; (2) numerous basic and translational data have appointed direct protective and homeostasis IGF-1 roles in all brain cells; (3) estrogens seem to confer women strong protection to PD via IGF-1; and (4) clinical correlations in PD cohorts have confirmed elevated IGF-1 levels at the onset of the disease, suggesting an ongoing compensatory or "fight-to-injury" mechanism.
Collapse
Affiliation(s)
- Inma Castilla-Cortázar
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Ave. Morones Prieto 3000, 64710, Monterrey, N.L., Mexico.
- Fundación de Investigación HM Hospitales, Madrid, Spain.
| | - Gabriel A Aguirre
- Centre for Tumour Biology, Barts Cancer Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Giovana Femat-Roldán
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Ave. Morones Prieto 3000, 64710, Monterrey, N.L., Mexico
- Neurocenter, Monterrey, Nuevo Leon, Mexico
| | - Irene Martín-Estal
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Ave. Morones Prieto 3000, 64710, Monterrey, N.L., Mexico
| | - Luis Espinosa
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Ave. Morones Prieto 3000, 64710, Monterrey, N.L., Mexico
| |
Collapse
|
9
|
Abstract
Non-communicable diseases, such as cardiovascular diseases, are the leading cause of mortality worldwide. For this reason, a tremendous effort is being made worldwide to effectively circumvent these afflictions, where insulin-like growth factor 1 (IGF1) is being proposed both as a marker and as a central cornerstone in these diseases, making it an interesting molecule to focus on. Firstly, at the initiation of metabolic deregulation by overfeeding, IGF1 is decreased/inhibited. Secondly, such deficiency seems to be intimately related to the onset of MetS and establishment of vascular derangements leading to atherosclerosis and finally playing a definitive part in cerebrovascular and myocardial accidents, where IGF1 deficiency seems to render these organs vulnerable to oxidative and apoptotic/necrotic damage. Several human cohort correlations together with basic/translational experimental data seem to confirm deep IGF1 implication, albeit with controversy, which might, in part, be given by experimental design leading to blurred result interpretation.
Collapse
|
10
|
Castilla-Cortázar I, Iturrieta I, García-Magariño M, Puche JE, Martín-Estal I, Aguirre GA, Femat-Roldan G, Cantu-Martinez L, Muñoz Ú. Neurotrophic Factors and Their Receptors Are Altered by the Mere Partial IGF-1 Deficiency. Neuroscience 2019; 404:445-458. [PMID: 30708048 DOI: 10.1016/j.neuroscience.2019.01.041] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 01/21/2019] [Accepted: 01/22/2019] [Indexed: 01/19/2023]
Abstract
Neurotrophic factors (NTFs) are a relevant group of secreted proteins that modulate growth, differentiation, repair, and survival of neurons, playing a role in the maintenance of the synaptic unions, dendrites, and axons and also being crucial for peripheral nervous system development and regulating plasticity in the adult central nervous system. On the other hand, insulin-like growth factor 1 (IGF-1) has been ascertained multiple beneficial actions in the brain: neuro-development, -protection, -genesis and plasticity. To further investigate the possible mechanisms underlying IGF-1 deficiency in the establishment of neurological disease, microarray and reverse transcription polymerase chain reaction gene expression analyses coupled with in silico processing were performed in an experimental model of partial IGF-1 deficiency. Results show that the mere IGF-1 deficiency seems to be responsible for an altered expression of genes coding for neurotrophic factors (particularly ciliary neurotrophic factor and mesencephalic astrocyte-derived neurotrophic factor), their receptors and signaling pathways (specially RET). The presented findings support that IGF-1 deficiency might be involved in the establishment and progression of neurodegenerative disorders.
Collapse
Affiliation(s)
- Inma Castilla-Cortázar
- Fundacion de Investigacion HM Hospitales, Madrid, Spain; Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Ave. Morones Prieto 3000, Monterrey, N.L., Mexico, 64710.
| | - Ignacio Iturrieta
- Basic Medical Sciences Department, Faculty of Medicine, CEU San Pablo University, Boadilla del Monte, Madrid, Spain
| | - Mariano García-Magariño
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Ave. Morones Prieto 3000, Monterrey, N.L., Mexico, 64710
| | - Juan E Puche
- Basic Medical Sciences Department, Faculty of Medicine, CEU San Pablo University, Boadilla del Monte, Madrid, Spain
| | - Irene Martín-Estal
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Ave. Morones Prieto 3000, Monterrey, N.L., Mexico, 64710
| | - Gabriel A Aguirre
- Centre for Tumour Biology, Barts Cancer Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Giovana Femat-Roldan
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Ave. Morones Prieto 3000, Monterrey, N.L., Mexico, 64710
| | - Leonel Cantu-Martinez
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Ave. Morones Prieto 3000, Monterrey, N.L., Mexico, 64710
| | - Úrsula Muñoz
- Basic Medical Sciences Department, Faculty of Medicine, CEU San Pablo University, Boadilla del Monte, Madrid, Spain
| |
Collapse
|
11
|
Alisi A, Pampanini V, De Stefanis C, Panera N, Deodati A, Nobili V, Cianfarani S. Expression of insulin-like growth factor I and its receptor in the liver of children with biopsy-proven NAFLD. PLoS One 2018; 13:e0201566. [PMID: 30063751 PMCID: PMC6067746 DOI: 10.1371/journal.pone.0201566] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 07/17/2018] [Indexed: 02/06/2023] Open
Abstract
Background and aims Nonalcoholic fatty liver disease is one of the major complications of obesity, occurring already in pediatric age. Insulin like growth factor-I has been proposed as a potential therapeutic agent for its beneficial effect in experimental liver fibrosis. The aim of this work was to investigate the expression of insulin-like growth factor-I and its receptor in the liver of children with biopsy-proven nonalcoholic fatty liver disease and relate it to liver histological features. Methods 45 obese children and adolescents (14 females and 31 males) with nonalcoholic fatty liver disease were included. Insulin like growth factor-I and its receptor expression was evaluated in liver tissue by immunofluorescence and qPCR. Results The expression of insulin like growth factor-I and its receptor were significantly related to fibrosis and were higher in children with stage 3 fibrosis compared to stage 1 and 2 (p<0.001 and p = 0.007 respectively). mRNA of insulin like growth factor-I receptor was higher in more advanced stages of fibrosis (p<0.001). Furthermore, the expression of insulin like growth factor-I and its receptor in hepatic stellate cells, the cell type mostly involved in fibrosis progression, was significantly increased in stage 3 fibrosis compared to stage 1 (p = 0.01 and p = 0.008 respectively). Conclusions We demonstrated for the first time that insulin like growth factor-I and its receptor are upregulated in children with nonalcoholic fatty liver disease. These findings give a new hint for the potential therapeutic use of insulin like growth factor-I in pediatric nonalcoholic fatty liver disease complicated by liver fibrosis.
Collapse
Affiliation(s)
- Anna Alisi
- Research Unit of Multifactorial Genetics and Epigenetics, “Bambino Gesù” Children’s Hospital–IRCCS, Rome, Italy
| | - Valentina Pampanini
- NORDFERTIL Research Lab Stockholm, Paediatric Endocrinology Unit, Department of Women’s and Children’s Health, Karolinska Institutet and University Hospital, Solna, Sweden
- * E-mail:
| | | | - Nadia Panera
- Research Unit of Multifactorial Genetics and Epigenetics, “Bambino Gesù” Children’s Hospital–IRCCS, Rome, Italy
| | - Annalisa Deodati
- Dipartimento Pediatrico Universitario Ospedaliero “Bambino Gesù” Children’s Hospital–IRCCS, Tor Vergata University, Rome, Italy
| | - Valerio Nobili
- Department of Pediatric- University “La Sapienza”, Rome, Italy
- Hepato-Gastroenterology Disease Unit, “Bambino Gesù” Children’s Hospital–IRCCS, Rome, Italy
| | - Stefano Cianfarani
- NORDFERTIL Research Lab Stockholm, Paediatric Endocrinology Unit, Department of Women’s and Children’s Health, Karolinska Institutet and University Hospital, Solna, Sweden
- Dipartimento Pediatrico Universitario Ospedaliero “Bambino Gesù” Children’s Hospital–IRCCS, Tor Vergata University, Rome, Italy
| |
Collapse
|
12
|
Insulin-Like Growth Factor (IGF) System in Liver Diseases. Int J Mol Sci 2018; 19:ijms19051308. [PMID: 29702590 PMCID: PMC5983723 DOI: 10.3390/ijms19051308] [Citation(s) in RCA: 181] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 04/20/2018] [Accepted: 04/20/2018] [Indexed: 02/06/2023] Open
Abstract
Hepatocyte differentiation, proliferation, and apoptosis are affected by growth factors produced in liver. Insulin-like growth factor 1 and 2 (IGF1 and IGF2) act in response to growth hormone (GH). Other IGF family components include at least six binding proteins (IGFBP1 to 6), manifested by both IGFs develop due to interaction through the type 1 receptor (IGF1R). The data based on animal models and/or in vitro studies suggest the role of IGF system components in cellular aspects of hepatocarcinogenesis (cell cycle progression, uncontrolled proliferation, cell survival, migration, inhibition of apoptosis, protein synthesis and cell growth), and show that systemic IGF1 administration can reduce fibrosis and ameliorate general liver function. In epidemiologic and clinicopathological studies on chronic liver disease (CLD), lowered serum levels, decreased tissue expression of IGF1, elevated production of IGF1R and variable IGF2 expression has been noted, from the start of preneoplastic alterations up to the developed hepatocellular carcinoma (HCC) stage. These changes result in well-known clinical symptoms of IGF1 deficiency. This review summarized the current data of the complex role of IGF system components in the most common CLD (nonalcoholic fatty liver disease, cirrhosis, and hepatocellular carcinoma). Better recognition and understanding of this system can contribute to discovery of new and improved versions of current preventive and therapeutic actions in CLD.
Collapse
|
13
|
Olleros Santos-Ruiz M, Sádaba MC, Martín-Estal I, Muñoz U, Sebal Neira C, Castilla-Cortázar I. The single IGF-1 partial deficiency is responsible for mitochondrial dysfunction and is restored by IGF-1 replacement therapy. Growth Horm IGF Res 2017; 35:21-32. [PMID: 28648804 DOI: 10.1016/j.ghir.2017.05.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 05/26/2017] [Accepted: 05/31/2017] [Indexed: 10/24/2022]
Abstract
BACKGROUND & AIMS We previously described in cirrhosis and aging, both conditions of IGF-1 deficiency, a clear hepatic mitochondrial dysfunction with increased oxidative damage. In both conditions, the hepatic mitochondrial function was improved with low doses of IGF-1. The aim of this work was to explore if the only mere IGF-1 partial deficiency, without any exogenous insult, is responsible for hepatic mitochondrial dysfunction. METHODS Heterozygous (igf1+/-) mice were divided into two groups: untreated and treated mice with low doses of IGF-1. WT group was used as controls. Parameters of hepatic mitochondrial function were determined by flow cytometry, antioxidant enzyme activities were determined by spectrophotometry, and electron chain transport enzyme levels were determined by immunohistochemistry and immunofluorescence analyses. Liver expression of genes coding for proteins involved in mitochondrial protection and apoptosis was studied by microarray analysis and RT-qPCR. RESULTS Hz mice showed a significant reduction in hepatic mitochondrial membrane potential (MMP) and ATPase activity, and an increase in intramitochondrial free radical production and proton leak rates, compared to controls. These parameters were normalized by IGF-1 replacement therapy. No significant differences were found between groups in oxygen consumption and antioxidant enzyme activities, except for catalase, whose activity was increased in both Hz groups. Relevant genes coding for proteins involved in mitochondrial protection and survival were altered in Hz group and were reverted to normal in Hz+IGF-1 group. CONCLUSIONS The mere IGF-1 partial deficiency is per se associated with hepatic mitochondrial dysfunction sensitive to IGF-1 replacement therapy. Results in this work prove that IGF-1 is involved in hepatic mitochondrial protection, because it is able to reduce free radical production, oxidative damage and apoptosis. All these IGF-1 actions are mediated by the modulation of the expression of genes encoding citoprotective and antiapoptotic proteins.
Collapse
Affiliation(s)
| | - M C Sádaba
- Department of Medical Physiology, School of Medicine, Universidad San Pablo-CEU, Madrid, Spain
| | - I Martín-Estal
- Escuela de Medicina, CITES, Tecnologico de Monterrey, Monterrey, Mexico
| | - U Muñoz
- Department of Medical Physiology, School of Medicine, Universidad San Pablo-CEU, Madrid, Spain
| | - C Sebal Neira
- Department of Medical Physiology, School of Medicine, Universidad San Pablo-CEU, Madrid, Spain
| | - I Castilla-Cortázar
- Fundacion de Investigacion HM Hospitales, Madrid, Spain; Escuela de Medicina, CITES, Tecnologico de Monterrey, Monterrey, Mexico.
| |
Collapse
|
14
|
Morales-Garza LA, Puche JE, Aguirre GA, Muñoz Ú, García-Magariño M, De la Garza RG, Castilla-Cortazar I. Experimental approach to IGF-1 therapy in CCl 4-induced acute liver damage in healthy controls and mice with partial IGF-1 deficiency. J Transl Med 2017; 15:96. [PMID: 28472963 PMCID: PMC5418730 DOI: 10.1186/s12967-017-1198-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2017] [Accepted: 04/24/2017] [Indexed: 01/13/2023] Open
Abstract
Background Cell necrosis, oxidative damage, and fibrogenesis are involved in cirrhosis development, a condition in which insulin-like growth factor 1 (IGF-1) levels are diminished. This study evaluates whether the exogenous administration of low doses of IGF-1 can induce hepatoprotection in acute carbon tetrachloride (CCl4)-induced liver damage compared to healthy controls (Wt Igf+/+). Additionally, the impact of IGF-1 deficiency on a damaged liver was investigated in mice with a partial deficit of this hormone (Hz Igf1+/−). Methods Three groups of 25 ± 5-week-old healthy male mice (Wt Igf+/+) were included in the protocol: untreated controls (Wt). Controls that received CCl4 (Wt + CCl4) and Wt + CCl4 were treated subcutaneously with IGF-1 (2 µg/100 g body weight/day) for 10 days (Wt + CCl4 + IGF1). In parallel, three IGF-1-deficient mice (Hz Igf1+/−) groups were studied: untreated Hz, Hz + CCl4, and Hz + CCl4 + IGF-1. Microarray and real-time quantitative polymerase chain reaction (RT-qPCR) analyses, serum aminotransferases levels, liver histology, and malondialdehyde (MDA) levels were assessed at the end of the treatment in all groups. All data represent mean ± SEM. Results An altered gene coding expression pattern for proteins of the extracellular matrix, fibrosis, and cellular protection were found, as compared to healthy controls, in which IGF-1 therapy normalized in the series including healthy mice. Liver histology showed that Wt + CCl4 + IGF1 mice had less oxidative damage, fibrosis, lymphocytic infiltrate, and cellular changes when compared to the Wt + CCl4. Moreover, there was a correlation between MDA levels and the histological damage score (Pearson’s r = 0.858). In the IGF-1-deficient mice series, similar findings were identified, denoting a much more vulnerable hepatic parenchyma. Conclusions IGF1 treatment improved the biochemistry, histology, and genetic expression of pro-regenerative and cytoprotective factors in both series (healthy and IGF-1-deficient mice) with acute liver damage, suggesting that low doses of IGF-1, in acute liver damage, could be a feasible therapeutic option. Electronic supplementary material The online version of this article (doi:10.1186/s12967-017-1198-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | - Juan E Puche
- Fundación de Investigación HM Hospitales, Madrid, Spain.,Department of Medical Physiology, School of Medicine, Universidad San Pablo-CEU, Madrid, Spain
| | | | - Úrsula Muñoz
- Fundación de Investigación HM Hospitales, Madrid, Spain.,Department of Medical Physiology, School of Medicine, Universidad San Pablo-CEU, Madrid, Spain
| | | | | | - Inma Castilla-Cortazar
- Escuela de Medicina, Tecnologico de Monterrey, Monterrey, Mexico. .,Fundación de Investigación HM Hospitales, Madrid, Spain.
| |
Collapse
|
15
|
de la Garza RG, Morales-Garza LA, Martin-Estal I, Castilla-Cortazar I. Insulin-Like Growth Factor-1 Deficiency and Cirrhosis Establishment. J Clin Med Res 2017; 9:233-247. [PMID: 28270882 PMCID: PMC5330765 DOI: 10.14740/jocmr2761w] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/19/2016] [Indexed: 12/16/2022] Open
Abstract
Cirrhosis represents the final stage of chronic liver damage, which can be due to different factors such as alcohol, metabolic syndrome with liver steatosis, autoimmune diseases, drugs, toxins, and viral infection, among others. Nowadays, cirrhosis is an important health problem and it is an increasing cause of morbidity and mortality, being the 14th most common cause of death worldwide. The physiopathological pathways that lead to fibrosis and finally cirrhosis partly depend on the etiology. Nevertheless, some common features are shared in this complex mechanism. Recently, it has been demonstrated that cirrhosis is a dynamic process that can be altered in order to delay or revert fibrosis. In addition, when cirrhosis has been established, insulin-like growth factor-1 (IGF-1) deficiency or reduced availability is a common condition, independently of the etiology of chronic liver damage that leads to cirrhosis. IGF-1 deprivation seriously contributes to the progressive malnutrition of cirrhotic patient, increasing the vulnerability of the liver to establish an inflammatory and oxidative microenvironment with mitochondrial dysfunction. In this context, IGF-1 deficiency in cirrhotic patients can justify some of the common characteristics of these individuals. Several studies in animals and humans have been done in order to test the replacement of IGF-1 as a possible therapeutic option, with promising results.
Collapse
Affiliation(s)
- Rocio G. de la Garza
- Centro de Investigacion Transferencia en Salud (CITES), Escuela Nacional de Medicina, Tecnologico de Monterrey, and Institute of Liver Diseases, Hospital San Jose, Tecnologico de Monterrey, Monterrey, Nuevo Leon, Mexico
| | - Luis Alonso Morales-Garza
- Centro de Investigacion Transferencia en Salud (CITES), Escuela Nacional de Medicina, Tecnologico de Monterrey, and Institute of Liver Diseases, Hospital San Jose, Tecnologico de Monterrey, Monterrey, Nuevo Leon, Mexico
| | - Irene Martin-Estal
- Centro de Investigacion Transferencia en Salud (CITES), Escuela Nacional de Medicina, Tecnologico de Monterrey, and Institute of Liver Diseases, Hospital San Jose, Tecnologico de Monterrey, Monterrey, Nuevo Leon, Mexico
| | - Inma Castilla-Cortazar
- Centro de Investigacion Transferencia en Salud (CITES), Escuela Nacional de Medicina, Tecnologico de Monterrey, and Institute of Liver Diseases, Hospital San Jose, Tecnologico de Monterrey, Monterrey, Nuevo Leon, Mexico
- Fundacion de Investigacion HM Hospitales, Madrid, Spain
| |
Collapse
|
16
|
The Association Between IGF-1 Levels and the Histologic Severity of Nonalcoholic Fatty Liver Disease. Clin Transl Gastroenterol 2017; 8:e217. [PMID: 28125073 PMCID: PMC5288606 DOI: 10.1038/ctg.2016.72] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 12/07/2016] [Indexed: 12/13/2022] Open
Abstract
Objectives: The mechanisms responsible for the development of nonalcoholic fatty liver disease (NAFLD) and progression to nonalcoholic steatohepatitis (NASH) are incompletely understood. Growing evidence suggests that growth hormone (GH) and insulin-like growth factor-1 (IGF-1) may have roles in the development and progression of NAFLD. We hypothesized that lower serum IGF-1 levels would be associated with increased liver fat accumulation, inflammation, and fibrosis in a group of meticulously phenotyped obese subjects with liver biopsies. Methods: A retrospective, cross-sectional study was performed at Massachusetts General Hospital, Boston, MA, USA and St. Mary's Hospital, Richmond, VA, USA. Liver biopsies were performed in 142 subjects during NAFLD work-up or bariatric surgery and were graded by a single, blinded pathologist. Main outcome measures included liver histology and serum IGF-1. Results: Mean age was 52±10 years and body mass index (BMI) was 43±9 kg/m2. Mean serum IGF-1 was lower in subjects with lobular inflammation (112±47 vs. 136±57 ng/ml, P=0.01), hepatocyte ballooning (115±48 vs. 135±57 ng/ml, P=0.05), higher fibrosis stage (stage 2–4 vs. 0–1; 96±40 vs. 125±51 ng/ml, P=0.005), and NASH (109±45 vs. 136±57 ng/ml, P=0.002). All results remained significant after controlling for age, BMI, and a diagnosis of diabetes, and all but hepatocyte ballooning (trend, P=0.06) remained significant after excluding individuals with cirrhosis. Steatosis was not significantly associated with mean serum IGF-1 levels. Conclusions: Low serum IGF-1 levels are associated with increased histologic severity of NAFLD when rigorously controlled for age, BMI, the presence of diabetes, and after the exclusion of subjects with cirrhosis. Further investigation is warranted to determine the differential effects of GH and IGF-1 on the development and progression of NAFLD, which could further elucidate pathophysiology and identify therapeutic targets.
Collapse
|
17
|
Lara-Diaz VJ, Castilla-Cortazar I, Martín-Estal I, García-Magariño M, Aguirre GA, Puche JE, de la Garza RG, Morales LA, Muñoz U. IGF-1 modulates gene expression of proteins involved in inflammation, cytoskeleton, and liver architecture. J Physiol Biochem 2017; 73:245-258. [PMID: 28124277 PMCID: PMC5399066 DOI: 10.1007/s13105-016-0545-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 12/16/2016] [Indexed: 12/22/2022]
Abstract
Even though the liver synthesizes most of circulating IGF-1, it lacks its receptor under physiological conditions. However, according to previous studies, a damaged liver expresses the receptor. For this reason, herein, we examine hepatic histology and expression of genes encoding proteins of the cytoskeleton, extracellular matrix, and cell-cell molecules and inflammation-related proteins. A partial IGF-1 deficiency murine model was used to investigate IGF-1's effects on liver by comparing wild-type controls, heterozygous igf1+/-, and heterozygous mice treated with IGF-1 for 10 days. Histology, microarray for mRNA gene expression, RT-qPCR, and lipid peroxidation were assessed. Microarray analyses revealed significant underexpression of igf1 in heterozygous mice compared to control mice, restoring normal liver expression after treatment, which then normalized its circulating levels. IGF-1 receptor mRNA was overexpressed in Hz mice liver, while treated mice displayed a similar expression to that of the controls. Heterozygous mice showed overexpression of several genes encoding proteins related to inflammatory and acute-phase proteins and underexpression or overexpression of genes which coded for extracellular matrix, cytoskeleton, and cell junction components. Histology revealed an altered hepatic architecture. In addition, liver oxidative damage was found increased in the heterozygous group. The mere IGF-1 partial deficiency is associated with relevant alterations of the hepatic architecture and expression of genes involved in cytoskeleton, hepatocyte polarity, cell junctions, and extracellular matrix proteins. Moreover, it induces hepatic expression of the IGF-1 receptor and elevated acute-phase and inflammation mediators, which all resulted in liver oxidative damage.
Collapse
Affiliation(s)
- V J Lara-Diaz
- Escuela de Medicina, Tecnologico de Monterrey, Avenida Morones Prieto No. 3000 Pte. Col. Los Doctores, 64710, Monterrey, Nuevo León, Mexico
| | - I Castilla-Cortazar
- Escuela de Medicina, Tecnologico de Monterrey, Avenida Morones Prieto No. 3000 Pte. Col. Los Doctores, 64710, Monterrey, Nuevo León, Mexico. .,Fundacion de Investigacion HM Hospitales, Madrid, Spain.
| | - I Martín-Estal
- Escuela de Medicina, Tecnologico de Monterrey, Avenida Morones Prieto No. 3000 Pte. Col. Los Doctores, 64710, Monterrey, Nuevo León, Mexico
| | - M García-Magariño
- Escuela de Medicina, Tecnologico de Monterrey, Avenida Morones Prieto No. 3000 Pte. Col. Los Doctores, 64710, Monterrey, Nuevo León, Mexico
| | - G A Aguirre
- Escuela de Medicina, Tecnologico de Monterrey, Avenida Morones Prieto No. 3000 Pte. Col. Los Doctores, 64710, Monterrey, Nuevo León, Mexico
| | - J E Puche
- Department of Medical Physiology, School of Medicine, Universidad San Pablo-CEU, Madrid, Spain
| | - R G de la Garza
- Escuela de Medicina, Tecnologico de Monterrey, Avenida Morones Prieto No. 3000 Pte. Col. Los Doctores, 64710, Monterrey, Nuevo León, Mexico
| | - L A Morales
- Escuela de Medicina, Tecnologico de Monterrey, Avenida Morones Prieto No. 3000 Pte. Col. Los Doctores, 64710, Monterrey, Nuevo León, Mexico
| | - U Muñoz
- Department of Medical Physiology, School of Medicine, Universidad San Pablo-CEU, Madrid, Spain
| |
Collapse
|
18
|
Nishizawa H, Iguchi G, Fukuoka H, Takahashi M, Suda K, Bando H, Matsumoto R, Yoshida K, Odake Y, Ogawa W, Takahashi Y. IGF-I induces senescence of hepatic stellate cells and limits fibrosis in a p53-dependent manner. Sci Rep 2016; 6:34605. [PMID: 27721459 PMCID: PMC5056388 DOI: 10.1038/srep34605] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 09/15/2016] [Indexed: 12/15/2022] Open
Abstract
Hepatic fibrosis in nonalcoholic steatohepatitis (NASH) and cirrhosis determines patient prognosis; however, effective treatment for fibrosis has not been established. Oxidative stress and inflammation activate hepatic stellate cells (HSCs) and promote fibrosis. In contrast, cellular senescence inhibits HSCs’ activity and limits fibrosis. The aim of this study was to explore the effect of IGF-I on NASH and cirrhotic models and to clarify the underlying mechanisms. We demonstrate that IGF-I significantly ameliorated steatosis, inflammation, and fibrosis in a NASH model, methionine-choline-deficient diet-fed db/db mice and ameliorated fibrosis in cirrhotic model, dimethylnitrosamine-treated mice. As the underlying mechanisms, IGF-I improved oxidative stress and mitochondrial function in the liver. In addition, IGF-I receptor was strongly expressed in HSCs and IGF-I induced cellular senescence in HSCs in vitro and in vivo. Furthermore, in mice lacking the key senescence regulator p53, IGF-I did not induce cellular senescence in HSCs or show any effects on fibrosis. Taken together, these results indicate that IGF-I induces senescence of HSCs, inactivates these cells and limits fibrosis in a p53-dependent manner and that IGF-I may be applied to treat NASH and cirrhosis.
Collapse
Affiliation(s)
- Hitoshi Nishizawa
- Division of Diabetes and Endocrinology, Kobe University Hospital, Japan
| | - Genzo Iguchi
- Division of Diabetes and Endocrinology, Kobe University Hospital, Japan
| | - Hidenori Fukuoka
- Division of Diabetes and Endocrinology, Kobe University Hospital, Japan
| | | | - Kentaro Suda
- Division of Diabetes and Endocrinology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Hironori Bando
- Division of Diabetes and Endocrinology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Ryusaku Matsumoto
- Division of Diabetes and Endocrinology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Kenichi Yoshida
- Division of Diabetes and Endocrinology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Yukiko Odake
- Division of Diabetes and Endocrinology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Wataru Ogawa
- Division of Diabetes and Endocrinology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Yutaka Takahashi
- Division of Diabetes and Endocrinology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| |
Collapse
|
19
|
Salazar G, Bellocchi C, Todoerti K, Saporiti F, Piacentini L, Scorza R, Colombo GI. Gene expression profiling reveals novel protective effects of Aminaphtone on ECV304 endothelial cells. Eur J Pharmacol 2016; 782:59-69. [PMID: 27083548 DOI: 10.1016/j.ejphar.2016.04.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Revised: 04/07/2016] [Accepted: 04/11/2016] [Indexed: 01/09/2023]
Abstract
Aminaphtone, a drug used in the treatment of chronic venous insufficiency (CVI), showed a remarkable role in the modulation of several vasoactive factors, like endothelin-1 and adhesion molecules. We analysed in vitro the effects of Aminaphtone on whole-genome gene expression and production of different inflammatory proteins. ECV-304 endothelial cells were stimulated with IL-1β 100U/ml in the presence or absence of Aminaphtone 6μg/ml. Gene expression profiles were compared at 1, 3, and 6h after stimulation by microarray. Supernatants of ECV-304 cultures were analysed at 3, 6, 12, and 24h by multiplex ELISA for production of several cytokine and chemokines. Microarrays showed a significant down-regulation at all times of a wide range of inflammatory genes. Aminaphtone appeared also able to modulate the regulation of immune response process (down-regulating cytokine biosynthesis, transcripts involved in lymphocyte differentiation and cell proliferation, and cytokine-cytokine receptor interaction) and to regulate genes engaged in homeostasis, secretion, body fluid levels, response to hypoxia, cell division, and cell-to-cell communication and signalling. Results were confirmed and extended analysing the secretome, which showed significant reduction of the release of 14 cytokines and chemokines. These effects are predicted to be mediated by interaction with different transcription factors. Aminaphtone was able to modulate the expression of inflammatory molecules relevant to the pathogenesis of several conditions in which the endothelial dysfunction is the main player and early event, like scleroderma, lung fibrosis, or atherosclerosis.
Collapse
Affiliation(s)
- Giulia Salazar
- Referral Centre for Systemic Autoimmune Diseases, University of Milan and Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy.
| | - Chiara Bellocchi
- Referral Centre for Systemic Autoimmune Diseases, University of Milan and Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy
| | - Katia Todoerti
- Laboratory of Preclinical and Translational Research, IRCCS-CROB, Referral Cancer Centre of Basilicata, Rionero in Vulture, Italy
| | - Federica Saporiti
- Laboratory of Immunology and Functional Genomics, Centro Cardiologico Monzino IRCCS, Milan, Italy
| | - Luca Piacentini
- Laboratory of Immunology and Functional Genomics, Centro Cardiologico Monzino IRCCS, Milan, Italy
| | - Raffaella Scorza
- Referral Centre for Systemic Autoimmune Diseases, University of Milan and Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy
| | - Gualtiero I Colombo
- Laboratory of Immunology and Functional Genomics, Centro Cardiologico Monzino IRCCS, Milan, Italy
| |
Collapse
|
20
|
Aguirre GA, De Ita JR, de la Garza RG, Castilla-Cortazar I. Insulin-like growth factor-1 deficiency and metabolic syndrome. J Transl Med 2016; 14:3. [PMID: 26733412 PMCID: PMC4702316 DOI: 10.1186/s12967-015-0762-z] [Citation(s) in RCA: 192] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 12/26/2015] [Indexed: 02/06/2023] Open
Abstract
Consistent evidence associates IGF-1 deficiency and metabolic syndrome. In this review, we will focus on the metabolic effects of IGF-1, the concept of metabolic syndrome and its clinical manifestations (impaired lipid profile, insulin resistance, increased glucose levels, obesity, and cardiovascular disease), discussing whether IGF-1 replacement therapy could be a beneficial strategy for these patients. The search plan was made in Medline for Pubmed with the following mesh terms: IGF-1 and "metabolism, carbohydrate, lipids, proteins, amino acids, metabolic syndrome, cardiovascular disease, diabetes" between the years 1963-2015. The search includes animal and human protocols. In this review we discuss the relevant actions of IGF-1 on metabolism and the implication of IGF-1 deficiency in the establishment of metabolic syndrome. Multiple studies (in vitro and in vivo) demonstrate the association between IGF-1 deficit and deregulated lipid metabolism, cardiovascular disease, diabetes, and an altered metabolic profile of diabetic patients. Based on the available data we propose IGF-1 as a key hormone in the pathophysiology of metabolic syndrome; due to its implications in the metabolism of carbohydrates and lipids. Previous data demonstrates how IGF-1 can be an effective option in the treatment of this worldwide increasing condition. It has to distinguished that the replacement therapy should be only undertaken to restore the physiological levels, never to exceed physiological ranges.
Collapse
Affiliation(s)
- G A Aguirre
- Escuela de Medicina, Tecnologico de Monterrey, Avenida Morones Prieto No. 3000 Pte. Col. Los Doctores, 64710, Monterrey, Nuevo León, Mexico.
| | - J Rodríguez De Ita
- Escuela de Medicina, Tecnologico de Monterrey, Avenida Morones Prieto No. 3000 Pte. Col. Los Doctores, 64710, Monterrey, Nuevo León, Mexico.
| | - R G de la Garza
- Escuela de Medicina, Tecnologico de Monterrey, Avenida Morones Prieto No. 3000 Pte. Col. Los Doctores, 64710, Monterrey, Nuevo León, Mexico.
| | - I Castilla-Cortazar
- Escuela de Medicina, Tecnologico de Monterrey, Avenida Morones Prieto No. 3000 Pte. Col. Los Doctores, 64710, Monterrey, Nuevo León, Mexico.
- Fundación de Investigación HM Hospitales, Madrid, Spain.
| |
Collapse
|
21
|
Intrauterine Growth Retardation (IUGR) as a Novel Condition of Insulin-Like Growth Factor-1 (IGF-1) Deficiency. Rev Physiol Biochem Pharmacol 2016; 170:1-35. [DOI: 10.1007/112_2015_5001] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
22
|
Pozzolini M, Scarfì S, Mussino F, Ferrando S, Gallus L, Giovine M. Molecular Cloning, Characterization, and Expression Analysis of a Prolyl 4-Hydroxylase from the Marine Sponge Chondrosia reniformis. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2015; 17:393-407. [PMID: 25912371 DOI: 10.1007/s10126-015-9630-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Accepted: 01/27/2015] [Indexed: 06/04/2023]
Abstract
Prolyl 4-hydroxylase (P4H) catalyzes the hydroxylation of proline residues in collagen. P4H has two functional subunits, α and β. Here, we report the cDNA cloning, characterization, and expression analysis of the α and β subunits of the P4H derived from the marine sponge Chondrosia reniformis. The amino acid sequence of the α subunit is 533 residues long with an M r of 59.14 kDa, while the β subunit counts 526 residues with an M r of 58.75 kDa. Phylogenetic analyses showed that αP4H and βP4H are more related to the mammalian sequences than to known invertebrate P4Hs. Western blot analysis of sponge lysate protein cross-linking revealed a band of 240 kDa corresponding to an α2β2 tetramer structure. This result suggests that P4H from marine sponges shares the same quaternary structure with vertebrate homologous enzymes. Gene expression analyses showed that αP4H transcript is higher in the choanosome than in the ectosome, while the study of factors affecting its expression in sponge fragmorphs revealed that soluble silicates had no effect on the αP4H levels, whereas ascorbic acid strongly upregulated the αP4H mRNA. Finally, treatment with two different tumor necrosis factor (TNF)-alpha inhibitors determined a significant downregulation of αP4H gene expression in fragmorphs demonstrating, for the first time in Porifera, a positive involvement of TNF in sponge matrix biosynthesis. The molecular characterization of P4H genes involved in collagen hydroxylation, including the mechanisms that regulate their expression, is a key step for future recombinant sponge collagen production and may be pivotal to understand pathological mechanisms related to extracellular matrix deposition in higher organisms.
Collapse
Affiliation(s)
- Marina Pozzolini
- Department of Territory Environment and Life Sciences, University of Genova, Via Pastore 3, 16132, Genova, Italy,
| | | | | | | | | | | |
Collapse
|
23
|
Guerra-Menéndez L, Sádaba MC, Puche JE, Lavandera JL, de Castro LF, de Gortázar AR, Castilla-Cortázar I. IGF-I increases markers of osteoblastic activity and reduces bone resorption via osteoprotegerin and RANK-ligand. J Transl Med 2013; 11:271. [PMID: 24161214 PMCID: PMC4231608 DOI: 10.1186/1479-5876-11-271] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Accepted: 10/16/2013] [Indexed: 02/06/2023] Open
Abstract
Background Bone is one of the major target tissues for Insulin-like Growth Factor I (IGF-I). Low doses of IGF-I were able to improve liver-associated osteopenia. In the present work, a model of partial IGF-I deficiency was used in order to provide insight into the mechanisms of the beneficial actions of IGF-I replacement therapy in bone. Methods Several proteins involved in osteoblastic/osteocyte and osteoclastic differentiation and activity were studied in the three experimental groups: control (CO) group (wild type mice, Igf+/+, n = 10), heterozygous Igf+/- group with partial IGF-I deficiency (Hz, n = 10), and heterozygous Igf+/- mice treated with IGF-I for 10 days (Hz + IGF-I, n = 10). Results Data in this paper confirm that the simple partial IGF-I deficiency is responsible for osteopenia, determined by densitometry and histopathology. These findings are associated with a reduced gene expression of osteoprotegerin, sclerostin, calcitonin receptor (CTR), insulin-like growth factor binding protein 5 and RUNX2. IGF-I replacement therapy normalized CTR gene expression and reduced markers of osteoclastic activity. Conclusions Low doses of IGF-I constituted a real replacement therapy that normalized IGF-I serum levels improving the expression of most of these proteins closely involved in bone-forming, and reducing bone resorption by mechanisms related to osteoprotegerin, RANKL and PTH receptor.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Inma Castilla-Cortázar
- Department of Medical Physiology, Universidad CEU San Pablo, Institute of Applied Molecular Medicine (IMMA), School of Medicine, Room D-201, C/ Boadilla del Monte s/n, km 5,3, 28668 Madrid, Spain.
| |
Collapse
|
24
|
Castilla-Cortazar I, Guerra L, Puche JE, Muñoz U, Barhoum R, Escudero E, Lavandera JL. An experimental model of partial insulin-like growth factor-1 deficiency in mice. J Physiol Biochem 2013; 70:129-39. [DOI: 10.1007/s13105-013-0287-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Accepted: 09/05/2013] [Indexed: 11/28/2022]
|
25
|
Dehghani SM, Karamifar H, Hamzavi SS, Haghighat M, Malek-Hosseini SA. Serum insulinlike growth factor-1 and its binding protein-3 levels in children with cirrhosis waiting for a liver transplant. EXP CLIN TRANSPLANT 2013; 10:252-7. [PMID: 22631062 DOI: 10.6002/ect.2011.0095] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
OBJECTIVES Investigate the prognostic value of serum insulinlike growth factor-1 (IGF-1) and its binding protein 3 (IGFBP-3) in pediatric patients with liver cirrhosis, and investigate the correlation between these parameters and other available prognostic factors including Child-Pugh scoring, Pediatric End-Stage Liver Disease, and Mayo End-Stage Liver Disease scoring. MATERIALS AND METHODS This prospective, case-controlled study was done at the Nemazee hospital for 12 months from August 2009 to August 2010. It included 45 pediatric patients (< 18 years) diagnosed with liver cirrhosis and 38 healthy age and sex-matched controls. The extent and severity of the liver disease was evaluated by the Child-Pugh classification and Pediatric End-Stage Liver Disease/Mayo End-Stage Liver Disease scores. Serum levels of IGF-1 and IGFBP-3 were determined and were compared to controls and their correlation with Child-Pugh and Pediatric End-Stage Liver Disease/Mayo End-Stage Liver Disease scores were investigated. RESULTS The most-common cause of liver cirrhosis was biliary atresia being found in 11 patients (24.4%) followed by tyrosinemia in 8 (17.8%). IGF-1 serum levels were significantly lower in cirrhotic patients compared with controls (3.85 ± 3.69 nmol/L vs 41.79 ± 16.03 nmol/L; P < .001). Serum levels of IGFBP-3 also were significantly lower in patients with liver cirrhosis compared with healthy controls (46.66 ± 30.57 nmol/L vs 205.63 ± 25.52 nmol/L; P < .001). Serum levels of IGF-1 were significantly lower in patients with stage B (P = .047) and C (P = .036) of Child-Pugh classification compared with stage A. Serum levels of IGF-1 (r ≈ 0.227; P = .034) and IGFBP-3 (r ≈ 0.389; P = .008) were negatively correlated with Pediatric End-stage Liver Disease / Mayo End-stage Liver Disease scores. CONCLUSIONS The serum levels of IGF-1 and IGFBP-3 are decreased in children with liver cirrhosis. The stage of liver dysfunction is correlated to serum levels of IGF-1 and IGFBP-3 in children. Thus, these 2 factors can be used for assessing the prognosis and outcome in those children with liver cirrhosis.
Collapse
Affiliation(s)
- Seyed Mohsen Dehghani
- Shiraz Transplant Research Center and the Gastroenterohepatology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| | | | | | | | | |
Collapse
|
26
|
Puche JE, Castilla-Cortázar I. Human conditions of insulin-like growth factor-I (IGF-I) deficiency. J Transl Med 2012; 10:224. [PMID: 23148873 PMCID: PMC3543345 DOI: 10.1186/1479-5876-10-224] [Citation(s) in RCA: 172] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Accepted: 11/07/2012] [Indexed: 12/13/2022] Open
Abstract
Insulin-like growth factor I (IGF-I) is a polypeptide hormone produced mainly by the liver in response to the endocrine GH stimulus, but it is also secreted by multiple tissues for autocrine/paracrine purposes. IGF-I is partly responsible for systemic GH activities although it possesses a wide number of own properties (anabolic, antioxidant, anti-inflammatory and cytoprotective actions). IGF-I is a closely regulated hormone. Consequently, its logical therapeutical applications seems to be limited to restore physiological circulating levels in order to recover the clinical consequences of IGF-I deficiency, conditions where, despite continuous discrepancies, IGF-I treatment has never been related to oncogenesis. Currently the best characterized conditions of IGF-I deficiency are Laron Syndrome, in children; liver cirrhosis, in adults; aging including age-related-cardiovascular and neurological diseases; and more recently, intrauterine growth restriction. The aim of this review is to summarize the increasing list of roles of IGF-I, both in physiological and pathological conditions, underlying that its potential therapeutical options seem to be limited to those proven states of local or systemic IGF-I deficiency as a replacement treatment, rather than increasing its level upper the normal range.
Collapse
Affiliation(s)
- Juan E Puche
- Applied Molecular Medicine Institute (IMMA), School of Medicine, Department of Medical Physiology, Universidad CEU San Pablo, Madrid, Spain
| | - Inma Castilla-Cortázar
- Applied Molecular Medicine Institute (IMMA), School of Medicine, Department of Medical Physiology, Universidad CEU San Pablo, Madrid, Spain
| |
Collapse
|
27
|
Òdena G, Miquel M, Serafín A, Galan A, Morillas R, Planas R, Bartolí R. Rifaximin, but not growth factor 1, reduces brain edema in cirrhotic rats. World J Gastroenterol 2012; 18:2084-91. [PMID: 22563196 PMCID: PMC3342607 DOI: 10.3748/wjg.v18.i17.2084] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2011] [Revised: 06/25/2011] [Accepted: 08/15/2011] [Indexed: 02/06/2023] Open
Abstract
AIM: To compare rifaximin and insulin-like growth factor (IGF)-1 treatment of hyperammonemia and brain edema in cirrhotic rats with portal occlusion.
METHODS: Rats with CCl4-induced cirrhosis with ascites plus portal vein occlusion and controls were randomized into six groups: Cirrhosis; Cirrhosis + IGF-1; Cirrhosis + rifaximin; Controls; Controls + IGF-1; and Controls + rifaximin. An oral glutamine-challenge test was performed, and plasma and cerebral ammonia, glucose, bilirubin, transaminases, endotoxemia, brain water content and ileocecal cultures were measured and liver histology was assessed.
RESULTS: Rifaximin treatment significantly reduced bacterial overgrowth and endotoxemia compared with cirrhosis groups, and improved some liver function parameters (bilirubin, alanine aminotransferase and aspartate aminotransferase). These effects were associated with a significant reduction in cerebral water content. Blood and cerebral ammonia levels, and area-under-the-curve values for oral glutamine-challenge tests were similar in rifaximin-treated cirrhotic rats and control group animals. By contrast, IGF-1 administration failed to improve most alterations observed in cirrhosis.
CONCLUSION: By reducing gut bacterial overgrowth, only rifaximin was capable of normalizing plasma and brain ammonia and thereby abolishing low-grade brain edema, alterations associated with hepatic encephalopathy.
Collapse
|
28
|
Tutau F, Rodríguez-Ortigosa C, Puche JE, Juanarena N, Monreal I, García Fernández M, Clavijo E, Castilla A, Castilla-Cortázar I. Enhanced actions of insulin-like growth factor-I and interferon-alpha co-administration in experimental cirrhosis. Liver Int 2009; 29:37-46. [PMID: 18544128 DOI: 10.1111/j.1478-3231.2008.01770.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
Abstract
BACKGROUND Cirrhosis is a diffuse process of hepatic fibrosis and regenerative nodule formation. The liver is the major source of circulating insulin-like growth factor-I (IGF-I) whose plasma levels are diminished in cirrhosis. IGF-I supplementation has been shown to induce beneficial effects in cirrhosis, including antifibrogenic and hepatoprotective effects. On other hand, interferon-alpha (IFN-alpha) therapy seems to suppress the progression of hepatic fibrosis. AIMS The aim of this study was to investigate the effect of the co-administration of IGF-I+IFN-alpha to Wistar rats with CCl(4)-induced cirrhosis, exploring liver function tests, hepatic lipid peroxidation and histopathology. METHODS The mechanisms underlying the effects of these agents were studied by reverse transcription-polymerase chain reaction, determining the expression of some factors [hepatocyte growth factor (HGF), transforming growth factor-beta (TGF-beta), alpha-smooth muscle actin, collagen, tissular inhibitor of metalloproteinases-1 and pregnane X receptor (PXR)] involved in fibrogenesis, fibrolysis and/or hepatoprotection. RESULTS Both IGF-I and IFN-alpha exerted significant effects on fibrogenesis. IGF-I significantly increased serum albumin and HGF whereas IFN-alpha-therapy did not. The inhibition of TGF-beta expression was only observed by the effect of IFN-alpha-therapy. In addition, only the co-administration of IGF-I and IFN-alpha was able to increase the PXR. The combined therapy with both factors improved liver function tests, hepatic lipid peroxidation and reduced fibrosis, inducing a relevant histological improvement, reducing fibrosis and recovering hepatic architecture. CONCLUSION The co-administration IGF-I+IFN enhanced all the beneficial effects observed with each factor separately, showing an additive action on histopathology and PXR expression, which is involved in the inhibition of fibrogenesis.
Collapse
Affiliation(s)
- Federico Tutau
- Department of Physiology, School of Medicine, University of Málaga, Málaga, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Pérez R, García-Fernández M, Díaz-Sánchez M, Puche JE, Delgado G, Conchillo M, Muntané J, Castilla-Cortázar I. Mitochondrial protection by low doses of insulin-like growth factor-Iin experimental cirrhosis. World J Gastroenterol 2008; 14:2731-9. [PMID: 18461658 PMCID: PMC2709039 DOI: 10.3748/wjg.14.2731] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To characterize the mitochondrial dysfunction in experimental cirrhosis and to study whether insulin-like growth factor-I(IGF-I) therapy (4 wk) is able to induce beneficial effects on damaged mitochondria leading to cellular protection.
METHODS: Wistar rats were divided into three groups: Control group, untreated cirrhotic rats and cirrhotic rats treated with IGF-Itreatment (2 &mgr;g/100 g bw/d). Mitochondrial function was analyzed by flow cytometry in isolated hepatic mitochondria, caspase 3 activation was assessed by Western blot and apoptosis by TUNEL in the three experimental groups.
RESULTS: Untreated cirrhotic rats showed a mitochondrial dysfunction characterized by a significant reduction of mitochondrial membrane potential (in status 4 and 3); an increase of intramitochondrial reactive oxigen species (ROS) generation and a significant reduction of ATPase activity. IGF-Itherapy normalized mitochondrial function by increasing the membrane potential and ATPase activity and reducing the intramitochondrial free radical production. Activity of the electron transport complexes Iand III was increased in both cirrhotic groups. In addition, untreated cirrhotic rats showed an increase of caspase 3 activation and apoptosis. IGF-Itherapy reduced the expression of the active peptide of caspase 3 and resulted in reduced apoptosis.
CONCLUSION: These results show that IGF-Iexerts a mitochondrial protection in experimental cirrhosis leading to reduced apoptosis and increased ATP production.
Collapse
|
30
|
Puche JE, García-Fernández M, Muntané J, Rioja J, González-Barón S, Castilla Cortazar I. Low doses of insulin-like growth factor-I induce mitochondrial protection in aging rats. Endocrinology 2008; 149:2620-7. [PMID: 18276748 DOI: 10.1210/en.2007-1563] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Serum IGF-I levels decline with age. We have recently reported that in aging rats the exogenous administration of IGF-I restores IGF-I circulating levels and age related-changes, improving glucose and lipid metabolisms, increasing testosterone levels and serum total antioxidant capability, and reducing oxidative damage in the brain and liver associated with a normalization of antioxidant enzyme activities. Understanding that mitochondria are one of the most important cellular targets of IGF-I, the aims of this study were to characterize mitochondrial dysfunction and study the effect of IGF-I therapy on mitochondria, leading to cellular protection in the following experimental groups: young controls, untreated old rats, and aging rats treated with IGF-I. Compared with young controls, untreated aging rats showed an increase of oxidative damage in isolated mitochondria with a mitochondrial dysfunction characterized by: depletion of membrane potential with increased proton leak rates and intramitochondrial free radical production, and a significant reduction of ATPase and complex IV activities. In addition, mitochondrial respiration from untreated aging rats was atractyloside insensitive, suggesting that the adenine nucleotide translocator was uncoupled. The adenine nucleotide translocator has been shown to be one of the most sensitive locations for pore opening. Accordingly, untreated aging rats showed a significant overexpression of the active fragment of caspases 3 and 9. IGF-I therapy corrected these parameters of mitochondrial dysfunction and reduced caspase activation. In conclusion, these results show that the cytoprotective effect of IGF-I is closely related to a mitochondrial protection, leading to reduce free radical production, oxidative damage, and apoptosis, and to increased ATP production.
Collapse
Affiliation(s)
- Juan E Puche
- Department of Medical Physiology, School of Medicine, University CEU-Universidad San Pablo, Boadilla del Monte, 28668, Madrid, Spain
| | | | | | | | | | | |
Collapse
|
31
|
Gomes ATB, Bastos CG, Afonso CL, Medrado BF, Andrade ZA. How variable are hydroxyproline determinations made in different samples of the same liver? Clin Biochem 2006; 39:1160-3. [PMID: 17005170 DOI: 10.1016/j.clinbiochem.2006.08.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2006] [Revised: 05/01/2006] [Accepted: 08/10/2006] [Indexed: 01/09/2023]
Abstract
OBJECTIVES The haphazard distribution of fibrous tissue can interfere with quantitative methods for evaluating hepatic fibrosis. Inter-sample variation may represent a crucial issue when hydroxyproline measurement is used to quantify fibrosis. A comparative study of the hydroxyproline levels in normal and fibrotic rats is herein reported. MATERIAL AND METHODS Twelve normal and 20 Capillaria hepatica-infected Wistar rats were used. Two fragments of the liver (A and B) of each rat were taken from separate areas and hydroxyproline measurements were made. Calculated differences in hydroxyproline measurements between samples from the same liver were analyzed by BOOTSTRAP. RESULTS Differences in normal rats varied from 0.026 to 1.85 micromol of HP/g, in ten rats, the difference was less than 0.50 micromol. In infected rats, it varied from 0.04 to 2.86 micromol HP/g. Differences higher than 0.69 micromol/g were significant for normal rats (p<0.05) and above 1.22 micromol/g (p<0.05) for fibrotic rats. CONCLUSIONS Hydroxyproline ratio in a normal liver kept a fair degree of reproducibility. In the presence of hepatic fibrosis, the levels of hydroxyproline may vary significantly between samples from a single liver and may have limited value in quantifying the extent of fibrosis.
Collapse
Affiliation(s)
- Ana Thereza B Gomes
- Laboratory of Experimental Pathology, Gonçalo Moniz Research Center, FIOCRUZ, Rua Valdemar Falcão, n. 121 CEP 40295-001 Salvador, Bahia, Brazil.
| | | | | | | | | |
Collapse
|
32
|
Vera M, Sobrevals L, Zaratiegui M, Martinez L, Palencia B, Rodríguez CM, Prieto J, Fortes P. Liver transduction with a simian virus 40 vector encoding insulin-like growth factor I reduces hepatic damage and the development of liver cirrhosis. Gene Ther 2006; 14:203-10. [PMID: 17024107 DOI: 10.1038/sj.gt.3302858] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Liver transplantation is the only treatment for advanced liver cirrhosis. Therapies halting the progression of the disease are urgently needed. Administration of recombinant insulin-like growth factor-I (rIGF-I) induces hepatoprotective effects in experimental cirrhosis. Therefore, we analyzed the efficacy of a recombinant simian virus 40 vector (rSV40) encoding IGF-I (rSVIGF-I) to prevent cirrhosis progression. First, transgene expression was evaluated in mice injected with rSV40 encoding luciferase, which showed long-term hepatic expression of the transgene. Interestingly, luciferase expression increased significantly in CCl(4)-damaged livers and upon IGF-I administration, thus liver injury and IGF-I expression from rSVIGF-I should favor transgene expression. rSVIGF-I therapeutic efficacy was studied in rats where liver cirrhosis was induced by CCl(4) inhalation during 36 weeks. At the end of the study, the hepatic levels of IGF-I and IGF-binding protein 3 were higher in rSVIGF-I-treated rats than in control cirrhotic animals. Cirrhotic rats treated with rSVIGF-I had reduced serum bilirubin, transaminases and liver fibrosis scores and increased hepatic expression of hepatocyte growth factor and STAT3alpha as compared to cirrhotic animals. Furthermore, cirrhotic animals showed testis atrophy and altered spermatogenesis, whereas testicular size and histology were normal in cirrhotic rats that received rSVIGF-I. Therefore, rSV40-mediated sustained expression of IGF-I in the liver slowed cirrhosis progression.
Collapse
Affiliation(s)
- M Vera
- Department of Hepatology and Gene Therapy, Center for Applied Medical Research (CIMA) and Clinica Universitaria, School of Medicine, University of Navarra, Pamplona, Spain
| | | | | | | | | | | | | | | |
Collapse
|
33
|
|
34
|
Oldroyd SD, Miyamoto Y, Moir A, Johnson TS, El Nahas AM, Haylor JL. An IGF-I antagonist does not inhibit renal fibrosis in the rat following subtotal nephrectomy. Am J Physiol Renal Physiol 2006; 290:F695-702. [PMID: 16204415 DOI: 10.1152/ajprenal.00058.2005] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Insulin-like growth factor I (IGF-I) has been proposed as a mediator of kidney scarring, although no interventional studies on the role of IGF-I in models of chronic kidney disease have been reported. The effect of a peptide IGF-I receptor antagonist (JB3) has been examined on kidney fibrosis and function in the rat following 5/6 subtotal nephrectomy (SNx). Male Wistar rats were anesthetized with halothane and subjected to SNx. JB3 was delivered by subcutaneous infusion using Alzet osmotic minipumps. In vitro studies showed JB3 to displace125I-IGF-I binding to isolated rat glomeruli and to inhibit IGF-I-induced receptor phosphorylation in renal tubular cells in culture. In the 7-day SNx rats, IGF-I immunostain was present in collecting tubules and JB3 inhibited compensatory renal growth, the maximum effect occuring at 10 μg·kg−1·day−1. After 90 days, the SNx rats developed proteinuria, hypertension, and a fall in glomerular filtration rate. IGF-I immunostain was present in the tubulointerstitial space of the remnant kidney together with marked tubulointerstitial fibrosis. Treatment with JB3 at a dose of 10 μg·kg−1·day−1had no effect on the renal fibrosis measured by Masson's trichrome staining or immunostain for collagen III and collagen IV. The proteinuria, hypertension, and lower creatinine clearance all remained unchanged. The remnant kidney was associated with a 50% decrease in renal IGF-I mRNA, which was partially restored by treatment with JB3. Thus an interventional study with an IGF-I receptor antagonist does not support a role for IGF-I in the development of renal fibrosis in the SNx rat, although IGF-I does make an important contribution to compensatory kidney growth.
Collapse
Affiliation(s)
- Simon D Oldroyd
- School of Allied Health Sciences, De Montfort University, Leicester, UK
| | | | | | | | | | | |
Collapse
|
35
|
Chen L, Shen YH, Wang X, Wang J, Gan Y, Chen N, Wang J, LeMaire SA, Coselli JS, Wang XL. Human prolyl-4-hydroxylase alpha(I) transcription is mediated by upstream stimulatory factors. J Biol Chem 2006; 281:10849-55. [PMID: 16488890 PMCID: PMC2819823 DOI: 10.1074/jbc.m511237200] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Prolyl-4-hydroxylase alpha(I) (P4Halpha(I)) is the rate-limiting subunit for P4H enzyme activity, which is essential for procollagen hydroxylation and secretion. In the current study, we have characterized the human P4Halpha(I) promoter for transcription factors and DNA elements regulating P4Halpha(I) expression. Using a progressive deletion cloning approach, we have constructed pGL3-P4Halpha(I) recombinant plasmids. We have identified a positive regulatory region at the positions of bp -184 to -97 responsible for approximately 80% of the P4Halpha(I) promoter efficiency. Three E-boxes were located within this region, and the E-box at position bp -135 explains most of the regulatory capacity. Upstream stimulatory factors (USF1/USF2) were shown to bind on the E-box using chromatin immunoprecipitation assay. Suppression of USF1 and/or USF2 using specific short interference RNA resulted in a significant reduction in P4Halpha(I) promoter activity, and overexpressed USF1 or USF2 increased P4Halpha(I) promoter activity significantly. Although transforming growth factor beta1 increased the USF1/USF2-E-box binding and P4Halpha(I) promoter activity, this up-regulatory effect can be largely prevented by USF1/USF2-specific short interference RNA. On the other hand, cigarette smoking extracts, which have been shown to suppress P4Halpha(I) expression, inhibited the binding between the USF1/USF2 and E-box, resulting in a reduced P4Halpha(I) promoter activity. Furthermore, the E-box on the P4Halpha(I) promoter appeared to indiscriminately bind with either USF1 or USF2, with a similar outcome on the promoter efficiency. In conclusion, our study shows that USF1/USF2 plays a critical role in basal P4Halpha(I) expression, and both positive (transforming growth factor beta1) and negative (cigarette smoking extract) regulators appear to influence the USF-E-box interaction and affect P4Halpha(I) expression.
Collapse
Affiliation(s)
- Li Chen
- Section of Adult Cardiothoracic Service, Texas Heart Institute at St. Luke’s Episcopal Hospital, Baylor College of Medicine, Houston, Texas 77030
- Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas 77030
| | - Ying H. Shen
- Section of Adult Cardiothoracic Service, Texas Heart Institute at St. Luke’s Episcopal Hospital, Baylor College of Medicine, Houston, Texas 77030
- Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas 77030
| | - Xinwen Wang
- Section of Adult Cardiothoracic Service, Texas Heart Institute at St. Luke’s Episcopal Hospital, Baylor College of Medicine, Houston, Texas 77030
- Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas 77030
| | - Jing Wang
- Section of Adult Cardiothoracic Service, Texas Heart Institute at St. Luke’s Episcopal Hospital, Baylor College of Medicine, Houston, Texas 77030
- Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas 77030
| | - Yehua Gan
- Section of Adult Cardiothoracic Service, Texas Heart Institute at St. Luke’s Episcopal Hospital, Baylor College of Medicine, Houston, Texas 77030
- Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas 77030
| | - Nanyue Chen
- Department of Molecular Genetics, University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| | - Jian Wang
- Section of Adult Cardiothoracic Service, Texas Heart Institute at St. Luke’s Episcopal Hospital, Baylor College of Medicine, Houston, Texas 77030
- Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas 77030
| | - Scott A. LeMaire
- Section of Adult Cardiothoracic Service, Texas Heart Institute at St. Luke’s Episcopal Hospital, Baylor College of Medicine, Houston, Texas 77030
- Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas 77030
| | - Joseph S. Coselli
- Section of Adult Cardiothoracic Service, Texas Heart Institute at St. Luke’s Episcopal Hospital, Baylor College of Medicine, Houston, Texas 77030
- Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas 77030
| | - Xing Li Wang
- Section of Adult Cardiothoracic Service, Texas Heart Institute at St. Luke’s Episcopal Hospital, Baylor College of Medicine, Houston, Texas 77030
- Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas 77030
- To whom correspondence should be addressed: NAB 2010, One Baylor Plaza, Baylor College of Medicine, Houston, TX 77030. Tel.: 713-798-5485; Fax: 713-798-1705;
| |
Collapse
|
36
|
Antioxidant effects of insulin-like growth factor-I (IGF-I) in rats with advanced liver cirrhosis. BMC Gastroenterol 2005; 5:7. [PMID: 15745444 PMCID: PMC555751 DOI: 10.1186/1471-230x-5-7] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2004] [Accepted: 03/03/2005] [Indexed: 01/04/2023] Open
Abstract
Background The exogenous administration of Insulin-like Growth Factor-I (IGF-I) induces hepatoprotective and antifibrogenic actions in experimental liver cirrhosis. To better understand the possible pathways behind the beneficial effect of IGF-I, the aim of this work was to investigate severe parameters involved in oxidative damage in hepatic tissue from cirrhotic animals treated with IGF-I (2 μg. 100 g-1. day-1). Iron and copper play an important role in oxidative mechanisms, producing the deleterious hydroxyl radical (*OH) that peroxides lipid membranes and damages DNA. Myeloperoxidase (MPO) and nitric oxide (NO) are known sources of free radicals and induce reduction of ferritin-Fe3+ into free Fe2+, contributing to oxidative damage. Methods Liver cirrhosis was induced by CCl4 inhalation in Wistar male rats for 30 weeks. Healthy controls were studied in parallel (n = 10). Fe and Cu were assessed by atomic absoption spectrometry and iron content was also evaluated by Perls' staining. MPO was measured by ELISA and transferrin and ferritin by immunoturbidimetry. iNOS expression was studied by immuno-histochemistry. Results Liver cirrhosis was histologically proven and ascites was observed in all cirrhotic rats. Compared to controls untreated cirrhotic rats showed increased hepatic levels of iron, ferritin, transferrin (p < 0.01), copper, MPO and iNOS expression (p < 0.01). However, IGF-treatment induced a significant reduction of all these parameters (p < 0.05). Conclusion the hepatoprotective and antifibrogenic effects of IGF-I in cirrhosis are associated with a diminution of the hepatic contents of several factors all of them involved in oxidative damage.
Collapse
|
37
|
Wu YL, Ye J, Zhang S, Zhong J, Xi RP. Clinical significance of serum IGF-I, IGF-II and IGFBP-3 in liver cirrhosis. World J Gastroenterol 2004; 10:2740-3. [PMID: 15309731 PMCID: PMC4572205 DOI: 10.3748/wjg.v10.i18.2740] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
AIM: To investigate the relationship between insulin-like growth factor-I, -II (IGF-I and IGF-II), IGF-binding protein 3 (IGFBP-3) and Child-Pugh score in patients with liver cirrhosis, and to search for potential clinical markers of liver function.
METHODS: Forty-four patients with advanced liver cirrhosis of viral origin were divided into 3 groups according to severity of cirrhosis (Child-Pugh score) and 38 healthy subjects served as controls. Serum levels of IGF-I, IGF-II and IGFBP-3 were measured by immunoradiometric assay.
RESULTS: Serum IGF-I, IGF-II and IGFBP-3 levels were significantly lower in patients with cirrhosis than in controls, and serum concentrations of IGF-I, IGF-II and IGFBP-3 were associated with the severity of liver dysfunction, and dropped sharply during the progression of liver failure. Among these 3 parameters, serum IGF-II was the most sensitive and effective indicator for liver dysfunction. Concentrations of IGF-I < 30 ng/mL, IGF-II < 200 ng/mL and IGFBP-3 < 6 ng/mL implied a negative prognosis for patients with liver cirrhosis.
CONCLUSION: Serum IGF-I, IGF-II and IGFBP-3 may provide a new dimension in the assessment of liver dysfunction. Combined detection of serum IGF-I, IGF-II and IGFBP-3 with Child-Pugh score is more effective in predicting prognosis than Child-Pugh score alone.
Collapse
Affiliation(s)
- Yun-Lin Wu
- Department of Gastroenterology, Ruijin Hospital, Shanghai Second Medical University, Shanghai 200025, China.
| | | | | | | | | |
Collapse
|
38
|
Lakatos PL, Bajnok E, Tornai I, Folhoffer A, Horvath A, Lakatos P, Habior A, Szalay F. Insulin-like growth factor I gene microsatellite repeat, collagen type Ialpha1 gene Sp1 polymorphism, and bone disease in primary biliary cirrhosis. Eur J Gastroenterol Hepatol 2004; 16:753-9. [PMID: 15256976 DOI: 10.1097/01.meg.0000108364.41221.d0] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
BACKGROUND Genetic factors have been implicated in the pathogenesis of osteoporosis, a common disorder in primary biliary cirrhosis. Insulin-like growth factor I (IGF-I) gene microsatellite repeat polymorphism was found to be associated with osteoporosis in some studies, and collagen-Ialpha1 (COLIA1) Sp1 s allele was associated with lower bone mineral density in primary biliary cirrhosis. IGF-I treatment restored osteopenia and reduced fibrogenesis in experimental cirrhosis. We investigated IGF-I and COLIA1 gene polymorphisms and bone mineral density in Hungarian primary biliary cirrhosis patients. PATIENTS AND METHODS Seventy female patients with primary biliary cirrhosis were enrolled (mean age 57.6 years, range 37-76 years; all anti-mitochondrial antibody M2-positive; stage II-IV). One hundred and thirty-nine age-matched female subjects served as controls (mean age 55.9 years, range 43-72 years). COLIA1 and IGF-I polymorphisms were determined by polymerase chain reaction. Bone mineral density was measured by dual-energy X-ray absorptiometry in the lumbar spine and femoral neck. RESULTS The IGF-I was not different between primary biliary cirrhosis patients and controls. The genotype frequency of COLIA1 polymorphism was also not different between primary biliary cirrhosis patients and controls. However, the s allele was significantly less frequent in patients with primary biliary cirrhosis. Osteoporosis was detected in 22 patients. The IGF-I 192/192 genotype was associated with higher femoral-neck z-scores compared with other genotypes. CONCLUSION In contrast to previous studies, the s allele was less frequent in patients with primary biliary cirrhosis, and its presence was not associated with bone mineral density. Since IGF-I polymorphism was associated with bone mineral density, it may be hypothesised that not COLIA1 but IGF-I together with other genetic and environmental factors may be involved in the complex regulation of bone mineral density in primary biliary cirrhosis.
Collapse
|
39
|
Saile B, DiRocco P, Dudas J, El-Armouche H, Sebb H, Eisenbach C, Neubauer K, Ramadori G. IGF-I induces DNA synthesis and apoptosis in rat liver hepatic stellate cells (HSC) but DNA synthesis and proliferation in rat liver myofibroblasts (rMF). J Transl Med 2004; 84:1037-49. [PMID: 15156158 DOI: 10.1038/labinvest.3700116] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Several lines of evidence suggest a role of insulin-like growth factor I (IGF-I) in the regulation of apoptosis. Up to now its impact on many specific cells is unknown. We therefore studied the effect of IGF-I on two similar mesenchymal matrix-producing cell types of the liver, the hepatic stellate cells (HSC) and the myofibroblasts (rMF). The present study aimed to reveal the influence of IGF-I on cell cycle and apoptosis of HSC and rMF and to elucidate responsible signaling. While IGF-I significantly increased DNA synthesis in HSC, cell number decreased and apoptosis increased. In rMF IGF-I also increased DNA synthesis, which is, however, followed by proliferation. Blocking extracellular signal regulating kinase (ERK) revealed that in HSC, bcl-2 upregulation and bax downregulation are effected downstream of ERK, whereas downregulation of NFkappaB and consecutive of bcl-xL is mediated upstream. In the rMF upregulation of both, the antiapoptotic bcl-2 and bcl-xL is mediated upstream of ERK. The expression of the proapoptotic bax is not regulated by IGF-I in rMF. The studies demonstrate a completely different effect and signaling of IGF-I in two morphologically and functionally similar matrix-producing cells of the liver.
Collapse
Affiliation(s)
- Bernhard Saile
- Department of Internal Medicine, Section of Gastroenterology and Endocrinology, University of Göttingen, Göttingen, Germany
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Xu XB, Cai JX, Dong JH, He ZP, Han BL, Leng XS. Effects of different operations on cirrhotic portal hypertensive liver in rats. Shijie Huaren Xiaohua Zazhi 2004; 12:689-693. [DOI: 10.11569/wcjd.v12.i3.689] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To evaluate respectively the effects of portaazygous disconnection (PAD), mesocaval shunt (MCS) and distal splenocaval shunt (DSCS) on the portasytemic shunting (PSS), hepatic function (HF), hepatic mitochondrial respiratory function (HMRF) and its ultrastructure, anti-oxidation ability (HAOA) and lipoperoxide (LPO), so as to provide theoretical basis to select a suitable operation.
METHODS: Using the cirrhotic portal hypertensive model induced by CCl4/ethanol in Wristar rats, we investigated PSS, HF, HMRF and its HAOA and LPO during three wks after MCS, DSCS and PAD.
RESULTS: After MCS, the PSS were further increased, HF, HMRF and HAOA were significantly decreased, and LPO increased. Hepatic mitochondrial ultrastructure showed severely damaged. Only a little improvement was found on the third wk. After DSCS and PAD, above mentioned indexes were less influenced, and they were restored a little more quickly in DSCS groups than that in PAD groups. During the first postoperative wk, the PAD group showed the highest mortality.
CONCLUSION: DSCS may be a desirable operation among the three kinds of operation.
Collapse
|
41
|
García-Fernández M, Castilla-Cortázar I, Díaz-Sánchez M, Díez Caballero F, Castilla A, Díaz Casares A, Varela-Nieto I, González-Barón S. Effect of IGF-I on total serum antioxidant status in cirrhotic rats. J Physiol Biochem 2004; 59:145-6. [PMID: 14649879 DOI: 10.1007/bf03179879] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- M García-Fernández
- Department of Human Physiology, School of Medicine, University of Málaga, Madrid, Spain
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Wang XZ, Chen ZX, Zhang LJ, Chen YX, Li D, Chen FL, Huang YH. Expression of insulin-like growth factor 1 and insulin-like growth factor 1 receptor and its intervention by interleukin-10 in experimental hepatic fibrosis. World J Gastroenterol 2003; 9:1287-91. [PMID: 12800242 PMCID: PMC4611802 DOI: 10.3748/wjg.v9.i6.1287] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2002] [Revised: 02/04/2003] [Accepted: 02/11/2003] [Indexed: 02/06/2023] Open
Abstract
AIM To study the expression of IGF-1 and IGF-1R and its intervention by interleukin-10 in the course of experimental hepatic fibrosis. METHODS Hepatic fibrosis was induced in rats by carbon tetrachloride intoxication and liver specimens were taken from the rats administered CCl4 with or without IL-10 treatment and the animals of the control group. Immunoreactivities for insulin-like growth factor-1 (IGF-1) and IGF-1 receptor(IGF-1R) were demonstrated by immunohistochemistry, and their intensities were evaluated in different animal groups. RESULTS The positive levels for IGF-1 and IGF-1R were increased with the development of hepatic fibrosis, with the positive signals localized in cytoplasm and/or at the plasmic membrane of hepatocytes. The positive signals of IGF-1 and IGF-1R were observed more frequently (P<0.01) in the CCl4-treated group (92.0 % and 90.0 %) compared to those in the control group. The positive signals decreased significantly (P<0.05) in IL-10-treated group. The responses in IGF-1 and IGF-1R expression correlated with the time of IL-10 treatment. CONCLUSION The expression of IGF-1 and IGF-1R immunoreactivities in liver tissue seems to be up-regulated during development of hepatic fibrosis induced by CCl(4), and exogenic IL-10 inhibits the responses.
Collapse
Affiliation(s)
- Xiao-Zhong Wang
- Department of Gastroenterology, Affiliated Union Hospital, Fujian Medical University, Fuzhou, 350001, Fujian Province, China.
| | | | | | | | | | | | | |
Collapse
|
43
|
Abstract
PURPOSE OF REVIEW Liver cirrhosis in the advanced state is characterized by protein wasting, as indicated by the loss of muscle mass, hypoalbuminemia, and an abnormal amino acid profile. The protein wasting condition cirrhosis is associated with a poor prognosis and reduced survival. Poor nutrition, metabolic and hormonal abnormalities, and other disease-associated alterations may all concur to protein wasting. An understanding of the causes and mechanisms leading to protein wasting in cirrhosis may help in the development of nutritional interventions and new therapies. RECENT FINDINGS Albumin and muscle protein turnover in cirrhotic patients have been studied in vivo with the aid of isotope dilution techniques or organ catheterization. Albumin synthesis appears to parallel liver function, i.e. the more compromised is the liver, the less is the albumin production rate. Meal-induced albumin synthesis is impaired even in compensated cirrhotic patients. Skeletal muscle protein synthesis is diminished in cirrhosis, and total muscle protein breakdown also appears to be increased, thus explaining the reduced muscle mass. Either hormone or substrate resistance, or newly involved substances (cytokines, insulin-like growth factor 1, leptin) may play a role in the reduced synthesis of both albumin and muscle proteins in liver cirrhosis. SUMMARY Abnormalities of both albumin and muscle protein turnover have been demonstrated in liver cirrhotic patients. The possible role of the multiple hormonal and metabolic abnormalities of this disease, as well that of cytokines and other recently discovered substances, need to be investigated further.
Collapse
Affiliation(s)
- Paolo Tessari
- Department of Clinical and Experimental Medicine, Policlinico Universitario, University of Padua, Via Giustiniani 2, 35128 Padua, Italy.
| |
Collapse
|