1
|
Kim J, Cho H, Lim DK, Joo MK, Kim K. Perspectives for Improving the Tumor Targeting of Nanomedicine via the EPR Effect in Clinical Tumors. Int J Mol Sci 2023; 24:10082. [PMID: 37373227 DOI: 10.3390/ijms241210082] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/09/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023] Open
Abstract
Over the past few decades, the enhanced permeability and retention (EPR) effect of nanomedicine has been a crucial phenomenon in targeted cancer therapy. Specifically, understanding the EPR effect has been a significant aspect of delivering anticancer agents efficiently to targeted tumors. Although the therapeutic effect has been demonstrated in experimental models using mouse xenografts, the clinical translation of the EPR effect of nanomedicine faces several challenges due to dense extracellular matrix (ECM), high interstitial fluid pressure (IFP) levels, and other factors that arise from tumor heterogeneity and complexity. Therefore, understanding the mechanism of the EPR effect of nanomedicine in clinics is essential to overcome the hurdles of the clinical translation of nanomedicine. This paper introduces the basic mechanism of the EPR effect of nanomedicine, the recently discussed challenges of the EPR effect of nanomedicine, and various strategies of recent nanomedicine to overcome the limitations expected from the patients' tumor microenvironments.
Collapse
Affiliation(s)
- Jinseong Kim
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Woman's University, Seoul 03760, Republic of Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Republic of Korea
| | - Hanhee Cho
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Woman's University, Seoul 03760, Republic of Korea
| | - Dong-Kwon Lim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Republic of Korea
| | - Min Kyung Joo
- Noxpharm Co., Ltd., #518, 150, Bugahyeon-ro, Seodaemun-gu, Seoul 03759, Republic of Korea
| | - Kwangmeyung Kim
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Woman's University, Seoul 03760, Republic of Korea
| |
Collapse
|
2
|
In Humanized Sickle Cell Mice, Imatinib Protects Against Sickle Cell-Related Injury. Hemasphere 2023; 7:e848. [PMID: 36874380 PMCID: PMC9977487 DOI: 10.1097/hs9.0000000000000848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 01/19/2023] [Indexed: 03/06/2023] Open
Abstract
Drug repurposing is a valuable strategy for rare diseases. Sickle cell disease (SCD) is a rare hereditary hemolytic anemia accompanied by acute and chronic painful episodes, most often in the context of vaso-occlusive crisis (VOC). Although progress in the knowledge of pathophysiology of SCD have allowed the development of new therapeutic options, a large fraction of patients still exhibits unmet therapeutic needs, with persistence of VOCs and chronic disease progression. Here, we show that imatinib, an oral tyrosine kinase inhibitor developed for the treatment of chronic myelogenous leukemia, acts as multimodal therapy targeting signal transduction pathways involved in the pathogenesis of both anemia and inflammatory vasculopathy of humanized murine model for SCD. In addition, imatinib inhibits the platelet-derived growth factor-B-dependent pathway, interfering with the profibrotic response to hypoxia/reperfusion injury, used to mimic acute VOCs. Our data indicate that imatinib might be considered as possible new therapeutic tool for chronic treatment of SCD.
Collapse
|
3
|
Lipopeptides in promoting signals at surface/interface of micelles: Their roles in repairing cellular and nuclear damages. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2021.101522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
4
|
A pilot study of first-line olaratumab, doxorubicin and ifosfamide in patients with metastatic soft tissue sarcoma. Cancer Chemother Pharmacol 2019; 84:919-923. [PMID: 31410509 DOI: 10.1007/s00280-019-03928-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Accepted: 08/07/2019] [Indexed: 01/20/2023]
Abstract
INTRODUCTION Olaratumab (O) is a monoclonal antibody that specifically binds PDGFRα. The addition of O to doxorubicin (D) has been approved by the regulatory authorities for metastatic soft tissue sarcoma (MSTS). Since the combination of D + ifosfamide (I) is commonly used in MSTS and is associated with a higher response rate than D alone, it seems reasonable to combine O with the combination of D + I (ODI). We report our preliminary experience with O + D+I in MSTS. METHODS Between 01/01/2015 and 30/05/2018, 15 patients (pts) with MSTS were treated with ODI as first-line therapy. The treatment protocol consisted of IV D 50 mg/m2 and I 5000 mg/m2, day 1 (3 pts), or D 37.5 mg/m2 and I 3000 mg/m2 days 1-2 (12 pts). O (15 mg/kg) was given IV on days 1, 8, and cycles were repeated every 21 days. RESULTS With a median follow up of 16 months, 63 cycles of ODI were given. Objective response was achieved in 4 pts (27%) (CR in 3, PR in 1); 5 pts (33%) remained with stable disease for ≥ 5 mo. Median overall survival was 22 months. Major hematological toxicities (grade 3-4) included: neutropenia-7 pts (47%), and neutropenic fever-3 pts (20%). Non-hematological toxicities included grade 3 diarrheas in 2 pts (13%) after the second cycle. There was no treatment-related mortality. CONCLUSION According to our preliminary experience, adding olaratumab to doxorubicin and ifosfamide is active and its safety profile is comparable to that of doxorubicin and ifosfamide alone in MSTS.
Collapse
|
5
|
Dhua S, Suhas TR, Tilak BG. The Effectiveness of Autologous Platelet Rich Plasma Application in the Wound Bed Prior to Resurfacing with Split Thickness Skin Graft vs. Conventional Mechanical Fixation Using Sutures and Staples. World J Plast Surg 2019; 8:185-194. [PMID: 31309055 PMCID: PMC6620803 DOI: 10.29252/wjps.8.2.185] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND Autologous platelet rich plasma (PRP) has significant benefits facilitating improved graft take on wound beds due to hemostasis, adhesive and healing properties. This study aimed at effective use of PRP in wound beds on graft take irrespective of etiology as compared to conventional methods of mechanical fixation using sutures and staples. METHODS Forty cases including 20 in control and 20 in PRP groups admitted to the Department of Plastic Surgery at Vydehi Institute of Medical Sciences and Research Centre, Bangalore were enrolled between October 2015 and September 2017. Freshly prepared autologous PRP was applied on wound beds in the treated group, while conventional mechanical fixation methods like staples and sutures were used in the control group for the fixation of the skin grafts. RESULTS Most significant result was the instant graft take to the wound bed irrespective of the etiology besides hemostasis and healing properties in the PRP treated group which resulted in considerable reduction of surgeon’s time required for the removal of sutures and staples at the final stages. Also, only 10% with graft edema were noted in the PRP treated patients as compared to 68% in the control group. The inner dressings and skin graft were dry in the PRP group and the post-operative etching, weeping and pain at the graft site reduced. CONCLUSION The cosmetic appearance of this scar was better in the PRP group besides post-operative edema and graft loss. The study recommends use of PRP at the recipient site of split thickness skin graft.
Collapse
Affiliation(s)
- Subha Dhua
- Vydehi Institute of Medical Sciences and Research Centre, Bengaluru, India
| | - T R Suhas
- Vydehi Institute of Medical Sciences and Research Centre, Bengaluru, India
| | - B G Tilak
- Vydehi Institute of Medical Sciences and Research Centre, Bengaluru, India
| |
Collapse
|
6
|
McGuire WP, Penson RT, Gore M, Herraez AC, Peterson P, Shahir A, Ilaria R. Randomized phase II study of the PDGFRα antibody olaratumab plus liposomal doxorubicin versus liposomal doxorubicin alone in patients with platinum-refractory or platinum-resistant advanced ovarian cancer. BMC Cancer 2018; 18:1292. [PMID: 30591028 PMCID: PMC6307114 DOI: 10.1186/s12885-018-5198-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 12/09/2018] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Olaratumab is a platelet-derived growth factor receptor-α (PDGFRα)-targeting monoclonal antibody blocking PDGFRα signaling. PDGFRα expression is associated with a more aggressive phenotype and poor ovarian cancer outcomes. This randomized, open label phase II study evaluated olaratumab plus liposomal doxorubicin compared with liposomal doxorubicin alone in advanced ovarian cancer patients. METHODS Patients with platinum-refractory or platinum-resistant advanced ovarian cancer were randomized 1:1 to receive liposomal doxorubicin (40 mg/m2, intravenous infusion) administered every 4 weeks with or without olaratumab (20 mg/kg, IV infusion) every 2 weeks. Patients were stratified based on prior response to platinum therapy (refractory vs resistant). The primary efficacy endpoint was progression-free survival (PFS). Secondary endpoints included overall survival (OS), objective response rate, duration of response, and safety. RESULTS A total of 123 patients were treated (62 olaratumab+liposomal doxorubicin; 61 liposomal doxorubicin). Median PFS was 4.2 months for olaratumab+liposomal doxorubicin and 4.0 months for liposomal doxorubicin (stratified hazard ratio [HR] = 1.043; 95% confidence interval [CI] 0.698-1.558; p = 0.837). Median OS was 16.6 months and 16.2 months in the olaratumab+liposomal doxorubicin and liposomal doxorubicin arms, respectively (HR = 1.098; 95% CI 0.71-1.71). In the platinum-refractory subgroup, median PFS was 5.5 months (95% CI 1.6-9.2) and 3.7 months (95% CI 1.9-9.2) in the olaratumab+liposomal doxorubicin (n = 15) and liposomal doxorubicin arms (n = 16), respectively (HR = 0.85; 95% CI 0.38-1.91). Overall, 59.7% (olaratumab+liposomal doxorubicin) and 65.6% (liposomal doxorubicin) of patients reported grade ≥ 3 adverse events regardless of causality. The most common treatment-emergent adverse events (all grades) regardless of causality were fatigue related (61%), nausea (57%), and constipation (52%) with olaratumab+liposomal doxorubicin and nausea (64%), fatigue related (62%), and mucositis (46%) with liposomal doxorubicin. CONCLUSIONS The addition of olaratumab to liposomal doxorubicin did not result in significant prolongation of PFS or OS in platinum-resistant or platinum-refractory ovarian cancer. TRIAL REGISTRATION ClinicalTrials.gov identifier: NCT00913835 ; registered June 2, 2009.
Collapse
Affiliation(s)
- William P McGuire
- Virginia Commonwealth University, 1201 E Marshall St, Room 11-210, Richmond, VA, 23298, USA.
| | - Richard T Penson
- Massachusetts General Hospital, Yawkey 9-064, 32 Fruit St, Boston, MA, 02114, USA
| | - Martin Gore
- The Royal Marsden Hospital, Fulham Road, London, SW3 6JJ, UK
| | | | | | - Ashwin Shahir
- Eli Lilly and Company, Lilly UK, EMC Building, Erl Wood Manor, Windlesham, Surrey, GU20 6PH, UK
| | - Robert Ilaria
- Eli Lilly and Company, Indianapolis, IN, USA.,, Celgene Corporation, 86 Morris Ave, Summit, NJ, 07901, USA
| |
Collapse
|
7
|
Zobniw CM, Trinh VA, Posey K, Somaiah N. Olaratumab in the management of advanced soft tissue sarcoma. J Oncol Pharm Pract 2018; 25:442-448. [PMID: 30032714 DOI: 10.1177/1078155218788135] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Olaratumab, the first-in-class anti-PDGFRα monoclonal antibody, has been contingently approved in combination with doxorubicin to treat adult patients with advanced soft tissue sarcoma for improving progression-free and overall survival. Olaratumab-doxorubicin combination has tolerable safety profile, which mimics that of doxorubicin monotherapy, with the exception of infusion-related reactions. Survival data of an ongoing confirmatory phase 3 trial are forthcoming to ascertain the optimal role of this product in the management algorithm of advanced soft tissue sarcoma. Active research is ongoing to identify biomarkers predictive of clinical benefit to olaratumab, to expand its utility to the pediatric population, and to explore its safety and efficacy in combination with other active regimens.
Collapse
Affiliation(s)
- Chrystia M Zobniw
- 1 Division of Pharmacy, Pharmacy Clinical Programs, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Van Anh Trinh
- 1 Division of Pharmacy, Pharmacy Clinical Programs, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kristi Posey
- 2 Department of Sarcoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Neeta Somaiah
- 2 Department of Sarcoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
8
|
Yang Y, Deng Y, Chen X, Zhang J, Chen Y, Li H, Wu Q, Yang Z, Zhang L, Liu B. Inhibition of PDGFR by CP-673451 induces apoptosis and increases cisplatin cytotoxicity in NSCLC cells via inhibiting the Nrf2-mediated defense mechanism. Toxicol Lett 2018; 295:88-98. [PMID: 29857117 DOI: 10.1016/j.toxlet.2018.05.033] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Revised: 04/13/2018] [Accepted: 05/27/2018] [Indexed: 10/16/2022]
Abstract
Platelet-derived growth factor receptors (PDGFRs) are abundantly expressed by stromal cells in the non-small cell lung cancer (NSCLC) microenvironment, and in a subset of cancer cells, usually with their overexpression and/or activating mutation. However, the effect of PDGFR inhibition on lung cancer cells themselves has been largely neglected. In this study, we investigated the anticancer activity of CP-673451, a potent and selective inhibitor of PDGFRβ, on NSCLC cell lines (A549 and H358) and the potential mechanism. The results showed that inhibition of PDGFRβ by CP-673451 induced a significant increase in cell apoptosis, accompanied by ROS accumulation. However, CP-673451 exerted less cytotoxicity in normal lung epithelial cell line BEAS-2B cells determined by MTT and apoptosis assay. Elimination of ROS by NAC reversed the CP-673451-induced apoptosis in NSCLC cells. Furthermore, CP-673451 down-regulated the expression of nuclear factor erythroid 2-related factor 2 (Nrf2) probably through inhibition of PI3K/Akt pathway. Rescue of Nrf2 activity counteracted the effects of CP-673451 on cell apoptosis and ROS accumulation. Silencing PDGFRβ expression by PDGFRβ siRNA exerted similar effects with CP-673451 in A549 cells, and when PDGFRβ was knockdowned by PDGFRβ siRNA, CP-673451 produced no additional effects on cell viability, ROS and GSH production, Nrf2 expression as well as PI3K/Akt pathway activity. Specifically, Nrf2 plays an indispensable role in NSCLC cell sensitivity to platinum-based treatments and we found that combination of CP-673451 and cisplatin produced a synergistic anticancer effect and substantial ROS production in vitro. Therefore, these results clearly demonstrate the effectiveness of inhibition of PDGFRβ against NSCLC cells and strongly suggest that CP-673451 may be a promising adjuvant chemotherapeutic drug.
Collapse
Affiliation(s)
- Yang Yang
- Department of Clinical pharmacy, School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangzhou key laboratory of construction and application of new drug screening model systems, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yanchao Deng
- Department of Clinical pharmacy, School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangzhou key laboratory of construction and application of new drug screening model systems, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Xiangcui Chen
- Department of Clinical pharmacy, School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangzhou key laboratory of construction and application of new drug screening model systems, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Jiahao Zhang
- Department of Clinical pharmacy, School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangzhou key laboratory of construction and application of new drug screening model systems, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yueming Chen
- Department of Clinical pharmacy, School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangzhou key laboratory of construction and application of new drug screening model systems, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Huachao Li
- Department of Clinical pharmacy, School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangzhou key laboratory of construction and application of new drug screening model systems, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Qipeng Wu
- Department of Clinical pharmacy, School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangzhou key laboratory of construction and application of new drug screening model systems, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Zhicheng Yang
- Department of Clinical pharmacy, School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangzhou key laboratory of construction and application of new drug screening model systems, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Luyong Zhang
- Guangzhou key laboratory of construction and application of new drug screening model systems, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| | - Bing Liu
- Department of Clinical pharmacy, School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangzhou key laboratory of construction and application of new drug screening model systems, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| |
Collapse
|
9
|
Human airway smooth muscle cell proliferation from asthmatics is negatively regulated by semaphorin3A. Oncotarget 2018; 7:80238-80251. [PMID: 27791986 PMCID: PMC5348316 DOI: 10.18632/oncotarget.12884] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2016] [Accepted: 10/06/2016] [Indexed: 12/11/2022] Open
Abstract
Airway smooth muscle (ASM) hyperplasia is a key feature of airway remodeling in development of lung diseases such as asthma. Anomalous proliferation of ASM cells directly contributes to ASM hyperplasia. However, the molecular mechanisms controlling ASM cell proliferation are not completely understood. Semaphorins are versatile regulators of various cellular processes including cell growth and proliferation. The role of semaphorins in ASM cell proliferation has remained to be addressed. Here, we report that semaphorin 3A (Sema3A) receptor, neuropilin 1 (Nrp1), is expressed on human ASM cells (HASMC) isolated from healthy and asthmatic donors and treatment of these cells with exogenous Sema3A inhibits growth factor-induced proliferation. Sema3A inhibitory effect on HASMC proliferation is associated with decreased tyrosine phosphorylation of PDGFR, downregulation of Rac1 activation, STAT3 and GSK-3β phosphorylation. Bronchial sections from severe asthmatics displayed immunoreactivity of Nrp1, suggestive of functional contribution of Sema3A-Nrp1 axis in airway remodeling. Together, our data suggest Sema3A-Nrp1 signaling as a novel regulatory pathway of ASM hyperplasia.
Collapse
|
10
|
Park J, Kim S, Joh J, Remick SC, Miller DM, Yan J, Kanaan Z, Chao JH, Krem MM, Basu SK, Hagiwara S, Kenner L, Moriggl R, Bunting KD, Tse W. MLLT11/AF1q boosts oncogenic STAT3 activity through Src-PDGFR tyrosine kinase signaling. Oncotarget 2018; 7:43960-43973. [PMID: 27259262 PMCID: PMC5190071 DOI: 10.18632/oncotarget.9759] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 04/29/2016] [Indexed: 01/05/2023] Open
Abstract
Constitutive STAT3 activation by tyrosine phosphorylation of mutated or amplified tyrosine kinases (pYSTAT3) is critical for cancer initiation, progression, invasion, and motility of carcinoma cells. We showed that AF1q is associated with STAT3 signaling in breast cancer cells. In xenograft models, enhanced AF1q expression activated STAT3 and promoted tumor growth and metastasis in immunodeficient NSG mice. The cytokine secretory phenotype of MDA-MB-231LN breast cancer cells with altered AF1q expression revealed changes in expression of platelet-derived growth factor subunit B (PDGF-B). AF1q-induced PDGF-B stimulated motility, migration, and invasion of MDA-MB-231LN cells, and AF1q up-regulated platelet-derived growth factor receptor (PDGFR) signaling. Further, AF1q-induced PDGFR signaling enhanced STAT3 activity through Src kinase activation, which could be blocked by the Src kinase inhibitor PP1. Moreover, AF1q up-regulated tyrosine kinase signaling through PDGFR signaling, which was blockable by imatinib. In conclusion, we demonstrated that enhanced AF1q expression contributes to persistent and oncogenic pYSTAT3 levels in invasive carcinoma cells by activating Src kinase through activation of the PDGF-B/PDGFR cascade. Therefore, AF1q plays an essential role as a cofactor in PDGF-B-driven STAT3 signaling.
Collapse
Affiliation(s)
- Jino Park
- James Graham Brown Cancer Center, University of Louisville School of Medicine, Louisville, KY, USA.,Division of Blood and Bone Marrow Transplantation, Department of Medicine, University of Louisville School of Medicine, Louisville, KY, USA
| | - Soojin Kim
- James Graham Brown Cancer Center, University of Louisville School of Medicine, Louisville, KY, USA.,Division of Blood and Bone Marrow Transplantation, Department of Medicine, University of Louisville School of Medicine, Louisville, KY, USA
| | - Joongho Joh
- James Graham Brown Cancer Center, University of Louisville School of Medicine, Louisville, KY, USA
| | - Scot C Remick
- Maine Medical Center Research Institute, Portland, ME, USA
| | - Donald M Miller
- James Graham Brown Cancer Center, University of Louisville School of Medicine, Louisville, KY, USA
| | - Jun Yan
- James Graham Brown Cancer Center, University of Louisville School of Medicine, Louisville, KY, USA.,Department of Medicine and Department of Microbiology and Immunology, University of Louisville, Louisville, KY, USA
| | - Zeyad Kanaan
- James Graham Brown Cancer Center, University of Louisville School of Medicine, Louisville, KY, USA
| | - Ju-Hsien Chao
- James Graham Brown Cancer Center, University of Louisville School of Medicine, Louisville, KY, USA.,Division of Blood and Bone Marrow Transplantation, Department of Medicine, University of Louisville School of Medicine, Louisville, KY, USA
| | - Maxwell M Krem
- James Graham Brown Cancer Center, University of Louisville School of Medicine, Louisville, KY, USA.,Division of Blood and Bone Marrow Transplantation, Department of Medicine, University of Louisville School of Medicine, Louisville, KY, USA
| | - Soumit K Basu
- James Graham Brown Cancer Center, University of Louisville School of Medicine, Louisville, KY, USA.,Division of Blood and Bone Marrow Transplantation, Department of Medicine, University of Louisville School of Medicine, Louisville, KY, USA
| | - Shotaro Hagiwara
- Division of Hematology, Internal Medicine, National Center for Global Health and Medicine, Shinjuku, Japan
| | - Lukas Kenner
- Ludwig Boltzmann Institute for Cancer Research, Vienna, Austria.,Clinical Institute for Pathology, Medical University of Vienna, Vienna, Austria.,Unit of Pathology of Laboratory Animals (UPLA), University of Veterinary Medicine, Vienna, Austria
| | - Richard Moriggl
- Ludwig Boltzmann Institute for Cancer Research, Vienna, Austria.,Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, Medical University of Vienna, Vienna, Austria
| | - Kevin D Bunting
- Aflac Cancer and Blood Disorders Center of Children's Healthcare of Atlanta and Emory University School of Medicine, Atlanta, GA, USA
| | - William Tse
- James Graham Brown Cancer Center, University of Louisville School of Medicine, Louisville, KY, USA.,Division of Blood and Bone Marrow Transplantation, Department of Medicine, University of Louisville School of Medicine, Louisville, KY, USA
| |
Collapse
|
11
|
Kameda H, Suzuki M, Takeuchi T. Platelet-Derived Growth Factor as a Therapeutic Target for Systemic Autoimmune Diseases. Drug Target Insights 2017. [DOI: 10.1177/117739280700200006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Affiliation(s)
- Hideto Kameda
- Division of Rheumatology/Clinical Immunology, Department of Internal Medicine, Saitama Medical Center, Saitama Medical University, Kawagoe, Saitama, Japan
| | - Miyuki Suzuki
- Division of Rheumatology/Clinical Immunology, Department of Internal Medicine, Saitama Medical Center, Saitama Medical University, Kawagoe, Saitama, Japan
| | - Tsutomu Takeuchi
- Division of Rheumatology/Clinical Immunology, Department of Internal Medicine, Saitama Medical Center, Saitama Medical University, Kawagoe, Saitama, Japan
| |
Collapse
|
12
|
Okuno SH, Maran A, Robinson SI. Olaratumab for the treatment of advanced soft tissue sarcoma. Expert Rev Anticancer Ther 2017; 17:883-887. [PMID: 28862476 DOI: 10.1080/14737140.2017.1374857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
INTRODUCTION Olaratumab, a human monoclonal antibody against platelet derived growth factor receptor alpha (PDGFR- α), is the first drug that in combination with doxorubicin for the treatment of patients with advanced/metastatic soft tissue sarcoma (STS) that has showed an improved overall survival compared to doxorubicin alone. These initial results are exciting and have the potential to change the landscape of treatment for patients with STS. Areas covered: This article reviews the development of olaratumab for oncology use by reviewing articles in PubMed for 'platelet derived growth factor' and 'receptor' and 'soft tissue sarcoma'. We provide an overview of the published studies to date for olaratumab and specifically the use in soft tissue sarcoma. Expert commentary: Olaratumab is a well-tolerated drug that, when combined with doxorubicin, has shown an improved overall survival compared to doxorubicin alone and the phase III confirmatory study is eagerly awaited.
Collapse
Affiliation(s)
- Scott H Okuno
- a Department of Oncology , Mayo Clinic , Rochester , MN USA
| | - Avudaiappan Maran
- b Biomedical Engineering and Orthopedics , Mayo Clinic , Rochester , MN USA
| | | |
Collapse
|
13
|
Gerber DE, Swanson P, Lopez-Chavez A, Wong L, Dowlati A, Pennell NA, Cronier DM, Qin A, Ilaria R, Cosaert J, Shahir A, Baggstrom MQ. Phase II study of olaratumab with paclitaxel/carboplatin (P/C) or P/C alone in previously untreated advanced NSCLC. Lung Cancer 2017; 111:108-115. [PMID: 28838379 DOI: 10.1016/j.lungcan.2017.07.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 07/05/2017] [Accepted: 07/07/2017] [Indexed: 12/29/2022]
Abstract
BACKGROUND In non-small cell lung cancer (NSCLC), platelet-derived growth factor receptor (PDGFR) mediates angiogenesis, tissue invasion, and tumor interstitial pressure. Olaratumab (IMC-3G3) is a fully human anti-PDGFRα monoclonal antibody. This Phase II study assessed safety and efficacy of olaratumab+paclitaxel/carboplatin (P/C) versus P/C alone for previously untreated advanced NSCLC. MATERIALS AND METHODS Patients received up to six 21-day cycles of P 200mg/m2 and C AUC 6 (day 1)±olaratumab 15mg/kg (days 1 and 8). Primary endpoint was PFS. Olaratumab was continued in the olaratumab+P/C arm until disease progression. RESULTS 131 patients were: 67 with olaratumab+P/C and 64 with P/C; 74% had nonsquamous NSCLC. Median PFS was similar between olaratumab+P/C and P/C (4.4 months each) (HR 1.29; 95% CI [0.86-1.93]; p=0.21). Median OS was similar between olaratumab+P/C (11.8 months) and P/C (11.5 months) (HR 1.04; 95% CI [0.68-1.57]; p=0.87). Both arms had similar toxicity profiles. All evaluable cases were PDGFR-negative by immunohistochemistry. Tumor stroma PDGFR expression was evaluable in 23/131 patients, of which 78% were positive. CONCLUSIONS The addition of olaratumab to P/C did not result in significant prolongation of PFS or OS in advanced NSCLC. Olaratumab studies in other patient populations, including soft tissue sarcoma (NCT02783599), pancreatic cancer (NCT03086369), and pediatric malignancies (NCT02677116) are underway.
Collapse
Affiliation(s)
- David E Gerber
- The University of Texas, Southwestern Medical Center at Dallas, Harry Hines Blvd., Mail Code 8852, Dallas, TX 75390-8852, USA.
| | - Paul Swanson
- Hematology/Oncology Associates of the Treasure Coast, Port Saint Lucie, FL 34952, USA.
| | | | - Lucas Wong
- Scott & White Clinic, Hematology-Oncology, Temple, TX 76508, USA.
| | - Afshin Dowlati
- Case Western Reserve University, Cleveland, OH 44106, USA.
| | | | | | - Amy Qin
- Eli Lilly and Company, Bridgewater, NJ 08807, USA.
| | | | - Jan Cosaert
- Sotio a.s., 170 00 Prague 7, Czech Republic.
| | - Ashwin Shahir
- Eli Lilly and Company, United Kingdom of Great Britain and Northern Ireland, UK
| | | |
Collapse
|
14
|
|
15
|
Holzer TR, O'Neill Reising L, Credille KM, Schade AE, Oakley GJ. Variability in Platelet-Derived Growth Factor Receptor Alpha Antibody Specificity May Impact Clinical Utility of Immunohistochemistry Assays. J Histochem Cytochem 2017; 64:785-810. [PMID: 27837159 DOI: 10.1369/0022155416673979] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 09/06/2016] [Indexed: 11/22/2022] Open
Abstract
Aberrant regulation of the receptor tyrosine kinase platelet-derived growth factor alpha (PDGFRα) is implicated in several types of cancer. Inhibition of the PDGFRα pathway may be a beneficial therapy, and detection of PDGFRα in tumor biopsies may lead to insights about which patients respond to therapy. Exploratory or clinical biomarker use of PDGFRα IHC has been frequently reported, often with polyclonal antibody sc-338. An sc-338-based assay was systematically compared with anti-PDGFRα rabbit monoclonal antibody D13C6 using immunoblot profiling and IHC in formalin-fixed and paraffin-embedded human tumor cell lines. Application of sc-338 to blots of whole cell lysates showed multiple bands including some of unknown origin, whereas application of D13C6 resulted in a prominent band at the expected molecular mass of PDGFRα. The IHC assay using D13C6 showed appropriate staining in cell lines, whereas the assay using sc-338 suggested nonspecific detection of proteins. An optimized IHC assay using D13C6 showed a range of staining in the tumor stromal compartment in lung and ovarian carcinomas. These observations suggest that use of clone sc-338 produced unreliable results and should not be used for an IHC research grade assay. In addition, this precludes its use as a potential antibody for a clinical diagnostic tool.
Collapse
Affiliation(s)
- Timothy R Holzer
- Diagnostic and Experimental Pathology, Lilly Research Laboratories, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana (TRH, LOR, KMC, AES, GJO)
| | - Leslie O'Neill Reising
- Diagnostic and Experimental Pathology, Lilly Research Laboratories, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana (TRH, LOR, KMC, AES, GJO)
| | - Kelly M Credille
- Diagnostic and Experimental Pathology, Lilly Research Laboratories, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana (TRH, LOR, KMC, AES, GJO)
| | - Andrew E Schade
- Diagnostic and Experimental Pathology, Lilly Research Laboratories, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana (TRH, LOR, KMC, AES, GJO)
| | - Gerard J Oakley
- Diagnostic and Experimental Pathology, Lilly Research Laboratories, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana (TRH, LOR, KMC, AES, GJO)
| |
Collapse
|
16
|
El-Agamy DS. Nilotinib attenuates endothelial dysfunction and liver damage in high-cholesterol-fed rabbits. Hum Exp Toxicol 2017; 36:1131-1145. [PMID: 27941169 DOI: 10.1177/0960327116681649] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Nilotinib is an oral potent tyrosine kinase inhibitor that has diverse biological activities. However, its effects on hypercholesterolemia and associated disorders have not been studied yet. The present study explored the effect of nilotinib on atherosclerosis progression, endothelial dysfunction, and hyperlipidemia-associated hepatic injury in high-cholesterol (HC)-fed rabbits. Rabbits were classified into four groups: control, nilotinib, HC, and HC + nilotinib groups. Rabbits were fed either a regular diet or an HC-enriched diet for 8 weeks. By the end of the eighth week, blood and tissue samples were obtained for biochemical, histological, immunohistochemical, and in vitro analyses. Results indicated that the HC diet induced a significant elevation in the serum lipid parameters (triglycerides, total cholesterol, low-density lipoprotein cholesterol, and high-density lipoprotein cholesterol), lactate dehydrogenase, and nitric oxide content. Endothelial dysfunction was evident through the impairment of acetylcholine-induced relaxation of isolated aortas and the histopathological lesions of the aortic specimen. Moreover, HC significantly increased serum malondialdehyde. Liver damage was clear through increase in serum transaminases and alkaline phosphatase, and it was further supported by histopathological examination. HC increased the expression of platelet-derived growth factor receptor (PDGFR)-B in both aorta and liver tissues. Interestingly, nilotinib administration retarded atherosclerosis progression and attenuated all of the aforementioned parameters. These data suggest that nilotinib may counteract atherosclerosis development, vascular dysfunction, and hepatic damage in HC-fed rabbits through interfering with PDGF-B.
Collapse
Affiliation(s)
- D S El-Agamy
- Department of Pharmacology and Toxicology, College of Pharmacy, Taibah University, Al-Madinah Al-Munawwarah, Saudi Arabia; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| |
Collapse
|
17
|
Otaka Y, Rokudai S, Kaira K, Fujieda M, Horikoshi I, Iwakawa-Kawabata R, Yoshiyama S, Yokobori T, Ohtaki Y, Shimizu K, Oyama T, Tamura J, Prives C, Nishiyama M. STXBP4 Drives Tumor Growth and Is Associated with Poor Prognosis through PDGF Receptor Signaling in Lung Squamous Cell Carcinoma. Clin Cancer Res 2017; 23:3442-3452. [PMID: 28087642 DOI: 10.1158/1078-0432.ccr-16-1815] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 11/20/2016] [Accepted: 12/30/2016] [Indexed: 12/22/2022]
Abstract
Purpose: Expression of the ΔN isoform of p63 (ΔNp63) is a diagnostic marker highly specific for lung squamous cell carcinoma (SCC). We previously found that Syntaxin Binding Protein 4 (STXBP4) regulates ΔNp63 ubiquitination, suggesting that STXBP4 may also be an SCC biomarker. To address this issue, we investigated the role of STXBP4 expression in SCC biology and the impact of STXBP4 expression on SCC prognosis.Experimental Design: We carried out a clinicopathologic analysis of STXBP4 expression in 87 lung SCC patients. Whole transcriptome analysis using RNA-seq was performed in STXBP4-positive and STXBP4-negative tumors of lung SCC. Soft-agar assay and xenograft assay were performed using overexpressing or knockdown SCC cells.Results: Significantly higher levels of STXBP4 expression were correlated with accumulations of ΔNp63 in clinical lung SCC specimens (Spearman rank correlation ρ = 0.219). Notably, STXBP4-positive tumors correlated with three important clinical parameters: T factor (P < 0.001), disease stage (P = 0.030), and pleural involvement (P = 0.028). Whole transcriptome sequencing followed by pathway analysis indicated that STXBP4 is involved in functional gene networks that regulate cell growth, proliferation, cell death, and survival in cancer. Platelet-derived growth factor receptor alpha (PDGFRα) was a key downstream mediator of STXBP4 function. In line with this, shRNA mediated STXBP4 and PDGFRA knockdown suppressed tumor growth in soft-agar and xenograft assays.Conclusions: STXBP4 plays a crucial role in driving SCC growth and is an independent prognostic factor for predicting worse outcome in lung SCC. These data suggest that STXBP4 is a relevant therapeutic target for patients with lung SCC. Clin Cancer Res; 23(13); 3442-52. ©2017 AACR.
Collapse
Affiliation(s)
- Yukihiro Otaka
- Department of Molecular Pharmacology and Oncology, Gunma University, Gunma, Japan.,Department of General Medicine, Gunma University, Gunma, Japan
| | - Susumu Rokudai
- Department of Molecular Pharmacology and Oncology, Gunma University, Gunma, Japan.,Department of Biological Sciences, Columbia University, NY, USA
| | - Kyoichi Kaira
- Department of Oncology Clinical Development, Gunma University, Gunma, Japan
| | - Michiru Fujieda
- Department of Molecular Pharmacology and Oncology, Gunma University, Gunma, Japan
| | - Ikuko Horikoshi
- Department of Molecular Pharmacology and Oncology, Gunma University, Gunma, Japan
| | - Reika Iwakawa-Kawabata
- Department of Molecular Pharmacology and Oncology, Gunma University, Gunma, Japan.,Division of Integrated Oncology Research, Gunma University Initiative for Advanced Research (GIAR), Gunma, Japan
| | - Shinji Yoshiyama
- Division of Integrated Oncology Research, Gunma University Initiative for Advanced Research (GIAR), Gunma, Japan
| | - Takehiko Yokobori
- Department of Molecular Pharmacology and Oncology, Gunma University, Gunma, Japan.,Division of Integrated Oncology Research, Gunma University Initiative for Advanced Research (GIAR), Gunma, Japan
| | - Yoichi Ohtaki
- Department of Thoracic Visceral Organ Surgery, Gunma University, Gunma, Japan
| | - Kimihiro Shimizu
- Department of Thoracic Visceral Organ Surgery, Gunma University, Gunma, Japan
| | | | - Jun'ichi Tamura
- Department of General Medicine, Gunma University, Gunma, Japan
| | - Carol Prives
- Department of Biological Sciences, Columbia University, NY, USA
| | - Masahiko Nishiyama
- Department of Molecular Pharmacology and Oncology, Gunma University, Gunma, Japan.,Division of Integrated Oncology Research, Gunma University Initiative for Advanced Research (GIAR), Gunma, Japan
| |
Collapse
|
18
|
Tap WD, Jones RL, Van Tine BA, Chmielowski B, Elias AD, Adkins D, Agulnik M, Cooney MM, Livingston MB, Pennock G, Hameed MR, Shah GD, Qin A, Shahir A, Cronier DM, Ilaria R, Conti I, Cosaert J, Schwartz GK. Olaratumab and doxorubicin versus doxorubicin alone for treatment of soft-tissue sarcoma: an open-label phase 1b and randomised phase 2 trial. Lancet 2016; 388:488-97. [PMID: 27291997 PMCID: PMC5647653 DOI: 10.1016/s0140-6736(16)30587-6] [Citation(s) in RCA: 446] [Impact Index Per Article: 49.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND Treatment with doxorubicin is a present standard of care for patients with metastatic soft-tissue sarcoma and median overall survival for those treated is 12-16 months, but few, if any, novel treatments or chemotherapy combinations have been able to improve these poor outcomes. Olaratumab is a human antiplatelet-derived growth factor receptor α monoclonal antibody that has antitumour activity in human sarcoma xenografts. We aimed to assess the efficacy of olaratumab plus doxorubicin in patients with advanced or metastatic soft-tissue sarcoma. METHODS We did an open-label phase 1b and randomised phase 2 study of doxorubicin plus olaratumab treatment in patients with unresectable or metastatic soft-tissue sarcoma at 16 clinical sites in the USA. For both the phase 1b and phase 2 parts of the study, eligible patients were aged 18 years or older and had a histologically confirmed diagnosis of locally advanced or metastatic soft-tissue sarcoma not previously treated with an anthracycline, an Eastern Cooperative Oncology Group (ECOG) performance status of 0-2, and available tumour tissue to determine PDGFRα expression by immunohistochemistry. In the phase 2 part of the study, patients were randomly assigned in a 1:1 ratio to receive either olaratumab (15 mg/kg) intravenously on day 1 and day 8 plus doxorubicin (75 mg/m(2)) or doxorubicin alone (75 mg/m(2)) on day 1 of each 21-day cycle for up to eight cycles. Randomisation was dynamic and used the minimisation randomisation technique. The phase 1b primary endpoint was safety and the phase 2 primary endpoint was progression-free survival using a two-sided α level of 0.2 and statistical power of 0.8. This study was registered with ClinicalTrials.gov, number NCT01185964. FINDINGS 15 patients were enrolled and treated with olaratumab plus doxorubicin in the phase 1b study, and 133 patients were randomised (66 to olaratumab plus doxorubicin; 67 to doxorubicin alone) in the phase 2 trial, 129 (97%) of whom received at least one dose of study treatment (64 received olaratumab plus doxorubicin, 65 received doxorubicin). Median progression-free survival in phase 2 was 6.6 months (95% CI 4.1-8.3) with olaratumab plus doxorubicin and 4.1 months (2.8-5.4) with doxorubicin (stratified hazard ratio [HR] 0.67; 0.44-1.02, p=0.0615). Median overall survival was 26.5 months (20.9-31.7) with olaratumab plus doxorubicin and 14.7 months (9.2-17.1) with doxorubicin (stratified HR 0.46, 0.30-0.71, p=0.0003). The objective response rate was 18.2% (9.8-29.6) with olaratumab plus doxorubicin and 11.9% (5.3-22.2) with doxorubicin (p=0.3421). Steady state olaratumab serum concentrations were reached during cycle 3 with mean maximum and trough concentrations ranging from 419 μg/mL (geometric coefficient of variation in percentage [CV%] 26.2) to 487 μg/mL (CV% 33.0) and from 123 μg/mL (CV% 31.2) to 156 μg/mL (CV% 38.0), respectively. Adverse events that were more frequent with olaratumab plus doxorubicin versus doxorubicin alone included neutropenia (37 [58%] vs 23 [35%]), mucositis (34 [53%] vs 23 [35%]), nausea (47 [73%] vs 34 [52%]), vomiting (29 [45%] vs 12 [18%]), and diarrhoea (22 [34%] vs 15 [23%]). Febrile neutropenia of grade 3 or higher was similar in both groups (olaratumab plus doxorubicin: eight [13%] of 64 patients vs doxorubicin: nine [14%] of 65 patients). INTERPRETATION This study of olaratumab with doxorubicin in patients with advanced soft-tissue sarcoma met its predefined primary endpoint for progression-free survival and achieved a highly significant improvement of 11.8 months in median overall survival, suggesting a potential shift in the treatment of soft-tissue sarcoma. FUNDING Eli Lilly and Company.
Collapse
Affiliation(s)
- William D Tap
- Memorial Sloan Kettering Cancer Center, New York, NY, USA; Weill Cornell Medical College, New York, NY, USA.
| | - Robin L Jones
- University Washington, Seattle, WA, USA; The Royal Marsden Hospital, London, UK
| | | | - Bartosz Chmielowski
- UCLA Medical Center, Jonsson Comprehensive Cancer Center, Los Angeles, CA, USA
| | | | | | | | - Matthew M Cooney
- University Hospitals Case Medical Center, Seidman Cancer Center, Division of Hematology and Oncology, Cleveland, OH, USA
| | - Michael B Livingston
- Carolinas Healthcare System, The Charlotte-Mecklenburg Hospital Authority, Charlotte, NC, USA
| | | | - Meera R Hameed
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | - Amy Qin
- Eli Lilly and Company, Bridgewater, NJ, USA
| | | | | | - Robert Ilaria
- Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN, USA
| | - Ilaria Conti
- Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN, USA
| | | | | |
Collapse
|
19
|
Sarhan AR, Patel TR, Creese AJ, Tomlinson MG, Hellberg C, Heath JK, Hotchin NA, Cunningham DL. Regulation of Platelet Derived Growth Factor Signaling by Leukocyte Common Antigen-related (LAR) Protein Tyrosine Phosphatase: A Quantitative Phosphoproteomics Study. Mol Cell Proteomics 2016; 15:1823-36. [PMID: 27074791 DOI: 10.1074/mcp.m115.053652] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Indexed: 02/01/2023] Open
Abstract
Intracellular signaling pathways are reliant on protein phosphorylation events that are controlled by a balance of kinase and phosphatase activity. Although kinases have been extensively studied, the role of phosphatases in controlling specific cell signaling pathways has been less so. Leukocyte common antigen-related protein (LAR) is a member of the LAR subfamily of receptor-like protein tyrosine phosphatases (RPTPs). LAR is known to regulate the activity of a number of receptor tyrosine kinases, including platelet-derived growth factor receptor (PDGFR). To gain insight into the signaling pathways regulated by LAR, including those that are PDGF-dependent, we have carried out the first systematic analysis of LAR-regulated signal transduction using SILAC-based quantitative proteomic and phosphoproteomic techniques. We haveanalyzed differential phosphorylation between wild-type mouse embryo fibroblasts (MEFs) and MEFs in which the LAR cytoplasmic phosphatase domains had been deleted (LARΔP), and found a significant change in abundance of phosphorylation on 270 phosphosites from 205 proteins because of the absence of the phosphatase domains of LAR. Further investigation of specific LAR-dependent phosphorylation sites and enriched biological processes reveal that LAR phosphatase activity impacts on a variety of cellular processes, most notably regulation of the actin cytoskeleton. Analysis of putative upstream kinases that may play an intermediary role between LAR and the identified LAR-dependent phosphorylation events has revealed a role for LAR in regulating mTOR and JNK signaling.
Collapse
Affiliation(s)
- Adil R Sarhan
- ‡From the School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom
| | - Trushar R Patel
- ‡From the School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom
| | - Andrew J Creese
- ‡From the School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom
| | - Michael G Tomlinson
- ‡From the School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom
| | - Carina Hellberg
- ‡From the School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom
| | - John K Heath
- ‡From the School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom
| | - Neil A Hotchin
- ‡From the School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom
| | - Debbie L Cunningham
- ‡From the School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom
| |
Collapse
|
20
|
GZD856, a novel potent PDGFRα/β inhibitor, suppresses the growth and migration of lung cancer cells in vitro and in vivo. Cancer Lett 2016; 375:172-178. [PMID: 26940138 DOI: 10.1016/j.canlet.2016.02.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 01/28/2016] [Accepted: 02/09/2016] [Indexed: 12/20/2022]
Abstract
Platelet-derived growth factor receptors (PDGFRα/β) play critical roles in the autocrine-stimulated growth and recruitment of cancer-associated fibroblasts (CAFs) of human lung cancer cells. We have identified GZD856 as a new PDGFR inhibitor that potently inhibits PDGFRα/β kinase activity and blocks this signaling pathway in lung cancer cells both in vitro and in vivo. GZD856 strongly suppresses the proliferation of PDGFRα-amplified H1703 (PDGFRβ(-)) human lung cancer cells and demonstrates significant in vivo antitumor efficacy in a xenograft mouse model. Although GZD856 displays only limited in vitro antiproliferative efficiency against PDGFRα(-)/PDGFRβ(+) A549 lung cancer cells, it efficiently inhibits the in vivo growth and metastasis of A549 cancer cells in xenograft and orthotopic models, respectively. The promising in vivo antitumor activity of GZD856 in A549 models may result from its suppression of PDGFR-related microenvironment factors, such as recruitment of CAFs and collagen content in stromal cells. GZD856 may be considered as a promising new candidate for anti-lung cancer drug development.
Collapse
|
21
|
Li H, Zheng J, Guan R, Zhu Z, Yuan X. Tyrphostin AG 1296 induces glioblastoma cell apoptosis in vitro and in vivo. Oncol Lett 2015; 10:3429-3433. [PMID: 26788146 PMCID: PMC4665272 DOI: 10.3892/ol.2015.3781] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Accepted: 05/14/2015] [Indexed: 11/19/2022] Open
Abstract
Glioblastoma is the most common type of malignant human brain tumor. Currently available chemotherapies for glioblastoma focus on targeting tyrosine kinases. However, the existing inhibitors of tyrosine kinases have not produced the therapeutic outcomes that were anticipated. In order to investigate the viability alternative chemotherapeutic agents in this disease, the present study examined the anticancer effects of tyrphostin AG 1296, focusing on its involvement in apoptosis in glioblastoma cells. The study aimed to identify whether tyrphostin AG 1296 affects glioblastoma cell growth by inducing cell apoptosis. To achieve this, cell viability, propidium iodide analysis and cell invasion assay were used to measure cell growth, cell apoptosis and cell migration of human glioblastoma cells. The results showed that tyrphostin AG 1296 treatment reduced cell viability and suppressed migration of human glioblastoma cells. It was also demonstrated that tyrphostin AG 1296 induced cell apoptosis in vitro. Finally, tyrphostin AG 1296 was also shown to significantly inhibit the growth of glioblastoma cells and to increase tumor cell apoptosis in vivo. These findings suggest that tyrphostin AG 1296 induces apoptosis, thereby reducing cell viability and capacity for migration of glioblastoma cells.
Collapse
Affiliation(s)
- Hongwei Li
- Department of Neurosurgery, Zhongnan Hospital, Wuhan University, Wuhan, Hubei 430071, P.R. China; Department of Neurosurgery, The Eight People's Hospital of Shenzhen, Shenzhen, Guangdong 510000, P.R. China
| | - Junning Zheng
- Department of Neurosurgery, The Eight People's Hospital of Shenzhen, Shenzhen, Guangdong 510000, P.R. China
| | - Ruiyun Guan
- Department of Neurosurgery, The Eight People's Hospital of Shenzhen, Shenzhen, Guangdong 510000, P.R. China
| | - Zifeng Zhu
- Department of Neurosurgery, The Eight People's Hospital of Shenzhen, Shenzhen, Guangdong 510000, P.R. China
| | - Xianhou Yuan
- Department of Neurosurgery, Zhongnan Hospital, Wuhan University, Wuhan, Hubei 430071, P.R. China
| |
Collapse
|
22
|
Chen S, Guo X, Imarenezor O, Imoukhuede PI. Quantification of VEGFRs, NRP1, and PDGFRs on Endothelial Cells and Fibroblasts Reveals Serum, Intra-Family Ligand, and Cross-Family Ligand Regulation. Cell Mol Bioeng 2015. [DOI: 10.1007/s12195-015-0411-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
|
23
|
Kumalo HM, Bhakat S, Soliman ME. Heat-shock protein 90 (Hsp90) as anticancer target for drug discovery: an ample computational perspective. Chem Biol Drug Des 2015; 86:1131-60. [PMID: 25958815 DOI: 10.1111/cbdd.12582] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
There are over 100 different types of cancer, and each is classified based on the type of cell that is initially affected. If left untreated, cancer can result in serious health problems and eventually death. Recently, the paradigm of cancer chemotherapy has evolved to use a combination approach, which involves the use of multiple drugs each of which targets an individual protein. Inhibition of heat-shock protein 90 (Hsp90) is one of the novel key cancer targets. Because of its ability to target several signaling pathways, Hsp90 inhibition emerged as a useful strategy to treat a wide variety of cancers. Molecular modeling approaches and methodologies have become 'close counterparts' to experiments in drug design and discovery workflows. A wide range of molecular modeling approaches have been developed, each of which has different objectives and outcomes. In this review, we provide an up-to-date systematic overview on the different computational models implemented toward the design of Hsp90 inhibitors as anticancer agents. Although this is the main emphasis of this review, different topics such as background and current statistics of cancer, different anticancer targets including Hsp90, and the structure and function of Hsp90 from an experimental perspective, for example, X-ray and NMR, are also addressed in this report. To the best of our knowledge, this review is the first account, which comprehensively outlines various molecular modeling efforts directed toward identification of anticancer drugs targeting Hsp90. We believe that the information, methods, and perspectives highlighted in this report would assist researchers in the discovery of potential anticancer agents.
Collapse
Affiliation(s)
- Hezekiel M Kumalo
- School of Health Sciences, University of KwaZulu-Natal, Westville, Durban, 4001, South Africa
| | - Soumendranath Bhakat
- School of Health Sciences, University of KwaZulu-Natal, Westville, Durban, 4001, South Africa.,Division of Biophysical Chemistry, Lund University, P.O. Box 124, SE-22100, Lund, Sweden
| | - Mahmoud E Soliman
- School of Health Sciences, University of KwaZulu-Natal, Westville, Durban, 4001, South Africa
| |
Collapse
|
24
|
Ao M, Brewer BM, Yang L, Franco Coronel OE, Hayward SW, Webb DJ, Li D. Stretching fibroblasts remodels fibronectin and alters cancer cell migration. Sci Rep 2015; 5:8334. [PMID: 25660754 PMCID: PMC4321168 DOI: 10.1038/srep08334] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2014] [Accepted: 01/13/2015] [Indexed: 01/07/2023] Open
Abstract
Most investigations of cancer-stroma interactions have focused on biochemical signaling effects, with much less attention being paid to biophysical factors. In this study, we investigated the role of mechanical stimuli on human prostatic fibroblasts using a microfluidic platform that was adapted for our experiments and further developed for both repeatable performance among multiple assays and for compatibility with high-resolution confocal microscopy. Results show that mechanical stretching of normal tissue-associated fibroblasts (NAFs) alters the structure of secreted fibronectin. Specifically, unstretched NAFs deposit and assemble fibronectin in a random, mesh-like arrangement, while stretched NAFs produce matrix with a more organized, linearly aligned structure. Moreover, the stretched NAFs exhibited an enhanced capability for directing co-cultured cancer cell migration in a persistent manner. Furthermore, we show that stretching NAFs triggers complex biochemical signaling events through the observation of increased expression of platelet derived growth factor receptor α (PDGFRα). A comparison of these behaviors with those of cancer-associated fibroblasts (CAFs) indicates that the observed phenotypes of stretched NAFs are similar to those associated with CAFs, suggesting that mechanical stress is a critical factor in NAF activation and CAF genesis.
Collapse
Affiliation(s)
- Mingfang Ao
- Department of Biological Sciences, Vanderbilt University, Nashville, TN
| | - Bryson M Brewer
- Department of Mechanical Engineering, Vanderbilt University, Nashville, TN
| | - Lijie Yang
- Department of Mechanical Engineering, Vanderbilt University, Nashville, TN
| | - Omar E Franco Coronel
- 1] Department of Cancer Biology, Vanderbilt University, Nashville, TN [2] Department of Urologic Surgery, Vanderbilt University, Nashville, TN
| | - Simon W Hayward
- 1] Department of Cancer Biology, Vanderbilt University, Nashville, TN [2] Department of Urologic Surgery, Vanderbilt University, Nashville, TN
| | - Donna J Webb
- 1] Department of Biological Sciences, Vanderbilt University, Nashville, TN [2] Department of Cancer Biology, Vanderbilt University, Nashville, TN
| | - Deyu Li
- Department of Mechanical Engineering, Vanderbilt University, Nashville, TN
| |
Collapse
|
25
|
Demaria M, Ohtani N, Youssef SA, Rodier F, Toussaint W, Mitchell JR, Laberge RM, Vijg J, Van Steeg H, Dollé MET, Hoeijmakers JHJ, de Bruin A, Hara E, Campisi J. An essential role for senescent cells in optimal wound healing through secretion of PDGF-AA. Dev Cell 2014; 31:722-33. [PMID: 25499914 DOI: 10.1016/j.devcel.2014.11.012] [Citation(s) in RCA: 1375] [Impact Index Per Article: 125.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Revised: 10/07/2014] [Accepted: 11/10/2014] [Indexed: 12/16/2022]
Abstract
Cellular senescence suppresses cancer by halting the growth of premalignant cells, yet the accumulation of senescent cells is thought to drive age-related pathology through a senescence-associated secretory phenotype (SASP), the function of which is unclear. To understand the physiological role(s) of the complex senescent phenotype, we generated a mouse model in which senescent cells can be visualized and eliminated in living animals. We show that senescent fibroblasts and endothelial cells appear very early in response to a cutaneous wound, where they accelerate wound closure by inducing myofibroblast differentiation through the secretion of platelet-derived growth factor AA (PDGF-AA). In two mouse models, topical treatment of senescence-free wounds with recombinant PDGF-AA rescued the delayed wound closure and lack of myofibroblast differentiation. These findings define a beneficial role for the SASP in tissue repair and help to explain why the SASP evolved.
Collapse
Affiliation(s)
- Marco Demaria
- Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA 94945, USA
| | - Naoko Ohtani
- Division of Cancer Biology, The Japanese Foundation for Cancer Research, Koto-ku, Tokyo 135-8550, Japan
| | - Sameh A Youssef
- Department of Pathobiology, Dutch Molecular Pathology Center, Faculty of Veterinary Medicine, Utrecht University, Utrecht 3509, the Netherlands
| | - Francis Rodier
- Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA 94945, USA
| | - Wendy Toussaint
- CGC Department of Genetics, Erasmus Medical Center, Rotterdam 12306, the Netherlands
| | - James R Mitchell
- CGC Department of Genetics, Erasmus Medical Center, Rotterdam 12306, the Netherlands
| | - Remi-Martin Laberge
- Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA 94945, USA
| | - Jan Vijg
- Department of Genetics, Albert Einstein College of Medicine, 1301 Morris Park Avenue, Bronx, NY 10461, USA
| | - Harry Van Steeg
- Department of Toxicogenetics, Leiden University Medical Center, Leiden 2318 NN, the Netherlands; National Institute of Public Health and the Environment (RIVM), Antonie van Leeuwenhoeklaan 9, Bilthoven 3721 MA, the Netherlands
| | - Martijn E T Dollé
- National Institute of Public Health and the Environment (RIVM), Antonie van Leeuwenhoeklaan 9, Bilthoven 3721 MA, the Netherlands
| | - Jan H J Hoeijmakers
- CGC Department of Genetics, Erasmus Medical Center, Rotterdam 12306, the Netherlands
| | - Alain de Bruin
- Department of Pathobiology, Dutch Molecular Pathology Center, Faculty of Veterinary Medicine, Utrecht University, Utrecht 3509, the Netherlands
| | - Eiji Hara
- Division of Cancer Biology, The Japanese Foundation for Cancer Research, Koto-ku, Tokyo 135-8550, Japan
| | - Judith Campisi
- Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA 94945, USA; Lawrence Berkeley National Laboratory, Life Sciences Division, 1 Cyclotron Road, Berkeley, CA 94720, USA.
| |
Collapse
|
26
|
Inhibitory effect of a novel naphthoquinone derivative on proliferation of vascular smooth muscle cells through suppression of platelet-derived growth factor receptor β tyrosine kinase. Eur J Pharmacol 2014; 733:81-9. [DOI: 10.1016/j.ejphar.2014.03.037] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2014] [Revised: 03/10/2014] [Accepted: 03/18/2014] [Indexed: 12/20/2022]
|
27
|
Roh JW, Huang J, Hu W, Yang X, Jennings NB, Sehgal V, Sohn BH, Han HD, Lee SJ, Thanapprapasr D, Bottsford-Miller J, Zand B, Dalton HJ, Previs RA, Davis AN, Matsuo K, Lee JS, Ram P, Coleman RL, Sood AK. Biologic effects of platelet-derived growth factor receptor α blockade in uterine cancer. Clin Cancer Res 2014; 20:2740-50. [PMID: 24634380 PMCID: PMC4024372 DOI: 10.1158/1078-0432.ccr-13-2507] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
PURPOSE Platelet-derived growth factor receptor α (PDGFRα) expression is frequently observed in many kinds of cancer and is a candidate for therapeutic targeting. This preclinical study evaluated the biologic significance of PDGFRα and PDGFRα blockade (using a fully humanized monoclonal antibody, 3G3) in uterine cancer. EXPERIMENTAL DESIGN Expression of PDGFRα was examined in uterine cancer clinical samples and cell lines, and biologic effects of PDGFRα inhibition were evaluated using in vitro (cell viability, apoptosis, and invasion) and in vivo (orthotopic) models of uterine cancer. RESULTS PDGFRα was highly expressed and activated in uterine cancer samples and cell lines. Treatment with 3G3 resulted in substantial inhibition of PDGFRα phosphorylation and of downstream signaling molecules AKT and mitogen-activated protein kinase (MAPK). Cell viability and invasive potential of uterine cancer cells were also inhibited by 3G3 treatment. In orthotopic mouse models of uterine cancer, 3G3 monotherapy had significant antitumor effects in the PDGFRα-positive models (Hec-1A, Ishikawa, Spec-2) but not in the PDGFRα-negative model (OVCA432). Greater therapeutic effects were observed for 3G3 in combination with chemotherapy than for either drug alone in the PDGFRα-positive models. The antitumor effects of therapy were related to increased apoptosis and decreased proliferation and angiogenesis. CONCLUSIONS These findings identify PDGFRα as an attractive target for therapeutic development in uterine cancer.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/immunology
- Antibodies, Monoclonal/pharmacology
- Antineoplastic Agents/pharmacology
- Apoptosis/drug effects
- Blotting, Western
- Cell Line, Tumor
- Cell Proliferation/drug effects
- Cell Survival/drug effects
- Drug Synergism
- Female
- Gene Expression Regulation, Neoplastic/drug effects
- Humans
- Immunohistochemistry
- Mice, Nude
- Mitogen-Activated Protein Kinases/metabolism
- Neovascularization, Pathologic/metabolism
- Neovascularization, Pathologic/pathology
- Neovascularization, Pathologic/prevention & control
- Oligonucleotide Array Sequence Analysis
- Phosphorylation/drug effects
- Proto-Oncogene Proteins c-akt/metabolism
- Receptor, Platelet-Derived Growth Factor alpha/antagonists & inhibitors
- Receptor, Platelet-Derived Growth Factor alpha/immunology
- Receptor, Platelet-Derived Growth Factor alpha/metabolism
- Signal Transduction/drug effects
- Transcriptome/drug effects
- Uterine Neoplasms/drug therapy
- Uterine Neoplasms/genetics
- Uterine Neoplasms/metabolism
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Ju-Won Roh
- Authors' Affiliations: Departments of Gynecologic Oncology and Reproductive Medicine and Cancer Biology, Center for RNA Interference and Non-Coding RNA, the University of Texas MD Anderson Cancer Center, Houston, Texas; University of Southern California, Los Angeles, California; Department of Obstetrics and Gynecology, Dongguk University; Departments of Systems Biology and Obstetrics and Gynecology, Konkuk University, Seoul, Korea; and Department of Obstetrics and Gynecology, Ramathibodi Hospital, Mahidol University, Bangkok, ThailandAuthors' Affiliations: Departments of Gynecologic Oncology and Reproductive Medicine and Cancer Biology, Center for RNA Interference and Non-Coding RNA, the University of Texas MD Anderson Cancer Center, Houston, Texas; University of Southern California, Los Angeles, California; Department of Obstetrics and Gynecology, Dongguk University; Departments of Systems Biology and Obstetrics and Gynecology, Konkuk University, Seoul, Korea; and Department of Obstetrics and Gynecology, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Jie Huang
- Authors' Affiliations: Departments of Gynecologic Oncology and Reproductive Medicine and Cancer Biology, Center for RNA Interference and Non-Coding RNA, the University of Texas MD Anderson Cancer Center, Houston, Texas; University of Southern California, Los Angeles, California; Department of Obstetrics and Gynecology, Dongguk University; Departments of Systems Biology and Obstetrics and Gynecology, Konkuk University, Seoul, Korea; and Department of Obstetrics and Gynecology, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Wei Hu
- Authors' Affiliations: Departments of Gynecologic Oncology and Reproductive Medicine and Cancer Biology, Center for RNA Interference and Non-Coding RNA, the University of Texas MD Anderson Cancer Center, Houston, Texas; University of Southern California, Los Angeles, California; Department of Obstetrics and Gynecology, Dongguk University; Departments of Systems Biology and Obstetrics and Gynecology, Konkuk University, Seoul, Korea; and Department of Obstetrics and Gynecology, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - XiaoYun Yang
- Authors' Affiliations: Departments of Gynecologic Oncology and Reproductive Medicine and Cancer Biology, Center for RNA Interference and Non-Coding RNA, the University of Texas MD Anderson Cancer Center, Houston, Texas; University of Southern California, Los Angeles, California; Department of Obstetrics and Gynecology, Dongguk University; Departments of Systems Biology and Obstetrics and Gynecology, Konkuk University, Seoul, Korea; and Department of Obstetrics and Gynecology, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Nicholas B Jennings
- Authors' Affiliations: Departments of Gynecologic Oncology and Reproductive Medicine and Cancer Biology, Center for RNA Interference and Non-Coding RNA, the University of Texas MD Anderson Cancer Center, Houston, Texas; University of Southern California, Los Angeles, California; Department of Obstetrics and Gynecology, Dongguk University; Departments of Systems Biology and Obstetrics and Gynecology, Konkuk University, Seoul, Korea; and Department of Obstetrics and Gynecology, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Vasudha Sehgal
- Authors' Affiliations: Departments of Gynecologic Oncology and Reproductive Medicine and Cancer Biology, Center for RNA Interference and Non-Coding RNA, the University of Texas MD Anderson Cancer Center, Houston, Texas; University of Southern California, Los Angeles, California; Department of Obstetrics and Gynecology, Dongguk University; Departments of Systems Biology and Obstetrics and Gynecology, Konkuk University, Seoul, Korea; and Department of Obstetrics and Gynecology, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Bo Hwa Sohn
- Authors' Affiliations: Departments of Gynecologic Oncology and Reproductive Medicine and Cancer Biology, Center for RNA Interference and Non-Coding RNA, the University of Texas MD Anderson Cancer Center, Houston, Texas; University of Southern California, Los Angeles, California; Department of Obstetrics and Gynecology, Dongguk University; Departments of Systems Biology and Obstetrics and Gynecology, Konkuk University, Seoul, Korea; and Department of Obstetrics and Gynecology, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Hee Dong Han
- Authors' Affiliations: Departments of Gynecologic Oncology and Reproductive Medicine and Cancer Biology, Center for RNA Interference and Non-Coding RNA, the University of Texas MD Anderson Cancer Center, Houston, Texas; University of Southern California, Los Angeles, California; Department of Obstetrics and Gynecology, Dongguk University; Departments of Systems Biology and Obstetrics and Gynecology, Konkuk University, Seoul, Korea; and Department of Obstetrics and Gynecology, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Sun Joo Lee
- Authors' Affiliations: Departments of Gynecologic Oncology and Reproductive Medicine and Cancer Biology, Center for RNA Interference and Non-Coding RNA, the University of Texas MD Anderson Cancer Center, Houston, Texas; University of Southern California, Los Angeles, California; Department of Obstetrics and Gynecology, Dongguk University; Departments of Systems Biology and Obstetrics and Gynecology, Konkuk University, Seoul, Korea; and Department of Obstetrics and Gynecology, Ramathibodi Hospital, Mahidol University, Bangkok, ThailandAuthors' Affiliations: Departments of Gynecologic Oncology and Reproductive Medicine and Cancer Biology, Center for RNA Interference and Non-Coding RNA, the University of Texas MD Anderson Cancer Center, Houston, Texas; University of Southern California, Los Angeles, California; Department of Obstetrics and Gynecology, Dongguk University; Departments of Systems Biology and Obstetrics and Gynecology, Konkuk University, Seoul, Korea; and Department of Obstetrics and Gynecology, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Duangmani Thanapprapasr
- Authors' Affiliations: Departments of Gynecologic Oncology and Reproductive Medicine and Cancer Biology, Center for RNA Interference and Non-Coding RNA, the University of Texas MD Anderson Cancer Center, Houston, Texas; University of Southern California, Los Angeles, California; Department of Obstetrics and Gynecology, Dongguk University; Departments of Systems Biology and Obstetrics and Gynecology, Konkuk University, Seoul, Korea; and Department of Obstetrics and Gynecology, Ramathibodi Hospital, Mahidol University, Bangkok, ThailandAuthors' Affiliations: Departments of Gynecologic Oncology and Reproductive Medicine and Cancer Biology, Center for RNA Interference and Non-Coding RNA, the University of Texas MD Anderson Cancer Center, Houston, Texas; University of Southern California, Los Angeles, California; Department of Obstetrics and Gynecology, Dongguk University; Departments of Systems Biology and Obstetrics and Gynecology, Konkuk University, Seoul, Korea; and Department of Obstetrics and Gynecology, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Justin Bottsford-Miller
- Authors' Affiliations: Departments of Gynecologic Oncology and Reproductive Medicine and Cancer Biology, Center for RNA Interference and Non-Coding RNA, the University of Texas MD Anderson Cancer Center, Houston, Texas; University of Southern California, Los Angeles, California; Department of Obstetrics and Gynecology, Dongguk University; Departments of Systems Biology and Obstetrics and Gynecology, Konkuk University, Seoul, Korea; and Department of Obstetrics and Gynecology, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Behrouz Zand
- Authors' Affiliations: Departments of Gynecologic Oncology and Reproductive Medicine and Cancer Biology, Center for RNA Interference and Non-Coding RNA, the University of Texas MD Anderson Cancer Center, Houston, Texas; University of Southern California, Los Angeles, California; Department of Obstetrics and Gynecology, Dongguk University; Departments of Systems Biology and Obstetrics and Gynecology, Konkuk University, Seoul, Korea; and Department of Obstetrics and Gynecology, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Heather J Dalton
- Authors' Affiliations: Departments of Gynecologic Oncology and Reproductive Medicine and Cancer Biology, Center for RNA Interference and Non-Coding RNA, the University of Texas MD Anderson Cancer Center, Houston, Texas; University of Southern California, Los Angeles, California; Department of Obstetrics and Gynecology, Dongguk University; Departments of Systems Biology and Obstetrics and Gynecology, Konkuk University, Seoul, Korea; and Department of Obstetrics and Gynecology, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Rebecca A Previs
- Authors' Affiliations: Departments of Gynecologic Oncology and Reproductive Medicine and Cancer Biology, Center for RNA Interference and Non-Coding RNA, the University of Texas MD Anderson Cancer Center, Houston, Texas; University of Southern California, Los Angeles, California; Department of Obstetrics and Gynecology, Dongguk University; Departments of Systems Biology and Obstetrics and Gynecology, Konkuk University, Seoul, Korea; and Department of Obstetrics and Gynecology, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Ashley N Davis
- Authors' Affiliations: Departments of Gynecologic Oncology and Reproductive Medicine and Cancer Biology, Center for RNA Interference and Non-Coding RNA, the University of Texas MD Anderson Cancer Center, Houston, Texas; University of Southern California, Los Angeles, California; Department of Obstetrics and Gynecology, Dongguk University; Departments of Systems Biology and Obstetrics and Gynecology, Konkuk University, Seoul, Korea; and Department of Obstetrics and Gynecology, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Koji Matsuo
- Authors' Affiliations: Departments of Gynecologic Oncology and Reproductive Medicine and Cancer Biology, Center for RNA Interference and Non-Coding RNA, the University of Texas MD Anderson Cancer Center, Houston, Texas; University of Southern California, Los Angeles, California; Department of Obstetrics and Gynecology, Dongguk University; Departments of Systems Biology and Obstetrics and Gynecology, Konkuk University, Seoul, Korea; and Department of Obstetrics and Gynecology, Ramathibodi Hospital, Mahidol University, Bangkok, ThailandAuthors' Affiliations: Departments of Gynecologic Oncology and Reproductive Medicine and Cancer Biology, Center for RNA Interference and Non-Coding RNA, the University of Texas MD Anderson Cancer Center, Houston, Texas; University of Southern California, Los Angeles, California; Department of Obstetrics and Gynecology, Dongguk University; Departments of Systems Biology and Obstetrics and Gynecology, Konkuk University, Seoul, Korea; and Department of Obstetrics and Gynecology, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Ju-Seog Lee
- Authors' Affiliations: Departments of Gynecologic Oncology and Reproductive Medicine and Cancer Biology, Center for RNA Interference and Non-Coding RNA, the University of Texas MD Anderson Cancer Center, Houston, Texas; University of Southern California, Los Angeles, California; Department of Obstetrics and Gynecology, Dongguk University; Departments of Systems Biology and Obstetrics and Gynecology, Konkuk University, Seoul, Korea; and Department of Obstetrics and Gynecology, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Prahlad Ram
- Authors' Affiliations: Departments of Gynecologic Oncology and Reproductive Medicine and Cancer Biology, Center for RNA Interference and Non-Coding RNA, the University of Texas MD Anderson Cancer Center, Houston, Texas; University of Southern California, Los Angeles, California; Department of Obstetrics and Gynecology, Dongguk University; Departments of Systems Biology and Obstetrics and Gynecology, Konkuk University, Seoul, Korea; and Department of Obstetrics and Gynecology, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Robert L Coleman
- Authors' Affiliations: Departments of Gynecologic Oncology and Reproductive Medicine and Cancer Biology, Center for RNA Interference and Non-Coding RNA, the University of Texas MD Anderson Cancer Center, Houston, Texas; University of Southern California, Los Angeles, California; Department of Obstetrics and Gynecology, Dongguk University; Departments of Systems Biology and Obstetrics and Gynecology, Konkuk University, Seoul, Korea; and Department of Obstetrics and Gynecology, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Anil K Sood
- Authors' Affiliations: Departments of Gynecologic Oncology and Reproductive Medicine and Cancer Biology, Center for RNA Interference and Non-Coding RNA, the University of Texas MD Anderson Cancer Center, Houston, Texas; University of Southern California, Los Angeles, California; Department of Obstetrics and Gynecology, Dongguk University; Departments of Systems Biology and Obstetrics and Gynecology, Konkuk University, Seoul, Korea; and Department of Obstetrics and Gynecology, Ramathibodi Hospital, Mahidol University, Bangkok, ThailandAuthors' Affiliations: Departments of Gynecologic Oncology and Reproductive Medicine and Cancer Biology, Center for RNA Interference and Non-Coding RNA, the University of Texas MD Anderson Cancer Center, Houston, Texas; University of Southern California, Los Angeles, California; Department of Obstetrics and Gynecology, Dongguk University; Departments of Systems Biology and Obstetrics and Gynecology, Konkuk University, Seoul, Korea; and Department of Obstetrics and Gynecology, Ramathibodi Hospital, Mahidol University, Bangkok, ThailandAuthors' Affiliations: Departments of Gynecologic Oncology and Reproductive Medicine and Cancer Biology, Center for RNA Interference and Non-Coding RNA, the University of Texas MD Anderson Cancer Center, Houston, Texas; University of Southern California, Los Angeles, California; Department of Obstetrics and Gynecology, Dongguk University; Departments of Systems Biology and Obstetrics and Gynecology, Konkuk University, Seoul, Korea; and Department of Obstetrics and Gynecology, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| |
Collapse
|
28
|
Stock AM, Hahn SA, Troost G, Niggemann B, Zänker KS, Entschladen F. Induction of pancreatic cancer cell migration by an autocrine epidermal growth factor receptor activation. Exp Cell Res 2014; 326:307-14. [PMID: 24810090 DOI: 10.1016/j.yexcr.2014.04.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Revised: 04/24/2014] [Accepted: 04/28/2014] [Indexed: 10/25/2022]
Abstract
Pancreatic cancer is characterized by aggressive local invasion and early metastasis formation. Active migration of the pancreatic cancer cells is essential for these processes. We have shown previously that the pancreatic cancer cells lines CFPAC1 and IMIM-PC2 show high migratory activity, and we have investigated herein the reason for this observation. Cell migration was assessed using a three-dimensional, collagen-based assay and computer-assisted cell tracking. The expression of receptor tyrosine kinases was determined by flow-cytometry and cytokine release was measured by an enzyme-linked immunoassay. Receptor function was blocked by antibodies or pharmacological enzyme inhibitors. Both cells lines express the epidermal growth factor receptor (EGFR) as well as its family-member ErbB2 and the platelet-derived growth factor receptor (PDGFR)α, whereas only weak expression was detected for ErbB3 and no expression of PDGFRβ. Pharmacological inhibition of the EGFR or ErbB2 significantly reduced the migratory activity in both cell lines, as did an anti-EGFR antibody. Interestingly, combination of the latter with an anti-PDGFR antibody led to an even more pronounced reduction. Both cell lines release detectable amounts of EGF. Thus, the high migratory activity of the investigated pancreatic cancer cell lines is due to autocrine EGFR activation and possibly of other receptor tyrosine kinases.
Collapse
Affiliation(s)
- Anna-Maria Stock
- Institute of Immunology and Experimental Oncology, Centre for Biomedical Education and Research (ZBAF), Witten/Herdecke University, 58448 Witten, Germany
| | - Stephan A Hahn
- Department of Molecular Gastroenterological Oncology, Centre of Clinical Research, Ruhr-University of Bochum, 44780 Bochum, Germany
| | - Gabriele Troost
- Institute of Immunology and Experimental Oncology, Centre for Biomedical Education and Research (ZBAF), Witten/Herdecke University, 58448 Witten, Germany
| | - Bernd Niggemann
- Institute of Immunology and Experimental Oncology, Centre for Biomedical Education and Research (ZBAF), Witten/Herdecke University, 58448 Witten, Germany
| | - Kurt S Zänker
- Institute of Immunology and Experimental Oncology, Centre for Biomedical Education and Research (ZBAF), Witten/Herdecke University, 58448 Witten, Germany
| | - Frank Entschladen
- Institute of Immunology and Experimental Oncology, Centre for Biomedical Education and Research (ZBAF), Witten/Herdecke University, 58448 Witten, Germany.
| |
Collapse
|
29
|
Multifarious functions of PDGFs and PDGFRs in tumor growth and metastasis. Trends Mol Med 2013; 19:460-73. [PMID: 23773831 DOI: 10.1016/j.molmed.2013.05.002] [Citation(s) in RCA: 135] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Revised: 05/03/2013] [Accepted: 05/09/2013] [Indexed: 01/06/2023]
Abstract
Platelet-derived growth factors (PDGFs) and their receptors (PDGFRs) are frequently expressed in various tumors and their expression levels correlate with tumor growth, invasiveness, drug resistance, and poor clinical outcomes. Emerging experimental evidence demonstrates that PDGFs exhibit multiple functions in modulation of tumor growth, metastasis, and the tumor microenvironment by targeting malignant cells, vascular cells, and stromal cells. Understanding PDGF-PDGFR-mediated molecular signaling may provide new mechanistic rationales for optimizing current cancer therapies and the development of future novel therapeutic modalities.
Collapse
|
30
|
Chong LY, Chien LY, Chung MC, Liang K, Lim JCS, Fu JH, Wang CH, Chang PC. Controlling the proliferation and differentiation stages to initiate periodontal regeneration. Connect Tissue Res 2013. [PMID: 23186286 DOI: 10.3109/03008207.2012.751985] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The success of periodontal regeneration depends on the coordination of early cell proliferation and late cell differentiation. The aim of this study was to investigate whether the proliferation or differentiation stage predominantly promotes the initiation of periodontal regeneration. Critical-sized periodontal defects were surgically created on rat maxillae and filled with poly-(D,L-lactide-co-glycolide)-poly-d,l-lactide hybrid microspheres encapsulating platelet-derived growth factor (PDGF, a promoter of mitogenesis), simvastatin (a promoter of osteogenic differentiation), or bovine serum albumin (a control). The encapsulation efficiency and in vitro release profiles of the microspheres were determined by high-performance liquid chromatography and enzyme-linked immunosorbent assay. The maxillae were harvested after 10 or 14 days and assessed by micro-computed tomography, histology, and immunohistochemistry for regeneration efficacy and cell viability. The rapid release of PDGF was observed within the first week, whereas a slow release profile was noted for simvastatin. The PDGF-treated specimens demonstrated a significantly higher bone volume fraction compared with bovine serum albumin- (p < 0.05) or simvastatin-treated (p < 0.05) specimens at day 14. Histologically, active bone formation originating from the defect borders was noted in both the PDGF- and the simvastatin-treated specimens, and functionally aligned periodontal ligament fiber insertion was only observed in the PDGF-treated specimens. The significant promotion of mitogenesis by PDGF treatment was also noted at day 14 (p < 0.05). In conclusion, increased mitogenesis or osteogenic differentiation may stimulate osteogenesis, and the upregulation of mitogenesis by PDGF appears to play a role in the initiation of periodontal regeneration.
Collapse
Affiliation(s)
- Li Yen Chong
- Faculty of Dentistry, National University of Singapore, Singapore, Singapore
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Unique motifs and hydrophobic interactions shape the binding of modified DNA ligands to protein targets. Proc Natl Acad Sci U S A 2012; 109:19971-6. [PMID: 23139410 DOI: 10.1073/pnas.1213933109] [Citation(s) in RCA: 188] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Selection of aptamers from nucleic acid libraries by in vitro evolution represents a powerful method of identifying high-affinity ligands for a broad range of molecular targets. Nevertheless, a sizeable fraction of proteins remain difficult targets due to inherently limited chemical diversity of nucleic acids. We have exploited synthetic nucleotide modifications that confer protein-like diversity on a nucleic acid scaffold, resulting in a new generation of binding reagents called SOMAmers (Slow Off-rate Modified Aptamers). Here we report a unique crystal structure of a SOMAmer bound to its target, platelet-derived growth factor B (PDGF-BB). The SOMAmer folds into a compact structure and exhibits a hydrophobic binding surface that mimics the interface between PDGF-BB and its receptor, contrasting sharply with mainly polar interactions seen in traditional protein-binding aptamers. The modified nucleotides circumvent the intrinsic diversity constraints of natural nucleic acids, thereby greatly expanding the structural vocabulary of nucleic acid ligands and considerably broadening the range of accessible protein targets.
Collapse
|
32
|
Bauman JE, Eaton KD, Wallace SG, Carr LL, Lee SJ, Jones DV, Arias-Pulido H, Cerilli LA, Martins RG. A Phase II study of pulse dose imatinib mesylate and weekly paclitaxel in patients aged 70 and over with advanced non-small cell lung cancer. BMC Cancer 2012; 12:449. [PMID: 23033932 PMCID: PMC3517479 DOI: 10.1186/1471-2407-12-449] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Accepted: 10/02/2012] [Indexed: 11/28/2022] Open
Abstract
Background In non-small cell lung cancer (NSCLC), interstitial hypertension is a barrier to chemotherapy delivery, and is mediated by platelet derived growth factor receptor (PDGFR). Antagonizing PDGFR with imatinib may improve intra-tumoral delivery of paclitaxel, increasing response rate (RR). Methods This single-stage, open-label phase II study evaluated pulse dose imatinib and weekly paclitaxel in elderly patients with advanced NSCLC. Eligible patients were aged ≥ 70 with untreated, stage IIIB-IV NSCLC and ECOG performance status 0-2. Primary endpoint was RR. Secondary endpoints included median progression free and overall survival (PFS, OS) and correlatives of PDGFR pathway activation. Baseline Charlson Comorbidity Index (CCI) and Vulnerable Elder Survey-13 (VES-13) were correlated with outcomes. Results Thirty-four patients with median age 75 enrolled. Eleven of 29 (38%) were frail by VES-13 score. Overall RR was 11/34 (32%; 95% CI 17%-51%), meeting the primary endpoint. Median PFS and OS were 3.6 and 7.3 months, respectively. High tumoral PDGF-B expression predicted inferior PFS. Frail patients by VES-13 had significantly worse median PFS (3.2 vs. 4.5 months; p=0.02) and OS (4.8 vs. 12 months; p=0.02) than non-frail. Conclusions The combination of imatinib and paclitaxel had encouraging activity as measured by the primary endpoint of RR. However, PFS and OS were typical for elderly patients treated with single agent chemotherapy and the regimen is not recommended for further study. Adjunct imatinib did not overcome the established association of tumoral PDGF-B expression with inferior PFS. VES-13 was a powerful predictor of poor survival outcomes. Frailty should be further studied as a predictor of non-benefit from chemotherapy. Trial Registration ClinicalTrials.gov NCT01011075
Collapse
Affiliation(s)
- Julie E Bauman
- Department of Internal Medicine, Division of Hematology/Oncology and Biostatistics, University of New Mexico Cancer Center, Albuquerque, New Mexico, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Yener U, Avsar T, Akgün E, Şeker A, Bayri Y, Kılıç T. Assessment of antiangiogenic effect of imatinib mesylate on vestibular schwannoma tumors using in vivo corneal angiogenesis assay. J Neurosurg 2012; 117:697-704. [DOI: 10.3171/2012.6.jns112263] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Object
Angiogenesis and the platelet-derived growth factor (PDGF) pathway are active in the pathogenesis of vestibular schwannomas (VSs). The purpose of this study was to test whether imatinib mesylate (Gleevec), a PDGF receptor (PDGFR) blocker, reduces angiogenic capacity in sporadic VS and in VS associated with neurofibromatosis Type 2 (NF2) using a corneal angiogenesis assay.
Methods
From 121 VS tissue samples stored in the tumor bank at the Marmara University Institute of Neurological Sciences, 10 samples (6 from sporadic cases, 4 from NF2-associated cases) were selected at random for use in this study. Expression of PDGF-A and PDGF-B and their receptors was evaluated in sporadic and NF2-associated VS as well as in glioblastoma (GBM) and normal brain tissue by means of immunohistochemistry and Western blot analysis. Corneal angiogenesis assay was then used to evaluate the angiogenic capacity of tissue specimens from sporadic and NF2-associated VS with and without imatinib treatment as well as positive and negative controls (GBM and normal brain tissue).
Results
The angiogenic potential of the sporadic and NF2-associated VS tumor tissue differed significantly from that of the positive and negative control tissues (p <0.05). Furthermore, NF2-associated VS showed significantly lower angiogenic potential than sporadic VS (p <0.05). Imatinib treatment significantly reduced the angiogenic potential in both the sporadic VS and the NF2-associated VS groups. The level of PDGF-A and PDGFR-α as well as PDGF-B and PDGFR-β expression in sporadic VS and NF2-associated VS also differed significantly (p <0.05) from the levels in controls. Additionally the level of PDGFR-β was significantly higher in sporadic VS than in NF2-associated VS (p <0.05).
Conclusions
The findings of this study indicate that NF2-associated VS has significantly more angiogenic potential than sporadic VS and normal brain tissue. Additionally, imatinib reduces the angiogenic activity of both sporadic and NF2-associated VS. The authors conclude that imatinib may be a potential treatment for VS, especially for NF2-associated lesions that cannot be cured with resection or radiosurgery.
Collapse
Affiliation(s)
- Ulaş Yener
- 1Institute of Neurological Sciences and
- 2Department of Neurosurgery, Faculty of Medicine, Marmara University; and
| | - Timucin Avsar
- 1Institute of Neurological Sciences and
- 3Dr Orhan Öcalgiray Molecular Biology-Biotechnology and Genetics Research Centre, Istanbul Technical University, Istanbul, Turkey
| | | | - Aşkın Şeker
- 1Institute of Neurological Sciences and
- 2Department of Neurosurgery, Faculty of Medicine, Marmara University; and
| | - Yaşar Bayri
- 1Institute of Neurological Sciences and
- 2Department of Neurosurgery, Faculty of Medicine, Marmara University; and
| | - Türker Kılıç
- 1Institute of Neurological Sciences and
- 2Department of Neurosurgery, Faculty of Medicine, Marmara University; and
| |
Collapse
|
34
|
Gerber DE, Gupta P, Dellinger MT, Toombs JE, Peyton M, Duignan I, Malaby J, Bailey T, Burns C, Brekken RA, Loizos N. Stromal platelet-derived growth factor receptor α (PDGFRα) provides a therapeutic target independent of tumor cell PDGFRα expression in lung cancer xenografts. Mol Cancer Ther 2012; 11:2473-82. [PMID: 22933705 DOI: 10.1158/1535-7163.mct-12-0431] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
In lung cancer, platelet-derived growth factor receptor α (PDGFRα) is expressed frequently by tumor-associated stromal cells and by cancer cells in a subset of tumors. We sought to determine the effect of targeting stromal PDGFRα in preclinical lung tumor xenograft models (human tumor, mouse stroma). Effects of anti-human (IMC-3G3) and anti-mouse (1E10) PDGFRα monoclonal antibodies (mAb) on proliferation and PDGFRα signaling were evaluated in lung cancer cell lines and mouse fibroblasts. Therapy studies were conducted using established PDGFRα-positive H1703 cells and PDGFRα-negative Calu-6, H1993, and A549 subcutaneous tumors in immunocompromised mice treated with vehicle, anti-PDGFRα mAbs, chemotherapy, or combination therapy. Tumors were analyzed for growth and levels of growth factors. IMC-3G3 inhibited PDGFRα activation and the growth of H1703 cells in vitro and tumor growth in vivo, but had no effect on PDGFRα-negative cell lines or mouse fibroblasts. 1E10 inhibited growth and PDGFRα activation of mouse fibroblasts, but had no effect on human cancer cell lines in vitro. In vivo, 1E10-targeted inhibition of murine PDGFRα reduced tumor growth as single-agent therapy in Calu-6 cells and enhanced the effect of chemotherapy in xenografts derived from A549 cells. We also identified that low expression cancer cell expression of VEGF-A and elevated expression of PDGF-AA were associated with response to stromal PDGFRα targeting. We conclude that stromal PDGFRα inhibition represents a means for enhancing control of lung cancer growth in some cases, independent of tumor cell PDGFRα expression.
Collapse
Affiliation(s)
- David E Gerber
- Harold C. Simmons Cancer Center, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Mail Code 8852, Dallas, TX 75390-8852, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Abstract
Platelet-derived growth factor (PDGF) isoforms are important mitogens for different types of mesenchymal cells, which have important functions during the embryonal development and in the adult during wound healing and tissue homeostasis. In tumors, PDGF isoforms are often over-expressed and contribute to the growth of both normal and malignant cells. This review focuses on tumors expressing PDGF isoforms together with their tyrosine kinase receptors, thus resulting in autocrine stimulation of growth and survival. Patients with such tumors could benefit from treatment with inhibitors of either PDGF or PDGF receptors.
Collapse
Affiliation(s)
- Carl-Henrik Heldin
- Ludwig Institute for Cancer Research, Uppsala University, BMC, Box 595, S-751 24 Uppsala, Sweden
| |
Collapse
|
36
|
Suppression of cellular invasion by glybenclamide through inhibited secretion of platelet-derived growth factor in ovarian clear cell carcinoma ES-2 cells. FEBS Lett 2012; 586:1504-9. [DOI: 10.1016/j.febslet.2012.04.007] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2011] [Revised: 03/10/2012] [Accepted: 04/07/2012] [Indexed: 12/25/2022]
|
37
|
Cambien B, Richard-Fiardo P, Karimdjee BF, Martini V, Ferrua B, Pitard B, Schmid-Antomarchi H, Schmid-Alliana A. CCL5 neutralization restricts cancer growth and potentiates the targeting of PDGFRβ in colorectal carcinoma. PLoS One 2011; 6:e28842. [PMID: 22205974 PMCID: PMC3243667 DOI: 10.1371/journal.pone.0028842] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2011] [Accepted: 11/16/2011] [Indexed: 11/24/2022] Open
Abstract
Increased CCL5 levels are markers of an unfavourable outcome in patients with melanoma, breast, cervical, prostate, gastric or pancreatic cancer. Here, we have assessed the role played by CCL5/CCR5 interactions in the development of colon cancer. To do so, we have examined a number of human colorectal carcinoma clinical specimens and found CCL5 and its receptors over-expressed within primary as well as liver and pulmonary metastases of patients compared to healthy tissues. In vitro, CCL5 increased the growth and migratory responses of colon cancer cells from both human and mouse origins. In addition, systemic treatment of mice with CCL5-directed antibodies reduced the extent of development of subcutaneous colon tumors, of liver metastases and of peritoneal carcinosis. Consistently, we found increased numbers of CD45-immunoreactive cells within the stroma of the remaining lesions as well as at the interface with the healthy tissue. In contrast, selective targeting of CCR5 through administration of TAK-779, a CCR5 antagonist, only partially compromised colon cancer progression. Furthermore, CCL5 neutralization rendered the tumors more sensitive to a PDGFRβ-directed strategy in mice, this combination regimen offering the greatest protection against liver metastases and suppressing macroscopic peritoneal carcinosis. Collectively, our data demonstrate the involvement of CCL5 in the pathogenesis of colorectal carcinoma and point to its potential value as a therapeutic target.
Collapse
Affiliation(s)
- Béatrice Cambien
- Université de Nice Sophia Antipolis, UFR Médecine, Nice, France.
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Zheng W, Lennartsson J, Hendriks W, Heldin CH, Hellberg C. The LAR protein tyrosine phosphatase enables PDGF β-receptor activation through attenuation of the c-Abl kinase activity. Cell Signal 2011; 23:1050-6. [DOI: 10.1016/j.cellsig.2011.01.024] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2011] [Accepted: 01/28/2011] [Indexed: 12/24/2022]
|
39
|
Activation of PDGFr-β Signaling Pathway after Imatinib and Radioimmunotherapy Treatment in Experimental Pancreatic Cancer. Cancers (Basel) 2011; 3:2501-15. [PMID: 24212821 PMCID: PMC3757429 DOI: 10.3390/cancers3022501] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2011] [Revised: 04/25/2011] [Accepted: 05/17/2011] [Indexed: 12/11/2022] Open
Abstract
Pancreatic cancer does not respond to a single-agent imatinib therapy. Consequently, multimodality treatments are contemplated. Published data indicate that in colorectal cancer, imatinib and radioimmunotherapy synergize to delay tumor growth. In pancreatic cancer, the tumor response is additive. This disparity of outcomes merited further studies because interactions between these modalities depend on the imatinib-induced reduction of the tumor interstitial fluid pressure. The examination of human and murine PDGFr-β/PDGF-B pathways in SW1990 pancreatic cancer xenografts revealed that the human branch is practically dormant in untreated tumors but the insult on the stromal component produces massive responses of human cancer cells. Inhibition of the stromal PDGFr-β with imatinib activates human PDGFr-β/PDGF-B signaling loop, silent in untreated xenografts, via an apparent paracrine rescue pathway. Responses are treatment-and time-dependent. Soon after treatment, levels of human PDGFr-β, compared to untreated tumors, are 3.4×, 12.4×, and 5.7× higher in imatinib-, radioimmunotherapy + imatinib-, and radioimmunotherapy-treated tumors, respectively. A continuous 14-day irradiation of imatinib-treated xenografts reduces levels of PDGFr-β and phosphorylated PDGFr-β by 5.3× and 4×, compared to earlier times. Human PDGF-B is upregulated suggesting that the survival signaling via the autocrine pathway is also triggered after stromal injury. These findings indicate that therapies targeting pancreatic cancer stromal components may have unintended mitogenic effects and that these effects can be reversed when imatinib is used in conjunction with radioimmunotherapy.
Collapse
|
40
|
Intratumoral drug delivery with nanoparticulate carriers. Pharm Res 2011; 28:1819-30. [PMID: 21213021 DOI: 10.1007/s11095-010-0360-y] [Citation(s) in RCA: 128] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2010] [Accepted: 12/20/2010] [Indexed: 12/25/2022]
Abstract
Stiff extracellular matrix, elevated interstitial fluid pressure, and the affinity for the tumor cells in the peripheral region of a solid tumor mass have long been recognized as significant barriers to diffusion of small-molecular-weight drugs and antibodies. However, their impacts on nanoparticle-based drug delivery have begun to receive due attention only recently. This article reviews biological features of many solid tumors that influence transport of drugs and nanoparticles and properties of nanoparticles relevant to their intratumoral transport, studied in various tumor models. We also discuss several experimental approaches employed to date for enhancement of intratumoral nanoparticle penetration. The impact of nanoparticle distribution on the effectiveness of chemotherapy remains to be investigated and should be considered in the design of new nanoparticulate drug carriers.
Collapse
|
41
|
Abstract
Normal development and function of the testis are controlled by endocrine and paracrine signaling pathways. Platelet-derived growth factors (PDGFs) are growth factors that mediate epithelial-mesenchymal interactions in various tissues during normal and abnormal processes such as embryo development, wound healing, tissue fibrosis, vascular disorders, and cancer. PDGFs and their receptors (PDGFRs) have emerged as key players in the regulation of embryonic and postnatal development of the male gonad. Cells that express PDGFs and PDGFRs are found in the testis of mammals, birds, and reptiles, and their distribution, regulation, and function vary across species. Testicular PDGFs and PDGFRs appear after the process of sex determination in animals that use either genetic sex determination or environmental sex determination. Sertoli cells are the main PDGF-producing cells during the entire period of prenatal and postnatal testis development. Fetal Leydig cells and their precursors, adult Leydig cells and their stem cell precursors, peritubular myoid cells, cells of the blood vessels, and gonocytes are the testicular cell types expressing PDGFRs. Genetically targeted deletions of PDGFs, PDGFRs, PDGFR target genes or pharmacological silencing of PDGF signaling produce profound damage on the target cells that, depending on the developmental period, are under direct or indirect control of PDGF. PDGF signaling may also serve diverse functions outside of the realm of testis development, including testicular tumors. In this review, we provide a framework of the current knowledge to clarify the useful information regarding how PDGFs function in individual cells of the testis.
Collapse
Affiliation(s)
- Sabrina Basciani
- Department of Medical Physiopathology, I Faculty of Medicine, University of Rome La Sapienza, Policlinico Umberto I, 00161 Rome, Italy
| | | | | | | |
Collapse
|
42
|
Dai Y. Platelet-derived growth factor receptor tyrosine kinase inhibitors: a review of the recent patent literature. Expert Opin Ther Pat 2010; 20:885-97. [PMID: 20509775 DOI: 10.1517/13543776.2010.493559] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
IMPORTANCE OF THE FIELD Platelet-derived growth factor receptor (PDGFR) is a compelling target for developing therapeutic agents to treat diseases associated with overactivated platelet-derived growth factor (PDGF) signaling and has proved to be particularly encouraging for cancer treatment. The efforts in this area have been greatly enhanced by the approval of tyrosine kinase inhibitors with PDGFR inhibitory activity such as imatinib, sunitinib and sorafenib. AREAS COVERED IN THIS REVIEW This review surveys the small molecule PDGFR inhibitors reported in patent literature over the past 5 years (2005 - 2009). WHAT THE READER WILL GAIN The reader will gain an overview of the chemical scaffolds and the activity/selectivity of the newly discovered PDGFR inhibitors. TAKE HOME MESSAGE Targeting PDGFR kinase with small molecule inhibitors has remained a very active area. Many new and novel PDGFR inhibitors with different selectivity profiles are being discovered and evaluated. In cancer therapy, the identification of novel and potent PDGFR inhibitors with preferred kinase inhibitory profiles that deliver superior antitumor efficacy, yet have manageable side effects and toxicities, will continue to be the key for success. Additionally, interest in targeting PDGF signaling for intervention of various vascular diseases and fibrotic conditions is expected to continue to grow.
Collapse
Affiliation(s)
- Yujia Dai
- Cancer Research, Abbott Laboratories, Department R47J, Building AP10, 100 Abbott Park Road, Abbott Park, IL 60064, USA.
| |
Collapse
|
43
|
Levitzki A, Klein S. Signal transduction therapy of cancer. Mol Aspects Med 2010; 31:287-329. [DOI: 10.1016/j.mam.2010.04.001] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2010] [Accepted: 04/28/2010] [Indexed: 01/05/2023]
|
44
|
Shah GD, Loizos N, Youssoufian H, Schwartz JD, Rowinsky EK. Rationale for the development of IMC-3G3, a fully human immunoglobulin G subclass 1 monoclonal antibody targeting the platelet-derived growth factor receptor alpha. Cancer 2010; 116:1018-26. [PMID: 20127943 DOI: 10.1002/cncr.24788] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
A large body of evidence suggests that the platelet-derived growth factor (PDGF) family and associated receptors are potential targets in oncology therapeutic development because of their critical roles in the proliferation and survival of various cancers and in the regulation and growth of the tumor stroma and blood vessels. Several small molecules that nonspecifically target the PDGF signaling axis are in current use or development as anticancer therapies. However, for the majority of these agents, PDGF and its receptors are neither the primary targets nor the principal mediators of anticancer activity. IMC-3G3, a fully human monoclonal antibody of the immunoglobulin G subclass 1, specifically binds to the human PDGF receptor alpha (PDGFRalpha) with high affinity and blocks PDGF ligand binding and PDGFRalpha activation. The results of preclinical studies and the frequent expression of PDGFRalpha in many types of cancer and in cancer-associated stroma support a rationale for the clinical development of IMC-3G3. Currently, IMC-3G3 is being evaluated in early clinical development for patients with several types of solid malignancies.
Collapse
Affiliation(s)
- Gaurav D Shah
- ImClone Systems Corporation, 33 ImClone Drive, Branchburg, NJ 08876, USA.
| | | | | | | | | |
Collapse
|
45
|
Chintalgattu V, Ai D, Langley RR, Zhang J, Bankson JA, Shih TL, Reddy AK, Coombes KR, Daher IN, Pati S, Patel SS, Pocius JS, Taffet GE, Buja LM, Entman ML, Khakoo AY. Cardiomyocyte PDGFR-beta signaling is an essential component of the mouse cardiac response to load-induced stress. J Clin Invest 2010; 120:472-84. [PMID: 20071776 DOI: 10.1172/jci39434] [Citation(s) in RCA: 143] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2009] [Accepted: 11/18/2009] [Indexed: 01/07/2023] Open
Abstract
PDGFR is an important target for novel anticancer therapeutics because it is overexpressed in a wide variety of malignancies. Recently, however, several anticancer drugs that inhibit PDGFR signaling have been associated with clinical heart failure. Understanding this effect of PDGFR inhibitors has been difficult because the role of PDGFR signaling in the heart remains largely unexplored. As described herein, we have found that PDGFR-beta expression and activation increase dramatically in the hearts of mice exposed to load-induced cardiac stress. In mice in which Pdgfrb was knocked out in the heart in development or in adulthood, exposure to load-induced stress resulted in cardiac dysfunction and heart failure. Mechanistically, we showed that cardiomyocyte PDGFR-beta signaling plays a vital role in stress-induced cardiac angiogenesis. Specifically, we demonstrated that cardiomyocyte PDGFR-beta was an essential upstream regulator of the stress-induced paracrine angiogenic capacity (the angiogenic potential) of cardiomyocytes. These results demonstrate that cardiomyocyte PDGFR-beta is a regulator of the compensatory cardiac response to pressure overload-induced stress. Furthermore, our findings may provide insights into the mechanism of cardiotoxicity due to anticancer PDGFR inhibitors.
Collapse
Affiliation(s)
- Vishnu Chintalgattu
- Department of Cardiology, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Li M, Abdollahi A, Gröne HJ, Lipson KE, Belka C, Huber PE. Late treatment with imatinib mesylate ameliorates radiation-induced lung fibrosis in a mouse model. Radiat Oncol 2009; 4:66. [PMID: 20025728 PMCID: PMC2802357 DOI: 10.1186/1748-717x-4-66] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2009] [Accepted: 12/21/2009] [Indexed: 02/20/2023] Open
Abstract
Background We have previously shown that small molecule PDGF receptor tyrosine kinase inhibitors (RTKI) can drastically attenuate radiation-induced pulmonary fibrosis if the drug administration starts at the time of radiation during acute inflammation with present but limited effects against acute inflammation. To rule out interactions of the drug with acute inflammation, we investigated here in an interventive trial if a later drug administration start at a time when the acute inflammation has subsided - has also beneficial antifibrotic effects. Methods Whole thoraces of C57BL/6 mice were irradiated with 20 Gy and treated with the RTKI imatinib starting either 3 days after radiation (during acute inflammation) or two weeks after radiation (after the acute inflammation has subsided as demonstrated by leucocyte count). Lungs were monitored and analyzed by clinical, histological and in vivo non-invasive computed tomography as a quantitative measure for lung density and lung fibrosis. Results Irradiation induced severe lung fibrosis resulting in markedly reduced mouse survival vs. non-irradiated controls. Both early start of imatinib treatment during inflammation and late imatinib start markedly attenuated the development of pulmonary fibrosis as demonstrated by clinical, histological and qualitative and quantitative computed tomography results such as reduced lung density. Both administration schedules resulted in prolonged lifespans. The earlier drug treatment start resulted in slightly stronger beneficial antifibrotic effects along all measured endpoints than the later start. Conclusions Our findings show that imatinib, even when administered after the acute inflammation has subsided, attenuates radiation-induced lung fibrosis in mice. Our data also indicate that the fibrotic fate is not only determined by the early inflammatory events but rather a complex process in which secondary events at later time points are important. Because of the clinical availability of imatinib or similar compounds, a meaningful attenuation of radiation-induced lung fibrosis in patients seems possible.
Collapse
Affiliation(s)
- Minglun Li
- Department of Radiation Oncology German Cancer Research Center, Im Neuenheimer Feld 280, Heidelberg 69120, Germany.
| | | | | | | | | | | |
Collapse
|
47
|
Demetri GD, Lo Russo P, MacPherson IRJ, Wang D, Morgan JA, Brunton VG, Paliwal P, Agrawal S, Voi M, Evans TRJ. Phase I dose-escalation and pharmacokinetic study of dasatinib in patients with advanced solid tumors. Clin Cancer Res 2009; 15:6232-40. [PMID: 19789325 DOI: 10.1158/1078-0432.ccr-09-0224] [Citation(s) in RCA: 124] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
PURPOSE To determine the maximum tolerated dose, dose-limiting toxicity (DLT), and recommended phase II dose of dasatinib in metastatic solid tumors refractory to standard therapies or for which no effective standard therapy exists. EXPERIMENTAL DESIGN In this phase I, open-label, dose-escalation study, patients received 35 to 160 mg of dasatinib twice daily in 28-day cycles either every 12 hours for 5 consecutive days followed by 2 nontreatment days every week (5D2) or as continuous, twice-daily (CDD) dosing. RESULTS Sixty-seven patients were treated (5D2, n = 33; CDD, n = 34). The maximum tolerated doses were 120 mg twice daily 5D2 and 70 mg twice daily CDD. DLTs with 160 mg 5D2 were recurrent grade 2 rash, grade 3 lethargy, and one patient with both grade 3 prolonged bleeding time and grade 3 hypocalcemia; DLTs with 120 mg twice daily CDD were grade 3 nausea, grade 3 fatigue, and one patient with both grade 3 rash and grade 2 proteinuria. The most frequent treatment-related toxicities across all doses were nausea, fatigue, lethargy, anorexia, proteinuria, and diarrhea, with infrequent hematologic toxicities. Pharmacokinetic data indicated rapid absorption, dose proportionality, and lack of drug accumulation. Although no objective tumor responses were seen, durable stable disease was observed in 16% of patients. CONCLUSION Dasatinib was well tolerated in this population, with a safety profile similar to that observed previously in leukemia patients, although with much less hematologic toxicity. Limited, although encouraging, preliminary evidence of clinical activity was observed. Doses of 120 mg twice daily (5D2) or 70 mg twice daily (CDD) are recommended for further studies in patients with solid tumors.
Collapse
Affiliation(s)
- George D Demetri
- Ludwig Center, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
van Zijl F, Mair M, Csiszar A, Schneller D, Zulehner G, Huber H, Eferl R, Beug H, Dolznig H, Mikulits W. Hepatic tumor-stroma crosstalk guides epithelial to mesenchymal transition at the tumor edge. Oncogene 2009; 28:4022-33. [PMID: 19718050 DOI: 10.1038/onc.2009.253] [Citation(s) in RCA: 138] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The tumor-stroma crosstalk is a dynamic process fundamental in tumor development. In hepatocellular carcinoma (HCC), the progression of malignant hepatocytes frequently depends on transforming growth factor (TGF)-beta provided by stromal cells. TGF-beta induces an epithelial to mesenchymal transition (EMT) of oncogenic Ras-transformed hepatocytes and an upregulation of platelet-derived growth factor (PDGF) signaling. To analyse the influence of the hepatic tumor-stroma crosstalk onto tumor growth and progression, we co-injected malignant hepatocytes and myofibroblasts (MFBs). For this, we either used in vitro-activated p19(ARF) MFBs or in vivo-activated MFBs derived from physiologically inflamed livers of Mdr2/p19(ARF) double-null mice. We show that co-transplantation of MFBs with Ras-transformed hepatocytes strongly enhances tumor growth. Genetic interference with the PDGF signaling decreases tumor cell growth and maintains plasma membrane-located E-cadherin and beta-catenin at the tumor-host border, indicating a blockade of hepatocellular EMT. We further generated a collagen gel-based three dimensional HCC model in vitro to monitor the MFB-induced invasion of micro-organoid HCC spheroids. This invasion was diminished after inhibition of TGF-beta or PDGF signaling. These data suggest that the TGF-beta/PDGF axis is crucial during hepatic tumor-stroma crosstalk, regulating both tumor growth and cancer progression.
Collapse
Affiliation(s)
- F van Zijl
- Department of Medicine I, Division: Institute of Cancer Research, Medical University of Vienna, A-1090 Vienna, Austria
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Oseini AM, Roberts LR. PDGFRalpha: a new therapeutic target in the treatment of hepatocellular carcinoma? Expert Opin Ther Targets 2009; 13:443-54. [PMID: 19335066 DOI: 10.1517/14728220902719233] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) develops most often in a background of chronic inflammatory liver injury from viral infection or alcohol use. Most HCCs are diagnosed at a stage at which surgical resection is not feasible. Even in patients receiving surgery rates of recurrence and metastasis remain high. There are few effective HCC therapies and hence a need for novel, rational approaches to treatment. Platelet derived growth factor receptor-alpha (PDGFR-alpha) is involved in tumor angiogenesis and maintenance of the tumor microenvironment and has been implicated in development and metastasis of HCC. OBJECTIVE To examine PDGFR-alpha as a target for therapy of HCC and explore opportunities and strategies for PDGFR-alpha inhibition. METHODS A review of relevant literature. RESULTS/CONCLUSIONS Targeted inhibition of PDGFR-alpha is a rational strategy for prevention and therapy of HCC.
Collapse
Affiliation(s)
- Abdul M Oseini
- Miles and Shirley Fiterman Center for Digestive Diseases College of Medicine, Mayo Clinic, Rochester, Minnesota 55905, USA.
| | | |
Collapse
|
50
|
Spencer L, Mann C, Metcalfe M, Webb M, Pollard C, Spencer D, Berry D, Steward W, Dennison A. The effect of omega-3 FAs on tumour angiogenesis and their therapeutic potential. Eur J Cancer 2009; 45:2077-86. [PMID: 19493674 DOI: 10.1016/j.ejca.2009.04.026] [Citation(s) in RCA: 165] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2009] [Revised: 04/10/2009] [Accepted: 04/24/2009] [Indexed: 12/12/2022]
Abstract
Omega-3 fatty acid (omega-3 FA) consumption has long been associated with a lower incidence of colon, breast and prostate cancers in many human populations. Human trials have demonstrated omega-3 FA to have profound anti-inflammatory effects in those with cancer. In vitro and small animal studies have yielded a strong body of evidence establishing omega-3 FA as having anti-inflammatory, anti-apoptotic, anti-proliferative and anti-angiogenic effects. This review explores the evidence and the mechanisms by which omega-3 FA may act as angiogenesis inhibitors and identifies opportunities for original research trialling omega-3 FAs as anti-cancer agents in humans. The conclusions drawn from this review suggest that omega-3 FAs in particular eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) found principally in oily fish have potent anti-angiogenic effects inhibiting production of many important angiogenic mediators namely; Vascular Endothelial Growth Factor (VEGF), Platelet-Derived Growth Factor (PDGF), Platelet-Derived Endothelial Cell Growth Factor (PDECGF), cyclo-oxygenase 2 (COX-2), prostaglandin-E2 (PGE2), nitric oxide, Nuclear Factor Kappa Beta (NFKB), matrix metalloproteinases and beta-catenin.
Collapse
Affiliation(s)
- Laura Spencer
- Department of HPB and Pancreatic Surgery, Leicester General Hospital, Gwendolen Road, Leicester LE5 4PW, UK.
| | | | | | | | | | | | | | | | | |
Collapse
|