1
|
Brais-Brunet S, Boudoux C, Dehaes M. Morphological characterization of retinal development from birth to adulthood via retinal thickness assessment in mice: A systematic review. Exp Eye Res 2025; 251:110229. [PMID: 39755351 DOI: 10.1016/j.exer.2024.110229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 12/26/2024] [Accepted: 12/30/2024] [Indexed: 01/06/2025]
Abstract
The morphology and thickness of the retinal layers are valuable biomarkers for retinal health and development. The retinal layers in mice are similar to those in humans; thus, a mouse is appropriate for studying the retina. The objectives of this systematic review were: (1) to describe normal retinal morphology quantitatively using retinal layer thickness measured from birth to age 6 months in healthy mice; and (2) to describe morphological changes in physiological retinal development over time using the longitudinal (in vivo) and cross-sectional (ex vivo) data from the included studies. A PubMed search was conducted for articles published from to 1980-2024 that included quantitative data. Prior to sexual maturity, an increase in the total retinal and inner plexiform layer thicknesses were observed, with a decrease in the inner nuclear layer thickness. After sexual maturity, an asymptotic decrease in thickness was observed up to age 6 months in all layers; during this period, no significant changes were observed in the outer nuclear layer or nerve fiber layer/ganglion cell layer complex. Potential sources of variability and inconsistency among the studies included differences in imaging modality, animal strain, measurement timing, and retinal segmentation/assignment techniques. These findings highlight the importance of including a control group in experimental designs and providing comparative data for further investigations.
Collapse
Affiliation(s)
- Simon Brais-Brunet
- Institute of Biomedical Engineering, University of Montréal, Montréal, Canada; Research Center, CHU Sainte-Justine University Hospital Centre, Montréal, Canada
| | - Caroline Boudoux
- Research Center, CHU Sainte-Justine University Hospital Centre, Montréal, Canada; Department of Engineering Physics, Polytechnique Montréal, Montréal, Canada
| | - Mathieu Dehaes
- Institute of Biomedical Engineering, University of Montréal, Montréal, Canada; Research Center, CHU Sainte-Justine University Hospital Centre, Montréal, Canada; Department of Radiology, Radio-oncology and Nuclear Medicine, University of Montréal, Montréal, Canada.
| |
Collapse
|
2
|
Yao Y, Liu J, Li L, Chen W, Meng Z, Fu J. Factors influencing image quality in Tibetan children by optical coherence tomography. Front Med (Lausanne) 2025; 12:1495527. [PMID: 39897592 PMCID: PMC11782558 DOI: 10.3389/fmed.2025.1495527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 01/02/2025] [Indexed: 02/04/2025] Open
Abstract
Purpose This study aim to investigate the clinical findings of subjects characteristics and image quality related factors in Tibetan children by optical coherence tomography (OCT) in epidemiological cohort study. Methods Participants were 1,856 first-grade students (mean age = 6.82 ± 0.46 years) from seven selected elementary schools in Lhasa. Following comprehensive systemic and ophthalmic examinations, OCT scans were assessed by specialists with manual segmentation as needed. Results A total of 1,698 students completed the examination protocol in this study (91.5%). After manual screening, 1,447 (78%) and 1,289 (70%) images could be analyzed in the macular and optic disc regions, respectively. Common image flaws were blinking or fixation error (70%+), poor focusing, and positioning errors. Among students who have completed OCT, a higher percentage of boys (X 2 = 8.48, P = 0.004) and suburban students (X 2 = 34.97, P < 0.001) with younger age (t = -2.20, P = 0.03), worse near vision (t = -3.95, P < 0.001), higher IOP (t = 2.38, P = 0.017) and higher heart rate (t = 3.15, P = 0.002) have unsatisfactory image quality in the macular region, almost same as the optic disc region. Students in suburban schools (OR = 1.74, P < 0.001) with lower near VA (OR = 6.64, P < 0.001) or boys (OR = 0.78, P = 0.03) were more likely to have worse image quality on OCT scans when corrected for ethnicity. Manual segmentation was more prevalent in the optic disc region, resulting in increased retinal thickness across most subregions. Conclusion This study underscores the imperative for stringent image quality control in pediatric OCT assessments to ensure precise clinical outcomes.
Collapse
Affiliation(s)
- Yao Yao
- Beijing Key Laboratory of Ophthalmology and Visual Sciences, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Jiawen Liu
- Wilmer Eye Institute, Johns Hopkins Medicine, Johns Hopkins University, Baltimore, MD, United States
| | - Lei Li
- Beijing Key Laboratory of Ophthalmology and Visual Sciences, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Weiwei Chen
- Beijing Key Laboratory of Ophthalmology and Visual Sciences, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Zhaojun Meng
- Beijing Key Laboratory of Ophthalmology and Visual Sciences, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Jing Fu
- Beijing Key Laboratory of Ophthalmology and Visual Sciences, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
3
|
Scholtz SK, Langenbucher A, Stachs O. Celebrating 25 Years of Optical Biometry: A Milestone in Ophthalmology. Klin Monbl Augenheilkd 2024; 241:1298-1301. [PMID: 39353610 DOI: 10.1055/a-2428-8007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
Optical biometry has fundamentally transformed cataract surgery, and 2024 marked 25 years since the introduction of the first optical biometer. In the early 1980 s, Fercher and colleagues pioneered the optical noncontact eye length measurement, leading to the first interferometric A-scan of the eye. This innovation, patented and later developed by Zeiss, culminated in the release of the IOLMaster in 1999, enabling more accurate and reproducible eye diagnostics. Over the years, optical biometry has evolved into advanced swept-source optical coherence tomography devices, accompanied by numerous formulas for calculating intraocular lens power. Today, this technology is crucial not only for cataract surgeries, especially in eyes previously treated with refractive surgery, but also in advancing our understanding of diseases across fields like cardiology and oncology.
Collapse
Affiliation(s)
| | - Achim Langenbucher
- Institute of Experimental Ophthalmology, Saarland University, Homburg/Saar, Germany
| | - Oliver Stachs
- Department of Ophthalmology, Rostock University Medical Center, Rostock, Germany
- Department of Life, Light & Matter, University of Rostock, Rostock, Germany
| |
Collapse
|
4
|
Liu J, Zhang K, Liu X, Xu Q, Li W. Improved in-situ characterization for the scaling-induced wetting in membrane distillation: Unraveling the role of crystalline morphology. WATER RESEARCH 2024; 268:122561. [PMID: 39393181 DOI: 10.1016/j.watres.2024.122561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 09/26/2024] [Accepted: 09/30/2024] [Indexed: 10/13/2024]
Abstract
Despite being recognized as a promising technique for treating high salinity water, membrane distillation (MD) has been plagued by the scaling of sparingly soluble salts. The growth of crystals can not only create additional resistance to evaporating water at the feed-membrane interface, but also alter the hydrophobic network to bridge the feed and distillate (i.e., result in the phenomenon of wetting). When recognizing the uncertain behaviors of calcium sulfate (CaSO4) scaling in MD, this study was motivated to ascertain whether the crystal-membrane interactions could be dependent on the variation in crystalline morphology. In particular, optical coherence tomography (OCT) was employed to characterize the scaling-induced wetting via a direct-observation-through-the-membrane (DOTM) mode, which mitigated the effects of developing an external scaling layer on resolving the crystal-membrane interactions. The improved in-situ characterization suggests that the crystalline morphology of CaSO4 could be effectively regulated by varying the stoichiometry of crystallizing ions; the richness of calcium in the aqueous environment for crystallization would be in favor of weakening the crystal-membrane interactions. The stoichiometry-dependent growth of CaSO4 crystals can be exploited to develop an effective strategy for preventing the hydrophobic network from being wetted or irreversibly damaged.
Collapse
Affiliation(s)
- Jie Liu
- Shenzhen Engineering Laboratory for Eco-efficient Recycled Materials, School of Environment and Energy, Peking University Shenzhen Graduate School, PR China; School of Chemistry and Pharmaceutical Science, Guangxi Normal University, Guilin, PR China; Guangdong Nantian Institute of Forensic Science, PR China; School of Environmental Science and Engineering, Southern University of Science and Technology, PR China
| | - Kexin Zhang
- School of Environmental Science and Engineering, Southern University of Science and Technology, PR China
| | - Xin Liu
- School of Environmental Science and Engineering, Southern University of Science and Technology, PR China
| | - Qiyong Xu
- Shenzhen Engineering Laboratory for Eco-efficient Recycled Materials, School of Environment and Energy, Peking University Shenzhen Graduate School, PR China.
| | - Weiyi Li
- School of Chemistry and Pharmaceutical Science, Guangxi Normal University, Guilin, PR China.
| |
Collapse
|
5
|
Taskiran-Sag A, Yazgi H, Ozulken K, Eroglu E. Optical coherence tomography findings in primary headache disorders: is pain duration a clinical correlate? Int J Neurosci 2024:1-7. [PMID: 38768056 DOI: 10.1080/00207454.2024.2358367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 05/11/2024] [Indexed: 05/22/2024]
Abstract
OBJECTIVE Ganglion cell layer thickness (GCLT) may be used as a potential marker for central neural changes. We compared GCLT by using spectral domain optical coherence tomography (SD-OCT) in patients with primary headache disorders and healthy controls. We seek whether there was any difference between the headache groups and whether any clinical parameters correlated to GCLT. METHODS Fifty-three primary headache patients, 11 age and sex-matched healthy subjects were included in this cross-sectional study after power analysis. All subjects underwent SD-OCT. The duration of disorder, headache frequency, severity, duration of pain, presence of ocular pain, and accompanying symptoms have been collected. RESULTS Mean GCLT of the headache group was 15.7 ± 3.8 µm (mean ± standard deviation), and the control group was 17.5 ± 2.4. The difference was not statistically significant. When we compared the controls, migraine and tension-type headache patients' GCLT values, we found a significant difference (ANOVA, p = 0.001). Migraine patients had thinner GCLT compared to all non-migraine headache patients (p = 0.01). Intraocular pressure values of migraine patients and non-migraine patients were not statistically significantly different (p = 0.13). The only clinical parameter that correlated with GCLT was pain duration (r = -0.43 and p = 0.01). The patients with white matter lesions had thinner GCLT (p = 0.046). CONCLUSION Our results suggest that not long-term suffering from pain but migraine pathophysiology itself seems to affect neuroretinal tissue. Pain duration was moderately and inversely correlated to GCLT, meaning that the longer the headache, the thinner the ganglion cell layer is.
Collapse
Affiliation(s)
- Aslihan Taskiran-Sag
- Department of Neurology, Faculty of Medicine, TOBB Economics and Technology University, Ankara, Turkey
| | - Hare Yazgi
- Faculty of Medicine, TOBB Economics and Technology University, Ankara, Turkey
| | - Kemal Ozulken
- Department of Ophthalmology, Faculty of Medicine, TOBB Economics and Technology University, Ankara, Turkey
| | - Erdal Eroglu
- Department of Neurology, Faculty of Medicine, TOBB Economics and Technology University, Ankara, Turkey
| |
Collapse
|
6
|
Salimi M, Tabatabaei N, Villiger M. Artificial neural network for enhancing signal-to-noise ratio and contrast in photothermal optical coherence tomography. Sci Rep 2024; 14:10264. [PMID: 38704427 PMCID: PMC11069506 DOI: 10.1038/s41598-024-60682-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 04/25/2024] [Indexed: 05/06/2024] Open
Abstract
Optical coherence tomography (OCT) is a medical imaging method that generates micron-resolution 3D volumetric images of tissues in-vivo. Photothermal (PT)-OCT is a functional extension of OCT with the potential to provide depth-resolved molecular information complementary to the OCT structural images. PT-OCT typically requires long acquisition times to measure small fluctuations in the OCT phase signal. Here, we use machine learning with a neural network to infer the amplitude of the photothermal phase modulation from a short signal trace, trained in a supervised fashion with the ground truth signal obtained by conventional reconstruction of the PT-OCT signal from a longer acquisition trace. Results from phantom and tissue studies show that the developed network improves signal to noise ratio (SNR) and contrast, enabling PT-OCT imaging with short acquisition times and without any hardware modification to the PT-OCT system. The developed network removes one of the key barriers in translation of PT-OCT (i.e., long acquisition time) to the clinic.
Collapse
Affiliation(s)
- Mohammadhossein Salimi
- Department of Mechanical Engineering, Lassonde School of Engineering, York University, Toronto, ON, M3J 1P3, Canada
| | - Nima Tabatabaei
- Department of Mechanical Engineering, Lassonde School of Engineering, York University, Toronto, ON, M3J 1P3, Canada.
- Center for Vision Research, York University, Toronto, ON, M3J 1P3, Canada.
| | - Martin Villiger
- Department of Mechanical Engineering, Lassonde School of Engineering, York University, Toronto, ON, M3J 1P3, Canada.
- Harvard Medical School, Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, 02114, USA.
| |
Collapse
|
7
|
Gende M, Castelo L, de Moura J, Novo J, Ortega M. Intra- and Inter-expert Validation of an Automatic Segmentation Method for Fluid Regions Associated with Central Serous Chorioretinopathy in OCT Images. JOURNAL OF IMAGING INFORMATICS IN MEDICINE 2024; 37:107-122. [PMID: 38343245 DOI: 10.1007/s10278-023-00926-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 10/16/2023] [Accepted: 10/16/2023] [Indexed: 03/02/2024]
Abstract
Central Serous Chorioretinopathy (CSC) is a retinal disorder caused by the accumulation of fluid, resulting in vision distortion. The diagnosis of this disease is typically performed through Optical Coherence Tomography (OCT) imaging, which displays any fluid buildup between the retinal layers. Currently, these fluid regions are manually detected by visual inspection a time-consuming and subjective process that can be prone to errors. A series of six deep learning-based automatic segmentation architectural configurations of different levels of complexity were trained and compared in order to determine the best model intended for the automatic segmentation of CSC-related lesions in OCT images. The best performing models were then evaluated in an external validation study. Furthermore, an intra- and inter-expert analysis was conducted in order to compare the manual segmentation performed by expert ophthalmologists with the automatic segmentation provided by the models. Test results of the best performing configuration achieved a mean Dice of 0.868 ± 0.056 in the internal dataset. In the external validation set, these models achieved a level of agreement with human experts of up to 0.960 in terms of Kappa coefficient, contrasting with a value of 0.951 for agreement between human experts. Overall, the models reached a better agreement with either of the human experts than these experts with each other, suggesting that automatic segmentation models for the detection of CSC-related lesions in OCT imaging can be useful tools for assessing this disease, reducing the workload of manual inspection and leading to a more robust and objective diagnosis method.
Collapse
Affiliation(s)
- Mateo Gende
- Grupo, VARPA, Instituto de Investigación Biomédica de A Coruña (INIBIC), Universidade da Coruña, Xubias de Arriba, 84, 15006, A Coruña, Spain
- Centro de investigación, CITIC, Universidade da Coruña, Campus de Elviña s/n, 15071, A Coruña, Spain
| | - Lúa Castelo
- Grupo, VARPA, Instituto de Investigación Biomédica de A Coruña (INIBIC), Universidade da Coruña, Xubias de Arriba, 84, 15006, A Coruña, Spain
- Centro de investigación, CITIC, Universidade da Coruña, Campus de Elviña s/n, 15071, A Coruña, Spain
| | - Joaquim de Moura
- Grupo, VARPA, Instituto de Investigación Biomédica de A Coruña (INIBIC), Universidade da Coruña, Xubias de Arriba, 84, 15006, A Coruña, Spain.
- Centro de investigación, CITIC, Universidade da Coruña, Campus de Elviña s/n, 15071, A Coruña, Spain.
| | - Jorge Novo
- Grupo, VARPA, Instituto de Investigación Biomédica de A Coruña (INIBIC), Universidade da Coruña, Xubias de Arriba, 84, 15006, A Coruña, Spain
- Centro de investigación, CITIC, Universidade da Coruña, Campus de Elviña s/n, 15071, A Coruña, Spain
| | - Marcos Ortega
- Grupo, VARPA, Instituto de Investigación Biomédica de A Coruña (INIBIC), Universidade da Coruña, Xubias de Arriba, 84, 15006, A Coruña, Spain
- Centro de investigación, CITIC, Universidade da Coruña, Campus de Elviña s/n, 15071, A Coruña, Spain
| |
Collapse
|
8
|
Schmetterer L, Scholl H, Garhöfer G, Janeschitz-Kriegl L, Corvi F, Sadda SR, Medeiros FA. Endpoints for clinical trials in ophthalmology. Prog Retin Eye Res 2023; 97:101160. [PMID: 36599784 DOI: 10.1016/j.preteyeres.2022.101160] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 12/22/2022] [Accepted: 12/28/2022] [Indexed: 01/03/2023]
Abstract
With the identification of novel targets, the number of interventional clinical trials in ophthalmology has increased. Visual acuity has for a long time been considered the gold standard endpoint for clinical trials, but in the recent years it became evident that other endpoints are required for many indications including geographic atrophy and inherited retinal disease. In glaucoma the currently available drugs were approved based on their IOP lowering capacity. Some recent findings do, however, indicate that at the same level of IOP reduction, not all drugs have the same effect on visual field progression. For neuroprotection trials in glaucoma, novel surrogate endpoints are required, which may either include functional or structural parameters or a combination of both. A number of potential surrogate endpoints for ophthalmology clinical trials have been identified, but their validation is complicated and requires solid scientific evidence. In this article we summarize candidates for clinical endpoints in ophthalmology with a focus on retinal disease and glaucoma. Functional and structural biomarkers, as well as quality of life measures are discussed, and their potential to serve as endpoints in pivotal trials is critically evaluated.
Collapse
Affiliation(s)
- Leopold Schmetterer
- Singapore Eye Research Institute, Singapore; SERI-NTU Advanced Ocular Engineering (STANCE), Singapore; Academic Clinical Program, Duke-NUS Medical School, Singapore; School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore; Department of Clinical Pharmacology, Medical University Vienna, Vienna, Austria; Center for Medical Physics and Biomedical Engineering, Medical University Vienna, Vienna, Austria; Institute of Molecular and Clinical Ophthalmology, Basel, Switzerland.
| | - Hendrik Scholl
- Institute of Molecular and Clinical Ophthalmology, Basel, Switzerland; Department of Ophthalmology, University of Basel, Basel, Switzerland
| | - Gerhard Garhöfer
- Department of Clinical Pharmacology, Medical University Vienna, Vienna, Austria
| | - Lucas Janeschitz-Kriegl
- Institute of Molecular and Clinical Ophthalmology, Basel, Switzerland; Department of Ophthalmology, University of Basel, Basel, Switzerland
| | - Federico Corvi
- Eye Clinic, Department of Biomedical and Clinical Sciences "Luigi Sacco", University of Milan, Italy
| | - SriniVas R Sadda
- Doheny Eye Institute, Los Angeles, CA, USA; Department of Ophthalmology, David Geffen School of Medicine at University of California, Los Angeles, CA, USA
| | - Felipe A Medeiros
- Vision, Imaging and Performance Laboratory, Department of Ophthalmology, Duke Eye Center, Duke University, Durham, NC, USA
| |
Collapse
|
9
|
Darvin ME. Optical Methods for Non-Invasive Determination of Skin Penetration: Current Trends, Advances, Possibilities, Prospects, and Translation into In Vivo Human Studies. Pharmaceutics 2023; 15:2272. [PMID: 37765241 PMCID: PMC10538180 DOI: 10.3390/pharmaceutics15092272] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/19/2023] [Accepted: 08/24/2023] [Indexed: 09/29/2023] Open
Abstract
Information on the penetration depth, pathways, metabolization, storage of vehicles, active pharmaceutical ingredients (APIs), and functional cosmetic ingredients (FCIs) of topically applied formulations or contaminants (substances) in skin is of great importance for understanding their interaction with skin targets, treatment efficacy, and risk assessment-a challenging task in dermatology, cosmetology, and pharmacy. Non-invasive methods for the qualitative and quantitative visualization of substances in skin in vivo are favored and limited to optical imaging and spectroscopic methods such as fluorescence/reflectance confocal laser scanning microscopy (CLSM); two-photon tomography (2PT) combined with autofluorescence (2PT-AF), fluorescence lifetime imaging (2PT-FLIM), second-harmonic generation (SHG), coherent anti-Stokes Raman scattering (CARS), and reflectance confocal microscopy (2PT-RCM); three-photon tomography (3PT); confocal Raman micro-spectroscopy (CRM); surface-enhanced Raman scattering (SERS) micro-spectroscopy; stimulated Raman scattering (SRS) microscopy; and optical coherence tomography (OCT). This review summarizes the state of the art in the use of the CLSM, 2PT, 3PT, CRM, SERS, SRS, and OCT optical methods to study skin penetration in vivo non-invasively (302 references). The advantages, limitations, possibilities, and prospects of the reviewed optical methods are comprehensively discussed. The ex vivo studies discussed are potentially translatable into in vivo measurements. The requirements for the optical properties of substances to determine their penetration into skin by certain methods are highlighted.
Collapse
|
10
|
Nuijts MA, Stegeman I, Porro GL, Bennebroek CAM, van Seeters T, Proudlock FA, Schouten-van Meeteren AYN, Imhof SM. Diagnostic accuracy of retinal optical coherence tomography in children with a newly diagnosed brain tumour. Acta Ophthalmol 2023; 101:658-669. [PMID: 36924320 DOI: 10.1111/aos.15650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 01/15/2023] [Accepted: 02/09/2023] [Indexed: 03/18/2023]
Abstract
PURPOSE To estimate the diagnostic accuracy of circumpapillary retinal nerve fibre layer (RNFL) thickness and macular ganglion cell layer-inner plexiform layer (GCL-IPL) thickness measurements to discriminate an abnormal visual function (i.e. abnormal age-based visual acuity and/or visual field defect) in children with a newly diagnosed brain tumour. METHODS This cross-sectional analysis of a prospective longitudinal nationwide cohort study was conducted at four hospitals in the Netherlands, including the national referral centre for paediatric oncology. Patients aged 0-18 years with a newly diagnosed brain tumour and reliable visual acuity and/or visual field examination and optical coherence tomography were included. Diagnostic accuracy was evaluated with sensitivity, specificity, positive predictive value (PPV) and negative predictive value (NPV). RESULTS Of 115 patients included in the study (67 [58.3%] male; median age 10.6 years [range, 0.2-17.8 years]), reliable RNFL thickness and GCL-IPL thickness measurements were available in 92 patients (80.0%) and 84 patients (73.0%), respectively. The sensitivity for detecting an abnormal visual function was 74.5% for average RNFL thickness and 41.7% for average GCL-IPL thickness at a specificity of 44.5% and 82.9%, respectively. The PPV and NPV were 33.0% and 82.6% for the average RNFL thickness and 57.1% and 82.2% for the average GCL-IPL thickness. CONCLUSION An abnormal visual function was discriminated correctly by using the average RNFL thickness in seven out of ten patients and by using the average GCL-IPL thickness in four out of ten patients. The relatively high NPVs signified that patients with normal average RNFL thickness and average GCL-IPL thickness measurements had a relative high certainty of a normal visual function.
Collapse
Affiliation(s)
- Myrthe A Nuijts
- Department of Ophthalmology, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Inge Stegeman
- Department of Ophthalmology, University Medical Centre Utrecht, Utrecht, The Netherlands
- Department of Otorhinolaryngology and Head & Neck Surgery University, University Medical Centre Utrecht, Utrecht, The Netherlands
- Brain Centre, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Giorgio L Porro
- Department of Ophthalmology, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Carlien A M Bennebroek
- Department of Ophthalmology, Amsterdam UMC, Location University of Amsterdam, Amsterdam, The Netherlands
| | - Tom van Seeters
- Department of Radiology, Elisabeth-TweeSteden Hospital, Tilburg, The Netherlands
| | | | | | - Saskia M Imhof
- Department of Ophthalmology, University Medical Centre Utrecht, Utrecht, The Netherlands
| |
Collapse
|
11
|
Yang Y, Xue Q, Zhang Y, He X, Li Z, Yang J. Quantitative analysis of the degree of demineralization for bleached enamel by optical coherence tomography. Photodiagnosis Photodyn Ther 2023; 43:103686. [PMID: 37399915 DOI: 10.1016/j.pdpdt.2023.103686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 06/14/2023] [Accepted: 06/30/2023] [Indexed: 07/05/2023]
Abstract
BACKGROUND Tooth bleaching imparts whitening effects along with adverse effects such as increased tooth sensitivity and enamel surface changes. Herein, we employed optical coherence tomography (OCT), a nondestructive optical detection technique, for evaluation of tooth enamel after treatment with peroxide-based bleaching agents. METHODS Fifteen enamel samples were bleached using 38% acidic hydrogen peroxide-based bleach, subjected to OCT scanning, and then cross-sectioned and imaged under polarized light microscopy (PLM) and transverse microradiography (TMR). OCT cross-sectional images were compared with PLM and TMR. The depth and severity of demineralization produced in the bleached enamel were measured by OCT, PLM, and TMR. Comparison between the three techniques was performed using Kruskal-Wallis H non-parametric test and Pearson correlation. RESULTS In comparison with PLM and TMR, OCT clearly detected the changes in the enamel surface after hydrogen peroxide bleaching. Significant correlations (p<0.05) were observed in lesion depth between OCT and PLM (r=0.820), OCT and TMR (r=0.822), and TMR and PLM (r=0.861). There was no statistically significant difference in demineralization depth values measured by OCT, PLM, and TMR (p>0.05). CONCLUSION OCT can allow real-time, non-invasive imaging of artificially bleached tooth models and automatically measure the early changes in the enamel lesion structure upon exposure to hydrogen peroxide-based bleaching agents.
Collapse
Affiliation(s)
- Yuhao Yang
- Department of Endodontics, Affiliated Stomatological Hospital, Nanchang University, Nanchang, Jiangxi 330006, China; Jiangxi Key Laboratory of Oral Biomedicine, Nanchang, Jiangxi 330006, China
| | - Qiaoqiao Xue
- Key Laboratory of Opto-Electronic Information Science and Technology of Jiangxi Province and Jiangxi Engineering Laboratory for Optoelectronics Testing Technology, Nanchang Hangkong University, Nanchang, Jiangxi 330063, China
| | - Yubao Zhang
- Key Laboratory of Opto-Electronic Information Science and Technology of Jiangxi Province and Jiangxi Engineering Laboratory for Optoelectronics Testing Technology, Nanchang Hangkong University, Nanchang, Jiangxi 330063, China
| | - Xingdao He
- Key Laboratory of Opto-Electronic Information Science and Technology of Jiangxi Province and Jiangxi Engineering Laboratory for Optoelectronics Testing Technology, Nanchang Hangkong University, Nanchang, Jiangxi 330063, China
| | - Zekun Li
- Department of Endodontics, Affiliated Stomatological Hospital, Nanchang University, Nanchang, Jiangxi 330006, China; Jiangxi Key Laboratory of Oral Biomedicine, Nanchang, Jiangxi 330006, China
| | - Jian Yang
- Department of Endodontics, Affiliated Stomatological Hospital, Nanchang University, Nanchang, Jiangxi 330006, China; Jiangxi Key Laboratory of Oral Biomedicine, Nanchang, Jiangxi 330006, China.
| |
Collapse
|
12
|
Topaloglu C, Bilgin S. Retinal Vascular Density Change in Patients With Aortic Valve Regurgitation. Cardiol Res 2023; 14:309-314. [PMID: 37559711 PMCID: PMC10409551 DOI: 10.14740/cr1502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 05/27/2023] [Indexed: 08/11/2023] Open
Abstract
BACKGROUND The aim of this study was to assess retinal vessel density in the superficial capillary plexus layer, deep capillary plexus layer and choriocapillaris plexus layer in patients with aortic valve regurgitation (AR) using optical coherence tomography angiography (OCTA). METHODS Thirty-eight healthy participants (group 1) and 38 patients with AR (group 2) were assessed for this study. Diagnosis of AR is made by transthoracic echocardiography (TTE). Severity of AR was assessed according to values in the 2014 American Heart Association/American College of Cardiology (AHA/ACC) valve guideline. Superficial capillary plexus density (SCPD), deep capillary plexus density (DCPD) and choriocapillaris plexus density (CCPD) were analyzed between groups using OCTA. RESULTS SCPD measurements were found to be decreased in the nasal, inferior and central regions of patients with AR (P ≤ 0.05). DCPD measurements were found to be decreased in the nasal and inferior regions of patients with AR (P ≤ 0.05). CCPD measurements were found to be decreased in the inferior and central regions of patients with AR (P ≤ 0.05). In patients with AR, CCPD measurements were significantly decreased in the inferior region compared to the control group. Central macular thickness was found to be significantly decreased in the patients with AR. CONCLUSIONS Patients with AR showed decreased flow density compared with healthy controls. Retinal perfusion measured using OCTA in patients with AR may give an idea about microperfusion.
Collapse
Affiliation(s)
- Caner Topaloglu
- Department of Cardiology, Izmir University of Economics, Izmir, Turkey
| | - Sinan Bilgin
- Department of Ophthalmology, Izmir University of Economics, Izmir, Turkey
| |
Collapse
|
13
|
Li K, Liu B, Wang Z, Li Y, Li H, Wu S, Li Z. Quantitative characterization of zebrafish development based on multiple classifications using Mueller matrix OCT. BIOMEDICAL OPTICS EXPRESS 2023; 14:2889-2904. [PMID: 37342688 PMCID: PMC10278635 DOI: 10.1364/boe.488614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 05/15/2023] [Accepted: 05/16/2023] [Indexed: 06/23/2023]
Abstract
Organ development analysis plays an important role in assessing an individual' s growth health. In this study, we present a non-invasive method for the quantitative characterization of zebrafish multiple organs during their growth, utilizing Mueller matrix optical coherence tomography (Mueller matrix OCT) in combination with deep learning. Firstly, Mueller matrix OCT was employed to acquire 3D images of zebrafish during development. Subsequently, a deep learning based U-Net network was applied to segment various anatomical structures, including the body, eyes, spine, yolk sac, and swim bladder of the zebrafish. Following segmentation, the volume of each organ was calculated. Finally, the development and proportional trends of zebrafish embryos and organs from day 1 to day 19 were quantitatively analyzed. The obtained quantitative results revealed that the volume development of the fish body and individual organs exhibited a steady growth trend. Additionally, smaller organs, such as the spine and swim bladder, were successfully quantified during the growth process. Our findings demonstrate that the combination of Mueller matrix OCT and deep learning effectively quantify the development of various organs throughout zebrafish embryonic development. This approach offers a more intuitive and efficient monitoring method for clinical medicine and developmental biology studies.
Collapse
Affiliation(s)
- Ke Li
- Key Laboratory of Optoelectronic Science and Technology for Medicine, Ministry of Education, Fujian Provincial Key Laboratory of Photonics Technology, Fujian Provincial Engineering Technology Research Center of Photoelectric Sensing Application, College of Photonic and Electronic Engineering, Fujian Normal University, Fuzhou, Fujian, 350007, China
| | - Bin Liu
- Key Laboratory of Optoelectronic Science and Technology for Medicine, Ministry of Education, Fujian Provincial Key Laboratory of Photonics Technology, Fujian Provincial Engineering Technology Research Center of Photoelectric Sensing Application, College of Photonic and Electronic Engineering, Fujian Normal University, Fuzhou, Fujian, 350007, China
| | - Zaifan Wang
- Key Laboratory of Optoelectronic Science and Technology for Medicine, Ministry of Education, Fujian Provincial Key Laboratory of Photonics Technology, Fujian Provincial Engineering Technology Research Center of Photoelectric Sensing Application, College of Photonic and Electronic Engineering, Fujian Normal University, Fuzhou, Fujian, 350007, China
| | - Yao Li
- Key Laboratory of Optoelectronic Science and Technology for Medicine, Ministry of Education, Fujian Provincial Key Laboratory of Photonics Technology, Fujian Provincial Engineering Technology Research Center of Photoelectric Sensing Application, College of Photonic and Electronic Engineering, Fujian Normal University, Fuzhou, Fujian, 350007, China
| | - Hui Li
- Key Laboratory of Optoelectronic Science and Technology for Medicine, Ministry of Education, Fujian Provincial Key Laboratory of Photonics Technology, Fujian Provincial Engineering Technology Research Center of Photoelectric Sensing Application, College of Photonic and Electronic Engineering, Fujian Normal University, Fuzhou, Fujian, 350007, China
| | - Shulian Wu
- Key Laboratory of Optoelectronic Science and Technology for Medicine, Ministry of Education, Fujian Provincial Key Laboratory of Photonics Technology, Fujian Provincial Engineering Technology Research Center of Photoelectric Sensing Application, College of Photonic and Electronic Engineering, Fujian Normal University, Fuzhou, Fujian, 350007, China
| | - Zhifang Li
- Key Laboratory of Optoelectronic Science and Technology for Medicine, Ministry of Education, Fujian Provincial Key Laboratory of Photonics Technology, Fujian Provincial Engineering Technology Research Center of Photoelectric Sensing Application, College of Photonic and Electronic Engineering, Fujian Normal University, Fuzhou, Fujian, 350007, China
- Bionovel Lab, Guangzhou, Guangdong, 510407, China
| |
Collapse
|
14
|
Niederleithner M, de Sisternes L, Stino H, Sedova A, Schlegl T, Bagherinia H, Britten A, Matten P, Schmidt-Erfurth U, Pollreisz A, Drexler W, Leitgeb RA, Schmoll T. Ultra-Widefield OCT Angiography. IEEE TRANSACTIONS ON MEDICAL IMAGING 2023; 42:1009-1020. [PMID: 36383595 DOI: 10.1109/tmi.2022.3222638] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Optical Coherence Tomography Angiography (OCTA), a functional extension of OCT, has the potential to replace most invasive fluorescein angiography (FA) exams in ophthalmology. So far, OCTA's field of view is however still lacking behind fluorescence fundus photography techniques. This is problematic, because many retinal diseases manifest at an early stage by changes of the peripheral retinal capillary network. It is therefore desirable to expand OCTA's field of view to match that of ultra-widefield fundus cameras. We present a custom developed clinical high-speed swept-source OCT (SS-OCT) system operating at an acquisition rate 8-16 times faster than today's state-of-the-art commercially available OCTA devices. Its speed allows us to capture ultra-wide fields of view of up to 90 degrees with an unprecedented sampling density and hence extraordinary resolution by merging two single shot scans with 60 degrees in diameter. To further enhance the visual appearance of the angiograms, we developed for the first time a three-dimensional deep learning based algorithm for denoising volumetric OCTA data sets. We showcase its imaging performance and clinical usability by presenting images of patients suffering from diabetic retinopathy.
Collapse
|
15
|
One-class machine learning classification of skin tissue based on manually scanned optical coherence tomography imaging. Sci Rep 2023; 13:867. [PMID: 36650283 PMCID: PMC9845382 DOI: 10.1038/s41598-023-28155-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 01/13/2023] [Indexed: 01/19/2023] Open
Abstract
We investigated a method for automatic skin tissue characterization based on optical coherence tomography (OCT) imaging. We developed a manually scanned single fiber OCT instrument to perform in vivo skin imaging and tumor boundary assessment. The goal is to achieve more accurate tissue excision in Mohs micrographic surgery (MMS) and reduce the time required for MMS. The focus of this study was to develop a novel machine learning classification method to automatically identify abnormal skin tissues through one-class classification. We trained a deep convolutional neural network (CNN) with a U-Net architecture for automatic skin segmentation, used the pre-trained U-Net as a feature extractor, and trained one-class support vector machine (SVM) classifiers to detect abnormal tissues. The novelty of this study is the use of a neural network as a feature extractor and the use of a one-class SVM for abnormal tissue detection. Our approach eliminated the need to engineer the features for classification and eliminated the need to train the classifier with data obtained from abnormal tissues. To validate the effectiveness of the one-class classification method, we assessed the performance of our algorithm using computer synthesized data, and experimental data. We also performed a pilot study on a patient with skin cancer.
Collapse
|
16
|
Shapira C, Itshak D, Duadi H, Harel Y, Atkins A, Lipovsky A, Lavi R, Lellouche JP, Fixler D. Noninvasive Nanodiamond Skin Permeation Profiling Using a Phase Analysis Method: Ex Vivo Experiments. ACS NANO 2022; 16:15760-15769. [PMID: 36037067 DOI: 10.1021/acsnano.2c03613] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Carbon-based nanoparticles (NPs) are widely used in nanotechnology. Among them, nanodiamonds (NDs) are suitable for biotechnology and are especially interesting for skin delivery and topical treatments. However, noninvasive detection of NDs within the different skin layers or analyzing their penetration ability is complicated due to the turbid nature of the tissue. The iterative multiplane optical properties extraction (IMOPE) technique detects differences in the optical properties of the measured item by a phase-image analysis method. The phase image is reconstructed by the multiplane Gerchberg-Saxton algorithm. This technique, traditionally, detects differences in the reduced scattering coefficients. Here, however, due to the actual size of the NDs, the IMOPE technique's detection relies on absorption analysis rather than relying on scattering events. In this paper, we use the IMOPE technique to detect the presence of the NDs within tissue-like phantoms. In addition, we perform ex vivo pigskin experiments to estimate the penetration of the NDs to the different skin layers and show that their presence reduces at deeper layers. The significance signal of the NDs within the epidermis, dermis, and fat layers gradually reduces, with t test significance values that are smaller than 10-4, 10-3, and 10-2, respectively. The IMOPE results are corroborated by TEM results and Franz-cell experiments. These results confirm that the IMOPE profiled the skin-permeation of the NDs noninvasively.
Collapse
Affiliation(s)
- Channa Shapira
- Faculty of Engineering, Bar Ilan University, Ramat Gan 5290002, Israel
- The Institute of Nanotechnology and Advanced Materials, Bar Ilan University, Ramat Gan 5290002, Israel
| | - Daniel Itshak
- Department of Chemistry, Bar Ilan University, Ramat Gan 5290002, Israel
- The Institute of Nanotechnology and Advanced Materials, Bar Ilan University, Ramat Gan 5290002, Israel
| | - Hamootal Duadi
- Faculty of Engineering, Bar Ilan University, Ramat Gan 5290002, Israel
- The Institute of Nanotechnology and Advanced Materials, Bar Ilan University, Ramat Gan 5290002, Israel
| | - Yifat Harel
- Department of Chemistry, Bar Ilan University, Ramat Gan 5290002, Israel
- The Institute of Nanotechnology and Advanced Materials, Bar Ilan University, Ramat Gan 5290002, Israel
| | - Ayelet Atkins
- The Institute of Nanotechnology and Advanced Materials, Bar Ilan University, Ramat Gan 5290002, Israel
| | - Anat Lipovsky
- Faculty of Engineering, Bar Ilan University, Ramat Gan 5290002, Israel
| | - Ronit Lavi
- Department of Chemistry, Bar Ilan University, Ramat Gan 5290002, Israel
| | - Jean Paul Lellouche
- Department of Chemistry, Bar Ilan University, Ramat Gan 5290002, Israel
- The Institute of Nanotechnology and Advanced Materials, Bar Ilan University, Ramat Gan 5290002, Israel
| | - Dror Fixler
- Faculty of Engineering, Bar Ilan University, Ramat Gan 5290002, Israel
- The Institute of Nanotechnology and Advanced Materials, Bar Ilan University, Ramat Gan 5290002, Israel
| |
Collapse
|
17
|
Ding B, Jinyuan T, Tao K, Ding Z, Yang S. A pilot and ex-vivo study of examination of endometrium tissue by catheter based optical coherence tomography. BMC Med Imaging 2022; 22:162. [PMID: 36088282 PMCID: PMC9464373 DOI: 10.1186/s12880-022-00890-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 08/30/2022] [Indexed: 11/11/2022] Open
Abstract
Objective This study aimed to distinguish ex-vivo normal and abnormal endometrium tissue samples histologically by catheter based optical coherence tomography (OCT). Methods A total of 72 ex-vivo endometrium specimens were obtained from June 2018 to March 2021 and were imaged fresh after hysterectomy. The scanned region of endometrium was excised for histological examination and endometrium OCT images were precisely compared to corresponding histological images. Meanwhile endometrium OCT images were analyzed quantitatively with intensity of backscattered light in region of interest (ROI) and maximum penetration depth of the OCT signal. Blinded qualitative analysis on endometrium OCT images was performed by 2 assessors to determine accuracy rate and inter-rating reliability on the histopathological diagnosis. Results OCT images were performed successfully in 72 endometrium specimens. Five endometrium specimens developed OCT interpretation criteria and the rest 67 endometrium specimens validated qualitatively and analyzed quantitatively. We defined an OCT criteria to distinguish normal endometrium and five different abnormal endometrium phases including proliferative endometrium, secretory phase endometrium, atrophic endometrium, endometrial hyperplasia with atypia and endometrial carcinoma based on OCT imaging features. The overall diagnosis accuracy achieved by the two assessors was 72.4% based on the OCT criteria. The inter-rater reliability between assessors on overall OCT images was substantial (Kendall τb of 0.720, p < 0.05). The changes in ROI minimum intensity, ROI maximum intensity, ROI average intensity and OCT signal maximum penetration depth of five different abnormal endometrium phases were significantly different (all p < 0.001). These parameters of endometrium carcinomas were significantly different from the other four endometrium phases (all p < 0.001). Conclusion OCT has the advantage of noninvasive and rapid diagnosis, which can contribute to the diagnosis of endometrial cancer and will be an indispensable complement to traditional biopsy. Future studies in vivo with larger samples are needed to confirm this conclusion.
Collapse
|
18
|
|
19
|
Liu J, Wang Y, Li S, Li Z, Liu X, Li W. Insights into the wetting phenomenon induced by scaling of calcium sulfate in membrane distillation. WATER RESEARCH 2022; 216:118282. [PMID: 35320768 DOI: 10.1016/j.watres.2022.118282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 02/10/2022] [Accepted: 03/09/2022] [Indexed: 06/14/2023]
Abstract
Development of water/wastewater treatment based on membrane distillation (MD) suffers from the drawback that the hydrophobic membrane could be wetted for various reasons. Despite significant efforts, there is uncertainty in addressing the wetting induced by scaling of calcium sulfate, which is ubiquitous and recalcitrant in MD processes. This study made the first attempt to analyze the interplay between the growing crystals and the porous structures in the framework of Stoney's equation. Optical coherence tomography (OCT) was exploited to measure the membrane shift, whereby the scaling-induced deformation was correlated with the variation in stress created in the crystal-containing layer. Along with the stress analysis, the OCT-based characterization was combined with conventional approaches to ascertain the dependence of the scaling-induced wetting on the rate of concentrating the crystallizing species when arriving at a high degree of supersaturation in the feed. This study would refine the physical picture for better understanding crystal-membrane interactions that result in not only the wetting phenomenon but also the irreversible damage of membrane structures, thereby lending itself to the development of strategies for MD-based applications with improved efficiency.
Collapse
Affiliation(s)
- Jie Liu
- School of Environment, Harbin Institute of Technology, P. R. China; School of Environmental Science and Engineering, Southern University of Science and Technology, P. R. China
| | - Yewei Wang
- School of Environmental Science and Engineering, Southern University of Science and Technology, P. R. China
| | - Shengzhe Li
- School of Environmental Science and Engineering, Southern University of Science and Technology, P. R. China
| | - Zhuo Li
- School of Environmental Science and Engineering, Southern University of Science and Technology, P. R. China
| | - Xin Liu
- School of Environmental Science and Engineering, Southern University of Science and Technology, P. R. China
| | - Weiyi Li
- School of Environmental Science and Engineering, Southern University of Science and Technology, P. R. China.
| |
Collapse
|
20
|
Study on the application and imaging characteristics of optical coherence tomography in vulva lesions. Sci Rep 2022; 12:3659. [PMID: 35256649 PMCID: PMC8901679 DOI: 10.1038/s41598-022-07634-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Accepted: 02/17/2022] [Indexed: 11/08/2022] Open
Abstract
AbstractIn this study, a prospective study was conducted by using optical coherence tomography (OCT) in the in vivo detection of vulvar diseases. The clinical efficacy of the OCT we investigated in the detection of vulvar diseases, and the characteristics of the OCT images were defined. Overall, this study recruited 63 patients undergoing the colposcopy for vulvar lesions in three Chinese hospitals from December 20th, 2018 and September 24th, 2019. The colposcopy and the OCT examination were performed successively, and the OCT images were compared with the relevant tissue sections to characterize different lesions. The OCT diagnoses where categorized into 7 types, including normal and inflammatory vulva, condyloma acuminata, papilloma, lichen sclerosus, atrophic sclerosing lichen, fibrous epithelial polyp as well as cysts. The structural characteristics of the vulva tissue can be clearly observed in the OCT image, which are consistent with the characteristics of the tissue section. Compared with the pathological results, the sensitivity, specificity and accuracy of the OCT examination reached 83.82% (95% confidence interval, CI 72.5%–91.3%), 57.89% (95% CI 34.0%–78.9%) and 78.16%, respectively. The OCT is found with the advantages of being noninvasive, real-time and sensitive and with high resolution. It is of high significance to screening vulva diseases, and it is expected as one of the methods to clinically diagnose vulva diseases.
Collapse
|
21
|
Muijzer MB, Schellekens PA, Beckers HJM, de Boer JH, Imhof SM, Wisse RPL. Clinical applications for intraoperative optical coherence tomography: a systematic review. Eye (Lond) 2022; 36:379-391. [PMID: 34272509 PMCID: PMC8807841 DOI: 10.1038/s41433-021-01686-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 06/17/2021] [Accepted: 07/01/2021] [Indexed: 02/06/2023] Open
Abstract
In this systematic review, we provide an overview of the current state of intraoperative optical coherence tomography (iOCT). As iOCT technology is increasingly utilized, its current clinical applications and potential uses warrant attention. Here, we categorize the findings of various studies by their respective fields, including the use of iOCT in vitreoretinal surgery, corneal surgery, glaucoma surgery, cataract surgery, and pediatric ophthalmology. The trend observed in recent decades towards performing minimally invasive ophthalmic surgery has caused practitioners to recognize the limitations of using a conventional surgical microscope for intraoperative visualization. Thus, the superior visualization provided by iOCT can improve the safety of these surgical techniques and promote the development of new minimally invasive ophthalmic surgeries. Landmark prospective studies found that iOCT can significantly affect surgical decision making and can cause a subsequent change in surgical strategy, and the use of iOCT has potential to improve surgical outcome. Despite these advantages, however, iOCT is still a relatively new technique, and beginning users of iOCT can encounter limitations that can preclude their reaching the full potential of iOCT and in this respect several improvements are needed.
Collapse
Affiliation(s)
- Marc B. Muijzer
- grid.7692.a0000000090126352Department of Ophthalmology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Peter A.W.J. Schellekens
- grid.7692.a0000000090126352Department of Ophthalmology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Henny J. M. Beckers
- grid.412966.e0000 0004 0480 1382University Eye Clinic, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Joke H. de Boer
- grid.7692.a0000000090126352Department of Ophthalmology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Saskia M. Imhof
- grid.7692.a0000000090126352Department of Ophthalmology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Robert P. L. Wisse
- grid.7692.a0000000090126352Department of Ophthalmology, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
22
|
Nuijts MA, Imhof SM, Veldhuis N, Dekkers CC, Schouten – van Meeteren AYN, Stegeman I. The diagnostic accuracy and prognostic value of OCT for the evaluation of the visual function in children with a brain tumour: A systematic review. PLoS One 2021; 16:e0261631. [PMID: 34941930 PMCID: PMC8699950 DOI: 10.1371/journal.pone.0261631] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 12/06/2021] [Indexed: 12/22/2022] Open
Abstract
Purpose To systematically review the evidence on the diagnostic accuracy and prognostic value of retinal optical coherence tomography (OCT) to detect visual acuity (VA) or visual field (VF) loss in children with a brain tumour. Methods PubMed, Embase and Cochrane Library databases were searched from inception to February 2021. We included studies evaluating retinal OCT and standard visual function parameters (VA and or VF) in children with a brain tumour. Two authors independently extracted data from each included study. They also assessed the methodological quality of the studies using the QUADAS-2 or QUIPS tool. The diagnostic accuracy of OCT was evaluated with receiver operating characteristic analysis, sensitivity, specificity, positive predictive value and negative predictive value. The prognostic value of OCT was evaluated with predictive measures (odds ratio). Results We included five diagnostic studies, with a total of 186 patients, all diagnosed with optic pathway glioma. No prognostic studies were eligible for inclusion. Included studies evaluated either retinal nerve fiber layer (RNFL) thickness or ganglion cell layer—inner plexiform layer (GCL-IPL) thickness. There was considerable heterogeneity between OCT devices, OCT protocols, visual function parameters and threshold values. Sensitivity and specificity for RNFL thickness measurement ranged from 60.0% to 100.0% and 76.6% to 100%, respectively. For GCL-IPL thickness measurement, area under the curve ranged from 0.91 to 0.98 for different diameters. Conclusion The literature regarding the diagnostic accuracy and prognostic value of OCT parameters in children with a brain tumour is scarce. Due to heterogeneity and a considerable risk of bias of included studies, we cannot draw solid conclusions regarding the accuracy of retinal OCT. Future research should investigate the potential of OCT as diagnostic and prognostic tool for the evaluation of the visual function and detection of visual impairment in children with any type of brain tumour.
Collapse
Affiliation(s)
- Myrthe A. Nuijts
- Department of Ophthalmology, University Medical Centre Utrecht, Utrecht, The Netherlands
- * E-mail:
| | - Saskia M. Imhof
- Department of Ophthalmology, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Nienke Veldhuis
- Faculty of Medicine, Utrecht University, Utrecht, The Netherlands
| | - Coco C. Dekkers
- Faculty of Medicine, Utrecht University, Utrecht, The Netherlands
| | | | - Inge Stegeman
- Department of Ophthalmology, University Medical Centre Utrecht, Utrecht, The Netherlands
- Department of Otorhinolaryngology and Head & Neck Surgery University, University Medical Centre Utrecht, Utrecht, The Netherlands
- Brain Centre Rudolf Magnus, University Medical Centre Utrecht, Utrecht, The Netherlands
- Epidemiology and Data Science, Amsterdam University Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
23
|
Wang K, Li C, Chen R, Shi J. Recent advances in high-speed photoacoustic microscopy. PHOTOACOUSTICS 2021; 24:100294. [PMID: 34458095 PMCID: PMC8379700 DOI: 10.1016/j.pacs.2021.100294] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 08/01/2021] [Accepted: 08/11/2021] [Indexed: 05/02/2023]
Abstract
Photoacoustic (PA) microscopy (PAM) has achieved remarkable progress in biomedicine in the past decade. It is a fast-rising imaging modality with diverse applications, such as hemodynamics, oncology, metabolism, and neuroimaging. Combining optical excitation and acoustic detection, the hybrid nature of PAM provides advantages of rich contrast and deep penetration. In recent years, high-speed PAM has flourished and enabled high-speed wide-field imaging of functional activity. In this review, we summarize the most recent advances in high-speed PAM technologies, including high-repetition-rate multi-wavelength laser development, fast scanning techniques, and novel PA signal acquisition strategies.
Collapse
|
24
|
Houck P. Pathophysiology of Spontaneous Coronary Artery Dissection Determines Anticoagulation Strategy. Cureus 2021; 13:e17437. [PMID: 34589344 PMCID: PMC8462393 DOI: 10.7759/cureus.17437] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/25/2021] [Indexed: 11/29/2022] Open
Abstract
Spontaneous coronary dissection is an uncommon disorder, lacking convincing pathophysiologic evidence. Scientific statements and state-of-the-art articles suggest intramural hematoma from bleeding vasa vasorum is the cause. Evidence is based on limited invasive evaluation with optical coherence tomography. This assumption, therefore, suggests anti-coagulation be discontinued. Mechanical shear forces, intraluminal pressures do not support bleeding vasa vasorum closing a higher luminal pressure vessel. The endothelium’s role in inflammation, thrombosis, and repair suggests the pathophysiology is failure to repair endothelium with the lack of repair as the nidus of disruption. A tear ensues and can spontaneously reseal. The lack of inflammatory cells in pathological specimens and association with another poorly understood disease fibromuscular dysplasia supports the etiology of both entities as failure to replace endothelium. The endothelium is the fulcrum of both inflammation and thrombosis. The ability to heal the rift supports conservative therapy. Anticoagulants and antiplatelet reduce thrombosis and inflammation which will ensue when the endothelium is disrupted. These agents will substitute for the failed endothelium allowing thrombosis to be kept in check, reduce inflammation, and promote healing. This thesis and the state-of-the-art articles do not present clinical outcome data. Both support conservative interventions. Anticoagulation recommendations are however in opposite realms. Failure to repair endothelium suggest additional therapies of statins, exercise, smoking cessation will increase circulating stem cells may reduce future events and slow the progression of fibromuscular dysplasia. Future directions in understanding this disease and new therapies requires measurement of repair mechanisms such as the quantity of circulating endothelial progenitor cells.
Collapse
Affiliation(s)
- Philip Houck
- Medicine/Cardiology, Texas A&M Health Sciences Center, Temple, USA.,Medicine/Cardiology, Baylor Scott & White Health, Temple, USA
| |
Collapse
|
25
|
Altunisik E, Oren B. Retinal Neurovascular Structural Changes in Optical Coherence Tomography and the Relationship between These Changes and White Matter Hyperintensities in Patients with Migraine. Eur Neurol 2021; 84:460-471. [PMID: 34515117 DOI: 10.1159/000518380] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 07/06/2021] [Indexed: 11/19/2022]
Abstract
INTRODUCTION This study aimed to reveal whether retinal nerve fiber layer (RNFL), ganglion cell layer (GCL) inner plexiform layer, and choroidal layer (CL) thicknesses differed in patients with migraine. Optical coherence tomography (OCT) was used to measure these neurovascular structural changes and determine the relationship between these structures and cranial white matter hyperintensities (WMHs). METHODS This retrospective comparative registry study included a total of 155 individuals aged 18-55 (mean, 33.50 ± 8.34), consisting of 110 migraine patients and 45 healthy controls. RESULTS RNFLs were thinner in the migraine group than the control group but not to a statistically significant degree. However, in both eyes, peripapillary RNLF thickness in some specific quadrants was found to be significantly thinner in the patient group than the control group. GCLs were significantly thinner in the migraine group than the control group. CLs were significantly thicker in the migraine group than in the control group. There was no significant difference between the OCT parameters of patients with and without WMH. An inverse correlation was found between disease duration and CL thickness. CLs were significantly thicker in patients in attack periods than those in attack-free periods. There was no significant difference between the OCT parameters of the migraine with aura and migraine without aura subgroups. DISCUSSION/CONCLUSIONS Retinal neural and vascular structures might be affected in migraine sufferers, including those in subgroups. Rebound vasodilation may cause alterations in CL thickness during a migraine attack. Factors other than hypoperfusion may contribute to the pathophysiology responsible for the formation of WMH.
Collapse
Affiliation(s)
- Erman Altunisik
- Department of Neurology, Adiyaman University Faculty of Medicine, Adiyaman, Turkey
| | - Burak Oren
- Department of Ophthalmology, Adiyaman University Faculty of Medicine, Adiyaman, Turkey
| |
Collapse
|
26
|
Sirbubalo M, Tucak A, Muhamedagic K, Hindija L, Rahić O, Hadžiabdić J, Cekic A, Begic-Hajdarevic D, Cohodar Husic M, Dervišević A, Vranić E. 3D Printing-A "Touch-Button" Approach to Manufacture Microneedles for Transdermal Drug Delivery. Pharmaceutics 2021; 13:924. [PMID: 34206285 PMCID: PMC8308681 DOI: 10.3390/pharmaceutics13070924] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/10/2021] [Accepted: 06/14/2021] [Indexed: 11/18/2022] Open
Abstract
Microneedles (MNs) represent the concept of attractive, minimally invasive puncture devices of micron-sized dimensions that penetrate the skin painlessly and thus facilitate the transdermal administration of a wide range of active substances. MNs have been manufactured by a variety of production technologies, from a range of materials, but most of these manufacturing methods are time-consuming and expensive for screening new designs and making any modifications. Additive manufacturing (AM) has become one of the most revolutionary tools in the pharmaceutical field, with its unique ability to manufacture personalized dosage forms and patient-specific medical devices such as MNs. This review aims to summarize various 3D printing technologies that can produce MNs from digital models in a single step, including a survey on their benefits and drawbacks. In addition, this paper highlights current research in the field of 3D printed MN-assisted transdermal drug delivery systems and analyzes parameters affecting the mechanical properties of 3D printed MNs. The current regulatory framework associated with 3D printed MNs as well as different methods for the analysis and evaluation of 3D printed MN properties are outlined.
Collapse
Affiliation(s)
- Merima Sirbubalo
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Sarajevo, Zmaja od Bosne 8, 71000 Sarajevo, Bosnia and Herzegovina; (M.S.); (A.T.); (L.H.); (O.R.); (J.H.)
| | - Amina Tucak
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Sarajevo, Zmaja od Bosne 8, 71000 Sarajevo, Bosnia and Herzegovina; (M.S.); (A.T.); (L.H.); (O.R.); (J.H.)
| | - Kenan Muhamedagic
- Department of Mechanical Production Engineering, Faculty of Mechanical Engineering, University of Sarajevo, Vilsonovo Setaliste 9, 71000 Sarajevo, Bosnia and Herzegovina; (K.M.); (D.B.-H.); (M.C.H.)
| | - Lamija Hindija
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Sarajevo, Zmaja od Bosne 8, 71000 Sarajevo, Bosnia and Herzegovina; (M.S.); (A.T.); (L.H.); (O.R.); (J.H.)
| | - Ognjenka Rahić
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Sarajevo, Zmaja od Bosne 8, 71000 Sarajevo, Bosnia and Herzegovina; (M.S.); (A.T.); (L.H.); (O.R.); (J.H.)
| | - Jasmina Hadžiabdić
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Sarajevo, Zmaja od Bosne 8, 71000 Sarajevo, Bosnia and Herzegovina; (M.S.); (A.T.); (L.H.); (O.R.); (J.H.)
| | - Ahmet Cekic
- Department of Mechanical Production Engineering, Faculty of Mechanical Engineering, University of Sarajevo, Vilsonovo Setaliste 9, 71000 Sarajevo, Bosnia and Herzegovina; (K.M.); (D.B.-H.); (M.C.H.)
| | - Derzija Begic-Hajdarevic
- Department of Mechanical Production Engineering, Faculty of Mechanical Engineering, University of Sarajevo, Vilsonovo Setaliste 9, 71000 Sarajevo, Bosnia and Herzegovina; (K.M.); (D.B.-H.); (M.C.H.)
| | - Maida Cohodar Husic
- Department of Mechanical Production Engineering, Faculty of Mechanical Engineering, University of Sarajevo, Vilsonovo Setaliste 9, 71000 Sarajevo, Bosnia and Herzegovina; (K.M.); (D.B.-H.); (M.C.H.)
| | - Almir Dervišević
- Head and Neck Surgery, Clinical Center University of Sarajevo, Bolnička 25, 71000 Sarajevo, Bosnia and Herzegovina;
| | - Edina Vranić
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Sarajevo, Zmaja od Bosne 8, 71000 Sarajevo, Bosnia and Herzegovina; (M.S.); (A.T.); (L.H.); (O.R.); (J.H.)
| |
Collapse
|
27
|
Al-Mohamedi H, Kelly-Pérez I, Oltrup T, Cayless A, Bende T. Extended measuring depth dual-wavelength Fourier domain optical coherence tomography. ACTA ACUST UNITED AC 2021; 66:557-562. [PMID: 34087968 DOI: 10.1515/bmt-2020-0350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 05/18/2021] [Indexed: 11/15/2022]
Abstract
In this work an enhanced wide range dual band spectral domain optical coherence tomography technique (SD-OCT) is presented to increase the depth and accuracy of the measurement of optical A-scan biometry. The setup uses a Michelson interferometer with two wide-spectrum Superluminescent Diodes (SLD). The emissions of the SLDs are filtered by a long-pass filter (900 nm) in front of the reference mirror. The light is spectrally decomposed using a single reflective diffraction grating (1,800 lines/mm) and the whole spectrum captured with two CCD line sensors. The capabilities of the system have been validated using a self-made human model eye.
Collapse
Affiliation(s)
- Haroun Al-Mohamedi
- Sektion für Experimentelle Ophthalmochirurgie, Universitätsklinikum Tübingen, Tübingen, Germany
| | - Ismael Kelly-Pérez
- Sektion für Experimentelle Ophthalmochirurgie, Universitätsklinikum Tübingen, Tübingen, Germany.,Department of Mechanical and Electrical Engineering, Universidad Veracruzana, Xalapa, Veracruz, Mexico
| | - Theo Oltrup
- Stiftungslabor für Grundlagen-forschung, Universitäts-Augenklinik Tübingen, Tübingen, Germany
| | - Alan Cayless
- Department of Physical Sciences, Open University, Milton Keynes, UK
| | - Thomas Bende
- Stiftungslabor für Grundlagen-forschung, Universitäts-Augenklinik Tübingen, Tübingen, Germany
| |
Collapse
|
28
|
Flux decline induced by scaling of calcium sulfate in membrane distillation: Theoretical analysis on the role of different mechanisms. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119257] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
29
|
In-vivo imaging of the conventional aqueous outflow system. Curr Opin Ophthalmol 2021; 32:275-279. [PMID: 33653980 DOI: 10.1097/icu.0000000000000751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
PURPOSE OF REVIEW The aim of this study was to provide a comprehensive summary of in-vivo imaging techniques of the aqueous outflow system and discuss its role in improving our understanding of glaucoma pathogenesis and management. RECENT FINDINGS Our understanding of the aqueous outflow system is largely derived from ex-vivo studies. Recent innovations in imaging technology and techniques enable in-vivo evaluation of the conventional outflow system in real-time. Optical coherence tomography allows for noninvasive, high-resolution, volumetric imaging of ocular tissues. Dynamic structural changes have been observed at the trabecular meshwork and Schlemm's canal. In parallel, aqueous angiography using injected tracers show a similar dynamism with variable and pulsatile flow signals. SUMMARY In-vivo imaging enable real-time evaluation of the conventional aqueous outflow pathway. This emerging field shows great promise to expand our understanding of the pathogenesis and treatment of glaucoma.
Collapse
|
30
|
Saleh G, Ateeq IS, Al-Naib I. Glucose Level Sensing Using Single Asymmetric Split Ring Resonator. SENSORS 2021; 21:s21092945. [PMID: 33922285 PMCID: PMC8122804 DOI: 10.3390/s21092945] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 04/16/2021] [Accepted: 04/19/2021] [Indexed: 12/30/2022]
Abstract
In this article, a biosensor composed of a single metamaterial asymmetric resonator is specifically designed for sensing the glucose level of 1 µL of solution. The resonator has two gaps, and one of them ends with a semicircle shape on which the glucose solution is placed. This design helps in confining the drops of glucose solutions in a specific area where the field is maximally confined in order to enhance the electromagnetic wave-matter interaction. Six samples of glucose solutions with concentrations that cover hypoglycemia, normal and hyperglycemia conditions that vary from around 41 to 312 mg/dL were prepared and examined by this biosensor. The resonance frequency redshift was used as a measure of the changes in the glucose level of the solutions. Without glucose solution, an excellent agreement between the measured and simulated transmission amplitude was observed. The increase in glucose concentrations exhibited clear and noticeable redshifts in the resonance frequency. This biosensor revealed a 0.9997 coefficient of determination, which implies an excellent prediction fitting model. More importantly, a sensitivity of 438 kHz/(mg/dL) was observed over the range of concentrations of the aqueous solution.
Collapse
|
31
|
Intraoperative Optical Coherence Tomography-Assisted Descemet Membrane Endothelial Keratoplasty: Toward More Efficient, Safer Surgery. Cornea 2021; 39:674-679. [PMID: 32141944 DOI: 10.1097/ico.0000000000002301] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE To evaluate the clinical value of intraoperative optical coherence tomography (iOCT) and prolonged overpressure in Descemet membrane endothelial keratoplasty for surgical safety, efficiency, and outcome. METHODS All Descemet membrane endothelial keratoplasties performed by the same surgeon from November 2016 through April 2018 at the University Medical Center Utrecht were included, including 6 months of follow-up. The primary outcome was the prevalence of adverse events, and the secondary outcomes included critical decision-making and surgery time. Surgeries that included prolonged (ca. 12 minutes) overpressurization of the globe were classified as group 1, and those without prolonged overpressurization of the globe were classified as group 2. In all cases, iOCT was used to determine the graft orientation, apposition, and assessment of interface fluid. RESULTS A total of 38 cases were included for analysis. In groups 1 and 2, 7 (43.6%) and 4 (18.1%) adverse events, respectively, were recorded (P = 0.29). Specifically, in groups 1 and 2, 4 and 3 cases, respectively, required rebubbling because of graft dislocation (P = 0.15). In 43% of surgeries, iOCT proved to be of value for surgical decision-making. Surgery time differed significantly between groups 1 and 2 (P < 0.001) and was the result of a shortened pressurization time in group 2. CONCLUSIONS iOCT provides a direct assessment of the graft orientation and apposition, allowing the surgeon to refrain from prolonged pressurization of the globe after graft insertion. Optimizing the surgical protocol using iOCT can lead to a significant reduction in surgery time without compromising surgical safety or outcome.
Collapse
|
32
|
Mercuri M, Fernandez Rivas D. Challenges and opportunities for small volumes delivery into the skin. BIOMICROFLUIDICS 2021; 15:011301. [PMID: 33532017 PMCID: PMC7826167 DOI: 10.1063/5.0030163] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Accepted: 01/09/2021] [Indexed: 05/04/2023]
Abstract
Each individual's skin has its own features, such as strength, elasticity, or permeability to drugs, which limits the effectiveness of one-size-fits-all approaches typically found in medical treatments. Therefore, understanding the transport mechanisms of substances across the skin is instrumental for the development of novel minimal invasive transdermal therapies. However, the large difference between transport timescales and length scales of disparate molecules needed for medical therapies makes it difficult to address fundamental questions. Thus, this lack of fundamental knowledge has limited the efficacy of bioengineering equipment and medical treatments. In this article, we provide an overview of the most important microfluidics-related transport phenomena through the skin and versatile tools to study them. Moreover, we provide a summary of challenges and opportunities faced by advanced transdermal delivery methods, such as needle-free jet injectors, microneedles, and tattooing, which could pave the way to the implementation of better therapies and new methods.
Collapse
Affiliation(s)
- Magalí Mercuri
- Instituto de Nanociencia y Nanotecnología (CNEA-CONICET), Av. Gral. Paz 1499, 1650 San Martín, Buenos Aires, Argentina
| | - David Fernandez Rivas
- Mesoscale Chemical Systems Group, MESA+ Institute, TechMed Centre and Faculty of Science and Technology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| |
Collapse
|
33
|
Qin J, An L. Optical Coherence Tomography for Ophthalmology Imaging. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 3233:197-216. [PMID: 34053029 DOI: 10.1007/978-981-15-7627-0_10] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Optical coherence tomography (OCT) is a depth-resolved imaging modality, which is able to achieve micrometer-scale resolution within biological tissue noninvasively. In the past 30 years, researchers all around the world had made several essential efforts on techniques relevant to OCT. OCT has become a routine process for eye diseases with different types. In this chapter, the three important stages in the development of OCT are briefly illustrated, including the time domain OCT (TD-OCT), the frequency domain OCT (FD-OCT) and the optical coherence tomography angiography (OCTA). Each of the technique has made great progress for use on living human eye imaging in clinical applications. TD-OCT was first proposed and commercialized, which is able to achieve acceptable 2D depth-resolved cross-sectional images of human retina in vivo. FD-OCT was the upgraded OCT technique compared with TD-OCT. By capturing the coherent signal within the Fourier space, the FD-OCT could improve the image sensitivity compared with TD-OCT, and achieve dozens of kilo hertz imaging speed. OCTA is the newest developments of OCT technique, which is able to visualize the micro vasculature networks of human retina in vivo. With OCTA technique, the newest ophthalmologic OCT system is able to achieve detailed diagnosis for both micro-structure and vasculature abnormalities for clinical applications. The further development of OCT technique on imaging speed, contrast, resolution, field of view, and so on will make OCT to be a more powerful tool for clinical usages.
Collapse
Affiliation(s)
- Jia Qin
- Innovation and Entrepreneurship Teams Project of Guangdong Pearl River Talents Program, Guangdong Weiren Meditech Co., Ltd, Foshan, Guangdong, People's Republic of China
| | - Lin An
- Innovation and Entrepreneurship Teams Project of Guangdong Pearl River Talents Program, Guangdong Weiren Meditech Co., Ltd, Foshan, Guangdong, People's Republic of China
| |
Collapse
|
34
|
Biometric Measurement of Anterior Segment: A Review. SENSORS 2020; 20:s20154285. [PMID: 32752014 PMCID: PMC7435894 DOI: 10.3390/s20154285] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 07/22/2020] [Accepted: 07/29/2020] [Indexed: 12/12/2022]
Abstract
Biometric measurement of the anterior segment is of great importance for the ophthalmology, human eye modeling, contact lens fitting, intraocular lens design, etc. This paper serves as a comprehensive review on the historical development and basic principles of the technologies for measuring the geometric profiles of the anterior segment. Both the advantages and drawbacks of the current technologies are illustrated. For in vivo measurement of the anterior segment, there are two main challenges that need to be addressed to achieve high speed, fine resolution, and large range imaging. One is the motion artefacts caused by the inevitable and random human eye movement. The other is the serious multiple scattering effects in intraocular turbid media. The future research perspectives are also outlined in this paper.
Collapse
|
35
|
Zhang T, Pled F, Desceliers C. Robust Multiscale Identification of Apparent Elastic Properties at Mesoscale for Random Heterogeneous Materials with Multiscale Field Measurements. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E2826. [PMID: 32586015 PMCID: PMC7345255 DOI: 10.3390/ma13122826] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 06/16/2020] [Accepted: 06/17/2020] [Indexed: 11/27/2022]
Abstract
The aim of this work is to efficiently and robustly solve the statistical inverse problem related to the identification of the elastic properties at both macroscopic and mesoscopic scales of heterogeneous anisotropic materials with a complex microstructure that usually cannot be properly described in terms of their mechanical constituents at microscale. Within the context of linear elasticity theory, the apparent elasticity tensor field at a given mesoscale is modeled by a prior non-Gaussian tensor-valued random field. A general methodology using multiscale displacement field measurements simultaneously made at both macroscale and mesoscale has been recently proposed for the identification the hyperparameters of such a prior stochastic model by solving a multiscale statistical inverse problem using a stochastic computational model and some information from displacement fields at both macroscale and mesoscale. This paper contributes to the improvement of the computational efficiency, accuracy and robustness of such a method by introducing (i) a mesoscopic numerical indicator related to the spatial correlation length(s) of kinematic fields, allowing the time-consuming global optimization algorithm (genetic algorithm) used in a previous work to be replaced with a more efficient algorithm and (ii) an ad hoc stochastic representation of the hyperparameters involved in the prior stochastic model in order to enhance both the robustness and the precision of the statistical inverse identification method. Finally, the proposed improved method is first validated on in silico materials within the framework of 2D plane stress and 3D linear elasticity (using multiscale simulated data obtained through numerical computations) and then exemplified on a real heterogeneous biological material (beef cortical bone) within the framework of 2D plane stress linear elasticity (using multiscale experimental data obtained through mechanical testing monitored by digital image correlation).
Collapse
|
36
|
Topographic changes measured by the swept source optical coherence tomography in retinal nerve fiber layer, optic nerve head and macula in children with migraine. Acta Neurol Belg 2020; 120:661-668. [PMID: 30895457 DOI: 10.1007/s13760-019-01123-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Accepted: 03/11/2019] [Indexed: 01/03/2023]
Abstract
As a vascular-inflammatory disease, migraine affects the brain and some other organs, such as the eye. The aim of this study was to measure and compare the peripapillary retinal nerve fiber layer (RNFL) thickness, macular ganglion cell layer thickness and optic nerve head parameters to detect structural damage in children with migraine using swept-source optical coherence tomography. Twenty-four children with migraine in the painless period and 26 controls were included in the study. The vast majority of the groups consisted of females (75% for patients and 77% for controls). Certain RNFL quadrants and optic disc parameters revealed significant differences between the patients and controls. In the right and left eyes of children with migraine, nasal quadrant RNFL was significantly thicker than that in healthy subjects (88.82 ± 11.03 vs 77.80 ± 13.77, P = 0.004 for right eyes and 87.71 ± 11.79 vs 77.80 ± 13.77, P = 0.01 for left eyes). Temporal quadrant RNFL in the left eyes was thinner (78.67 ± 9.57 vs 84.44 ± 9.68, P = 0.04). Disc area in the left eyes of the patients was greater (2.29 ± 0.46 vs 1.94 ± 0.28, P = 0.003). There were significant expansions in cup volumes in favor of the patients for right and left eyes (0.15 ± .0.19 vs 0.05 ± 0.05, P = 0.03 and 0.17 ± 0.14 vs 0.05 ± 0.05, P = 0.001, respectively). The only significant difference between the left and right eyes of the migraineurs was the RNFL thickness in the superior quadrant. Ganglion cell layer thickness did not differ between the right eyes, left eyes and controls. In conclusion, children with migraine showed significant variations in specific RNFL and optic disc parameters compared to control subjects.
Collapse
|
37
|
Pan CT, Chang WH, Kumar A, Singh SP, Kaushik AC, Sharma J, Long ZJ, Wen ZH, Mishra SK, Yen CK, Chaudhary RK, Shiue YL. Nanoparticles-mediated Brain Imaging and Disease Prognosis by Conventional as well as Modern Modal Imaging Techniques: a Comparison. Curr Pharm Des 2020; 25:2637-2649. [PMID: 31603057 DOI: 10.2174/1381612825666190709220139] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Accepted: 07/02/2019] [Indexed: 12/27/2022]
Abstract
BACKGROUND Multimodal imaging plays an important role in the diagnosis of brain disorders. Neurological disorders need to be diagnosed at an early stage for their effective treatment as later, it is very difficult to treat them. If possible, diagnosing at an early stage can be much helpful in curing the disease with less harm to the body. There is a need for advanced and multimodal imaging techniques for the same. This paper provides an overview of conventional as well as modern imaging techniques for brain diseases, specifically for tumor imaging. In this paper, different imaging modalities are discussed for tumor detection in the brain along with their advantages and disadvantages. Conjugation of two and more than two modalities provides more accurate information rather than a single modality. They can monitor and differentiate the cellular processes of normal and diseased condition with more clarity. The advent of molecular imaging, including reporter gene imaging, has opened the door of more advanced noninvasive detection of brain tumors. Due to specific optical properties, semiconducting polymer-based nanoparticles also play a pivotal role in imaging tumors. OBJECTIVE The objective of this paper is to review nanoparticles-mediated brain imaging and disease prognosis by conventional as well as modern modal imaging techniques. CONCLUSION We reviewed in detail various medical imaging techniques. This paper covers recent developments in detail and elaborates a possible research aspect for the readers in the field.
Collapse
Affiliation(s)
- Cheng-Tang Pan
- Department of Mechanical and Electro-Mechanical Engineering, National Sun Yat-Sen University, Kaohsiung City 804, Taiwan.,Institute of Medical Science and Technology, National Sun Yat-Sen University, Kaohsiung City 804, Taiwan
| | - Wei-Hsi Chang
- Department of Emergency Medicine, Kaohsiung Armed Forces General Hospital, Kaohsiung, Taiwan
| | - Ajay Kumar
- Department of Mechanical and Electro-Mechanical Engineering, National Sun Yat-Sen University, Kaohsiung City 804, Taiwan.,Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung City 804, Taiwan
| | - Satya P Singh
- School of EEE, Nanyang Technological University, Nanyang Ave, Singapore
| | - Aman Chandra Kaushik
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, ShanghaiJia Tong University, Shanghai 200240, China
| | - Jyotsna Sharma
- Amity School of Applied Sciences, Amity University Haryana, Gurugram-122413, Manesai, Panchgaon, Haryana, India
| | - Zheng-Jing Long
- Department of Emergency Medicine, Kaohsiung Armed Forces General Hospital, Kaohsiung, Taiwan
| | - Zhi-Hong Wen
- Department of Marine Biotechnology and Resources, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Sunil Kumar Mishra
- Patronage Institute of Management Studies, Greater Noida, Uttar Pradesh, India
| | - Chung-Kun Yen
- Department of Mechanical and Electro-Mechanical Engineering, National Sun Yat-Sen University, Kaohsiung City 804, Taiwan
| | - Ravi Kumar Chaudhary
- School of Biotechnology, Gautam Buddha University, Greater Noida, Uttar Pardesh, India, India
| | - Yow-Ling Shiue
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung City 804, Taiwan
| |
Collapse
|
38
|
Surface Morphology Analysis of Metallic Structures Formed on Flexible Textile Composite Substrates. SENSORS 2020; 20:s20072128. [PMID: 32283811 PMCID: PMC7180940 DOI: 10.3390/s20072128] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 04/02/2020] [Accepted: 04/07/2020] [Indexed: 11/16/2022]
Abstract
This paper compares methods for measuring selected morphological features on the surface of thin metallic layers applied to flexible textile substrates. The methods were tested on a silver layer with a thickness of several hundred nanometers, which was applied to a textile composite with the trade name Cordura. Measurements were carried out at the micro scale using both optical coherent tomography (OCT) and the traditional contact method of using a profilometer. Measurements at the micro-scale proved the superiority of the OCT method over the contact method. The method of contactless measurement employs a dedicated algorithm for three-dimensional surface image analysis and does not affect the delicate surface structure of the measured layer in any way. Assessment of the surface profile of textile substrates and the thin films created on them, is important when estimating the contact angle, wetting behavior, or mechanical durability of the created metallic structure that can be used as the electrodes or elements of wearable electronics or textronics systems.
Collapse
|
39
|
Oliver AA, Stinson JS, Osborne A, Taylor C, Goldman J, Kirkpatrick SJ. Comparison of optical microscopy and optical coherence tomography as quality assurance methods for evaluating lubricious hydrophilic coatings surrounding catheter shafts. J Biomed Mater Res B Appl Biomater 2020; 108:2538-2545. [PMID: 32078237 DOI: 10.1002/jbm.b.34585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 01/13/2020] [Accepted: 02/02/2020] [Indexed: 11/10/2022]
Abstract
Cardiac catheters are a vital tool in medicine due to their widespread use in many minimally invasive procedures. To aid in advancing the catheter within the patient's vasculature, many catheters are coated with a lubricious hydrophilic coating (HPC). Although HPCs benefit patients, their delamination during use is a serious safety concern. Adverse health effects associated with HPC delamination include pulmonary and myocardial embolism, embolic stroke, infarction, and death. In order to improve patient outcomes, more consistent manufacturing methods and improved quality assurance techniques are needed to evaluate HPC medical devices. The present work investigates the efficacy of two novel methods to image and evaluate HPCs post-manufacturing, relative to industry-standard scanning electron microscopy (SEM)-based methods. We have shown that novel evaluation approaches based on optical microscopy (OM) and optical coherence tomography (OCT) are capable of imaging HPC layers and quantifying HPC thickness, saving hours of time relative to SEM sample preparation and imaging. Additionally, the nondestructive nature of OCT avoids damage and alteration to the HPC prior to imaging, leading to more reliable HPC thickness measurements. Overall, the work demonstrated the feasibility and advantages of using OM and OCT to image and measure HPC thickness relative to industry-standard SEM methods.
Collapse
Affiliation(s)
- Alexander A Oliver
- Department of Biomedical Engineering, Michigan Technological University, Houghton, Michigan
| | | | | | | | - Jeremy Goldman
- Department of Biomedical Engineering, Michigan Technological University, Houghton, Michigan
| | - Sean J Kirkpatrick
- Department of Biomedical Engineering, Michigan Technological University, Houghton, Michigan
| |
Collapse
|
40
|
HemoSYS: A Toolkit for Image-based Systems Biology of Tumor Hemodynamics. Sci Rep 2020; 10:2372. [PMID: 32047171 PMCID: PMC7012876 DOI: 10.1038/s41598-020-58918-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 01/19/2020] [Indexed: 11/09/2022] Open
Abstract
Abnormal tumor hemodynamics are a critical determinant of a tumor’s microenvironment (TME), and profoundly affect drug delivery, therapeutic efficacy and the emergence of drug and radio-resistance. Since multiple hemodynamic variables can simultaneously exhibit transient and spatiotemporally heterogeneous behavior, there is an exigent need for analysis tools that employ multiple variables to characterize the anomalous hemodynamics within the TME. To address this, we developed a new toolkit called HemoSYS for quantifying the hemodynamic landscape within angiogenic microenvironments. It employs multivariable time-series data such as in vivo tumor blood flow (BF), blood volume (BV) and intravascular oxygen saturation (Hbsat) acquired concurrently using a wide-field multicontrast optical imaging system. The HemoSYS toolkit consists of propagation, clustering, coupling, perturbation and Fourier analysis modules. We demonstrate the utility of each module for characterizing the in vivo hemodynamic landscape of an orthotropic breast cancer model. With HemoSYS, we successfully described: (i) the propagation dynamics of acute hypoxia; (ii) the initiation and dissolution of distinct hemodynamic niches; (iii) tumor blood flow regulation via local vasomotion; (iv) the hemodynamic response to a systemic perturbation with carbogen gas; and (v) frequency domain analysis of hemodynamic heterogeneity in the TME. HemoSYS (freely downloadable via the internet) enables vascular phenotyping from multicontrast in vivo optical imaging data. Its modular design also enables characterization of non-tumor hemodynamics (e.g. brain), other preclinical disease models (e.g. stroke), vascular-targeted therapeutics, and hemodynamic data from other imaging modalities (e.g. MRI).
Collapse
|
41
|
Yener AÜ, Korucu O. Quantitative analysis of the retinal nerve fiber layer, ganglion cell layer and optic disc parameters by the swept source optical coherence tomography in patients with migraine and patients with tension-type headache. Acta Neurol Belg 2019; 119:541-548. [PMID: 30506164 DOI: 10.1007/s13760-018-1041-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 11/04/2018] [Indexed: 01/03/2023]
Abstract
The aim of the study was to measure the thicknesses of the inner retinal segments and optic nerve head (ONH) parameters in migraineurs and patients with tension-type headache (TTH) in headache-free period using swept source optical coherence tomography (SS-OCT) and to compare the outcomes with each other and those of healthy subjects. The study population consisted of 23 migraineurs, 22 TTH patients, and 25 controls with a best-corrected visual acuity of 20/20 and without a history of systemic or ocular disease. Macular ganglion cell inner plexiform layer (mGCIPL), macular ganglion cell complex (mGCC), circumpapillary retinal nerve fiber layer (cpRNFL), and ONH parameters were evaluated using SS-OCT, and the areas under the receiver-operating characteristic (ROC) curves were calculated to determine the ability of these parameters to distinguish between the patient and normal eyes. There were not statistically significant differences between the measurements acquired from migraineurs, TTH patients, and the controls. The outcomes of the patients with TTH were very similar to those of the normal participants. The areas under the ROC curves (AUC) correlated highly with the measurements obtained from the same subfields for the mGCC, MGCIPL, cpRNFL, and ONH parameters. In conclusion, SS-OCT presented reproducible and reliable measurements of posterior segment layers of the eyes, especially in sectoral configuration, and the parameters did not show significant difference between the groups.
Collapse
Affiliation(s)
- Arif Ülkü Yener
- Department of Ophthalmology, Keçiören Training and Research Hospital, Ankara, Turkey.
| | - Osman Korucu
- Department of Neurology, Keçiören Training and Research Hospital, Ankara, Turkey
| |
Collapse
|
42
|
Measurement of granule layer thickness in a spouted bed coating process via optical coherence tomography. POWDER TECHNOL 2019. [DOI: 10.1016/j.powtec.2019.08.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
43
|
Sampaio CS, Fernández Arias J, Atria PJ, Cáceres E, Pardo Díaz C, Freitas AZ, Hirata R. Volumetric polymerization shrinkage and its comparison to internal adaptation in bulk fill and conventional composites: A μCT and OCT in vitro analysis. Dent Mater 2019; 35:1568-1575. [PMID: 31500903 DOI: 10.1016/j.dental.2019.07.025] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 07/10/2019] [Accepted: 07/25/2019] [Indexed: 10/26/2022]
Abstract
OBJECTIVE To quantify the volumetric polymerization shrinkage (VPS) of different conventional and bulk fill resin composites, through micro-computed tomography (μCT), and qualitative comparison of gap formation through optical coherence tomography (OCT). METHODS Box-shaped class I cavities were prepared in 30 third-molars and divided into 5 groups (n=6): G1- Filtek Z100 (Z100); G2- Tetric Evoceram Bulk Fill (TEC); G3- Tetric EvoFlow Bulk fill (TEF); G4- Filtek Bulk fill (FBU); and G5- Filtek Bulk fill Flowable (FBF). All groups were treated with Adper Single Bond Plus adhesive and light cured (Bluephase 20i). Each tooth was scanned three times using a μCT apparatus: after cavity preparation (empty scan); after cavity filling (uncured scan) and after light curing of the restorations (cured scan). The μCT images were imported into a three-dimensional rendering software, and volumetric polymerization shrinkage percentage was calculated (%) for each sample. In the same images, interfacial gaps in the pulpal floor were qualitatively evaluated. After μCT evaluation, the pulpal floor from each tooth was polished until a thin tooth structure was obtained and OCT images were obtained by scanning the pulpal portion. Gap formation was observed and qualitatively compared to the μCT images. RESULTS VPS means ranged from 2.31 to 3.96% for the studied resin composites. The bulk fill materials, either high viscosity or flowable, were not statistically different from each other (p>0.05). The conventional resin composite Z100 presented statistically higher VPS than both high viscosity bulk fill materials studied (p<0.05), although it was statistically similar to the flowable bulk fill materials studied (p>0.05). Both μCT and OCT methodologies enabled gap formation visualization, and images from both technologies could be associated. Gap formation was mostly observed for G1-Z100, G4-FBU, and G5-FBF. VPS% and pulpal gap formation could not be completely associated with each other for all groups and samples. Voids were observed in most of the resin composite fillings, and most VPS were observed in the occlusal area of the samples. SIGNIFICANCE Volumetric polymerization shrinkage was material-dependent, although bulk fill materials did not differ from each other. Both μCT and OCT enabled interfacial pulpal gap formation visualization. VPS and gap formation cannot be completely associated with one another.
Collapse
Affiliation(s)
- Camila S Sampaio
- Department of Biomaterials, School of Dentistry, Universidad de los Andes, Avenue Monseñor Alvaro del Portillo, 12455 Santiago, Chile; Department of Biomaterials and Biomimetics, New York University College of Dentistry, 433 First Avenue, 10010 New York, NY, USA.
| | - Jessica Fernández Arias
- Department of Biomaterials and Biomimetics, New York University College of Dentistry, 433 First Avenue, 10010 New York, NY, USA
| | - Pablo J Atria
- Department of Biomaterials, School of Dentistry, Universidad de los Andes, Avenue Monseñor Alvaro del Portillo, 12455 Santiago, Chile; Department of Biomaterials and Biomimetics, New York University College of Dentistry, 433 First Avenue, 10010 New York, NY, USA
| | - Eduardo Cáceres
- Department of Biomaterials and Biomimetics, New York University College of Dentistry, 433 First Avenue, 10010 New York, NY, USA; Department of Dental Materials, School of Dentistry, University Andres Bello, Quillota 980, Viña del Mar, Chile
| | - Carolina Pardo Díaz
- Department of Biomaterials, School of Dentistry, Universidad de los Andes, Avenue Monseñor Alvaro del Portillo, 12455 Santiago, Chile; Department of Restorative Dentistry, School of Dentistry, University of São Paulo, Av. Prof. Lineu Prestes, 2227 - Butantã, São Paulo, SP, Brazil
| | - Anderson Z Freitas
- Nuclear and Energy Research Institute, IPEN-CNEN/SP, University of São Paulo, Av. Prof. Lineu Prestes, 2242 - Butantã, São Paulo, SP, Brazil
| | - Ronaldo Hirata
- Department of Biomaterials and Biomimetics, New York University College of Dentistry, 433 First Avenue, 10010 New York, NY, USA
| |
Collapse
|
44
|
Pardo Díaz CA, Shimokawa C, Sampaio CS, Freitas AZ, Turbino ML. Characterization and Comparative Analysis of Voids in Class II Composite Resin Restorations by Optical Coherence Tomography. Oper Dent 2019; 45:71-79. [PMID: 31226004 DOI: 10.2341/18-290-l] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
PURPOSE This study aimed to characterize and analyze the number of voids and the percentage of void volume within and between the layers of class II composite restorations made using the bulk fill technique or the incremental technique by optical coherence tomography (OCT). METHODS AND MATERIALS Class II cavities (4×4×2 mm) were prepared in 48 human third molars (n=24 restorations per group, two class II cavities per tooth). Teeth were divided into four groups and restored as follows: group 1 (FOB), bulk filled in a single increment using Filtek One Bulk Fill (3M Oral Care); group 2 (FXT), incrementally filled using four oblique layers of Filtek Z350 XT (3M Oral Care); group 3 (FBF+FXT), bulk filled in a single increment using Filtek Bulk Fill Flowable Restorative (3M Oral Care) covered with two oblique layers of Filtek Z350 XT (3M Oral Care), and group 4 (FF+FXT), incrementally filled using Filtek Z350 XT Flow (3M Oral Care) covered with two oblique layers of Filtek Z350 XT (3M Oral Care). After the restorative procedure, specimens were immersed into distilled water and stored in a hot-air oven at 37°C. Forty-eight hours later, thermal cycling was conducted (5000 cycles, 5°C to 55°C). Afterward, OCT was used to detect the existence of voids and to calculate the number of voids and percentage of voids volume within each restoration. Data were submitted to chi-square and Kruskal-Wallis tests (α=0.05). Comparisons were made using the Dunn method. RESULTS Voids were detected in all groups, ranging from 0.000002 (FBF+FXT and FF+FXT) to 0.32 mm3 (FBF+FXT). FF + FXT presented voids in all of the restorations and had a significantly higher number of voids per restoration when compared to the other groups (p<0.05), but restorations with the presence of voids were significantly higher only when compared to FXT (p<0.05). FBF + FXT presented a significantly higher percentage of voids volume than that of FXT (p<0.05). When comparing restorations made using high-viscosity resin-based composites (FOB and FXT), no significant differences regarding number of voids or percentage of voids volume were detected (p≥0.05). CONCLUSIONS The use of flowable resin-based composites can result in an increased number of voids and percentage of voids volume in restorations, and this appears to be more related to voids present inside the syringe of the material than to the use of incremental or bulk fill restorative techniques.
Collapse
|
45
|
Marghoob N, Psomadakis CE, Markowitz O. Noninvasive imaging to improve diagnostic accuracy: A case report. JAAD Case Rep 2019; 5:508-510. [PMID: 31205991 PMCID: PMC6558235 DOI: 10.1016/j.jdcr.2019.03.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Affiliation(s)
| | | | - Orit Markowitz
- Department of Dermatology, SUNY Downstate Medical Center, Brooklyn, New York.,Department of Dermatology, Icahn School of Medicine at Mount Sinai Medical Center, New York, New York.,Department of Dermatology, New York Harbor Healthcare System, Brooklyn, New York
| |
Collapse
|
46
|
Moshfegh A, Javadzadegan A, Mohammadi M, Ravipudi L, Cheng S, Martins R. Development of an innovative technology to segment luminal borders of intravascular ultrasound image sequences in a fully automated manner. Comput Biol Med 2019; 108:111-121. [PMID: 31003174 DOI: 10.1016/j.compbiomed.2019.03.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 03/09/2019] [Accepted: 03/09/2019] [Indexed: 11/17/2022]
Abstract
Although intravascular ultrasound (IVUS) is the commonest intravascular imaging modality, it still is inefficient for clinical use as it requires laborious manual analysis. This study demonstrates the feasibility of a near real-time fully automated technology for accurate identification, detection, and quantification of luminal borders in intravascular images. This technology uses a combination of the novel approaches of a self-tuning engine, dynamic and static masking systems, radar-wise scan, and contour correction cycle method. The performance of the computer algorithm developed based on this technology was tested on a sequence of IVUS and True Vessel Characterization (TVC) images obtained from the left anterior descending (LAD) artery of 6 patients with coronary artery disease. The accuracy of the algorithm was evaluated by comparing luminal borders traced manually with those detected automatically. The processing time of the developed algorithm was also tested on a Dell laptop with an Intel Core i7-8750H Processor (4.1 GHz with 6 cores, 9 MB Cache). Linear regression and Bland-Altman analyses indicated high correlation between manual and automatic tracings (Y = 0.80 × X+1.70, R2 = 0.88 & 0.67 ± 1.31 (bias±SD)). Whereas analysis of 2000 IVUS images using one CPU core with a 30% load took 23.12 min, the same analysis using six CPU cores with 90% load took 1.0 min. The performance, accuracy, and speed of the presented state-of-the-art technology demonstrates its capacity for use in clinical settings.
Collapse
Affiliation(s)
- Abouzar Moshfegh
- Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, 2109, Australia; ANZAC Research Institute, The University of Sydney, Sydney, NSW, 2139, Australia.
| | - Ashkan Javadzadegan
- Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, 2109, Australia; ANZAC Research Institute, The University of Sydney, Sydney, NSW, 2139, Australia
| | - Maryam Mohammadi
- Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Lakshitha Ravipudi
- School of Aerospace, Mechanical and Mechatronic Engineering, The University of Sydney, NSW, 2006, Australia
| | - Shaokoon Cheng
- School of Engineering, Macquarie University, Sydney, NSW, 2109, Australia
| | - Ralph Martins
- Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, 2109, Australia; School of Exercise, Biomedical and Health Sciences, Edith Cowan University, Perth, Australia
| |
Collapse
|
47
|
Al-Mohamedi H, Kelly-Pérez I, Prinz A, Oltrup T, Leitritz M, Cayless A, Bende T. A systematic comparison and evaluation of three different Swept-Source interferometers for eye lengths biometry. Z Med Phys 2019; 29:16-21. [DOI: 10.1016/j.zemedi.2018.05.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 12/12/2017] [Accepted: 05/16/2018] [Indexed: 10/14/2022]
|
48
|
Athanasiou L, Nezami FR, Galon MZ, Lopes AC, Lemos PA, de la Torre Hernandez JM, Ben-Assa E, Edelman ER. Optimized Computer-Aided Segmentation and Three-Dimensional Reconstruction Using Intracoronary Optical Coherence Tomography. IEEE J Biomed Health Inform 2019; 22:1168-1176. [PMID: 29969405 DOI: 10.1109/jbhi.2017.2762520] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
We present a novel and time-efficient method for intracoronary lumen detection, which produces three-dimensional (3-D) coronary arteries using optical coherence tomographic (OCT) images. OCT images are acquired for multiple patients and longitudinal cross-section (LOCS) images are reconstructed using different acquisition angles. The lumen contours for each LOCS image are extracted and translated to 2-D cross-sectional images. Using two angiographic projections, the centerline of the coronary vessel is reconstructed in 3-D, and the detected 2-D contours are transformed to 3-D and placed perpendicular to the centerline. To validate the proposed method, 613 manual annotations from medical experts were used as gold standard. The 2-D detected contours were compared with the annotated contours, and the 3-D reconstructed models produced using the detected contours were compared to the models produced by the annotated contours. Wall shear stress (WSS), as dominant hemodynamics factor, was calculated using computational fluid dynamics and 844 consecutive 2-mm segments of the 3-D models were extracted and compared with each other. High Pearson's correlation coefficients were obtained for the lumen area (r = 0.98) and local WSS (r = 0.97) measurements, while no significant bias with good limits of agreement was shown in the Bland-Altman analysis. The overlapping and nonoverlapping areas ratio between experts' annotations and presented method was 0.92 and 0.14, respectively. The proposed computer-aided lumen extraction and 3-D vessel reconstruction method is fast, accurate, and likely to assist in a number of research and clinical applications.
Collapse
|
49
|
Buchroithner B, Prylepa A, Wagner PJ, Schausberger SE, Stifter D, Heise B. Full-field optical coherence tomography in a balanced detection mode. APPLIED OPTICS 2018; 57:8705-8710. [PMID: 30461947 DOI: 10.1364/ao.57.008705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 09/13/2018] [Indexed: 06/09/2023]
Abstract
We discuss balanced time-domain full-field optical coherence tomography (FF-OCT) realized in a Mach-Zehnder configuration. The balanced detection scheme and spatial phase shifting allow single-shot acquisition and reconstruction in FF-OCT. Combined with a 2D quadrature signal-based demodulation technique applying the Riesz transform, previously illustrated for a dual-shot temporal phase shifting in FF-OCT, we demonstrate the concept for single-shot spatial phase shifting. The monitoring of dynamic processes by time-domain FF-OCT is enabled by this approach. The advantage of single-shot acquisition consists of having no failure due to phase changes over time. However, it demands an accurate registration of both spatially shifted interferograms.
Collapse
|
50
|
Murayama R, Nagura Y, Yamauchi K, Moritake N, Iino M, Ishii R, Kurokawa H, Miyazaki M, Hosoya Y. Effect of a coating material containing surface reaction-type pre-reacted glass-ionomer filler on prevention of primary enamel demineralization detected by optical coherence tomography. J Oral Sci 2018; 60:367-373. [PMID: 29984784 DOI: 10.2334/josnusd.17-0256] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
We used optical coherence tomography to examine the effect of a coating material containing surface reaction-type pre-reacted glass-ionomer (S-PRG) filler on primary enamel demineralization in 18 extracted human primary teeth. The pulp was removed, and each tooth was ultrasonically cleaned with distilled water. Six teeth were treated with 0.1-M lactic acid buffer solution (De group). In the second group (n = 6), a thin film of coating material was applied before demineralization (PRG group). A third group (Control group; n = 6) was maintained in artificial saliva. Using optical coherence tomography, we measured peak signal intensity (dB) and width at 1/e2 (µm) at predetermined locations on the enamel surface and calculated integrated values. All data were analyzed with ANOVA and the Tukey-Kramer test (α = 0.05). Although changes in integrated values differed between groups, there was a small but significant increase in the Control group and a small but significant decrease in the De group. In the PRG group, integrated values were significantly higher at 7 days after the start of the experiment and significantly increased thereafter. Our findings indicate that a coating material containing S-PRG fillers may prevent primary enamel demineralization.
Collapse
Affiliation(s)
- Ryosuke Murayama
- Department of Operative Dentistry, Nihon University School of Dentistry
| | - Yuko Nagura
- Division of Applied Oral Sciences, Nihon University Graduate School of Dentistry
| | - Kabun Yamauchi
- Division of Applied Oral Sciences, Nihon University Graduate School of Dentistry
| | - Nobuyuki Moritake
- Division of Applied Oral Sciences, Nihon University Graduate School of Dentistry
| | - Masayoshi Iino
- Department of Operative Dentistry, Nihon University School of Dentistry
| | - Ryo Ishii
- Department of Operative Dentistry, Nihon University School of Dentistry
| | - Hiroyasu Kurokawa
- Department of Operative Dentistry, Nihon University School of Dentistry
| | - Masashi Miyazaki
- Department of Operative Dentistry, Nihon University School of Dentistry
| | - Yumiko Hosoya
- Department of Operative Dentistry, Nihon University School of Dentistry.,Hosoya General Incorporated Association
| |
Collapse
|