1
|
Cheng X, Liu J, Niu D, Zhang C, Lin Y, Li S, Yang J, Wen J. Prognostic prediction and diagnostic role of Rspondin 1 expression in esophageal squamous cell carcinoma. INDIAN J PATHOL MICR 2025; 68:11-16. [PMID: 38864442 DOI: 10.4103/ijpm.ijpm_452_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 12/14/2023] [Indexed: 06/13/2024] Open
Abstract
CONTEXT Rspondin 1 (Rspo1), a protein family member featuring secreted furin-like domains, plays a pivotal role in cancer development and exhibits a positive correlation with tumor progression. However, its expression in esophageal squamous cell carcinoma (ESCC) is still unknown. AIMS Here, we assessed the correlation between Rspo1 and clinicopathological features of ESCC patients, and further investigated the potential role of Rspo1 in ESCC development and clinical outcomes. SETTINGS AND DESIGN This was a pilot study. MATERIALS AND METHODS A total of 112 paraffin-embedded tumor samples from patients with ESCC, including 68 matched adjacent normal tissues, were collected post-surgery. Subsequently, tissue microarray (TMA) and immunohistochemistry (IHC) techniques were employed to assess the protein levels of Rspo1. STATISTICAL ANALYSIS All statistical analyses were performed with SPSS 20.0 (SPSS, Inc., Chicago, IL). RESULTS We found that Rspo1 expression was significantly higher in ESCC than in adjacent normal tissues ( P < 0.0001). Moreover, Rspo1 was highly expressed in ESCC tumor specimens and showed a significant correlation with the T classification of ESCC ( P < 0.05). Additionally, our findings indicate a positive relationship between Rspo1 and survival time in ESCC. Patients exhibiting moderate to high levels of Rspo1 expression demonstrated superior survival outcomes compared to those with low expression ( P = 0.0002). CONCLUSIONS Our investigation has demonstrated that Rspo1 is upregulated in ESCC and exhibits a positive correlation with disease progression. Furthermore, we have observed a significant association between Rspo1 overexpression and improved patient survival rates, indicating its potential as a prognostic marker and therapeutic target for ESCC treatment.
Collapse
Affiliation(s)
- Xiaoxia Cheng
- Suzhou Hospital, Affiliated Hospital of Medical School, Nanjing University, Suzhou, Jiangsu, China
| | - Jiao Liu
- Department of Clinical Nutrition, Suzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu, China
| | - Danye Niu
- Department of Clinical Nutrition, Suzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu, China
| | - Changsong Zhang
- Suzhou Hospital, Affiliated Hospital of Medical School, Nanjing University, Suzhou, Jiangsu, China
| | - Yuansheng Lin
- Suzhou Hospital, Affiliated Hospital of Medical School, Nanjing University, Suzhou, Jiangsu, China
| | - Shengjun Li
- Suzhou Hospital, Affiliated Hospital of Medical School, Nanjing University, Suzhou, Jiangsu, China
| | - Jiao Yang
- Suzhou Hospital, Affiliated Hospital of Medical School, Nanjing University, Suzhou, Jiangsu, China
| | - Jiangtao Wen
- Suzhou Hospital, Affiliated Hospital of Medical School, Nanjing University, Suzhou, Jiangsu, China
| |
Collapse
|
2
|
Lv B, Li D, Li J, Shang K, Wu K, Jin E, Li X. Prediction of Synchronous Serum CEA Expression Status Based on Baseline MRI Features of Primary Rectal Cancer Lesions Pre-treatment: A Retrospective Study. Sci Rep 2024; 14:31469. [PMID: 39733055 PMCID: PMC11682287 DOI: 10.1038/s41598-024-83166-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 12/12/2024] [Indexed: 12/30/2024] Open
Abstract
This study aimed to investigate the correlation between baseline MRI features and baseline carcinoembryonic antigen (CEA) expression status in rectal cancer patients. A training cohort of 168 rectal cancer patients from Center 1 and an external validation cohort of 75 rectal cancer patients from Center 2 were collected. A nomogram was constructed based on the training cohort and validated using the external validation cohort to predict high baseline CEA expression in rectal cancer patients. The nomogram's discriminative ability and clinical utility were tested using the receiver operating characteristic (ROC) curve, and decision curve analysis (DCA). The baseline CEA high-expression group had significantly higher MRI-detected metastatic lymph node (mLN), MRI-detected extramural vascular invasion (mEMVI), infiltrating tumor border configuration (iTBC), peritoneal invasion, annular infiltration, maximum extramural depth (MED), and tumor length than the normal CEA group (P < 0.05). Among them, MED [odds ratio (OR):1.19 (1.03-1.38), P = 0.016] and annular infiltration [OR:2.36 (1.06-5.25), P = 0.036] were independently predicting factors for high baseline CEA expression. The trained and validated model for predicting high baseline CEA expression in the training and external validation cohorts had the area under the curves (AUC) of 0.787 (95% CI 0.716-0.859) and 0.799 (95% CI 0.698-0.899), respectively. The calibration curves of both cohorts demonstrated good agreement between predicted and observed outcomes. Decision curve analysis indicated the clinical value of the nomogram. We developed a visual nomogram to predict high baseline CEA expression for patients with rectal cancer, enabling clinicians to conduct a personalized risk assessment and therapy.
Collapse
Affiliation(s)
- Baohua Lv
- Department of Radiology, the Affiliated Taian City Central Hospital of Qingdao University, Tai'an, 271099, China.
| | - Donghai Li
- Department of Radiology, the Affiliated Taian City Central Hospital of Qingdao University, Tai'an, 271099, China
| | - Jizheng Li
- Department of Radiology, the Affiliated Taian City Central Hospital of Qingdao University, Tai'an, 271099, China
| | - Kai Shang
- Department of Orthopedic, the Affiliated Taian City Central Hospital of Qingdao University, Tai'an, 271099, China
| | - Ke Wu
- Department of Radiology, the Affiliated Taian City Central Hospital of Qingdao University, Tai'an, 271099, China
| | - Erhu Jin
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Xiujuan Li
- Department of Radiology, the Affiliated Taian City Central Hospital of Qingdao University, Tai'an, 271099, China.
| |
Collapse
|
3
|
Tian K, Yang Y, Zhou K, Deng N, Tian Z, Wu Z, Liu X, Zhang F, Jiang Z. The role of ROS-induced pyroptosis in CVD. Front Cardiovasc Med 2023; 10:1116509. [PMID: 36873396 PMCID: PMC9978107 DOI: 10.3389/fcvm.2023.1116509] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 01/30/2023] [Indexed: 02/18/2023] Open
Abstract
Cardiovascular disease (CVD) is the number one cause of death in the world and seriously threatens human health. Pyroptosis is a new type of cell death discovered in recent years. Several studies have revealed that ROS-induced pyroptosis plays a key role in CVD. However, the signaling pathway ROS-induced pyroptosis has yet to be fully understood. This article reviews the specific mechanism of ROS-mediated pyroptosis in vascular endothelial cells, macrophages, and cardiomyocytes. Current evidence shows that ROS-mediated pyroptosis is a new target for the prevention and treatment of cardiovascular diseases such as atherosclerosis (AS), myocardial ischemia-reperfusion injury (MIRI), and heart failure (HF).
Collapse
Affiliation(s)
- Kaijiang Tian
- The First Affiliated Hospital of Hebei North University, Zhangjiakou, China
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, International Joint Laboratory for Arteriosclerotic Disease Research of Hunan Province, University of South China, Hengyang, China
| | - Yu Yang
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, International Joint Laboratory for Arteriosclerotic Disease Research of Hunan Province, University of South China, Hengyang, China
| | - Kun Zhou
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, International Joint Laboratory for Arteriosclerotic Disease Research of Hunan Province, University of South China, Hengyang, China
| | - Nianhua Deng
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, International Joint Laboratory for Arteriosclerotic Disease Research of Hunan Province, University of South China, Hengyang, China
| | - Zhen Tian
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, International Joint Laboratory for Arteriosclerotic Disease Research of Hunan Province, University of South China, Hengyang, China
| | - Zefan Wu
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, International Joint Laboratory for Arteriosclerotic Disease Research of Hunan Province, University of South China, Hengyang, China
| | - Xiyan Liu
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, International Joint Laboratory for Arteriosclerotic Disease Research of Hunan Province, University of South China, Hengyang, China
| | - Fan Zhang
- The First Affiliated Hospital of Hebei North University, Zhangjiakou, China
| | - Zhisheng Jiang
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, International Joint Laboratory for Arteriosclerotic Disease Research of Hunan Province, University of South China, Hengyang, China
| |
Collapse
|
4
|
Carrera-Lasfuentes P, Lanas A, Bujanda L, Strunk M, Quintero E, Santolaria S, Benito R, Sopeña F, Piazuelo E, Thomson C, Pérez-Aisa A, Nicolás-Pérez D, Hijona E, Espinel J, Campo R, Manzano M, Geijo F, Pellise M, Zaballa M, González-Huix F, Espinós J, Titó L, Barranco L, D'Amato M, García-González MA. Relevance of DNA repair gene polymorphisms to gastric cancer risk and phenotype. Oncotarget 2017; 8:35848-35862. [PMID: 28415781 PMCID: PMC5482622 DOI: 10.18632/oncotarget.16261] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 02/27/2017] [Indexed: 12/21/2022] Open
Abstract
Variations in DNA repair genes have been reported as key factors in gastric cancer (GC) susceptibility but results among studies are inconsistent. We aimed to assess the relevance of DNA repair gene polymorphisms and environmental factors to GC risk and phenotype in a Caucasian population in Spain. Genomic DNA from 603 patients with primary GC and 603 healthy controls was typed for 123 single nucleotide polymorphisms in DNA repair genes using the Illumina platform. Helicobacter pylori infection with CagA strains (odds ratio (OR): 1.99; 95% confidence interval (CI): 1.55-2.54), tobacco smoking (OR: 1.77; 95% CI: 1.22-2.57), and family history of GC (OR: 2.87; 95% CI: 1.85-4.45) were identified as independent risk factors for GC. By contrast, the TP53 rs9894946A (OR: 0.73; 95% CI: 0.56-0.96), TP53 rs1042522C (OR: 0.76; 95% CI: 0.56-0.96), and BRIP1 rs4986764T (OR: 0.55; 95% CI: 0.38-0.78) variants were associated with lower GC risk. Significant associations with specific anatomopathological GC subtypes were also observed, most notably in the ERCC4 gene with the rs1799801C, rs2238463G, and rs3136038T variants being inversely associated with cardia GC risk. Moreover, the XRCC3 rs861528 allele A was significantly increased in the patient subgroup with diffuse GC (OR: 1.75; 95% CI: 1.30-2.37). Our data show that specific TP53, BRIP1, ERCC4, and XRCC3 polymorphisms are relevant in susceptibility to GC risk and specific subtypes in Caucasians.
Collapse
Affiliation(s)
| | - Angel Lanas
- CIBER de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain
- Instituto de Investigación Sanitaria Aragón (IIS Aragón), Zaragoza, Spain
- Department of Gastroenterology, Hospital Clínico Universitario Lozano Blesa, Zaragoza, Spain
- Faculty of Medicine, Universidad de Zaragoza, Zaragoza, Spain
| | - Luis Bujanda
- CIBER de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain
- Department of Gastroenterology, Hospital Donostia/Instituto Biodonostia, Universidad del País Vasco (UPV/EHU), San Sebastián, Spain
| | - Mark Strunk
- CIBER de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain
- Instituto Aragonés de Ciencias de la Salud (IACS), Zaragoza, Spain
| | - Enrique Quintero
- Department of Gastroenterology, Hospital Universitario de Canarias, Instituto Universitario de Tecnologías Biomédicas (ITB), Centro de Investigación Biomédica de Canarias (CIBICAN), Tenerife, Spain
| | | | - Rafael Benito
- CIBER de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain
- Instituto de Investigación Sanitaria Aragón (IIS Aragón), Zaragoza, Spain
- Faculty of Medicine and Department of Microbiology, Hospital Clínico Universitario, Zaragoza, Spain
| | - Federico Sopeña
- CIBER de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain
- Instituto de Investigación Sanitaria Aragón (IIS Aragón), Zaragoza, Spain
- Department of Gastroenterology, Hospital Clínico Universitario Lozano Blesa, Zaragoza, Spain
| | - Elena Piazuelo
- CIBER de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain
- Instituto de Investigación Sanitaria Aragón (IIS Aragón), Zaragoza, Spain
- Instituto Aragonés de Ciencias de la Salud (IACS), Zaragoza, Spain
| | - Concha Thomson
- Department of Gastroenterology, Hospital Obispo Polanco, Teruel, Spain
| | | | - David Nicolás-Pérez
- Department of Gastroenterology, Hospital Universitario de Canarias, Instituto Universitario de Tecnologías Biomédicas (ITB), Centro de Investigación Biomédica de Canarias (CIBICAN), Tenerife, Spain
| | - Elizabeth Hijona
- CIBER de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain
- Department of Gastroenterology, Hospital Donostia/Instituto Biodonostia, Universidad del País Vasco (UPV/EHU), San Sebastián, Spain
| | - Jesús Espinel
- Department of Gastroenterology, Complejo Hospitalario, León, Spain
| | - Rafael Campo
- Department of Gastroenterology, Hospital Parc Tauli, Sabadell, Spain
| | - Marisa Manzano
- Department of Gastroenterology, Hospital 12 de Octubre, Madrid, Spain
| | - Fernando Geijo
- Department of Gastroenterology, Hospital Clínico Universitario, Salamanca, Spain
| | - María Pellise
- CIBER de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain
- Department of Gastroenterology, Hospital Clinic I Provincial, Institut d Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universidad de Barcelona, Barcelona, Spain
| | - Manuel Zaballa
- Department of Gastroenterology, Hospital de Cruces, Barakaldo, Spain
| | | | - Jorge Espinós
- Department of Gastroenterology, Mutua de Tarrasa, Spain
| | - Llúcia Titó
- Department of Gastroenterology, Hospital de Mataró, Mataró, Spain
| | - Luis Barranco
- Department of Gastroenterology, Hospital del Mar, Barcelona, Spain
| | - Mauro D'Amato
- BioDonostia Health Research Institute, IKERBASQUE, Basque Foundation for Science, San Sebastián, Spain
| | - María Asunción García-González
- CIBER de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain
- Instituto de Investigación Sanitaria Aragón (IIS Aragón), Zaragoza, Spain
- Instituto Aragonés de Ciencias de la Salud (IACS), Zaragoza, Spain
| |
Collapse
|
5
|
Chen YL, Song JJ, Chen XC, Xu W, Zhi Q, Liu YP, Xu HZ, Pan JS, Ren JL, Guleng B. Mechanisms of pyruvate kinase M2 isoform inhibits cell motility in hepatocellular carcinoma cells. World J Gastroenterol 2015; 21:9093-9102. [PMID: 26290635 PMCID: PMC4533040 DOI: 10.3748/wjg.v21.i30.9093] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Revised: 01/08/2015] [Accepted: 06/09/2015] [Indexed: 02/06/2023] Open
Abstract
AIM To investigate biological mechanisms underlying pyruvate kinase M2 isoform (PKM2) regulation of cell migration and invasion in hepatocellular carcinoma cells. METHODS HepG2 and Huh-7 hepatocellular carcinoma cell lines were stably transfected and cultured in DMEM (HyClone, Logan, UT, United States). To investigate the effects of PKM2 on cellular proliferation, hepatocellular carcinoma cells were subjected to the Cell Counting Kit-8 (Dojindo, Kamimashiki-gun, Kumamoto, Japan). And investigate the effects of PKM2 on cell signal pathway related with migration and invasion, Western immunoblotting were used to find out the differential proteins. All the antibody used was purchaseed from Cell Signal Technology. In order to explore cell motility used Transwell invasion and wound healing assays. The transwell plate with 0.5 mg/mL collagen type I (BD Bioscience, San Jose, CA)-coated filters. The wound-healing assay was performed in 6-well plates. Total RNA was extracted using TRIzol reagent (Invitrogen, CA, United States) and then reverse transcription was conducted. Quantitative reverse transcription-polymerase chain reaction (PCR) analysis was performed with the ABI 7500 real-time PCR system (Applied Biosystems). We further use digital gene expression tag profiling and identification of differentially expressed genes. RESULTS The cells seeded in four 96-well plates were measured OD450 by conducted Cell Counting Kit-8. From this conduction we observed that both HepG2 and Huh-7 hepatocellular carcinoma cells with silenced PKM2 turn on a proliferate inhibition; however, cell migration and invasion were enhanced compared with the control upon stimulation with epidermal growth factor (EGF). Our results indicate that the knockdown of PKM2 decreased the expression of E-cadherin and enhanced the activity of the EGF/EGFR signaling pathway, furthermore up-regulate the subsequent signal molecular the PLCγ1 and extracellular signal-regulated kinase 1/2 expression in the hepatocellular carcinoma cell lines HepG2 and Huh-7, which regulates cell motility. These variations we observed were due to the activation of the transforming growth factor beta (TGFβ) signaling pathway after PKM2 knockdown. We also found that the expression of TGFBRI was increased and the phosphorylation of Smad2 was enhanced. Taken together, our findings demonstrate that PKM2 can regulate cell motility through the EGF/EGFR and TGFβ/TGFR signaling pathways in hepatocellular carcinoma cells. CONCLUSION PKM2 play different roles in modulating the proliferation and metastasis of hepatocellular carcinoma cells, and this finding could help to guide the future targeted therapies.
Collapse
|