1
|
Zhu Q, Liu Y, Hao X, Yan S, Ge J, Zheng C, Ren X, Zhou F. Dissecting pre- to post-implantation transition of DNA methylome-transcriptome dynamics in early mammalian development. Cell Rep 2025; 44:115790. [PMID: 40471785 DOI: 10.1016/j.celrep.2025.115790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/15/2025] [Accepted: 05/14/2025] [Indexed: 06/29/2025] Open
Abstract
Pre- to post-implantation transition is an essential step for early mammalian development. The epigenome dynamics such as DNA methylome and transcriptome of embryos have been analyzed, while the coordination between these two molecular layers controlling lineage fate remained elusive. Here, with a multidimensional profiling of peri-implantation embryos, we present the emerging lineage-specific DNA methylation (DNAme) patterns across species. The maternal and paternal DNA methylation levels exhibit differential dynamics in transposon elements. Genes with lineage-specific unmethylated promoters early in development retain this state and are expressed later, suggesting a role in lineage fate determination. By measuring both molecular dimensions simultaneously in individual developing cells, we identified a group of gene promoters with positive correlation between DNAme and RNAex along epiblast development. Functional validation suggested DNAme at these promoters contributes to non-canonical DNAme-RNAex dynamics, potentially via complex TF-mediated or epigenetic regulation. This study provides clues for understanding molecular regulation of peri-implantation embryogenesis.
Collapse
Affiliation(s)
- Qingyuan Zhu
- State Key Laboratory of Membrane Biology, Haihe Laboratory of Cell Ecosystem, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Ying Liu
- State Key Laboratory of Membrane Biology, Haihe Laboratory of Cell Ecosystem, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Xin Hao
- State Key Laboratory of Membrane Biology, Haihe Laboratory of Cell Ecosystem, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Shengyi Yan
- State Key Laboratory of Membrane Biology, Haihe Laboratory of Cell Ecosystem, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Jitao Ge
- State Key Laboratory of Membrane Biology, Haihe Laboratory of Cell Ecosystem, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Changqing Zheng
- State Key Laboratory of Membrane Biology, Haihe Laboratory of Cell Ecosystem, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | | | - Fan Zhou
- State Key Laboratory of Membrane Biology, Haihe Laboratory of Cell Ecosystem, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
2
|
Zhang J, Zhan W, Hu H, Zhu H, Hao B, Wang S, Li Z, Zhang Z, Zhang T. Machine learning-based detoxification enzymes-related genes prognosis model in breast cancer: immune landscape and clinical significance. Discov Oncol 2025; 16:1178. [PMID: 40549224 PMCID: PMC12185839 DOI: 10.1007/s12672-025-02656-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Accepted: 05/10/2025] [Indexed: 06/28/2025] Open
Abstract
BACKGROUND Breast cancer is one of the most common malignant tumors, threatening women's health and life globally. Despite significant treatment advances, its prognosis still faces great challenges. With the rapid development of molecular biology and genomics, the role of detoxification enzymes in breast cancer occurrence, development, and prognosis has gained increasing attention. This paper aims to establish a prognostic model based on detoxification enzymes-related genes to predict breast cancer patient survival. METHODS Unsupervised clustering was used to analyze breast cancer samples based on detoxification enzymes-related genes expression. Lasso cox regression analysis and univariate and multivariate Cox analysis were used to process the data, and machine learning algorithm was used to construct breast cancer prognosis model. The effect of detoxification enzymes-related genes on breast cancer was analyzed by single cell analysis. RESULTS The samples were classified into two subtypes, and a breast cancer prognosis model based on detoxification enzymes-related genes was constructed and validated using TCGA and GEO cohorts. Significant differences in pathways, immune infiltration, immunotherapy response, and drug sensitivity were observed between high- and low-risk groups. Single-cell analysis revealed that SQLE, a detoxification enzymes-related gene, was highly expressed in breast cancer epithelial cells (cancer cells), where SQLE + epithelial cells primarily influenced exhausted CD8 + T cells via the MIF signaling pathway. CONCLUSION In summary, the detoxification enzymes-related genes-based prognostic model developed in this study provides an effective tool for predicting breast cancer prognosis and offers new insights for diagnosis and treatment.
Collapse
Affiliation(s)
- Jingdi Zhang
- School of Pharmacy, Hengyang Medical College, University of South China, 28 Western Changsheng Road, Hengyang, 421001, Hunan, China
- Department of Pharmacy, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Wendi Zhan
- School of Pharmacy, Hengyang Medical College, University of South China, 28 Western Changsheng Road, Hengyang, 421001, Hunan, China
- Department of Pharmacy, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Haihong Hu
- School of Pharmacy, Hengyang Medical College, University of South China, 28 Western Changsheng Road, Hengyang, 421001, Hunan, China
- Department of Pharmacy, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Hongxia Zhu
- School of Pharmacy, Hengyang Medical College, University of South China, 28 Western Changsheng Road, Hengyang, 421001, Hunan, China
- Department of Pharmacy, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Bo Hao
- Department of Pharmacy, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Siyu Wang
- Department of Medical Oncology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Zhuo Li
- Department of Pharmacy, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China.
| | - Zhiming Zhang
- Health School of Nuclear Industry, 336 South Dongfeng Road, Hengyang, 421001, Hunan, China.
| | - Taolan Zhang
- Department of Pharmacy, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China.
- Research Center for Clinical Trial, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China.
| |
Collapse
|
3
|
Baliou S, Pelagiadis I, Apetroaei MM, Vakonaki E, Arsene AL, Hatzidaki E, Tzatzarakis MN, Ioannou P, Tsatsakis A, Stiakaki E. The Telomere Length Signature in Leukemias-From Molecular Mechanisms Underlying Telomere Shortening to Immunotherapeutic Options Against Telomerase. Cancers (Basel) 2025; 17:1936. [PMID: 40563586 PMCID: PMC12190229 DOI: 10.3390/cancers17121936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2025] [Revised: 06/04/2025] [Accepted: 06/06/2025] [Indexed: 06/28/2025] Open
Abstract
The nucleoprotein structures known as telomeres provide genomic integrity by protecting the ends of chromosomes. Tumorigenesis is associated with alterations in telomere function and stability. This narrative review provides evidence of the potential prognostic value of telomere length and telomerase in leukemias. On the one hand, oxidative stress and mitochondrial dysfunction can accelerate telomere shortening, leading to higher susceptibility and the progression of leukemia. On the other hand, cytogenetic alterations (such as gene fusions and chromosomal abnormalities) and genomic complexity can result from checkpoint dysregulation, the induction of the DNA damage response (DDR), and defective repair signaling at telomeres. This review thoroughly outlines the ways by which telomere dysfunction can play a key role in the development and progression of four primary leukemias, including chronic lymphocytic leukemia (CLL), chronic myeloid leukemia (CML), and acute leukemias of myeloid or lymphoid origin, highlighting the potential prognostic value of telomere length in this field. However, telomerase, which is highly active in leukemias, can prevent the rate of telomere attrition. In line with this, leukemia cells can proliferate, suggesting telomerase as a promising therapeutic target in leukemias. For this reason, telomerase-based immunotherapy is analyzed in the fight against leukemias, leveraging the immune system to eliminate leukemia cells with uncontrolled proliferation.
Collapse
Affiliation(s)
- Stella Baliou
- Laboratory of Toxicology, School of Medicine, University of Crete, 71003 Heraklion, Greece
| | - Iordanis Pelagiadis
- Department of Pediatric Hematology-Oncology, University Hospital of Heraklion, 71110 Heraklion, Greece
- Laboratory of Blood Diseases and Childhood Cancer Biology, School of Medicine, University of Crete, 71003 Heraklion, Greece
| | - Miruna-Maria Apetroaei
- Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 6 Traian Vuia Street, 020956 Bucharest, Romania
| | - Elena Vakonaki
- Laboratory of Toxicology, School of Medicine, University of Crete, 71003 Heraklion, Greece
| | - Andreea Letiția Arsene
- Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 6 Traian Vuia Street, 020956 Bucharest, Romania
- Marius Nasta Institute of Pneumophthisiology, 90, Viilor Street, 050159 Bucharest, Romania
| | - Eleftheria Hatzidaki
- Department of Neonatology/NICU, University Hospital of Heraklion, 71110 Heraklion, Greece
- School of Medicine, University of Crete, 71003 Heraklion, Greece
| | - Manolis N. Tzatzarakis
- Laboratory of Toxicology, School of Medicine, University of Crete, 71003 Heraklion, Greece
| | - Petros Ioannou
- School of Medicine, University of Crete, 71003 Heraklion, Greece
| | - Aristides Tsatsakis
- Laboratory of Toxicology, School of Medicine, University of Crete, 71003 Heraklion, Greece
| | - Eftichia Stiakaki
- Department of Pediatric Hematology-Oncology, University Hospital of Heraklion, 71110 Heraklion, Greece
- Laboratory of Blood Diseases and Childhood Cancer Biology, School of Medicine, University of Crete, 71003 Heraklion, Greece
| |
Collapse
|
4
|
Zhang WZ, Wu CY, Lai H. A Review on the Role of DNA Methylation in Aortic Disease Associated With Marfan Syndrome. Cardiol Res 2025; 16:169-177. [PMID: 40370619 PMCID: PMC12074684 DOI: 10.14740/cr2033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Accepted: 03/08/2025] [Indexed: 05/16/2025] Open
Abstract
Marfan syndrome (MFS) is a genetic disorder primarily affecting the connective tissue, with cardiovascular complications as the leading cause of mortality. While mutations in the FBN1 gene are the primary cause, the severity and progression of the disease can vary significantly among individuals. DNA methylation, a key epigenetic regulatory mechanism, has garnered attention in MFS research, particularly regarding methylation changes in the FBN1 locus and their effects on fibrillin-1 expression. Differential methylation and expression of genes related to inflammation (e.g., interleukin (IL)-10, IL-17) and oxidative stress (e.g., PON2, TP53INP1) have been linked to MFS aortic pathology. These alterations likely contribute to disease progression by influencing inflammatory responses, smooth muscle cell apoptosis, and biomechanical properties of the aorta. The transforming growth factor-beta (TGF-β) signaling pathway plays a central role in MFS pathology, with aberrant methylation of related genes potentially elevating active TGF-β levels and exacerbating aortic lesions. Notably, tissue-specific methylation patterns, especially in smooth muscle cells of the aorta, remain poorly understood. A deeper understanding of DNA methylation's role in MFS could pave the way for early interventions and epigenetic-targeted therapies.
Collapse
Affiliation(s)
- Wei Ze Zhang
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Chen Ye Wu
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Hao Lai
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
5
|
Guan X, Meng J, Yi W, Ye K, Gao H, Hong Y, Qu L, Ding S, Long Q. TERT promoter methylation predicts overall survival, immune cell infiltration and response to immunotherapy in clear cell renal cell carcinoma. Clin Epigenetics 2025; 17:88. [PMID: 40448175 DOI: 10.1186/s13148-025-01897-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Accepted: 05/10/2025] [Indexed: 06/02/2025] Open
Abstract
PURPOSE Telomerase reverse transcriptase (TERT) is one of the most well-established oncogenes in tumor development and progression. It is widely known that TERT promoter hypermethylation is associated with its transcription activation. Despite its canonical role in maintaining telomere length in cancer cells, TERT is also involved in various oncogenic processes independent of its enzymatic activity. However, the role of TERT in the tumor immune microenvironment has been largely unexplored. Hence, we assessed the associations between TERT promoter methylation and its expression, clinicopathological features, overall survival, immune cell infiltration, and response to immune checkpoint inhibitor therapy in clear cell renal cell carcinoma. METHODS A single-sample gene-set enrichment analysis algorithm was used to quantify the relative abundance of each type of immune cell infiltration in the tumor microenvironment (TME) of the TCGA KIRC cohort. We used Spearman's rank correlation to calculate the correlation coefficients between TERT promoter methylation and immune cell infiltration. The relative methylation of cg11625005 in our validation cohort was detected by pyrosequencing and the relative infiltration of CD4 + and CD8 + T cells infiltration in the TME was measured by immunohistochemistry. RESULTS The TERT promoter was significantly hypermethylated in clear cell renal cell tumor tissues, which was related to the transcriptional activation of TERT. TERT promoter hypermethylation was significantly correlated with aggressive phenotypes and poor survival in clear cell renal cell carcinoma patients. Furthermore, TERT promoter methylation was significantly positively correlated with CD4 + /CD8 + T cells infiltration and immune checkpoint molecule (CTLA-4, TIGIT, PD-1 and LAG3) expression. And TERT promoter methylation was correlated with the therapeutic response to anti-PD1 immunotherapy. CONCLUSION TERT promoter methylation is a promising predictive biomarker of immune cell infiltration, overall survival, clinicopathological characteristics and response to anti-PD1 immunotherapy treatment in clear cell renal cell carcinoma patients.
Collapse
Affiliation(s)
- Xinyu Guan
- Department of General Surgery, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Jiahao Meng
- Department of General Surgery, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Wenjun Yi
- Department of General Surgery, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Kun Ye
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Hongyu Gao
- Department of General Surgery, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Yue Hong
- Department of General Surgery, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Limeng Qu
- Department of General Surgery, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Shirong Ding
- Department of Oncology, The Second Xiangya Hospital of Central South University, Changsha, China.
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.
| | - Qian Long
- Department of General Surgery, The Second Xiangya Hospital of Central South University, Changsha, China.
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.
| |
Collapse
|
6
|
Vivekaa A, Nellore J, Sunkar S. Zebrafish metabolomics: a comprehensive approach to understanding health and disease. Funct Integr Genomics 2025; 25:110. [PMID: 40425969 DOI: 10.1007/s10142-025-01621-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2025] [Revised: 05/14/2025] [Accepted: 05/20/2025] [Indexed: 05/29/2025]
Abstract
Zebrafish (Danio rerio) have become a valuable model in biomedical research due to their genetic similarity to humans, rapid development, and suitability for high-throughput studies. Metabolomic analyses in zebrafish provide critical insights into the biochemical pathways underlying health and disease. This review explores the applications of metabolomics in zebrafish research, highlighting its contributions to understanding embryonic development, tuberculosis, neurodegenerative disorders such as Alzheimer's disease, obesity-related metabolic dysfunction, and drug-induced toxicity through a thorough literature review. Zebrafish metabolomics reveals dynamic metabolite shifts during vertebrate development. In tuberculosis research, zebrafish models have helped identify metabolic biomarkers with potential translational relevance. Studies on Alzheimer's disease suggest that metabolomics can elucidate neuroprotective mechanisms, while investigations into obesity have provided insights into metabolic imbalances associated with kidney dysfunction. Furthermore, toxicometabolomic studies have demonstrated the utility of zebrafish in assessing drug-induced renal injury. Despite their advantages, zebrafish metabolomics faces challenges, including differences in metabolic rates compared to mammals, the need for standardized protocols, and limitations in metabolite database annotations. Nonetheless, integrating metabolomics with other omics approaches holds great promise for advancing disease research and paving the way for personalized medicine.
Collapse
Affiliation(s)
- A Vivekaa
- Department of Bioinformatics, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, India
| | - Jayshree Nellore
- Department of Biotechnology, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, India
| | - Swetha Sunkar
- Department of Bioinformatics, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, India.
| |
Collapse
|
7
|
Xie S, Hagen D, Becker GM, Davenport KM, Shira KA, Stegemiller MR, Thorne JW, Khilji S, Konetchy D, Villamediana P, Murdoch BM, McKay SD. Analyzing the relationship of RNA and DNA methylation with gene expression. Genome Biol 2025; 26:140. [PMID: 40405312 PMCID: PMC12101012 DOI: 10.1186/s13059-025-03617-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 05/14/2025] [Indexed: 05/24/2025] Open
Abstract
BACKGROUND DNA 5-methylcytosine (5mC) and RNA N6-methyladenosine (m6A) methylation are prevalent modifications in eukaryotes, both playing crucial roles in gene regulation. Recent studies have explored their crosstalk and impact on transcription. However, the intricate relationships among 5mC, m6A, and gene expression remain incompletely elucidated. RESULTS We collect data on 5mC, m6A, and gene expression from samples from three tissues from each of four pregnant cattle and sheep. We construct a comprehensive genome-wide self-interaction (same gene) and across-interaction (across genes) network of 5mC and m6A within gene-bodies or promoters and gene expression in both species. Qualitative analysis identifies uniquely expressed genes with specific m6A methylation in each tissue from both species. A quantitative comparison of gene expression ratio between methylated and unmethylated genes for m6A within gene body and promoter, and 5mC within gene body and promoter confirms the positive effect of RNA methylation on gene expression. Importantly, the influence of RNA methylation on gene expression is stronger than that of DNA methylation. The predominant self- and across-interactions are between RNA methylation within gene bodies and gene expression, as well as between RNA methylation within promoters and gene expression in both species. CONCLUSIONS RNA methylation has a stronger effect on gene expression than does DNA methylation within gene bodies and promoters. DNA and RNA methylation in gene-bodies has a greater impact on gene expression than those in promoters. These findings deepen comprehension of the dynamics and complex relationships among the epigenome, epitranscriptome, and transcriptome, offering fresh insights for advancing epigenetics research.
Collapse
Affiliation(s)
- Shangqian Xie
- Department of Animal, Veterinary and Food Sciences, University of Idaho, Moscow, ID, 83844, USA
| | - Darren Hagen
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Gabrielle M Becker
- Department of Animal, Veterinary and Food Sciences, University of Idaho, Moscow, ID, 83844, USA
| | - Kimberly M Davenport
- Department of Animal Sciences, Washington State University, Pullman, WA, 99164, USA
| | - Katie A Shira
- Department of Animal, Veterinary and Food Sciences, University of Idaho, Moscow, ID, 83844, USA
| | - Morgan R Stegemiller
- Department of Animal, Veterinary and Food Sciences, University of Idaho, Moscow, ID, 83844, USA
| | - Jacob W Thorne
- Department of Animal, Veterinary and Food Sciences, University of Idaho, Moscow, ID, 83844, USA
| | - Sarem Khilji
- Department of Animal, Veterinary and Food Sciences, University of Idaho, Moscow, ID, 83844, USA
| | - Denise Konetchy
- Department of Animal, Veterinary and Food Sciences, University of Idaho, Moscow, ID, 83844, USA
| | - Patricia Villamediana
- Department of Animal, Veterinary and Food Sciences, University of Idaho, Moscow, ID, 83844, USA
| | - Brenda M Murdoch
- Department of Animal, Veterinary and Food Sciences, University of Idaho, Moscow, ID, 83844, USA.
| | - Stephanie D McKay
- Division of Animal Sciences, University of Missouri, Columbia, MO, 65211, USA.
| |
Collapse
|
8
|
Hsueh HY, Gumpper-Fedus K, Poelstra JW, Pitter KL, Cruz-Monserrate Z. Pan-Cancer Analysis Identifies a Ras-Related GTPase as a Potential Modulator of Cancer. Int J Mol Sci 2025; 26:4419. [PMID: 40362656 PMCID: PMC12073092 DOI: 10.3390/ijms26094419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2025] [Revised: 04/18/2025] [Accepted: 04/30/2025] [Indexed: 05/15/2025] Open
Abstract
Ras signaling regulates many cellular processes in cancer development. While well-known Ras-related oncogenes, such as KRAS, have been extensively explored, the role of other Ras-related genes in cancer remains poorly studied. Dexamethasone-induced Ras-related protein 1 (RASD1), a member of the Ras superfamily, is widely expressed across various tissues and is involved in inhibiting cell growth and inducing apoptosis, suggesting a potential role as a tumor suppressor. Here, we investigated RASD1 expression across multiple tissues and cancers, utilizing data from The Cancer Genome Atlas (TCGA), Human Protein Atlas, and Genotype-Tissue Expression (GTEx) databases. Our analysis revealed a significant downregulation of RASD1 mRNA expression in several cancer types compared to normal tissues, correlating with low levels of promoter methylation. Interestingly, high RASD1 expression correlated with a favorable prognosis in multiple cancers. Immune cell infiltration analysis indicated that elevated RASD1 expression is associated with an increased infiltration of CD4+ T cells and myeloid-derived dendritic cells in cancer. Furthermore, the expression of genes exhibiting similar expression patterns as RASD1 suggest that RASD1 may play a role in interleukin-4-mediated apoptosis and could regulate the transcription of the phosphatase and tensin homolog (PTEN) gene. Overall, these findings suggest that RASD1 may modulate immune signaling and tumor suppressive pathways.
Collapse
Affiliation(s)
- Hsiang-Yin Hsueh
- Department of Internal Medicine, Division of Gastroenterology, Hepatology, and Nutrition, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA; (H.-Y.H.); (K.G.-F.)
- The James Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA;
- The Ohio State University Molecular, Cellular, and Developmental Biology Program, The Ohio State University, Columbus, OH 43210, USA
| | - Kristyn Gumpper-Fedus
- Department of Internal Medicine, Division of Gastroenterology, Hepatology, and Nutrition, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA; (H.-Y.H.); (K.G.-F.)
- The James Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA;
| | - Jelmer W. Poelstra
- Molecular and Cellular Imaging Center (MCIC), College of Food, Agricultural, and Environmental Sciences, The Ohio State University, Wooster, OH 44691, USA;
| | - Kenneth L. Pitter
- The James Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA;
- Department of Radiation Oncology, The Ohio State University Wexner Medical Center, James Comprehensive Cancer Center, Columbus, OH 43210, USA
| | - Zobeida Cruz-Monserrate
- Department of Internal Medicine, Division of Gastroenterology, Hepatology, and Nutrition, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA; (H.-Y.H.); (K.G.-F.)
- The James Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA;
| |
Collapse
|
9
|
Tekola-Ayele F, Biedrzycki RJ, Habtewold TD, Wijesiriwardhana P, Burt A, Marsit CJ, Ouidir M, Wapner R. Sex-differentiated placental methylation and gene expression regulation has implications for neonatal traits and adult diseases. Nat Commun 2025; 16:4004. [PMID: 40312437 PMCID: PMC12045980 DOI: 10.1038/s41467-025-58128-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 03/10/2025] [Indexed: 05/03/2025] Open
Abstract
Sex differences in physiological and disease traits are pervasive and begin during early development, but the genetic architecture of these differences is largely unknown. Here, we leverage the human placenta, a transient organ during pregnancy critical to fetal development, to investigate the impact of sex in the regulatory landscape of placental autosomal methylome and transcriptome, and its relevance to health and disease. We find that placental methylation and its genetic regulation are extensively impacted by fetal sex, whereas sex differences in placental gene expression and its genetic regulation are limited. We identify molecular processes and regulatory targets that are enriched in a sex-specific manner, and find enrichment of imprinted genes in sex-differentiated placental methylation, including female-biased methylation within the well-known KCNQ1OT1/CDKN1C imprinting cluster of genes expressed in a parent-of-origin dependent manner. We establish that several sex-differentiated genetic effects on placental methylation and gene expression colocalize with birthweight and adult disease genetic associations, facilitating mechanistic insights on early life origins of health and disease outcomes shaped by sex.
Collapse
Affiliation(s)
- Fasil Tekola-Ayele
- Division of Population Health Research, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA.
| | - Richard J Biedrzycki
- Glotech, Inc., contractor for Division of Population Health Research, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Tesfa Dejenie Habtewold
- Division of Population Health Research, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Prabhavi Wijesiriwardhana
- Division of Population Health Research, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Amber Burt
- Gangarosa Department of Environmental Health, Rollins School of Public Health of Emory University, Atlanta, GA, USA
| | - Carmen J Marsit
- Gangarosa Department of Environmental Health, Rollins School of Public Health of Emory University, Atlanta, GA, USA
| | - Marion Ouidir
- Division of Population Health Research, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
- University of Grenoble Alpes, Inserm, Team of Environmental Epidemiology applied to Reproduction and Respiratory Health, Institute for Advanced Biosciences, Grenoble, France
| | - Ronald Wapner
- Department of Obstetrics and Gynecology, Columbia University, New York, NY, USA
| |
Collapse
|
10
|
Yun P, Kulaixijiang K, Pan J, Yang L, Wang N, Xu Z, Zhang Y, Cai H, Zhao Z, Zhu M, Yan H. Early colorectal cancer diagnosis: A novel methylated stool DNA model enhanced the diagnostic efficiency. United European Gastroenterol J 2025; 13:402-415. [PMID: 39487820 PMCID: PMC11999042 DOI: 10.1002/ueg2.12696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 08/18/2024] [Indexed: 11/04/2024] Open
Abstract
BACKGROUND Methylated stool DNA (sDNA) is a reliable noninvasive biomarker for early colorectal cancer (CRC) diagnosis. However, there are barely any diagnostic panels that can achieve both a sensitivity and specificity exceeding 90% simultaneously. OBJECTIVE We aimed to identify a novel methylated sDNA panel and model for the early diagnosis of CRC. METHODS We conducted methyl-CpG binding domain isolated genome sequencing (MiGS) on CpG island methylation phenotype (CIMP)-positive (n = 3) and CIMP-negative CRC tissues (n = 3) and their corresponding normal adjacent tissues. Subsequently, by utilizing both the aforementioned data and public datasets, we identified a set of promising methylated sDNA markers for CRC. Next, we validated 5 of these genes using pyrosequencing in CRC patients (n = 31). Then, we developed a combined diagnostic model (CDM) for CRC based on the methylation status of PRDM12, FOXE1, and SDC2 by a Training cohort (n = 231). Finally, the performance of CDM was evaluated in an independent multicenter Validation cohort (n = 800). RESULTS A total of 1062 participants were included in this study. The area under the curve (AUC) of the CDM was 0.979 (95% CI: 0.960-0.997), and the optimal sensitivity and specificity were 97.35% and 99.05%, respectively, in the training cohort (n = 231). In the independent validation cohort (n = 800), the AUC was 0.950 (95% CI: 0.927-0.973), along with the optimal sensitivity of 92.75% and specificity of 97.21%. When CRC and advanced adenoma (AAD) were used as diagnostic targets, the model AUC was 0.945 (95% CI: 0.922-0.969), with an optimal sensitivity of 91.89% and a specificity of 95.21%. The model sensitivity for nonadvanced adenoma patients was 68.66%. CONCLUSION The sDNA diagnostic model CDM, developed from both CIMP-P and CIMP-N, exhibited exceptional performance in CRC and could serve as a potential alternative strategy for CRC screening.
Collapse
Affiliation(s)
- Peng Yun
- Reproductive Medicine CenterThe First Affiliated Hospital of Naval Medical UniversityShanghaiChina
| | - Kamila Kulaixijiang
- Department of PathologyKaramay Central Hospital of XinjiangKaramayChina
- Xinjiang Key Laboratory of Clinical Genetic Testing and Biomedical InformationKaramayChina
- Xinjiang Clinical Research Center for Precision Medicine of Digestive System TumorsKaramayChina
| | - Jiang Pan
- Reproductive Medicine CenterThe First Affiliated Hospital of Naval Medical UniversityShanghaiChina
| | - Luping Yang
- Reagent R&D DepartmentXiamen Sciendox Biotechnology Co., Ltd.XiamenChina
| | - Nengzhuang Wang
- Reproductive Medicine CenterThe First Affiliated Hospital of Naval Medical UniversityShanghaiChina
| | - Zheng Xu
- Central LaboratorySeventh People's Hospital Affiliated to Shanghai University of Traditional Chinese MedicineShanghaiChina
| | - Yaodong Zhang
- Reproductive Medicine CenterThe First Affiliated Hospital of Naval Medical UniversityShanghaiChina
- Clinical LabThe 971st PLA Navy HospitalQingdaoChina
| | - Haifang Cai
- Reagent R&D DepartmentXiamen Sciendox Biotechnology Co., Ltd.XiamenChina
| | - Zi‐Ye Zhao
- Department of Colorectal Surgery and Hereditary Colorectal Cancer RegistryThe First Affiliated Hospital of Naval Medical UniversityShanghaiChina
| | - Min Zhu
- Department of PathologyKaramay Central Hospital of XinjiangKaramayChina
- Xinjiang Key Laboratory of Clinical Genetic Testing and Biomedical InformationKaramayChina
- Xinjiang Clinical Research Center for Precision Medicine of Digestive System TumorsKaramayChina
| | - Hongli Yan
- Reproductive Medicine CenterThe First Affiliated Hospital of Naval Medical UniversityShanghaiChina
| |
Collapse
|
11
|
Chen H, Han C, Ha C. EXT1 and Its Methylation Involved in the Progression of Uterine Corpus Endometrial Carcinoma Pathogenesis. Appl Biochem Biotechnol 2025; 197:2133-2150. [PMID: 39673673 DOI: 10.1007/s12010-024-05116-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/19/2024] [Indexed: 12/16/2024]
Abstract
Uterine corpus endometrial carcinoma (UCEC) is one of the most common gynecologic tumors. Due to the high recurrence and metastasis of UCEC, it is crucial for patients to find new biomarkers for diagnosis and therapy. In this study, R software and the TCGA database were used to screen candidate UCEC predictive markers. Western blot and RT-qPCR were performed to detect protein and mRNA expression of EXT1 in UCEC cell lines. In addition, MTT assay, flow cytometry, transwell assay, and wound healing assay were conducted to assess the cell viability, apoptosis, invasion, and migration in UCEC cells. Overlap-extension PCR technique was employed to construct the vector targeting the deletion of the methylated segment of EXT1. The results showed that a total of 11 candidate genes were obtained and EXT1 was identified as a potential target. The expression and methylation levels of EXT1 were both increased in UCEC tissues and cell lines, as well as elevated EXT1 was closely related to the poor prognosis of patients. Besides, the knockdown of EXT1 significantly inhibited the malignant biological behaviors in UCEC cells. Additionally, the current study also found that the deletion of 1559-2146 bp CpG island segment upregulated EXT1 expression and promoted malignant biological behaviors in UCEC cells. Furthermore, the presence of m7G RNA methylation in UCEC cells also was found. In conclusion, the methylation of EXT1 influenced the gene expression, thereby affecting the malignant biological behaviors in UCEC cells and regulating the pathological progression of UCEC.
Collapse
Affiliation(s)
- Hua Chen
- Department of Gynecology, General Hospital of Ningxia Medical University, Shengli South Street, Xingqing District, Yinchuan, 750004, Ningxia, China
| | - Cailing Han
- Department of Anesthesiology, General Hospital of Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Chunfang Ha
- Department of Gynecology, General Hospital of Ningxia Medical University, Shengli South Street, Xingqing District, Yinchuan, 750004, Ningxia, China.
| |
Collapse
|
12
|
Palczewski MB, Kuschman HP, Hoffman BM, Kathiresan V, Yang H, Glynn SA, Wilson DL, Kool ET, Montfort WR, Chang J, Petenkaya A, Chronis C, Cundari TR, Sappa S, Islam K, McVicar DW, Fan Y, Chen Q, Meerzaman D, Sierk M, Thomas DD. Nitric oxide inhibits ten-eleven translocation DNA demethylases to regulate 5mC and 5hmC across the genome. Nat Commun 2025; 16:1732. [PMID: 39966373 PMCID: PMC11836389 DOI: 10.1038/s41467-025-56928-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 02/05/2025] [Indexed: 02/20/2025] Open
Abstract
DNA methylation at cytosine bases (5-methylcytosine, 5mC) is a heritable epigenetic mark regulating gene expression. While enzymes that metabolize 5mC are well-characterized, endogenous signaling molecules that regulate DNA methylation machinery have not been described. We report that physiological nitric oxide (NO) concentrations reversibly inhibit the DNA demethylases TET and ALKBH2 by binding to the mononuclear non-heme iron atom forming a dinitrosyliron complex (DNIC) and preventing cosubstrates from binding. In cancer cells treated with exogenous NO, or endogenously synthesizing NO, 5mC and 5-hydroxymethylcytosine (5hmC) increase, with no changes in DNA methyltransferase activity. 5mC is also significantly increased in NO-producing patient-derived xenograft tumors from mice. Genome-wide methylome analysis of cells chronically treated with NO (10 days) shows enrichment of 5mC and 5hmC at gene-regulatory loci, correlating with altered expression of NO-regulated tumor-associated genes. Regulation of DNA methylation is distinctly different from canonical NO signaling and represents a unique epigenetic role for NO.
Collapse
Affiliation(s)
- Marianne B Palczewski
- Department of Pharmaceutical Sciences, University of Illinois Chicago, College of Pharmacy, Chicago, IL, USA
| | - Hannah Petraitis Kuschman
- Department of Pharmaceutical Sciences, University of Illinois Chicago, College of Pharmacy, Chicago, IL, USA
| | - Brian M Hoffman
- Department of Chemistry, Weinberg College of Arts and Sciences, Northwestern University, Evanston, IL, USA
| | - Venkatesan Kathiresan
- Department of Chemistry, Weinberg College of Arts and Sciences, Northwestern University, Evanston, IL, USA
| | - Hao Yang
- Department of Chemistry, Weinberg College of Arts and Sciences, Northwestern University, Evanston, IL, USA
| | - Sharon A Glynn
- Discipline of Pathology, University of Galway, College of Medicine, Nursing and Health Sciences, School of Medicine, Galway, Ireland
| | - David L Wilson
- Department of Chemistry, Stanford University, School of Humanities and Sciences, Stanford, CA, USA
| | - Eric T Kool
- Department of Chemistry, Stanford University, School of Humanities and Sciences, Stanford, CA, USA
| | - William R Montfort
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ, USA
| | - Jenny Chang
- Dr. Mary and Neal Cancer Center at Houston Methodist, Weill Cornell Medical College, Houston, NY, USA
| | - Aydolun Petenkaya
- Department of Biomedical Engineering, University of Illinois Chicago, College of Engineering, Chicago, IL, USA
| | - Constantinos Chronis
- Department of Biochemistry and Molecular Genetics, University of Illinois Chicago, College of Medicine, Chicago, IL, USA
| | - Thomas R Cundari
- Department of Chemistry, University of North Texas, Denton, TX, USA
| | - Sushma Sappa
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Kabirul Islam
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Daniel W McVicar
- Cancer Innovation Laboratory, National Cancer Institute, Center for Cancer Research, Frederick, MD, USA
| | - Yu Fan
- National Cancer Institute, Center for Biomedical Informatics and Information Technology, Bethesda, USA
| | - Qingrong Chen
- National Cancer Institute, Center for Biomedical Informatics and Information Technology, Bethesda, USA
| | - Daoud Meerzaman
- Cancer Innovation Laboratory, National Cancer Institute, Center for Cancer Research, Frederick, MD, USA
| | - Michael Sierk
- Cancer Innovation Laboratory, National Cancer Institute, Center for Cancer Research, Frederick, MD, USA
| | - Douglas D Thomas
- Department of Pharmaceutical Sciences, University of Illinois Chicago, College of Pharmacy, Chicago, IL, USA.
| |
Collapse
|
13
|
O'Geen H, Mihalovits A, Brophy BD, Yang H, Miller MW, Lee CJ, Segal DJ, Tomkova M. De-novo DNA Methylation of Bivalent Promoters Induces Gene Activation through PRC2 Displacement. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.07.636872. [PMID: 39975160 PMCID: PMC11839071 DOI: 10.1101/2025.02.07.636872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Promoter DNA methylation is a key epigenetic mark, commonly associated with gene silencing. However, we noticed that a positive association between promoter DNA methylation and expression is surprisingly common in cancer. Here, we use hit-and-run CRISPR/dCas9 epigenome editing to evaluate how deposition of DNA methylation can regulate gene expression dependent on pre-existing chromatin environment. While the predominant effect of DNA methylation in non-bivalent promoters is gene repression, we show that in bivalent promoters this often leads to gene activation. We demonstrate that gain of DNA methylation leads to reduced MTF2 binding and eviction of H3K27me3, a repressive mark that guards bivalent genes against activation. Our cancer patient data analyses reveal that in cancer, this mechanism likely leads to activation of a large group of transcription factors regulating pluripotency, apoptosis, and senescence signalling. In conclusion, our study uncovers an activating role of DNA methylation in bivalent promoters, with broad implications for cancer and development.
Collapse
|
14
|
Wang H, Liu Z, Du Y, Cheng X, Gao S, Liang W, Zhu Q, Jiang Z, Gao Y, Shang P. High expression of ARPC1B promotes the proliferation and apoptosis of clear cell renal cell carcinoma cells, leading to a poor prognosis. Mol Cell Probes 2025; 79:102011. [PMID: 39818256 DOI: 10.1016/j.mcp.2025.102011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/28/2024] [Accepted: 01/12/2025] [Indexed: 01/18/2025]
Abstract
BACKGROUND ARPC1B has been identified as a key regulator of malignant biological behavior in various tumors. However, its specific role in clear cell renal cell carcinoma (ccRCC) remains poorly understood. This study aims to evaluate the influence of ARPC1B on the prognosis and disease progression in ccRCC patients. METHODS Multi-omics data and clinical information from public databases were analyzed to determine the associations between ARPC1B and prognosis, clinical features, immune microenvironment, and drug sensitivity in ccRCC. Co-expression and gene set enrichment analyses were conducted to elucidate the potential role of ARPC1B in ccRCC pathogenesis. Functional assays, including RT-qPCR, CCK8 assays, colony formation assays, immunofluorescence, immunohistochemistry, and xenograft tumor formation in nude mice, were performed to assess ARPC1B's impact on cell proliferation and apoptosis. Flow cytometry and Western blotting were further employed to investigate the underlying molecular mechanisms of ARPC1B in ccRCC. RESULTS ARPC1B expression was significantly elevated in ccRCC and associated with an unfavorable prognosis. Both independent and meta-analyses confirmed that ARPC1B is an independent prognostic risk factor in ccRCC. Furthermore, ARPC1B expression significantly correlated with the immune microenvironment and drug sensitivity. In vitro, experiments demonstrated that ARPC1B knockdown suppressed ccRCC cell proliferation and induced apoptosis through the BAX-Bcl-2/c-caspase3/c-PARP axis, which was further validated by in vivo studies. CONCLUSION ARPC1B overexpression is associated with poor prognosis, altered immune status, and drug sensitivity in ccRCC. Furthermore, ARPC1B promotes the malignant behavior of ccRCC cells and holds potential as a prognostic biomarker and therapeutic target for ccRCC.
Collapse
Affiliation(s)
- Hongbo Wang
- Department of Urology Surgery, Lanzhou University Second Hospital, Lanzhou, 730030, China; Department of Microbiome Laboratory, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450003, China
| | - Zhendong Liu
- Department of Surgery of Spine and Spinal Cord, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, 450003, China
| | - Yuelin Du
- Department of Urology Surgery, Lanzhou University Second Hospital, Lanzhou, 730030, China
| | - Xingbo Cheng
- Department of Surgery of Spine and Spinal Cord, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, 450003, China
| | - Shanjun Gao
- Department of Microbiome Laboratory, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450003, China
| | - Wenjia Liang
- Henan University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, 450003, China
| | - Qingyun Zhu
- Henan University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, 450003, China
| | - Zhengfa Jiang
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450003, China
| | - Yanzheng Gao
- Department of Surgery of Spine and Spinal Cord, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, 450003, China.
| | - Panfeng Shang
- Department of Urology Surgery, Lanzhou University Second Hospital, Lanzhou, 730030, China.
| |
Collapse
|
15
|
He W, Xu J, Zuo Y, Bai Y, Guo F. EnsembleSE: identification of super-enhancers based on ensemble learning. Brief Funct Genomics 2025; 24:elaf003. [PMID: 40251827 PMCID: PMC12008123 DOI: 10.1093/bfgp/elaf003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 01/31/2025] [Accepted: 02/27/2025] [Indexed: 04/21/2025] Open
Abstract
Super-enhancers (SEs) are typically located in the regulatory regions of genes, driving high-level gene expression. Identifying SEs is crucial for a deeper understanding of gene regulatory networks, disease mechanisms, and the development and physiological processes of organisms, thus exerting a profound impact on research and applications in the life sciences field. Traditional experimental methods for identifying SEs are costly and time-consuming. Existing methods for predicting SEs based solely on sequence data use deep learning for feature representation and have achieved good results. However, they overlook biological features related to physicochemical properties, leading to low interpretability. Additionally, the complex model structure often requires extensive labeled data for training, which limits their further application in biological data. In this paper, we integrate the strengths of different models and proposes an ensemble model based on an integration strategy to enhance the model's generalization ability. It designs a multi-angle feature representation method that combines local structure and global information to extract high-dimensional abstract relationships and key low-dimensional biological features from sequences. This enhances the effectiveness and interpretability of the model's input features, providing technical support for discovering cell-specific and species-specific patterns of SEs. We evaluated the performance on both mouse and human datasets using five metrics, including area under the receiver operating characteristic curve accuracy, and others. Compared to the latest models, EnsembleSE achieved an average improvement of 4.5% in F1 score and an average improvement of 8.05% in recall, demonstrating the robustness and adaptability of the model on a unified test set. Source codes are available at https://github.com/2103374200/EnsembleSE-main.
Collapse
Affiliation(s)
- Wenying He
- School of Artificial Intelligence, Hebei University of Technology, No. 5340, Xiping Road, Beichen District, Tianjin 300400, China
- Hebei Province Key Laboratory of Big Data Calculation, Hebei University of Technology, No. 5340, Xiping Road, Beichen District, Tianjin 300130, China
| | - Jialu Xu
- School of Artificial Intelligence, Hebei University of Technology, No. 5340, Xiping Road, Beichen District, Tianjin 300400, China
| | - Yun Zuo
- School of Artificial Intelligence and Computer Science, Jiangnan University, No. 1800 Lihu Avenue, Wuxi 214000, China
| | - Yude Bai
- School of Software, Tiangong University, No. 399 Binshui West Road, Xiqing District, Tianjin 300387, China
| | - Fei Guo
- School of Computer Science and Engineering, Central South University, No. 932 South Lushan Road, Changsha 410083, China
| |
Collapse
|
16
|
Chen M, Zhou Y, Fu Z, Wu C. Transcription factor occupancy limits DNA methylation and determines ICAM1 expression in breast cancer. Acta Biochim Biophys Sin (Shanghai) 2025. [PMID: 40230289 DOI: 10.3724/abbs.2024237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2025] Open
Abstract
The interaction between TF binding and DNA methylation is increasingly recognized as a key player in the regulation of gene expression. However, the role of this interaction in regulating ICAM1 expression in breast cancer has not been elucidated. CpG methylation in the ICAM1 promoter is negatively correlated with ICAM1 expression, and ICAM1 expression is significantly positively correlated with DNMT and TET3 expression in breast cancer. TF binding attenuates ICAM1 promoter CpG methylation and promotes ICAM1 transcription. DNA methylation regulation enhances ICAM1 expression in breast cancer by promoting the transcription of transcription factors. In terms of mechanisms, RELA and STATs recruit TET3 to prevent DNMT-mediated DNA methylation, thereby maintaining CpG island hypomethylation in the ICAM1 promoter. Therefore, TF occupancy limits DNA methylation and affects ICAM1 expression in breast cancer.
Collapse
Affiliation(s)
- Mingcang Chen
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
- Metabolic Disease Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Ying Zhou
- Department of Peripheral Vascular, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China
| | - Zhengwei Fu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Chunyu Wu
- Department of Breast Surgery (Integrated Traditional and Western Medicine), Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| |
Collapse
|
17
|
Zhang H, Zhu JK. Epigenetic gene regulation in plants and its potential applications in crop improvement. Nat Rev Mol Cell Biol 2025; 26:51-67. [PMID: 39192154 DOI: 10.1038/s41580-024-00769-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/18/2024] [Indexed: 08/29/2024]
Abstract
DNA methylation, also known as 5-methylcytosine, is an epigenetic modification that has crucial functions in plant growth, development and adaptation. The cellular DNA methylation level is tightly regulated by the combined action of DNA methyltransferases and demethylases. Protein complexes involved in the targeting and interpretation of DNA methylation have been identified, revealing intriguing roles of methyl-DNA binding proteins and molecular chaperones. Structural studies and in vitro reconstituted enzymatic systems have provided mechanistic insights into RNA-directed DNA methylation, the main pathway catalysing de novo methylation in plants. A better understanding of the regulatory mechanisms will enable locus-specific manipulation of the DNA methylation status. CRISPR-dCas9-based epigenome editing tools are being developed for this goal. Given that DNA methylation patterns can be stably transmitted through meiosis, and that large phenotypic variations can be contributed by epimutations, epigenome editing holds great promise in crop breeding by creating additional phenotypic variability on the same genetic material.
Collapse
Affiliation(s)
- Heng Zhang
- Department of Genetics and Developmental Science, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China.
| | - Jian-Kang Zhu
- Institute of Advanced Biotechnology and School of Medicine, Southern University of Science and Technology, Shenzhen, China.
| |
Collapse
|
18
|
Chambers TL, Dimet‐Wiley A, Keeble AR, Haghani A, Lo W, Kang G, Brooke R, Horvath S, Fry CS, Watowich SJ, Wen Y, Murach KA. Methylome-proteome integration after late-life voluntary exercise training reveals regulation and target information for improved skeletal muscle health. J Physiol 2025; 603:211-237. [PMID: 39058663 PMCID: PMC11702923 DOI: 10.1113/jp286681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 07/02/2024] [Indexed: 07/28/2024] Open
Abstract
Exercise is a potent stimulus for combatting skeletal muscle ageing. To study the effects of exercise on muscle in a preclinical setting, we developed a combined endurance-resistance training stimulus for mice called progressive weighted wheel running (PoWeR). PoWeR improves molecular, biochemical, cellular and functional characteristics of skeletal muscle and promotes aspects of partial epigenetic reprogramming when performed late in life (22-24 months of age). In this investigation, we leveraged pan-mammalian DNA methylome arrays and tandem mass-spectrometry proteomics in skeletal muscle to provide detailed information on late-life PoWeR adaptations in female mice relative to age-matched sedentary controls (n = 7-10 per group). Differential CpG methylation at conserved promoter sites was related to transcriptional regulation genes as well as Nr4a3, Hes1 and Hox genes after PoWeR. Using a holistic method of -omics integration called binding and expression target analysis (BETA), methylome changes were associated with upregulated proteins related to global and mitochondrial translation after PoWeR (P = 0.03). Specifically, BETA implicated methylation control of ribosomal, mitoribosomal, and mitochondrial complex I protein abundance after training. DNA methylation may also influence LACTB, MIB1 and UBR4 protein induction with exercise - all are mechanistically linked to muscle health. Computational cistrome analysis predicted several transcription factors including MYC as regulators of the exercise trained methylome-proteome landscape, corroborating prior late-life PoWeR transcriptome data. Correlating the proteome to muscle mass and fatigue resistance revealed positive relationships with VPS13A and NPL levels, respectively. Our findings expose differential epigenetic and proteomic adaptations associated with translational regulation after PoWeR that could influence skeletal muscle mass and function in aged mice. KEY POINTS: Late-life combined endurance-resistance exercise training from 22-24 months of age in mice is shown to improve molecular, biochemical, cellular and in vivo functional characteristics of skeletal muscle and promote aspects of partial epigenetic reprogramming and epigenetic age mitigation. Integration of DNA CpG 36k methylation arrays using conserved sites (which also contain methylation ageing clock sites) with exploratory proteomics in skeletal muscle extends our prior work and reveals coordinated and widespread regulation of ribosomal, translation initiation, mitochondrial ribosomal (mitoribosomal) and complex I proteins after combined voluntary exercise training in a sizeable cohort of female mice (n = 7-10 per group and analysis). Multi-omics integration predicted epigenetic regulation of serine β-lactamase-like protein (LACTB - linked to tumour resistance in muscle), mind bomb 1 (MIB1 - linked to satellite cell and type 2 fibre maintenance) and ubiquitin protein ligase E3 component N-recognin 4 (UBR4 - linked to muscle protein quality control) after training. Computational cistrome analysis identified MYC as a regulator of the late-life training proteome, in agreement with prior transcriptional analyses. Vacuolar protein sorting 13 homolog A (VPS13A) was positively correlated to muscle mass, and the glycoprotein/glycolipid associated sialylation enzyme N-acetylneuraminate pyruvate lyase (NPL) was associated to in vivo muscle fatigue resistance.
Collapse
Affiliation(s)
- Toby L. Chambers
- Exercise Science Research Center, Molecular Muscle Mass Regulation Laboratory, Department of Health, Human Performance, and RecreationUniversity of ArkansasFayettevilleARUSA
| | | | - Alexander R. Keeble
- University of Kentucky Center for Muscle BiologyLexingtonKYUSA
- Department of Athletic Training and Clinical NutritionUniversity of KentuckyLexingtonKYUSA
| | - Amin Haghani
- Department of Human GeneticsUniversity of California Los AngelesLos AngelesCAUSA
- Altos LabsSan DiegoCAUSA
| | - Wen‐Juo Lo
- Department of Educational Statistics and Research MethodsUniversity of ArkansasFayettevilleARUSA
| | - Gyumin Kang
- University of Kentucky Center for Muscle BiologyLexingtonKYUSA
- Department of PhysiologyUniversity of KentuckyLexingtonKYUSA
- Division of Biomedical Informatics, Department of Internal MedicineUniversity of KentuckyLexingtonKYUSA
| | - Robert Brooke
- Epigenetic Clock Development FoundationLos AngelesCAUSA
| | - Steve Horvath
- Department of Human GeneticsUniversity of California Los AngelesLos AngelesCAUSA
- Altos LabsSan DiegoCAUSA
- Epigenetic Clock Development FoundationLos AngelesCAUSA
| | - Christopher S. Fry
- University of Kentucky Center for Muscle BiologyLexingtonKYUSA
- Department of Athletic Training and Clinical NutritionUniversity of KentuckyLexingtonKYUSA
| | - Stanley J. Watowich
- Ridgeline TherapeuticsHoustonTXUSA
- Department of Biochemistry and Molecular BiologyUniversity of Texas Medical BranchGalvestonTXUSA
| | - Yuan Wen
- University of Kentucky Center for Muscle BiologyLexingtonKYUSA
- Department of PhysiologyUniversity of KentuckyLexingtonKYUSA
- Division of Biomedical Informatics, Department of Internal MedicineUniversity of KentuckyLexingtonKYUSA
| | - Kevin A. Murach
- Exercise Science Research Center, Molecular Muscle Mass Regulation Laboratory, Department of Health, Human Performance, and RecreationUniversity of ArkansasFayettevilleARUSA
| |
Collapse
|
19
|
Qiu G, Song C, Lou M, Lin J. Decoding the Expressions, Immune Relevance, and Prognostic Values of Ferroptosis Gene TMEM189: A Pan-cancer Analysis. Curr Cancer Drug Targets 2025; 25:520-537. [PMID: 38934284 DOI: 10.2174/0115680096308701240605114342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 05/05/2024] [Accepted: 05/09/2024] [Indexed: 06/28/2024]
Abstract
BACKGROUND TMEM189 is a recently discovered transmembrane protein involved in ether glycerophospholipid synthesis and ferroptosis regulation. However, its role in tumors is not well understood. OBJECTIVE This study aimed to elucidate the oncogenic effects and prognostic values of TMEM189 in tumors. METHODS We performed a pan-cancer analysis of TMEM189 using various databases, bioinformatics and statistical tools, and tissue microarray analysis. RESULTS TMEM189 was upregulated in tumors compared to normal tissues. High TMEM189 expression was found to be linked to reduced promoter methylation. Moreover, TMEM189 exhibited a negative correlation with immunogenic markers, immune cell infiltration, and expression of Immune Checkpoint Genes (ICGs) in most cancers, implicating its immunosuppressive role in tumor microenvironments (TME). The genes that interact and are similar to TMEM189 were involved in hotspot signaling pathways in pan-cancer. TMEM189 overexpression was found to be usually associated with poor prognosis, especially an independent prognostic risk factor for BLCA, BRCA, LUAD, MESO, LIHC, and SKCM. CONCLUSION TMEM189 is overexpressed and exerts immunosuppressive effects in many tumors with a significant association with poor prognosis, suggesting its potential as a therapeutic target in cancer treatment.
Collapse
Affiliation(s)
- Guanzhong Qiu
- Department of Neurosurgery, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200080, China
| | - Chaoli Song
- Department of Neurosurgery, Western Theater Command Air Force Hospital, Chengdu, 600021, China
| | - Meiqing Lou
- Department of Neurosurgery, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200080, China
| | - Jing Lin
- Department of Neurosurgery, Western Theater Command Air Force Hospital, Chengdu, 600021, China
- Department of Health Statistics, Naval Medical University, Shanghai, 200003, China
| |
Collapse
|
20
|
Yu Z, Song Y, Wang J, Wu Y, Wang H, Liu S, Zhu Y. Comprehensive analysis of PDE2A: a novel biomarker for prognostic value and immunotherapeutic potential in human cancers. Braz J Med Biol Res 2024; 57:e14220. [PMID: 39699377 DOI: 10.1590/1414-431x2024e14220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 10/28/2024] [Indexed: 12/20/2024] Open
Abstract
Phosphodiesterase 2A (PDE2A) plays a pivotal role in modulating cyclic nucleotide metabolism. Recent studies have shown that PDE2A is associated with some tumors, but its expression profiles, prognostic significance, and immunological roles in diverse cancer types remain unclear. Utilizing advanced bioinformatics tools, we performed a comprehensive analysis of PDE2A gene expression in multiple human cancers. Our study revealed that PDE2A expression was significantly reduced in the majority of cancer types and clinicopathological stages (I to IV) compared to normal tissues. Additionally, PDE2A expression was closely related to the prognosis of cancers such as stomach adenocarcinoma (STAD), ovarian serous cystadenocarcinoma (OV), and liver hepatocellular carcinoma (LIHC). Cox regression analyses indicated that PDE2A can act as an independent prognostic factor for these cancers. The level of PDE2A DNA methylation was significantly decreased in most cancers. Genetic alterations in PDE2A predominantly manifest in the form of amplifications. Moreover, infiltrating cells and immune checkpoint genes, including PDCD1, exhibited notable correlations with PDE2A expression. Significant associations were observed between PDE2A expression and tumor mutation burden as well as microsatellite instability. Single cell sequencing revealed PDE2A's crucial role in regulating differentiation and angiogenesis of cancer cells. Functional enrichment analysis emphasized the important role of PDE2A in synaptic transmission and tumor development. Aberrant expression of PDE2A influenced the sensitivity of various antitumor and chemotherapy drugs. This research provided a comprehensive analysis of PDE2A in human cancers, highlighting its potential as both a prognostic marker and an immunotherapy target for future research.
Collapse
Affiliation(s)
- Zhen Yu
- Nankai University Affinity the Third Central Hospital, Tianjin Third Central Hospital, Tianjin, China
| | - Yawen Song
- Nankai University Affinity the Third Central Hospital, Tianjin Third Central Hospital, Tianjin, China
| | - Jin Wang
- Nankai University Affinity the Third Central Hospital, Tianjin Third Central Hospital, Tianjin, China
- Qingpu Branch of Zhongshan Hospital Affiliated to Fudan University, Shanghai, China
| | - Yujing Wu
- Nankai University Affinity the Third Central Hospital, Tianjin Third Central Hospital, Tianjin, China
| | - Hefang Wang
- College of Chemistry, Nankai University, Tianjin, China
| | - Shuye Liu
- Nankai University Affinity the Third Central Hospital, Tianjin Third Central Hospital, Tianjin, China
| | - Yu Zhu
- Nankai University Affinity the Third Central Hospital, Tianjin Third Central Hospital, Tianjin, China
| |
Collapse
|
21
|
Katirtzoglou A, Hansen SB, Sveier H, Martin MD, Brealey JC, Limborg MT. Genomic context determines the effect of DNA methylation on gene expression in the gut epithelium of Atlantic salmon ( Salmo salar). Epigenetics 2024; 19:2392049. [PMID: 39151124 PMCID: PMC11332636 DOI: 10.1080/15592294.2024.2392049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 07/23/2024] [Accepted: 08/06/2024] [Indexed: 08/18/2024] Open
Abstract
The canonical view of DNA methylation, a pivotal epigenetic regulation mechanism in eukaryotes, dictates its role as a suppressor of gene activity, particularly within promoter regions. However, this view is being challenged as it is becoming increasingly evident that the connection between DNA methylation and gene expression varies depending on the genomic location and is therefore more complex than initially thought. We examined DNA methylation levels in the gut epithelium of Atlantic salmon (Salmo salar) using whole-genome bisulfite sequencing, which we correlated with gene expression data from RNA sequencing of the same gut tissue sample (RNA-seq). Assuming epigenetic signals might be pronounced between distinctive phenotypes, we compared large and small fish, finding 22 significant associations between 22 differentially methylated regions and 21 genes. We did not detect significant methylation differences between large and small fish. However, we observed a consistent signal of methylation levels around the transcription start sites (TSS), being negatively correlated with the expression levels of those genes. We found both negative and positive associations of methylation levels with gene expression further upstream or downstream of the TSS, revealing a more unpredictable pattern. The 21 genes showing significant methylation-expression correlations were involved in biological processes related to salmon health, such as growth and immune responses. Deciphering how DNA methylation affects the expression of such genes holds great potential for future applications. For instance, our results suggest the importance of genomic context in targeting epigenetic modifications to improve the welfare of aquaculture species like Atlantic salmon.
Collapse
Affiliation(s)
- Aikaterini Katirtzoglou
- Center for Evolutionary Hologenomics, Globe Institute, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Søren B. Hansen
- Center for Evolutionary Hologenomics, Globe Institute, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Michael D. Martin
- Department of Natural History, NTNU University Museum, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Jaelle C. Brealey
- Department of Natural History, NTNU University Museum, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
- Department of Terrestrial Biodiversity, Norwegian Institute for Nature Research (NINA), Trondheim, Norway
| | - Morten T. Limborg
- Center for Evolutionary Hologenomics, Globe Institute, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
22
|
Jia Y, Xie H, Wu S, Dong J, Ying H. Induction of FAM46C expression mediated by DNMT3A downregulation is involved in early-onset preeclampsia through gene body methylation. Cell Signal 2024; 125:111506. [PMID: 39532219 DOI: 10.1016/j.cellsig.2024.111506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 10/23/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND Aberrant methylation of genomic DNA has been found in preeclamptic placentas, which is characterized by elevated DNA methylation and hypermethylation of gene body regions, but the underlying mechanism is not yet fully understood. METHODS Global DNA methylation was assessed through ELISA and HPLC. The methylation sites were detected using the Illumina Human Methylation 450 K Microarray. The methylation level of FAM46C promoter and gene body was detected through the bisulfite sequencing. RNA-seq was utilized to investigate the mechanism by which DNMT3A and FAM46C mediate the migration and invasion of trophoblast cells. RESULTS We discovered that DNMT3A knockdown led to elevated levels of gene body methylation and FAM46C transcription. FAM46C downregulation completely rescued the suppressive effects caused by DNMT3A knockdown on the migration and invasion of trophoblast cells. Mechanistically, DNMT3A reduction led to an increase in the enrichment of DNMT3B and DNMT1 in the gene body region of FAM46C. The results of transcriptome sequencing showed that DNMT3A and FAM46C regulate the adhesion of trophoblast cells. Elevated expression of FAM46C and increased methylation levels within its gene body region were observed in extravillous trophoblast cells of early-onset preeclamptic placentas. CONCLUSIONS DNMT3A-mediated aberrant FAM46C gene body methylation is relevant to the development of early-onset preeclampsia.
Collapse
Affiliation(s)
- Yuanhui Jia
- Clinical and Translational Research Center, Department of Obstetrics, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Han Xie
- Clinical and Translational Research Center, Department of Obstetrics, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Shengyu Wu
- Clinical and Translational Research Center, Department of Obstetrics, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jiaqi Dong
- Clinical and Translational Research Center, Department of Obstetrics, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Hao Ying
- Clinical and Translational Research Center, Department of Obstetrics, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China..
| |
Collapse
|
23
|
Liu P, Jacques J, Hwang CI. Epigenetic Landscape of DNA Methylation in Pancreatic Ductal Adenocarcinoma. EPIGENOMES 2024; 8:41. [PMID: 39584964 PMCID: PMC11587027 DOI: 10.3390/epigenomes8040041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/17/2024] [Accepted: 11/01/2024] [Indexed: 11/26/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) remains one of the most lethal malignancies, characterized by its aggressive progression and dismal prognosis. Advances in epigenetic profiling, specifically DNA methylation analysis, have significantly deepened our understanding of PDAC pathogenesis. This review synthesizes findings from recent genome-wide DNA methylation studies, which have delineated a complex DNA methylation landscape differentiating between normal and cancerous pancreatic tissues, as well as across various stages and molecular subtypes of PDAC. These studies identified specific differentially methylated regions (DMRs) that not only enhance our grasp of the epigenetic drivers of PDAC but also offer potential biomarkers for early diagnosis and prognosis, enabling the customization of therapeutic approaches. The review further explores how DNA methylation profiling could facilitate the development of subtype-tailored therapies, potentially improving treatment outcomes based on precise molecular characterizations. Overall, leveraging DNA methylation alterations as functional biomarkers holds promise for advancing our understanding of disease progression and refining PDAC management strategies, which could lead to improved patient outcomes and a deeper comprehension of the disease's underlying biological mechanisms.
Collapse
Affiliation(s)
- Peiyi Liu
- Department of Microbiology and Molecular Genetics, College of Biological Sciences, University of California, Davis, Davis, CA 95616, USA; (P.L.); (J.J.)
| | - Juliette Jacques
- Department of Microbiology and Molecular Genetics, College of Biological Sciences, University of California, Davis, Davis, CA 95616, USA; (P.L.); (J.J.)
| | - Chang-Il Hwang
- Department of Microbiology and Molecular Genetics, College of Biological Sciences, University of California, Davis, Davis, CA 95616, USA; (P.L.); (J.J.)
- University of California Davis Comprehensive Cancer Center, University of California, Davis, Sacramento, CA 95817, USA
| |
Collapse
|
24
|
Zhou X, Sun D, Guo J, Lv J, Liu P, Gao B. Insights into the DNA methylation of Portunus trituberculatus in response to Vibrio parahaemolyticus infection. FISH & SHELLFISH IMMUNOLOGY 2024; 154:109983. [PMID: 39461394 DOI: 10.1016/j.fsi.2024.109983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 10/11/2024] [Accepted: 10/24/2024] [Indexed: 10/29/2024]
Abstract
Vibrio parahaemolyticus is the main pathogen causing acute hepatopancreatic necrotic disease in crustaceans. To elucidate the epigenetic regulatory mechanism of crustacean resistance to V. parahaemolyticus infection, we conducted artificial infection studies on Portunus trituberculatus. The results showed that the mortality rate reached the highest at 12 h of artificial infection, which was 23.69 %. At 72 h after V parahaemolyticus infection, the expression level of DNA demethylase (ten-eleven-translocation protein) Tet was significantly decreased, the expression of DNA methyltransferase Dnmt3B fluctuated significantly. Based on the differential expression levels of Tet and Dnmt3B. We depict for DNA methylation profiles of the whole genome of P. trituberculatus at single-base resolution by using whole-genome bisulfite sequencing (WGBS) on hemolymph tissues. The overall DNA methylation level was low at 2.16 % in P. trituberculatus hemolymph. A total of 2590 differentially methylated regions (DMRs) were identified, of which 1329 were hypermethylated and 1261 were hypomethylated, and 1389 genes were annotated in these DMRs. Differently methylated genes (DMGs) were significantly enriched in ribosomes (KO03010), protein kinases (KO01001), cell cycle (HSA04110), endocrine resistance (HSA01522) and FoxO signaling pathway (KO04068). Finally, we selected six differentially methylated genes for quantitative analysis. The results showed that DNA methylation not only has a negative regulatory effect on gene expression, but also has a positive regulatory effect. These results indicated that DNA methylation in the regulation of genes involved in immune responses contributes to the resistance of P. trituberculatus to V. parahaemolyticus, which is valuable for understanding how crustaceans regulate the innate immune system to defend against bacterial infections.
Collapse
Affiliation(s)
- Xianfa Zhou
- Shanghai Ocean University, National Experimental Teaching Demonstration Center of Fisheries Science, Shanghai, 201306, China; Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China
| | - Dongfang Sun
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China
| | - Junyang Guo
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China
| | - Jianjian Lv
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China; Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China
| | - Ping Liu
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China; Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China
| | - Baoquan Gao
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China; Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China.
| |
Collapse
|
25
|
Xu T, Shen Y, Guo R, Luo C, Niu Y, Luo Z, Zhu Z, Wu Z, Zhao X, Luo H, Gao Y. Mutual regulation between histone methyltransferase Suv39h1 and the Wnt/β-catenin signaling pathway promoted cell proliferation and inhibited apoptosis in bone marrow mesenchymal stem cells exposed to hydroquinone. Toxicology 2024; 508:153932. [PMID: 39179171 DOI: 10.1016/j.tox.2024.153932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/20/2024] [Accepted: 08/20/2024] [Indexed: 08/26/2024]
Abstract
Hydroquinone (HQ), a metabolite of benzene, is frequently utilized as a surrogate for benzene in in vitro studies and is associated with the development of acute myeloid leukemia (AML). In the hemotoxicity caused by benzene and HQ, cell apoptosis plays a key role. However, the molecular mechanisms underlying HQ are unknown. Studies have indicated that Suv39h1 is involved in regulating cell division and proliferation by regulating histone H3K9me3. Meanwhile, the Wnt/β-catenin signaling pathway also plays a significant role in cell proliferation and apoptosis. Therefore, this study was aimed at exploring the regulatory role of Suv39h1 and the Wnt/β-catenin signaling pathway in the effects of HQ on bone marrow mesenchymal stem cells (BMSCs), as well as its influence on cell proliferation and apoptosis. The results demonstrated that HQ elevated the levels of Suv39h1 and H3K9me3 and activated the Wnt/β-catenin signaling pathway by upregulating β-catenin, Wnt2b, C-myc, and Cyclin D1 and downregulating Wnt5a, resulting in an increase in cell growth and a decrease in apoptosis. Suv39h1 knockdown inhibited the Wnt/β-catenin signaling pathway. Meanwhile, inhibition of the Wnt/β-catenin signaling pathway resulted in the down-regulation of Suv39h1 and H3K9me3 in BMSCs. They both promoted cell proliferation and inhibited apoptosis in the effects of HQ on BMSCs by downregulating the expression of Cyt-C, Bax, Caspase 3, and Caspase 9 and upregulating the expression of Bcl-xl. Therefore, we concluded that Suv39h1 and the Wnt/β-catenin signaling pathway may mutually regulate each other in the effects of HQ on BMSCs in order to ameliorate the altered function of BMSCs.
Collapse
Affiliation(s)
- Tao Xu
- Shunde Women and Children's Hospital of Guangdong Medical University, School of Public Health, Key Laboratory of Environmental Medicine, Guangdong Medical University, Guangdong, China.
| | - Yilin Shen
- Shunde Women and Children's Hospital of Guangdong Medical University, School of Public Health, Key Laboratory of Environmental Medicine, Guangdong Medical University, Guangdong, China.
| | - Runmin Guo
- Shunde Women and Children's Hospital of Guangdong Medical University, School of Public Health, Key Laboratory of Environmental Medicine, Guangdong Medical University, Guangdong, China.
| | - Chiheng Luo
- Shunde Women and Children's Hospital of Guangdong Medical University, School of Public Health, Key Laboratory of Environmental Medicine, Guangdong Medical University, Guangdong, China.
| | - Yibo Niu
- Shunde Women and Children's Hospital of Guangdong Medical University, School of Public Health, Key Laboratory of Environmental Medicine, Guangdong Medical University, Guangdong, China.
| | - Zhilong Luo
- Shunde Women and Children's Hospital of Guangdong Medical University, School of Public Health, Key Laboratory of Environmental Medicine, Guangdong Medical University, Guangdong, China.
| | - Zhongxin Zhu
- Shunde Women and Children's Hospital of Guangdong Medical University, School of Public Health, Key Laboratory of Environmental Medicine, Guangdong Medical University, Guangdong, China.
| | - Zehui Wu
- Shunde Women and Children's Hospital of Guangdong Medical University, School of Public Health, Key Laboratory of Environmental Medicine, Guangdong Medical University, Guangdong, China.
| | - Xinyu Zhao
- Shunde Women and Children's Hospital of Guangdong Medical University, School of Public Health, Key Laboratory of Environmental Medicine, Guangdong Medical University, Guangdong, China.
| | - Hao Luo
- Shunde Women and Children's Hospital of Guangdong Medical University, School of Public Health, Key Laboratory of Environmental Medicine, Guangdong Medical University, Guangdong, China.
| | - Yuting Gao
- Shunde Women and Children's Hospital of Guangdong Medical University, School of Public Health, Key Laboratory of Environmental Medicine, Guangdong Medical University, Guangdong, China.
| |
Collapse
|
26
|
Xu T, Shen Y, Guo R, Luo C, Niu Y, Luo Z, Zhu Z, Wu Z, Zhao X, Luo H, Gao Y. Mutual regulation between histone methyltransferase Suv39h1 and the Wnt/β-catenin signaling pathway promoted cell proliferation and inhibited apoptosis in bone marrow mesenchymal stem cells exposed to hydroquinone. Toxicology 2024; 508:153932. [DOI: https:/doi.org/10.1016/j.tox.2024.153932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
|
27
|
Freij K, Cleveland B, Biga P. Remodeling of the epigenetic landscape in rainbow trout, Oncorhynchus mykiss, offspring in response to maternal choline intake. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2024; 52:101348. [PMID: 39515277 DOI: 10.1016/j.cbd.2024.101348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 10/25/2024] [Accepted: 10/26/2024] [Indexed: 11/16/2024]
Abstract
This project focused on evaluating the effects of maternal dietary choline intake on global DNA methylation profiles and related transcriptional changes in rainbow trout offspring. Three experimental diets were formulated to test different levels of choline intake: (a) 2065 ppm choline (Low Choline, 0 % supplementation), (b) 5657 ppm choline (Medium Choline, 0.6 % supplementation), and (c) 9248 ppm choline (High Choline, 1.2 % choline supplementation). Six rainbow trout families were fed experimental diets beginning 18 months post-hatch until spawning; their offspring were fed a commercial diet. Reduced representation bisulfite sequencing (RRBS) was utilized to measure genome-wide methylation in offspring immediately after hatching. When comparing to the Medium Choline offspring, differential DNA methylation occurred more in the Low Choline offspring than High Choline, especially in genic features like promoters. The differentially methylated CpGs (q ≤ 0.01) were identified evenly between CpG islands and shores in the genome, mostly found in the introns of genes. Genes such as fabp2 and leap2B associated with protein binding, fatty acid binding, DNA binding, and response to bacteria were differentially methylated and detected as differentially regulated genes by previous RNA-seq analysis. Although these findings indicate that levels of dietary choline available in broodstock diets alter offspring DNA methylation;, most differentially expressed genes were not associated with differential DNA methylation, suggesting additional mechanisms playing a role in regulating gene expression in response to maternal choline intake.
Collapse
Affiliation(s)
- Khalid Freij
- Department of Biology, The University of Alabama at Birmingham, Birmingham, AL 35294, USA. https://twitter.com/@FreijKhalid
| | - Beth Cleveland
- National Center for Cool and Cold Water Aquaculture, Agricultural Research Service (ARS-USDA), Kearneysville, WV 25430, USA
| | - Peggy Biga
- Department of Biology, The University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| |
Collapse
|
28
|
Xiang X, Yu D, Li Z, Fros JJ, Wei J, Liu K, Li Z, Shao D, Li B, Kortekaas J, van Oers MM, Ma Z, Pijlman GP, Qiu Y. Japanese encephalitis virus-induced DNA methylation contributes to blood-brain barrier permeability by modulating tight junction protein expression. J Neuroinflammation 2024; 21:277. [PMID: 39468601 PMCID: PMC11520778 DOI: 10.1186/s12974-024-03266-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 10/18/2024] [Indexed: 10/30/2024] Open
Abstract
Japanese encephalitis virus (JEV) is a neurotropic and neuroinvasive flavivirus causing viral encephalitis, which seriously threatens the development of animal husbandry and human health. DNA methylation is a major epigenetic modification involved in viral pathogenesis, yet how DNA methylation affects JEV infection remains unknown. Here, we show genome-wide DNA methylation profiles in the brains of JEV-infected mice compared to mock-infected mice. JEV can significantly increase the overall DNA methylation levels in JEV-infected mouse brains. A total of 14,781 differentially methylated regions associated genes (DMGs) have been identified. Subsequently, KEGG pathway analysis suggested that DNA methylation modulates the tight junction signaling pathway, which can potentially impact the permeability of the blood-brain barrier (BBB). We demonstrate that hypermethylation of the tight junction gene Afdn promoter inhibited AFDN expression and increased monolayer permeability of mouse brain microvascular endothelial (bEnd.3) cells in an in vitro transwell assay. Collectively, this study reveals that DNA methylation is increased in a murine Japanese encephalitis model and that modulation of Afdn expression promotes BBB permeability.
Collapse
Affiliation(s)
- Xiao Xiang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, CAAS, 518 Ziyue Road, Shanghai, 200241, China
- Laboratory of Virology, Wageningen University & Research, Wageningen, 6708PB, The Netherlands
| | - Du Yu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, CAAS, 518 Ziyue Road, Shanghai, 200241, China
| | - Zhuangzhuang Li
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, CAAS, 518 Ziyue Road, Shanghai, 200241, China
| | - Jelke J Fros
- Laboratory of Virology, Wageningen University & Research, Wageningen, 6708PB, The Netherlands
| | - Jianchao Wei
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, CAAS, 518 Ziyue Road, Shanghai, 200241, China
| | - Ke Liu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, CAAS, 518 Ziyue Road, Shanghai, 200241, China
| | - Zongjie Li
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, CAAS, 518 Ziyue Road, Shanghai, 200241, China
| | - Donghua Shao
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, CAAS, 518 Ziyue Road, Shanghai, 200241, China
| | - Beibei Li
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, CAAS, 518 Ziyue Road, Shanghai, 200241, China
| | - Jeroen Kortekaas
- Laboratory of Virology, Wageningen University & Research, Wageningen, 6708PB, The Netherlands
| | - Monique M van Oers
- Laboratory of Virology, Wageningen University & Research, Wageningen, 6708PB, The Netherlands
| | - Zhiyong Ma
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, CAAS, 518 Ziyue Road, Shanghai, 200241, China
| | - Gorben P Pijlman
- Laboratory of Virology, Wageningen University & Research, Wageningen, 6708PB, The Netherlands.
| | - Yafeng Qiu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, CAAS, 518 Ziyue Road, Shanghai, 200241, China.
| |
Collapse
|
29
|
Yu X, Zhang H, Zhang H, Hou C, Wang X, Gu P, Han Y, Yang Z, Zou W. The role of epigenetic methylations in thyroid Cancer. World J Surg Oncol 2024; 22:281. [PMID: 39456011 PMCID: PMC11515417 DOI: 10.1186/s12957-024-03568-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 10/19/2024] [Indexed: 10/28/2024] Open
Abstract
Thyroid cancer (TC) represents one of the most prevalent endocrine malignancies, with a rising incidence worldwide. Epigenetic alterations, which modify gene expression without altering the underlying DNA sequence, have garnered significant attention in recent years. Increasing evidence underscores the pivotal role of epigenetic modifications, including DNA methylation, RNA methylation, and histone methylation, in the pathogenesis of TC. This review provides a comprehensive overview of these reversible and environmentally influenced epigenetic modifications, highlighting their molecular mechanisms and functional roles in TC. Additionally, the clinical implications, challenges associated with studying these epigenetic modifications, and potential future research directions are explored.
Collapse
Affiliation(s)
- Xiaojie Yu
- Department of Thyroid Surgery, Binzhou Medical University Hospital, Binzhou, Shandong, 256603, P.R. China
| | - Hao Zhang
- Department of Thyroid Surgery, Binzhou Medical University Hospital, Binzhou, Shandong, 256603, P.R. China
| | - Haojie Zhang
- Department of Thyroid Surgery, Binzhou Medical University Hospital, Binzhou, Shandong, 256603, P.R. China
| | - Changran Hou
- Department of Thyroid Surgery, Binzhou Medical University Hospital, Binzhou, Shandong, 256603, P.R. China
| | - Xiaohong Wang
- Department of Breast Surgery, Binzhou Medical University Hospital, Binzhou, Shandong, 256603, P.R. China
| | - Pengfei Gu
- Department of Thyroid Surgery, Binzhou Medical University Hospital, Binzhou, Shandong, 256603, P.R. China
| | - Yong Han
- Department of Thyroid Surgery, Binzhou Medical University Hospital, Binzhou, Shandong, 256603, P.R. China.
| | - Zhenlin Yang
- Department of Thyroid Surgery, Binzhou Medical University Hospital, Binzhou, Shandong, 256603, P.R. China.
| | - Weiwei Zou
- Department of Thyroid Surgery, Binzhou Medical University Hospital, Binzhou, Shandong, 256603, P.R. China.
| |
Collapse
|
30
|
An J, Han M, Tang H, Peng C, Huang W, Peng F. Blestriarene C exerts an inhibitory effect on triple-negative breast cancer through multiple signaling pathways. Front Pharmacol 2024; 15:1434812. [PMID: 39502536 PMCID: PMC11534688 DOI: 10.3389/fphar.2024.1434812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Accepted: 09/23/2024] [Indexed: 11/08/2024] Open
Abstract
Introduction Breast cancer is the most common cancer worldwide, the leading cause of cancer death in women, and the fifth leading cause of cancer death. Triple negative breast cancer (TNBC), with high metastasis and mortality rates, is the most challenging subtype in breast cancer treatment. There is an urgent need to develop anti-TNBC drugs with significant efficacy, low side effects and good availability. In early drug screening, blestriarene C was found to have inhibitory effects on TNBC cells. In this article, we further explore the mechanisms associated with blestriarene C for breast cancer. Methods In this article, we take the approach of network pharmacology combined with in vivo and in vitro experiments. Network pharmacology analysis was used to predict the active components in Baiji, and to investigate the hub targets and related mechanisms of BC in TNBC treatment. The mechanism of anti-TNBC in vitro was evaluated by CCK-8 assay, cell apoptosis and cell cycle assays, wound healing assay, WB assay, and molecular docking analysis. The inhibition effect in vivo was test in subcutaneous tumor models established in mice. Results Through network pharmacology analysis and experiments, we screened out BC as the main active ingredient, and found that BC could inhibit the Ras/ERK/c-Fos signaling pathway while downregulating the expression of HSP90AA1 and upregulating the expression of PTGS2, thereby promoting apoptosis, causing S-phase cycle arrest, and inhibiting the proliferation and migration of BT549 cells. The in vivo results illustrated that BC inhibited the growth of TNBC tumors and has a high safety profile. By integrating network pharmacology with in vitro and in vivo experiments, this study demonstrated that BC inhibited the proliferation and migration of TNBC cells by inhibiting the Ras/ERK/c-Fos signaling pathway, promoting apoptosis, and causing S-phase cycle arrest. Discussion This study provides new evidence for the use of BC as a novel drug for TNBC treatment.
Collapse
Affiliation(s)
- Junsha An
- West China School of Pharmacy, Sichuan University, Chengdu, China
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Mingyu Han
- West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Hailin Tang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wei Huang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Fu Peng
- West China School of Pharmacy, Sichuan University, Chengdu, China
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, Sichuan University, Chengdu, China
| |
Collapse
|
31
|
Roza M, Eriksson ANM, Svanholm S, Berg C, Karlsson O. Pesticide-induced transgenerational alterations of genome-wide DNA methylation patterns in the pancreas of Xenopus tropicalis correlate with metabolic phenotypes. JOURNAL OF HAZARDOUS MATERIALS 2024; 478:135455. [PMID: 39154485 DOI: 10.1016/j.jhazmat.2024.135455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/23/2024] [Accepted: 08/06/2024] [Indexed: 08/20/2024]
Abstract
The unsustainable use of manmade chemicals poses significant threats to biodiversity and human health. Emerging evidence highlights the potential of certain chemicals to cause transgenerational impacts on metabolic health. Here, we investigate male transmitted epigenetic transgenerational effects of the anti-androgenic herbicide linuron in the pancreas of Xenopus tropicalis frogs, and their association with metabolic phenotypes. Reduced representation bisulfite sequencing (RRBS) was used to assess genome-wide DNA methylation patterns in the pancreas of adult male F2 generation ancestrally exposed to environmentally relevant linuron levels (44 ± 4.7 μg/L). We identified 1117 differentially methylated regions (DMRs) distributed across the X. tropicalis genome, revealing potential regulatory mechanisms underlying metabolic disturbances. DMRs were identified in genes crucial for pancreatic function, including calcium signalling (clstn2, cacna1d and cadps2), genes associated with type 2 diabetes (tcf7l2 and adcy5) and a biomarker for pancreatic ductal adenocarcinoma (plec). Correlation analysis revealed associations between DNA methylation levels in these genes and metabolic phenotypes, indicating epigenetic regulation of glucose metabolism. Moreover, differential methylation in genes related to histone modifications suggests alterations in the epigenetic machinery. These findings underscore the long-term consequences of environmental contamination on pancreatic function and raise concerns about the health risks associated with transgenerational effects of pesticides.
Collapse
Affiliation(s)
- Mauricio Roza
- Science for Life Laboratory, Department of Environmental Science, Stockholm University, Stockholm, Sweden
| | | | - Sofie Svanholm
- Department of Environmental Toxicology, Uppsala University, Uppsala, Sweden
| | - Cecilia Berg
- Department of Environmental Toxicology, Uppsala University, Uppsala, Sweden
| | - Oskar Karlsson
- Science for Life Laboratory, Department of Environmental Science, Stockholm University, Stockholm, Sweden.
| |
Collapse
|
32
|
Hilton BJ, Griffin JM, Fawcett JW, Bradke F. Neuronal maturation and axon regeneration: unfixing circuitry to enable repair. Nat Rev Neurosci 2024; 25:649-667. [PMID: 39164450 DOI: 10.1038/s41583-024-00849-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/19/2024] [Indexed: 08/22/2024]
Abstract
Mammalian neurons lose the ability to regenerate their central nervous system axons as they mature during embryonic or early postnatal development. Neuronal maturation requires a transformation from a situation in which neuronal components grow and assemble to one in which these components are fixed and involved in the machinery for effective information transmission and computation. To regenerate after injury, neurons need to overcome this fixed state to reactivate their growth programme. A variety of intracellular processes involved in initiating or sustaining neuronal maturation, including the regulation of gene expression, cytoskeletal restructuring and shifts in intracellular trafficking, have been shown to prevent axon regeneration. Understanding these processes will contribute to the identification of targets to promote repair after injury or disease.
Collapse
Affiliation(s)
- Brett J Hilton
- Department of Cellular and Physiological Sciences, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada.
- International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, British Columbia, Canada.
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada.
| | - Jarred M Griffin
- Laboratory for Axonal Growth and Regeneration, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - James W Fawcett
- Department of Clinical Neurosciences, John van Geest Centre for Brain Repair, University of Cambridge, Cambridge, UK.
- Centre for Reconstructive Neuroscience, Institute for Experimental Medicine Czech Academy of Science (CAS), Prague, Czechia.
| | - Frank Bradke
- Laboratory for Axonal Growth and Regeneration, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany.
| |
Collapse
|
33
|
Fei Y, Cao D, Dong R, Li Y, Wang Z, Gao P, Zhu M, Wang X, Zuo X, Cai J. The cuproptosis-related gene UBE2D2 functions as an immunotherapeutic and prognostic biomarker in pan-cancer. Clin Transl Oncol 2024; 26:2718-2737. [PMID: 38703335 DOI: 10.1007/s12094-024-03495-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 04/04/2024] [Indexed: 05/06/2024]
Abstract
BACKGROUND Cuproptosis, as a unique modality of regulated cell death, requires the involvement of ubiquitin-binding enzyme UBE2D2. However, the prognostic and immunotherapeutic values of UBE2D2 in pan-cancer remain largely unknown. METHODS Using UCSC Xena, TIMER, Clinical Proteomic Tumor Analysis Consortium (CPTAC), and Human Protein Atlas (HPA) databases, we aimed to explore the differential expression pattern of UBE2D2 across multiple cancer types and to evaluate its association with patient prognosis, clinical features, and genetic variations. The association between UBE2D2 and immunotherapy response was assessed by gene set enrichment analysis, tumor microenvironment, immune gene co-expression and drug half maximal inhibitory concentration (IC50) analysis. RESULTS The mRNA and protein levels of UBE2D2 were markedly elevated in most cancer types, and UBE2D2 exhibited prognostic significance in liver hepatocellular carcinoma (LIHC), kidney chromophobe (KICH), uveal melanomas (UVM), cervical squamous cell carcinoma and endocervical adenocarcinoma (CESC), and kidney renal papillary cell carcinoma (KIRP). UBE2D2 expression was correlated with clinical features, tumor mutation burden, microsatellite instability, and anti-tumor drug resistance in several tumor types. Gene enrichment analysis showed that UBE2D2 was significantly associated with immune-related pathways. The expression level of UBE2D2 was correlated with immune cell infiltration, including CD4 + T cells、Macrophages M2、CD8 + T cells in pan-cancer. PDCD1, CD274 and CTLA4 expression levels were positively correlated with UBE2D2 level in multiple cancers. CONCLUSIONS We comprehensively investigated the potential value of UBE2D2 as a prognostic and immunotherapeutic predictor for pan-cancer, providing a novel insight for cancer immunotherapy.
Collapse
Affiliation(s)
- Yao Fei
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Yijishan Hospital of Wannan Medical College, Wuhu, China
| | - Danping Cao
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Yijishan Hospital of Wannan Medical College, Wuhu, China
| | - Runyu Dong
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Yijishan Hospital of Wannan Medical College, Wuhu, China
| | - Yanna Li
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Yijishan Hospital of Wannan Medical College, Wuhu, China
| | - Zhixiong Wang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Yijishan Hospital of Wannan Medical College, Wuhu, China
| | - Peng Gao
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Yijishan Hospital of Wannan Medical College, Wuhu, China
| | - Menglin Zhu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Yijishan Hospital of Wannan Medical College, Wuhu, China
| | - Xiaoming Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, Yijishan Hospital of Wannan Medical College, Wuhu, China
| | - Xueliang Zuo
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Yijishan Hospital of Wannan Medical College, Wuhu, China.
- Anhui Province Key Laboratory of Non-Coding RNA Basic and Clinical Transformation, Wannan Medical College, Wuhu, China.
| | - Juan Cai
- Anhui Province Key Laboratory of Non-Coding RNA Basic and Clinical Transformation, Wannan Medical College, Wuhu, China.
- Department of Oncology, The First Affiliated Hospital, Yijishan Hospital of Wannan Medical College, Wuhu, China.
| |
Collapse
|
34
|
Li L, Chen R, Zhang H, Li J, Huang H, Weng J, Tan H, Guo T, Wang M, Xie J. The epigenetic modification of DNA methylation in neurological diseases. Front Immunol 2024; 15:1401962. [PMID: 39376563 PMCID: PMC11456496 DOI: 10.3389/fimmu.2024.1401962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 09/03/2024] [Indexed: 10/09/2024] Open
Abstract
Methylation, a key epigenetic modification, is essential for regulating gene expression and protein function without altering the DNA sequence, contributing to various biological processes, including gene transcription, embryonic development, and cellular functions. Methylation encompasses DNA methylation, RNA methylation and histone modification. Recent research indicates that DNA methylation is vital for establishing and maintaining normal brain functions by modulating the high-order structure of DNA. Alterations in the patterns of DNA methylation can exert significant impacts on both gene expression and cellular function, playing a role in the development of numerous diseases, such as neurological disorders, cardiovascular diseases as well as cancer. Our current understanding of the etiology of neurological diseases emphasizes a multifaceted process that includes neurodegenerative, neuroinflammatory, and neurovascular events. Epigenetic modifications, especially DNA methylation, are fundamental in the control of gene expression and are critical in the onset and progression of neurological disorders. Furthermore, we comprehensively overview the role and mechanism of DNA methylation in in various biological processes and gene regulation in neurological diseases. Understanding the mechanisms and dynamics of DNA methylation in neural development can provide valuable insights into human biology and potentially lead to novel therapies for various neurological diseases.
Collapse
Affiliation(s)
- Linke Li
- The Center of Obesity and Metabolic Diseases, Department of General Surgery, The Third People’s Hospital of Chengdu and The Affiliated Hospital of Southwest Jiaotong University, Chengdu, China
- College of Medicine, Southwest Jiaotong University, Chengdu, China
| | - Rui Chen
- The Center of Obesity and Metabolic Diseases, Department of General Surgery, The Third People’s Hospital of Chengdu and The Affiliated Hospital of Southwest Jiaotong University, Chengdu, China
- College of Medicine, Southwest Jiaotong University, Chengdu, China
- Department of Stomatology, The Third People’s Hospital of Chengdu and The Affiliated Hospital of Southwest Jiaotong University, Chengdu, China
| | - Hui Zhang
- Department of Stomatology, The Third People’s Hospital of Chengdu and The Affiliated Hospital of Southwest Jiaotong University, Chengdu, China
- College of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, China
| | - Jinsheng Li
- College of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, China
| | - Hao Huang
- College of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, China
| | - Jie Weng
- College of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, China
| | - Huan Tan
- College of Medicine, Southwest Jiaotong University, Chengdu, China
| | - Tailin Guo
- College of Medicine, Southwest Jiaotong University, Chengdu, China
| | - Mengyuan Wang
- The Center of Obesity and Metabolic Diseases, Department of General Surgery, The Third People’s Hospital of Chengdu and The Affiliated Hospital of Southwest Jiaotong University, Chengdu, China
- College of Medicine, Southwest Jiaotong University, Chengdu, China
- Department of Stomatology, The Third People’s Hospital of Chengdu and The Affiliated Hospital of Southwest Jiaotong University, Chengdu, China
| | - Jiang Xie
- Key Laboratory of Drug Targeting and Drug Delivery of Ministry of Education (MOE), Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, West China Second University Hospital, West China School of Pharmacy, Sichuan University, Chengdu, China
- Department of Pediatrics, Chengdu Third People’s Hospital, Chengdu, China
| |
Collapse
|
35
|
Wang J, Ying L, Xiong H, Zhou DR, Wang YX, Che HL, Zhong ZF, Wu GS, Ge YJ. Comprehensive analysis of stearoyl-coenzyme A desaturase in prostate adenocarcinoma: insights into gene expression, immune microenvironment and tumor progression. Front Immunol 2024; 15:1460915. [PMID: 39351232 PMCID: PMC11439642 DOI: 10.3389/fimmu.2024.1460915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Accepted: 08/28/2024] [Indexed: 10/04/2024] Open
Abstract
Prostate adenocarcinoma (PRAD) is a prevalent global malignancy which depends more on lipid metabolism for tumor progression compared to other cancer types. Although Stearoyl-coenzyme A desaturase (SCD) is documented to regulate lipid metabolism in multiple cancers, landscape analysis of its implications in PRAD are still missing at present. Here, we conducted an analysis of diverse cancer datasets revealing elevated SCD expression in the PRAD cohort at both mRNA and protein levels. Interestingly, the elevated expression was associated with SCD promoter hypermethylation and genetic alterations, notably the L134V mutation. Integration of comprehensive tumor immunological and genomic data revealed a robust positive correlation between SCD expression levels and the abundance of CD8+ T cells and macrophages. Further analyses identified significant associations between SCD expression and various immune markers in tumor microenvironment. Single-cell transcriptomic profiling unveiled differential SCD expression patterns across distinct cell types within the prostate tumor microenvironment. The Gene Ontology and Kyoto Encyclopedia of Genes and Genome analyses showed that SCD enriched pathways were primarily related to lipid biosynthesis, cholesterol biosynthesis, endoplasmic reticulum membrane functions, and various metabolic pathways. Gene Set Enrichment Analysis highlighted the involvement of elevated SCD expression in crucial cellular processes, including the cell cycle and biosynthesis of cofactors pathways. In functional studies, SCD overexpression promoted the proliferation, metastasis and invasion of prostate cancer cells, whereas downregulation inhibits these processes. This study provides comprehensive insights into the multifaceted roles of SCD in PRAD pathogenesis, underscoring its potential as both a therapeutic target and prognostic biomarker.
Collapse
Affiliation(s)
- Jie Wang
- MOE Medical Basic Research Innovation Center for Gut Microbiota and Chronic Diseases,
Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Liang Ying
- MOE Medical Basic Research Innovation Center for Gut Microbiota and Chronic Diseases,
Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - He Xiong
- MOE Medical Basic Research Innovation Center for Gut Microbiota and Chronic Diseases,
Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Duan-Rui Zhou
- MOE Medical Basic Research Innovation Center for Gut Microbiota and Chronic Diseases,
Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Yi-Xuan Wang
- MOE Medical Basic Research Innovation Center for Gut Microbiota and Chronic Diseases,
Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Hui-Lian Che
- MOE Medical Basic Research Innovation Center for Gut Microbiota and Chronic Diseases,
Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Zhang-Feng Zhong
- Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, Macao SAR, China
| | - Guo-Sheng Wu
- MOE Medical Basic Research Innovation Center for Gut Microbiota and Chronic Diseases,
Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Yun-Jun Ge
- MOE Medical Basic Research Innovation Center for Gut Microbiota and Chronic Diseases,
Wuxi School of Medicine, Jiangnan University, Wuxi, China
| |
Collapse
|
36
|
Zhang X, Chen X. Study on the prediction model of liver cancer based on chronic liver disease and the related molecular mechanism. Ann Hepatol 2024; 30:101572. [PMID: 39278407 DOI: 10.1016/j.aohep.2024.101572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/13/2024] [Accepted: 08/02/2024] [Indexed: 09/18/2024]
Abstract
INTRODUCTION AND OBJECTIVE Due to the high heterogeneity of HCC, which leads to poor prognostic outcomes for patients, there is a need to develop a novel predictive model for accurate classification of HCC in order to improve patient survival rates. MATERIALS AND METHODS The data of the HCV, cirrhosis, and HCC were obtained from TCGA and GEO databases. Multivariable Cox regression analysis and survival analysis was conducted to assess the prognostic relevance of these differentially expressed genes. Single-cell sequencing was used to explore the intercellular interaction patterns and identify relevant signaling pathways. Drug sensitivity analysis was conducted to determine personalized treatment strategies for patients. RESULTS In this study, we conducted integrated analysis of hepatitis, cirrhosis, and hepatocellular carcinoma datasets and identified 10 liver disease progression genes associated with prognosis. These genes exhibited significant downregulation in expression as the disease advanced, suggesting their crucial involvement in HCC development. By performing multivariable Cox analysis, we established a prognostic model for liver disease progression to predict the prognosis of HCC patients. The model was validated using ROC analysis, demonstrating good accuracy and stability in prognostic evaluation. Single-cell sequencing analysis revealed that these genes primarily exert their effects through the MIF signaling pathway during HCC progression. Furthermore, we observed that patients in the low-risk group exhibited higher sensitivity to TACE treatment, while patients in the high-risk group showed better response to sorafenib treatment. CONCLUSIONS In summary, we have elucidated the key genes involved in the progression of liver diseases and established a precise prognostic model for assessing the prognosis of HCC patients. Our study provides novel insights and strategies for the treatment of HCC.
Collapse
Affiliation(s)
- Xiaojing Zhang
- Shanghai Licheng Bio-Technique Co. Ltd., Baoshan, Shanghai 201900, P.R. China
| | - Xinye Chen
- Shanghai Licheng Bio-Technique Co. Ltd., Baoshan, Shanghai 201900, P.R. China.
| |
Collapse
|
37
|
Nuechterlein N, Cimino S, Shelbourn A, Ha V, Arora S, Rajan S, Shapiro LG, Holland EC, Aldape K, McGranahan T, Gilbert MR, Cimino PJ. HOXD12 defines an age-related aggressive subtype of oligodendroglioma. Acta Neuropathol 2024; 148:41. [PMID: 39259414 PMCID: PMC11390787 DOI: 10.1007/s00401-024-02802-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/10/2024] [Accepted: 09/08/2024] [Indexed: 09/13/2024]
Abstract
Oligodendroglioma, IDH-mutant and 1p/19q-codeleted has highly variable outcomes that are strongly influenced by patient age. The distribution of oligodendroglioma age is non-Gaussian and reportedly bimodal, which motivated our investigation of age-associated molecular alterations that may drive poorer outcomes. We found that elevated HOXD12 expression was associated with both older patient age and shorter survival in the TCGA (FDR < 0.01, FDR = 1e-5) and the CGGA (p = 0.03, p < 1e-3). HOXD12 gene body hypermethylation was associated with older age, higher WHO grade, and shorter survival in the TCGA (p < 1e-6, p < 0.001, p < 1e-3) and with older age and higher WHO grade in Capper et al. (p < 0.002, p = 0.014). In the TCGA, HOXD12 gene body hypermethylation and elevated expression were independently prognostic of NOTCH1 and PIK3CA mutations, loss of 15q, MYC activation, and standard histopathological features. Single-nucleus RNA and ATAC sequencing data showed that HOXD12 activity was elevated in neoplastic tissue, particularly within cycling and OPC-like cells, and was associated with a stem-like phenotype. A pan-HOX DNA methylation analysis revealed an age and survival-associated HOX-high signature that was tightly associated with HOXD12 gene body methylation. Overall, HOXD12 expression and gene body hypermethylation were associated with an older, atypically aggressive subtype of oligodendroglioma.
Collapse
Affiliation(s)
- Nicholas Nuechterlein
- Neuropathology Unit, Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, 10 Center Drive, Building 10/3D17, Bethesda, MD, 20892, USA
| | - Sadie Cimino
- School of Interdisciplinary Arts and Sciences, University of Washington, Bothell, WA, USA
| | - Allison Shelbourn
- Neuropathology Unit, Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, 10 Center Drive, Building 10/3D17, Bethesda, MD, 20892, USA
| | - Vinny Ha
- Neuropathology Unit, Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, 10 Center Drive, Building 10/3D17, Bethesda, MD, 20892, USA
| | - Sonali Arora
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Sharika Rajan
- Laboratory of Pathology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Linda G Shapiro
- Paul G. Allen School of Computer Science and Engineering, University of Washington, Seattle, WA, USA
| | - Eric C Holland
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Kenneth Aldape
- Laboratory of Pathology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Tresa McGranahan
- Division of Hematology and Oncology, Scripps Cancer Center, La Jolla, CA, USA
| | - Mark R Gilbert
- Neuro-Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Patrick J Cimino
- Neuropathology Unit, Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, 10 Center Drive, Building 10/3D17, Bethesda, MD, 20892, USA.
| |
Collapse
|
38
|
Zhang D, Li L, Ma F. Integrative analyses identified gap junction beta-2 as a prognostic biomarker and therapeutic target for breast cancer. CANCER INNOVATION 2024; 3:e128. [PMID: 38948248 PMCID: PMC11212300 DOI: 10.1002/cai2.128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 12/17/2023] [Accepted: 02/01/2024] [Indexed: 07/02/2024]
Abstract
Background Increasing evidence has shown that connexins are involved in the regulation of tumor development, immune escape, and drug resistance. This study investigated the gene expression patterns, prognostic values, and potential mechanisms of connexins in breast cancer. Methods We conducted a comprehensive analysis of connexins using public gene and protein expression databases and clinical samples from our institution. Connexin mRNA expressions in breast cancer and matched normal tissues were compared, and multiomics studies were performed. Results Gap junction beta-2 mRNA was overexpressed in breast cancers of different pathological types and molecular subtypes, and its high expression was associated with poor prognosis. The tumor membrane of the gap junction beta-2 mutated group was positive, and the corresponding protein was expressed. Somatic mutation and copy number variation of gap junction beta-2 are rare in breast cancer. The gap junction beta-2 transcription level in the p110α subunit of the phosphoinositide 3-kinase mutant subgroup was higher than that in the wild-type subgroup. Gap junction beta-2 was associated with the phosphoinositide 3-kinase-Akt signaling pathway, extracellular matrix-receptor interaction, focal adhesion, and proteoglycans in cancer. Furthermore, gap junction beta-2 overexpression may be associated with phosphoinositide 3-kinase and histone deacetylase inhibitor resistance, and its expression level correlated with infiltrating CD8+ T cells, macrophages, neutrophils, and dendritic cells. Conclusions Gap junction beta-2 may be a promising therapeutic target for targeted therapy and immunotherapy and may be used to predict breast cancer prognosis.
Collapse
Affiliation(s)
- Di Zhang
- Department of Medical OncologyQilu Hospital of Shandong UniversityJinanChina
- Department of Medical OncologyQilu Hospital, Cheeloo College of MedicineShandong UniversityJinanChina
- Department of Medical OncologyNational Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Lixi Li
- Department of Medical OncologyNational Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Fei Ma
- Department of Medical OncologyNational Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| |
Collapse
|
39
|
Wang J, Yang M, Ali O, Dragland JS, Bjørås M, Farkas L. Predicting regulatory mutations and their target genes by new computational integrative analysis: A study of follicular lymphoma. Comput Biol Med 2024; 178:108787. [PMID: 38901187 DOI: 10.1016/j.compbiomed.2024.108787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 06/12/2024] [Accepted: 06/16/2024] [Indexed: 06/22/2024]
Abstract
Mutations in DNA regulatory regions are increasingly being recognized as important drivers of cancer and other complex diseases. These mutations can regulate gene expression by affecting DNA-protein binding and epigenetic profiles, such as DNA methylation in genome regulatory elements. However, identifying mutation hotspots associated with expression regulation and disease progression in non-coding DNA remains a challenge. Unlike most existing approaches that assign a mutation score to individual single nucleotide polymorphisms (SNP), a mutation block (MB)-based approach was introduced in this study to assess the collective impact of a cluster of SNPs on transcription factor-DNA binding affinity, differential gene expression (DEG), and nearby DNA methylation. Moreover, the long-distance target genes of functional MBs were identified using a new permutation-based algorithm that assessed the significance of correlations between DNA methylation at regulatory regions and target gene expression. Two new Python packages were developed. The Differential Methylation Region (DMR-analysis) analysis tool was used to detect DMR and map them to regulatory elements. The second tool, an integrated DMR, DEG, and SNP analysis tool (DDS-analysis), was used to combine the omics data to identify functional MBs and long-distance target genes. Both tools were validated in follicular lymphoma (FL) cohorts, where not only known functional MBs and their target genes (BCL2 and BCL6) were recovered, but also novel genes were found, including CDCA4 and JAG2, which may be associated with FL development. These genes are linked to target gene expression and are significantly correlated with the methylation of nearby DNA sequences in FL. The proposed computational integrative analysis of multiomics data holds promise for identifying regulatory mutations in cancer and other complex diseases.
Collapse
Affiliation(s)
- Junbai Wang
- Department of Clinical Molecular Biology (EpiGen), Akershus University Hospital and University of Oslo, Lørenskog, Norway; Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Campus AHUS/Oslo, Norway.
| | - Mingyi Yang
- Department of Microbiology, Oslo University Hospital, Oslo, Norway; Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway; Centre for Embryology and Healthy Development (CRESCO), University of Oslo, Oslo, 0373, Norway
| | - Omer Ali
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Campus AHUS/Oslo, Norway; Department of Pathology, Oslo University Hospital - Norwegian Radium Hospital, Oslo, Norway
| | - Jenny Sofie Dragland
- Department of Pathology, Oslo University Hospital - Norwegian Radium Hospital, Oslo, Norway
| | - Magnar Bjørås
- Department of Microbiology, Oslo University Hospital, Oslo, Norway; Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway; Centre for Embryology and Healthy Development (CRESCO), University of Oslo, Oslo, 0373, Norway
| | - Lorant Farkas
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Campus AHUS/Oslo, Norway; Department of Pathology, Oslo University Hospital - Norwegian Radium Hospital, Oslo, Norway
| |
Collapse
|
40
|
Habibi E, Miller MR, Schreier A, Campbell MA, Hung TC, Gille D, Baerwald M, Finger AJ. Single generation epigenetic change in captivity and reinforcement in subsequent generations in a delta smelt (Hypomesus transpacificus) conservation hatchery. Mol Ecol 2024; 33:e17449. [PMID: 38967124 DOI: 10.1111/mec.17449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 05/24/2024] [Accepted: 06/14/2024] [Indexed: 07/06/2024]
Abstract
A refugial population of the endangered delta smelt (Hypomesus transpacificus) has been maintained at the Fish Conservation and Culture Laboratory (FCCL) at UC Davis since 2008. Despite intense genetic management, fitness differences between wild and cultured fish have been observed at the FCCL. To investigate the molecular underpinnings of hatchery domestication, we used whole-genome bisulfite sequencing to quantify epigenetic differences between wild and hatchery-origin delta smelt. Differentially methylated regions (DMRs) were identified from 104 individuals by comparing the methylation patterns in different generations of hatchery fish (G1, G2, G3) with their wild parents (G0). We discovered a total of 132 significant DMRs (p < .05) between G0 and G1, 132 significant DMRs between G0 and G2, and 201 significant DMRs between G0 and G3. Our results demonstrate substantial differences in methylation patterns emerged between the wild and hatchery-reared fish in the early generations in the hatchery, with a higher proportion of hypermethylated DMRs in hatchery-reared fish. The rearing environment was found to be a stronger predictor of individual clustering based on methylation patterns than family, sex or generation. Our study indicates a reinforcement of the epigenetic status with successive generations in the hatchery environment, as evidenced by an increase in methylation in hypermethylated DMRs and a decrease in methylation in hypomethylated DMRs over time. Lastly, our results demonstrated heterogeneity in inherited methylation pattern in families across generations. These insights highlight the long-term consequences of hatchery practices on the epigenetic landscape, potentially impacting wild fish populations.
Collapse
Affiliation(s)
- Ensieh Habibi
- Department of Animal Science, University of California Davis, Davis, California, USA
| | - Michael R Miller
- Department of Animal Science, University of California Davis, Davis, California, USA
| | - Andrea Schreier
- Department of Animal Science, University of California Davis, Davis, California, USA
| | - Matthew A Campbell
- Department of Animal Science, University of California Davis, Davis, California, USA
| | - Tien-Chieh Hung
- Fish Conservation and Culture Laboratory, Biological and Agricultural Engineering Department, University of California Davis, Davis, California, USA
| | - Daphne Gille
- California Department of Water Resources, Division of Integrated Science and Engineering, West Sacramento, California, USA
| | - Melinda Baerwald
- California Department of Water Resources, Division of Integrated Science and Engineering, West Sacramento, California, USA
| | - Amanda J Finger
- Department of Animal Science, University of California Davis, Davis, California, USA
| |
Collapse
|
41
|
Liu X, Shi J, Jiao Y, An J, Tian J, Yang Y, Zhuo L. Integrated multi-omics with machine learning to uncover the intricacies of kidney disease. Brief Bioinform 2024; 25:bbae364. [PMID: 39082652 PMCID: PMC11289682 DOI: 10.1093/bib/bbae364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 06/20/2024] [Accepted: 07/17/2024] [Indexed: 08/03/2024] Open
Abstract
The development of omics technologies has driven a profound expansion in the scale of biological data and the increased complexity in internal dimensions, prompting the utilization of machine learning (ML) as a powerful toolkit for extracting knowledge and understanding underlying biological patterns. Kidney disease represents one of the major growing global health threats with intricate pathogenic mechanisms and a lack of precise molecular pathology-based therapeutic modalities. Accordingly, there is a need for advanced high-throughput approaches to capture implicit molecular features and complement current experiments and statistics. This review aims to delineate strategies for integrating multi-omics data with appropriate ML methods, highlighting key clinical translational scenarios, including predicting disease progression risks to improve medical decision-making, comprehensively understanding disease molecular mechanisms, and practical applications of image recognition in renal digital pathology. Examining the benefits and challenges of current integration efforts is expected to shed light on the complexity of kidney disease and advance clinical practice.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Li Zhuo
- Corresponding author. Department of Nephrology, China-Japan Friendship Hospital, Beijing 100029, China; China-Japan Friendship Clinic Medical College, Beijing University of Chinese Medicine, 100029 Beijing, China. E-mail:
| |
Collapse
|
42
|
Kramer M, Goodwin S, Wappel R, Borio M, Offit K, Feldman DR, Stadler ZK, McCombie WR. Exploring the genetic and epigenetic underpinnings of early-onset cancers: Variant prioritization for long read whole genome sequencing from family cancer pedigrees. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.27.601096. [PMID: 39005350 PMCID: PMC11244929 DOI: 10.1101/2024.06.27.601096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Despite significant advances in our understanding of genetic cancer susceptibility, known inherited cancer predisposition syndromes explain at most 20% of early-onset cancers. As early-onset cancer prevalence continues to increase, the need to assess previously inaccessible areas of the human genome, harnessing a trio or quad family-based architecture for variant filtration, may reveal further insights into cancer susceptibility. To assess a broader spectrum of variation than can be ascertained by multi-gene panel sequencing, or even whole genome sequencing with short reads, we employed long read whole genome sequencing using an Oxford Nanopore Technology (ONT) PromethION of 3 families containing an early-onset cancer proband using a trio or quad family architecture. Analysis included 2 early-onset colorectal cancer family trios and one quad consisting of two siblings with testicular cancer, all with unaffected parents. Structural variants (SVs), epigenetic profiles and single nucleotide variants (SNVs) were determined for each individual, and a filtering strategy was employed to refine and prioritize candidate variants based on the family architecture. The family architecture enabled us to focus on inapposite variants while filtering variants shared with the unaffected parents, significantly decreasing background variation that can hamper identification of potentially disease causing differences. Candidate d e novo and compound heterozygous variants were identified in this way. Gene expression, in matched neoplastic and pre-neoplastic lesions, was assessed for one trio. Our study demonstrates the feasibility of a streamlined analysis of genomic variants from long read ONT whole genome sequencing and a way to prioritize key variants for further evaluation of pathogenicity, while revealing what may be missing from panel based analyses.
Collapse
|
43
|
Bhargavan B, Chhunchha B, Kubo E, Singh DP. DNA methylation as an epigenetic mechanism in the regulation of LEDGF expression and biological response in aging and oxidative stress. Cell Death Discov 2024; 10:296. [PMID: 38909054 PMCID: PMC11193803 DOI: 10.1038/s41420-024-02076-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 06/15/2024] [Accepted: 06/18/2024] [Indexed: 06/24/2024] Open
Abstract
The physiological quantum of stress-inducible transcriptional protein, Lens Epithelium-Derived Growth Factor (LEDGF), is vital for the maintenance of cellular physiology. Erratic epigenetic reprogramming in response to oxidative stress or with advancing age is found to be a major cause in the gene silencing, leading to pathobiologies. Using aging human (h) eye lens/lens epithelial cells (LECs) coupled with redox-active Peroxiredoxin 6 (Prdx6)-deficient (Prdx6-/-) mLECs as model systems, herein, we showed that in aging/oxidative stress, the human LEDGF gene was regulated by unique methylation patterns of CGs nucleotides within and around the Sp1 binding site(s) of CpG island of the LEDGF promoter (-170 to -27nts). The process caused the repression of LEDGF and its target, Hsp27, resulting in reactive oxygen species (ROS) amplification and cellular insults. This phenomenon was opposed to the unmethylated promoter in LECs. Clinically, we observed that the loss of LEDGF in the Prdx6-/- mLECs or aging lenses/LECs, correlating with increased expression of DNMT1, DNMT3a, and DNMT3b along with the methyl CpG binding protein 2 (MeCP2). Upon oxidative stress, the expression of these molecules was increased with the dramatic reduction in LEDGF expression. While demethylating agent, 5-Aza deoxycytidine (5-AzaC) transposed the aberrant methylation status, and revived LEDGF and Hsp27 expression. Mechanistically, the chloramphenicol acetyltransferase (CAT) reporter gene driven by the LEDGF promoter (-170/ + 35) and ChIP assays uncovered that 5-AzaC acted on GC/Sp1 sites to release LEDGF transcription. The data argued, for the first time, that de novo methylation of CGs around and within Sp1 sites of the CpG island directly disrupted Sp1 activity, which ensued in LEDGF repression and its biological functions. The findings should improve our understanding of cellular insults-associated with aberrant DNMTs-mediated LEDGF's activity, and can offer strategies for therapeutic intervention to halt aging/oxidative stress-induced abnormalities.
Collapse
Affiliation(s)
- Biju Bhargavan
- Ophthalmology and Visual Sciences, University of Nebraska Medical Center, Omaha, NE, USA
| | - Bhavana Chhunchha
- Ophthalmology and Visual Sciences, University of Nebraska Medical Center, Omaha, NE, USA.
| | - Eri Kubo
- Department of Ophthalmology, Kanazawa Medical University, Ishikawa, 9200293, Japan
| | - Dhirendra P Singh
- Ophthalmology and Visual Sciences, University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
44
|
Shenoy US, Basavarajappa DS, Kabekkodu SP, Radhakrishnan R. Pan-cancer exploration of oncogenic and clinical impacts revealed that HOXA9 is a diagnostic indicator of tumorigenesis. Clin Exp Med 2024; 24:134. [PMID: 38904676 PMCID: PMC11192824 DOI: 10.1007/s10238-024-01389-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 06/04/2024] [Indexed: 06/22/2024]
Abstract
Homeodomain transcription factor A9 (HOXA9) is a member of the HOX cluster family of transcription factors that are crucially involved in embryo implantation, morphogenesis, body axis development, and endothelial cell differentiation. Despite numerous reports on its aberrant expression in a few malignancies, the molecular and functional complexity of HOXA9 across cancers remains obscure. We aimed to analyze the dynamic role of HOXA9 across cancers by identifying, analyzing, and understanding its multiple modes of regulation and functional implications and identifying possible therapeutic avenues. We conducted a comprehensive analysis to determine the role of HOXA9 across cancers. This approach involved the integration of large-scale datasets from public repositories such as the Genomic Data Commons, specifically the Cancer Genome Atlas (GDC-TCGA), across 33 different cancer types. The multiple modes of HOXA9 regulation by genetic and epigenetic factors were determined using online tools, which comprised experimentally validated observations. Furthermore, downstream pathways were identified by predicting the targets of HOXA9 and by performing functional enrichment analysis. We also assessed the clinical significance of HOXA9 in terms of prognosis and stage stratification. This study evaluated the correlation between HOXA9 and tumor-infiltrating molecules and discussed its association with therapeutically approved antineoplastic drugs. HOXA9 was significantly upregulated in 9 tumors and downregulated in 2 cancers. The deregulation of HOXA9 is primarily attributed to epigenetic factors, including promoter DNA methylation and noncoding RNAs (ncRNAs). The HOXA9 transcription factor interacts with PBX/MEIS cofactors and regulates multiple genes involved in cancer-associated EMT, autophagy, the cell cycle, metabolic pathways, Wnt signaling, TGF-β signaling, the AMPK pathway, PI3K/AKT signaling, and NF-κB signaling, thereby establishing control over downstream mechanisms. Differential expression in various clinical stages across cancers was shown to have prognostic significance and to be correlated with tumor-infiltrating immune molecules. The assessment of the correlation of HOXA9 expression with approved antineoplastic drugs revealed that targeting HOXA9 could be the most reliable strategy for preventing cancer progression. HOXA9 is upregulated in the majority of malignancies and drives cancer progression by regulating multiple signaling mechanisms. Hence, HOXA9 could be a reliable diagnostic indicator and a potential therapeutic candidate for solid cancer types.
Collapse
Affiliation(s)
- U Sangeetha Shenoy
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Dhanraj Salur Basavarajappa
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Shama Prasada Kabekkodu
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Raghu Radhakrishnan
- Department of Oral Pathology, Manipal College of Dental Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.
- Academic Unit of Oral and Maxillofacial Medicine and Pathology, School of Clinical Dentistry, University of Sheffield, Sheffield,, S10 2TA, UK.
| |
Collapse
|
45
|
Wang J, Zhang Q, Zhou D, Wang Y, Che H, Ge Y, Zhong Z, Wu G. Systematic analysis of fatty acid desaturases in breast invasive carcinoma: The prognosis, gene mutation, and tumor immune microenvironment. Medicine (Baltimore) 2024; 103:e38597. [PMID: 38905386 PMCID: PMC11191958 DOI: 10.1097/md.0000000000038597] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 05/24/2024] [Indexed: 06/23/2024] Open
Abstract
Breast invasive carcinoma (BRCA) is one of the most common cancers in women, with its malignant progression significantly influenced by intracellular fatty acid (FA) desaturation. Stearoyl-coenzyme A desaturase (SCD) and fatty acid desaturase 2 (FADS2) are two key rate-limiting enzymes that catalyze the FA desaturation process and cooperate to accelerate lipid metabolic activities. In this study, we investigated the potential functions of SCD and FADS2 in BRCA using bioinformatic analysis and experimental validation. The gene expression profiling interactive analysis database showed that the expression of SCD or FADS2 genes was positively linked to worse overall survival and disease-free survival in the Cancer Genome Atlas database-BRCA. The University of Alabama at Birmingham cancer data analysis portal database indicates that the expression and methylation levels of SCD or FADS2 are associated with various clinicopathological factors in patients with BRCA. Moreover, the tumor immune estimation resource and TISCH databases showed a significant positive correlation between the expression of SCD and the abundance of CD8+ T cells and macrophage cell infiltration, while the expression of FADS2 was positively correlated with the abundance of B cells. Meanwhile, SCD or FADS2 had a higher expression in monocytes/macrophages analyzed the BRCA_GSE143423 and BRCA_GSE114727_inDrop datasets. Mechanistically, the Search Tool for the Retrieval of Distant Genes and CancerSEA databases showed that SCD and FADS2 were upregulated in several cell biology signaling pathways, particularly in inflammation, apoptosis, and DNA repair. Finally, SCD or FADS2 knockdown inhibited the proliferation of MCF-7 and MDA-MB-231 cells. In summary, SCD and FADS2 play significant roles in BRCA development, suggesting that they may serve as potential therapeutic targets for BRCA treatment.
Collapse
Affiliation(s)
- Jie Wang
- Department of Basic Medical Science, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Qian Zhang
- Department of Basic Medical Science, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Duanrui Zhou
- Department of Basic Medical Science, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Yixuan Wang
- Department of Basic Medical Science, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Huilian Che
- Department of Basic Medical Science, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Yunjun Ge
- Department of Basic Medical Science, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Zhangfeng Zhong
- Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China
| | - Guosheng Wu
- Department of Basic Medical Science, Wuxi School of Medicine, Jiangnan University, Wuxi, China
- Jiangnan University Medical Center, Wuxi, China
| |
Collapse
|
46
|
Nair VD, Pincas H, Smith GR, Zaslavsky E, Ge Y, Amper MAS, Vasoya M, Chikina M, Sun Y, Raja AN, Mao W, Gay NR, Esser KA, Smith KS, Zhao B, Wiel L, Singh A, Lindholm ME, Amar D, Montgomery S, Snyder MP, Walsh MJ, Sealfon SC. Molecular adaptations in response to exercise training are associated with tissue-specific transcriptomic and epigenomic signatures. CELL GENOMICS 2024; 4:100421. [PMID: 38697122 PMCID: PMC11228891 DOI: 10.1016/j.xgen.2023.100421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 07/07/2023] [Accepted: 09/12/2023] [Indexed: 05/04/2024]
Abstract
Regular exercise has many physical and brain health benefits, yet the molecular mechanisms mediating exercise effects across tissues remain poorly understood. Here we analyzed 400 high-quality DNA methylation, ATAC-seq, and RNA-seq datasets from eight tissues from control and endurance exercise-trained (EET) rats. Integration of baseline datasets mapped the gene location dependence of epigenetic control features and identified differing regulatory landscapes in each tissue. The transcriptional responses to 8 weeks of EET showed little overlap across tissues and predominantly comprised tissue-type enriched genes. We identified sex differences in the transcriptomic and epigenomic changes induced by EET. However, the sex-biased gene responses were linked to shared signaling pathways. We found that many G protein-coupled receptor-encoding genes are regulated by EET, suggesting a role for these receptors in mediating the molecular adaptations to training across tissues. Our findings provide new insights into the mechanisms underlying EET-induced health benefits across organs.
Collapse
Affiliation(s)
- Venugopalan D Nair
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| | - Hanna Pincas
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Gregory R Smith
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Elena Zaslavsky
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Yongchao Ge
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Mary Anne S Amper
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Mital Vasoya
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Maria Chikina
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Yifei Sun
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | | | - Weiguang Mao
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Nicole R Gay
- Department of Genetics, Stanford School of Medicine, Stanford, CA 94305, USA
| | - Karyn A Esser
- Department of Physiology and Aging, University of Florida, Gainesville, FL 32610, USA
| | - Kevin S Smith
- Departments of Pathology and Genetics, Stanford School of Medicine, Stanford, CA 94305, USA
| | - Bingqing Zhao
- Department of Genetics, Stanford School of Medicine, Stanford, CA 94305, USA
| | - Laurens Wiel
- Department of Medicine, Stanford School of Medicine, Stanford, CA 94305, USA
| | - Aditya Singh
- Department of Medicine, Stanford School of Medicine, Stanford, CA 94305, USA
| | - Malene E Lindholm
- Department of Medicine, Stanford School of Medicine, Stanford, CA 94305, USA
| | - David Amar
- Department of Medicine, Stanford School of Medicine, Stanford, CA 94305, USA
| | - Stephen Montgomery
- Departments of Pathology and Genetics, Stanford School of Medicine, Stanford, CA 94305, USA
| | - Michael P Snyder
- Department of Genetics, Stanford School of Medicine, Stanford, CA 94305, USA
| | - Martin J Walsh
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Stuart C Sealfon
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
47
|
Srinath S, Jishnu PV, Varghese VK, Shukla V, Adiga D, Mallya S, Chakrabarty S, Sharan K, Pandey D, Chatterjee A, Kabekkodu SP. Regulation and tumor-suppressive function of the miR-379/miR-656 (C14MC) cluster in cervical cancer. Mol Oncol 2024; 18:1608-1630. [PMID: 38400534 PMCID: PMC11161731 DOI: 10.1002/1878-0261.13611] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 01/05/2024] [Accepted: 02/13/2024] [Indexed: 02/25/2024] Open
Abstract
Cervical cancer (CC) is a key contributor to cancer-related mortality in several countries. The identification of molecular markers and the underlying mechanism may help improve CC management. We studied the regulation and biological function of the chromosome 14 microRNA cluster (C14MC; miR-379/miR-656) in CC. Most C14MC members exhibited considerably lower expression in CC tissues and cell lines in The Cancer Genome Atlas (TCGA) cervical squamous cell carcinoma and endocervical adenocarcinoma patient cohorts. Bisulfite Sanger sequencing revealed hypermethylation of the C14MC promoter in CC tissues and cell lines. 5-aza-2 deoxy cytidine treatment reactivated expression of the C14MC members. We demonstrated that C14MC is a methylation-regulated miRNA cluster via artificial methylation and luciferase reporter assays. C14MC downregulation correlated with poor overall survival and may promote metastasis. C14MC activation via the lentiviral-based CRISPRa approach inhibited growth, proliferation, migration, and invasion; enhanced G2/M arrest; and induced senescence. Post-transcriptional regulatory network analysis of C14MC transcriptomic data revealed enrichment of key cancer-related pathways, such as metabolism, the cell cycle, and phosphatidylinositol 3-kinase (PI3K)-AKT signaling. Reduced cell proliferation, growth, migration, invasion, and senescence correlated with the downregulation of active AKT, MYC, and cyclin E1 (CCNE1) and the overexpression of p16, p21, and p27. We showed that C14MC miRNA activation increases reactive oxygen species (ROS) levels, intracellular Ca2+ levels, and lipid peroxidation rates, and inhibits epithelial-mesenchymal transition (EMT). C14MC targets pyruvate dehydrogenase kinase-3 (PDK3) according to the luciferase reporter assay. PDK3 is overexpressed in CC and is inversely correlated with C14MC. Both miR-494-mimic transfection and C14MC activation inhibited PDK3 expression. Reduced glucose uptake and lactate production, and upregulation of PDK3 upon C14MC activation suggest the potential role of these proteins in metabolic reprogramming. Finally, we showed that C14MC activation may inhibit EMT signaling. Thus, C14MC is a tumor-suppressive and methylation-regulated miRNA cluster in CC. Reactivation of C14MC can be useful in the management of CC.
Collapse
Grants
- Fund for Improvement of S&T Infrastructure (FIST), Department of Science and Technology, Government of India
- Karnataka Fund for Infrastructure Strengthening in Science and Technology (K-FIST), the Government of Karnataka
- MTR/2021/000182 Department of Science and Technology, Ministry of Science and Technology, India
- EMR/2016/002314 Science and Engineering Research Board (SERB)
- Manipal Academy of Higher Education, Manipal
- IA/I/22/1/506240 DBT-Wellcome Trust India Alliance
- SPARC/2019-2020/P2297/SL SPARC
- IA/I/22/1/506240 Wellcome Trust DBT India Alliance, Government of India
- Builder Grant, Department of Biotechnology, Government of India
- Technology Information Forecasting and Assessment Council (TIFAC) Core in Pharmacogenomics at MAHE, the Manipal
- Wellcome Trust
- Science and Engineering Research Board (SERB)
- Department of Science and Technology, Ministry of Science and Technology, India
- SPARC
- Technology Information Forecasting and Assessment Council (TIFAC) Core in Pharmacogenomics at MAHE, the Manipal
Collapse
Affiliation(s)
- Sriharikrishnaa Srinath
- Department of Cell and Molecular Biology, Manipal School of Life SciencesManipal Academy of Higher EducationIndia
| | - Padacherri Vethil Jishnu
- Department of Cell and Molecular Biology, Manipal School of Life SciencesManipal Academy of Higher EducationIndia
| | - Vinay Koshy Varghese
- Department of Cell and Molecular Biology, Manipal School of Life SciencesManipal Academy of Higher EducationIndia
| | - Vaibhav Shukla
- Department of Cell and Molecular Biology, Manipal School of Life SciencesManipal Academy of Higher EducationIndia
| | - Divya Adiga
- Department of Cell and Molecular Biology, Manipal School of Life SciencesManipal Academy of Higher EducationIndia
| | - Sandeep Mallya
- Department of Bioinformatics, Manipal School of Life SciencesManipal Academy of Higher EducationIndia
| | - Sanjiban Chakrabarty
- Department of Cell and Molecular Biology, Manipal School of Life SciencesManipal Academy of Higher EducationIndia
- Center for DNA Repair and Genome Stability (CDRGS)Manipal Academy of Higher EducationIndia
| | - Krishna Sharan
- Department of Radiotherapy OncologyKasturba Medical CollegeManipalIndia
| | - Deeksha Pandey
- Department of Obstetrics & GynecologyKasturba Medical CollegeManipalIndia
| | - Aniruddha Chatterjee
- Department of Pathology, Dunedin School of MedicineUniversity of OtagoDunedinNew Zealand
| | - Shama Prasada Kabekkodu
- Department of Cell and Molecular Biology, Manipal School of Life SciencesManipal Academy of Higher EducationIndia
- Center for DNA Repair and Genome Stability (CDRGS)Manipal Academy of Higher EducationIndia
| |
Collapse
|
48
|
Li C, Zhu X. DEP domain containing 1 as a biomarker for poor prognosis in lung adenocarcinoma. Heliyon 2024; 10:e30642. [PMID: 38765113 PMCID: PMC11101781 DOI: 10.1016/j.heliyon.2024.e30642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/29/2024] [Accepted: 05/01/2024] [Indexed: 05/21/2024] Open
Abstract
Objective The DEP domain-containing 1 (DEPDC1) gene is essential in the development and advancement of different types of cancer. This study is to examine the levels of DEPDC1 in lung adenocarcinoma (LUAD), and to determine its relationship with clinical results and immune response. The goal is to assess its potential as a biomarker and therapeutic target for LUAD. Methods By comprehensively utilizing the Cancer Genome Atlas (TCGA), gene Expression Synthesis (GEO), UALCAN, cBioPortal, TISIDB databases and online platforms, we conducted a bioinformatics analysis to investigate DEPDC1 gene survival analysis, prognostic diagnosis, prognostic survival, immune cell infiltration, DNA methylation, and the correlation of genetic mutations in LUAD. The results were validated through cell assay and immunohistochemical staining. Results DEPDC1 shows high levels of expression in the majority of tumors, with its expression being notably elevated in LUAD compablue to normal tissues. The expression of DEPDC1 varies based on the clinical characteristics of patients with LUAD. DEPDC1 expression affects the survival prognosis and prognostic model construction of LUAD patients. In addition, the presence of DEPDC1 is linked to immune infiltration. Various chemokines and chemokine receptors, immunoinhibitors and immune-stimulators in LUAD are significantly correlated with DEPDC1 methylation levels. Cell experiments confirmed through qPCR that the mRNA expression of DEPDC1 in LUAD was markedly elevated in comparison to the normal population, and immunohistochemistry showed positive DEPDC1 expression in LUAD pathological sections. Conclusion Systematic analysis and experiments have verified that DEPDC1 serves as a biomarker for detecting early, prediction of survival, and evaluation of immune cell infiltration in LUAD.
Collapse
Affiliation(s)
- Cuixian Li
- First Affiliated Hospital of Dali University, Dali, Yunnan, China
| | - Xiaoling Zhu
- First Affiliated Hospital of Dali University, Dali, Yunnan, China
| |
Collapse
|
49
|
Wang SS, Hall ML, Lee E, Kim SC, Ramesh N, Lee SH, Jang JY, Bold RJ, Ku JL, Hwang CI. Whole-genome bisulfite sequencing identifies stage- and subtype-specific DNA methylation signatures in pancreatic cancer. iScience 2024; 27:109414. [PMID: 38532888 PMCID: PMC10963232 DOI: 10.1016/j.isci.2024.109414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 02/03/2024] [Accepted: 02/29/2024] [Indexed: 03/28/2024] Open
Abstract
In pancreatic ductal adenocarcinoma (PDAC), no recurrent metastasis-specific mutation has been found, suggesting that epigenetic mechanisms, such as DNA methylation, are the major contributors of late-stage disease progression. Here, we performed the first whole-genome bisulfite sequencing (WGBS) on mouse and human PDAC organoid models to identify stage-specific and molecular subtype-specific DNA methylation signatures. With this approach, we identified thousands of differentially methylated regions (DMRs) that can distinguish between the stages and molecular subtypes of PDAC. Stage-specific DMRs are associated with genes related to nervous system development and cell-cell adhesions, and are enriched in promoters and bivalent enhancers. Subtype-specific DMRs showed hypermethylation of GATA6 foregut endoderm transcriptional networks in the squamous subtype and hypermethylation of EMT transcriptional networks in the progenitor subtype. These results indicate that aberrant DNA methylation contributes to both PDAC progression and subtype differentiation, resulting in significant and reoccurring DNA methylation patterns with diagnostic and prognostic potential.
Collapse
Affiliation(s)
- Sarah S. Wang
- Department of Microbiology and Molecular Genetics, College of Biological Sciences, University of California Davis, Davis, CA 95616, USA
| | - Madison L. Hall
- Department of Microbiology and Molecular Genetics, College of Biological Sciences, University of California Davis, Davis, CA 95616, USA
| | - EunJung Lee
- Department of Microbiology and Molecular Genetics, College of Biological Sciences, University of California Davis, Davis, CA 95616, USA
| | - Soon-Chan Kim
- Department of Biomedical Sciences, Korean Cell Line Bank, Laboratory of Cell Biology and Cancer Research Institute, Seoul National University College of Medicine, Seoul, South Korea
| | - Neha Ramesh
- Department of Microbiology and Molecular Genetics, College of Biological Sciences, University of California Davis, Davis, CA 95616, USA
| | - Sang Hyub Lee
- Department of Internal Medicine and Liver Research Institute, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, South Korea
| | - Jin-Young Jang
- Department of Surgery and Cancer Research Institute, Seoul National University College of Medicine, Seoul, South Korea
| | - Richard J. Bold
- Division of Surgical Oncology, Department of Surgery, University of California, Davis, Sacramento, CA, USA
- University of California Davis Comprehensive Cancer Center, Sacramento, CA, USA
| | - Ja-Lok Ku
- Department of Biomedical Sciences, Korean Cell Line Bank, Laboratory of Cell Biology and Cancer Research Institute, Seoul National University College of Medicine, Seoul, South Korea
| | - Chang-Il Hwang
- Department of Microbiology and Molecular Genetics, College of Biological Sciences, University of California Davis, Davis, CA 95616, USA
- University of California Davis Comprehensive Cancer Center, Sacramento, CA, USA
| |
Collapse
|
50
|
Thomas D, Palczewski M, Kuschman H, Hoffman B, Yang H, Glynn S, Wilson D, Kool E, Montfort W, Chang J, Petenkaya A, Chronis C, Cundari T, Sappa S, Islam K, McVicar D, Fan Y, Chen Q, Meerzaman D, Sierk M. Nitric oxide inhibits ten-eleven translocation DNA demethylases to regulate 5mC and 5hmC across the genome. RESEARCH SQUARE 2024:rs.3.rs-4131804. [PMID: 38645113 PMCID: PMC11030528 DOI: 10.21203/rs.3.rs-4131804/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
DNA methylation at cytosine bases of eukaryotic DNA (5-methylcytosine, 5mC) is a heritable epigenetic mark that can regulate gene expression in health and disease. Enzymes that metabolize 5mC have been well-characterized, yet the discovery of endogenously produced signaling molecules that regulate DNA methyl-modifying machinery have not been described. Herein, we report that the free radical signaling molecule nitric oxide (NO) can directly inhibit the Fe(II)/2-OG-dependent DNA demethylases ten-eleven translocation (TET) and human AlkB homolog 2 (ALKBH2). Physiologic NO concentrations reversibly inhibited TET and ALKBH2 demethylase activity by binding to the mononuclear non-heme iron atom which formed a dinitrosyliron complex (DNIC) preventing cosubstrates (2-OG and O2) from binding. In cancer cells treated with exogenous NO, or cells endogenously synthesizing NO, there was a global increase in 5mC and 5-hydroxymethylcytosine (5hmC) in DNA, the substrates for TET, that could not be attributed to increased DNA methyltransferase activity. 5mC was also elevated in NO-producing cell-line-derived mouse xenograft and patient-derived xenograft tumors. Genome-wide DNA methylome analysis of cells chronically treated with NO (10 days) demonstrated enrichment of 5mC and 5hmC at gene-regulatory loci which correlated to changes in the expression of NO-regulated tumor-associated genes. Regulation of DNA methylation is distinctly different from canonical NO signaling and represents a novel epigenetic role for NO.
Collapse
Affiliation(s)
| | - Marianne Palczewski
- University of Illinois Chicago, College of Pharmacy, Department of Pharmaceutical Sciences
| | - Hannah Kuschman
- University of Illinois Chicago, College of Pharmacy, Department of Pharmaceutical Sciences
| | | | - Hao Yang
- Weinberg College of Arts and Sciences, Northwestern University, Department of Chemistry
| | - Sharon Glynn
- University of Galway, College of Medicine, Nursing and Health Sciences, School of Medicine, D. of Pathology
| | | | - Eric Kool
- Stanford University, Department of Chemistry, School of Humanities and Sciences
| | | | - Jenny Chang
- Houston Methodist, Department of Medicine and Oncology, Weill Cornell Medical College
| | - Aydolun Petenkaya
- University of Illinois Chicago, College of Medicine, Biochemistry and Molecular Genetics
| | - Constantinos Chronis
- University of Illinois Chicago, College of Medicine, Biochemistry and Molecular Genetics
| | | | - Sushma Sappa
- University of Pittsburgh, Department of Chemistry
| | | | - Daniel McVicar
- National Institutes of Health, National Cancer Institute, Center for Cancer Research
| | - Yu Fan
- National Cancer Institute, Center for Biomedical Informatics and Information Technology
| | - Qingrong Chen
- National Cancer Institute, Center for Biomedical Informatics and Information Technology
| | - Daoud Meerzaman
- National Cancer Institute, Center for Biomedical Informatics and Information Technology
| | - Michael Sierk
- National Cancer Institute, Center for Biomedical Informatics and Information Technology
| |
Collapse
|