1
|
Zou H, Fan C, Chen X, Chen R, Sun Z, Wan X. Genome-Wide Analyses of the Soybean GmABCB Gene Family in Response to Salt Stress. Genes (Basel) 2025; 16:233. [PMID: 40004563 PMCID: PMC11855854 DOI: 10.3390/genes16020233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 02/12/2025] [Accepted: 02/17/2025] [Indexed: 02/27/2025] Open
Abstract
BACKGROUND Soybean (Glycine max (L.) Merr.) is a significant economic oilseed crop, and saline-alkali soils restrict soybean yield. Identifying salt-tolerant genes is a key strategy for enhancing soybean productivity under saline-alkali conditions. The roles of the GmABCB gene family in growth, development, and stress resistance remain incompletely understood. METHODS Bioinformatics approaches were employed to identify and analyze GmABCB genes. A total of 39 GmABCB genes were identified and analyzed in the soybean genome, focusing on their phylogenetic relationships, chromosomal distribution, gene structure, cis-acting elements, evolutionary history, and expression patterns under salt stress. RESULTS A total of 39 GmABCB genes were identified. These genes are unevenly distributed across the soybean genome, with 21 segmental duplication events identified. Several cis-acting elements associated with abiotic stress responses were identified. CONCLUSIONS The GmABCB gene family likely regulates growth, development, and stress tolerance in soybean.
Collapse
Affiliation(s)
- Hui Zou
- Guangzhou Key Laboratory for Research and Development of Crop Germplasm Resources, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China;
| | - Caiyun Fan
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou 510642, China; (C.F.); (X.C.); (R.C.)
| | - Xiulin Chen
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou 510642, China; (C.F.); (X.C.); (R.C.)
| | - Ruifeng Chen
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou 510642, China; (C.F.); (X.C.); (R.C.)
| | - Zhihui Sun
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou 510642, China; (C.F.); (X.C.); (R.C.)
| | - Xiaorong Wan
- Guangzhou Key Laboratory for Research and Development of Crop Germplasm Resources, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China;
| |
Collapse
|
2
|
Duan S, Meng X, Zhang H, Wang X, Kang X, Liu Z, Ma Z, Li G, Guo X. The Effect of Heat Stress on Wheat Flag Leaves Revealed by Metabolome and Transcriptome Analyses During the Reproductive Stage. Int J Mol Sci 2025; 26:1468. [PMID: 40003947 PMCID: PMC11855456 DOI: 10.3390/ijms26041468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 01/24/2025] [Accepted: 01/27/2025] [Indexed: 02/27/2025] Open
Abstract
In this study, we were dedicated to investigating the effect caused by heat stress on wheat flag leaves. Metabolome and transcriptome analysis were introduced to identify some key biological processes. As a result, 182 and 214 metabolites were significantly changed at the anthesis and post-anthesis stages, respectively; most of them were lipids, amino acids and derivatives, phenolic acids, and alkaloids. Aminoacyl-tRNA biosynthesis was the most significantly enriched pathway by metabolites at both two stages, each of which included 13 types of amino acid, and 12 of them were shared and up-regulated. Therefore, we further measured 22 kinds of amino acid content in ten different wheat genotypes at the post-anthesis stage. Based on the average content of each amino acid, 17 kinds of them were significantly increased after heat stress, and 4 types were significantly decreased. Both the metabolism analysis and the transcriptome analysis had a higher number of significantly changed metabolites or differential expressed genes at the post-anthesis stage, which indicated that the post-anthesis stage is more sensitive to heat stress, with 21,361 and 17,130 differential expressed genes, respectively. Two pathways, protein processing in endoplasmic reticulum and ABC transporters, were significantly enriched at two stages. The differential expressed genes in processing in endoplasmic reticulum pathway mainly encoded various types of molecular chaperones; among them, the HSP20 family was the most predominant and intensively up-regulated. The ABC transporter gene family is another pathway that is deeply involved in heat-stress response, which could be classified into five subfamilies; among them, subfamilies B and G were the most active. In summary, this study revealed the heat response pattern of amino acids, HSPs, and ABC transporter which may play a vital role during the wheat reproductive stage.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Guoliang Li
- Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences/Hebei Key Laboratory of Plant Genetic Engineering, Shijiazhuang 050051, China; (S.D.); (X.M.); zhn.8888-@163.com (H.Z.); (X.W.); (X.K.); (Z.L.); (Z.M.)
| | - Xiulin Guo
- Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences/Hebei Key Laboratory of Plant Genetic Engineering, Shijiazhuang 050051, China; (S.D.); (X.M.); zhn.8888-@163.com (H.Z.); (X.W.); (X.K.); (Z.L.); (Z.M.)
| |
Collapse
|
3
|
Lindt KA, Frühschulz S, Tampé R, Abele R. Interdomain communication in a homodimeric ABC transporter. J Biol Chem 2024; 300:107440. [PMID: 38844133 PMCID: PMC11267003 DOI: 10.1016/j.jbc.2024.107440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 05/21/2024] [Accepted: 05/25/2024] [Indexed: 07/02/2024] Open
Abstract
ABC transporters are found in all organisms and almost every cellular compartment. They mediate the transport of various solutes across membranes, energized by ATP binding and hydrolysis. Dysfunctions can result in severe diseases, such as cystic fibrosis or antibiotic resistance. In type IV ABC transporters, each of the two nucleotide-binding domains is connected to a transmembrane domain by two coupling helices, which are part of cytosolic loops. Although there are many structural snapshots of different conformations, the interdomain communication is still enigmatic. Therefore, we analyzed the function of three conserved charged residues in the intracytosolic loop 1 of the human homodimeric, lysosomal peptide transporter TAPL (transporter associated with antigen processing-like). Substitution of D278 in coupling helix 1 by alanine interrupted peptide transport by impeding ATP hydrolysis. Alanine substitution of R288 and D292, both localized next to the coupling helix 1 extending to transmembrane helix 3, reduced peptide transport but increased basal ATPase activity. Surprisingly, the ATPase activity of the R288A variant dropped in a peptide-dependent manner, whereas ATPase activity of wildtype and D292A was unaffected. Interestingly, R288A and D292A mutants did not differentiate between ATP and GTP in respect of hydrolysis. However, in contrast to wildtye TAPL, only ATP energized peptide transport. In sum, D278 seems to be involved in bidirectional interdomain communication mediated by network of polar interactions, whereas the two residues in the cytosolic extension of transmembrane helix 3 are involved in regulation of ATP hydrolysis, most likely by stabilization of the outward-facing conformation.
Collapse
Affiliation(s)
| | - Stefan Frühschulz
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt, Frankfurt, Germany
| | - Robert Tampé
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt, Frankfurt, Germany
| | - Rupert Abele
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt, Frankfurt, Germany.
| |
Collapse
|
4
|
Hollensteiner J, Schneider D, Poehlein A, Brinkhoff T, Daniel R. Pan-genome analysis of six Paracoccus type strain genomes reveal lifestyle traits. PLoS One 2023; 18:e0287947. [PMID: 38117845 PMCID: PMC10732464 DOI: 10.1371/journal.pone.0287947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 11/15/2023] [Indexed: 12/22/2023] Open
Abstract
The genus Paracoccus capable of inhabiting a variety of different ecological niches both, marine and terrestrial, is globally distributed. In addition, Paracoccus is taxonomically, metabolically and regarding lifestyle highly diverse. Until now, little is known on how Paracoccus can adapt to such a range of different ecological niches and lifestyles. In the present study, the genus Paracoccus was phylogenomically analyzed (n = 160) and revisited, allowing species level classification of 16 so far unclassified Paracoccus sp. strains and detection of five misclassifications. Moreover, we performed pan-genome analysis of Paracoccus-type strains, isolated from a variety of ecological niches, including different soils, tidal flat sediment, host association such as the bluespotted cornetfish, Bugula plumosa, and the reef-building coral Stylophora pistillata to elucidate either i) the importance of lifestyle and adaptation potential, and ii) the role of the genomic equipment and niche adaptation potential. Six complete genomes were de novo hybrid assembled using a combination of short and long-read technologies. These Paracoccus genomes increase the number of completely closed high-quality genomes of type strains from 15 to 21. Pan-genome analysis revealed an open pan-genome composed of 13,819 genes with a minimal chromosomal core (8.84%) highlighting the genomic adaptation potential and the huge impact of extra-chromosomal elements. All genomes are shaped by the acquisition of various mobile genetic elements including genomic islands, prophages, transposases, and insertion sequences emphasizing their genomic plasticity. In terms of lifestyle, each mobile genetic elements should be evaluated separately with respect to the ecological context. Free-living genomes, in contrast to host-associated, tend to comprise (1) larger genomes, or the highest number of extra-chromosomal elements, (2) higher number of genomic islands and insertion sequence elements, and (3) a lower number of intact prophage regions. Regarding lifestyle adaptations, free-living genomes share genes linked to genetic exchange via T4SS, especially relevant for Paracoccus, known for their numerous extrachromosomal elements, enabling adaptation to dynamic environments. Conversely, host-associated genomes feature diverse genes involved in molecule transport, cell wall modification, attachment, stress protection, DNA repair, carbon, and nitrogen metabolism. Due to the vast number of adaptive genes, Paracoccus can quickly adapt to changing environmental conditions.
Collapse
Affiliation(s)
- Jacqueline Hollensteiner
- Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August University of Göttingen, Göttingen, Germany
| | - Dominik Schneider
- Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August University of Göttingen, Göttingen, Germany
| | - Anja Poehlein
- Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August University of Göttingen, Göttingen, Germany
| | - Thorsten Brinkhoff
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Oldenburg, Germany
| | - Rolf Daniel
- Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August University of Göttingen, Göttingen, Germany
| |
Collapse
|
5
|
Mi Y, Cao X, Zhu X, Chen W, Meng X, Wan H, Sun W, Wang S, Chen S. Characterization and co-expression analysis of ATP-binding cassette transporters provide insight into genes related to cannabinoid transport in Cannabis sativa L. Int J Biol Macromol 2023:124934. [PMID: 37224907 DOI: 10.1016/j.ijbiomac.2023.124934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 05/06/2023] [Accepted: 05/09/2023] [Indexed: 05/26/2023]
Abstract
Plant ATP-binding cassette (ABC) transporters contribute the transport of diverse secondary metabolites. However, their roles in cannabinoid trafficking are still unsolved in Cannabis sativa. In this study, 113 ABC transporters were identified and characterized in C. sativa from their physicochemical properties, gene structure, and phylogenic relationship, as well as spatial gene expression patterns. Eventually, seven core transporters were proposed including one member in ABC subfamily B (CsABCB8) and six ABCG members (CsABCG4, CsABCG10, CsABCG11, CsABCG32, CsABCG37, and CsABCG41), harboring potential in participating cannabinoid transport, by combining phylogenetic and co-expression analysis from the gene and metabolite level. The candidate genes exhibited a high correlation with cannabinoid biosynthetic pathway genes and the cannabinoid content, and they were highly expressed where cannabinoids appropriately biosynthesized and accumulated. The findings underpin further research on the function of ABC transporters in C. sativa, especially in unveiling the mechanisms of cannabinoid transport to boost systematic and targeted metabolic engineering.
Collapse
Affiliation(s)
- Yaolei Mi
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100070, China
| | - Xue Cao
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100070, China
| | - Xuewen Zhu
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100070, China
| | - Weiqiang Chen
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100070, China
| | - Xiangxiao Meng
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100070, China
| | - Huihua Wan
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100070, China
| | - Wei Sun
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100070, China
| | - Sifan Wang
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100070, China.
| | - Shilin Chen
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100070, China; Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
6
|
Zhang HH, Xiang J, Yin BC, Ye BC. Overcoming Multidrug Resistance by Base-Editing-Induced Codon Mutation. ACS Pharmacol Transl Sci 2023; 6:812-819. [PMID: 37200813 PMCID: PMC10186359 DOI: 10.1021/acsptsci.3c00037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Indexed: 05/20/2023]
Abstract
Multidrug resistance (MDR) is the main obstacle in cancer chemotherapy. ATP binding cassette (ABC) transporters on the MDR cell membrane can transport a wide range of antitumor drugs out of cells, which is one of the main causes of MDR. Therefore, disturbing ABC transporters becomes the key to reversing MDR. In this study, we implement a cytosine base editor (CBE) system to knock out the gene encoding ABC transporters by base editing. When the CBE system works in MDR cells, the MDR cells are manipulated, and the genes encoding ABC transporters can be inactivated by precisely changing single in-frame nucleotides to induce stop (iSTOP) codons. In this way, the expression of ABC efflux transporters is reduced and intracellular drug retention is significantly increased in MDR cells. Ultimately, the drug shows considerable cytotoxicity to the MDR cancer cells. Moreover, the substantial downregulation of P-glycoprotein (P-gp) and breast cancer resistance protein (BCRP) implies the successful application of the CBE system in the knockout of different ABC efflux transporters. The recovery of chemosensitivity of MDR cancer cells to the chemotherapeutic drugs revealed that the system has a satisfactory universality and applicability. We believe that the CBE system will provide valuable clues for the use of CRISPR technology to defeat the MDR of cancer cells.
Collapse
Affiliation(s)
- He-Hua Zhang
- Lab
of Biosystem and Microanalysis, State Key Laboratory of Bioreactor
Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing
Technology, East China University of Science
and Technology, Shanghai 200237, China
| | - Jian Xiang
- Lab
of Biosystem and Microanalysis, State Key Laboratory of Bioreactor
Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing
Technology, East China University of Science
and Technology, Shanghai 200237, China
| | - Bin-Cheng Yin
- Lab
of Biosystem and Microanalysis, State Key Laboratory of Bioreactor
Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing
Technology, East China University of Science
and Technology, Shanghai 200237, China
- Institute
of Engineering Biology and Health, Collaborative Innovation Center
of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical
Sciences, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China
| | - Bang-Ce Ye
- Lab
of Biosystem and Microanalysis, State Key Laboratory of Bioreactor
Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing
Technology, East China University of Science
and Technology, Shanghai 200237, China
- Institute
of Engineering Biology and Health, Collaborative Innovation Center
of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical
Sciences, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China
- School
of Chemistry and Chemical Engineering, Shihezi
University, Shihezi 832000, Xinjiang, China
| |
Collapse
|
7
|
Valdameri G, Kita DH, Dutra JDP, Gomes DL, Tonduru AK, Kronenberger T, Gavinho B, Rossi IV, Carvalho MMD, Pérès B, Zattoni IF, Rego FGDM, Picheth G, Freitas RAD, Poso A, Ambudkar SV, Ramirez MI, Boumendjel A, Moure VR. Characterization of Potent ABCG2 Inhibitor Derived from Chromone: From the Mechanism of Inhibition to Human Extracellular Vesicles for Drug Delivery. Pharmaceutics 2023; 15:pharmaceutics15041259. [PMID: 37111745 PMCID: PMC10144134 DOI: 10.3390/pharmaceutics15041259] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 03/20/2023] [Accepted: 03/22/2023] [Indexed: 04/29/2023] Open
Abstract
Inhibition of ABC transporters is a promising approach to overcome multidrug resistance in cancer. Herein, we report the characterization of a potent ABCG2 inhibitor, namely, chromone 4a (C4a). Molecular docking and in vitro assays using ABCG2 and P-glycoprotein (P-gp) expressing membrane vesicles of insect cells revealed that C4a interacts with both transporters, while showing selectivity toward ABCG2 using cell-based transport assays. C4a inhibited the ABCG2-mediated efflux of different substrates and molecular dynamic simulations demonstrated that C4a binds in the Ko143-binding pocket. Liposomes and extracellular vesicles (EVs) of Giardia intestinalis and human blood were used to successfully bypass the poor water solubility and delivery of C4a as assessed by inhibition of the ABCG2 function. Human blood EVs also promoted delivery of the well-known P-gp inhibitor, elacridar. Here, for the first time, we demonstrated the potential use of plasma circulating EVs for drug delivery of hydrophobic drugs targeting membrane proteins.
Collapse
Affiliation(s)
- Glaucio Valdameri
- Graduate Program in Pharmaceutical Sciences, Laboratory of Cancer Drug Resistance, Federal University of Parana, Curitiba 80210-170, PR, Brazil
| | - Diogo Henrique Kita
- Graduate Program in Pharmaceutical Sciences, Laboratory of Cancer Drug Resistance, Federal University of Parana, Curitiba 80210-170, PR, Brazil
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892-4256, USA
| | - Julia de Paula Dutra
- Graduate Program in Pharmaceutical Sciences, Laboratory of Cancer Drug Resistance, Federal University of Parana, Curitiba 80210-170, PR, Brazil
| | - Diego Lima Gomes
- Graduate Program in Pharmaceutical Sciences, Laboratory of Cancer Drug Resistance, Federal University of Parana, Curitiba 80210-170, PR, Brazil
| | - Arun Kumar Tonduru
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, 70211 Kuopio, Finland
| | - Thales Kronenberger
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, 70211 Kuopio, Finland
- Institute of Pharmacy, Pharmaceutical/Medicinal Chemistry and Tübingen Center for Academic Drug Discovery & Development (TüCAD2), Eberhard Karls University Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
| | - Bruno Gavinho
- Microbiology, Parasitology and Pathology Program, Federal University of Parana, Curitiba 81530-000, PR, Brazil
| | - Izadora Volpato Rossi
- Cell and Molecular Biology Program, Federal University of Parana, Curitiba 81530-000, PR, Brazil
| | - Mariana Mazetto de Carvalho
- Biopol, Graduate Program in Pharmaceutical Sciences, Federal University of Parana, Curitiba 80210-170, PR, Brazil
| | - Basile Pérès
- Département de Pharmacochimie Moléculaire UMR 5063, Université Grenoble Alpes, 38041 Grenoble, France
| | - Ingrid Fatima Zattoni
- Graduate Program in Pharmaceutical Sciences, Laboratory of Cancer Drug Resistance, Federal University of Parana, Curitiba 80210-170, PR, Brazil
| | | | - Geraldo Picheth
- Graduate Program in Pharmaceutical Sciences, Federal University of Parana, Curitiba 80210-170, PR, Brazil
| | - Rilton Alves de Freitas
- Biopol, Graduate Program in Pharmaceutical Sciences, Federal University of Parana, Curitiba 80210-170, PR, Brazil
| | - Antti Poso
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, 70211 Kuopio, Finland
- Institute of Pharmacy, Pharmaceutical/Medicinal Chemistry and Tübingen Center for Academic Drug Discovery & Development (TüCAD2), Eberhard Karls University Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
| | - Suresh V Ambudkar
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892-4256, USA
| | - Marcel I Ramirez
- Laboratory of Cell Biology, Carlos Chagas Institute, Fiocruz, Curitiba 81310-020, PR, Brazil
| | | | - Vivian Rotuno Moure
- Graduate Program in Pharmaceutical Sciences, Laboratory of Cancer Drug Resistance, Federal University of Parana, Curitiba 80210-170, PR, Brazil
| |
Collapse
|
8
|
Cheng Z, He X, Wu Z, Weng P. Improving the viability of powdered Lactobacillus fermentum Lf01 with complex lyoprotectants by maintaining cell membrane integrity and regulating related genes. J Food Biochem 2022; 46:e14181. [PMID: 35393671 DOI: 10.1111/jfbc.14181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 03/24/2022] [Accepted: 03/29/2022] [Indexed: 12/01/2022]
Abstract
In this study, Lactobacillus fermentum Lf01, which was screened out in the early stage of the experiment, had better fermentation performance as the research objectives, and was prepared into powder by vacuum freeze-drying technology. We used response surface methodology to optimize the composition of the mixture used to protect powdered L. fermentum. Our data demonstrated that 10% skim milk, 12% sucrose, 0.767% tyrosine, and 2.033% sorbitol ensured the highest survival rate (92.7%) of L. fermentum. We have initially explored the potential mechanism of the complex protectants through the protection effect under the electron microscope, and the analysis methods of Fourier transform infrared spectroscopy and transcriptomics. The complex protectants could effectively maintain the permeability barrier and structural integrity of cell membrane and avoid the leakage of cell contents. Transcriptomic data have also indicated that the protective effect of the complex protectants on bacteria during freeze-drying was most likely achieved through the regulation of related genes. We identified 240 differential genes in the treatment group, including 231 up-regulated genes and 9 down-regulated genes. Gene ontology (GO) and Kyoto encyclopaedia of genes and genomes (KEGG) analyses of differential expression genes (DEGs) indicated that genes involved in amino acid metabolism, carbohydrate metabolism, membrane transport, fatty acid biosynthesis and cell growth were significantly up-regulated. These new results provided novel insights into the potential mechanism of lyoprotectants at the cellular level, morphological level, and gene level of the bacteria. PRACTICAL APPLICATIONS: In our study, a strain of Lactobacillus fermentum Lf01 with good fermentation performance was selected to be prepared into powder by freeze-drying technique. Bacterial cells were unavoidably damaged during the freeze-drying process. As a result, we investigated the protective effects on L. fermentum of ten distinct freeze-dried protectants and their mixtures. We were also attempting to explain the mechanism of action of the complex protectants at the cellular level, morphological level, and gene level of the bacteria. This presents very important theoretical and practical significance for the preservation of strains and the production of commercial direct-investment starter.
Collapse
Affiliation(s)
- Ziyi Cheng
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, People's Republic of China
| | - Xiaoli He
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, People's Republic of China
| | - Zufang Wu
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, People's Republic of China
| | - Peifang Weng
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, People's Republic of China
| |
Collapse
|
9
|
Patel H, Wu ZX, Chen Y, Bo L, Chen ZS. Drug resistance: from bacteria to cancer. MOLECULAR BIOMEDICINE 2021; 2:27. [PMID: 35006446 PMCID: PMC8607383 DOI: 10.1186/s43556-021-00041-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Accepted: 04/22/2021] [Indexed: 12/14/2022] Open
Abstract
The phenomenon of drug resistance has been a hindrance to therapeutic medicine since the late 1940s. There is a plethora of factors and mechanisms contributing to progression of drug resistance. From prokaryotes to complex cancers, drug resistance is a prevailing issue in clinical medicine. Although there are numerous factors causing and influencing the phenomenon of drug resistance, cellular transporters contribute to a noticeable majority. Efflux transporters form a huge family of proteins and are found in a vast number of species spanning from prokaryotes to complex organisms such as humans. During the last couple of decades, various approaches in analyses of biochemistry and pharmacology of transporters have led us to understand much more about drug resistance. In this review, we have discussed the structure, function, potential causes, and mechanisms of multidrug resistance in bacteria as well as cancers.
Collapse
Affiliation(s)
- Harsh Patel
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, New York, NY, 11439, USA
| | - Zhuo-Xun Wu
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, New York, NY, 11439, USA
| | - Yanglu Chen
- Columbia University Vagelos College of Physicians and Surgeons, New York, NY, 10032, USA
| | - Letao Bo
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, New York, NY, 11439, USA
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, New York, NY, 11439, USA.
| |
Collapse
|
10
|
Bartels K, Lasitza‐Male T, Hofmann H, Löw C. Single-Molecule FRET of Membrane Transport Proteins. Chembiochem 2021; 22:2657-2671. [PMID: 33945656 PMCID: PMC8453700 DOI: 10.1002/cbic.202100106] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 05/03/2021] [Indexed: 12/31/2022]
Abstract
Uncovering the structure and function of biomolecules is a fundamental goal in structural biology. Membrane-embedded transport proteins are ubiquitous in all kingdoms of life. Despite structural flexibility, their mechanisms are typically studied by ensemble biochemical methods or by static high-resolution structures, which complicate a detailed understanding of their dynamics. Here, we review the recent progress of single molecule Förster Resonance Energy Transfer (smFRET) in determining mechanisms and timescales of substrate transport across membranes. These studies do not only demonstrate the versatility and suitability of state-of-the-art smFRET tools for studying membrane transport proteins but they also highlight the importance of membrane mimicking environments in preserving the function of these proteins. The current achievements advance our understanding of transport mechanisms and have the potential to facilitate future progress in drug design.
Collapse
Affiliation(s)
- Kim Bartels
- Centre for Structural Systems Biology (CSSB)DESY and European Molecular Biology Laboratory HamburgNotkestrasse 8522607HamburgGermany
| | - Tanya Lasitza‐Male
- Department of Structural BiologyWeizmann Institute of ScienceHerzl St. 2347610001RehovotIsrael
| | - Hagen Hofmann
- Department of Structural BiologyWeizmann Institute of ScienceHerzl St. 2347610001RehovotIsrael
| | - Christian Löw
- Centre for Structural Systems Biology (CSSB)DESY and European Molecular Biology Laboratory HamburgNotkestrasse 8522607HamburgGermany
| |
Collapse
|
11
|
Niu L, Li H, Song Z, Dong B, Cao H, Liu T, Du T, Yang W, Amin R, Wang L, Yang Q, Meng D, Fu Y. The functional analysis of ABCG transporters in the adaptation of pigeon pea ( Cajanus cajan) to abiotic stresses. PeerJ 2021; 9:e10688. [PMID: 33552725 PMCID: PMC7821757 DOI: 10.7717/peerj.10688] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 12/11/2020] [Indexed: 11/21/2022] Open
Abstract
ATP-binding cassette (ABC) transporters are a class of proteins found in living organisms that mediate transmembrane transport by hydrolyzing ATP. They play a vital role in the physiological processes of growth and development in plants. The most numerous sub-type transporter in the ABC transporter family is the ABCG group and which have the most complex function in a plant’s response to abiotic stresses. Our study focused on the effect of ABCG transporters in the adaptation of the pigeon pea to adverse environments (such as drought, salt, temperature, etc.). We conducted a functional analysis of ABCG transporters in the pigeon pea and their role in response to abiotic stresses. A total of 51 ABCG genes (CcABCGs) were identified, and phylogenetic analysis was conducted. We also identified the physicochemical properties of the encoded proteins, predicted their subcellular localization, and identified of the conserved domains. Expression analysis showed that ABCG genes have different expression profiles with tissues and abiotic stresses. Our results showed that CcABCG28 was up-regulated at low temperatures, and CcABCG7 was up-regulated with drought and aluminum stress. The initial results revealed that ABCG transporters are more effective in the abiotic stress resistance of pigeon peas, which improves our understanding of their application in abiotic stress resistance.
Collapse
Affiliation(s)
- Lili Niu
- The College of Forestry, Beijing Forestry University, Beijing, People's Republic of China.,Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing, People's Republic of China
| | - Hanghang Li
- The College of Forestry, Beijing Forestry University, Beijing, People's Republic of China.,Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing, People's Republic of China
| | - Zhihua Song
- The College of Forestry, Beijing Forestry University, Beijing, People's Republic of China.,Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing, People's Republic of China
| | - Biying Dong
- The College of Forestry, Beijing Forestry University, Beijing, People's Republic of China.,Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing, People's Republic of China
| | - Hongyan Cao
- The College of Forestry, Beijing Forestry University, Beijing, People's Republic of China.,Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing, People's Republic of China
| | - Tengyue Liu
- The College of Forestry, Beijing Forestry University, Beijing, People's Republic of China.,Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing, People's Republic of China
| | - Tingting Du
- The College of Forestry, Beijing Forestry University, Beijing, People's Republic of China.,Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing, People's Republic of China
| | - Wanlong Yang
- The College of Forestry, Beijing Forestry University, Beijing, People's Republic of China.,Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing, People's Republic of China
| | - Rohul Amin
- The College of Forestry, Beijing Forestry University, Beijing, People's Republic of China
| | - Litao Wang
- The College of Forestry, Beijing Forestry University, Beijing, People's Republic of China
| | - Qing Yang
- The College of Forestry, Beijing Forestry University, Beijing, People's Republic of China.,Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing, People's Republic of China
| | - Dong Meng
- The College of Forestry, Beijing Forestry University, Beijing, People's Republic of China.,Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing, People's Republic of China
| | - Yujie Fu
- The College of Forestry, Beijing Forestry University, Beijing, People's Republic of China.,Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing, People's Republic of China.,Key Laboratory of Forestry Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, People's Republic of China
| |
Collapse
|
12
|
Characterization of the nucleotide-binding domain NsrF from the BceAB-type ABC-transporter NsrFP from the human pathogen Streptococcus agalactiae. Sci Rep 2020; 10:15208. [PMID: 32938989 PMCID: PMC7494861 DOI: 10.1038/s41598-020-72237-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Accepted: 08/27/2020] [Indexed: 01/14/2023] Open
Abstract
Treatment of bacterial infections is a great challenge of our era due to the various resistance mechanisms against antibiotics. Antimicrobial peptides are considered to be potential novel compound as antibiotic treatment. However, some bacteria, especially many human pathogens, are inherently resistant to these compounds, due to the expression of BceAB-type ABC transporters. This rather new transporter family is not very well studied. Here, we report the first full characterization of the nucleotide binding domain of a BceAB type transporter from Streptococcus agalactiae, namely SaNsrF of the transporter SaNsrFP, which confers resistance against nisin and gallidermin. We determined the NTP hydrolysis kinetics and used molecular modeling and simulations in combination with small angle X-ray scattering to obtain structural models of the SaNsrF monomer and dimer. The fact that the SaNsrFH202A variant displayed no ATPase activity was rationalized in terms of changes of the structural dynamics of the dimeric interface. Kinetic data show a clear preference for ATP as a substrate, and the prediction of binding modes allowed us to explain this selectivity over other NTPs.
Collapse
|
13
|
Hiller RM, von Kügelgen J, Bao H, Van Hoa FD, Cytrynbaum EN. A Mathematical Model for the Kinetics of the MalFGK
2
Maltose Transporter. Bull Math Biol 2020; 82:62. [PMID: 32415547 DOI: 10.1007/s11538-020-00737-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 04/15/2020] [Indexed: 11/28/2022]
Abstract
The MalFGK2 transporter regulates the movement of maltose across the inner membrane of E. coli and serves as a model system for bacterial ATP binding cassette (ABC) importers. Despite the wealth of biochemical and structural data available, a general model describing the various translocation pathways is still lacking. In this study, we formulate a mathematical model with the goal of determining the transporter reaction pathway, specifically looking at the order of binding events and conformation changes by which transport proceeds. Fitting our mathematical model to equilibrium binding data, we estimate the unknown equilibrium parameters of the system, several of which are key determinants of the transport process. Using these estimates along with steady-state ATPase rate data, we determine which of several possible reaction pathways is dominant, as a function of five underdetermined kinetic parameter values. Because neither experimental measurements nor estimates of certain kinetic rate constants are available, the problem of deciding which of the reaction pathways is responsible for transport remains unsolved. However, using the mathematical framework developed here, a firmer conclusion regarding the dominant reaction pathway as a function of MalE and maltose concentration could be drawn once these unknown kinetic parameters are determined.
Collapse
Affiliation(s)
- Rebecca M Hiller
- Department of Mathematics, University of British Columbia, Vancouver, Canada
| | | | - Huan Bao
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, Canada
| | - Franck Duong Van Hoa
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, Canada
| | - Eric N Cytrynbaum
- Department of Mathematics, University of British Columbia, Vancouver, Canada.
| |
Collapse
|
14
|
Peng L, Chen DQ, Jiang GM, Ou JY, Jiang Q, Zeng LT, Xiao Y, Jiang QY, Yang L, Ning Sun. Transcriptome Analysis of Two Strains of Proteus mirabilis with Swarming Migration Deficiency Isolated from Patients with Urinary Tract Infection. Curr Microbiol 2020; 77:1381-1389. [PMID: 32152756 DOI: 10.1007/s00284-020-01931-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 02/21/2020] [Indexed: 10/24/2022]
Abstract
Two rare strains of Proteus mirabilis with swarming migration deficiency were isolated from urine samples of two patients with urinary tract infections and were named as G121 and G137. Migration experiments showed that P. mirabilis HI4320 had typical migration on blood agar, while G121 and G137 had significantly weakened migration ability. Results of adhesion tests showed that the adhesion ability of G121 and G137 to the bladder epithelial cell line 5637 was significantly reduced. High-throughput sequencing and alignment analysis of the transcriptomes of the three P. mirabilis strains were conducted, with P. mirabilis HI4320 as the reference strain. Reverse transcription quantitative PCR (RT-qPCR) was used to verify differentially expressed genes. Results of transcriptome analysis and RT-qPCR showed that, compared to the HI4320 strain, genes related to flagellum and fimbria formation, dicarboxylate transport, and cystathionine and anthranilate metabolism were down-regulated in G121 and G137, while genes related to iron transport, molybdenum metabolism, and metalloprotease were up-regulated, suggesting that these genes may be involved in the migration ability and epithelial cell adhesion ability of P. mirabilis. These results provide important insight to the search for virulence genes and the screening of new antibacterial targets for P. mirabilis.
Collapse
Affiliation(s)
- Liang Peng
- Department of Clinical Laboratory, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510700, Guangdong, China
| | - Ding-Qiang Chen
- Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, Guangdong, China
| | - Guan-Ming Jiang
- Department of Clinical Laboratory, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, 519000, Guangdong, China
| | - Jing-Yi Ou
- Department of Clinical Laboratory, Guangzhou No. 8 People's Hospital, Guangzhou, 510000, Guangdong, China
| | - Qiao Jiang
- Intensive Care Unit, Guangdong 999 Brain Hospital, Guangzhou, 510510, Guangdong, China
| | - Li-Ting Zeng
- Department of Clinical Laboratory, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510700, Guangdong, China
| | - Yi Xiao
- Department of Clinical Laboratory, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510700, Guangdong, China
| | - Qiong-Yan Jiang
- Department of Clinical Laboratory, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510700, Guangdong, China
| | - Ling Yang
- Department of Clinical Laboratory, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510700, Guangdong, China.
| | - Ning Sun
- Department of Clinical Laboratory, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510700, Guangdong, China.
| |
Collapse
|
15
|
Biochemical and biophysical characterization of nucleotide binding domain of Trehalose transporter from Mycobacterium tuberculosis. Int J Biol Macromol 2020; 152:109-116. [PMID: 32092417 DOI: 10.1016/j.ijbiomac.2020.02.237] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 02/15/2020] [Accepted: 02/20/2020] [Indexed: 12/18/2022]
Abstract
The SugABC is an ABC transporter in Mycobacterium tuberculosis which is proposed to be involved in the process of Trehalose import, but till date the proteins of this transporter complex have not been functionally characterized. This transport process is driven by the nucleotide binding domain SugC of SugABC transporter. To understand the functional role of SugC, we expressed and purified the protein in E.coli. Our purification result shows, Mtb SugC exists as a monomer in solution but forms dimers upon binding to ATP. It is stable at pH 7.5 as analyzed by CD spectroscopy and showed maximum activity at this pH as estimated by Michaelis-Menten's kinetics for Mg-ATP at a KM of 0.15 mM. The SugCH193A mutant was observed to have a reduced catalytic activity implying that H193 is one of the residues involved in the hydrolysis of ATP. The molecular modeling further revealed that, like E.coli MalK, MtbSugC also has an ATPase domain and a regulatory domain. Despite having low sequence homology with other nucleotide binding domains of ABC transporters, the structure and functional motifs of MtbSugC are conserved. Thus, we show that SugC is a functional ATPase domain of SugABC transporter in Mycobacterium tuberculosis.
Collapse
|
16
|
Assaraf YG, Brozovic A, Gonçalves AC, Jurkovicova D, Linē A, Machuqueiro M, Saponara S, Sarmento-Ribeiro AB, Xavier CP, Vasconcelos MH. The multi-factorial nature of clinical multidrug resistance in cancer. Drug Resist Updat 2019; 46:100645. [PMID: 31585396 DOI: 10.1016/j.drup.2019.100645] [Citation(s) in RCA: 341] [Impact Index Per Article: 56.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 09/05/2019] [Accepted: 09/14/2019] [Indexed: 12/16/2022]
|
17
|
Holland IB. Rise and rise of the ABC transporter families. Res Microbiol 2019; 170:304-320. [PMID: 31442613 DOI: 10.1016/j.resmic.2019.08.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 07/30/2019] [Accepted: 08/13/2019] [Indexed: 01/15/2023]
Abstract
This review will inevitably be influenced by my personal experience and personal view of the progression of this amazing family of proteins. This has generated a huge literature in over nearly five decades, some ideas have bloomed and faded while others have persisted, other contributions simply become redundant, overtaken by better techniques. At the outset, the pioneers had no idea of the magnitude of the topic they were working on, then a very rough idea of the significance emerged and, progressively, the picture becomes sharper and finally extraordinary. I have tried to produce at least an outline of that progression. My apologies for the also inevitable omissions, especially relating to the mass of biochemical and spectroscopy and genetical studies. I decided to prioritise structural biology because structures when successful are definitive and of course provide a 'visual' image. However, I tried to limit the structural aspects to the proteins that reflected the main advances.
Collapse
Affiliation(s)
- I Barry Holland
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Sud, Orsay, France.
| |
Collapse
|
18
|
Bai Y, Chen T, Happe T, Lu Y, Sawyer A. Iron-sulphur cluster biogenesis via the SUF pathway. Metallomics 2019; 10:1038-1052. [PMID: 30019043 DOI: 10.1039/c8mt00150b] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Iron-sulphur (Fe-S) clusters are versatile cofactors, which are essential for key metabolic processes in cells, such as respiration and photosynthesis, and which may have also played a crucial role in establishing life on Earth. They can be found in almost all living organisms, from unicellular prokaryotes and archaea to multicellular animals and plants, and exist in diverse forms. This review focuses on the most ancient Fe-S cluster assembly system, the sulphur utilization factor (SUF) mechanism, which is crucial in bacteria for cell survival under stress conditions such as oxidation and iron starvation, and which is also present in the chloroplasts of green microalgae and plants, where it is responsible for plastidial Fe-S protein maturation. We explain the SUF Fe-S cluster assembly process, the proteins involved, their regulation and provide evolutionary insights. We specifically focus on examples from Fe-S cluster synthesis in the model organisms Escherichia coli and Arabidopsis thaliana and discuss in an in vivo context the assembly of the [FeFe]-hydrogenase H-cluster from Chlamydomonas reinhardtii.
Collapse
Affiliation(s)
- Y Bai
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| | | | | | | | | |
Collapse
|
19
|
Lowrence RC, Subramaniapillai SG, Ulaganathan V, Nagarajan S. Tackling drug resistance with efflux pump inhibitors: from bacteria to cancerous cells. Crit Rev Microbiol 2019; 45:334-353. [PMID: 31248314 DOI: 10.1080/1040841x.2019.1607248] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Drug resistance is a serious concern in a clinical setting jeopardizing treatment for both infectious agents and cancers alike. The wide-spread emergence of multi-drug resistant (MDR) phenotypes from bacteria to cancerous cells necessitates the need to target resistance mechanisms and prevent the emergence of resistant mutants. Drug efflux seems to be one of the preferred approaches embraced by both microbial and mammalian cells alike, to thwart the action of chemotherapeutic agents thereby leading to a drug resistant phenotype. Relative to microbes, which predominantly employs proton motive force (PMF) powered, Major Facilitator Superfamily (MFS)/Resistance Nodulation and Division (RND) classes of efflux pumps to efflux drugs, cancerous cells preferentially use ATP fuelled ATP binding cassette (ABC) transporters to extrude chemotherapeutic agents. The prevalence, evolutionary characteristics and overlapping functions of ABC transporters have been highlighted in this review. Additionally, we outline the role of ABC pumps in conferring MDR phenotype to both bacteria and cancerous cells and underscore the importance of efflux pump inhibitors (EPI) to mitigate drug resistance. Based on the literature reports and analysis, we reason out feasibility of employing bacteria as a tool to screen for EPI's targeting ABC pumps of cancerous cells.
Collapse
Affiliation(s)
- Rene Christena Lowrence
- a Department of Molecular Biology and Biotechnology, University of Sheffield , Sheffield , UK
| | | | | | - Saisubramanian Nagarajan
- c Department of Biotechnology, School of Chemical and Biotechnology, SASTRA Deemed to be University , Thanjavur , India
| |
Collapse
|
20
|
Riedel S, Siemiatkowska B, Watanabe M, Müller CS, Schünemann V, Hoefgen R, Leimkühler S. The ABCB7-Like Transporter PexA in Rhodobacter capsulatus Is Involved in the Translocation of Reactive Sulfur Species. Front Microbiol 2019; 10:406. [PMID: 30918498 PMCID: PMC6424863 DOI: 10.3389/fmicb.2019.00406] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 02/15/2019] [Indexed: 12/23/2022] Open
Abstract
The mitochondrial ATP-binding cassette (ABC) transporters ABCB7 in humans, Atm1 in yeast and ATM3 in plants, are highly conserved in their overall architecture and particularly in their glutathione binding pocket located within the transmembrane spanning domains. These transporters have attracted interest in the last two decades based on their proposed role in connecting the mitochondrial iron-sulfur (Fe-S) cluster assembly with its cytosolic Fe-S cluster assembly (CIA) counterpart. So far, the specific compound that is transported across the membrane remains unknown. In this report we characterized the ABCB7-like transporter Rcc02305 in Rhodobacter capsulatus, which shares 47% amino acid sequence identity with its mitochondrial counterpart. The constructed interposon mutant strain in R. capsulatus displayed increased levels of intracellular reactive oxygen species without a simultaneous accumulation of the cellular iron levels. The inhibition of endogenous glutathione biosynthesis resulted in an increase of total glutathione levels in the mutant strain. Bioinformatic analysis of the amino acid sequence motifs revealed a potential aminotransferase class-V pyridoxal-5'-phosphate (PLP) binding site that overlaps with the Walker A motif within the nucleotide binding domains of the transporter. PLP is a well characterized cofactor of L-cysteine desulfurases like IscS and NFS1 which has a role in the formation of a protein-bound persulfide group within these proteins. We therefore suggest renaming the ABCB7-like transporter Rcc02305 in R. capsulatus to PexA for PLP binding exporter. We further suggest that this ABC-transporter in R. capsulatus is involved in the formation and export of polysulfide species to the periplasm.
Collapse
Affiliation(s)
- Simona Riedel
- Institute of Biochemistry and Biology, Department of Molecular Enzymology, University of Potsdam, Potsdam, Germany
| | - Beata Siemiatkowska
- Department of Organelle Biology, Biotechnology and Molecular Ecophysiology, Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
| | - Mutsumi Watanabe
- Department of Molecular Physiology, Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
| | - Christina S Müller
- Biophysics and Medical Physics Group, Department of Physics, Technische Universität Kaiserslautern, Kaiserslautern, Germany
| | - Volker Schünemann
- Biophysics and Medical Physics Group, Department of Physics, Technische Universität Kaiserslautern, Kaiserslautern, Germany
| | - Rainer Hoefgen
- Department of Molecular Physiology, Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
| | - Silke Leimkühler
- Institute of Biochemistry and Biology, Department of Molecular Enzymology, University of Potsdam, Potsdam, Germany
| |
Collapse
|
21
|
Wen Y, Zhao R, Gupta P, Fan Y, Zhang Y, Huang Z, Li X, Su Y, Liao L, Xie YA, Yang D, Chen ZS, Liang G. The epigallocatechin gallate derivative Y 6 reverses drug resistance mediated by the ABCB1 transporter both in vitro and in vivo. Acta Pharm Sin B 2019; 9:316-323. [PMID: 30972279 PMCID: PMC6437594 DOI: 10.1016/j.apsb.2018.10.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 08/16/2018] [Accepted: 09/06/2018] [Indexed: 12/14/2022] Open
Abstract
Previously, we reported that Y6, a new epigallocatechin gallate derivative, is efficacious in reversing doxorubicin (DOX)--mediated resistance in hepatocellular carcinoma BEL-7404/DOX cells. In this study, we evaluated the efficacy of Y6 in reversing drug resistance both in vitro and in vivo by determining its effect on the adenosine triphosphate-binding cassette protein B1 transporter (ABCB1 or P-glycoprotein, P-gp). Our results showed that Y6 significantly sensitized cells overexpressing the ABCB1 transporter to anticancer drugs that are ABCB1 substrates. Y6 significantly stimulated the adenosine triphosphatase activity of ABCB1. Furthermore, Y6 exhibited a higher docking score as compared with epigallocatechin gallate inside the transmembrane domain of ABCB1. In addition, in the nude mouse tumor xenograft model, Y6 (110 mg/kg, intragastric administration), in combination with doxorubicin (2 mg/kg, intraperitoneal injection), significantly inhibited the growth of BEL-7404/DOX cell xenograft tumors, compared to equivalent epigallocatechin gallate. In conclusion, Y6 significantly reversed ABCB1-mediated multidrug resistance and its mechanisms of action may result from its competitive inhibition of the ABCB1 drug efflux function.
Collapse
Affiliation(s)
- Yan Wen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John׳s University, Queens, NY 11439, USA
- Department of Pharmacy, the First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
- Guangxi Colleges and Universities Key Laboratory of Biological Molecular Medicine Research, Guangxi Medical University, Nanning 530021, China
| | - Ruiqiang Zhao
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John׳s University, Queens, NY 11439, USA
- Department of Biochemistry and Molecular Biology, School of Preclinical Medicine, Guangxi Medical University, Nanning 530021, China
| | - Pranav Gupta
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John׳s University, Queens, NY 11439, USA
| | - Yingfang Fan
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John׳s University, Queens, NY 11439, USA
- Department of Hepatobiliary Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Yunkai Zhang
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John׳s University, Queens, NY 11439, USA
| | - Zhenguang Huang
- Department of Pharmacy, the First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Xiaohui Li
- Department of Biotechnology, School of Preclinical Medicine, Guangxi Medical University, Nanning 530021, China
| | - Yuangang Su
- Department of Biotechnology, School of Preclinical Medicine, Guangxi Medical University, Nanning 530021, China
| | - Lijuan Liao
- Department of Biotechnology, School of Preclinical Medicine, Guangxi Medical University, Nanning 530021, China
| | - Yu-An Xie
- The Affiliated Tumor Hospital of Guangxi Medical University, Nanning 530021, China
| | - Donghua Yang
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John׳s University, Queens, NY 11439, USA
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John׳s University, Queens, NY 11439, USA
| | - Gang Liang
- College of Pharmacy, Guangxi Medical University, Nanning 530021, China
| |
Collapse
|
22
|
Adnan M, Islam W, Shabbir A, Khan KA, Ghramh HA, Huang Z, Chen HYH, Lu GD. Plant defense against fungal pathogens by antagonistic fungi with Trichoderma in focus. Microb Pathog 2019; 129:7-18. [PMID: 30710672 DOI: 10.1016/j.micpath.2019.01.042] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 01/17/2019] [Accepted: 01/28/2019] [Indexed: 02/07/2023]
Abstract
Fungal diseases cause considerable damage to the economically important crops worldwide thus posing continuous threat to global food security. Management of these diseases is normally done via utilization of chemicals that have severe negative impact upon human health and surrounding ecosystems. Finding eco-friendly alternatives has led the researchers to focus towards biological control of fungal diseases through biocontrol agents such as antagonistic fungi (AF) and other microorganisms. AF include various genera of fungi that cure the fungal diseases on plants effectively. Furthermore, they play a regulatory role in various plant physiological pathways and interactions. AF are highly host specific having negligible effects on non-target organisms and have fast mass production capability. However, understanding the mechanisms of the effects of AF on plant diseases is a prerequisite for their effective utilization as biocontrol agent. Trichoderma is one of the most important fungal genera known for its antagonistic activity against disease causing fungal pathogens. Therefore, in this review, we have focused upon Trichoderma-mediated fungal diseases management via illustrating its taxonomy, important strains, biodiversity and mode of action. Furthermore, we have assessed the criteria to be followed for selection of AF and the factors influencing their efficiency. Finally, we evaluated the advantages and limitations of Trichoderma as AF. We conclude that effective AF utilization against fungal pathogens can serve as a safe strategy for our Planet.
Collapse
Affiliation(s)
- Muhammad Adnan
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Waqar Islam
- Key Laboratory for Humid Subtropical Eco-Geographical Processes of the Ministry of Education, Fujian Normal University, Fuzhou, 350007, China; Institute of Geography, Fujian Normal University, Fuzhou, 350007, China; Govt. of Punjab, Agriculture Department, Lahore, Pakistan
| | - Asad Shabbir
- The University of Sydney, School of Life and Environmental Sciences, Narrabri, 2390, Australia; University of the Punjab, Department of Botany, Lahore, 54590, Pakistan
| | - Khalid Ali Khan
- Biology Department, Faculty of Science, King Khalid University, P.O. Box 9004, Abha, 61413, Saudi Arabia; Unit of Bee Research and Honey Production, Research Center for Advanced Materials Science (RCAMS), Faculty of Science, King Khalid University, P.O. Box 9004, Abha, 61413, Saudi Arabia
| | - Hamed A Ghramh
- Biology Department, Faculty of Science, King Khalid University, P.O. Box 9004, Abha, 61413, Saudi Arabia; Unit of Bee Research and Honey Production, Research Center for Advanced Materials Science (RCAMS), Faculty of Science, King Khalid University, P.O. Box 9004, Abha, 61413, Saudi Arabia
| | - Zhiqun Huang
- Key Laboratory for Humid Subtropical Eco-Geographical Processes of the Ministry of Education, Fujian Normal University, Fuzhou, 350007, China; Institute of Geography, Fujian Normal University, Fuzhou, 350007, China.
| | - Han Y H Chen
- Key Laboratory for Humid Subtropical Eco-Geographical Processes of the Ministry of Education, Fujian Normal University, Fuzhou, 350007, China; Institute of Geography, Fujian Normal University, Fuzhou, 350007, China; Faculty of Forestry and the Forest Environment, Lakehead University, 955 Oliver Rd., Thunder Bay, Ontario, P7B 5E1, Canada.
| | - Guo-Dong Lu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| |
Collapse
|
23
|
Zhao RQ, Wen Y, Gupta P, Lei ZN, Cai CY, Liang G, Yang DH, Chen ZS, Xie YA. Y 6, an Epigallocatechin Gallate Derivative, Reverses ABCG2-Mediated Mitoxantrone Resistance. Front Pharmacol 2019; 9:1545. [PMID: 30687102 PMCID: PMC6335976 DOI: 10.3389/fphar.2018.01545] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 12/18/2018] [Indexed: 12/04/2022] Open
Abstract
Multidrug resistance is reported to be related to the transmembrane transportation of chemotherapeutic drugs by adenosine triphosphate-binding cassette (ABC) transporters. ABC subfamily G member 2 (ABCG2) is a member of the ABC transporter superfamily proteins, which have been implicated as a key contributor to the development of multidrug resistance in cancers. A new epigallocatechin gallate derivative, Y6 was synthesized in our group. Our previous study revealed that Y6 increased the sensitivity of drug-resistant cells to doxorubicin, which was associated with down-regulation of P-glycoprotein expression. In this study, we further determine whether Y6 could reverse ABCG2-mediated multidrug resistance. Results showed that, at non-toxic concentrations, Y6 significantly sensitized drug-selected non-small cell lung cancer cell line NCI-H460/MX20 to substrate anticancer drugs mitoxantrone, SN-38, and topotecan, and also sensitized ABCG2-transfected cell line HEK293/ABCG2-482-R2 to mitoxantrone and SN-38. Further study demonstrated that Y6 significantly increased the accumulation of [3H]-mitoxantrone in NCI-H460/MX20 cells by inhibiting the transport activity of ABCG2, without altering the expression levels and the subcellular localization of ABCG2. Furthermore, Y6 stimulated the adenosine triphosphatase activity with a concentration-dependent pattern under 20 μM in membranes overexpressing ABCG2. In addition, Y6 exhibited a strong interaction with the human ABCG2 transporter protein. Our findings indicate that Y6 may potentially be a novel reversal agent in ABCG2-positive drug-resistant cancers.
Collapse
Affiliation(s)
- Rui-Qiang Zhao
- The Affiliated Tumor Hospital of Guangxi Medical University, Nanning, China.,Department of Biochemistry and Molecular Biology, School of Preclinical Medicine, Guangxi Medical University, Nanning, China.,Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, United States
| | - Yan Wen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, United States.,Department of Pharmacy, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Pranav Gupta
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, United States
| | - Zi-Ning Lei
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, United States
| | - Chao-Yun Cai
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, United States
| | - Gang Liang
- College of Pharmacy, Guangxi Medical University, Nanning, China
| | - Dong-Hua Yang
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, United States
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, United States
| | - Yu-An Xie
- The Affiliated Tumor Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
24
|
Shukla S, Bafna K, Gullett C, Myles DAA, Agarwal PK, Cuneo MJ. Differential Substrate Recognition by Maltose Binding Proteins Influenced by Structure and Dynamics. Biochemistry 2018; 57:5864-5876. [PMID: 30204415 PMCID: PMC6189639 DOI: 10.1021/acs.biochem.8b00783] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The genome of the hyperthermophile Thermotoga maritima contains three isoforms of maltose binding protein (MBP) that are high-affinity receptors for di-, tri-, and tetrasaccharides. Two of these proteins (tmMBP1 and tmMBP2) share significant sequence identity, approximately 90%, while the third (tmMBP3) shares less than 40% identity. MBP from Escherichia coli (ecMBP) shares 35% sequence identity with the tmMBPs. This subset of MBP isoforms offers an interesting opportunity to investigate the mechanisms underlying the evolution of substrate specificity and affinity profiles in a genome where redundant MBP genes are present. In this study, the X-ray crystal structures of tmMBP1, tmMBP2, and tmMBP3 are reported in the absence and presence of oligosaccharides. tmMBP1 and tmMBP2 have binding pockets that are larger than that of tmMBP3, enabling them to bind to larger substrates, while tmMBP1 and tmMBP2 also undergo substrate-induced hinge bending motions (∼52°) that are larger than that of tmMBP3 (∼35°). Small-angle X-ray scattering was used to compare protein behavior in solution, and computer simulations provided insights into dynamics of these proteins. Comparing quantitative protein-substrate interactions and dynamical properties of tmMBPs with those of the promiscuous ecMBP and disaccharide selective Thermococcus litoralis MBP provides insights into the features that enable selective binding. Collectively, the results provide insights into how the structure and dynamics of tmMBP homologues enable them to differentiate between a myriad of chemical entities while maintaining their common fold.
Collapse
Affiliation(s)
- Shantanu Shukla
- Graduate School of Genome Science and Technology, The University of Tennessee, Knoxville, Tennessee
- Neutron Sciences Directorate, Oak Ridge National Laboratory, Oak Ridge, Tennessee
| | - Khushboo Bafna
- Graduate School of Genome Science and Technology, The University of Tennessee, Knoxville, Tennessee
| | - Caeley Gullett
- Neutron Sciences Directorate, Oak Ridge National Laboratory, Oak Ridge, Tennessee
| | - Dean A. A. Myles
- Graduate School of Genome Science and Technology, The University of Tennessee, Knoxville, Tennessee
- Neutron Sciences Directorate, Oak Ridge National Laboratory, Oak Ridge, Tennessee
| | - Pratul K. Agarwal
- Department of Biochemistry & Cellular and Molecular Biology, The University of Tennessee, Knoxville, Tennessee
| | - Matthew J. Cuneo
- Neutron Sciences Directorate, Oak Ridge National Laboratory, Oak Ridge, Tennessee
- Deparment of Structural Biology, St. Jude Children’s Research Hospital, Memphis, Tennessee
| |
Collapse
|
25
|
Wu YJ, Wang C, Wei W. The effects of DMARDs on the expression and function of P-gp, MRPs, BCRP in the treatment of autoimmune diseases. Biomed Pharmacother 2018; 105:870-878. [DOI: 10.1016/j.biopha.2018.06.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 05/24/2018] [Accepted: 06/04/2018] [Indexed: 12/17/2022] Open
|
26
|
Ning N, Yu Y, Wu M, Zhang R, Zhang T, Zhu C, Huang L, Yun CH, Benes CH, Zhang J, Deng X, Chen Q, Ren R. A Novel Microtubule Inhibitor Overcomes Multidrug Resistance in Tumors. Cancer Res 2018; 78:5949-5957. [PMID: 30135190 DOI: 10.1158/0008-5472.can-18-0455] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Revised: 07/12/2018] [Accepted: 08/16/2018] [Indexed: 02/05/2023]
Abstract
Microtubule inhibitors as chemotherapeutic drugs are widely used for cancer treatment. However, the development of multidrug resistance (MDR) in cancer is a major challenge for microtubule inhibitors in their clinical implementation. From a high-throughput drug screen using cells transformed by oncogenic RAS, we identify a lead heteroaryl amide compound that blocks cell proliferation. Analysis of the structure-activity relationship indicated that this series of scaffolds (exemplified by MP-HJ-1b) represents a potent inhibitor of tumor cell growth. MP-HJ-1b showed activities against a panel of more than 1,000 human cancer cell lines with a wide variety of tissue origins. This compound depolymerized microtubules and affected spindle formation. It also induced the spike-like conformation of microtubules in vitro and in vivo, which is different from typical microtubule modulators. Structural analysis revealed that this series of compounds bound the colchicine pocket at the intra-dimer interface, although mostly not overlapping with colchicine binding. MP-HJ-1b displayed favorable pharmacological properties for overcoming tumor MDR, both in vitro and in vivo Taken together, our data reveal a novel scaffold represented by MP-HJ-1b that can be developed as a cancer therapeutic against tumors with MDR.Significance: Paclitaxel is a widely used chemotherapeutic drug in patients with multiple types of cancer. However, resistance to paclitaxel is a challenge. This study describes a novel class of microtubule inhibitors with the ability to circumvent multidrug resistance across multiple tumor cell lines. Cancer Res; 78(20); 5949-57. ©2018 AACR.
Collapse
Affiliation(s)
- Nannan Ning
- State Key Laboratory for Medical Genomics, Shanghai Institute of Hematology, Collaborative Innovation Center of Hematology, Collaborative Innovation Center of System Biology, Ruijin Hospital, School of Life Sciences and Biotechnology and School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yamei Yu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Collaborative Innovation Center for Biotherapy, Sichuan University, Chengdu, China
| | - Min Wu
- State Key Laboratory for Medical Genomics, Shanghai Institute of Hematology, Collaborative Innovation Center of Hematology, Collaborative Innovation Center of System Biology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ruihong Zhang
- State Key Laboratory for Medical Genomics, Shanghai Institute of Hematology, Collaborative Innovation Center of Hematology, Collaborative Innovation Center of System Biology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ting Zhang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Changjun Zhu
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin, China
| | - Lei Huang
- Key Laboratory of Cell Differentiation and Apoptosis of The Chinese Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Cai-Hong Yun
- Institute of Systems Biomedicine, Department of Biophysics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Cyril H Benes
- Massachusetts General Hospital, Charlestown, Massachusetts
| | - Jianming Zhang
- State Key Laboratory for Medical Genomics, Shanghai Institute of Hematology, Collaborative Innovation Center of Hematology, Collaborative Innovation Center of System Biology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Massachusetts General Hospital, Charlestown, Massachusetts
| | - Xianming Deng
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, China.
| | - Qiang Chen
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Collaborative Innovation Center for Biotherapy, Sichuan University, Chengdu, China.
| | - Ruibao Ren
- State Key Laboratory for Medical Genomics, Shanghai Institute of Hematology, Collaborative Innovation Center of Hematology, Collaborative Innovation Center of System Biology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Department of Biology, Brandeis University, Waltham, Massachusetts
| |
Collapse
|
27
|
Adamska A, Falasca M. ATP-binding cassette transporters in progression and clinical outcome of pancreatic cancer: What is the way forward? World J Gastroenterol 2018; 24:3222-3238. [PMID: 30090003 PMCID: PMC6079284 DOI: 10.3748/wjg.v24.i29.3222] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 05/31/2018] [Accepted: 06/27/2018] [Indexed: 02/06/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most aggressive diseases and is characterized by high chemoresistance, leading to the lack of effective therapeutic approaches and grim prognosis. Despite increasing understanding of the mechanisms of chemoresistance in cancer and the role of ATP-binding cassette (ABC) transporters in this resistance, the therapeutic potential of their pharmacological inhibition has not been successfully exploited yet. In spite of the discovery of potent pharmacological modulators of ABC transporters, the results obtained in clinical trials have been so far disappointing, with high toxicity levels impairing their successful administration to the patients. Critically, although ABC transporters have been mostly studied for their involvement in development of multidrug resistance (MDR), in recent years the contribution of ABC transporters to cancer initiation and progression has emerged as an important area of research, the understanding of which could significantly influence the development of more specific and efficient therapies. In this review, we explore the role of ABC transporters in the development and progression of malignancies, with focus on PDAC. Their established involvement in development of MDR will be also presented. Moreover, an emerging role for ABC transporters as prognostic tools for patients' survival will be discussed, demonstrating the therapeutic potential of ABC transporters in cancer therapy.
Collapse
Affiliation(s)
- Aleksandra Adamska
- Metabolic Signalling Group, School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth 6102, WA, Australia
| | - Marco Falasca
- Metabolic Signalling Group, School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth 6102, WA, Australia
| |
Collapse
|
28
|
Zhong X, Xiang H, Wang T, Zhong L, Ming D, Nie L, Cao F, Li B, Cao J, Mu D, Ruan K, Wang L, Wang D. A novel inhibitor of the new antibiotic resistance protein OptrA. Chem Biol Drug Des 2018; 92:1458-1467. [PMID: 29671947 DOI: 10.1111/cbdd.13311] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 03/12/2018] [Accepted: 03/29/2018] [Indexed: 01/08/2023]
Abstract
The antibiotic resistance (ARE) subfamily of ABC (ATP-binding cassette) proteins confers resistance to a variety of clinically important ribosome-targeting antibiotics and plays an important role in infections caused by pathogenic bacteria. However, inhibitors of ARE proteins have rarely been reported. Here, OptrA, a new member of the ARE proteins, was used to study inhibitors of these types of proteins. We first confirmed that destroying the catalytic activity of OptrA could restore the sensitivity of host cells to antibiotics. Then, fragment-based screening, a drug screening method, was used to screen for inhibitors of OptrA. The competitive saturation transfer difference experiments, docking, and molecular dynamics were used to determine the binding sites and mode of interactions between OptrA and fragment screening hits. In this study, we first find a novel and specific inhibitor of OptrA (CP1), which suppressed the ATPase activity of OptrA in vitro by 30%. A hydrogen bond formed between the 8-position phenylcyclic cyano group in CP1 and the amino acid residue Lys-271 allows CP1 to form a stable complex with OptrA protein. These findings provide a theoretical basis for the further optimization of the inhibitor structure to obtain inhibitors with higher efficiencies.
Collapse
Affiliation(s)
- Xiaobo Zhong
- College of Animal Science, Jilin University, Changchun, China
| | - Hua Xiang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Tiedong Wang
- College of Animal Science, Jilin University, Changchun, China
| | - Ling Zhong
- College of Animal Science, Jilin University, Changchun, China
| | - Di Ming
- College of Animal Science, Jilin University, Changchun, China
| | - Linyan Nie
- College of Animal Science, Jilin University, Changchun, China
| | - Fengjiao Cao
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Bangbang Li
- College of Animal Science, Jilin University, Changchun, China
| | - Junjie Cao
- College of Animal Science, Jilin University, Changchun, China
| | - Dan Mu
- College of Animal Science, Jilin University, Changchun, China
| | - Ke Ruan
- Hefei National Laboratory for Physical Science at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China
| | - Lin Wang
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Dacheng Wang
- College of Animal Science, Jilin University, Changchun, China
| |
Collapse
|
29
|
Kanonenberg K, Spitz O, Erenburg IN, Beer T, Schmitt L. Type I secretion system—it takes three and a substrate. FEMS Microbiol Lett 2018; 365:4966979. [DOI: 10.1093/femsle/fny094] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 04/09/2018] [Indexed: 12/20/2022] Open
Affiliation(s)
- Kerstin Kanonenberg
- Institute of Biochemistry, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Olivia Spitz
- Institute of Biochemistry, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Isabelle N Erenburg
- Institute of Biochemistry, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Tobias Beer
- Institute of Biochemistry, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Lutz Schmitt
- Institute of Biochemistry, Heinrich Heine University, 40225 Düsseldorf, Germany
| |
Collapse
|
30
|
Luo YL, Ma GX, Luo YF, Kuang CY, Jiang AY, Li GQ, Zhou RQ. Tissue expression pattern of ABCG transporter indicates functional roles in reproduction of Toxocara canis. Parasitol Res 2018; 117:775-782. [PMID: 29423531 DOI: 10.1007/s00436-018-5751-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 01/05/2018] [Indexed: 01/16/2023]
Abstract
Toxocara canis is a zoonotic parasite with worldwide distribution. ATP-binding cassette (ABC) transporters are integral membrane proteins which involve in a range of biological processes in various organisms. In present study, the full-length coding sequence of abcg-5 gene of T. canis (Tc-abcg-5) was cloned and characterized. A 633 aa polypeptide containing two conserved Walker A and Walker B motifs was predicted from a continuous 1902 nt open reading frame. Quantitative real-time PCR was employed to determine the transcriptional levels of Tc-abcg-5 gene in adult male and female worms, which indicated high mRNA level of Tc-abcg-5 in the reproductive tract of adult female T. canis. Tc-abcg-5 was expressed to produce rabbit polyclonal antiserum against recombinant TcABCG5. Indirect-fluorescence immunohistochemical assays were carried out to detect the tissue distribution of TcABCG5, which showed predominant distribution of TcABCG5 in the uterus (especially in the germ cells) of adult female T. canis. Tissue transcription and expression pattern of Tc-abcg-5 indicated that Tc-abcg-5 might play essential roles in the reproduction of this parasitic nematode.
Collapse
Affiliation(s)
- Yong-Li Luo
- College of Animal Science, Southwest University, Chongqing, 402460, People's Republic of China
| | - Guang-Xu Ma
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Yong-Fang Luo
- College of Animal Science, Southwest University, Chongqing, 402460, People's Republic of China
| | - Ce-Yan Kuang
- College of Animal Science, Southwest University, Chongqing, 402460, People's Republic of China
| | - Ai-Yun Jiang
- College of Animal Science, Southwest University, Chongqing, 402460, People's Republic of China
| | - Guo-Qing Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, People's Republic of China.
| | - Rong-Qiong Zhou
- College of Animal Science, Southwest University, Chongqing, 402460, People's Republic of China.
| |
Collapse
|
31
|
Badowska-Kozakiewicz AM, Sobol M, Patera J. Expression of multidrug resistance protein P-glycoprotein in correlation with markers of hypoxia (HIF-1α, EPO, EPO-R) in invasive breast cancer with metastasis to lymph nodes. Arch Med Sci 2017; 13:1303-1314. [PMID: 29181060 PMCID: PMC5701689 DOI: 10.5114/aoms.2016.62723] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Accepted: 09/21/2016] [Indexed: 11/21/2022] Open
Abstract
INTRODUCTION Overexpression of the mdr-1 gene is the earliest discovered mechanism of multidrug resistance, which is associated with P-glycoprotein (P-gp) - a cell membrane protein responsible for the efflux of drugs of various structures out of cancer cells. Although the expression of P-glycoprotein has been demonstrated in many cancer types, its relation to markers of hypoxia such as HIF-1α, EPO-R or EPO in invasive breast cancer is not well established. The aim of this research was to analyze the co-expression of P-glycoprotein and the markers of tissue hypoxia HIF-1α, EPO, and EPO-R by immunohistochemistry in invasive breast cancer classified according to the presence of steroid receptors and the HER2 receptors. MATERIAL AND METHODS Tissue samples were collected from 58 patients with the diagnosis of invasive breast cancer with lymph node metastases. The expression of P-gp, HIF-1α, EPO-R and EPO was determined by immunohistochemistry. RESULTS Of all the invasive breast cancers with lymph node metastases, 15.5% expressed P-gp in cell membrane and tumor blood vessels. In our research, there was a significant positive correlation between HER2-positive tumors that did not express steroid receptors (ER-/PR-/HER2+), and P-gp expression (p = 0.049, r = 0.105). Moreover, there was a significant positive correlation between EPO expression and P-gp (p < 0.001, r = 0.474), and between HIF-1α expression and P-gp (p = 0.00475, r = 0.371). CONCLUSIONS We found that HIF-1α and EPO expression is significantly associated with P-gp expression in invasive breast cancer with lymph node metastases. An important result of our study is the demonstration of a correlation between P-gp expression and patients with HER2-positive breast tumors that do not express steroid receptors.
Collapse
Affiliation(s)
| | - Maria Sobol
- Department of Human Biophysics and Physiology, Medical University of Warsaw, Warsaw, Poland
| | - Janusz Patera
- Department of Pathomorphology, Military Institute of Health Services, Warsaw, Poland
| |
Collapse
|
32
|
Růžička M, Kulhánek P, Radová L, Čechová A, Špačková N, Fajkusová L, Réblová K. DNA mutation motifs in the genes associated with inherited diseases. PLoS One 2017; 12:e0182377. [PMID: 28767725 PMCID: PMC5540541 DOI: 10.1371/journal.pone.0182377] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 07/17/2017] [Indexed: 11/18/2022] Open
Abstract
Mutations in human genes can be responsible for inherited genetic disorders and cancer. Mutations can arise due to environmental factors or spontaneously. It has been shown that certain DNA sequences are more prone to mutate. These sites are termed hotspots and exhibit a higher mutation frequency than expected by chance. In contrast, DNA sequences with lower mutation frequencies than expected by chance are termed coldspots. Mutation hotspots are usually derived from a mutation spectrum, which reflects particular population where an effect of a common ancestor plays a role. To detect coldspots/hotspots unaffected by population bias, we analysed the presence of germline mutations obtained from HGMD database in the 5-nucleotide segments repeatedly occurring in genes associated with common inherited disorders, in particular, the PAH, LDLR, CFTR, F8, and F9 genes. Statistically significant sequences (mutational motifs) rarely associated with mutations (coldspots) and frequently associated with mutations (hotspots) exhibited characteristic sequence patterns, e.g. coldspots contained purine tract while hotspots showed alternating purine-pyrimidine bases, often with the presence of CpG dinucleotide. Using molecular dynamics simulations and free energy calculations, we analysed the global bending properties of two selected coldspots and two hotspots with a G/T mismatch. We observed that the coldspots were inherently more flexible than the hotspots. We assume that this property might be critical for effective mismatch repair as DNA with a mutation recognized by MutSα protein is noticeably bent.
Collapse
Affiliation(s)
- Michal Růžička
- CEITEC—Central European Institute of Technology, Masaryk University, Kamenice 5, Brno, Czech Republic
- Department of Condensed Matter Physics, Faculty of Science, Masaryk University, Kotlářská 2, Brno, Czech Republic
| | - Petr Kulhánek
- CEITEC—Central European Institute of Technology, Masaryk University, Kamenice 5, Brno, Czech Republic
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, Brno, Czech Republic
| | - Lenka Radová
- CEITEC—Central European Institute of Technology, Masaryk University, Kamenice 5, Brno, Czech Republic
| | - Andrea Čechová
- CEITEC—Central European Institute of Technology, Masaryk University, Kamenice 5, Brno, Czech Republic
| | - Naďa Špačková
- Department of Condensed Matter Physics, Faculty of Science, Masaryk University, Kotlářská 2, Brno, Czech Republic
| | - Lenka Fajkusová
- Centre of Molecular Biology and Gene Therapy, University Hospital Brno and Masaryk University, Jihlavská 20, Brno, Czech Republic
| | - Kamila Réblová
- CEITEC—Central European Institute of Technology, Masaryk University, Kamenice 5, Brno, Czech Republic
- * E-mail:
| |
Collapse
|
33
|
Conserved ABC Transport System Regulated by the General Stress Response Pathways of Alpha- and Gammaproteobacteria. J Bacteriol 2017; 199:JB.00746-16. [PMID: 27994018 DOI: 10.1128/jb.00746-16] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 12/13/2016] [Indexed: 01/24/2023] Open
Abstract
Brucella abortus σE1 is an EcfG family sigma factor that regulates the transcription of dozens of genes in response to diverse stress conditions and is required for maintenance of chronic infection in a mouse model. A putative ATP-binding cassette transporter operon, bab1_0223-bab1_0226, is among the most highly activated gene sets in the σE1 regulon. The proteins encoded by the operon resemble quaternary ammonium-compatible solute importers but are most similar in sequence to the broadly conserved YehZYXW system, which remains largely uncharacterized. Transcription of yehZYXW is activated by the general stress sigma factor σS in Enterobacteriaceae, which suggests a functional role for this transport system in bacterial stress response across the classes Alphaproteobacteria and Gammaproteobacteria We present evidence that B. abortus YehZYXW does not function as an importer of known compatible solutes under physiological conditions and does not contribute to the virulence defect of a σE1-null strain. The sole in vitro phenotype associated with genetic disruption of this putative transport system is reduced growth in the presence of high Li+ ion concentrations. A crystal structure of B. abortus YehZ revealed a class II periplasmic binding protein fold with significant structural homology to Archaeoglobus fulgidus ProX, which binds glycine betaine. However, the structure of the YehZ ligand-binding pocket is incompatible with high-affinity binding to glycine betaine. This is consistent with weak measured binding of YehZ to glycine betaine and related compatible solutes. We conclude that YehZYXW is a conserved, stress-regulated transport system that is phylogenetically and functionally distinct from quaternary ammonium-compatible solute importers.IMPORTANCEBrucella abortus σE1 regulates transcription in response to stressors encountered in its mammalian host and is necessary for maintenance of chronic infection in a mouse model. The functions of the majority of genes regulated by σE1 remain undefined. We present a functional/structural analysis of a conserved putative membrane transport system (YehZYXW) whose expression is strongly activated by σE1 Though annotated as a quaternary ammonium osmolyte uptake system, experimental physiological studies and measured ligand-binding properties of the periplasmic binding protein (PBP), YehZ, are inconsistent with this function. A crystal structure of B. abortus YehZ provides molecular insight into differences between bona fide quaternary ammonium osmolyte importers and YehZ-related proteins, which form a distinct phylogenetic and functional group of PBPs.
Collapse
|
34
|
Lim JC, Thevarajoo S, Selvaratnam C, Goh KM, Shamsir MS, Ibrahim Z, Chong CS. Global transcriptomic response of Anoxybacillus sp. SK 3-4 to aluminum exposure. J Basic Microbiol 2016; 57:151-161. [PMID: 27859397 DOI: 10.1002/jobm.201600494] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 10/23/2016] [Indexed: 01/15/2023]
Abstract
Anoxybacillus sp. SK 3-4 is a Gram-positive, rod-shaped bacterium and a member of family Bacillaceae. We had previously reported that the strain is an aluminum resistant thermophilic bacterium. This is the first report to provide a detailed analysis of the global transcriptional response of Anoxybacillus when the cells were exposed to 600 mg L-1 of aluminum. The transcriptome was sequenced using Illumina MiSeq sequencer. Total of 708 genes were differentially expressed (fold change >2.00) with 316 genes were up-regulated while 347 genes were down-regulated, in comparing to control with no aluminum added in the culture. Based on Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis, the majority of genes encoding for cell metabolism such as glycolysis, sulfur metabolism, cysteine and methionine metabolism were up-regulated; while most of the gene associated with tricarboxylic acid cycle (TCA cycle) and valine, leucine and isoleucine metabolism were down-regulated. In addition, a significant number of the genes encoding ABC transporters, metal ions transporters, and some stress response proteins were also differentially expressed following aluminum exposure. The findings provide further insight and help us to understand on the resistance of Anoxybacillus sp. SK 3-4 toward aluminium.
Collapse
Affiliation(s)
- Jia Chun Lim
- Faculty of Biosciences and Medical Engineering, Universiti Teknologi Malaysia, Skudai, Johor, Malaysia
| | - Suganthi Thevarajoo
- Faculty of Biosciences and Medical Engineering, Universiti Teknologi Malaysia, Skudai, Johor, Malaysia
| | - Chitra Selvaratnam
- Faculty of Biosciences and Medical Engineering, Universiti Teknologi Malaysia, Skudai, Johor, Malaysia
| | - Kian Mau Goh
- Faculty of Biosciences and Medical Engineering, Universiti Teknologi Malaysia, Skudai, Johor, Malaysia
| | - Mohd Shahir Shamsir
- Faculty of Biosciences and Medical Engineering, Universiti Teknologi Malaysia, Skudai, Johor, Malaysia
| | - Zaharah Ibrahim
- Faculty of Biosciences and Medical Engineering, Universiti Teknologi Malaysia, Skudai, Johor, Malaysia
| | - Chun Shiong Chong
- Faculty of Biosciences and Medical Engineering, Universiti Teknologi Malaysia, Skudai, Johor, Malaysia
| |
Collapse
|
35
|
Identification and Regulation of Genes for Cobalamin Transport in the Cyanobacterium Synechococcus sp. Strain PCC 7002. J Bacteriol 2016; 198:2753-61. [PMID: 27457716 DOI: 10.1128/jb.00476-16] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 07/19/2016] [Indexed: 01/16/2023] Open
Abstract
UNLABELLED The cyanobacterium Synechococcus sp. strain PCC 7002 is a cobalamin auxotroph and utilizes this coenzyme solely for the synthesis of l-methionine by methionine synthase (MetH). Synechococcus sp. strain PCC 7002 is unable to synthesize cobalamin de novo, and because of the large size of this tetrapyrrole, an active-transport system must exist for cobalamin uptake. Surprisingly, no cobalamin transport system was identified in the initial annotation of the genome of this organism. With more sophisticated in silico prediction tools, a btuB-cpdA-btuC-btuF operon encoding components putatively required for a B12 uptake (btu) system was identified. The expression of these genes was predicted to be controlled by a cobalamin riboswitch. Global transcriptional profiling by high-throughput RNA sequencing of a cobalamin-independent form of Synechococcus sp. strain PCC 7002 grown in the absence or presence of cobalamin confirmed regulation of the btu operon by cobalamin. Pérez et al. (A. A. Pérez, Z. Liu, D. A. Rodionov, Z. Li, and D. A. Bryant, J Bacteriol 198:2743-2752, 2016, http://dx.doi.org/10.1128/JB.00475-16) developed a cobalamin-dependent yellow fluorescent protein reporter system in a Synechococcus sp. strain PCC 7002 variant that had been genetically modified to allow cobalamin-independent growth. This reporter system was exploited to validate components of the btu uptake system by assessing the ability of targeted mutants to transport cobalamin. The btuB promoter and a variant counterpart mutated in an essential element of the predicted cobalamin riboswitch were fused to a yfp reporter. The combined data indicate that the btuB-cpdA-btuF-btuC operon in this cyanobacterium is transcriptionally regulated by a cobalamin riboswitch. IMPORTANCE With a cobalamin-regulated reporter system for expression of yellow fluorescent protein, genes previously misidentified as encoding subunits of a siderophore transporter were shown to encode components of cobalamin uptake in the cyanobacterium Synechococcus sp. strain PCC 7002. This study demonstrates the importance of experimental validation of in silico predictions and provides a general scheme for in vivo verification of similar cobalamin transport systems. A putative cobalamin riboswitch was identified in Synechococcus sp. strain PCC 7002. This riboswitch acts as a potential transcriptional attenuator of the btu operon that encodes the components of the cobalamin active-transport system.
Collapse
|
36
|
Toro L, Bohovic R, Matuskova M, Smolkova B, Kucerova L. Metastatic Ovarian Cancer Can Be Efficiently Treated by Genetically Modified Mesenchymal Stromal Cells. Stem Cells Dev 2016; 25:1640-1651. [PMID: 27539058 DOI: 10.1089/scd.2016.0064] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Due to late diagnosis, often recurrence, formation of metastases and resistance to commonly used chemotherapeutics human ovarian carcinoma represents a serious disease with high mortality. Adipose tissue-derived mesenchymal stromal cells (AT-MSC) can serve as vehicles for therapeutic genes and we engineered AT-MSC to express either Herpes simplex virus thymidine kinase (HSVtk-MSC), which phosphorylates ganciclovir (GCV) to its toxic metabolites or yeast fused cytosine deaminase::uracil phosphoribosyltransferase (CD::UPRT-MSC), which converts 5-fluorocytosine (5-FC) to highly toxic 5-fluorouracil (5-FU). Here, we reported different responses of cytotoxicity mediated by CD::UPRT-MSC/5-FC treatment on human ovarian carcinoma cell lines-SKOV-3 and A2780 used in adherent or three-dimensional (3D) cell culture and we proved high potential of 3D model to predict results in our in vivo experiments. Both tumor cell lines showed similarly high chemosensitivity to the used treatment in adherent culture, but 3D model revealed severe discrepancy-only 36% of SKOV-3 cells but even 90% of A2780 cells were eliminated. This result served as a prognostic marker-we were able to achieve significantly decreased tumor volumes of subcutaneous xenografts of A2780 cells in nude mice and we prolonged tumor-free survival in 33% of animals bearing highly metastatic ovarian carcinoma after CD::UPRT-MSC/5-FC treatment.
Collapse
Affiliation(s)
- Lenka Toro
- 1 Laboratory of Molecular Oncology, Cancer Research Institute , Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Roman Bohovic
- 1 Laboratory of Molecular Oncology, Cancer Research Institute , Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Miroslava Matuskova
- 1 Laboratory of Molecular Oncology, Cancer Research Institute , Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Bozena Smolkova
- 2 Department of Genetics, Cancer Research Institute , Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Lucia Kucerova
- 1 Laboratory of Molecular Oncology, Cancer Research Institute , Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| |
Collapse
|
37
|
Sobot D, Mura S, Couvreur P. How can nanomedicines overcome cellular-based anticancer drug resistance? J Mater Chem B 2016; 4:5078-5100. [DOI: 10.1039/c6tb00900j] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
This review discusses the mechanisms of anticancer drug resistance according to its cellular level of action and outlines the nanomedicine-based strategies adopted to overcome it.
Collapse
Affiliation(s)
- Dunja Sobot
- Institut Galien Paris-Sud
- UMR 8612
- CNRS
- Univ. Paris-Sud
- Université Paris-Saclay
| | - Simona Mura
- Institut Galien Paris-Sud
- UMR 8612
- CNRS
- Univ. Paris-Sud
- Université Paris-Saclay
| | - Patrick Couvreur
- Institut Galien Paris-Sud
- UMR 8612
- CNRS
- Univ. Paris-Sud
- Université Paris-Saclay
| |
Collapse
|
38
|
Hsu WL, Furuta T, Sakurai M. Analysis of the Free Energy Landscapes for the Opening-Closing Dynamics of the Maltose Transporter ATPase MalK2 Using Enhanced-Sampling Molecular Dynamics Simulation. J Phys Chem B 2015; 119:9717-25. [PMID: 26158224 DOI: 10.1021/acs.jpcb.5b05432] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Protein dynamics are considered significant for many physiological processes, such as metabolism, biomolecular recognition, and the regulation of several vital cellular processes. Due to their flexibility, proteins may stay in different substates with or without the existence of the cognate substrates. To describe these phenomena, two models have been proposed: the "induced fit" and the "conformational selection" mechanisms. In this study, we used MalK2, the subunits that mainly include the nucleotide-binding domains (NBDs) of the maltose transporter from Escherichia coli, as a target to understand the NBD dimerization mechanism. Accelerated and conventional molecular dynamics have been performed. The results revealed that Mg-ATP binding to MalK2 led to a significant change in the free energy profile and thus stabilized the closed conformation. On the contrary, when Mg-ATP was removed, the open conformation would be favored. The fact that ligand binding induces a drastic free energy change leads to a significant inference: MalK2 dimerization would occur through the induced-fit mechanism rather than the conformational selection mechanism. This study sheds new light on the NBD dimerization mechanism and would be of wide applicability to other ABC transporters.
Collapse
Affiliation(s)
- Wei-Lin Hsu
- Center for Biological Resources and Informatics, Tokyo Institute of Technology, 4259-B-62, Nagatsuta-cho, Midori-ku, Yokohama, 226-8501, Japan
| | - Tadaomi Furuta
- Center for Biological Resources and Informatics, Tokyo Institute of Technology, 4259-B-62, Nagatsuta-cho, Midori-ku, Yokohama, 226-8501, Japan
| | - Minoru Sakurai
- Center for Biological Resources and Informatics, Tokyo Institute of Technology, 4259-B-62, Nagatsuta-cho, Midori-ku, Yokohama, 226-8501, Japan
| |
Collapse
|
39
|
Abstract
ATP-binding cassette 50 (ABC50; also known as ABCF1) binds to eukaryotic initiation factor 2 (eIF2) and is required for efficient translation initiation. An essential step of this process is accurate recognition and selection of the initiation codon. It is widely accepted that the presence and movement of eIF1, eIF1A and eIF5 are key factors in modulating the stringency of start-site selection, which normally requires an AUG codon in an appropriate sequence context. In the present study, we show that expression of ABC50 mutants, which cannot hydrolyse ATP, decreases general translation and relaxes the discrimination against the use of non-AUG codons at translation start sites. These mutants do not appear to alter the association of key initiation factors to 40S subunits. The stringency of start-site selection can be restored through overexpression of eIF1, consistent with the role of that factor in enhancing stringency. The present study indicates that interfering with the function of ABC50 influences the accuracy of initiation codon selection.
Collapse
|
40
|
Simultaneous detection of multiple bioactive pollutants using a multiparametric biochip for water quality monitoring. Biosens Bioelectron 2015; 72:71-9. [PMID: 25957833 DOI: 10.1016/j.bios.2015.04.092] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Revised: 04/26/2015] [Accepted: 04/27/2015] [Indexed: 01/08/2023]
Abstract
Water is a renewable resource but yet finite. Its sustainable usage and the maintenance of a good quality are essential for an intact environment, human life and a stable economy. Emerging technologies aim for a continuous monitoring of water quality, overcoming periodic analytical sampling, and providing information on the current state of inshore waters in real time. So does the here presented cell-based sensor system which uses RLC-18 cells (rat liver cells) as the detection layer for the detection of water pollutants. The electrical read-out of the system, cellular metabolism, oxygen consumption and morphological integrity detects small changes in the water quality and indicates a possible physiological damage caused. A generalized functional linear model was implemented in order to regress the chemicals present in the sample on the electrical read-out. The chosen environmental pollutants to test the system were chlorpyrifos, an organophosphate pesticide, and tetrabromobisphenol A, a flame retardant. Each chemical gives a very characteristic response, but the toxicity is mitigated if both chemicals are present at once. This will focus our attention on the statistical approach which is able to discriminate between these pollutants.
Collapse
|
41
|
Chen F, Gerber S, Korkhov VM, Mireku S, Bucher M, Locher KP, Zenobi R. On the efficiency of NHS ester cross-linkers for stabilizing integral membrane protein complexes. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2015; 26:493-498. [PMID: 25404159 DOI: 10.1007/s13361-014-1035-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Revised: 10/20/2014] [Accepted: 10/21/2014] [Indexed: 06/04/2023]
Abstract
We have previously presented a straightforward approach based on high-mass matrix-assisted laser desorption/ionization (MALDI) mass spectrometry (MS) to study membrane proteins. In addition, the stoichiometry of integral membrane protein complexes could be determined by MALDI-MS, following chemical cross-linking via glutaraldehyde. However, glutaraldehyde polymerizes in solution and reacts nonspecifically with various functional groups of proteins, limiting its usefulness for structural studies of protein complexes. Here, we investigated the capability of N-hydroxysuccinimide (NHS) esters, which react much more specifically, to cross-link membrane protein complexes such as PglK and BtuC(2)D(2). We present clear evidence that NHS esters are capable of stabilizing membrane protein complexes in situ, in the presence of detergents such as DDM, C12E8, and LDAO. The stabilization efficiency strongly depends on the membrane protein structure (i.e, the number of primary amine groups and the distances between primary amines). A minimum number of primary amine groups is required, and the distances between primary amines govern whether a cross-linker with a specific spacer arm length is able to bridge two amine groups.
Collapse
Affiliation(s)
- Fan Chen
- Department of Chemistry and Applied Biosciences, ETH Zürich, 8093, Zürich, Switzerland
| | | | | | | | | | | | | |
Collapse
|
42
|
Clifton MC, Simon MJ, Erramilli SK, Zhang H, Zaitseva J, Hermodson MA, Stauffacher CV. In vitro reassembly of the ribose ATP-binding cassette transporter reveals a distinct set of transport complexes. J Biol Chem 2014; 290:5555-65. [PMID: 25533465 DOI: 10.1074/jbc.m114.621573] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Bacterial ATP-binding cassette (ABC) importers are primary active transporters that are critical for nutrient uptake. Based on structural and functional studies, ABC importers can be divided into two distinct classes, type I and type II. Type I importers follow a strict alternating access mechanism that is driven by the presence of the substrate. Type II importers accept substrates in a nucleotide-free state, with hydrolysis driving an inward facing conformation. The ribose transporter in Escherichia coli is a tripartite complex consisting of a cytoplasmic ATP-binding cassette protein, RbsA, with fused nucleotide binding domains; a transmembrane domain homodimer, RbsC2; and a periplasmic substrate binding protein, RbsB. To investigate the transport mechanism of the complex RbsABC2, we probed intersubunit interactions by varying the presence of the substrate ribose and the hydrolysis cofactors, ATP/ADP and Mg(2+). We were able to purify a full complex, RbsABC2, in the presence of stable, transition state mimics (ATP, Mg(2+), and VO4); a RbsAC complex in the presence of ADP and Mg(2+); and a heretofore unobserved RbsBC complex in the absence of cofactors. The presence of excess ribose also destabilized complex formation between RbsB and RbsC. These observations suggest that RbsABC2 shares functional traits with both type I and type II importers, as well as possessing unique features, and employs a distinct mechanism relative to other ABC transporters.
Collapse
Affiliation(s)
- Matthew C Clifton
- From the Department of Biological Sciences and the Purdue Center for Cancer Research and
| | - Michael J Simon
- From the Department of Biological Sciences and the Purdue Center for Cancer Research and
| | - Satchal K Erramilli
- From the Department of Biological Sciences and the Purdue Center for Cancer Research and
| | - Huide Zhang
- the Department of Biochemistry, Purdue University, West Lafayette, Indiana 47907
| | - Jelena Zaitseva
- the Department of Biochemistry, Purdue University, West Lafayette, Indiana 47907
| | - Mark A Hermodson
- the Department of Biochemistry, Purdue University, West Lafayette, Indiana 47907
| | - Cynthia V Stauffacher
- From the Department of Biological Sciences and the Purdue Center for Cancer Research and
| |
Collapse
|
43
|
Kathawala RJ, Gupta P, Ashby CR, Chen ZS. The modulation of ABC transporter-mediated multidrug resistance in cancer: a review of the past decade. Drug Resist Updat 2014; 18:1-17. [PMID: 25554624 DOI: 10.1016/j.drup.2014.11.002] [Citation(s) in RCA: 548] [Impact Index Per Article: 49.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2014] [Revised: 11/17/2014] [Accepted: 11/20/2014] [Indexed: 12/13/2022]
Abstract
ATP-binding cassette (ABC) transporters represent one of the largest and oldest families of membrane proteins in all extant phyla from prokaryotes to humans, which couple the energy derived from ATP hydrolysis essentially to translocate, among various substrates, toxic compounds across the membrane. The fundamental functions of these multiple transporter proteins include: (1) conserved mechanisms related to nutrition and pathogenesis in bacteria, (2) spore formation in fungi, and (3) signal transduction, protein secretion and antigen presentation in eukaryotes. Moreover, one of the major causes of multidrug resistance (MDR) and chemotherapeutic failure in cancer therapy is believed to be the ABC transporter-mediated active efflux of a multitude of structurally and mechanistically distinct cytotoxic compounds across membranes. It has been postulated that ABC transporter inhibitors known as chemosensitizers may be used in combination with standard chemotherapeutic agents to enhance their therapeutic efficacy. The current paper reviews the advance in the past decade in this important domain of cancer chemoresistance and summarizes the development of new compounds and the re-evaluation of compounds originally designed for other targets as transport inhibitors of ATP-dependent drug efflux pumps.
Collapse
Affiliation(s)
- Rishil J Kathawala
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, USA
| | - Pranav Gupta
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, USA
| | - Charles R Ashby
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, USA.
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, USA.
| |
Collapse
|
44
|
Ma Y, Li X, Cheng S, Wei W, Li Y. MicroRNA-106a confers cisplatin resistance in non-small cell lung cancer A549 cells by targeting adenosine triphosphatase-binding cassette A1. Mol Med Rep 2014; 11:625-32. [PMID: 25339370 DOI: 10.3892/mmr.2014.2688] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2013] [Accepted: 09/12/2014] [Indexed: 11/06/2022] Open
Abstract
MicroRNAs (miRNAs) have been discovered to have pivotal roles in regulating the drug resistance of various types of human cancer, including cisplatin (DDP) resistance in non-small cell lung cancer (NSCLC). Fewer studies have explored the roles of miR-106a in NSCLC-cell resistance to DDP and its precise molecular mechanism has remained elusive. In the present study, whether miR-106a was able to mediate resistance of the lung cancer cell line A549 to DDP was investigated. Reverse transcription quantitative polymerase chain reaction was used to analyze miR-106a mRNA expression levels. miR-106a expression levels were upregulated in the DDP-resistant cell line A549/DDP compared with its parental cell line, A549. miR-106a-transfection induced DDP-resistance in A549 cells, while repression of miR-106a by anti-miR-106a in A549/DDP resulted in enhanced DDP cytotoxicity. Furthermore, it was discovered that the mechanism of miR-106a-induced DDP resistance involved the expression of adenosine triphosphatase-binding cassette, sub-family A, member 1 (ABCA1), as indicated by transfection of cells with short interfering RNA-ABCA1. The results of the present study suggested a novel mechanism underlying DDP-resistance in NSCLC.
Collapse
Affiliation(s)
- Yanxin Ma
- Department of Nuclear Medicine, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Xuenan Li
- Department of Nuclear Medicine, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Song Cheng
- Department of Nuclear Medicine, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Wei Wei
- Department of Nuclear Medicine, General Hospital of Daqing Oil Field, Daqing, Heilongjiang 163000, P.R. China
| | - Yaming Li
- Department of Nuclear Medicine, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| |
Collapse
|
45
|
Fifteen novel immunoreactive proteins of Chinese virulent Haemophilus parasuis serotype 5 verified by an immunoproteomic assay. Folia Microbiol (Praha) 2014; 60:81-7. [PMID: 25200063 DOI: 10.1007/s12223-014-0343-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Accepted: 08/25/2014] [Indexed: 11/27/2022]
Abstract
Haemophilus parasuis (H. parasuis) is associated with meningitis, polyserositis, polyarthritis and bacterial pneumonia. At present, its prevention and control is difficult because of the lack of suitable subunit vaccines. Nowadays, high-throughput methods, immunoproteomics, are available to screen for more vaccine candidates. A protein extraction method for H. parasuis and two-dimensional electrophoresis (2-DE) were optimized to provide high-resolution profiles covering pH 3 to 10. Twenty immunoreactive spots were excised from gels after strict comparison between 2-DE Western blot membranes and the relevant gels. Matrix-assisted laser desorption/ionization-time of flight-mass spectrometry (MALDI-TOF-MS) and MALDI-TOF-TOF-MS successfully identified 16 different proteins. Fifteen of them were reported as immunoreactive proteins in H. parasuis for the first time. In addition, recombinant HP5-7 (ABC transporter, periplasmic-binding protein) showed immunoreactivity both with hyperimmune rabbit serum and convalescent swine serum. Four recombinants of the 14 successfully expressed genes showed immunoreactivity with hyperimmune rabbit serum.
Collapse
|
46
|
Tyrosine kinase inhibitors as reversal agents for ABC transporter mediated drug resistance. Molecules 2014; 19:13848-77. [PMID: 25191874 PMCID: PMC6271846 DOI: 10.3390/molecules190913848] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 08/25/2014] [Accepted: 08/29/2014] [Indexed: 01/27/2023] Open
Abstract
Tyrosine kinases (TKs) play an important role in pathways that regulate cancer cell proliferation, apoptosis, angiogenesis and metastasis. Aberrant activity of TKs has been implicated in several types of cancers. In recent years, tyrosine kinase inhibitors (TKIs) have been developed to interfere with the activity of deregulated kinases. These TKIs are remarkably effective in the treatment of various human cancers including head and neck, gastric, prostate and breast cancer and several types of leukemia. However, these TKIs are transported out of the cell by ATP-binding cassette (ABC) transporters, resulting in development of a characteristic drug resistance phenotype in cancer patients. Interestingly, some of these TKIs also inhibit the ABC transporter mediated multi drug resistance (MDR) thereby; enhancing the efficacy of conventional chemotherapeutic drugs. This review discusses the clinically relevant TKIs and their interaction with ABC drug transporters in modulating MDR.
Collapse
|
47
|
Nuruzzaman M, Zhang R, Cao HZ, Luo ZY. Plant pleiotropic drug resistance transporters: transport mechanism, gene expression, and function. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2014; 56:729-40. [PMID: 24645852 DOI: 10.1111/jipb.12196] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Accepted: 03/17/2014] [Indexed: 05/08/2023]
Abstract
Pleiotropic drug resistance (PDR) transporters belonging to the ABCG subfamily of ATP-binding cassette (ABC) transporters are identified only in fungi and plants. Members of this family are expressed in plants in response to various biotic and abiotic stresses and transport a diverse array of molecules across membranes. Although their detailed transport mechanism is largely unknown, they play important roles in detoxification processes, preventing water loss, transport of phytohormones, and secondary metabolites. This review provides insights into transport mechanisms of plant PDR transporters, their expression profiles, and multitude functions in plants.
Collapse
Affiliation(s)
- Mohammed Nuruzzaman
- Molecular Biology Research Center, School of Life Sciences, Central South University, Changsha, 410078, China
| | | | | | | |
Collapse
|
48
|
A single intact ATPase site of the ABC transporter BtuCD drives 5% transport activity yet supports full in vivo vitamin B12 utilization. Proc Natl Acad Sci U S A 2013; 110:5434-9. [PMID: 23513227 DOI: 10.1073/pnas.1209644110] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
In all kingdoms of life, ATP binding cassette (ABC) transporters are essential to many cellular functions. In this large superfamily of proteins, two catalytic sites hydrolyze ATP to power uphill substrate translocation. A central question in the field concerns the relationship between the two ATPase catalytic sites: Are the sites independent of one another? Are both needed for function? Do they function cooperatively? These issues have been resolved for type I ABC transporters but never for a type II ABC transporter. The many mechanistic differences between type I and type II ABC transporters raise the question whether in respect to ATP hydrolysis the two subtypes are similar or different. We have addressed this question by studying the Escherichia coli vitamin B12 type II ABC transporter BtuCD. We have constructed and purified a series of BtuCD variants where both, one, or none of the ATPase sites were rendered inactive by mutation. We find that, in a membrane environment, the ATPase sites of BtuCD are highly cooperative with a Hill coefficient of 2. We also find that, when one of the ATPase sites is inactive, ATP hydrolysis and vitamin B12 transport by BtuCD is reduced by 95%. These exact features are also shared by the archetypical type I maltose ABC transporter. Remarkably, mutants that have lost 95% of their ATPase and transport capabilities still retain the ability to fully use vitamin B12 in vivo. The results demonstrate that, despite the many differences between type I and type II ABC transporters, the fundamental mechanism of ATP hydrolysis remains conserved.
Collapse
|
49
|
Two molybdate/tungstate ABC transporters that interact very differently with their substrate binding proteins. Proc Natl Acad Sci U S A 2013; 110:5440-5. [PMID: 23513215 DOI: 10.1073/pnas.1213598110] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
In all kingdoms of life, ATP Binding Cassette (ABC) transporters participate in many physiological and pathological processes. Despite the diversity of their functions, they have been considered to operate by a largely conserved mechanism. One deviant is the vitamin B12 transporter BtuCD that has been shown to operate by a distinct mechanism. However, it is unknown if this deviation is an exotic example, perhaps arising from the nature of the transported moiety. Here we compared two ABC importers of identical substrate specificity (molybdate/tungstate), and find that their interactions with their substrate binding proteins are utterly different. One system forms a high-affinity, slow-dissociating complex that is destabilized by nucleotide and substrate binding. The other forms a low-affinity, transient complex that is stabilized by ligands. The results highlight significant mechanistic divergence among ABC transporters, even when they share the same substrate specificity. We propose that these differences are correlated with the different folds of the transmembrane domains of ABC transporters.
Collapse
|
50
|
Abstract
Nucleotide excision repair (NER) has allowed bacteria to flourish in many different niches around the globe that inflict harsh environmental damage to their genetic material. NER is remarkable because of its diverse substrate repertoire, which differs greatly in chemical composition and structure. Recent advances in structural biology and single-molecule studies have given great insight into the structure and function of NER components. This ensemble of proteins orchestrates faithful removal of toxic DNA lesions through a multistep process. The damaged nucleotide is recognized by dynamic probing of the DNA structure that is then verified and marked for dual incisions followed by excision of the damage and surrounding nucleotides. The opposite DNA strand serves as a template for repair, which is completed after resynthesis and ligation.
Collapse
Affiliation(s)
- Caroline Kisker
- Rudolf-Virchow-Center for Experimental Biomedicine, University of Wuerzburg, 97080 Wuerzburg, Germany.
| | | | | |
Collapse
|