1
|
Chakraborty S, Anand S, Numan M, Bhandari RK. Ancestral bisphenol A exposure led to non-alcoholic fatty liver disease and sex-specific alterations in proline and bile metabolism pathways in the liver. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2025; 44:958-972. [PMID: 39953842 PMCID: PMC11933882 DOI: 10.1093/etojnl/vgae081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 11/18/2024] [Accepted: 12/02/2024] [Indexed: 02/17/2025]
Abstract
Endocrine-disrupting chemicals can induce metabolic alterations, resulting in diseases such as obesity, diabetes, and fatty liver disease, which can be inherited by offspring inhabiting uncontaminated environments. Bisphenol A (BPA), a well-known endocrine disruptor, can induce endocrine disruption, leading to metabolic disorders in subsequent generations without further exposure to BPA via nongenetic transgenerational inheritance. Using medaka as an animal model, we reported that ancestral BPA exposure leads to transgenerational nonalcoholic fatty liver disease (NAFLD) in grandchildren four generations after the initial exposure. It is unclear if transgenerational NAFLD developed because ancestral BPA exposure differs from that developed due to direct and continuous BPA exposure because the transgenerational disease develops in the absence of the stressor. We induced transgenerational NAFLD in medaka with ancestral BPA exposure (10 µg/L) at the F0 generation and examined transcriptional and metabolomic alterations in the liver of the F4 generation fish that continued to develop NAFLD. To understand the etiology of NAFLD in unexposed generations, we performed nontargeted liquid chromatography-mass spectrometry-based metabolomic analysis in combination with bulk RNA sequencing and determined biomarkers, co-expressed gene networks, and sex-specific pathways triggered in the liver. An integrated analysis of metabolomic and transcriptional alterations revealed a positive association with the severity of the NAFLD disease phenotype. Females showed increased NAFLD severity and had metabolic disruption involving proline metabolism, tryptophan metabolism, and bile metabolism pathways. The present results provide the transcriptional and metabolomic underpinning of metabolic disruption caused by ancestral BPA exposure, providing avenues for further research to understand the development and progression of transgenerational NAFLD caused by ancestral bisphenol A exposure.
Collapse
Affiliation(s)
- Sourav Chakraborty
- Division of Biological Sciences, University of Missouri, Columbia, MO 65211, United States
| | - Santosh Anand
- Division of Biological Sciences, University of Missouri, Columbia, MO 65211, United States
| | - Muhammad Numan
- Department of Biology, University of North Carolina Greensboro, Greensboro, NC 27412, United States
| | - Ramji Kumar Bhandari
- Division of Biological Sciences, University of Missouri, Columbia, MO 65211, United States
| |
Collapse
|
2
|
Rakkannan G, Mohanty AK, Das II, Nayak S, Sahoo L, Kumar R, Rasal A, Rather MA, Ahmad I, Sundaray JK. Triflumezopyrim induced oxidative stress, DNA damage and apoptosis on Labeo rohita: Insights from Bioinformatics, Histopathological and Molecular approaches. Int J Biol Macromol 2025; 304:140911. [PMID: 39938845 DOI: 10.1016/j.ijbiomac.2025.140911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 01/14/2025] [Accepted: 02/09/2025] [Indexed: 02/14/2025]
Abstract
Triflumezopyrim is a novel mesoionic pesticide used in Asian rice fields to control brown plant hopper, which can reach aquatic environments through drift during application or surface runoff. Thus, this study aimed to investigate the effect of chronic exposure of sub-lethal concentrations of triflumezopyrim (2.468 ppm, 1.480 ppm, and 0.740 ppm) on freshwater carp, Labeo rohita.This study encompassed a multi-pronged approach, including molecular docking studies to elucidate the interactions between triflumezopyrim and selected proteins, an assessment of 8-OHdG (8-hydroxy-2-deoxyguanosine) activity to gauge DNA damage, histopathological examinations to identify cellular alterations, and expression of genes involved in oxidative stress, DNA repair, and apoptosis in L. rohita. We observed dose-dependent responses in 8-OHdG activity and the expression of select genes, with higher concentrations of triflumezopyrim yielding more pronounced transcriptional alterations. Notably, histopathological examinations of liver and brain tissues vividly portrayed the impact of triflumezopyrim on L. rohita. These findings contribute to the assessment of biological toxicity and the environmental footprint left by chemical pollutants such as triflumezopyrim. The study emphasizes the crucial role of monitoring histopathological alterations, 8-OHdG activity and gene expression changes as potential biomarkers for assessing exposures to triflumezopyrim. This research provides valuable insights into the ecological implications of triflumezopyrim in aquatic ecosystems.
Collapse
Affiliation(s)
- Gowrimanohari Rakkannan
- Fish Genetics and Biotechnology Division, ICAR-Central Institute of Freshwater Aquaculture, Bhubaneshwar 751002, India
| | - Aman Kumar Mohanty
- Fish Genetics and Biotechnology Division, ICAR-Central Institute of Freshwater Aquaculture, Bhubaneshwar 751002, India
| | - Ipsita Iswari Das
- Fish Genetics and Biotechnology Division, ICAR-Central Institute of Freshwater Aquaculture, Bhubaneshwar 751002, India
| | - Sipra Nayak
- Fish Genetics and Biotechnology Division, ICAR-Central Institute of Freshwater Aquaculture, Bhubaneshwar 751002, India
| | - Lakshman Sahoo
- Fish Genetics and Biotechnology Division, ICAR-Central Institute of Freshwater Aquaculture, Bhubaneshwar 751002, India
| | - Rajesh Kumar
- Aquaculture Production and Environment Division, ICAR-Central Institute of Freshwater Aquaculture, Bhubaneswar 751002, India
| | - Avinash Rasal
- Fish Genetics and Biotechnology Division, ICAR-Central Institute of Freshwater Aquaculture, Bhubaneshwar 751002, India
| | - Mohd Ashraf Rather
- Division of Fish Genetics and Biotechnology, Faculty of Fisheries Rangil-Ganderbal, SKUAST, Kashmir 190006, India.
| | - Ishtiyaq Ahmad
- Division of Fish Genetics and Biotechnology, Faculty of Fisheries Rangil-Ganderbal, SKUAST, Kashmir 190006, India
| | - Jitendra Kumar Sundaray
- Fish Genetics and Biotechnology Division, ICAR-Central Institute of Freshwater Aquaculture, Bhubaneshwar 751002, India.
| |
Collapse
|
3
|
Chen H, Nisar MA, Mulla J, Li X, Cao K, Lu S, Nagaoka K, Wu S, Ting PS, Tseng TS, Lin HY, Yin XM, Feng W, Wu Z, Cheng Z, Mueller W, Bay A, Schechner L, Bai X, Huang CK. Liver TET1 promotes metabolic dysfunction-associated steatotic liver disease. EMBO Mol Med 2025:10.1038/s44321-025-00224-4. [PMID: 40164757 DOI: 10.1038/s44321-025-00224-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 03/07/2025] [Accepted: 03/12/2025] [Indexed: 04/02/2025] Open
Abstract
Global hepatic DNA methylation change has been linked to human patients with metabolic dysfunction-associated steatotic liver disease (MASLD). DNA demethylation is regulated by the TET family proteins, whose enzymatic activities require 2-oxoglutarate (2-OG) and iron that both are elevated in human MASLD patients. We aimed to investigate liver TET1 in MASLD progression. Depleting TET1 using two different strategies substantially alleviated MASLD progression. Knockout (KO) of TET1 slightly improved diet induced obesity and glucose homeostasis. Intriguingly, hepatic cholesterols, triglycerides, and CD36 were significantly decreased upon TET1 depletion. Consistently, liver specific TET1 KO led to improvement of MASLD progression. Mechanistically, TET1 promoted CD36 expression through transcriptional upregulation via DNA demethylation control. Overexpression of CD36 reversed the impacts of TET1 downregulation on fatty acid uptake in hepatocytes. More importantly, targeting TET1 with a small molecule inhibitor significantly suppressed MASLD progression. Conclusively, liver TET1 plays a deleterious role in MASLD, suggesting the potential of targeting TET1 in hepatocytes to suppress MASLD.
Collapse
Affiliation(s)
- Hongze Chen
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, LA, USA
- Department of Pancreatic and Biliary Surgery, First Affiliated Hospital of Harbin Medical University, 23 Youzheng Street, Nangang District, Harbin, 150001, Heilongjiang Province, China
| | - Muhammad Azhar Nisar
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, LA, USA
| | - Joud Mulla
- Liver Research Center, Division of Gastroenterology & Liver Research Center, Warren Alpert Medical School of Brown University and Rhode Island Hospital, Providence, RI, USA
| | - Xinjian Li
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, LA, USA
- Department of Pancreatic and Biliary Surgery, First Affiliated Hospital of Harbin Medical University, 23 Youzheng Street, Nangang District, Harbin, 150001, Heilongjiang Province, China
| | - Kevin Cao
- Liver Research Center, Division of Gastroenterology & Liver Research Center, Warren Alpert Medical School of Brown University and Rhode Island Hospital, Providence, RI, USA
| | - Shaolei Lu
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School of Brown University, Rhode Island Hospital, Providence, RI, USA
| | - Katsuya Nagaoka
- Liver Research Center, Division of Gastroenterology & Liver Research Center, Warren Alpert Medical School of Brown University and Rhode Island Hospital, Providence, RI, USA
| | - Shang Wu
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, LA, USA
| | - Peng-Sheng Ting
- Department of Medicine, Tulane University School of Medicine, New Orleans, LA, USA
| | - Tung-Sung Tseng
- School of Public Health, Louisiana State University Health Sciences Center, New Orleans, USA
| | - Hui-Yi Lin
- School of Public Health, Louisiana State University Health Sciences Center, New Orleans, USA
| | - Xiao-Ming Yin
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, LA, USA
| | - Wenke Feng
- Department Structural Cellular Biology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Zhijin Wu
- Department of Biostatistics, School of Public Health, Brown University, Providence, RI, USA
| | - Zhixiang Cheng
- Liver Research Center, Division of Gastroenterology & Liver Research Center, Warren Alpert Medical School of Brown University and Rhode Island Hospital, Providence, RI, USA
| | - William Mueller
- Liver Research Center, Division of Gastroenterology & Liver Research Center, Warren Alpert Medical School of Brown University and Rhode Island Hospital, Providence, RI, USA
| | - Amalia Bay
- Liver Research Center, Division of Gastroenterology & Liver Research Center, Warren Alpert Medical School of Brown University and Rhode Island Hospital, Providence, RI, USA
| | - Layla Schechner
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, LA, USA
| | - Xuewei Bai
- Department of Pancreatic and Biliary Surgery, First Affiliated Hospital of Harbin Medical University, 23 Youzheng Street, Nangang District, Harbin, 150001, Heilongjiang Province, China
- Liver Research Center, Division of Gastroenterology & Liver Research Center, Warren Alpert Medical School of Brown University and Rhode Island Hospital, Providence, RI, USA
| | - Chiung-Kuei Huang
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, LA, USA.
| |
Collapse
|
4
|
Zhang Q, Su T, Pan Y, Wang X, Zhang C, Qin H, Li M, Li Q, Li X, Guo J, Wu L, Qin L, Liu T. Malus hupehensis leaves: a functional beverage for alleviating hepatic inflammation and modulating gut microbiota in diabetic mice. Food Funct 2025. [PMID: 40126388 DOI: 10.1039/d4fo05325g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/25/2025]
Abstract
Malus hupehensis leaves (MHL), consumed as a daily beverage in Chinese folk tradition and recently recognized as a new food material, are abundant in polyphenols and bioactive compounds that demonstrate hypoglycemic, lipid-lowering, and anti-inflammatory effects. However, the antidiabetic mechanisms have not been fully elucidated. This study aimed to investigate the protective mechanisms of Malus hupehensis leaves' extract (MHLE) against type 2 diabetes mellitus (T2DM). The results showed that MHLE effectively ameliorated glucose and lipid metabolic abnormalities in db/db mice, and attenuated hepatic macrophage activation. Transcriptomic analysis of the liver revealed that MHLE primarily affects genes involved in inflammatory responses and inhibited the TLR4/MAPK pathway to reduce hepatic inflammation. Metagenomic sequencing identified changes in gut microbiota composition and showed that MHLE restored the abundance of Lachnospiraceae bacterium, Oscillospiraceae bacterium, and Clostridia bacterium while reducing the abundance of Escherichia coli, thereby ameliorating gut dysbiosis. The integrated regulation of metabolism, immune response, and the microbial environment by MHLE significantly alleviated symptoms of T2DM. This study offers strong scientific evidence for the potential use of MHL as a functional food.
Collapse
Affiliation(s)
- Qiue Zhang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 102488, China
- Key Laboratory of Health Cultivation of the Ministry of Education, Beijing University of Chinese Medicine, Beijing, 102488, China.
| | - Tong Su
- Key Laboratory of Health Cultivation of the Ministry of Education, Beijing University of Chinese Medicine, Beijing, 102488, China.
- Dongfang Hospital of Beijing University of Chinese Medicine, Beijing, 100078, China
| | - Yajing Pan
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Xiaomeng Wang
- Key Laboratory of Health Cultivation of the Ministry of Education, Beijing University of Chinese Medicine, Beijing, 102488, China.
| | - Chengfei Zhang
- Dongfang Hospital of Beijing University of Chinese Medicine, Beijing, 100078, China
| | - Huizhao Qin
- Key Laboratory of Health Cultivation of the Ministry of Education, Beijing University of Chinese Medicine, Beijing, 102488, China.
- Dongfang Hospital of Beijing University of Chinese Medicine, Beijing, 100078, China
| | - Mingxiu Li
- Key Laboratory of Health Cultivation of the Ministry of Education, Beijing University of Chinese Medicine, Beijing, 102488, China.
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Qingsong Li
- Key Laboratory of Health Cultivation of the Ministry of Education, Beijing University of Chinese Medicine, Beijing, 102488, China.
- Shaanxi University of Chinese Medicine, Xianyang, 712046, China
| | - Xiaochen Li
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 102488, China
- Key Laboratory of Health Cultivation of the Ministry of Education, Beijing University of Chinese Medicine, Beijing, 102488, China.
| | - Jiangfan Guo
- Key Laboratory of Health Cultivation of the Ministry of Education, Beijing University of Chinese Medicine, Beijing, 102488, China.
- Shaanxi University of Chinese Medicine, Xianyang, 712046, China
| | - Lili Wu
- Key Laboratory of Health Cultivation of the Ministry of Education, Beijing University of Chinese Medicine, Beijing, 102488, China.
| | - Lingling Qin
- Key Laboratory of Health Cultivation of the Ministry of Education, Beijing University of Chinese Medicine, Beijing, 102488, China.
| | - Tonghua Liu
- Key Laboratory of Health Cultivation of the Ministry of Education, Beijing University of Chinese Medicine, Beijing, 102488, China.
| |
Collapse
|
5
|
Mohallem R, Schaser AJ, Aryal UK. Proteomic and phosphoproteomic signatures of aging mouse liver. GeroScience 2025:10.1007/s11357-025-01601-0. [PMID: 40087212 DOI: 10.1007/s11357-025-01601-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Accepted: 03/04/2025] [Indexed: 03/17/2025] Open
Abstract
The liver is a metabolic powerhouse, crucial for regulating carbohydrates, fats, and protein metabolism. In this study, we conducted a comparative proteomic and phosphoproteomic analysis of aging mouse livers from young adults (3-4 months) and old (19-21 months) mice to identify age-related changes in liver proteins and phosphosites, which were linked to various metabolic pathways. In old mice, proteins associated with the "complement and coagulation cascade," "age-rage signaling in diabetic complications," and "biosynthesis of unsaturated fatty acids" were increased, while those linked to "oxidative phosphorylation," "steroid hormone biosynthesis," and "tryptophan metabolism" were decreased. Interestingly, aging was marked by a significant decrease in liver protein phosphorylation, with nearly 90% of significant phosphosites being downregulated. Pathway analysis of the downregulated phosphosites highlighted connections to "non-small cell lung cancer," "lysine degradation," "cell differentiation," and "glycerophospholipid metabolism." Decreased phosphorylation of several kinases that are linked to cell proliferation, particularly those in the MAPK signaling pathway, including Erk1, EGFR, RAF1, and BRAF was also observed highlighting their important role in the liver. This study identified an important relationship between proteins, phosphosites, and their connections to known as well as new pathways, expanding upon our current knowledge and providing a basis for future studies focused on age-related metabolic traits.
Collapse
Affiliation(s)
- Rodrigo Mohallem
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN, 47907, USA
| | - Allison J Schaser
- Department of Speech, Language, and Hearing Sciences, Purdue University, West Lafayette, IN, 47907, USA.
| | - Uma K Aryal
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN, 47907, USA.
- Bindley Bioscience Center, Purdue University, West Lafayette, IN, 47907, USA.
| |
Collapse
|
6
|
Feng J, MengHuan L, TingTing Y, XueJie Y, HaiNing G. Research progress on AMPK in the pathogenesis and treatment of MASLD. Front Immunol 2025; 16:1558041. [PMID: 40134423 PMCID: PMC11932893 DOI: 10.3389/fimmu.2025.1558041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Accepted: 02/21/2025] [Indexed: 03/27/2025] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD; formerly known as non-alcoholic fatty liver disease, NAFLD) has become one of the most prevalent chronic liver diseases worldwide, with its incidence continuously rising alongside the epidemic of metabolic disorders. AMP-activated protein kinase (AMPK), as a key regulator of cellular energy metabolism, influences multiple pathological processes associated with MASLD. This review systematically summarizes the regulatory roles of AMPK in lipid metabolism, inflammatory response, cell apoptosis, and fibrosis. Additionally, it discusses the latest developments of AMPK activators from preclinical to clinical studies, while analyzing the major challenges currently faced and potential strategies for resolution. A deeper understanding of AMPK regulatory mechanisms will contribute to the development of more effective therapeutic approaches for MASLD.
Collapse
Affiliation(s)
- Jiang Feng
- School of Exercise and Health, Shenyang Sport University, Shenyang, China
| | - Li MengHuan
- School of Physical Education, Liaoning Normal University, Dalian, China
| | - Yao TingTing
- School of Exercise and Health, Shenyang Sport University, Shenyang, China
| | - Yi XueJie
- School of Exercise and Health, Shenyang Sport University, Shenyang, China
| | - Gao HaiNing
- School of Exercise and Health, Shenyang Sport University, Shenyang, China
| |
Collapse
|
7
|
Yang X, Huang J, Wang J, Sun H, Li J, Li S, Tang YE, Wang Z, Song Q. Effect of glucose selenol on hepatic lipid metabolism disorder induced by heavy metal cadmium in male rats. Biochim Biophys Acta Mol Cell Biol Lipids 2025; 1870:159589. [PMID: 39674492 DOI: 10.1016/j.bbalip.2024.159589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 12/10/2024] [Accepted: 12/11/2024] [Indexed: 12/16/2024]
Abstract
This study used 24 male rats to determine the protective effects of a new selenium molecule (glucose selenol) on cadmium (Cd) induced hepatic toxicity. The rats were randomly divided into four groups: control group, Cd group, Cd + 0.15 Se group, and Cd + 0.4 Se group. The results showed that glucose selenol supplementation alleviated the adverse impact of Cd on lipid metabolism, including decreased serum triacylglycerol and cholesterol levels. Transcriptome analysis revealed that, compared to the control group, Cd changed the expression of 1379 genes - discernibly affecting lipid metabolism pathways. Proteomic analysis primarily indicated alterations in lipid metabolism-related pathways. In conclusion, glucose selenol restored lipid metabolism disorders induced by Cd, thus rescuing hepatic damage. This integrated analysis identified the influence of glucose selenol on Cd-induced hepatic toxicity and provided its potential application prospects in alleviating the impact of heavy metal pollution, such as Cd, on human health.
Collapse
Affiliation(s)
- Xinyi Yang
- College of Life Science, Hunan Normal University, Changsha 410006, Hunan, China.
| | - Jinzhou Huang
- College of Life Science, Hunan Normal University, Changsha 410006, Hunan, China
| | - Juan Wang
- College of Life Science, Hunan Normal University, Changsha 410006, Hunan, China
| | - Huimin Sun
- College of Life Science, Hunan Normal University, Changsha 410006, Hunan, China
| | - JinJin Li
- College of Life Science, Hunan Normal University, Changsha 410006, Hunan, China
| | - Shunfeng Li
- College of Life Science, Hunan Normal University, Changsha 410006, Hunan, China
| | - Yun-E Tang
- College of Life Science, Hunan Normal University, Changsha 410006, Hunan, China
| | - Zhi Wang
- College of Life Science, Hunan Normal University, Changsha 410006, Hunan, China.
| | - Qisheng Song
- Division of Plant Sciences and Technology, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
8
|
Baik S, Qianshi Y, Park S, Lee H, Heo H, Lee J, Yuan C, Sung J. Flavonoid Derivatives Isolated from Hypericum monogynum Ameliorate Insulin Resistance via Modulation of IRS-1/PI3K/Akt/FOXO1 Pathway in HepG2 Cells. J Med Food 2025; 28:243-255. [PMID: 39711189 DOI: 10.1089/jmf.2024.k.0242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2024] Open
Abstract
In this study, two high-content flavonoid derivatives [3-8 biapigenin (HM 104) and quercetin-3-O-β-d-galactopyranoside (HM 111)] were obtained through the bioactivity-guided isolation of antidiabetic compounds from Hypericum monogynum flowers. HM 104 and HM 111 exhibited good glucose consumption in fatty acid-induced insulin-resistant HepG2 cells. Moreover, both active compounds enhanced glucose uptake by restoring the expression of key regulators of glucose metabolism, including insulin receptor substrate 1, phosphoinositide 3-kinase, protein kinase B, and glucose transporter type 4, and by mitigating the expression of forkhead box O1 and the factors involved in gluconeogenesis. They upregulate the phosphorylation of glycogen synthase kinase-3β, which may affect glycogen synthesis. Furthermore, the production of reactive oxygen species was decreased by the two compounds. This study provides novel mechanistic insights into the protective effects of flavonoid derivatives isolated from H. monogynum flowers in preventing and managing insulin resistance and associated metabolic disorders.
Collapse
Affiliation(s)
- Seungjoo Baik
- Department of Food Science and Biotechnology, Chungbuk National University, Cheongju, Korea
| | - Yunhua Qianshi
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, P.R. China
- Natural Products Research Center of Guizhou Province, Guiyang, P.R. China
| | - Samuel Park
- Department of Food Science and Biotechnology, Andong National University, Andong, Korea
| | - Hana Lee
- Department of Food Science and Biotechnology, Chungbuk National University, Cheongju, Korea
| | - Huijin Heo
- Department of Food Science and Biotechnology, Chungbuk National University, Cheongju, Korea
| | - Junsoo Lee
- Department of Food Science and Biotechnology, Chungbuk National University, Cheongju, Korea
| | - Chunmao Yuan
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, P.R. China
| | - Jeehye Sung
- Department of Food Science and Biotechnology, Andong National University, Andong, Korea
| |
Collapse
|
9
|
Xia Y, Wang Y, Xiong Q, He J, Wang H, Islam M, Zhou X, Kim A, Zhang H, Huang H, Tsung A. Neutrophil extracellular traps promote MASH fibrosis by metabolic reprogramming of HSC. Hepatology 2025; 81:947-961. [PMID: 38266270 PMCID: PMC11881075 DOI: 10.1097/hep.0000000000000762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 12/20/2023] [Indexed: 01/26/2024]
Abstract
BACKGROUND AND AIMS Metabolic dysfunction-associated steatohepatitis (MASH) fibrosis is a reversible stage of liver disease accompanied by inflammatory cell infiltration. Neutrophils extrude a meshwork of chromatin fibers to establish neutrophil extracellular traps (NETs), which play important roles in inflammatory response regulation. Our previous work demonstrated that NETs promote HCC in MASH. However, it is still unknown if NETs play a role in the molecular mechanisms of liver fibrosis. APPROACH AND RESULTS Following 12 weeks of Western diet/carbon tetrachloride, MASH fibrosis was identified in C57BL/6 mice with increased NET formation. However, NET depletion using DNase I treatment or mice knocked out for peptidyl arginine deaminase type IV significantly attenuated the development of MASH fibrosis. NETs were demonstrated to induce HSCs activation, proliferation, and migration through augmented mitochondrial and aerobic glycolysis to provide additional bioenergetic and biosynthetic supplies. Metabolomic analysis revealed markedly an altered metabolic profile upon NET stimulation of HSCs that were dependent on arachidonic acid metabolism. Mechanistically, NET stimulation of toll-like receptor 3 induced cyclooxygenase-2 activation and prostaglandin E2 production with subsequent HSC activation and liver fibrosis. Inhibiting cyclooxygenase-2 with celecoxib reduced fibrosis in our MASH model. CONCLUSIONS Our findings implicate NETs playing a critical role in the development of MASH hepatic fibrosis by inducing metabolic reprogramming of HSCs through the toll-like receptor 3/cyclooxygenase-2/cyclooxygenase-2 pathway. Therefore, NET inhibition may represent an attractive treatment target for MASH liver fibrosis.
Collapse
Affiliation(s)
- Yujia Xia
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Department of Surgery, Division of Surgical Oncology, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Yu Wang
- Department of Surgery, Division of Surgical Oncology, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
- Institute of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Qi Xiong
- Institute of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jiayi He
- Department of Surgery, Division of Surgical Oncology, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Han Wang
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Department of Surgery, Division of Surgical Oncology, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Mozaffarul Islam
- Department of Surgery, Division of Surgical Oncology, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Xinyu Zhou
- Department of Surgery, University of Virginia, Charlottesville, Virginia, USA
| | - Alex Kim
- Department of Surgery, Division of Surgical Oncology, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Hongji Zhang
- Department of Surgery, University of Virginia, Charlottesville, Virginia, USA
| | - Hai Huang
- Feinstein Institutes for Medical Research, Manhasset, New York, USA
| | - Allan Tsung
- Department of Surgery, University of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|
10
|
Cuzziol Boccioni AP, Lajmanovich RC, Attademo AM, Lener G, Lien-Medrano CR, Simoniello MF, Repetti MR, Peltzer PM. Toxicity of pesticide cocktails in amphibian larvae: understanding the impact of agricultural activity on aquatic ecosystems in the Salado River basin, Argentina. Drug Chem Toxicol 2025; 48:247-265. [PMID: 39402966 DOI: 10.1080/01480545.2024.2412023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/14/2024] [Accepted: 09/29/2024] [Indexed: 02/25/2025]
Abstract
Aquatic communities are increasingly exposed to complex mixtures of contaminants, mainly pesticides due to the impact of agricultural activity. The aim of this study was to evaluate the toxicity of an eight-pesticide cocktail on larvae of the South American common toad, Rinella arenarum. The cocktail represents a realistic mixture of insecticides (cypermethrin, chlorpyrifos and lambda-cyhalothrin), herbicides (glyphosate, glufosinate ammonium, prometryn and metolachlor), and a fungicide (pyraclostrobin) previously found in aquatic organisms (Prochilodus lineatus) from the Salado River Basin, an area with strong agricultural pressure. Computational simulations through the Density Functional Tight-Binding method indicated a strong spontaneous trend toward the formation of the cocktail, suggesting that it may act as a novel xenobiotic entity in the environment. The cocktail effects were evaluated in early-developing and premetamorphic larvae, at feasible concentrations found in real scenarios. The mixture led to high mortality and teratogenicity in early-developing larvae. Premetamorphic larvae showed endocrine disruption, oxidative stress, and impairments in detoxification and hepatic functioning. Neurotoxicity, genotoxicity, cardiotoxicity and high mortality under stress conditions were also observed in exposed larvae. This novel evaluation highlights the ecotoxicological risk for aquatic organisms exposed to complex mixtures and underscores the need to consider cocktail effects in studies regarding ecosystems health.
Collapse
Affiliation(s)
- Ana P Cuzziol Boccioni
- Laboratorio de Ecotoxicología, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
- Consejo Nacional de Investigaciones Científicas Técnicas (CONICET), Buenos Aires, Argentina
| | - Rafael C Lajmanovich
- Laboratorio de Ecotoxicología, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
- Consejo Nacional de Investigaciones Científicas Técnicas (CONICET), Buenos Aires, Argentina
| | - Andrés M Attademo
- Laboratorio de Ecotoxicología, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
- Consejo Nacional de Investigaciones Científicas Técnicas (CONICET), Buenos Aires, Argentina
| | - German Lener
- INFIQC-Conicet, Departamento de Química Teórica y Computacional, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Argentina
| | - Carlos R Lien-Medrano
- Bremen Center for Computational Materials Science, University of Bremen, Bremen, Germany
| | - María Fernanda Simoniello
- Cátedra de Toxicología, Farmacología y Bioquímica Legal, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Ciudad Universitaria, Santa Fe, Argentina
| | - Maria Rosa Repetti
- Programa de Investigación y Análisis de Residuos y Contaminantes Químicos, Facultad de Ingeniería Química, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Paola M Peltzer
- Laboratorio de Ecotoxicología, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
- Consejo Nacional de Investigaciones Científicas Técnicas (CONICET), Buenos Aires, Argentina
| |
Collapse
|
11
|
Cruz LLD, Sinzato YK, Paula VG, Fioretto MN, Gallego FQ, Barco VS, Camargo ACL, Corrente JE, Justulin LA, Rodrigues T, Volpato GT, Damasceno DC. Maternal hyperglycemia and postnatal high-fat diet impair metabolic regulation and autophagy response in the liver of adult female rats. J Dev Orig Health Dis 2025; 16:e11. [PMID: 39973168 DOI: 10.1017/s204017442400045x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
This study aimed to investigate the mechanisms by which the association between maternal hyperglycemia and postnatal high-fat diet (HFD) exposure compromises metabolic parameters and hepatic autophagy in adult female pups. For this, Sprague Dawley rats, female pups from nondiabetic (control = FC) or diabetic (FD) mothers, were fed a standard diet (SD) or HFD from weaning until adulthood (n minimum = 5 rats/group): FC/SD, FC/HFD, FD/SD, and FD/HFD. In adulthood, these rats were tested with the oral glucose tolerance test, euthanized, and serum biochemistry parameters were analyzed. Liver samples were collected to evaluate cytokines, redox status, and protein expression autophagy and apoptosis markers. Histomorphometric analyses and an assessment of lipofuscin accumulation were also performed to reflect incomplete autolysosomal digestion. The FC/HFD, FD/SD, and FD/HFD groups showed glucose intolerance and an increased number of hepatocytes. Furthermore, FD/SD and FD/HFD rats showed hyperlipidemia and insulin resistance. Adaptations in hepatic redox pathways were observed in the FD/SD group with increased antioxidant defense marker activity. The FD/SD group also exhibited increased autophagy protein expression, such as p-AMPK, LC3-II/LC3-I, and p62/SQSTM1, lipofuscin accumulation, and caspase-3 activation. After exposure to HFD, the adult female pups of diabetic rats had a reduced p-AMPK and LC3-II/LC3-I ratio, the presence of steatosis, oxidative stress, and inflammation. The reduction of autophagy, stimulated by HFD, may be of vital importance for the susceptibility to metabolic dysfunction-associated fatty liver disease induced by maternal diabetes.
Collapse
Affiliation(s)
- Larissa Lopes da Cruz
- Postgraduate Course on Tocogynecology and Laboratory of Experimental Research on Gynecology and Obstetrics - UNIPEX, Botucatu Medical School, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
- Institute of Biological and Health Sciences, Laboratory of System Physiology and Reproductive Toxicology, Federal University of Mato Grosso (UFMT), Barra do Garças, Mato Grosso, Brazil
| | - Yuri Karen Sinzato
- Postgraduate Course on Tocogynecology and Laboratory of Experimental Research on Gynecology and Obstetrics - UNIPEX, Botucatu Medical School, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - Verônyca Gonçalves Paula
- Postgraduate Course on Tocogynecology and Laboratory of Experimental Research on Gynecology and Obstetrics - UNIPEX, Botucatu Medical School, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - Matheus Naia Fioretto
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - Franciane Quintanilha Gallego
- Postgraduate Course on Tocogynecology and Laboratory of Experimental Research on Gynecology and Obstetrics - UNIPEX, Botucatu Medical School, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - Vinícius Soares Barco
- Postgraduate Course on Tocogynecology and Laboratory of Experimental Research on Gynecology and Obstetrics - UNIPEX, Botucatu Medical School, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - Ana Carolina Lima Camargo
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - José Eduardo Corrente
- Research Support Office, Botucatu Medical School, Sao Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - Luis Antonio Justulin
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - Tiago Rodrigues
- Center of Natural and Human Sciences (CCNH), Federal University of ABC (UFABC), Santo André, São Paulo, Brazil
| | - Gustavo Tadeu Volpato
- Institute of Biological and Health Sciences, Laboratory of System Physiology and Reproductive Toxicology, Federal University of Mato Grosso (UFMT), Barra do Garças, Mato Grosso, Brazil
| | - Débora Cristina Damasceno
- Postgraduate Course on Tocogynecology and Laboratory of Experimental Research on Gynecology and Obstetrics - UNIPEX, Botucatu Medical School, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| |
Collapse
|
12
|
Ma X, Huang T, Chen X, Li Q, Liao M, Fu L, Huang J, Yuan K, Wang Z, Zeng Y. Molecular mechanisms in liver repair and regeneration: from physiology to therapeutics. Signal Transduct Target Ther 2025; 10:63. [PMID: 39920130 PMCID: PMC11806117 DOI: 10.1038/s41392-024-02104-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 09/02/2024] [Accepted: 12/12/2024] [Indexed: 02/09/2025] Open
Abstract
Liver repair and regeneration are crucial physiological responses to hepatic injury and are orchestrated through intricate cellular and molecular networks. This review systematically delineates advancements in the field, emphasizing the essential roles played by diverse liver cell types. Their coordinated actions, supported by complex crosstalk within the liver microenvironment, are pivotal to enhancing regenerative outcomes. Recent molecular investigations have elucidated key signaling pathways involved in liver injury and regeneration. Viewed through the lens of metabolic reprogramming, these pathways highlight how shifts in glucose, lipid, and amino acid metabolism support the cellular functions essential for liver repair and regeneration. An analysis of regenerative variability across pathological states reveals how disease conditions influence these dynamics, guiding the development of novel therapeutic strategies and advanced techniques to enhance liver repair and regeneration. Bridging laboratory findings with practical applications, recent clinical trials highlight the potential of optimizing liver regeneration strategies. These trials offer valuable insights into the effectiveness of novel therapies and underscore significant progress in translational research. In conclusion, this review intricately links molecular insights to therapeutic frontiers, systematically charting the trajectory from fundamental physiological mechanisms to innovative clinical applications in liver repair and regeneration.
Collapse
Affiliation(s)
- Xiao Ma
- Division of Liver Surgery, Department of General Surgery and Laboratory of Liver Surgery, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Tengda Huang
- Division of Liver Surgery, Department of General Surgery and Laboratory of Liver Surgery, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Xiangzheng Chen
- Division of Liver Surgery, Department of General Surgery and Laboratory of Liver Surgery, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Qian Li
- Division of Liver Surgery, Department of General Surgery and Laboratory of Liver Surgery, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Mingheng Liao
- Division of Liver Surgery, Department of General Surgery and Laboratory of Liver Surgery, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Li Fu
- Division of Liver Surgery, Department of General Surgery and Laboratory of Liver Surgery, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Jiwei Huang
- Division of Liver Surgery, Department of General Surgery and Laboratory of Liver Surgery, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Kefei Yuan
- Division of Liver Surgery, Department of General Surgery and Laboratory of Liver Surgery, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Zhen Wang
- Division of Liver Surgery, Department of General Surgery and Laboratory of Liver Surgery, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China.
| | - Yong Zeng
- Division of Liver Surgery, Department of General Surgery and Laboratory of Liver Surgery, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China.
| |
Collapse
|
13
|
Kubota N, Kubota T, Kadowaki T. Physiological and pathophysiological actions of insulin in the liver. Endocr J 2025; 72:149-159. [PMID: 39231651 PMCID: PMC11850106 DOI: 10.1507/endocrj.ej24-0192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 06/21/2024] [Indexed: 09/06/2024] Open
Abstract
The liver plays an important role in the control of glucose homeostasis. When insulin levels are low, such as in the fasting state, gluconeogenesis and glycogenolysis are stimulated to maintain the blood glucose levels. Conversely, in the presence of increased insulin levels, such as after a meal, synthesis of glycogen and lipid occurs to maintain the blood glucose levels within normal range. Insulin receptor signaling regulates glycogenesis, gluconeogenesis and lipogenesis through downstream pathways such as the insulin receptor substrate (IRS)-phosphoinositide 3 (PI3) kinase-Akt pathway. IRS-1 and IRS-2 are abundantly expressed in the liver and are thought to be responsible for transmitting the insulin signal from the insulin receptor to the intracellular effectors involved in the regulation of glucose and lipid homeostasis. Impaired insulin receptor signaling can cause hepatic insulin resistance and lead to type 2 diabetes. In the present study, we focus on a concept called "selective insulin resistance," which has received increasing attention recently: the frequent coexistence of hyperglycemia and hepatic steatosis in people with type 2 diabetes and obesity suggests that it is possible for the insulin signaling regulating gluconeogenesis to be impaired even while that regulating lipogenesis is preserved, suggestive of selective insulin resistance. In this review, we review the progress in research on the insulin actions and insulin signaling in the liver.
Collapse
Affiliation(s)
- Naoto Kubota
- Department of Metabolic Medicine, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Tetsuya Kubota
- Division of Diabetes and Metabolism, The Institute of Medical Science, Asahi Life Foundation, Tokyo 103-0002, Japan
| | | |
Collapse
|
14
|
Park SY, Cho Y, Son SM, Hur JH, Kim Y, Oh H, Lee HY, Jung S, Park S, Kim IY, Lee SJ, Choi CS. Activin E is a new guardian protecting against hepatic steatosis via inhibiting lipolysis in white adipose tissue. Exp Mol Med 2025; 57:466-477. [PMID: 39948368 PMCID: PMC11873131 DOI: 10.1038/s12276-025-01403-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 10/21/2024] [Accepted: 12/11/2024] [Indexed: 03/04/2025] Open
Abstract
Hepatic endoplasmic reticulum (ER) stress is implicated in the development of steatosis and its progression to nonalcoholic steatohepatitis (NASH). The ER in the liver can sustain metabolic function by activating defense mechanisms that delay or prevent the progression of nonalcoholic fatty liver disease (NAFLD). However, the precise mechanisms by which the ER stress response protects against NAFLD remain largely unknown. Recently, activin E has been linked to metabolic diseases such as insulin resistance and NAFLD. However, the physiological conditions and regulatory mechanisms driving hepatic Inhbe expression (which encodes activin E) as well as the metabolic role of activin E in NAFLD require further investigation. Here we found that hepatic Inhbe expression increased under prolonged fasting and ER stress conditions, which was mediated by ATF4, as determined by promoter analysis in a mouse model. Consistently, a positive correlation between INHBE and ATF4 expression levels in relation to NAFLD status was confirmed using public human NAFLD datasets. To investigate the role of activin E in hepatic steatosis, we assessed the fluxes of the lipid metabolism in an Inhbe-knockout mouse model. These mice displayed a lean phenotype but developed severe hepatic steatosis under a high-fat diet. The deficiency of Inhbe resulted in increased lipolysis in adipose tissue, leading to increased fatty acid influx into the liver. Conversely, hepatic overexpression of Inhbe ameliorated hepatic steatosis by suppressing lipolysis in adipose tissue through ALK7-Smad signaling. In conclusion, activin E serves as a regulatory hepatokine that prevents fatty acid influx into the liver, thereby protecting against NAFLD.
Collapse
Affiliation(s)
- Shi-Young Park
- Korea Mouse Metabolic Phenotyping Center, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, Republic of Korea
- Gachon Biomedical Convergence Institute, Gachon University Gil Medical Center, Incheon, Republic of Korea
| | - Yoonil Cho
- Korea Mouse Metabolic Phenotyping Center, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, Republic of Korea
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon, Republic of Korea
| | - Sae-Mi Son
- Korea Mouse Metabolic Phenotyping Center, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, Republic of Korea
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon, Republic of Korea
| | - Jang Ho Hur
- Korea Mouse Metabolic Phenotyping Center, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, Republic of Korea
| | - Yeongmin Kim
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon, Republic of Korea
- Integrative Metabolic Fluxomics Lab, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, Republic of Korea
| | - Hyunhee Oh
- Korea Mouse Metabolic Phenotyping Center, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, Republic of Korea
- Gachon Biomedical Convergence Institute, Gachon University Gil Medical Center, Incheon, Republic of Korea
| | - Hui-Young Lee
- Korea Mouse Metabolic Phenotyping Center, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, Republic of Korea
- Division of Molecular Medicine, Department of Medicine, Gachon University College of Medicine, Incheon, Republic of Korea
| | - Sungwon Jung
- Department of Genome Medicine and Science, Gachon University College of Medicine, Incheon, Republic of Korea
- Gachon Institute of Genome Medicine and Science, Gachon University Gil Medical Center, Incheon, Republic of Korea
| | - Sanghee Park
- Integrative Metabolic Fluxomics Lab, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, Republic of Korea
- Department of Exercise Rehabilitation, Gachon University, Incheon, Republic of Korea
| | - Il-Young Kim
- Korea Mouse Metabolic Phenotyping Center, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, Republic of Korea
- Integrative Metabolic Fluxomics Lab, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, Republic of Korea
- Division of Molecular Medicine, Department of Medicine, Gachon University College of Medicine, Incheon, Republic of Korea
| | - Se-Jin Lee
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
- Department of Genetics and Genome Sciences, University of Connecticut School of Medicine, Farmington, CT, USA
| | - Cheol Soo Choi
- Korea Mouse Metabolic Phenotyping Center, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, Republic of Korea.
- Division of Molecular Medicine, Department of Medicine, Gachon University College of Medicine, Incheon, Republic of Korea.
- Endocrinology, Internal Medicine, Gachon University Gil Medical Center, Incheon, Republic of Korea.
| |
Collapse
|
15
|
Zhao Y, Zhao S, Liu S, Ye W, Chen WD. Kupffer cells, the limelight in the liver regeneration. Int Immunopharmacol 2025; 146:113808. [PMID: 39673997 DOI: 10.1016/j.intimp.2024.113808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 11/25/2024] [Accepted: 12/04/2024] [Indexed: 12/16/2024]
Abstract
Kupffer cells are pivotal in initiating hepatocyte proliferation and establishing connections between different cell types during liver regeneration following partial hepatectomy. As resident macrophages within the liver, Kupffer cells collaborate with hepatocytes and non-parenchymal cells to release various inflammatory mediators that promote hepatocyte proliferation through induction signals like STAT3 phosphorylation. Additionally, the regeneration and replenishment of Kupffer cells themselves are integral components of liver regeneration. The supplementation of the Kupffer cell pool primarily occurs through two pathways: one involves local proliferation of Kupffer cells in their original location, while the other entails infiltration of circulating monocytes into the liver, followed by acquiring Kupffer cell phenotypes under the combined influence of multiple inducing factors. Extensive research has focused on intercellular crosstalk among various types of liver cells during liver regeneration, highlighting the crucial role played by Kupffer cells. This article aims to introduce Kupffer cells and their involvement in liver regeneration, as well as discuss the steady-state balance of Kupffer cell pools during this process.
Collapse
Affiliation(s)
- Yang Zhao
- Key Laboratory of Receptors-Mediated Gene Regulation and Drug Discovery, School of Basic Medical Science, Inner Mongolia Medical University, Hohhot, China; Key Laboratory of Receptors-Mediated Gene Regulation, Hebi Key Laboratory of Liver Disease, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Shizhen Zhao
- Key Laboratory of Receptors-Mediated Gene Regulation and Drug Discovery, School of Basic Medical Science, Inner Mongolia Medical University, Hohhot, China; The First Affiliated Hospital of Henan University, Kaifeng, China
| | - Shiwei Liu
- Key Laboratory of Receptors-Mediated Gene Regulation, Hebi Key Laboratory of Liver Disease, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Wenling Ye
- Key Laboratory of Receptors-Mediated Gene Regulation and Drug Discovery, School of Basic Medical Science, Inner Mongolia Medical University, Hohhot, China; Key Laboratory of Receptors-Mediated Gene Regulation, Hebi Key Laboratory of Liver Disease, School of Basic Medical Sciences, Henan University, Kaifeng, China.
| | - Wei-Dong Chen
- Key Laboratory of Receptors-Mediated Gene Regulation and Drug Discovery, School of Basic Medical Science, Inner Mongolia Medical University, Hohhot, China; Key Laboratory of Receptors-Mediated Gene Regulation, Hebi Key Laboratory of Liver Disease, School of Basic Medical Sciences, Henan University, Kaifeng, China.
| |
Collapse
|
16
|
Amirkhizi F, Taghizadeh M, Khalese-Ranjbar B, Hamedi-Shahraki S, Asghari S. The clinical value of serum sirtuin-1 concentration in the diagnosis of metabolic dysfunction-associated steatotic liver disease. BMC Gastroenterol 2025; 25:27. [PMID: 39844087 PMCID: PMC11753077 DOI: 10.1186/s12876-025-03613-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 01/14/2025] [Indexed: 01/24/2025] Open
Abstract
BACKGROUND Metabolic dysfunction-associated steatotic liver disease (MASLD) is the most prevalent chronic liver disease and can affect individuals without producing any symptoms. We aimed to explore the value of serum sirtuin-1 (Sirt-1) in the diagnosis of MASLD. METHODS This case-control study analyzed data collected from 190 individuals aged 20 to 60 years. Anthropometric parameters, demographic information, and serum biochemical variables-including glycemic parameters, lipid profiles, liver enzymes, and Sirt-1 levels-were assessed. The correlation between serum Sirt-1 and biochemical variables was examined using Pearson's correlation coefficient. Receiver operating characteristic (ROC) curve analysis was employed to evaluate the diagnostic value of serum Sirt-1 in the context of MASLD. RESULTS Serum Sirt-1 levels was significantly lower in the MASLD group (p < 0.001) and was inversely correlated with serum insulin (r = -0.163, p = 0.025), HOMA-IR (r = -0.169, p = 0.020) and triglyceride (r = -0.190, p = 0.009) and positively correlated with serum levels of high-density lipoprotein cholesterol (HDL-C) (r = 0.214, p = 0.003). The area under the curve (AUC) of Sirt-1 to predict the presence of MASLD was 0.76 (p < 0.001, 95% CI: 0.69, 0.82) with a sensitivity of 78.9, specificity of 61.1, positive predictive value (PPV) of 67.0%, and negative predictive value (NPV) of 74.0%. The optimal cutoff, determined using Youden's index, was 23.75 ng/mL. This indicates that serum Sirt-1 levels below 23.75 ng/mL may be indicative of MASLD. CONCLUSIONS The present study demonstrated that serum Sirt-1 levels were significantly lower in patients with MASLD. Furthermore, these levels were correlated with various metabolic parameters, including insulin resistance and the serum lipid profile. A serum Sirt-1 level below the cutoff of 23.75 ng/mL exhibited a significant association with the presence of MASLD, suggesting its potential utility in identifying patients with this condition.
Collapse
Affiliation(s)
- Farshad Amirkhizi
- Department of Nutrition, School of Public Health, Zabol University of Medical Sciences, Zabol, Iran
| | - Mahdiyeh Taghizadeh
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, No#44, Hojjatdoust St., Naderi St., Keshavarz Blvd, Tehran, 141556117, Iran
| | - Banafshe Khalese-Ranjbar
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, No#44, Hojjatdoust St., Naderi St., Keshavarz Blvd, Tehran, 141556117, Iran
| | - Soudabeh Hamedi-Shahraki
- Department of Epidemiology and Biostatistics, School of Public Health, Zabol University of Medical Sciences, Zabol, Iran
| | - Somayyeh Asghari
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, No#44, Hojjatdoust St., Naderi St., Keshavarz Blvd, Tehran, 141556117, Iran.
| |
Collapse
|
17
|
Tian Y, Gong J, He Z, Peng S, Huan Y, Cao H. Impact of protein intake from a caloric-restricted diet on liver lipid metabolism in overweight and obese rats of different sexes. Sci Rep 2025; 15:2340. [PMID: 39833384 PMCID: PMC11747403 DOI: 10.1038/s41598-025-86596-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 01/13/2025] [Indexed: 01/22/2025] Open
Abstract
In addition to being linked to an excess of lipid accumulation in the liver, being overweight or obese can also result in disorders of lipid metabolism. There is limited understanding regarding whether different levels of protein intake within an energy-restricted diet affect liver lipid metabolism in overweight and obese rats and whether these effects differ by gender, despite the fact that both high protein intake and calorie restriction can improve intrahepatic lipid. The purpose of this study is to explore the effects and mechanisms of different protein intakes within a calorie-restricted diet on liver lipid metabolism, and to investigate whether these effects exhibit gender differences. The Sprague-Dawley rats, which were half female and half male, were used to construct a rat model of overweight and obesity attributed to a high-fat diet. They were then split up into five groups: the normal control (NC) group, the model control (MC) group, the calorie-restricted low protein (LP) group, the calorie-restricted normal protein (NP) group, and the calorie-restricted high protein (HP) group. Body weight was measured weekly. Samples of plasma and liver were obtained after eight weeks and analyzed for glucose, triglycerides, cholesterol, and hormones in the plasma as well as the liver fat and factors involved in the liver's synthesis and degradation. For the male rats, compared to the HP group, the weight of liver fat in the LP and NP group was significantly higher (P < 0.05). However, for the female rats, there was no significant variation among the three calorie-restricted groups (P > 0.05). There was no significant variation in the concentration of total cholesterol (TC), very low density lipoprotein (VLDL), low density lipoprotein (LDL), and high density lipoprotein (HDL) among the three male calorie-restricted groups (P > 0.05), while the TC and VLDL concentrations in the female LP and NP group were significantly higher compared to those in the HP group (P < 0.05). Moreover, the trend of expression in the signaling pathways of adiponectin/phosphorylated AMP-activated protein kinase (p-AMPK) and adiponectin/peroxisome proliferators-activated receptor alpha (PPARα) in the liver was consistent with that of the liver fat content, and leptin acted in the same way as adiponectin. Compared with the three calorie-restricted groups, the expressions of nuclear sterol-regulatory element-binding protein-2 (nSREBP-2) and 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMG-CoA reductase) involved in cholesterol synthesis and low-density lipoprotein receptor (LDLR) and cholesterol 7-alpha hydroxylase (CYP7A1) involved in cholesterol clearance in the MC group were significantly lower (P < 0.05). A 40% energy restriction can significantly reduce the body weight, body fat, liver fat, and the blood concentration of TG in both male and female overweight and obese rats, but it can significantly increase the blood concentration of TC in overweight and obese male rats. At the same time of 40% calorie restriction, increasing dietary protein intake to twice the normal protein intake has a stronger effect on promoting hepatic triglyceride oxidation and reducing liver fat content in the male overweight and obese rats by increasing the levels of adiponectin and leptin in the blood, and can also significantly reduce the plasma cholesterol concentration in the female overweight and obese rats through inhibiting cholesterol synthesis most likely by increasing glucagon level in the blood.
Collapse
Affiliation(s)
- Ying Tian
- Department of Nutrition and Food Hygiene, School of Public Health, Yangzhou University, Yangzhou, China.
| | - Jiawei Gong
- Department of Cuisine and Nutrition, School of Tourism and Cuisine, Yangzhou University, Yangzhou, China
| | - Zhiyan He
- Department of Cuisine and Nutrition, School of Tourism and Cuisine, Yangzhou University, Yangzhou, China
| | - Suwen Peng
- Department of Cuisine and Nutrition, School of Tourism and Cuisine, Yangzhou University, Yangzhou, China
| | - Yuping Huan
- Department of Cuisine and Nutrition, School of Tourism and Cuisine, Yangzhou University, Yangzhou, China
| | - Hongpeng Cao
- Department of Cuisine and Nutrition, School of Tourism and Cuisine, Yangzhou University, Yangzhou, China
| |
Collapse
|
18
|
Moumou M, Tayebi A, Hadini A, Noman OM, Alhalmi A, Ahmoda H, Amrani S, Harnafi H. Combining In Vitro, In Vivo, and In Silico Approaches to Explore the Effect of Ceratonia siliqua and Ocimum basilicum Rich Phenolic Formula on Lipid Metabolism and Plasma Lipoprotein Oxidation in Mice Fed a High-Fat Diet: A Follow-Up Study. Metabolites 2025; 15:36. [PMID: 39852379 PMCID: PMC11767511 DOI: 10.3390/metabo15010036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Revised: 01/06/2025] [Accepted: 01/08/2025] [Indexed: 01/26/2025] Open
Abstract
BACKGROUND/OBJECTIVES Hyperlipidemia is a serious risk factor for cardiovascular diseases and liver steatosis. In this work, we explored the effect of an herbal formula (CBF) containing immature Ceratonia siliqua pods and Ocimum basilicum extracts on lipid metabolism disorders and lipoprotein-rich plasma (LRP) oxidation in mice. METHODS The phenolic composition was determined using HPLC-DAD analysis. The antioxidant activity was studied using various in vitro methods. Acute toxicity was evaluated in mice. Importantly, the effect of the CBF on lipid metabolism disorders was investigated in a high-fat diet (HFD) hyperlipidemia mouse model. An in silico study was carried out to predict underlying mechanisms. RESULTS The HPLC analysis revealed gallic acid, cinnamic acid, and naringenin as major phenolics of the carob pod aqueous extract. Concerning the basil hydro-ethanolic extract, rosmarinic, chicoric, caftaric, and caffeic acids were the main phenolics. Accordingly, the CBF prevented LRP oxidation in a concentration-dependent manner. This formula is not toxic in mice (LD50 > 2000 mg/kg body weight). Moreover, animals administered the CBF at 200 mg/kg/day presented a significant decline in their body weight gain, adipose tissue weight, plasma total cholesterol, low-density lipoprotein cholesterol (LDL-C) level, and glycaemia after 10 weeks' treatment. Accordingly, the CBF decreased the plasma atherogenic index and the LDL-C to HDL-C ratio and reduced the level of fats accumulated in the liver. The molecular docking study revealed that chicoric, rosmarinic, and caftaric acids, and naringenin bound particularly strongly to many proteins involved in the regulation of lipid and cholesterol metabolism. This includes the HMG-CoA reductase, PPARα/γ, PCSK9, Cyp7a1, and ATP-citrate lyase. CONCLUSIONS The CBF could be a good source of natural supplements, functional foods, and pharmaceuticals effective in managing hyperlipidemia and oxidative stress and preventing their related cardiovascular disorders.
Collapse
Affiliation(s)
- Mohammadine Moumou
- Laboratory of Bioresources, Biotechnologies, Ethnopharmacology and Health, Faculty of Sciences, University Mohammed First, Oujda 60000, Morocco; (M.M.); (A.T.); (A.H.); (S.A.)
| | - Amani Tayebi
- Laboratory of Bioresources, Biotechnologies, Ethnopharmacology and Health, Faculty of Sciences, University Mohammed First, Oujda 60000, Morocco; (M.M.); (A.T.); (A.H.); (S.A.)
| | - Abderrahmane Hadini
- Laboratory of Bioresources, Biotechnologies, Ethnopharmacology and Health, Faculty of Sciences, University Mohammed First, Oujda 60000, Morocco; (M.M.); (A.T.); (A.H.); (S.A.)
| | - Omar M. Noman
- Department of Pharmacognosy, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia;
| | - Abdulsalam Alhalmi
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India;
| | - Hamza Ahmoda
- Universitätsklinik für Viszerale Chirurgie und Medizin, Universität Bern, 3010 Bern, Switzerland;
| | - Souliman Amrani
- Laboratory of Bioresources, Biotechnologies, Ethnopharmacology and Health, Faculty of Sciences, University Mohammed First, Oujda 60000, Morocco; (M.M.); (A.T.); (A.H.); (S.A.)
| | - Hicham Harnafi
- Laboratory of Bioresources, Biotechnologies, Ethnopharmacology and Health, Faculty of Sciences, University Mohammed First, Oujda 60000, Morocco; (M.M.); (A.T.); (A.H.); (S.A.)
| |
Collapse
|
19
|
Vázquez Salgado AM, Cai C, Lee M, Yin D, Chrystostome ML, Gefre AF, He S, Kieckhaefer JE, Wangensteen KJ. In Vivo CRISPR Activation Screening Reveals Chromosome 1q Genes VPS72, GBA1, and MRPL9 Drive Hepatocellular Carcinoma. Cell Mol Gastroenterol Hepatol 2025; 19:101460. [PMID: 39761726 PMCID: PMC11929076 DOI: 10.1016/j.jcmgh.2025.101460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 12/31/2024] [Accepted: 01/02/2025] [Indexed: 01/28/2025]
Abstract
BACKGROUND & AIMS Hepatocellular carcinoma (HCC) frequently undergoes regional chromosomal amplification, resulting in elevated gene expression levels. We aimed to elucidate the role of these poorly understood genetic changes by using CRISPR activation (CRISPRa) screening in mouse livers to identify which genes within these amplified loci are cancer driver genes. METHODS We used data from The Cancer Genome Atlas to identify that frequently copy number-amplified and up-regulated genes all reside on human chromosomes 1q and 8q. We generated CRISPRa screening transposons that contain oncogenic Myc to drive tumor formation. We conducted CRISPRa screens in vivo in the liver to identify tumor driver genes. We extensively validated the findings in separate mice and performed RNA sequencing analysis to explore mechanisms driving tumorigenesis. RESULTS We targeted genes that frequently undergo amplification in human HCC using an in vivo CRISPRa screening system in mice, which induced extensive liver tumorigenesis. Human chromosome 1q genes Zbtb7b, Vps72, Gba1, and Mrpl9 emerged as drivers of liver tumorigenesis. In human HCC there is a trend in correlation between levels of MRPL9, VPS72, or GBA1 and poor survival. In validation assays, activation of Vps72, Gba1, or Mrpl9 resulted in extensive liver tumorigenesis and decreased survival in mice. RNA sequencing revealed different mechanisms driving HCC, with Mrpl9 activation altering genes functionally related to mitochondrial function, Vps72 levels altering phospholipid metabolism, and Gba1 activation enhancing endosomal-lysosomal activity, all leading to promotion of cellular proliferation. Analysis of human tumor tissues with high levels of MRPL9, VPS72, or GBA1 revealed congruent results, indicating conserved mechanisms driving HCC. CONCLUSIONS This study reveals chromosome 1q genes Vps72, Gba1, and Mrpl9 as drivers of HCC. Future efforts to prevent or treat HCC can focus on these new driver genes.
Collapse
Affiliation(s)
- Alexandra M Vázquez Salgado
- Department of Medicine, Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota; Pharmacology Graduate Program, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Chunmiao Cai
- Department of Medicine, Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | - Markcus Lee
- Department of Medicine, Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | - Dingzi Yin
- Department of Medicine, Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | - Marie-Lise Chrystostome
- Department of Medicine, Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | - Adrienne F Gefre
- Department of Medicine, Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | - Shirui He
- College of Arts & Sciences, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Julia E Kieckhaefer
- Department of Medicine, Division of Gastroenterology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Kirk J Wangensteen
- Department of Medicine, Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota.
| |
Collapse
|
20
|
Sun J, Jin X, Li Y. OTUD7B inhibited hepatic injury from NAFLD by inhibiting K48-linked ubiquitination and degradation of β-catenin. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167555. [PMID: 39520879 DOI: 10.1016/j.bbadis.2024.167555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 09/27/2024] [Accepted: 10/26/2024] [Indexed: 11/16/2024]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the prevalent liver disease. Ovarian tumor domain-containing 7B (OTUD7B) is a deubiquitinating enzyme and its role in NAFLD remains unclear. In high-fat diet (HFD)-induced NAFLD mouse model and palmitic acid (PA)-treated HepG2 cells, OTUD7B expression was decreased. Adenoviral overexpression of OTUD7B in mice resulted in reduced body weight and liver injury, with decreased serum aminotransferase (ALT) and aspartate aminotransferase (AST) levels. OTUD7B overexpression attenuated hepatic lipid deposition (serum TG, TC, LDL-C, HDLC, and FFA levels), which might be through the suppression of lipogenesis and β-oxidation-related genes. The contents of hepatic inflammatory factors (TNF-α, IL-6, and IL-1β) were decreased following OTUD7B overexpression in NAFLD mice. A mechanism study indicated that the protective effect of OTUD7B overexpression might be associated with β-catenin signal activation. OTUD7B overexpression promoted PA-induced β-catenin activity in TopFlash assay, and increased total β-catenin and c-myc levels in cells. The increase in β-catenin levels was contributed to the stabilization via inhibiting K48-linked ubiquitination and proteasomal degradation by OTUD7B. NR4A2 role in NASH has been proved. NR4A2 ChIP-seq and RNA-seq data excluded transcriptional regulation of NR4A2 to OTUD7B, and it was experimentally evidenced that NR4A2 bound to OTUD7B promoter region and positively transcriptionally regulate OTUD7B expression. In summary, OTUD7B overexpression ameliorated hepatic inflammation and steatosis in NAFLD. The possible mechanism of OTUD7B might be through the inhibition of β-catenin degradation by removing K48-linked ubiquitination, which might be regulated by NR4A2.
Collapse
Affiliation(s)
- Jing Sun
- Department of Gastroenterology, the First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Xiuli Jin
- Department of Gastroenterology, the First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yiling Li
- Department of Gastroenterology, the First Hospital of China Medical University, Shenyang, Liaoning, China.
| |
Collapse
|
21
|
Zuo Q, Kang Y. Metabolic Reprogramming and Adaption in Breast Cancer Progression and Metastasis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2025; 1464:347-370. [PMID: 39821033 DOI: 10.1007/978-3-031-70875-6_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
Recent evidence has revealed that cancer is not solely driven by genetic abnormalities but also by significant metabolic dysregulation. Cancer cells exhibit altered metabolic demands and rewiring of cellular metabolism to sustain their malignant characteristics. Metabolic reprogramming has emerged as a hallmark of cancer, playing a complex role in breast cancer initiation, progression, and metastasis. The different molecular subtypes of breast cancer exhibit distinct metabolic genotypes and phenotypes, offering opportunities for subtype-specific therapeutic approaches. Cancer-associated metabolic phenotypes encompass dysregulated nutrient uptake, opportunistic nutrient acquisition strategies, altered utilization of glycolysis and TCA cycle intermediates, increased nitrogen demand, metabolite-driven gene regulation, and metabolic interactions with the microenvironment. The tumor microenvironment, consisting of stromal cells, immune cells, blood vessels, and extracellular matrix components, influences metabolic adaptations through modulating nutrient availability, oxygen levels, and signaling pathways. Metastasis, the process of cancer spread, involves intricate steps that present unique metabolic challenges at each stage. Successful metastasis requires cancer cells to navigate varying nutrient and oxygen availability, endure oxidative stress, and adapt their metabolic processes accordingly. The metabolic reprogramming observed in breast cancer is regulated by oncogenes, tumor suppressor genes, and signaling pathways that integrate cellular signaling with metabolic processes. Understanding the metabolic adaptations associated with metastasis holds promise for identifying therapeutic targets to disrupt the metastatic process and improve patient outcomes. This chapter explores the metabolic alterations linked to breast cancer metastasis and highlights the potential for targeted interventions in this context.
Collapse
Affiliation(s)
- Qianying Zuo
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
- Ludwig Institute for Cancer Research Princeton Branch, Princeton, NJ, USA
| | - Yibin Kang
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA.
- Ludwig Institute for Cancer Research Princeton Branch, Princeton, NJ, USA.
| |
Collapse
|
22
|
Peng C, Zhang X, Zhou N, Hu T, Shen Y, Chen TJ, Liu Y, Cui H, Zhu S. Apigenin inhibits lipid metabolism of hepatocellular carcinoma cells by targeting the histone demethylase KDM1A. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 135:156024. [PMID: 39341125 DOI: 10.1016/j.phymed.2024.156024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/26/2024] [Accepted: 09/02/2024] [Indexed: 09/30/2024]
Abstract
BACKGROUND The development of cancer is accompanied by metabolic reprogramming, and the liver serves as a central hub for lipid transportation. Apigenin, a plant-derived flavonoid, demonstrates potent anticancer properties across various cancer types and exhibits promising potential as a therapeutic agent for cancer treatment. However, there are limited studies focusing on the downstream targets of apigenin. Moreover, there are few reports on the impact of apigenin in lipid metabolism within liver cancer cells. PURPOSE The objective is to elucidate the metabolic mechanism underlying the inhibitory effect of apigenin on liver cancer progression, search for downstream targets and provide reliable data support for the clinical trials of apigenin. METHODS Anticancer effects of apigenin were detected at cellular and molecular levels in vitro, and downstream targets of apigenin, especially metabolic pathway genes, were analyzed by transcriptome. Next, the downstream target of apigenin was verified and the biological function of the downstream target was examined. Finally, the downstream target of apigenin was further verified by restoring target gene expression. RESULTS Cellular molecular experiments showed that Apigenin inhibited the proliferation, migration, invasion and lipid metabolism of hepatocellular carcinoma (HCC) cells. Transcriptome analysis showed apigenin widely regulates histone demethylase, particularly histone H3K4 lysine demethylase 1A (KDM1A). Apigenin treatment inhibited the expression of KDM1A protein and mRNA levels in liver cancer cells, molecular docking predicted the interaction between apigenin and KDM1A. Furthermore, downregulation KDM1A inhibited the proliferation and lipid metabolism of HCC cells, in the same way, overexpressing KDM1A promoted proliferation of HCC cells. Finally, restoring KDM1A expression partially attenuated the effects of apigenin on lipid metabolism in HCC cells. CONCLUSION In conclusion, our study provides compelling evidence that apigenin inhibits liver cancer progression and elucidates its mechanism of action in regulating lipid metabolism. Specifically, we find that apigenin suppresses the progression of HCC cells by downregulating genes involved in lipid metabolism. Additionally, our results indicate that KDM1A acts as a downstream target of apigenin in the inhibition of lipid metabolism in HCC. These findings offer experimental support for the potential use of apigenin as a therapeutic agent for liver cancer, highlighting its relevance in future clinical applications.
Collapse
Affiliation(s)
- Cheng Peng
- School of Life Sciences, Southwest University, Beibei, Chongqing 400716, China
| | - Ximei Zhang
- School of Life Sciences, Southwest University, Beibei, Chongqing 400716, China; Chipscreen Biosciences Pharmaceutical Ltd, Chengdu, Sichuan 610041, China
| | - Nini Zhou
- School of Life Sciences, Southwest University, Beibei, Chongqing 400716, China
| | - Ting Hu
- School of Life Sciences, Southwest University, Beibei, Chongqing 400716, China
| | - Yang Shen
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, Chongqing 400715, China; Jinfeng Laboratory, Chongqing 401329, China
| | - Teng Jiang Chen
- School of Life Sciences, Southwest University, Beibei, Chongqing 400716, China
| | - Yan Liu
- School of Life Sciences, Southwest University, Beibei, Chongqing 400716, China
| | - Hongjuan Cui
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, Chongqing 400715, China; Jinfeng Laboratory, Chongqing 401329, China
| | - Shunqin Zhu
- School of Life Sciences, Southwest University, Beibei, Chongqing 400716, China; State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, Chongqing 400715, China; Jinfeng Laboratory, Chongqing 401329, China.
| |
Collapse
|
23
|
Geng R, Guo J, Lao Y, Kang SG, Huang K, Tong T. Chronic UVB exposure induces hepatic injury in mice: Mechanistic insights from integrated multi-omics. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 362:124933. [PMID: 39265770 DOI: 10.1016/j.envpol.2024.124933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 07/28/2024] [Accepted: 09/08/2024] [Indexed: 09/14/2024]
Abstract
Chronic UVB exposure poses a significant threat to both skin and visceral health. In recent years, the adverse role of chronic UVB exposure in liver health has been suggested but not fully elucidated. This study aims to comprehensively investigate the effects of chronic UVB exposure on liver health in male SKH-1 hairless mice and clarify potential mechanisms through multi-omics approaches. The findings suggested that 10-week chronic skin exposure to UVB not only triggers hepatic inflammation and oxidative stress but also, more importantly, results in lipid metabolism abnormalities in the liver. Hepatic transcriptomic analysis revealed significant alterations in various signaling pathways and physiological processes associated with inflammation, oxidative stress, and lipid metabolism. Further lipidomic analysis illustrated significant changes in the metabolism of glycerolipids, sphingolipids, and glycerophospholipids in the liver following chronic UVB exposure. The 16S rRNA sequencing analysis indicated that chronic UVB exposure disrupts the structure and function of the microbiota. In search of potential mechanisms used by the microbiome to regulate the hepatic disease morphology, we filtered mouse fecal supernatants and cultured the supernatants with HepG2 cells. Fecal supernatant from UVB-exposed mice induced increased secretion of the inflammatory cytokine IL-8, accumulation of MDA, reduced SOD activity, and decreased lipid content in normal hepatic cells. In summary, skin chronic exposure to UVB induces multiple liver injuries and gut microbiota dysbiosis in mice and gut microbiota metabolites may be one of the contributing factors to hepatic injury caused by chronic UVB exposure. These discoveries deepen the comprehension of the health risks associated with chronic UVB exposure.
Collapse
Affiliation(s)
- Ruixuan Geng
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China; Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), Ministry of Agriculture, Beijing, 100083, China; Beijing Laboratory for Food Quality and Safety, Beijing, 100083, China
| | - Jingya Guo
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China; Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), Ministry of Agriculture, Beijing, 100083, China; Beijing Laboratory for Food Quality and Safety, Beijing, 100083, China
| | - Yujie Lao
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China; Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), Ministry of Agriculture, Beijing, 100083, China; Beijing Laboratory for Food Quality and Safety, Beijing, 100083, China
| | - Seong-Gook Kang
- Department of Food Engineering and Solar Salt Research Center, Mokpo National University, Muangun, 58554, Republic of Korea
| | - Kunlun Huang
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China; Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), Ministry of Agriculture, Beijing, 100083, China; Beijing Laboratory for Food Quality and Safety, Beijing, 100083, China
| | - Tao Tong
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China; Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), Ministry of Agriculture, Beijing, 100083, China; Beijing Laboratory for Food Quality and Safety, Beijing, 100083, China.
| |
Collapse
|
24
|
Li W, Zheng L, Ma X, Xia J, Sheng J, Ge P, Yuan Y, Fan Y, Zhou Y. The sugar moiety in protopanaxadiol ginsenoside affects its ability to target glucocorticoid receptor to regulate lipid metabolism. Bioorg Chem 2024; 153:107885. [PMID: 39442459 DOI: 10.1016/j.bioorg.2024.107885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 10/07/2024] [Accepted: 10/08/2024] [Indexed: 10/25/2024]
Abstract
Ginsenosides are natural products with hydrophobic rings adorned with sugar molecules. The elucidation of the impact of ginsenosides structure on their activity is crucial for facilitating precision-oriented modifications, thereby enhancing their suitability for drug development. Here, utilizing an ob/ob mouse model, we demonstrated that as the number of sugar moiety on the protopanaxadiol-type ginsenosides decreased, the hypolipidemic potency increased, while the aglycon exhibited negligible activity. Mechanistically, we demonstrated the dependency of ginsenosides on the glucocorticoid receptor (GR) for the regulation of lipid metabolism. Interestingly, ginsenoside CK was found to promote the transcription of lipid metabolism-related genes via GR contrast to the effects of glucocorticoids, suggesting a unique mode of action. Furthermore, we observed that a reduction in the number of sugar molecules strengthened the binding affinity of ginsenosides to GR, as determined by microscale thermophoresis. These findings highlight the critical role of the sugar moiety in modulating the lipid-regulating capacity of ginsenosides, providing valuable insights for the development of these compounds as potential therapeutic agents.
Collapse
Affiliation(s)
- Weili Li
- Engineering Research Center of Glycoconjugates of Ministry of Education, Jilin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun, China
| | - Lujuan Zheng
- Engineering Research Center of Glycoconjugates of Ministry of Education, Jilin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun, China
| | - Xiao Ma
- Engineering Research Center of Glycoconjugates of Ministry of Education, Jilin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun, China
| | - Jing Xia
- Engineering Research Center of Glycoconjugates of Ministry of Education, Jilin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun, China
| | - Jiaxing Sheng
- Engineering Research Center of Glycoconjugates of Ministry of Education, Jilin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun, China
| | - Pengyu Ge
- Engineering Research Center of Glycoconjugates of Ministry of Education, Jilin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun, China
| | - Ye Yuan
- Engineering Research Center of Glycoconjugates of Ministry of Education, Jilin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun, China
| | - Yuying Fan
- Engineering Research Center of Glycoconjugates of Ministry of Education, Jilin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun, China.
| | - Yifa Zhou
- Engineering Research Center of Glycoconjugates of Ministry of Education, Jilin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun, China.
| |
Collapse
|
25
|
Zhang T, Shi C, Ye Z, Deng J, Gu M, Chen Z, Huang L, Su X, Chang Z. Crystal structure combined with metabolomics and biochemical studies indicates that FAM3A participates in fatty acid beta-oxidation upon binding of acyl-L-carnitine. Biochem Biophys Res Commun 2024; 735:150481. [PMID: 39111121 DOI: 10.1016/j.bbrc.2024.150481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/23/2024] [Accepted: 07/29/2024] [Indexed: 11/05/2024]
Abstract
As the first member of the family with sequence similarity 3 (FAM3), FAM3A promotes synthesis of ATP in mitochondria of hepatic cells and cells from other organs. Dysregulations of FAM3A are involved in the development of diabetes and nonalcoholic fatty liver disease (NAFLD). So far, the molecule mechanism under the physiological and pathological functions of FAM3A is largely unexplored. Here, we determined the crystal structure of FAM3A at high resolution of 1.38Å, complexed with an unknown-source compound which was characterized through metabolomics and confirmed as methacholine by thermal shift assay and surface plasmon resonance (SPR). Exploration for natural ligands of FAM3A was conducted through the same molecular interaction assays. The observed binding of acyl-L-carnitine molecules indicated FAM3A participating in fatty acid beta-oxidation. Knockdown and rescue assays coupled with fatty acid oxidation determination confirmed the role of FAM3A in beta-oxidation. This investigation reveals the molecular mechanism for the biological function of FAM3A and would provide basis for identifying drug target for treatment of diabetes and NAFLD.
Collapse
Affiliation(s)
- Tianzhuo Zhang
- Department of Biochemistry and Biophysics, School of Basic Medical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, China
| | - Chao Shi
- Department of Biochemistry and Biophysics, School of Basic Medical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, China
| | - Zhaoyang Ye
- State Key Laboratory of Protein and Plant Gene Research and Biodynamic Optical Imaging Center (BIOPIC), School of Life Sciences, Peking University, Beijing 100871, China
| | - Jie Deng
- Department of Biochemistry and Biophysics, School of Basic Medical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, China
| | - Mingyue Gu
- Department of Biochemistry and Biophysics, School of Basic Medical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, China
| | - Zhangxin Chen
- Department of Biochemistry and Biophysics, School of Basic Medical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, China
| | - Lixin Huang
- Department of Biochemistry and Biophysics, School of Basic Medical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, China
| | - Xiaodong Su
- State Key Laboratory of Protein and Plant Gene Research and Biodynamic Optical Imaging Center (BIOPIC), School of Life Sciences, Peking University, Beijing 100871, China.
| | - Zhenzhan Chang
- Department of Biochemistry and Biophysics, School of Basic Medical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, China.
| |
Collapse
|
26
|
Wu M, Zhou X, Zhou X, Wang G, Zeng Y, Li J, Prochownik EV, Wang F, Li Y. ZDHHC3-mediated SCAP S-acylation promotes cholesterol biosynthesis and tumor immune escape in hepatocellular carcinoma. Cell Rep 2024; 43:114962. [PMID: 39522165 DOI: 10.1016/j.celrep.2024.114962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 09/08/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024] Open
Abstract
Cholesterol metabolism reprogramming plays essential roles in hepatocellular carcinoma (HCC). However, precisely how cholesterol metabolism is dysregulated is not clear. Here, we show that the palmitoyltransferase ZDHHC3 and depalmitoylase ABHD17A regulate HCC cell cholesterol biosynthesis by dynamically S-acylating SREBP cleavage-activating protein (SCAP). SCAP S-acylation by ZDHHC3 at C264 antagonizes HACE1-mediated SCAP ubiquitination. Intriguingly, SREBP2 transcriptionally upregulates ZDHHC3 to form a positive feedback loop, which explains why negative feedback regulation of SCAP/SREBP2 signaling fails in HCC. Increased cholesterol in the tumor microenvironment (TME) restrains CD4+ T cell cytotoxicity. Hence, the cholesterol metabolism reprogramming and cholesterol level alternation in the TME cooperate to promote HCC development. We identified a small-molecule inhibitor of ZDHHC3 that, combined with anti-PD-1 immunotherapy, inhibited diethyl nitrosamine (DEN)/CCl4-induced HCC growth in mice. ZDHHC3-mediated SCAP S-acylation reprograms cholesterol metabolism and promotes HCC immune escape. ZDHHC3 is thus identified as a rational chemotherapy target for HCC.
Collapse
Affiliation(s)
- Mingzhi Wu
- Department of Colorectal and Anal Surgery, Zhongnan Hospital of Wuhan University, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Xiaojun Zhou
- Department of Colorectal and Anal Surgery, Zhongnan Hospital of Wuhan University, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Xinyi Zhou
- Department of Colorectal and Anal Surgery, Zhongnan Hospital of Wuhan University, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Genxin Wang
- Department of Colorectal and Anal Surgery, Zhongnan Hospital of Wuhan University, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Yiqun Zeng
- Department of Colorectal and Anal Surgery, Zhongnan Hospital of Wuhan University, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Jun Li
- Department of Colorectal and Anal Surgery, Zhongnan Hospital of Wuhan University, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Edward V Prochownik
- Division of Hematology/Oncology, Children's Hospital of Pittsburgh of UPMC, Department of Microbiology and Molecular Genetics, Pittsburgh Liver Research Center and Hillman Cancer Center of UPMC, Pittsburgh, PA 15224, USA
| | - Fubing Wang
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan Research Center for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, Wuhan, China.
| | - Youjun Li
- Department of Colorectal and Anal Surgery, Zhongnan Hospital of Wuhan University, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan 430071, China.
| |
Collapse
|
27
|
Xu S, Deng Y, Li C, Hu Y, Zhang Q, Zhuang B, Mosongo I, Jiang J, Yang J, Hu K. Metabolomics and molecular docking-directed anti-obesity study of the ethanol extract from Gynostemma pentaphyllum (Thunb.) Makino. JOURNAL OF ETHNOPHARMACOLOGY 2024; 334:118577. [PMID: 39019414 DOI: 10.1016/j.jep.2024.118577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/23/2024] [Accepted: 07/11/2024] [Indexed: 07/19/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Gynostemma pentaphyllum (Thunb.) Makino (G. pentaphyllum) is an oriental herb documented to treat many diseases, including obesity, hyperlipidemia, metabolic syndromes and aging. However, the anti-obesity mechanism of G. pentaphyllum remains poorly understood. AIM OF THE STUDY To reveal the anti-obesity mechanism of G. pentaphyllum Extract (GPE) in High-Fat Diet (HFD)-induced obese mice through untargeted metabolomics, Real-Time Quantitative PCR (RT-qPCR), and immunohistochemical experiments. Additionally, to tentatively identify the active constituents through LC-MS/MS and molecular docking approaches. MATERIALS AND METHODS GPE was prepared using ethanol reflux and purified by HP-20 macroporous resins. The components of GPE were identified by Liquid Chromatography- Mass Spectrometry (LC-MS) system. Forty-two C57BL/6 J mice were randomly and evenly divided into six groups, with seven mice in each group: the control group, obese model group, Beinaglutide group (positive control), and GPE low, medium, and high-dose groups (50 mg/kg, 100 mg/kg, and 200 mg/kg of 80% ethanol extract). Body weight, liver weight, blood glucose, blood lipids, and liver histopathological changes were assessed. Untargeted metabolomics was employed to characterize metabolic changes in obese mice after GPE treatment. The expression of genes related to differential metabolites was verified using Real-Time Quantitative PCR (RT-qPCR) and immunohistochemical experiments. The constituents with anti-obesity effects from GPE were tentatively identified through molecular docking approaches. RESULTS A total of 17 compounds were identified in GPE. GPE significantly lowered body weight, total cholesterol (TC) and low-density lipoprotein cholesterol (LDL-C) in obese mice and reduced liver weight and hepatic steatosis. Serum metabolomics identified 20 potential biomarkers associated with GPE treatment in obese mice, primarily related to tryptophan metabolism. GPE treatment downregulated the expression of Slc6a19 and Tph1 and upregulated Ucp1 expression. Molecular docking illustrated that compounds such as 20(R)-ginsenoside Rg3, Araliasaponin I, Damulin B, Gypenoside L, Oleifolioside B, and Tricin7-neohesperidoside identified in GPE exhibited favorable interaction with Tph1. CONCLUSION The extract of G. pentaphyllum can inhibit the absorption of tryptophan and its conversion to 5-HT through the Slc6a19/Tph1 pathway, upregulating the expression of Ucp1, thereby promoting thermogenesis in brown adipose tissue, facilitating weight loss, and mitigating symptoms of fatty liver. Triterpenoids such as Araliasaponin I, identified in GPE, could be the potential inhibitor of Tph1 and responsible for the anti-obesity activities.
Collapse
Affiliation(s)
- Suyun Xu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China; School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China.
| | - Yaling Deng
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
| | - Caihong Li
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
| | - Youfan Hu
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
| | - Qi Zhang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
| | - Baojun Zhuang
- Yunnan Province Hospital of Traditional Chinese Medicine, Kunming, Yunnan, 650021, China
| | - Isidore Mosongo
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
| | - Jiaming Jiang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
| | - Jiahui Yang
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
| | - Kaifeng Hu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China; Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China.
| |
Collapse
|
28
|
Gadiraju B, Magisetty J, Kondreddy V. Transcription factor ETV4 plays a critical role in the development of non-alcoholic fatty liver disease. Int J Biol Macromol 2024; 282:137235. [PMID: 39500423 DOI: 10.1016/j.ijbiomac.2024.137235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 10/25/2024] [Accepted: 11/01/2024] [Indexed: 11/12/2024]
Abstract
The Angiopoietin-like 4 (ANGPTL4) and ETS Variant Transcription Factor 4 (ETV4) are involved in the metabolic transition and carcinogenesis in the liver. However, the role of ETV4 in the development of non-alcoholic fatty liver disease (NAFLD) is currently unknown. Our study reveals that ETV4 expression was upregulated in the diet-induced non-alcoholic fatty liver disease, and plays a critical role in the dysregulated lipid metabolism. We demonstrate a mechanism by which ANGPTL4 regulates lipid homeostasis via involving the AMPK/ETV4 axis. Transient knockdown of ETV4 abolished the ANGPTL4-induced expression of Srebp1c, Acc and Fasn. Insulin treatment potentially increased the physical association of ETV4 with SREBP1, and promotes nuclear translocation and transcriptional activity of SREBP1. In addition, we show that combined therapy with omega-3 fatty acids and diacylglycerol O-acyltransferase inhibitor 1 (DGAT1) inhibitor (A-922500) counteracted the ANGPTL4-ETV4 axis-induced lipogenesis in vitro, and in vivo in obese mice via activation of GPR120-βarrestin2-AMPK pathway. Finally, we demonstrate that targeted pharmacologic therapy using GalNac-ETV4 siRNA that specifically inhibits ETV4 gene expression in the liver protects against diet-induced NAFLD, obesity and dyslipidemia. Hence, our study reveal previously unrecognized role of ETV4 in the NAFLD, and provides rationale targeting ETV4 to treat NAFLD.
Collapse
Affiliation(s)
- Bhavani Gadiraju
- Department of Biochemistry, Central University of Punjab, Bathinda, India
| | - Jhansi Magisetty
- Department of Zoology, Central University of Punjab, Bathinda., India.
| | - Vijay Kondreddy
- Department of Biochemistry, Central University of Punjab, Bathinda, India.
| |
Collapse
|
29
|
Liang Y, Qi J, Yu D, Wang Z, Li W, Long F, Ning S, Yuan M, Zhong X. Ferulic Acid Alleviates Lipid and Bile Acid Metabolism Disorders by Targeting FASN and CYP7A1 in Iron Overload-Treated Mice. Antioxidants (Basel) 2024; 13:1277. [PMID: 39594419 PMCID: PMC11591460 DOI: 10.3390/antiox13111277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 10/06/2024] [Accepted: 10/20/2024] [Indexed: 11/28/2024] Open
Abstract
Iron overload is a common complication in various chronic liver diseases, including non-alcoholic fatty liver disease (NAFLD). Lipid and bile acid metabolism disorders are regarded as crucial hallmarks of NAFLD. However, effects of iron accumulation on lipid and bile acid metabolism are not well understood. Ferulic acid (FA) can chelate iron and regulate lipid and bile acid metabolism, but its potential to alleviate lipid and bile acid metabolism disorders caused by iron overload remains unclear. Here, in vitro experiments, iron overload induced oxidative stress, apoptosis, genomic instability, and lipid deposition in AML12 cells. FA reduced lipid and bile acid synthesis while increasing fatty acid β-oxidation and bile acid export, as indicated by increased mRNA expression of PPARα, Acox1, Adipoq, Bsep, and Shp, and decreased mRNA expression of Fasn, Acc, and Cyp7a1. In vivo experiments, FA mitigated liver injury in mice caused by iron overload, as indicated by reduced AST and ALT activities, and decreased iron levels in both serum and liver. RNA-seq results showed that differentially expressed genes were enriched in biological processes related to lipid metabolism, lipid biosynthesis, lipid storage, and transport. Furthermore, FA decreased cholesterol and bile acid contents, downregulated lipogenesis protein FASN, and bile acid synthesis protein CYP7A1. In conclusion, FA can protect the liver from lipid and bile acid metabolism disorders caused by iron overload by targeting FASN and CYP7A1. Consequently, FA, as a dietary supplement, can potentially prevent and treat chronic liver diseases related to iron overload by regulating lipid and bile acid metabolism.
Collapse
Affiliation(s)
- Yaxu Liang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (Y.L.); (J.Q.); (D.Y.); (Z.W.); (W.L.); (F.L.); (S.N.); (M.Y.)
| | - Jun Qi
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (Y.L.); (J.Q.); (D.Y.); (Z.W.); (W.L.); (F.L.); (S.N.); (M.Y.)
| | - Dongming Yu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (Y.L.); (J.Q.); (D.Y.); (Z.W.); (W.L.); (F.L.); (S.N.); (M.Y.)
| | - Zhibo Wang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (Y.L.); (J.Q.); (D.Y.); (Z.W.); (W.L.); (F.L.); (S.N.); (M.Y.)
| | - Weite Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (Y.L.); (J.Q.); (D.Y.); (Z.W.); (W.L.); (F.L.); (S.N.); (M.Y.)
| | - Fei Long
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (Y.L.); (J.Q.); (D.Y.); (Z.W.); (W.L.); (F.L.); (S.N.); (M.Y.)
| | - Shuai Ning
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (Y.L.); (J.Q.); (D.Y.); (Z.W.); (W.L.); (F.L.); (S.N.); (M.Y.)
| | - Meng Yuan
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (Y.L.); (J.Q.); (D.Y.); (Z.W.); (W.L.); (F.L.); (S.N.); (M.Y.)
| | - Xiang Zhong
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (Y.L.); (J.Q.); (D.Y.); (Z.W.); (W.L.); (F.L.); (S.N.); (M.Y.)
- Natural Plant and Animal Health Innovation Institute, NJAU-Cohoo Biotechnology, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
30
|
Alsarhan AA, Khwaldeh AS, Al-Shawabkeh JD, Shoiab AA, Al-Shdefat R, Al-Fawaeir S, Yousef I. Investigating the hepato-protective properties of chamomile oil and olive leaves extracts against ribociclib-induced hepatotoxicity. BRAZ J BIOL 2024; 84:e287535. [PMID: 39442156 DOI: 10.1590/1519-6984.287535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 08/20/2024] [Indexed: 10/25/2024] Open
Abstract
A new approach to overcome or reduce these toxicities is by using antioxidants. Ribociclib, a CDK4/6 inhibitor used in the treatment of breast cancer, has been linked to hepatotoxicity and may contribute to the development of Hepatocellular carcinoma in rats. This Study aims to assess hepatoprotective effect of chamomile oil and olive leaf extracts against ribociclib-induced Hepatotoxicity in rats. A total of 40 adult male albino rats aged 9-10 weeks were utilized in this experiment. These rats were divided into four groups, (N=10). Group A (control) comprised normal rats administered 1 ml (10 ml/kg/day) of normal saline daily. Conversely, group B rats were administered 5 mg/kg Ribociclib (n = 10), while group C was administered 5 mg/kg Ribociclib with a 500 mg/kg/day dose of chamomile oil. Group D was given 5 mg \kg Ribociclib in combination with 200 mg/kg/day of olive leaves. After the trial, the animals were sacrificed, blood samples were collected for biochemical tests, and the liver tissue was processed for histological examination. The results of histology, and biochemistry parameter analysis, indicated that co-administration of Ribociclib and chamomile oil plays a decisive role in mitigating the hepatotoxicity result from Ribociclib-induced liver injuries in rats as demonstrated by histological and biochemical parameters.The levels of cholesterol and LDL in the blood were significantly lower (P < 0.01) after administering chamomile oil compared to the control group. The results of the current study demonstrated that the simultaneous use of chamomile oil and olive leaf extract significantly reduced the liver damage caused by Ribociclib and improved the lipid profile in Albino rats. Additionally, the use of chamomile extract notably lowered urea levels (p < 0.01), indicating a protective effect on the kidneys.
Collapse
Affiliation(s)
- A A Alsarhan
- Al- Balqa Applied University, Zarqa University College, Department of Medical Allied Sciences, Zarqa, Jordan
| | - A S Khwaldeh
- Jadara University, Faculty of Allied Medical Sciences, Department of Medical Laboratory Sciences, Irbid, Jordan
| | - J D Al-Shawabkeh
- Al- Balqa Applied University, Zarqa University College, Department of Medical Allied Sciences, Zarqa, Jordan
| | - A A Shoiab
- Jadara University, Faculty of Pharmacy, Department of Pharmacy, Irbid, Jordan
| | - R Al-Shdefat
- Jadara University, Faculty of Pharmacy, Department of Pharmacy, Irbid, Jordan
| | - S Al-Fawaeir
- Jadara University, Faculty of Allied Medical Sciences, Department of Medical Laboratory Sciences, Irbid, Jordan
| | - I Yousef
- Zarqa University, Faculty of Allied Medical Sciences, Department of Medical Sciences, Zarqa, Jordan
| |
Collapse
|
31
|
Hao X, Guo W, Li F, Cui L, Kang W. Analysis of the liver-gut axis including metabolomics and intestinal flora to determine the protective effects of kiwifruit seed oil on CCl 4-induced acute liver injury. Food Funct 2024; 15:9149-9164. [PMID: 39157920 DOI: 10.1039/d4fo02106a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/20/2024]
Abstract
The hepatoprotective effects of kiwifruit seed oil (KSO) were evaluated on acute liver injury (ALI) induced by carbon tetrachloride (CCl4) in vivo. Network pharmacology was used to predict active compounds and targets. Metabolomics and gut microbiota analyses were used to discover the activity mechanism of KSO. KSO improved the liver histological structure, significantly reduced serum proinflammatory cytokine levels, and increased liver antioxidant capacity. The metabolomics analysis showed that KSO may have hepatoprotective effects by controlling metabolites through its participation in signaling pathways like tryptophan metabolism, glycolysis/gluconeogenesis, galactose metabolism, and bile secretion. The gut microbiota analysis demonstrated that KSO improved the composition and quantity of the gut flora. Network pharmacological investigations demonstrated that KSO operated by altering Ptgs2, Nos2, Ppara, Pparg and Serpine1 mRNA levels. All evidence shows that KSO has a hepatoprotective effect, and the mechanism is connected to the regulation of metabolic disorders and intestinal flora.
Collapse
Affiliation(s)
- Xuting Hao
- National R & D Center for Edible Fungus Processing Technology, Henan University, Kaifeng 475004, China.
- Functional Food Engineering Technology Research Center, Henan, Kaifeng 475004, China
- Joint International Research Laboratory of Food & Medicine Resource Function, Henan Province, Kaifeng 475004, China
| | - Wenjing Guo
- National R & D Center for Edible Fungus Processing Technology, Henan University, Kaifeng 475004, China.
- Functional Food Engineering Technology Research Center, Henan, Kaifeng 475004, China
- Joint International Research Laboratory of Food & Medicine Resource Function, Henan Province, Kaifeng 475004, China
| | - Fangfang Li
- National R & D Center for Edible Fungus Processing Technology, Henan University, Kaifeng 475004, China.
- Functional Food Engineering Technology Research Center, Henan, Kaifeng 475004, China
- Joint International Research Laboratory of Food & Medicine Resource Function, Henan Province, Kaifeng 475004, China
| | - Lili Cui
- National R & D Center for Edible Fungus Processing Technology, Henan University, Kaifeng 475004, China.
- College of Agriculture, Henan University, Kaifeng 475004, China
- Functional Food Engineering Technology Research Center, Henan, Kaifeng 475004, China
- Joint International Research Laboratory of Food & Medicine Resource Function, Henan Province, Kaifeng 475004, China
| | - Wenyi Kang
- National R & D Center for Edible Fungus Processing Technology, Henan University, Kaifeng 475004, China.
- College of Agriculture, Henan University, Kaifeng 475004, China
- Functional Food Engineering Technology Research Center, Henan, Kaifeng 475004, China
- Joint International Research Laboratory of Food & Medicine Resource Function, Henan Province, Kaifeng 475004, China
| |
Collapse
|
32
|
Yadav M, Verma S, Tiwari P, Mugale MN. Unraveling the mechanisms of hepatogenous diabetes and its therapeutic perspectives. Life Sci 2024; 353:122934. [PMID: 39089644 DOI: 10.1016/j.lfs.2024.122934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/26/2024] [Accepted: 07/25/2024] [Indexed: 08/04/2024]
Abstract
The review focused mainly on the pathogenesis of hepatogenous diabetes (HD) in liver cirrhosis (LC). This review reveals parallels between the mechanisms of metabolic dysfunction observed in LC and type II diabetes (T2DM), suggesting a shared pathway leading to HD. It underscores the role of insulin in HD pathogenesis, highlighting key factors such as insulin signaling, glucose metabolism, insulin resistance (IR), and the influence of adipocytes. Furthermore, the impact of adipose tissue accumulation, fatty acid metabolism, and pro-inflammatory cytokines like Tumor necrosis factor-α (TNF-α) on IR are discussed in the context of HD. Altered signaling pathways, disruptions in the endocrine system, liver inflammation, changes in muscle mass and composition, and modifications to the gut microbiota collectively contribute to the complex interplay linking cirrhosis and HD. This study highlights how important it is to identify and treat this complex condition in cirrhotic patients by thoroughly analyzing the link between cirrhosis, IR, and HD. It also emphasizes the vitality of targeted interventions. Cellular and molecular investigations into IR have revealed potential therapeutic targets for managing and preventing HD.
Collapse
Affiliation(s)
- Manisha Yadav
- Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute (CSIR-CDRI), Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Smriti Verma
- Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute (CSIR-CDRI), Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Purnima Tiwari
- Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute (CSIR-CDRI), Lucknow 226031, India
| | - Madhav Nilakanth Mugale
- Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute (CSIR-CDRI), Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
33
|
Liu W, Shi L, Yuan M, Zhang Y, Li Y, Cheng C, Liu J, Yue H, An L. Strong associations between fasting lipids and glucose concentrations and ALT levels strengthened with increasing ALT quantiles. Lipids Health Dis 2024; 23:295. [PMID: 39267040 PMCID: PMC11391808 DOI: 10.1186/s12944-024-02281-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 08/30/2024] [Indexed: 09/14/2024] Open
Abstract
BACKGROUND A persistent redox state and excessive reactive species involved in carbohydrate and lipid metabolism lead to oxidative damage in the liver, however, how fasting plasma concentrations of lipids and glucose are associated with fasting blood levels of alanine transaminase (ALT) and aspartate transaminase (AST) remains to be evaluated in large-scale population. METHODS A cross-sectional study with 182,971 residents aged 18 to 92 years; multidimensional stratified analyses including quantile linear regression analysis and sex stratification were adopted to improve the quality of the evidence. RESULTS The associations between the concentrations of non-HDL-C and triglyceride and ALT levels were positive, stronger in males in each quantile of ALT levels and the coefficients expanded with increasing ALT levels at slopes of 3.610 and 5.678 in males and 2.977 and 5.165 in females, respectively. The associations between the HDL-C concentrations and ALT levels were negative, also stronger in males in each quantile and the coefficients expanded with increasing ALT levels at slopes of -7.839 in females and - 5.797 in males. The associations between glucose concentrations and ALT levels were positive, but stronger in females in each quantile and the coefficients expanded with increasing ALT levels at slopes of 1.736 in males and 2.177 in females, respectively. Similar pattern consist of relatively weaker coefficients and slops were observed between concentrations of non-HDL-C, triglyceride and glucose and AST levels. The associations between albumin concentration and concentrations of blood lipids and glucose were relatively steady across all quantiles. CONCLUSIONS The dose dependent effect between blood concentrations of lipids and glucose and liver function changes suggests that excessive carbohydrate and lipid metabolism may cause subclinical liver damage. Long term sustained primary and secondary inflammatory factors produced in the liver might be transmitted to adjacent organs, such as the heart, kidneys, and lungs, to cause and/or exacerbate pathological changes in these visceral organs.
Collapse
Affiliation(s)
- Wei Liu
- Department of Rheumatology and Clinical Immunology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan, 450003, China
| | - Lipu Shi
- Department of Rheumatology and Clinical Immunology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan, 450003, China
| | - Mengmeng Yuan
- Department of Gynecology, Henan Provincial People's Hospital, Zhengzhou, Henan, 450003, China
| | - Yonghui Zhang
- Henan Key Laboratory of Stem Cell Clinical Application and Key Technology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan, 450003, China
| | - Yalong Li
- Henan Key Laboratory of Stem Cell Clinical Application and Key Technology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan, 450003, China
| | - Chaofei Cheng
- Henan Key Laboratory of Stem Cell Clinical Application and Key Technology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan, 450003, China
| | - Junping Liu
- Department of Infectious Diseases, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan, 450003, China
| | - Han Yue
- Henan Key Laboratory of Stem Cell Clinical Application and Key Technology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan, 450003, China.
| | - Lemei An
- Department of Rheumatology and Clinical Immunology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan, 450003, China.
| |
Collapse
|
34
|
Wang S, Zhang W, Wang Z, Liu Z, Yi X, Wu J. Mettl3-m6A-YTHDF1 axis promotion of mitochondrial dysfunction in metabolic dysfunction-associated steatotic liver disease. Cell Signal 2024; 121:111303. [PMID: 39019337 DOI: 10.1016/j.cellsig.2024.111303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 07/09/2024] [Accepted: 07/14/2024] [Indexed: 07/19/2024]
Abstract
BACKGROUND N6-methyladenosine (m6A) mRNA modification and mitochondrial function hold paramount importance in the advancement of metabolic dysfunction-associated steatotic liver disease (MASLD). AIM The aim of this study was to elucidate the impact of m6A on hepatic mitochondrial dysfunction and provide a novel perspective for a more comprehensive understanding of the pathogenesis of MASLD. METHODS High-throughput screening methods were used to identify the underlying transcriptome and proteome changes in MASLD model mice. Western blotting, blue native gel electrophoresis (BNGE), dot blot, and Seahorse analyses were conducted to identify and validate the underlying regulatory mechanisms of m6A on mitochondria. RESULTS In vivo, abnormal m6A modification in MASLD was attributed to the upregulation of methyltransferase like 3 (Mettl3) and the downregulation of YTH N6-methyladenosine RNA binding protein 1 (YTHDF1) induced by high-fat foods. In vitro, knockdown of Mettl3 inhibited hepatic oxidative phosphorylation (OXPHOS) and the mitochondrial respiratory chain (MRC), while overexpression of Mettl3 promoted these processes. However, knockout of the reader protein YTHDF1, which plays a crucial role in the m6A modification process, counteracted the effect of Mettl3 and suppressed mitochondrial OXPHOS. CONCLUSIONS In MASLD, damage to the MRC may be regulated by the Mettl3-m6A-YTHDF1 axis, particularly by the role of YTHDF1. Modulation of the Mettl3-m6A-YTHDF1 axis has the potential to improve mitochondrial function, alleviate MASLD symptoms, and decrease the likelihood of disease progression.
Collapse
Affiliation(s)
- Shuowen Wang
- Beijing Tongren Hospital, Capital Medical University, Beijing 100176, China; Capital Institute of Pediatrics, Beijing 100020, China
| | - Wanyu Zhang
- Capital Institute of Pediatrics, Beijing 100020, China
| | - Zijun Wang
- Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, China
| | - Zhuo Liu
- Capital Institute of Pediatrics, Beijing 100020, China
| | - Xiaoyu Yi
- Capital Institute of Pediatrics, Beijing 100020, China
| | - Jianxin Wu
- Beijing Tongren Hospital, Capital Medical University, Beijing 100176, China; Capital Institute of Pediatrics, Beijing 100020, China.
| |
Collapse
|
35
|
Shan Z, Zhang H, He C, An Y, Huang Y, Fu W, Wang M, Du Y, Xie J, Yang Y, Zhao B. High-Protein Mulberry Leaves Improve Glucose and Lipid Metabolism via Activation of the PI3K/Akt/PPARα/CPT-1 Pathway. Int J Mol Sci 2024; 25:8726. [PMID: 39201413 PMCID: PMC11354309 DOI: 10.3390/ijms25168726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 07/29/2024] [Accepted: 07/29/2024] [Indexed: 09/02/2024] Open
Abstract
High-Protein Mulberry is a novel strain of mulberry. High-Protein Mulberry leaves (HPM) were the subject of this study, which aimed to investigate its efficacy and underlying mechanisms in modulating glucose and lipid metabolism. A six-week intervention using db/db mice was carried out to assess the effects of HPM on serum lipid levels, liver function, and insulin (INS) levels. qRT-PCR and Western Blotting were employed to measure key RNA and protein expressions in the PI3K/Akt and PPARα/CPT-1 pathways. UHPLC-MS and the Kjeldahl method were utilized to analyze the component content and total protein. Additionally, network pharmacology was employed to predict regulatory mechanism differences between HPM and Traditional Mulberry leaves. The results of the study revealed significant improvements in fasting blood glucose, glucose tolerance, and insulin resistance in mice treated with HPM. HPM notably reduced serum levels of total cholesterol (TC), triglycerides (TG), low-density lipoprotein cholesterol (LDL-C), aspartate aminotransferase (AST), alanine aminotransferase (ALT), and INS, while increasing high-density lipoprotein cholesterol (HDL-C) levels. The treatment also effectively mitigated liver fatty lesions, inflammatory infiltration, and islet atrophy. HPM activation of the PI3K/Akt/PPARα/CPT-1 pathway suggested its pivotal role in the regulation of glucose and lipid metabolism. With its rich composition and pharmacodynamic material basis, HPM displayed a greater number of targets associated with glucose and lipid metabolism pathways, underscoring the need for further research into its potential therapeutic applications.
Collapse
Affiliation(s)
- Ziyi Shan
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Huilin Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Changhao He
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yongcheng An
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yan Huang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Wanxin Fu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Menglu Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yuhang Du
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Jiamei Xie
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yang Yang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Baosheng Zhao
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| |
Collapse
|
36
|
Lee KH, Hong M, Hur HJ, Sung MJ, Lee AS, Kim MJ, Yang HJ, Kim MS. Metabolomic profiling analysis reveals the benefits of ginseng berry intake on mitochondrial function and glucose metabolism in the liver of obese mice. Metabolomics 2024; 20:96. [PMID: 39110263 DOI: 10.1007/s11306-024-02152-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 07/10/2024] [Indexed: 10/22/2024]
Abstract
INTRODUCTION Ginseng berry (GB) has previously been demonstrated to improve systemic insulin resistance and regulate hepatic glucose metabolism and steatosis in mice with diet-induced obesity (DIO). OBJECTIVES In this study, the role of GB in metabolism was assessed using metabolomics analysis on the total liver metabolites of DIO mice. METHODS Metabolomic profiling was performed using capillary electrophoresis time-of-flight mass spectrometry (CE-TOF/MS) of liver tissue from mice on a 12-wk normal chow diet (NC), high-fat diet (HFD), and HFD supplemented with 0.1% GB (HFD + GB). The detected metabolites, its pathways, and functions were analyzed through partial least square discriminant analysis (PLS-DA), the small molecular pathway database (SMPDB), and MetaboAnalyst 5.0. RESULTS The liver metabolite profiles of NC, HFD, and GB-fed mice (HFD + GB) were highly compartmentalized. Metabolites involved in major liver functions, such as mitochondrial function, gluconeogenesis/glycolysis, fatty acid metabolism, and primary bile acid biosynthesis, showed differences after GB intake. The metabolites that showed significant correlations with fasting blood glucose (FBG), insulin, and homeostatic model assessment for insulin resistance (HOMA-IR) were highly associated with mitochondrial membrane function, energy homeostasis, and glucose metabolism. Ginseng berry intake increased the levels of metabolites involved in mitochondrial membrane function, decreased the levels of metabolites related to glucose metabolism, and was highly correlated with metabolic phenotypes. CONCLUSION This study demonstrated that long-term intake of GB changed the metabolite of hepatosteatotic livers in DIO mice, normalizing global liver metabolites involved in mitochondrial function and glucose metabolism and indicating the potential mechanism of GB in ameliorating hyperglycemia in DIO mice.
Collapse
Affiliation(s)
- Kyun-Hee Lee
- Research Division of Food and Function, Korea Food Research Institute, 245 Nongsaengmyeong-ro, Wanju-gun, Jeonbuk-do, 55365, Republic of Korea
- Department of Food Biotechnology, University of Science & Technology, 217 Gajeong-ro, Yuseong-gu, Daejeon, 34113, Republic of Korea
| | - Moonju Hong
- Research Division of Food and Function, Korea Food Research Institute, 245 Nongsaengmyeong-ro, Wanju-gun, Jeonbuk-do, 55365, Republic of Korea
- Department of Food Biotechnology, University of Science & Technology, 217 Gajeong-ro, Yuseong-gu, Daejeon, 34113, Republic of Korea
| | - Haeng Jeon Hur
- Research Division of Food and Function, Korea Food Research Institute, 245 Nongsaengmyeong-ro, Wanju-gun, Jeonbuk-do, 55365, Republic of Korea
| | - Mi Jeong Sung
- Research Division of Food and Function, Korea Food Research Institute, 245 Nongsaengmyeong-ro, Wanju-gun, Jeonbuk-do, 55365, Republic of Korea
| | - Ae Sin Lee
- Research Division of Food and Function, Korea Food Research Institute, 245 Nongsaengmyeong-ro, Wanju-gun, Jeonbuk-do, 55365, Republic of Korea
| | - Min Jung Kim
- Research Division of Food and Function, Korea Food Research Institute, 245 Nongsaengmyeong-ro, Wanju-gun, Jeonbuk-do, 55365, Republic of Korea
| | - Hye Jeong Yang
- Research Division of Food and Function, Korea Food Research Institute, 245 Nongsaengmyeong-ro, Wanju-gun, Jeonbuk-do, 55365, Republic of Korea
| | - Myung-Sunny Kim
- Research Division of Food and Function, Korea Food Research Institute, 245 Nongsaengmyeong-ro, Wanju-gun, Jeonbuk-do, 55365, Republic of Korea.
- Department of Food Biotechnology, University of Science & Technology, 217 Gajeong-ro, Yuseong-gu, Daejeon, 34113, Republic of Korea.
| |
Collapse
|
37
|
Kiepura A, Suski M, Stachyra K, Kuś K, Czepiel K, Wiśniewska A, Ulatowska-Białas M, Olszanecki R. The Influence of the FFAR4 Agonist TUG-891 on Liver Steatosis in ApoE-Knockout Mice. Cardiovasc Drugs Ther 2024; 38:667-678. [PMID: 36705799 PMCID: PMC11266261 DOI: 10.1007/s10557-023-07430-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/11/2023] [Indexed: 01/28/2023]
Abstract
BACKGROUND Nonalcoholic fatty liver disease (NAFLD) constitutes an independent risk factor for the development of coronary heart disease. Low-grade inflammation has been shown to play an important role in the development of atherosclerosis and NAFLD. Free fatty acid receptor 4 (FFAR4/GPR120), which is involved in damping inflammatory reactions, may represent a promising target for the treatment of inflammatory diseases. Our objective was to evaluate the effect of TUG-891, the synthetic agonist of FFAR4/GPR120, on fatty liver in vivo. METHODS The effect of TUG-891 on fatty liver was investigated in apoE-/- mice fed a high-fat diet (HFD), using microscopic, biochemical, molecular, and proteomic methods. RESULTS Treatment with TUG-891 inhibited the progression of liver steatosis in apoE-/- mice, as evidenced by histological analysis, and reduced the accumulation of TG in the liver. This action was associated with a decrease in plasma AST levels. TUG-891 decreased the expression of liver genes and proteins involved in de novo lipogenesis (Srebp-1c, Fasn and Scd1) and decreased the expression of genes related to oxidation and uptake (Acox1, Ehhadh, Cd36, Fabp1). Furthermore, TUG-891 modified the levels of selected factors related to glucose metabolism (decreased Glut2, Pdk4 and Pklr, and increased G6pdx). CONCLUSION Pharmacological stimulation of FFAR4 may represent a promising lead in the search for drugs that inhibit NAFLD.
Collapse
Affiliation(s)
- Anna Kiepura
- Department of Pharmacology, Jagiellonian University Medical College, 16 Grzegorzecka Street, 31-531, Krakow, Poland
| | - Maciej Suski
- Department of Pharmacology, Jagiellonian University Medical College, 16 Grzegorzecka Street, 31-531, Krakow, Poland
| | - Kamila Stachyra
- Department of Pharmacology, Jagiellonian University Medical College, 16 Grzegorzecka Street, 31-531, Krakow, Poland
| | - Katarzyna Kuś
- Department of Pharmacology, Jagiellonian University Medical College, 16 Grzegorzecka Street, 31-531, Krakow, Poland
| | - Klaudia Czepiel
- Department of Pharmacology, Jagiellonian University Medical College, 16 Grzegorzecka Street, 31-531, Krakow, Poland
| | - Anna Wiśniewska
- Department of Pharmacology, Jagiellonian University Medical College, 16 Grzegorzecka Street, 31-531, Krakow, Poland
| | - Magdalena Ulatowska-Białas
- Department of Pathomorphology, Jagiellonian University Medical College, 16 Grzegorzecka Street, 31-531, Krakow, Poland
| | - Rafał Olszanecki
- Department of Pharmacology, Jagiellonian University Medical College, 16 Grzegorzecka Street, 31-531, Krakow, Poland.
| |
Collapse
|
38
|
Mishra F, Yuan Y, Yang JJ, Li B, Chan P, Liu Z. Depletion of Activated Hepatic Stellate Cells and Capillarized Liver Sinusoidal Endothelial Cells Using a Rationally Designed Protein for Nonalcoholic Steatohepatitis and Alcoholic Hepatitis Treatment. Int J Mol Sci 2024; 25:7447. [PMID: 39000553 PMCID: PMC11242029 DOI: 10.3390/ijms25137447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 06/28/2024] [Accepted: 07/01/2024] [Indexed: 07/16/2024] Open
Abstract
Nonalcoholic steatohepatitis (NASH) and alcoholic hepatitis (AH) affect a large part of the general population worldwide. Dysregulation of lipid metabolism and alcohol toxicity drive disease progression by the activation of hepatic stellate cells and the capillarization of liver sinusoidal endothelial cells. Collagen deposition, along with sinusoidal remodeling, alters sinusoid structure, resulting in hepatic inflammation, portal hypertension, liver failure, and other complications. Efforts were made to develop treatments for NASH and AH. However, the success of such treatments is limited and unpredictable. We report a strategy for NASH and AH treatment involving the induction of integrin αvβ3-mediated cell apoptosis using a rationally designed protein (ProAgio). Integrin αvβ3 is highly expressed in activated hepatic stellate cells (αHSCs), the angiogenic endothelium, and capillarized liver sinusoidal endothelial cells (caLSECs). ProAgio induces the apoptosis of these disease-driving cells, therefore decreasing collagen fibril, reversing sinusoid remodeling, and reducing immune cell infiltration. The reversal of sinusoid remodeling reduces the expression of leukocyte adhesion molecules on LSECs, thus decreasing leukocyte infiltration/activation in the diseased liver. Our studies present a novel and effective approach for NASH and AH treatment.
Collapse
Affiliation(s)
- Falguni Mishra
- Department of Biology, Georgia State University, Atlanta, GA 30303, USA
| | - Yi Yuan
- Department of Biology, Georgia State University, Atlanta, GA 30303, USA
| | - Jenny J Yang
- Department of Chemistry, Georgia State University, Atlanta, GA 30303, USA
| | - Bin Li
- Department of Biology, Georgia State University, Atlanta, GA 30303, USA
| | - Payton Chan
- Department of Biology, Georgia State University, Atlanta, GA 30303, USA
| | - Zhiren Liu
- Department of Biology, Georgia State University, Atlanta, GA 30303, USA
| |
Collapse
|
39
|
Vegda HS, Patel B, Girdhar GA, Pathan MSH, Ahmad R, Haque M, Sinha S, Kumar S. Role of Nonalcoholic Fatty Liver Disease in Periodontitis: A Bidirectional Relationship. Cureus 2024; 16:e63775. [PMID: 39100036 PMCID: PMC11297857 DOI: 10.7759/cureus.63775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 07/03/2024] [Indexed: 08/06/2024] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) and periodontitis share common risk factors such as obesity, insulin resistance (IR), and dyslipidemia, which contribute to systemic inflammation. It has been suggested that a bidirectional relationship exists between NAFLD and periodontitis, indicating that one condition may exacerbate the other. NAFLD is characterized by excessive fat deposition in the liver and is associated with low-grade chronic inflammation. There are several risk factors for the development of NAFLD, including gender, geriatric community, race, ethnicity, poor sleep quality and sleep deprivation, physical activity, nutritional status, dysbiosis gut microbiota, increased oxidative stress, overweight, obesity, higher body mass index (BMI), IR, type 2 diabetes mellitus (T2DM), metabolic syndrome (MetS), dyslipidemia (hypercholesterolemia), and sarcopenia (decreased skeletal muscle mass). This systemic inflammation can contribute to the progression of periodontitis by impairing immune responses and exacerbating the inflammatory processes in the periodontal tissues. Furthermore, individuals with NAFLD often exhibit altered lipid metabolism, which may affect oral microbiota composition, leading to dysbiosis and increased susceptibility to periodontal disease. Conversely, periodontitis has been linked to the progression of NAFLD through mechanisms involving systemic inflammation and oxidative stress. Chronic periodontal inflammation can release pro-inflammatory cytokines and bacterial toxins into the bloodstream, contributing to liver inflammation and exacerbating hepatic steatosis. Moreover, periodontitis-induced oxidative stress may promote hepatic lipid accumulation and IR, further aggravating NAFLD. The interplay between NAFLD and periodontitis underscores the importance of comprehensive management strategies targeting both conditions. Lifestyle modifications such as regular exercise, a healthy diet, and proper oral hygiene practices are crucial for preventing and managing these interconnected diseases. Additionally, interdisciplinary collaboration between hepatologists and periodontists is essential for optimizing patient care and improving outcomes in individuals with NAFLD and periodontitis.
Collapse
Affiliation(s)
- Hardika S Vegda
- Department of Periodontology and Implantology, School of Dentistry, Karnavati University, Gandhinagar, IND
| | - Bhavin Patel
- Department of Periodontology and Implantology, School of Dentistry, Karnavati University, Gandhinagar, IND
| | - Gaurav A Girdhar
- Department of Periodontology and Implantology, School of Dentistry, Karnavati University, Gandhinagar, IND
| | - Mohd Shabankhan H Pathan
- Department of Periodontology and Implantology, School of Dentistry, Karnavati University, Gandhinagar, IND
| | - Rahnuma Ahmad
- Department of Physiology, Medical College for Women and Hospital, Dhaka, BGD
| | - Mainul Haque
- Department of Research, Karnavati Scientific Research Center (KSRC) School of Dentistry, Karnavati University, Gandhinagar, IND
- Department of Pharmacology and Therapeutics, National Defence University of Malaysia, Kuala Lumpur, MYS
| | - Susmita Sinha
- Department of Physiology, Enam Medical College and Hospital, Dhaka, BGD
| | - Santosh Kumar
- Department of Periodontology and Implantology, School of Dentistry, Karnavati University, Gandhinagar, IND
| |
Collapse
|
40
|
Zhang T, Zhao F, Hu Y, Wei J, Cui F, Lin Y, Jin Y, Sheng X. Environmental monobutyl phthalate exposure promotes liver cancer via reprogrammed cholesterol metabolism and activation of the IRE1α-XBP1s pathway. Oncogene 2024; 43:2355-2370. [PMID: 38879588 DOI: 10.1038/s41388-024-03086-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 06/05/2024] [Accepted: 06/10/2024] [Indexed: 07/21/2024]
Abstract
Humans are widely exposed to phthalates, a major chemical plasticizer that accumulates in the liver. However, little is known about the impact of chronic phthalate exposure on liver cancer development. In this study, we applied a long-term cell culture model by treating the liver cancer cell HepG2 and normal hepatocyte L02 to environmental dosage of monobutyl phthalate (MBP), the main metabolite of phthalates. Interestingly, we found that long-term MBP exposure significantly accelerated the growth of HepG2 cells in vitro and in vivo, but barely altered the function of L02 cells. MBP exposure triggered reprogramming of lipid metabolism in HepG2 cells, where cholesterol accumulation subsequently activated the IRE1α-XBP1s axis of the unfolded protein response. As a result, the XBP1s-regulated gene sets and pathways contributed to the increased aggressiveness of HepG2 cells. In addition, we also showed that MBP-induced cholesterol accumulation fostered an immunosuppressive microenvironment by promoting tumor-associated macrophage polarization toward the M2 type. Together, these results suggest that environmental phthalates exposure may facilitate liver cancer progression, and alerts phthalates exposure to patients who already harbor liver tumors.
Collapse
Affiliation(s)
- Tingting Zhang
- School of Life and Health Sciences, Hainan University, Haikou, 570228, China
- School of Environmental Science and Engineering, Hainan University, Haikou, 570228, China
- School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Faming Zhao
- School of Life and Health Sciences, Hainan University, Haikou, 570228, China
- School of Environmental Science and Engineering, Hainan University, Haikou, 570228, China
- School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yanxia Hu
- School of Life and Health Sciences, Hainan University, Haikou, 570228, China
- School of Environmental Science and Engineering, Hainan University, Haikou, 570228, China
| | - Jinlan Wei
- School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Fengzhen Cui
- School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- School of Public Health, Guangdong Medical University, Dongguan, 523808, China
| | - Yahang Lin
- Department of Neurology, Wuhan Fourth Hospital, Wuhan, 430033, China
| | - Yang Jin
- Department of Biosciences, University of Oslo, 0371, Oslo, Norway
| | - Xia Sheng
- School of Life and Health Sciences, Hainan University, Haikou, 570228, China.
- School of Environmental Science and Engineering, Hainan University, Haikou, 570228, China.
- School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
41
|
Hu CQ, Hou T, Xiang R, Li X, Li J, Wang TT, Liu WJ, Hou S, Wang D, Zhao QH, Yu XX, Xu M, Liu XK, Chi YJ, Yang JC. PANX1-mediated ATP release confers FAM3A's suppression effects on hepatic gluconeogenesis and lipogenesis. Mil Med Res 2024; 11:41. [PMID: 38937853 PMCID: PMC11210080 DOI: 10.1186/s40779-024-00543-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 06/10/2024] [Indexed: 06/29/2024] Open
Abstract
BACKGROUND Extracellular adenosine triphosphate (ATP) is an important signal molecule. In previous studies, intensive research had revealed the crucial roles of family with sequence similarity 3 member A (FAM3A) in controlling hepatic glucolipid metabolism, islet β cell function, adipocyte differentiation, blood pressure, and other biological and pathophysiological processes. Although mitochondrial protein FAM3A plays crucial roles in the regulation of glucolipid metabolism via stimulating ATP release to activate P2 receptor pathways, its mechanism in promoting ATP release in hepatocytes remains unrevealed. METHODS db/db, high-fat diet (HFD)-fed, and global pannexin 1 (PANX1) knockout mice, as well as liver sections of individuals, were used in this study. Adenoviruses and adeno-associated viruses were utilized for in vivo gene overexpression or inhibition. To evaluate the metabolic status in mice, oral glucose tolerance test (OGTT), pyruvate tolerance test (PTT), insulin tolerance test (ITT), and magnetic resonance imaging (MRI) were conducted. Protein-protein interactions were determined by coimmunoprecipitation with mass spectrometry (MS) assays. RESULTS In livers of individuals and mice with steatosis, the expression of ATP-permeable channel PANX1 was increased (P < 0.01). Hepatic PANX1 overexpression ameliorated the dysregulated glucolipid metabolism in obese mice. Mice with hepatic PANX1 knockdown or global PANX1 knockout exhibited disturbed glucolipid metabolism. Restoration of hepatic PANX1 rescued the metabolic disorders of PANX1-deficient mice (P < 0.05). Mechanistically, ATP release is mediated by the PANX1-activated protein kinase B-forkhead box protein O1 (Akt-FOXO1) pathway to inhibit gluconeogenesis via P2Y receptors in hepatocytes. PANX1-mediated ATP release also activated calmodulin (CaM) (P < 0.01), which interacted with c-Jun N-terminal kinase (JNK) to inhibit its activity, thereby deactivating the transcription factor activator protein-1 (AP1) and repressing fatty acid synthase (FAS) expression and lipid synthesis (P < 0.05). FAM3A stimulated the expression of PANX1 via heat shock factor 1 (HSF1) in hepatocytes (P < 0.05). Notably, FAM3A overexpression failed to promote ATP release, inhibit the expression of gluconeogenic and lipogenic genes, and suppress gluconeogenesis and lipid deposition in PANX1-deficient hepatocytes and livers. CONCLUSIONS PANX1-mediated release of ATP plays a crucial role in maintaining hepatic glucolipid homeostasis, and it confers FAM3A's suppressive effects on hepatic gluconeogenesis and lipogenesis.
Collapse
Affiliation(s)
- Cheng-Qing Hu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences/State Key Laboratory of Vascular Homeostasis and Remodeling/Center for Non-Coding RNA Medicine, Peking University Health Science Center, Beijing, 100191, China
- Department of Obstetrics and Gynecology, Peking University Third Hospital/National Clinical Research Center for Obstetrics and Gynecology, Beijing, 100191, China
| | - Tao Hou
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences/State Key Laboratory of Vascular Homeostasis and Remodeling/Center for Non-Coding RNA Medicine, Peking University Health Science Center, Beijing, 100191, China
| | - Rui Xiang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences/State Key Laboratory of Vascular Homeostasis and Remodeling/Center for Non-Coding RNA Medicine, Peking University Health Science Center, Beijing, 100191, China
| | - Xin Li
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences/State Key Laboratory of Vascular Homeostasis and Remodeling/Center for Non-Coding RNA Medicine, Peking University Health Science Center, Beijing, 100191, China
| | - Jing Li
- Department of Endocrinology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, China
| | - Tian-Tian Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences/State Key Laboratory of Vascular Homeostasis and Remodeling/Center for Non-Coding RNA Medicine, Peking University Health Science Center, Beijing, 100191, China
| | - Wen-Jun Liu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences/State Key Laboratory of Vascular Homeostasis and Remodeling/Center for Non-Coding RNA Medicine, Peking University Health Science Center, Beijing, 100191, China
| | - Song Hou
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences/State Key Laboratory of Vascular Homeostasis and Remodeling/Center for Non-Coding RNA Medicine, Peking University Health Science Center, Beijing, 100191, China
| | - Di Wang
- Department of Central Laboratory and Institute of Clinical Molecular Biology, Peking University People's Hospital, Beijing, 100044, China
| | - Qing-He Zhao
- Department of Gastroenterology, Peking University People's Hospital, Beijing, 100044, China
| | - Xiao-Xing Yu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences/State Key Laboratory of Vascular Homeostasis and Remodeling/Center for Non-Coding RNA Medicine, Peking University Health Science Center, Beijing, 100191, China
| | - Ming Xu
- Department of Cardiology, Institute of Vascular Medicine, Peking University Third Hospital/Key Laboratory of Molecular Cardiovascular Science of the Ministry of Education, Beijing, 100191, China
| | - Xing-Kai Liu
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Centre, the First Hospital of Jilin University, Changchun, 130061, China.
| | - Yu-Jing Chi
- Department of Central Laboratory and Institute of Clinical Molecular Biology, Peking University People's Hospital, Beijing, 100044, China.
- Department of Gastroenterology, Peking University People's Hospital, Beijing, 100044, China.
| | - Ji-Chun Yang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences/State Key Laboratory of Vascular Homeostasis and Remodeling/Center for Non-Coding RNA Medicine, Peking University Health Science Center, Beijing, 100191, China.
- Department of Cardiology, Peking University Third Hospital, Beijing, 100191, China.
| |
Collapse
|
42
|
Marroncini G, Naldi L, Martinelli S, Amedei A. Gut-Liver-Pancreas Axis Crosstalk in Health and Disease: From the Role of Microbial Metabolites to Innovative Microbiota Manipulating Strategies. Biomedicines 2024; 12:1398. [PMID: 39061972 PMCID: PMC11273695 DOI: 10.3390/biomedicines12071398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 06/16/2024] [Accepted: 06/19/2024] [Indexed: 07/28/2024] Open
Abstract
The functions of the gut are closely related to those of many other organs in the human body. Indeed, the gut microbiota (GM) metabolize several nutrients and compounds that, once released in the bloodstream, can reach distant organs, thus influencing the metabolic and inflammatory tone of the host. The main microbiota-derived metabolites responsible for the modulation of endocrine responses are short-chain fatty acids (SCFAs), bile acids and glucagon-like peptide 1 (GLP-1). These molecules can (i) regulate the pancreatic hormones (insulin and glucagon), (ii) increase glycogen synthesis in the liver, and (iii) boost energy expenditure, especially in skeletal muscles and brown adipose tissue. In other words, they are critical in maintaining glucose and lipid homeostasis. In GM dysbiosis, the imbalance of microbiota-related products can affect the proper endocrine and metabolic functions, including those related to the gut-liver-pancreas axis (GLPA). In addition, the dysbiosis can contribute to the onset of some diseases such as non-alcoholic steatohepatitis (NASH)/non-alcoholic fatty liver disease (NAFLD), hepatocellular carcinoma (HCC), and type 2 diabetes (T2D). In this review, we explored the roles of the gut microbiota-derived metabolites and their involvement in onset and progression of these diseases. In addition, we detailed the main microbiota-modulating strategies that could improve the diseases' development by restoring the healthy balance of the GLPA.
Collapse
Affiliation(s)
- Giada Marroncini
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, 50139 Florence, Italy; (G.M.); (L.N.)
| | - Laura Naldi
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, 50139 Florence, Italy; (G.M.); (L.N.)
| | - Serena Martinelli
- Department of Clinical and Experimental Medicine, University of Florence, 50139 Florence, Italy
| | - Amedeo Amedei
- Department of Clinical and Experimental Medicine, University of Florence, 50139 Florence, Italy
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), 50139 Florence, Italy
| |
Collapse
|
43
|
Wang H, Chen L, Zhang R, Zhang G, Liu J, Guo F. Curcuma wenyujin rhizomes extract ameliorates lipid accumulation. Fitoterapia 2024; 175:105957. [PMID: 38604260 DOI: 10.1016/j.fitote.2024.105957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/06/2024] [Accepted: 04/07/2024] [Indexed: 04/13/2024]
Abstract
Curcuma wenyujin (C. wenyujin) is a medicinal plant that is traditionally used to treat blood stagnation, liver fibrosis, pain, and jaundice. In this study, we examined the effect of C. wenyujin rhizome extract on hepatic lipid accumulation both in vivo and in vitro. We found that the petroleum ether fraction of C. wenyujin rhizome extract (CWP) considerably reduced the accumulation of lipids in HepG2 cells treated with oleic and palmitic acid. Ultra-high-performance liquid chromatography coupled with LTQ-Orbitrap mass spectrometry was used to analyze the main chemical constituents of CWP, and 21 sesquiterpenes were identified. In vivo experiments revealed that the administration of CWP significantly reduced the body weight and serum total cholesterol (TC) level of low-density-lipoprotein receptor knockout mice treated with a high-fat diet without affecting their food intake. CWP also significantly reduced the levels of liver TC, liver triglycerides, aspartate transaminase, and alanine transaminase. Histological examination revealed that CWP dose-dependently reduced steatosis in liver tissue, significantly downregulated the expression of lipogenesis genes, and increased the β-oxidation of fatty acids. CWP also significantly increased autophagy-related proteins. In conclusion, CWP rich in sesquiterpenes reduces the accumulation of lipids in vivo and in vitro by improving lipid metabolism and activating autophagy.
Collapse
Affiliation(s)
- Hong Wang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China
| | - Lijia Chen
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China
| | - Ruiyu Zhang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China
| | - Guanying Zhang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China
| | - Jingwen Liu
- Experiment Center for Science and Technology, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China.
| | - Fujiang Guo
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China.
| |
Collapse
|
44
|
Wei S, Wang R, Chen L, Jing M, Li H, Zheng R, Zhu Y, Zhao Y. The contribution of small heterodimer partner to the occurrence and progression of cholestatic liver injury. J Gastroenterol Hepatol 2024; 39:1134-1144. [PMID: 38615196 DOI: 10.1111/jgh.16544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 02/23/2024] [Accepted: 02/29/2024] [Indexed: 04/15/2024]
Abstract
BACKGROUND AND AIM Small heterodimer partner (SHP, encoded by NR0B2) plays an important role in maintaining bile acid homeostasis. The loss of the hepatic farnesoid X receptor (FXR)/SHP signal can cause severe cholestatic liver injury (CLI). FXR and SHP have overlapping and nonoverlapping functions in bile acid homeostasis. However, the key role played by SHP in CLI is unclear. METHODS In this study, an alpha-naphthylisothiocyanate (ANIT)-induced cholestasis mouse model was established. The effect of SHP knockout (SHP-KO) on liver and ileal pathology was evaluated. 16S rRNA gene sequencing analysis combined with untargeted metabolomics was applied to reveal the involvement of SHP in the pathogenesis of CLI. RESULTS The results showed that ANIT (75 mg/kg) induced cholestasis in WT mice. No significant morphological changes were found in the liver and ileal tissue of SHP-KO mice. However, the serum metabolism and intestinal flora characteristics were significantly changed. Moreover, compared with the WT + ANIT group, the serum levels of ALT and AST in the SHP-KO + ANIT group were significantly increased, and punctate necrosis in the liver tissue was more obvious. The ileum villi showed obvious shedding, thinning, and shortening. In addition, SHP-KO-associated differential intestinal flora and differential biomarkers were significantly associated. CONCLUSION In this study, we elucidated the serum metabolic characteristics and intestinal flora changes related to the aggravation of CLI in SHP-KO mice induced by ANIT.
Collapse
Affiliation(s)
- Shizhang Wei
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Peking University, Beijing, China
- Department of Pharmacy, The Fifth Medical Center of the PLA General Hospital, Beijing, China
| | - Ruilin Wang
- Division of Integrative Medicine, The Fifth Medical Center of the PLA General Hospital, Beijing, China
| | - Lisheng Chen
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Manyi Jing
- Department of Pharmacy, The Fifth Medical Center of the PLA General Hospital, Beijing, China
| | - Haotian Li
- Department of Pharmacy, The Fifth Medical Center of the PLA General Hospital, Beijing, China
| | - Ruimao Zheng
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Yun Zhu
- Senior Department of Hepatology, The Fifth Medical Center of the PLA General Hospital, Beijing, China
| | - Yanling Zhao
- Department of Pharmacy, The Fifth Medical Center of the PLA General Hospital, Beijing, China
| |
Collapse
|
45
|
Jin Y, Shangguan Z, Pang J, Chen Y, Lin S, Liu H. Pin1 Exacerbates Non-Alcoholic Fatty Liver Disease by Enhancing Its Activity through Binding to ACC1. Int J Mol Sci 2024; 25:5822. [PMID: 38892011 PMCID: PMC11171836 DOI: 10.3390/ijms25115822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/17/2024] [Accepted: 05/19/2024] [Indexed: 06/21/2024] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a clinicopathological syndrome characterized by diffuse hepatocellular steatosis due to fatty deposits in hepatocytes, excluding alcohol and other known liver injury factors. However, there are no specific drugs for the clinical treatment of NAFLD. Therefore, research on the pathogenesis of NAFLD at the cellular and molecular levels is a promising approach to finding therapeutic targets and developing targeted drugs for NAFLD. Pin1 is highly expressed during adipogenesis and contributes to adipose differentiation, but its specific mechanism of action in NAFLD is unclear. In this study, we investigated the role of Pin1 in promoting the development of NAFLD and its potential mechanisms in vitro and in vivo. First, Pin1 was verified in the NAFLD model in vitro using MCD diet-fed mice by Western Blot, RT-qPCR and immunohistochemistry (IHC) assays. In the in vitro study, we used the oleic acid (OA) stimulation-induced lipid accumulation model and examined the lipid accumulation in each group of cells by oil red O staining as well as BODIPY staining. The results showed that knockdown of Pin1 inhibited lipid accumulation in hepatocytes in an in vitro lipid accumulation model and improved lipid indices and liver injury levels. Moreover, in vivo, WT and Pin1-KO mice were fed a methionine-choline deficient (MCD) diet for 4 weeks to induce the NAFLD model. The effects of Pin1 on lipid accumulation, hepatic fibrosis, and oxidative stress were evaluated by biochemical analysis, glucose and insulin tolerance tests, histological analysis, IHC, RT-qPCR and Western blot assays. The results indicate that Pin1 knockdown significantly alleviated hepatic steatosis, fibrosis and inflammation in MCD-induced NAFLD mice, improved glucose tolerance and alleviated insulin resistance in mice. Further studies showed that the AMPK/ACC1 signalling pathway might take part in the process by which Pin1 regulates NAFLD, as evidenced by the inhibition of the AMPK/ACC1 pathway. In addition, immunofluorescence (IF), coimmunoprecipitation (Co-IP) and GST pull-down experiments also showed that Pin1 interacts directly with ACC1 and inhibits ACC1 phosphorylation levels. Our study suggests that Pin1 promotes NAFLD progression by inhibiting the activation of the AMPK/ACC1 signalling pathway, and it is possible that this effect is achieved by Pin1 interacting with ACC1 and inhibiting the phosphorylation of ACC1.
Collapse
Affiliation(s)
| | | | | | | | | | - Hekun Liu
- Fujian Key Laboratory of Translational Research in Cancer and Neurodegenerative Diseases, The School of Basic Medical Sciences, Fujian Medical University, No. 1, Xuefu North Road, Fuzhou 350122, China; (Y.J.); (Z.S.); (J.P.); (Y.C.); (S.L.)
| |
Collapse
|
46
|
Ge J, Mao W, Wang X, Zhang M, Liu S. The Fluorescent Detection of Glucose and Lactic Acid Based on Fluorescent Iron Nanoclusters. SENSORS (BASEL, SWITZERLAND) 2024; 24:3447. [PMID: 38894238 PMCID: PMC11174429 DOI: 10.3390/s24113447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/18/2024] [Accepted: 05/23/2024] [Indexed: 06/21/2024]
Abstract
In this paper, a novel fluorescent detection method for glucose and lactic acid was developed based on fluorescent iron nanoclusters (Fe NCs). The Fe NCs prepared using hemin as the main raw material exhibited excellent water solubility, bright red fluorescence, and super sensitive response to hydrogen peroxide (H2O2). This paper demonstrates that Fe NCs exhibit excellent peroxide-like activity, catalyzing H2O2 to produce hydroxyl radicals (•OH) that can quench the red fluorescence of Fe NCs. In this paper, a new type of glucose sensor was established by combining Fe NCs with glucose oxidase (GluOx). With the increase in glucose content, the fluorescence of Fe NCs decreases correspondingly, and the glucose content can be detected in the scope of 0-200 μmol·L-1 (μM). Similarly, the lactic acid sensor can also be established by combining Fe NCs with lactate oxidase (LacOx). With the increase in lactic acid concentration, the fluorescence of Fe NCs decreases correspondingly, and the lactic acid content can be detected in the range of 0-100 μM. Furthermore, Fe NCs were used in the preparation of gel test strip, which can be used to detect H2O2, glucose and lactic acid successfully by the changes of fluorescent intensity.
Collapse
Affiliation(s)
| | | | | | | | - Siyu Liu
- College of Life and Health Sciences, Northeastern University, Shenyang 110004, China; (J.G.); (W.M.); (X.W.); (M.Z.)
| |
Collapse
|
47
|
Lontro Alves L, Gomes Pereira P, Torres Ciambarella B, Porto Campos M, Rabelo K, Rosa Nascimento AL, Leal de Carvalho dos Santos Cunha R, Borba Vieira Andrade C, Cesar Nunes Moraes A, Bernardi A, Verdini Guimarães F, Fuentes Ribeiro da Silva J, José de Carvalho J. Beneficial Effects of Capybara Oil Supplementation on Steatosis and Liver Apoptosis in Obese Mice. J Obes 2024; 2024:7204607. [PMID: 38831961 PMCID: PMC11147678 DOI: 10.1155/2024/7204607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 04/30/2024] [Accepted: 05/09/2024] [Indexed: 06/05/2024] Open
Abstract
Obesity is a complex chronic disease characterized by excess body fat (adipose) that is harmful to health and has been a major global health problem. It may be associated with several diseases, such as nonalcoholic fatty liver disease (NAFLD). Polyunsaturated fatty acids (PUFA) are lipid mediators that have anti-inflammatory characteristics and can be found in animals and plants, with capybara oil (CO) being a promising source. So, we intend to evaluate the hepatic pathophysiological alterations in C57Bl/6 mice with NAFLD, caused by obesity, and the possible beneficial effects of OC in the treatment of this disease. Eighteen 3-month-old male C57Bl/6 mice received a control or high-fat diet for 18 weeks. From the 15th to the 18th week, the animals received treatment-through orogastric gavage-with placebo or free capybara oil (5 g/kg). Parameters inherent to body mass, glucose tolerance, evaluation of liver enzymes, percentage of hepatic steatosis, oxidative stress, the process of cell death with the apoptotic biomarkers (Bax, Bcl2, and Cytochrome C), and the ultrastructure of hepatocytes were analyzed. Even though the treatment with CO was not able to disassemble the effects on the physiological parameters, it proved to be beneficial in reversing the morphological and ultrastructural damage present in the hepatocytes. Thus, demonstrating that CO has beneficial effects in reducing steatosis and the apoptotic pathway, it is a promising treatment for NAFLD.
Collapse
Affiliation(s)
- Luciana Lontro Alves
- Ultrastructure and Tissue Biology Laboratory, Institute of Biology, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Priscila Gomes Pereira
- Ultrastructure and Tissue Biology Laboratory, Institute of Biology, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Bianca Torres Ciambarella
- Ultrastructure and Tissue Biology Laboratory, Institute of Biology, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Miguel Porto Campos
- Ultrastructure and Tissue Biology Laboratory, Institute of Biology, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Kíssila Rabelo
- Ultrastructure and Tissue Biology Laboratory, Institute of Biology, Rio de Janeiro State University, Rio de Janeiro, Brazil
- Interdisciplinary Laboratory of Medical Research, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Ana Lúcia Rosa Nascimento
- Ultrastructure and Tissue Biology Laboratory, Institute of Biology, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | | | - Cherley Borba Vieira Andrade
- Ultrastructure and Tissue Biology Laboratory, Institute of Biology, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Alan Cesar Nunes Moraes
- Ultrastructure and Tissue Biology Laboratory, Institute of Biology, Rio de Janeiro State University, Rio de Janeiro, Brazil
- Electron Microscopy Laboratory of Biology Institute, Federal Fluminense University, Rio de Janeiro, Brazil
| | - Andressa Bernardi
- Inflammation Laboratory, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | | | | | - Jorge José de Carvalho
- Ultrastructure and Tissue Biology Laboratory, Institute of Biology, Rio de Janeiro State University, Rio de Janeiro, Brazil
| |
Collapse
|
48
|
Taroncher M, Gonzalez-Suarez AM, Gwon K, Romero S, Reyes-Figueroa AD, Rodríguez-Carrasco Y, Ruiz MJ, Stybayeva G, Revzin A, de Hoyos-Vega JM. Using Microfluidic Hepatic Spheroid Cultures to Assess Liver Toxicity of T-2 Mycotoxin. Cells 2024; 13:900. [PMID: 38891032 PMCID: PMC11172061 DOI: 10.3390/cells13110900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 05/10/2024] [Accepted: 05/22/2024] [Indexed: 06/20/2024] Open
Abstract
The Fusarium fungi is found in cereals and feedstuffs and may produce mycotoxins, which are secondary metabolites, such as the T-2 toxin (T-2). In this work, we explored the hepatotoxicity of T-2 using microfluidic 3D hepatic cultures. The objectives were: (i) exploring the benefits of microfluidic 3D cultures compared to conventional 3D cultures available commercially (Aggrewell plates), (ii) establishing 3D co-cultures of hepatic cells (HepG2) and stellate cells (LX2) and assessing T-2 exposure in this model, (iii) characterizing the induction of metabolizing enzymes, and (iv) evaluating inflammatory markers upon T-2 exposure in microfluidic hepatic cultures. Our results demonstrated that, in comparison to commercial (large-volume) 3D cultures, spheroids formed faster and were more functional in microfluidic devices. The viability and hepatic function decreased with increasing T-2 concentrations in both monoculture and co-cultures. The RT-PCR analysis revealed that exposure to T-2 upregulates the expression of multiple Phase I and Phase II hepatic enzymes. In addition, several pro- and anti-inflammatory proteins were increased in co-cultures after exposure to T-2.
Collapse
Affiliation(s)
- Mercedes Taroncher
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55901, USA; (M.T.); (A.M.G.-S.); (G.S.)
- Research Group in Alternative Methods for Determining Toxics Effects and Risk Assessment of Contaminants and Mixtures (RiskTox), Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Av. Vicent Andrés Estellés s/n, 46100 Valencia, Spain; (Y.R.-C.); (M.-J.R.)
| | - Alan M. Gonzalez-Suarez
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55901, USA; (M.T.); (A.M.G.-S.); (G.S.)
| | - Kihak Gwon
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55901, USA; (M.T.); (A.M.G.-S.); (G.S.)
| | - Samuel Romero
- Centro de Investigación en Matemáticas Unidad Monterrey, Apodaca 66628, NL, Mexico (A.D.R.-F.)
| | - Angel D. Reyes-Figueroa
- Centro de Investigación en Matemáticas Unidad Monterrey, Apodaca 66628, NL, Mexico (A.D.R.-F.)
- Consejo Nacional de Humanidades, Ciencias y Tecnologías, Ciudad de Mexico 03940, Mexico
| | - Yelko Rodríguez-Carrasco
- Research Group in Alternative Methods for Determining Toxics Effects and Risk Assessment of Contaminants and Mixtures (RiskTox), Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Av. Vicent Andrés Estellés s/n, 46100 Valencia, Spain; (Y.R.-C.); (M.-J.R.)
| | - María-José Ruiz
- Research Group in Alternative Methods for Determining Toxics Effects and Risk Assessment of Contaminants and Mixtures (RiskTox), Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Av. Vicent Andrés Estellés s/n, 46100 Valencia, Spain; (Y.R.-C.); (M.-J.R.)
| | - Gulnaz Stybayeva
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55901, USA; (M.T.); (A.M.G.-S.); (G.S.)
| | - Alexander Revzin
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55901, USA; (M.T.); (A.M.G.-S.); (G.S.)
| | - Jose M. de Hoyos-Vega
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55901, USA; (M.T.); (A.M.G.-S.); (G.S.)
| |
Collapse
|
49
|
Edward OC, Jeong DY, Yang HJ, Han A, Cha YS. Doenjang Ameliorates Diet-Induced Hyperlipidemia and Hepatic Oxidative Damage by Improving Lipid Metabolism, Oxidative Stress, and Inflammation in ICR Mice. Foods 2024; 13:1471. [PMID: 38790771 PMCID: PMC11120292 DOI: 10.3390/foods13101471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/29/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024] Open
Abstract
Hyperlipidemia, characterized by elevated cholesterol, lipids, and triglycerides in the bloodstream, is linked to hepatic oxidative damage. Doenjang, a traditional Korean condiment made from fermented soybeans, is known for its health benefits, yet its anti-hyperlipidemic effects remain understudied. Our study aimed to assess the hypolipidemic and hepatic protective effects of Doenjang on male ICR mice fed a high-fat cholesterol diet for 8 weeks. Mice were divided into three groups: the normal diet (ND), the high-fat cholesterol diet (HD), and the Doenjang-supplemented HD diet (DS) group. Doenjang supplementation significantly regulated total cholesterol, triglycerides, LDL cholesterol, and HDL cholesterol levels compared to the HD group. It also downregulated lipogenic genes, including PPARγ, FAS, and ACC, and positively influenced the cholesterol metabolism-related genes HMGCR and LXR. Moreover, Doenjang intake increased serum glutathione levels, activated oxidative stress defense genes (NRF2, SOD, GPx1, and CAT), positively modulated inflammation genes (NF-kB and IL6) in hepatic tissue, and reduced malondialdehyde levels. Our findings highlight the effectiveness of traditional Doenjang in preventing diet-induced hyperlipidemia and protecting against hepatic oxidative damage.
Collapse
Affiliation(s)
- Olivet Chiamaka Edward
- Department of Food Science and Human Nutrition, Jeonbuk National University, Jeonju 54896, Republic of Korea; (O.C.E.)
| | - Do-Youn Jeong
- Microbial Institute for Fermentation Industry (MIFI), Sunchang 56048, Republic of Korea
| | - Hee-Jong Yang
- Microbial Institute for Fermentation Industry (MIFI), Sunchang 56048, Republic of Korea
| | - Anna Han
- Department of Food Science and Human Nutrition, Jeonbuk National University, Jeonju 54896, Republic of Korea; (O.C.E.)
- K-Food Research Center, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Youn-Soo Cha
- Department of Food Science and Human Nutrition, Jeonbuk National University, Jeonju 54896, Republic of Korea; (O.C.E.)
- K-Food Research Center, Jeonbuk National University, Jeonju 54896, Republic of Korea
| |
Collapse
|
50
|
Duan S, Li B, Cui S, Chen Y, He Y, Fan L. Clcn3 deficiency ameliorates high-fat diet-induced obesity and improves metabolism in mice. Front Nutr 2024; 11:1387806. [PMID: 38784133 PMCID: PMC11111939 DOI: 10.3389/fnut.2024.1387806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 04/11/2024] [Indexed: 05/25/2024] Open
Abstract
Objective Obesity is defined as excess body fat and is a current health epidemic associated with increased risk for type 2 diabetes and cardiovascular disease. The ClC-3 chloride channel/antiporter, encoded by the Clcn3, is associated with some diseases, like carcinoma, nervous system diseases, and metabolic diseases. To verify the relationship between the Clcn3 and weight including metabolic changes, searching for a new target for metabolic therapy of obesity, we designed the experiment. Methods The mice were divided into 4 different groups: Clcn3+/+ mice + high-fat diet (HFD), Clcn3-/- mice + HFD, Clcn3+/+ mice + normal diet (ND), Clcn3-/- mice + ND, and fed for 16 weeks. After the glucose tolerance test and insulin tolerance test, peripheral blood and adipose tissues were collected. Moreover, we performed transcriptome sequencing for the epididymal white adipose tissue from Clcn3+/+ and Clcn3-/- mice with the high-fat diet. Western blotting verified the changes in protein levels of relevant metabolic genes. Results We found that the Clcn3-/- mice had lower body weight and visceral fat, refining glucose and lipid metabolism in HFD-induced mice, but had no effect in normal diet mice. RNA-seq and Western blotting indicated that Clcn3 deficiency may inhibit obesity through the AMPK-UCP1 axis. Conclusion Modulation of Clcn3 may provide an appealing therapeutic target for obesity and associated metabolic syndrome.
Collapse
Affiliation(s)
- Sirui Duan
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Bo Li
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- Department of Cardiology, Ninth Hospital of Xi’an, Xi’an, China
| | - Shiyu Cui
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- Department of Pathology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an Jiaotong University, Xi’an, China
| | - Yaoyao Chen
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Ying He
- Graduate Students Teaching Experiment Center, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Lihong Fan
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| |
Collapse
|