1
|
Mollazadeh S, Saeedi N, Al-Asady AM, Ghorbani E, Khazaei M, Ryzhikov M, Avan A, Hassanian SM. Exploring Hepatocellular Carcinoma Pathogenesis: The Influence of Genetic Polymorphisms. Curr Pharm Des 2025; 31:432-442. [PMID: 39297458 DOI: 10.2174/0113816128327773240827062719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 07/23/2024] [Indexed: 02/20/2025]
Abstract
Hepatocellular carcinoma (HCC) is influenced by several factors, among which genetic polymorphisms play a key role. Polymorphisms in various genes affect key pathways involved in HCC development, including metabolism, expression of inflammatory cytokines, cell proliferation, and apoptosis regulation. These polymorphisms induce differential effects on susceptibility to HCC, disease progression, and treatment outcomes. Understanding the effect of genetic variations on HCC pathogenesis is essential to elucidate underlying mechanisms and identify potential therapeutic targets. This review explores the diverse roles of genetic polymorphisms in HCC, providing insights into the complex interplay between genetic factors and disease development.
Collapse
Affiliation(s)
- Samaneh Mollazadeh
- Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Nikoo Saeedi
- Student Research Committee, Islamic Azad University, Mashhad Branch, Mashhad, Iran
| | | | - Elnaz Ghorbani
- Department of Microbiology and Virology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Majid Khazaei
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Medical Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mikhail Ryzhikov
- School of Medicine, Saint Louis University, Saint Louis, MO 63103, USA
| | - Amir Avan
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Human Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Mahdi Hassanian
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
2
|
Drobyshev A, Modestov A, Suntsova M, Poddubskaya E, Seryakov A, Moisseev A, Sorokin M, Tkachev V, Zakharova G, Simonov A, Zolotovskaia MA, Buzdin A. Pan-cancer experimental characteristic of human transcriptional patterns connected with telomerase reverse transcriptase ( TERT) gene expression status. Front Genet 2024; 15:1401100. [PMID: 38859942 PMCID: PMC11163056 DOI: 10.3389/fgene.2024.1401100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 05/08/2024] [Indexed: 06/12/2024] Open
Abstract
The TERT gene encodes the reverse transcriptase subunit of telomerase and is normally transcriptionally suppressed in differentiated human cells but reactivated in cancers where its expression is frequently associated with poor survival prognosis. Here we experimentally assessed the RNA sequencing expression patterns associated with TERT transcription in 1039 human cancer samples of 27 tumor types. We observed a bimodal distribution of TERT expression where ∼27% of cancer samples did not express TERT and the rest showed a bell-shaped distribution. Expression of TERT strongly correlated with 1443 human genes including 103 encoding transcriptional factor proteins. Comparison of TERT- positive and negative cancers showed the differential activation of 496 genes and 1975 molecular pathways. Therein, 32/38 (84%) of DNA repair pathways were hyperactivated in TERT+ cancers which was also connected with accelerated replication, transcription, translation, and cell cycle progression. In contrast, the level of 40 positive cell cycle regulator proteins and a set of epithelial-to-mesenchymal transition pathways was specific for the TERT- group suggesting different proliferation strategies for both groups of cancer. Our pilot study showed that the TERT+ group had ∼13% of cancers with C228T or C250T mutated TERT promoter. However, the presence of promoter mutations was not associated with greater TERT expression compared with other TERT+ cancers, suggesting parallel mechanisms of its transcriptional activation in cancers. In addition, we detected a decreased expression of L1 retrotransposons in the TERT+ group, and further decreased L1 expression in promoter mutated TERT+ cancers. TERT expression was correlated with 17 genes encoding molecular targets of cancer therapeutics and may relate to differential survival patterns of TERT- positive and negative cancers.
Collapse
Affiliation(s)
- Aleksey Drobyshev
- Endocrinology Research Center, Moscow, Russia
- Institute of Personalized Oncology, I. M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Alexander Modestov
- Institute of Personalized Oncology, I. M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Maria Suntsova
- Endocrinology Research Center, Moscow, Russia
- Institute of Personalized Oncology, I. M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Elena Poddubskaya
- Institute of Personalized Oncology, I. M. Sechenov First Moscow State Medical University, Moscow, Russia
- Clinical Center Vitamed, Moscow, Russia
| | | | - Aleksey Moisseev
- Institute of Personalized Oncology, I. M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Maksim Sorokin
- Endocrinology Research Center, Moscow, Russia
- Institute of Personalized Oncology, I. M. Sechenov First Moscow State Medical University, Moscow, Russia
| | | | - Galina Zakharova
- Institute of Personalized Oncology, I. M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Aleksander Simonov
- Institute of Personalized Oncology, I. M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Marianna A. Zolotovskaia
- Endocrinology Research Center, Moscow, Russia
- Institute of Personalized Oncology, I. M. Sechenov First Moscow State Medical University, Moscow, Russia
- Moscow Center for Advanced Studies 20, Moscow, Russia
| | - Anton Buzdin
- Endocrinology Research Center, Moscow, Russia
- Institute of Personalized Oncology, I. M. Sechenov First Moscow State Medical University, Moscow, Russia
- Moscow Center for Advanced Studies 20, Moscow, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
| |
Collapse
|
3
|
Mahadik JD, Fernandez RJ, Ramani NS. Metastatic hepatocellular carcinoma to the shoulder with an unknown primary. Indian J Gastroenterol 2024; 43:519-521. [PMID: 37450101 DOI: 10.1007/s12664-023-01383-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Affiliation(s)
- Juhi D Mahadik
- Department of Pathology, Michael E. DeBakey VA Medical Center, 2002 Holcombe Blvd, Houston, TX, 77030, USA
- Department of Pathology, Baylor College of Medicine, Houston, TX, USA
| | - Ryan J Fernandez
- Department of Diagnostic Radiology, Baylor College of Medicine, Houston, TX, USA
| | - Nisha S Ramani
- Department of Pathology, Michael E. DeBakey VA Medical Center, 2002 Holcombe Blvd, Houston, TX, 77030, USA.
- Department of Pathology, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
4
|
Wen KW, Kakar S. Hepatic Precancerous Lesions and Early Hepatocellular Carcinoma. Gastroenterol Clin North Am 2024; 53:109-132. [PMID: 38280744 DOI: 10.1016/j.gtc.2023.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2024]
Abstract
This review discusses the diagnostic challenges of diagnosing and treating precursor lesions of hepatocellular carcinoma (HCC) in both cirrhotic and non-cirrhotic livers. The distinction of high-grade dysplastic nodule (the primary precursor lesion in cirrhotic liver) from early HCC is emphasized based on morphologic, immunohistochemical, and genomic features. The risk factors associated with HCC in hepatocellular adenomas (precursor lesion in non-cirrhotic liver) are delineated, and the risk in different subtypes is discussed with emphasis on terminology, diagnosis, and genomic features.
Collapse
Affiliation(s)
- Kwun Wah Wen
- 505 Parnassus Avenue, M545, Box #0102, San Francisco, CA 94143, USA.
| | - Sanjay Kakar
- 505 Parnassus Avenue, M545, Box #0102, San Francisco, CA 94143, USA
| |
Collapse
|
5
|
Panneerselvam S, Wilson C, Kumar P, Abirami D, Pamarthi J, Reddy MS, Varghese J. Overview of hepatocellular carcinoma: from molecular aspects to future therapeutic options. Cell Adh Migr 2023; 17:1-21. [PMID: 37726886 PMCID: PMC10512929 DOI: 10.1080/19336918.2023.2258539] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 09/08/2023] [Indexed: 09/21/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the seventh most highly prevalent malignant tumor globally and the second most common cause of mortality. HCC develops with complex pathways that occur through multistage biological processes. Non-alcoholic fatty liver disease, metabolic-associated fatty liver disease, alcoholic liver disease, autoimmune hepatitis, hepatitis B, and hepatitis C are the causative etiologies of HCC. HCC develops as a result of epigenetic changes, protein-coding gene mutations, and altered signaling pathways. Biomarkers and potential therapeutic targets for HCC open up new possibilities for treating the disease. Immune checkpoint inhibitors are included in the treatment options in combination with molecular targeted therapy.
Collapse
Affiliation(s)
- Sugan Panneerselvam
- Department of Hepatology and Transplant Hepatology, Gleneagles Global Health City, Chennai, Tamil Nadu, India
| | - Cornelia Wilson
- Natural and Applied Sciences, School of Psychology and Life Sciences, Canterbury Christ Church University, Discovery Park, Sandwich, UK
| | - Prem Kumar
- Department of Hepatology and Transplant Hepatology, Gleneagles Global Health City, Chennai, Tamil Nadu, India
| | - Dinu Abirami
- Department of Gastroenterology, Gleneagles Global Health City, Chennai, Tamil Nadu, India
| | - Jayakrishna Pamarthi
- Multi-Disciplinary Research Unit, Madras Medical College, Chennai, Tamil Nadu, India
| | - Mettu Srinivas Reddy
- The Director and Head, Liver Transplant and HPB surgery, Gleneagles Global Health City, Chennai, Tamil Nadu, India
| | - Joy Varghese
- Department of Gastroenterology, Gleneagles Global Health City, Chennai, Tamil Nadu, India
| |
Collapse
|
6
|
Liao Z, Tang C, Luo R, Gu X, Zhou J, Gao J. Current Concepts of Precancerous Lesions of Hepatocellular Carcinoma: Recent Progress in Diagnosis. Diagnostics (Basel) 2023; 13:diagnostics13071211. [PMID: 37046429 PMCID: PMC10093043 DOI: 10.3390/diagnostics13071211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/16/2023] [Accepted: 03/21/2023] [Indexed: 04/14/2023] Open
Abstract
The most common cause of hepatocellular carcinoma (HCC) is chronic hepatitis and cirrhosis. It is proposed that precancerous lesions of HCC include all stages of the disease, from dysplastic foci (DF), and dysplastic nodule (DN), to early HCC (eHCC) and progressed HCC (pHCC), which is a complex multi-step process. Accurately identifying precancerous hepatocellular lesions can significantly impact the early detection and treatment of HCC. The changes in high-grade dysplastic nodules (HGDN) were similar to those seen in HCC, and the risk of malignant transformation significantly increased. Nevertheless, it is challenging to diagnose precancerous lesions of HCC. We integrated the literature and combined imaging, pathology, laboratory, and other relevant examinations to improve the accuracy of the diagnosis of precancerous lesions.
Collapse
Affiliation(s)
- Ziyue Liao
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital of Chongqing Medical University, No. 76 Linjiang Road, Yuzhong District, Chongqing 400010, China
| | - Cuiping Tang
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital of Chongqing Medical University, No. 76 Linjiang Road, Yuzhong District, Chongqing 400010, China
| | - Rui Luo
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital of Chongqing Medical University, No. 76 Linjiang Road, Yuzhong District, Chongqing 400010, China
| | - Xiling Gu
- Department of Pathology, The Second Affiliated Hospital of Chongqing Medical University, No. 76 Linjiang Road, Yuzhong District, Chongqing 400010, China
| | - Jun Zhou
- Department of Radiology, The Second Affiliated Hospital of Chongqing Medical University, No. 76 Linjiang Road, Yuzhong District, Chongqing 400010, China
| | - Jian Gao
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital of Chongqing Medical University, No. 76 Linjiang Road, Yuzhong District, Chongqing 400010, China
| |
Collapse
|
7
|
Kim M, Delgado E, Ko S. DNA methylation in cell plasticity and malignant transformation in liver diseases. Pharmacol Ther 2023; 241:108334. [PMID: 36535346 PMCID: PMC9841769 DOI: 10.1016/j.pharmthera.2022.108334] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/09/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022]
Abstract
The liver possesses extraordinary regenerative capacity mainly attributable to the ability of hepatocytes (HCs) and biliary epithelial cells (BECs) to self-replicate. This ability is left over from their bipotent parent cell, the hepatoblast, during development. When this innate regeneration is compromised due to the absence of proliferative parenchymal cells, such as during cirrhosis, HCs and BEC can transdifferentiate; thus, adding another layer of complexity to the process of liver repair. In addition, dysregulated lineage maintenance in these two cell populations has been shown to promote malignant growth in experimental conditions. Here, malignant transformation, driven in part by insufficient maintenance of lineage reprogramming, contributes to end-stage liver disease. Epigenetic changes are key drivers for cell fate decisions as well as transformation by finetuning overall transcription and gene expression. In this review, we address how altered DNA methylation contributes to the initiation and progression of hepatic cell fate conversion and cancer formation. We also discussed the diagnostic and therapeutic potential of targeting DNA methylation in liver cancer, its current limitations, and what future research is necessary to facilitate its contribution to clinical translation.
Collapse
Affiliation(s)
- Minwook Kim
- Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States of America
| | - Evan Delgado
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States of America; Pittsburgh Liver Research Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States of America
| | - Sungjin Ko
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States of America; Pittsburgh Liver Research Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States of America.
| |
Collapse
|
8
|
Zhang H, Zhang X, Yu J. Integrated Analysis of Altered lncRNA, circRNA, microRNA, and mRNA Expression in Hepatocellular Carcinoma Carrying TERT Promoter Mutations. J Hepatocell Carcinoma 2022; 9:1201-1215. [PMID: 36471741 PMCID: PMC9719279 DOI: 10.2147/jhc.s385026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 11/16/2022] [Indexed: 09/10/2023] Open
Abstract
BACKGROUND AND OBJECTIVES Telomerase reverse transcriptase (TERT) promoter mutations are one of the most common mutations responsible for the development of hepatocellular carcinoma (HCC). Noncoding RNAs (ncRNAs) play a regulatory role in different cancers through the long noncoding RNA (lncRNA)/circular RNA (circRNA)-microRNA (miRNA)-mRNA axis. The aim of the study was to explore the influence of TERT promoter mutations on the ncRNA regulatory network in HCC. METHODS Four tumor samples with a wildtype TERT promoter and four tumor samples with TERT promoter mutations (sequencing cohort) were collected from HCC patients for high-throughput next-generation sequencing. Selected ncRNAs and mRNAs were validated by qPCR in 15 HCC tumors with a wildtype TERT promoter and seven HCC tumors with TERT promoter mutations (validation cohort, including the sequencing cohort). RESULTS In the mutant TERT promoter group, 536 lncRNAs, 21 circRNAs, 41 miRNAs, and 266 mRNAs were significantly up-regulated, while 1745 lncRNAs, 23 circRNAs, 32 miRNAs, and 1117 mRNAs were significantly down-regulated (P < 0.05) compared with the findings in wildtype group. AL360169.3-201, LINC02672-203, hsa_circ_0021412, hsa-miR-29b-1-5p, hsa-miR-4699-5p, hsa-miR-199a-5p, REG3A, SFRP5, and GSTM1 were verified at the RNA expression level to validate the sequencing results. A differentially expressed lncRNA/circRNA-miRNA-mRNA network was constructed to explore the effects of TERT promoter mutations on ncRNA regulation. Two ncRNA regulatory axes associated with TERT promoter mutations (hsa_circ_0003154/hsa_circ_0008952/IGLL5-AS1/LINC576/LINC575-hsa-miR-1260b -CLPTM1L/GSTM1 and hsa_circ_0031584/LINC2101-hsa-miR-214-3p-CD151) had carcinogenic potential. CONCLUSION This study provides novel insights into the role of TERT promoter mutations on ncRNAs regulatory network in HCC progression.
Collapse
Affiliation(s)
- Haibin Zhang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, People’s Republic of China
| | - Xiaolu Zhang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, People’s Republic of China
| | - Jingya Yu
- Department of Diagnostics, Medical Integration and Practice Center, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, People’s Republic of China
| |
Collapse
|
9
|
Marchese PV, Mollica V, Tassinari E, De Biase D, Giunchi F, Marchetti A, Rosellini M, Fiorentino M, Massari F. Implications of TERT promoter mutations and telomerase activity in solid tumors with a focus on genitourinary cancers. Expert Rev Mol Diagn 2022; 22:997-1008. [PMID: 36503370 DOI: 10.1080/14737159.2022.2154148] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
INTRODUCTION The reactivation of telomerase represents a key moment in the carcinogenesis process. Mutations in the central promoter region of the telomerase reverse transcriptase (TERT) gene cause telomerase reactivation in approximately 90% of solid tumors. In some of these, its prognostic and predictive role in response to treatments has already been demonstrated, in others (such as tumors of the genitourinary tract like urothelial carcinoma) data are controversial and the research is still ongoing. In the future, TERT promoter mutations and telomerase activity could have diagnostic, prognostic, and therapeutic applications in many types of cancer. AREAS COVERED We performed a review the literature with the aim of describing the current evidence on the prognostic and predictive role of TERT promoter mutations. In some tumor types, TERT promoter mutations have been associated with a worse prognosis and could have a potential value as biomarkers to guide therapeutic decisions. Mutations in TERT promoter seems to make the tumor particularly immunogenic and more responsive to immunotherapy, although data is controversial. EXPERT OPINION We described the role of TERT promoter mutations in solid tumors with a particular focus in genitourinary cancers, considering their frequency in this tract.
Collapse
Affiliation(s)
- Paola Valeria Marchese
- Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria Di Bologna, Via Albertoni - 15 40138, Bologna, Italy
| | - Veronica Mollica
- Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria Di Bologna, Via Albertoni - 15 40138, Bologna, Italy.,Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
| | - Elisa Tassinari
- Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria Di Bologna, Via Albertoni - 15 40138, Bologna, Italy
| | - Dario De Biase
- Department of Pharmacy and Biotechnology (Fabit), University of Bologna, 40138 Bologna, Italy.,Solid Tumor Molecular Pathology Laboratory, IRCCS Azienda Ospedaliero-Universitaria Di Bologna, Bologna, Italy
| | - Francesca Giunchi
- Pathology Unit, IRCCS Policlinico Sant'Orsola-Malpighi, University of Bologna, Bologna, Italy
| | - Andrea Marchetti
- Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria Di Bologna, Via Albertoni - 15 40138, Bologna, Italy
| | - Matteo Rosellini
- Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria Di Bologna, Via Albertoni - 15 40138, Bologna, Italy
| | | | - Francesco Massari
- Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria Di Bologna, Via Albertoni - 15 40138, Bologna, Italy.,Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
| |
Collapse
|
10
|
Prognostic Role of Molecular and Imaging Biomarkers for Predicting Advanced Hepatocellular Carcinoma Treatment Efficacy. Cancers (Basel) 2022; 14:cancers14194647. [PMID: 36230569 PMCID: PMC9564154 DOI: 10.3390/cancers14194647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/19/2022] [Accepted: 09/20/2022] [Indexed: 11/30/2022] Open
Abstract
Simple Summary Molecular biomarkers play a marginal role in clinical practice for hepatocellular carcinoma (HCC) diagnosis, surveillance and treatment monitoring. Radiological biomarker: alpha-fetoprotein is still a lone protagonist in this field. The potential role of molecular biomarkers in the assessment of prognosis and treatment results could reduce the health costs faced by standard radiology. The majority of efforts are oriented towards early HCC detection, but the field faces an important challenge to find adequate biomarkers for advanced HCC management. Abstract Hepatocellular carcinoma (HCC) is the sixth most common malignancy worldwide and the fourth cause of tumor-related death. Imaging biomarkers are based on computed tomography, magnetic resonance, and contrast-enhanced ultrasound, and are widely applied in HCC diagnosis and treatment monitoring. Unfortunately, in the field of molecular biomarkers, alpha-fetoprotein (AFP) is still the only recognized tool for HCC surveillance in both diagnostic and follow-up purposes. Other molecular biomarkers have little roles in clinical practice regarding HCC, mainly for the detection of early-stage HCC, monitoring the response to treatments and analyzing tumor prognosis. In the last decades no important improvements have been achieved in this field and imaging biomarkers maintain the primacy in HCC diagnosis and follow-up. Despite the still inconsistent role of molecular biomarkers in surveillance and early HCC detection, they could play an outstanding role in prognosis estimation and treatment monitoring with a potential reduction in health costs faced by standard radiology. An important challenge resides in identifying sufficiently sensitive and specific biomarkers for advanced HCC for prognostic evaluation and detection of tumor progression, overcoming imaging biomarker sensitivity. The aim of this review is to analyze the current molecular and imaging biomarkers in advanced HCC.
Collapse
|
11
|
Maloberti T, De Leo A, Sanza V, Gruppioni E, Altimari A, Riefolo M, Visani M, Malvi D, D’Errico A, Tallini G, Vasuri F, de Biase D. Correlation of molecular alterations with pathological features in hepatocellular carcinoma: Literature review and experience of an Italian center. World J Gastroenterol 2022; 28:2854-2866. [PMID: 35978866 PMCID: PMC9280731 DOI: 10.3748/wjg.v28.i25.2854] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 03/23/2022] [Accepted: 05/28/2022] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) represents the primary carcinoma of the liver and the fourth leading cause of cancer-related deaths. The World Health Organization estimates an increase in cases in the coming years. The risk factors of HCC are multiple, and the incidence in different countries is closely related to the different risk factors to which the population is exposed. The molecular mechanisms that drive HCC tumorigenesis are extremely complex, but understanding this multistep process is essential for the identification of diagnostic, prognostic, and therapeutic markers. The development of multigenic next-generation sequencing panels through the parallel analysis of multiple markers can provide a landscape of the genomic status of the tumor. Considering the literature and our preliminary data based on 36 HCCs, the most frequently altered genes in HCCs are TERT, CTNNB1, and TP53. Over the years, many groups have attempted to classify HCCs on a molecular basis, but a univocal classification has never been achieved. Nevertheless, statistically significant correlations have been found in HCCs between the molecular signature and morphologic features, and this leads us to think that it would be desirable to integrate the approach between anatomic pathology and molecular laboratories.
Collapse
Affiliation(s)
- Thais Maloberti
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna 40138, Italy
- Solid Tumor Molecular Pathology Laboratory, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna 40138, Italy
| | - Antonio De Leo
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna 40138, Italy
- Solid Tumor Molecular Pathology Laboratory, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna 40138, Italy
| | - Viviana Sanza
- Solid Tumor Molecular Pathology Laboratory, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna 40138, Italy
| | - Elisa Gruppioni
- Solid Tumor Molecular Pathology Laboratory, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna 40138, Italy
| | - Annalisa Altimari
- Solid Tumor Molecular Pathology Laboratory, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna 40138, Italy
| | - Mattia Riefolo
- Department of Pathology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna 40138, Italy
| | - Michela Visani
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna 40138, Italy
| | - Deborah Malvi
- Department of Pathology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna 40138, Italy
| | - Antonia D’Errico
- Department of Pathology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna 40138, Italy
| | - Giovanni Tallini
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna 40138, Italy
- Solid Tumor Molecular Pathology Laboratory, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna 40138, Italy
| | - Francesco Vasuri
- Department of Pathology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna 40138, Italy
| | - Dario de Biase
- Department of Pharmacy and biotechnology (FaBiT), University of Bologna, Bologna 40138, Italy
| |
Collapse
|
12
|
Pituitary Tumor-Transforming Gene 1/Delta like Non-Canonical Notch Ligand 1 Signaling in Chronic Liver Diseases. Int J Mol Sci 2022; 23:ijms23136897. [PMID: 35805898 PMCID: PMC9267054 DOI: 10.3390/ijms23136897] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 06/17/2022] [Accepted: 06/18/2022] [Indexed: 02/06/2023] Open
Abstract
The management of chronic liver diseases (CLDs) remains a challenge, and identifying effective treatments is a major unmet medical need. In the current review we focus on the pituitary tumor transforming gene (PTTG1)/delta like non-canonical notch ligand 1 (DLK1) axis as a potential therapeutic target to attenuate the progression of these pathological conditions. PTTG1 is a proto-oncogene involved in proliferation and metabolism. PTTG1 expression has been related to inflammation, angiogenesis, and fibrogenesis in cancer and experimental fibrosis. On the other hand, DLK1 has been identified as one of the most abundantly expressed PTTG1 targets in adipose tissue and has shown to contribute to hepatic fibrosis by promoting the activation of hepatic stellate cells. Here, we extensively analyze the increasing amount of information pointing to the PTTG1/DLK1 signaling pathway as an important player in the regulation of these disturbances. These data prompted us to hypothesize that activation of the PTTG1/DLK1 axis is a key factor upregulating the tissue remodeling mechanisms characteristic of CLDs. Therefore, disruption of this signaling pathway could be useful in the therapeutic management of CLDs.
Collapse
|
13
|
Momeni-Boroujeni A, Yousefi E, Gupta S, Benayed R, Berger MF, Ladanyi M, Monroe R, Kim J, Jungbluth A, Weigelt B, Park KJ. Evaluation of TERT mRNA expression using RNAscope®: A potential histopathologic diagnostic and prognostic tool. Pathol Res Pract 2022; 233:153892. [DOI: 10.1016/j.prp.2022.153892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 04/07/2022] [Indexed: 11/29/2022]
|
14
|
Lau JF, Vokuhl C. [Epithelial childhood liver tumors : An overview of the new WHO classification for pediatric tumors]. DER PATHOLOGE 2022; 43:202-209. [PMID: 35384506 DOI: 10.1007/s00292-022-01067-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/24/2022] [Indexed: 06/14/2023]
Abstract
Pediatric liver tumors are very rare tumors and account for less than 1% of all childhood malignancies. By far the most common tumors are hepatoblastomas. This review discusses epithelial malignant childhood liver tumors, with particular attention to the morphology of the different hepatoblastoma subtypes. In addition, other malignant liver tumors such as the so-called hepatocellular tumor NOS and the second-most common childhood liver tumor, the hepatocellular carcinoma, are discussed. In addition to the typical morphological characteristics, the immunohistochemical and molecular aspects are also be presented, which can help to distinguish these entities with often overlapping morphology.
Collapse
Affiliation(s)
- J F Lau
- Sektion Kinderpathologie, Institut für Pathologie, Universitätsklinikum Bonn, Venusberg-Campus 1, 53127, Bonn, Deutschland
| | - C Vokuhl
- Sektion Kinderpathologie, Institut für Pathologie, Universitätsklinikum Bonn, Venusberg-Campus 1, 53127, Bonn, Deutschland.
| |
Collapse
|
15
|
Winkler S, Winkler I, Figaschewski M, Tiede T, Nordheim A, Kohlbacher O. De novo identification of maximally deregulated subnetworks based on multi-omics data with DeRegNet. BMC Bioinformatics 2022; 23:139. [PMID: 35439941 PMCID: PMC9020058 DOI: 10.1186/s12859-022-04670-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Accepted: 03/29/2022] [Indexed: 12/14/2022] Open
Abstract
Background With a growing amount of (multi-)omics data being available, the extraction of knowledge from these datasets is still a difficult problem. Classical enrichment-style analyses require predefined pathways or gene sets that are tested for significant deregulation to assess whether the pathway is functionally involved in the biological process under study. De novo identification of these pathways can reduce the bias inherent in predefined pathways or gene sets. At the same time, the definition and efficient identification of these pathways de novo from large biological networks is a challenging problem. Results We present a novel algorithm, DeRegNet, for the identification of maximally deregulated subnetworks on directed graphs based on deregulation scores derived from (multi-)omics data. DeRegNet can be interpreted as maximum likelihood estimation given a certain probabilistic model for de-novo subgraph identification. We use fractional integer programming to solve the resulting combinatorial optimization problem. We can show that the approach outperforms related algorithms on simulated data with known ground truths. On a publicly available liver cancer dataset we can show that DeRegNet can identify biologically meaningful subgraphs suitable for patient stratification. DeRegNet can also be used to find explicitly multi-omics subgraphs which we demonstrate by presenting subgraphs with consistent methylation-transcription patterns. DeRegNet is freely available as open-source software. Conclusion The proposed algorithmic framework and its available implementation can serve as a valuable heuristic hypothesis generation tool contextualizing omics data within biomolecular networks.
Collapse
Affiliation(s)
- Sebastian Winkler
- Applied Bioinformatics, Department of Computer Science, University of Tuebingen, Tübingen, Germany. .,International Max Planck Research School (IMPRS) "From Molecules to Organism", Tübingen, Germany.
| | - Ivana Winkler
- International Max Planck Research School (IMPRS) "From Molecules to Organism", Tübingen, Germany.,Interfaculty Institute for Cell Biology (IFIZ), University of Tuebingen, Tübingen, Germany.,German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Mirjam Figaschewski
- Applied Bioinformatics, Department of Computer Science, University of Tuebingen, Tübingen, Germany
| | - Thorsten Tiede
- Applied Bioinformatics, Department of Computer Science, University of Tuebingen, Tübingen, Germany
| | - Alfred Nordheim
- Interfaculty Institute for Cell Biology (IFIZ), University of Tuebingen, Tübingen, Germany.,Leibniz Institute on Aging (FLI), Jena, Germany
| | - Oliver Kohlbacher
- Applied Bioinformatics, Department of Computer Science, University of Tuebingen, Tübingen, Germany.,Institute for Bioinformatics and Medical Informatics, University of Tuebingen, Tübingen, Germany.,Translational Bioinformatics, University Hospital Tuebingen, Tübingen, Germany
| |
Collapse
|
16
|
Georgakopoulou E, Evangelou K, Gorgoulis VG. Premalignant lesions and cellular senescence. CELLULAR SENESCENCE IN DISEASE 2022:29-60. [DOI: 10.1016/b978-0-12-822514-1.00001-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
17
|
Muraoka M, Maekawa S, Katoh R, Komiyama Y, Nakakuki N, Takada H, Matsuda S, Suzuki Y, Sato M, Tatsumi A, Miura M, Amemiya F, Shindo H, Takano S, Fukasawa M, Yamauchi K, Yamaguchi T, Nakayama Y, Inoue T, Enomoto N. Usefulness of Cell-Free Human Telomerase Reverse Transcriptase Mutant DNA Quantification in Blood for Predicting Hepatocellular Carcinoma Treatment Efficacy. Hepatol Commun 2021; 5:1927-1938. [PMID: 34558819 PMCID: PMC8557313 DOI: 10.1002/hep4.1762] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 04/28/2021] [Accepted: 05/16/2021] [Indexed: 12/26/2022] Open
Abstract
Although the usefulness of liquid biopsy as a biomarker in the treatment of hepatocellular carcinoma (HCC) has been suggested, its usefulness in transcatheter arterial chemoembolization (TACE) or tyrosine kinase inhibitor (TKI) therapies has not been reported in detail. In this study, we investigated the clinical value of a cell-free (cf)DNA quantification system targeting the human telomerase reverse transcriptase (hTERT) promoter mutation in advanced HCC treatment. Plasma from 67 patients with advanced HCC, treated with TACE and TKI, was used for extraction of cfDNA. We defined cfDNA with the hTERT promoter C228T mutation as circulating mutant DNA (mutant DNA) and without the mutation as circulating wild-type DNA (wild-type DNA). We analyzed the changes in mutant and wild-type DNA levels during HCC treatment and examined the relationship between changes in the cfDNA level and the clinical course. Mutant DNA was detected in 73.1% (49/67) of the patients during HCC treatment. In univariate analysis, factors associated with detection of mutant DNA before treatment were the intrahepatic maximum tumor diameter (P = 0.015) and protein induced by vitamin K absence (PIVKAII) (P = 0.006). The degree of mutant DNA change after TACE was significantly correlated with tumor volume (P < 0.001), reflecting the treated tumor volume. Responders with peak cfDNA levels within 1 week of TKI initiation had significantly better progression-free survival than nonresponders (P = 0.004). Conclusion: Changes in blood hTERT promoter mutant DNA levels during TACE or TKI treatment indirectly reflect the amount of HCCs and are useful for predicting long-term treatment responses.
Collapse
Affiliation(s)
- Masaru Muraoka
- First Department of Internal MedicineFaculty of MedicineUniversity of YamanashiChuoJapan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
van Rosmalen BV, Furumaya A, Klompenhouwer AJ, Tushuizen ME, Braat AE, Reinten RJ, Ligthart MAP, Haring MPD, de Meijer VE, van Voorthuizen T, Takkenberg RB, Dejong CHC, de Man RA, IJzermans JNM, Doukas M, van Gulik TM, Verheij J. Hepatocellular adenoma in men: A nationwide assessment of pathology and correlation with clinical course. Liver Int 2021; 41:2474-2484. [PMID: 34155783 PMCID: PMC8518832 DOI: 10.1111/liv.14989] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/27/2021] [Accepted: 06/05/2021] [Indexed: 12/15/2022]
Abstract
BACKGROUND & AIMS Hepatocellular adenomas (HCA) rarely occur in males, and if so, are frequently associated with malignant transformation. Guidelines are based on small numbers of patients and advise resection of HCA in male patients, irrespective of size or subtype. This nationwide retrospective cohort study is the largest series of HCA in men correlating (immuno)histopathological and molecular findings with the clinical course. METHODS Dutch male patients with available histological slides with a (differential) diagnosis of HCA between 2000 and 2017 were identified through the Dutch Pathology Registry (PALGA). Histopathology and immunohistochemistry according to international guidelines were revised by two expert hepatopathologists. Next generation sequencing (NGS) was performed to confirm hepatocellular carcinoma (HCC) and/or subtype HCA. Final pathological diagnosis was correlated with recurrence, metastasis and death. RESULTS A total of 66 patients from 26 centres fulfilling the inclusion criteria with a mean (±SD) age of 45.0 ± 21.6 years were included. The diagnosis was changed after expert revision and NGS in 33 of the 66 patients (50%). After a median follow-up of 9.6 years, tumour-related mortality of patients with accessible clinical data was 1/18 (5.6%) in HCA, 5/14 (35.7%) in uncertain HCA/HCC and 4/9 (44.4%) in the HCC groups (P = .031). Four B-catenin mutated HCA were identified using NGS, which were not yet identified by immunohistochemistry and expert revision. CONCLUSIONS Expert revision with relevant immunohistochemistry may help the challenging but prognostically relevant distinction between HCA and well-differentiated HCC in male patients. NGS may be more important to subtype HCA than indicated in present guidelines.
Collapse
Affiliation(s)
- Belle V. van Rosmalen
- Department of SurgeryCancer Center AmsterdamAmsterdam UMCUniversity of AmsterdamAmsterdamthe Netherlands
| | - Alicia Furumaya
- Department of SurgeryCancer Center AmsterdamAmsterdam UMCUniversity of AmsterdamAmsterdamthe Netherlands
| | - Anne J. Klompenhouwer
- Department of Gastroenterology and HepatologyErasmus MCUniversity Medical Center RotterdamRotterdamthe Netherlands
| | - Maarten E. Tushuizen
- Department of Gastroenterology and HepatologyLUMCLeiden UniversityLeidenthe Netherlands
| | | | - Roy J. Reinten
- Department of PathologyCancer Center AmsterdamAmsterdam UMCUniversity of AmsterdamAmsterdamthe Netherlands
| | - Marjolein A. P. Ligthart
- Department of Surgery and School of Nutrition and Translational Research in MetabolismMaastricht University Medical CenterMaastrichtthe Netherlands
| | - Martijn P. D. Haring
- Department of SurgeryUniversity Medical Center GroningenUniversity of GroningenGroningenthe Netherlands
| | - Vincent E. de Meijer
- Department of SurgeryUniversity Medical Center GroningenUniversity of GroningenGroningenthe Netherlands
| | | | - R. Bart Takkenberg
- Department of Gastroenterology and HepatologyCancer Center AmsterdamAmsterdam UMCUniversity of AmsterdamAmsterdamthe Netherlands
| | - Cornelis H. C. Dejong
- Department of Surgery and School of Nutrition and Translational Research in MetabolismMaastricht University Medical CenterMaastrichtthe Netherlands,Department of SurgeryUniversitätsklinikum AachenAachenGermany
| | - Robert A. de Man
- Department of Gastroenterology and HepatologyErasmus MCUniversity Medical Center RotterdamRotterdamthe Netherlands
| | - Jan N. M. IJzermans
- Department of SurgeryErasmus MCUniversity Medical Center RotterdamRotterdamthe Netherlands
| | - Michail Doukas
- Department of PathologyErasmus MCUniversity Medical Center RotterdamRotterdamthe Netherlands
| | - Thomas M. van Gulik
- Department of SurgeryCancer Center AmsterdamAmsterdam UMCUniversity of AmsterdamAmsterdamthe Netherlands
| | - Joanne Verheij
- Department of PathologyCancer Center AmsterdamAmsterdam UMCUniversity of AmsterdamAmsterdamthe Netherlands
| | | |
Collapse
|
19
|
Stephens Z, O’Brien D, Dehankar M, Roberts LR, Iyer RK, Kocher JP. Exogene: A performant workflow for detecting viral integrations from paired-end next-generation sequencing data. PLoS One 2021; 16:e0250915. [PMID: 34550971 PMCID: PMC8457494 DOI: 10.1371/journal.pone.0250915] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 07/08/2021] [Indexed: 01/14/2023] Open
Abstract
The integration of viruses into the human genome is known to be associated with tumorigenesis in many cancers, but the accurate detection of integration breakpoints from short read sequencing data is made difficult by human-viral homologies, viral genome heterogeneity, coverage limitations, and other factors. To address this, we present Exogene, a sensitive and efficient workflow for detecting viral integrations from paired-end next generation sequencing data. Exogene's read filtering and breakpoint detection strategies yield integration coordinates that are highly concordant with long read validation. We demonstrate this concordance across 6 TCGA Hepatocellular carcinoma (HCC) tumor samples, identifying integrations of hepatitis B virus that are also supported by long reads. Additionally, we applied Exogene to targeted capture data from 426 previously studied HCC samples, achieving 98.9% concordance with existing methods and identifying 238 high-confidence integrations that were not previously reported. Exogene is applicable to multiple types of paired-end sequence data, including genome, exome, RNA-Seq and targeted capture.
Collapse
Affiliation(s)
- Zachary Stephens
- Department of Electrical and Computer Engineering, University of Illinois Urbana-Champaign, Urbana, IL, United States of America
| | - Daniel O’Brien
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, United States of America
| | - Mrunal Dehankar
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, United States of America
| | - Lewis R. Roberts
- Department of Internal Medicine, Mayo Clinic, Rochester, MN, United States of America
| | - Ravishankar K. Iyer
- Department of Electrical and Computer Engineering, University of Illinois Urbana-Champaign, Urbana, IL, United States of America
| | - Jean-Pierre Kocher
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, United States of America
| |
Collapse
|
20
|
Fateen W, Johnson PJ, Wood HM, Zhang H, He S, El-Meteini M, Wyatt JI, Aithal GP, Quirke P. Characterisation of dysplastic liver nodules using low-pass DNA sequencing and detection of chromosome arm-level abnormalities in blood-derived cell-free DNA. J Pathol 2021; 255:30-40. [PMID: 34028025 DOI: 10.1002/path.5734] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 05/06/2021] [Accepted: 05/21/2021] [Indexed: 12/15/2022]
Abstract
High-grade dysplasia carries significant risk of transformation to hepatocellular carcinoma (HCC). Despite this, at the current standard of care, all non-malignant hepatic nodules including high-grade dysplastic nodules are managed similarly. This is partly related to difficulties in distinguishing high-risk pathology in the liver. We aimed to identify chromosome arm-level somatic copy number alterations (SCNAs) that characterise the transition of liver nodules along the cirrhosis-dysplasia-carcinoma axis. We validated our findings on an independent cohort using blood-derived cell-free DNA. A repository of non-cancer DNA sequences obtained from patients with HCC (n = 389) was analysed to generate cut-off thresholds aiming to minimise false-positive SCNAs. Tissue samples representing stages from the multistep process of hepatocarcinogenesis (n = 184) were subjected to low-pass whole genome sequencing. Chromosome arm-level SCNAs were identified in liver cirrhosis, dysplastic nodules, and HCC to assess their discriminative capacity. Samples positive for 1q+ or 8q+ arm-level duplications were likely to be either HCC or high-grade dysplastic nodules as opposed to low-grade dysplastic nodules or cirrhotic tissue with an odds ratio (OR) of 35.5 (95% CI 11.5-110) and 16 (95% CI 6.4-40.2), respectively (p < 0.0001). In an independent cohort of patients recruited from Nottingham, UK, at least two out of four alterations (1q+, 4q-, 8p-, and 8q+) were detectable in blood-derived cell-free DNA of patients with HCC (n = 22) but none of the control patients with liver cirrhosis (n = 9). Arm-level SCNAs on 1q+ or 8q+ are associated with high-risk liver pathology. These can be detected using low-pass sequencing of cell-free DNA isolated from blood, which may be a future early cancer screening tool for patients with liver cirrhosis. © 2021 The Authors. The Journal of Pathology published by John Wiley & Sons, Ltd. on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Waleed Fateen
- NIHR Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust and The University of Nottingham, Nottingham, UK
- Pathology and Data Analytics, Leeds Institute of Medical Research, St James's University Hospital, University of Leeds, Leeds, UK
- Ain Shams Centre for Organ Transplant, Ain Shams University, Cairo, Egypt
- Nottingham Digestive Diseases Centre, School of Medicine, University of Nottingham, Nottingham, UK
| | - Philip J Johnson
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, UK
| | - Henry M Wood
- Pathology and Data Analytics, Leeds Institute of Medical Research, St James's University Hospital, University of Leeds, Leeds, UK
| | - Han Zhang
- School of Computer Science, Centre for Computational Biology, The University of Birmingham, Birmingham, UK
| | - Shan He
- School of Computer Science, Centre for Computational Biology, The University of Birmingham, Birmingham, UK
| | - Mahmoud El-Meteini
- Ain Shams Centre for Organ Transplant, Ain Shams University, Cairo, Egypt
| | - Judy I Wyatt
- Histopathology Department, Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - Guruprasad P Aithal
- NIHR Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust and The University of Nottingham, Nottingham, UK
- Nottingham Digestive Diseases Centre, School of Medicine, University of Nottingham, Nottingham, UK
| | - Philip Quirke
- Pathology and Data Analytics, Leeds Institute of Medical Research, St James's University Hospital, University of Leeds, Leeds, UK
| |
Collapse
|
21
|
Dourthe C, Julien C, Di Tommaso S, Dupuy JW, Dugot-Senant N, Brochard A, Le Bail B, Blanc JF, Chiche L, Balabaud C, Bioulac-Sage P, Saltel F, Raymond AA. Proteomic Profiling of Hepatocellular Adenomas Paves the Way to Diagnostic and Prognostic Approaches. Hepatology 2021; 74:1595-1610. [PMID: 33754354 DOI: 10.1002/hep.31826] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 02/26/2021] [Accepted: 03/11/2021] [Indexed: 12/11/2022]
Abstract
BACKGROUND AND AIMS Through an exploratory proteomic approach based on typical hepatocellular adenomas (HCAs), we previously identified a diagnostic biomarker for a distinctive subtype of HCA with high risk of bleeding, already validated on a multicenter cohort. We hypothesized that the whole protein expression deregulation profile could deliver much more informative data for tumor characterization. Therefore, we pursued our analysis with the characterization of HCA proteomic profiles, evaluating their correspondence with the established genotype/phenotype classification and assessing whether they could provide added diagnosis and prognosis values. APPROACH AND RESULTS From a collection of 260 cases, we selected 52 typical cases of all different subgroups on which we built a reference HCA proteomics database. Combining laser microdissection and mass-spectrometry-based proteomic analysis, we compared the relative protein abundances between tumoral (T) and nontumoral (NT) liver tissues from each patient and we defined a specific proteomic profile of each of the HCA subgroups. Next, we built a matching algorithm comparing the proteomic profile extracted from a patient with our reference HCA database. Proteomic profiles allowed HCA classification and made diagnosis possible, even for complex cases with immunohistological or genomic analysis that did not lead to a formal conclusion. Despite a well-established pathomolecular classification, clinical practices have not substantially changed and the HCA management link to the assessment of the malignant transformation risk remains delicate for many surgeons. That is why we also identified and validated a proteomic profile that would directly evaluate malignant transformation risk regardless of HCA subtype. CONCLUSIONS This work proposes a proteomic-based machine learning tool, operational on fixed biopsies, that can improve diagnosis and prognosis and therefore patient management for HCAs.
Collapse
Affiliation(s)
- Cyril Dourthe
- Univ. Bordeaux, INSERM, BaRITOn, U1053, Bordeaux, France.,Oncoprot Platform, TBM-Core US 005, Bordeaux, France
| | - Céline Julien
- Univ. Bordeaux, INSERM, BaRITOn, U1053, Bordeaux, France.,Department of Digestive Surgery, Bordeaux University Hospital, Bordeaux, France
| | - Sylvaine Di Tommaso
- Univ. Bordeaux, INSERM, BaRITOn, U1053, Bordeaux, France.,Oncoprot Platform, TBM-Core US 005, Bordeaux, France
| | | | | | | | - Brigitte Le Bail
- Univ. Bordeaux, INSERM, BaRITOn, U1053, Bordeaux, France.,Department of Pathology, Bordeaux University Hospital, Bordeaux, France
| | - Jean-Frédéric Blanc
- Univ. Bordeaux, INSERM, BaRITOn, U1053, Bordeaux, France.,Department of Hepatology and Oncology, Bordeaux University Hospital, Bordeaux, France
| | - Laurence Chiche
- Univ. Bordeaux, INSERM, BaRITOn, U1053, Bordeaux, France.,Department of Digestive Surgery, Bordeaux University Hospital, Bordeaux, France
| | | | | | - Frédéric Saltel
- Univ. Bordeaux, INSERM, BaRITOn, U1053, Bordeaux, France.,Oncoprot Platform, TBM-Core US 005, Bordeaux, France
| | - Anne-Aurélie Raymond
- Univ. Bordeaux, INSERM, BaRITOn, U1053, Bordeaux, France.,Oncoprot Platform, TBM-Core US 005, Bordeaux, France
| |
Collapse
|
22
|
Chopinet S, Cauchy F, Hobeika C, Beaufrère A, Poté N, Farges O, Dokmak S, Bouattour M, Ronot M, Vilgrain V, Paradis V, Soubrane O. Long-term outcomes following resection of hepatocellular adenomas with small foci of malignant transformation or malignant adenomas. JHEP Rep 2021; 3:100326. [PMID: 34368664 PMCID: PMC8326806 DOI: 10.1016/j.jhepr.2021.100326] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 05/12/2021] [Accepted: 06/11/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND & AIMS Malignant transformation of hepatocellular adenoma (MT-HCA) may occur in up to 5% of tumours. However, the prognostic value of this event remains poorly described. In this study, we aimed to analyse the long-term outcomes of patients undergoing liver resection (LR) for MT-HCA compared to those of patients resected for hepatocellular carcinoma (HCC) occurring on normal liver parenchyma (NP-HCC). METHODS This single-centre retrospective study included all patients who underwent LR for MT-HCA at Beaujon Hospital between 2001 and 2019. MT-HCAs were classified as small foci of malignant transformation HCA (SF-HCA) and as malignant HCA (M-HCA) in cases of predominant HCC foci. Recurrence-free survival (RFS) of MT-HCA was compared with that of NP-HCC after propensity score matching. RESULTS Forty patients (24 men, 16 women) underwent LR for MT-HCA, including 23 with SF-HCA and 17 with M-HCA. Of these cases, 16/40 (40%) had β-catenin mutations, 19/40 (47.5%) were inflammatory, 1 was HNF1α-mutated HCA and 4 (10%) were unclassified HCA. Microvascular invasion (12% vs. 0%, p = 0.091) and satellite nodules (25% vs. 4%, p = 0.028) were more frequently observed in M-HCA than in SF-HCA. After a median follow-up of 67 months, 10 (25%) patients with MT-HCA had tumour recurrence, including 9 with M-HCA and 1 with SF-HCA (p = 0.007). M-HCA was linked to significantly poorer 1-, 3-, 5- and 10-year RFS rates than SF-HCA (76%, 63%, 39%, 37% vs. 100%, 100%, 100%, 91%, p = 0.003). Multivariate analysis showed that SF-HCA was independently associated with improved RFS (hazard ratio 0.064; 95% CI 0.008-0.519; p = 0.01). After propensity score matching, NP-HCC was associated with significantly poorer 1-, 3-, 5- and 10-year RFS rates than MT-HCA (p = 0.01). CONCLUSIONS HCA with malignant transformation yields a better long-term prognosis than NP-HCC. Among MT-HCA, SF-HCA is associated with a better prognosis than M-HCA. LAY SUMMARY The prognostic relevance of malignant transformation of hepatocellular adenoma (HCA) remains unknown. Thus, the aim of our study was to compare the outcomes of patients undergoing liver resection for malignant transformation to those of patients undergoing liver resection for hepatocellular carcinoma (HCC). The main long-term risk after resection for carcinoma is recurrence. In this study, 10/40 patients with malignant transformation of HCA relapsed after resection and we identified age >55 years, presence of satellite nodes, and microvascular invasion as risk factors for long-term recurrence. Compared to patients with HCC, patients who underwent liver resection for HCA with malignant transformation had better long-term survival.
Collapse
Key Words
- H-HCA, HNF1α-mutated HCAs
- HCA, hepatocellular adenoma
- HCC, hepatocellular carcinoma
- Hepatocellular adenoma
- IHCA, inflammatory HCA
- LFABP, liver fatty acid binding protein
- LR, liver resection
- MT-HCA, malignant transformation HCA
- NP-HCC, HCC occurring on normal parenchyma
- RFS, recurrence-free survival
- SF-HCA, small foci of malignant transformation HCA
- U-HCA, unclassified HCA
- liver resection
- malignant transformation
- recurrence
- β-HCA, β-catenin-mutated HCA
- β-IHCA, β-catenin-mutated inflammatory HCA
Collapse
Affiliation(s)
- Sophie Chopinet
- Department of HPB and Liver Transplantation, Hôpital Beaujon, Assistance Publique-Hôpitaux de Paris and Université de Paris, Clichy, France
| | - François Cauchy
- Department of HPB and Liver Transplantation, Hôpital Beaujon, Assistance Publique-Hôpitaux de Paris and Université de Paris, Clichy, France
| | - Christian Hobeika
- Department of HPB and Liver Transplantation, Hôpital Beaujon, Assistance Publique-Hôpitaux de Paris and Université de Paris, Clichy, France
| | - Aurélie Beaufrère
- Department of Pathology, Hôpital Beaujon, Assistance Publique-Hôpitaux de Paris and Université de Paris, Clichy, France
| | - Nicolas Poté
- Department of Pathology, Hôpital Beaujon, Assistance Publique-Hôpitaux de Paris and Université de Paris, Clichy, France
| | - Olivier Farges
- Department of HPB and Liver Transplantation, Hôpital Beaujon, Assistance Publique-Hôpitaux de Paris and Université de Paris, Clichy, France
| | - Safi Dokmak
- Department of HPB and Liver Transplantation, Hôpital Beaujon, Assistance Publique-Hôpitaux de Paris and Université de Paris, Clichy, France
| | - Mohamed Bouattour
- Department of Oncology, Hôpital Beaujon, Assistance Publique-Hôpitaux de Paris and Université de Paris, Clichy, France
| | - Maxime Ronot
- Department of Radiology, Hôpital Beaujon, Assistance Publique-Hôpitaux de Paris and Université de Paris, Clichy, France
| | - Valérie Vilgrain
- Department of Radiology, Hôpital Beaujon, Assistance Publique-Hôpitaux de Paris and Université de Paris, Clichy, France
| | - Valérie Paradis
- Department of Pathology, Hôpital Beaujon, Assistance Publique-Hôpitaux de Paris and Université de Paris, Clichy, France
| | - Olivier Soubrane
- Department of HPB and Liver Transplantation, Hôpital Beaujon, Assistance Publique-Hôpitaux de Paris and Université de Paris, Clichy, France
| |
Collapse
|
23
|
Clinical Significance of Telomerase Reverse-Transcriptase Promoter Mutations in Hepatocellular Carcinoma. Cancers (Basel) 2021; 13:cancers13153771. [PMID: 34359670 PMCID: PMC8345216 DOI: 10.3390/cancers13153771] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/20/2021] [Accepted: 07/23/2021] [Indexed: 12/21/2022] Open
Abstract
Simple Summary Activating mutations in the promoter region of TERT (TERTp) gene are frequently observed in low- and high-grade dysplastic nodules and defined as early events in hepatocellular carcinoma development. This study shows that the nucleotide change G>A at position −124 in the TERTp region is very common in hepatocellular carcinoma. The concordance rate between droplet digital PCR (ddPCR) (63.6%) and Sanger sequencing (52.1%) detection methods is good (83.5%). HCC patients carrying the TERTp mutation had lower levels of the tumour biomarker Ca19-9 but showed reduced survival. The presence of TERTp mutations may represent a prognostic signature in liver cancer. Abstract Telomerase reactivation during hepatocarcinogenesis is recurrently caused by two point mutations occurring most frequently at the nucleotide −124 (95%) and occasionally at the nucleotide −146 (<5%) upstream of the TERT translational start site in hepatocellular carcinoma (HCC). In this study, we designed a droplet digital PCR (ddPCR) assay to detect TERT promoter (TERTp) nucleotide change G>A at position −124 and to quantify the mutant allele frequency (MAF) in 121 primary liver cancers, including 114 HCC along with 23 autologous cirrhotic tissues, five cholangiocarcinoma (CC), and two hepato-cholangiocarcinoma (HCC-CC). All cases were evaluated for tumour markers such as α-fetoprotein (AFP), carbohydrate antigen 19-9 (CA19-9), and carcinoembryonic antigen (CEA). We compared the sensitivity of ddPCR and Sanger sequencing and investigated the prognostic relevance of TERTp mutations. The TERTp G>A transition was identified in 63.6% and 52.1% of HCC samples by ddPCR and Sanger sequencing, respectively. One out of 23 (4.3%) peri-tumour tissues tested positive only by ddPCR. One out of five CC (20%) and none of the HCC-CC were found concordantly mutated by the two methods. The TERTp MAF ranged from 2% to 66%, and the large majority (85.5%) of mutated samples showed a value above 20%. A statistically significant correlation was found between TERTp mutation and tumour size (p = 0.048), while an inverse correlation was observed with CA19-9 levels (p = 0.0105). Moreover, HCC patients with TERTp −124A had reduced survival. In conclusion, the single nucleotide variation G>A at position −124 in TERTp, detected either by ddPCR or by Sanger sequencing, showed a remarkable high frequency in HCC. Such mutation is associated with lower levels of CA19-9 and reduced survival in HCC patients suggesting that the TERTp status may represent a distinct signature of liver cancer subgroups.
Collapse
|
24
|
Blidisel A, Marcovici I, Coricovac D, Hut F, Dehelean CA, Cretu OM. Experimental Models of Hepatocellular Carcinoma-A Preclinical Perspective. Cancers (Basel) 2021; 13:3651. [PMID: 34359553 PMCID: PMC8344976 DOI: 10.3390/cancers13153651] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 07/16/2021] [Accepted: 07/17/2021] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC), the most frequent form of primary liver carcinoma, is a heterogenous and complex tumor type with increased incidence, poor prognosis, and high mortality. The actual therapeutic arsenal is narrow and poorly effective, rendering this disease a global health concern. Although considerable progress has been made in terms of understanding the pathogenesis, molecular mechanisms, genetics, and therapeutical approaches, several facets of human HCC remain undiscovered. A valuable and prompt approach to acquire further knowledge about the unrevealed aspects of HCC and novel therapeutic candidates is represented by the application of experimental models. Experimental models (in vivo and in vitro 2D and 3D models) are considered reliable tools to gather data for clinical usability. This review offers an overview of the currently available preclinical models frequently applied for the study of hepatocellular carcinoma in terms of initiation, development, and progression, as well as for the discovery of efficient treatments, highlighting the advantages and the limitations of each model. Furthermore, we also focus on the role played by computational studies (in silico models and artificial intelligence-based prediction models) as promising novel tools in liver cancer research.
Collapse
Affiliation(s)
- Alexandru Blidisel
- Faculty of Medicine, “Victor Babeș” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, RO-300041 Timișoara, Romania; (A.B.); (F.H.); (O.M.C.)
| | - Iasmina Marcovici
- Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, RO-300041 Timișoara, Romania;
- Research Center for Pharmaco-Toxicological Evaluations, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, RO-300041 Timișoara, Romania
| | - Dorina Coricovac
- Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, RO-300041 Timișoara, Romania;
- Research Center for Pharmaco-Toxicological Evaluations, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, RO-300041 Timișoara, Romania
| | - Florin Hut
- Faculty of Medicine, “Victor Babeș” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, RO-300041 Timișoara, Romania; (A.B.); (F.H.); (O.M.C.)
| | - Cristina Adriana Dehelean
- Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, RO-300041 Timișoara, Romania;
- Research Center for Pharmaco-Toxicological Evaluations, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, RO-300041 Timișoara, Romania
| | - Octavian Marius Cretu
- Faculty of Medicine, “Victor Babeș” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, RO-300041 Timișoara, Romania; (A.B.); (F.H.); (O.M.C.)
| |
Collapse
|
25
|
Jiao J, Sanchez JI, Thompson EJ, Mao X, McCormick JB, Fisher-Hoch SP, Futreal PA, Zhang J, Beretta L. Somatic Mutations in Circulating Cell-Free DNA and Risk for Hepatocellular Carcinoma in Hispanics. Int J Mol Sci 2021; 22:ijms22147411. [PMID: 34299031 PMCID: PMC8304329 DOI: 10.3390/ijms22147411] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/06/2021] [Accepted: 07/07/2021] [Indexed: 02/03/2023] Open
Abstract
Hispanics are disproportionally affected by liver fibrosis and hepatocellular carcinoma (HCC). Advanced liver fibrosis is a major risk factor for HCC development. We aimed at identifying somatic mutations in plasma cell-free DNA (cfDNA) of Hispanics with HCC and Hispanics with advanced liver fibrosis but no HCC. Targeted sequencing of over 262 cancer-associated genes identified nonsynonymous mutations in 22 of the 27 HCC patients. Mutations were detected in known HCC-associated genes (e.g., CTNNB1, TP53, NFE2L2, and ARID1A). No difference in cfDNA concentrations was observed between patients with mutations and those without detectable mutations. HCC patients with higher cfDNA concentrations or higher number of mutations had a shorter overall survival (p < 0.001 and p = 0.045). Nonsynonymous mutations were also identified in 17 of the 51 subjects with advanced liver fibrosis. KMT2C was the most commonly mutated gene. Nine genes were mutated in both subjects with advanced fibrosis and HCC patients. Again, no significant difference in cfDNA concentrations was observed between subjects with mutations and those without detectable mutations. Furthermore, higher cfDNA concentrations and higher number of mutations correlated with a death outcome in subjects with advanced fibrosis. In conclusion, cfDNA features are promising non-invasive markers for HCC risk prediction and overall survival.
Collapse
Affiliation(s)
- Jingjing Jiao
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (J.J.); (J.I.S.)
| | - Jessica I. Sanchez
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (J.J.); (J.I.S.)
| | - Erika J. Thompson
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Xizeng Mao
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (X.M.); (P.A.F.); (J.Z.)
| | - Joseph B. McCormick
- Brownsville Regional Campus, School of Public Health, The University of Texas Health Science Center at Houston, Brownsville, TX 78520, USA; (J.B.M.); (S.P.F.-H.)
| | - Susan P. Fisher-Hoch
- Brownsville Regional Campus, School of Public Health, The University of Texas Health Science Center at Houston, Brownsville, TX 78520, USA; (J.B.M.); (S.P.F.-H.)
| | - P. Andrew Futreal
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (X.M.); (P.A.F.); (J.Z.)
| | - Jianhua Zhang
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (X.M.); (P.A.F.); (J.Z.)
| | - Laura Beretta
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (J.J.); (J.I.S.)
- Correspondence: ; Tel.: +1-713-792-9100
| |
Collapse
|
26
|
Tang LJ, Rios RS, Zhang H, Byrne CD, Targher G, Zheng MH. Telomerase: a key player in the pathogenesis of non-alcoholic fatty liver disease? Expert Rev Gastroenterol Hepatol 2021; 15:811-819. [PMID: 33709875 DOI: 10.1080/17474124.2021.1903318] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Introduction: Telomerase is a basic nuclear protein reverse transcriptase, which plays a key role in maintaining telomere stability, genome integrity, long-term cell activity, and potential continued proliferation.Area covered: This narrative review discusses key research advances involving telomerase in the development and progression of nonalcoholic fatty liver disease (NAFLD). The review evaluates 9a) whether the assessment of telomerase can be used as a noninvasive diagnostic tool; and (b) whether modification of telomerase function might be a useful potential therapeutic target for treatment of NAFLD. Furthermore, the relationship between telomerase and other chronic metabolic diseases is evaluated.Expert opinion: Several experimental and preclinical studies have suggested that telomerase plays an important role in the development of NAFLD. However, further mechanistic studies are needed to prove a causal relationship and to better elucidate whether the measurement of telomerase has utility as a diagnostic tool or whether pharmacological manipulation of telomerase has therapeutic potential in NAFLD treatment.
Collapse
Affiliation(s)
- Liang-Jie Tang
- NAFLD Research Center, Department of Hepatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Rafael S Rios
- NAFLD Research Center, Department of Hepatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Huai Zhang
- NAFLD Research Center, Department of Hepatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Christopher D Byrne
- Southampton National Institute for Health Research Biomedical Research Centre, University Hospital Southampton, Southampton General Hospital, Southampton, UK
| | - Giovanni Targher
- Section of Endocrinology, Diabetes and Metabolism, Department of Medicine, University and Azienda Ospedaliera Universitaria Integrata of Verona, Verona, Italy
| | - Ming-Hua Zheng
- NAFLD Research Center, Department of Hepatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.,Institute of Hepatology, Wenzhou Medical University, Wenzhou, China.,Key Laboratory of Diagnosis and Treatment for the Development of Chronic Liver Disease in Zhejiang Province, Wenzhou, China
| |
Collapse
|
27
|
Li Y, Zheng Y, Wu L, Li J, Ji J, Yu Q, Dai W, Feng J, Wu J, Guo C. Current status of ctDNA in precision oncology for hepatocellular carcinoma. J Exp Clin Cancer Res 2021; 40:140. [PMID: 33902698 PMCID: PMC8074474 DOI: 10.1186/s13046-021-01940-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 04/06/2021] [Indexed: 01/12/2023] Open
Abstract
The conventional method used to obtain a tumor biopsy for hepatocellular carcinoma (HCC) is invasive and does not evaluate dynamic cancer progression or assess tumor heterogeneity. It is thus imperative to create a novel non-invasive diagnostic technique for improvement in cancer screening, diagnosis, treatment selection, response assessment, and predicting prognosis for HCC. Circulating tumor DNA (ctDNA) is a non-invasive liquid biopsy method that reveals cancer-specific genetic and epigenetic aberrations. Owing to the development of technology in next-generation sequencing and PCR-based assays, the detection and quantification of ctDNA have greatly improved. In this publication, we provide an overview of current technologies used to detect ctDNA, the ctDNA markers utilized, and recent advances regarding the multiple clinical applications in the field of precision medicine for HCC.
Collapse
Affiliation(s)
- Yan Li
- Department of Gastroenterology, Putuo People's Hospital, Tongji University School of Medicine, number 1291, Jiangning road, Putuo, Shanghai, 200060, China
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Number 301, Middle Yanchang road, Jing'an, Shanghai, 200072, China
| | - Yuanyuan Zheng
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Number 301, Middle Yanchang road, Jing'an, Shanghai, 200072, China
| | - Liwei Wu
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Number 301, Middle Yanchang road, Jing'an, Shanghai, 200072, China
| | - Jingjing Li
- Department of Gastroenterology, Putuo People's Hospital, Tongji University School of Medicine, number 1291, Jiangning road, Putuo, Shanghai, 200060, China
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Number 301, Middle Yanchang road, Jing'an, Shanghai, 200072, China
| | - Jie Ji
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Number 301, Middle Yanchang road, Jing'an, Shanghai, 200072, China
| | - Qiang Yu
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Number 301, Middle Yanchang road, Jing'an, Shanghai, 200072, China
| | - Weiqi Dai
- Department of Gastroenterology, Putuo People's Hospital, Tongji University School of Medicine, number 1291, Jiangning road, Putuo, Shanghai, 200060, China
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Number 301, Middle Yanchang road, Jing'an, Shanghai, 200072, China
| | - Jiao Feng
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Number 301, Middle Yanchang road, Jing'an, Shanghai, 200072, China.
| | - Jianye Wu
- Department of Gastroenterology, Putuo People's Hospital, Tongji University School of Medicine, number 1291, Jiangning road, Putuo, Shanghai, 200060, China.
| | - Chuanyong Guo
- Department of Gastroenterology, Putuo People's Hospital, Tongji University School of Medicine, number 1291, Jiangning road, Putuo, Shanghai, 200060, China.
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Number 301, Middle Yanchang road, Jing'an, Shanghai, 200072, China.
| |
Collapse
|
28
|
Tertiary Prevention of HCC in Chronic Hepatitis B or C Infected Patients. Cancers (Basel) 2021; 13:cancers13071729. [PMID: 33917345 PMCID: PMC8038691 DOI: 10.3390/cancers13071729] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 03/29/2021] [Accepted: 03/29/2021] [Indexed: 01/27/2023] Open
Abstract
Simple Summary Hepatocellular carcinoma (HCC) recurrence is the major obstacle concerning patients’ survival. Tertiary prevention by antiviral therapies could reduce HCC recurrence rate in both chronic hepatitis B virus (HBV) or hepatitis C virus (HCV) infected patients. In chronic hepatitis B (CHB) patients, nucleos(t)ide analogues (Nuc) provide a more effective HCC tertiary prevention effect than an interferon (IFN)-based regimen. In chronic hepatitis C (CHC) patients, the tertiary prevention effect by direct acting antiviral agents (DAAs) was reported non-inferior to that by IFN-based therapy. Chronic hepatitis C patients left untreated had the worst survival benefit as well as shorted recurrence-free interval than those treated by either type of antiviral regimen. Although the risk of HCC recurrence could only be decreased but not diminished by antiviral therapies due to host and microenvironmental factors beyond virus infection, antiviral therapy helps to preserve and improve liver function which makes multi-modality anticancer treatment feasible to improve survival. Abstract Hepatocellular carcinoma (HCC) ranks as a leading cause of common cancer and cancer-related death. The major etiology of HCC is due to chronic hepatitis virus including HBV and HCV infections. Scheduled HCC surveillance in high risk populations improves the early detection rate and the feasibility of curative treatment. However, high HCC recurrence rate still accounts for the poor prognosis of HCC patients. In this article, we critically review the pathogenesis of viral hepatitis-related hepatocellular carcinoma and the evidence of tertiary prevention efficacy by current available antiviral treatment, and discuss the knowledge gap in viral hepatitis-related HCC tertiary prevention.
Collapse
|
29
|
Oversoe SK, Clement MS, Pedersen MH, Weber B, Aagaard NK, Villadsen GE, Grønbæk H, Hamilton-Dutoit SJ, Sorensen BS, Kelsen J. TERT promoter mutated circulating tumor DNA as a biomarker for prognosis in hepatocellular carcinoma. Scand J Gastroenterol 2020; 55:1433-1440. [PMID: 33103505 DOI: 10.1080/00365521.2020.1837928] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
BACKGROUND AND AIMS Plasma circulating tumor DNA (ctDNA) with tumor-specific mutations is an attractive biomarker. The telomerase reverse transcriptase (TERT) C228T promoter mutation is the most prevalent tumor-associated mutation in hepatocellular carcinoma (HCC). We evaluated the presence and prognostic value of the TERT C228T mutation in plasma and tissue in a Danish HCC cohort. METHODS We analyzed ctDNA from 95 HCC patients and 45 liver cirrhotic patients without HCC for the TERT mutation using droplet digital polymerase chain reaction. We also analyzed DNA from the corresponding primary tumor tissues in 34 HCC patients. RESULTS The plasma TERT C228T mutation was detected in 42/95 HCC patients (44%) but in none of the non-HCC patients. The TERT mutation was detected in 23/34 tumor samples (68%). The TERT mutation was associated with increased mortality when detected in plasma (adjusted HR 2.16 (1.20-3.88), p = .010) but not in tumor tissue (adjusted HR 1.11 (0.35-3.56), p = .860). There was a positive correlation between the presence of the TERT mutation in plasma and an advanced TNM stage (p < .0001) and vascular invasion (p = .005). Analysis of the TERT mutation in plasma and tumor DNA from the same patient was concordant in 21/34 samples (62%; kappa value 0.31, p = .014). Non-concordance was associated with an early TNM stage. CONCLUSION The plasma TERT mutation was detected in 44% of HCC patients and in none of non-HCC cirrhotic patients; and was associated with increased mortality. We propose the TERT C228T mutation in ctDNA as a promising HCC biomarker for prognosis.
Collapse
Affiliation(s)
- Stine K Oversoe
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, Aarhus N, Denmark.,Department of Internal Medicine, Randers Regional Hospital, Randers, Denmark
| | - Michelle S Clement
- Department of Clinical Biochemistry, Aarhus University Hospital, Aarhus N, Denmark
| | | | - Britta Weber
- Department of Clinical Oncology and Danish Centre of Particle Therapy, Aarhus University Hospital, Aarhus N, Denmark
| | - Niels Kristian Aagaard
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, Aarhus N, Denmark
| | - Gerda E Villadsen
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, Aarhus N, Denmark
| | - Henning Grønbæk
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, Aarhus N, Denmark
| | | | - Boe S Sorensen
- Department of Clinical Biochemistry, Aarhus University Hospital, Aarhus N, Denmark
| | - Jens Kelsen
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, Aarhus N, Denmark
| |
Collapse
|
30
|
Nia A, Dhanasekaran R. Genomic Landscape of HCC. CURRENT HEPATOLOGY REPORTS 2020; 19:448-461. [PMID: 33816052 PMCID: PMC8015384 DOI: 10.1007/s11901-020-00553-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/23/2020] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Hepatocellular carcinoma (HCC) is a leading cause of cancer related mortality in the world and it has limited treatment options. Understanding the molecular drivers of HCC is important to develop novel biomarkers and therapeutics. PURPOSE OF REVIEW HCC arises in a complex background of chronic hepatitis, fibrosis and liver regeneration which lead to genomic changes. Here, we summarize studies that have expanded our understanding of the molecular landscape of HCC. RECENT FINDINGS Recent technological advances in next generation sequencing (NGS) have elucidated specific genetic and molecular programs involved in hepatocarcinogenesis. We summarize the major somatic mutations and epigenetic changes have been identified in NGS-based studies. We also describe promising molecular therapies and immunotherapies which target specific genetic and epigenetic molecular events. SUMMARY The genomic landscape of HCC is incredibly complex and heterogeneous. Promising new developments are helping us decipher the molecular drivers of HCC and leading to new therapies.
Collapse
|
31
|
D'souza S, Lau KCK, Coffin CS, Patel TR. Molecular mechanisms of viral hepatitis induced hepatocellular carcinoma. World J Gastroenterol 2020; 26:5759-5783. [PMID: 33132633 PMCID: PMC7579760 DOI: 10.3748/wjg.v26.i38.5759] [Citation(s) in RCA: 146] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 09/03/2020] [Accepted: 09/17/2020] [Indexed: 02/06/2023] Open
Abstract
Chronic infection with viral hepatitis affects half a billion individuals worldwide and can lead to cirrhosis, cancer, and liver failure. Liver cancer is the third leading cause of cancer-associated mortality, of which hepatocellular carcinoma (HCC) represents 90% of all primary liver cancers. Solid tumors like HCC are complex and have heterogeneous tumor genomic profiles contributing to complexity in diagnosis and management. Chronic infection with hepatitis B virus (HBV), hepatitis delta virus (HDV), and hepatitis C virus (HCV) are the greatest etiological risk factors for HCC. Due to the significant role of chronic viral infection in HCC development, it is important to investigate direct (viral associated) and indirect (immune-associated) mechanisms involved in the pathogenesis of HCC. Common mechanisms used by HBV, HCV, and HDV that drive hepatocarcinogenesis include persistent liver inflammation with an impaired antiviral immune response, immune and viral protein-mediated oxidative stress, and deregulation of cellular signaling pathways by viral proteins. DNA integration to promote genome instability is a feature of HBV infection, and metabolic reprogramming leading to steatosis is driven by HCV infection. The current review aims to provide a brief overview of HBV, HCV and HDV molecular biology, and highlight specific viral-associated oncogenic mechanisms and common molecular pathways deregulated in HCC, and current as well as emerging treatments for HCC.
Collapse
Affiliation(s)
- Simmone D'souza
- Department of Microbiology, Immunology, and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary T2N 1N4, AB, Canada
| | - Keith CK Lau
- Department of Microbiology, Immunology, and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary T2N 1N4, AB, Canada
| | - Carla S Coffin
- Department of Microbiology, Immunology, and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary T2N 1N4, AB, Canada
| | - Trushar R Patel
- Department of Microbiology, Immunology, and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary T2N 1N4, AB, Canada
- Department of Chemistry and Biochemistry, Alberta RNA Research and Training Institute, University of Lethbridge, Lethbridge T1K3M4, AB, Canada
| |
Collapse
|
32
|
Alison MR. The cellular origins of cancer with particular reference to the gastrointestinal tract. Int J Exp Pathol 2020; 101:132-151. [PMID: 32794627 PMCID: PMC7495846 DOI: 10.1111/iep.12364] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 06/11/2020] [Accepted: 06/13/2020] [Indexed: 12/18/2022] Open
Abstract
Stem cells or their closely related committed progenitor cells are the likely founder cells of most neoplasms. In the continually renewing and hierarchically organized epithelia of the oesophagus, stomach and intestine, homeostatic stem cells are located at the beginning of the cell flux, in the basal layer of the oesophagus, the isthmic region of gastric oxyntic glands and at the bottom of gastric pyloric-antral glands and colonic crypts. The introduction of mutant oncogenes such as KrasG12D or loss of Tp53 or Apc to specific cell types expressing the likes of Lgr5 and Mist1 can be readily accomplished in genetically engineered mouse models to initiate tumorigenesis. Other origins of cancer are discussed including 'reserve' stem cells that may be activated by damage or through disruption of morphogen gradients along the crypt axis. In the liver and pancreas, with little cell turnover and no obvious stem cell markers, the importance of regenerative hyperplasia associated with chronic inflammation to tumour initiation is vividly apparent, though inflammatory conditions in the renewing populations are also permissive for tumour induction. In the liver, hepatocytes, biliary epithelial cells and hepatic progenitor cells are embryologically related, and all can give rise to hepatocellular carcinoma and cholangiocarcinoma. In the exocrine pancreas, both acinar and ductal cells can give rise to pancreatic ductal adenocarcinoma (PDAC), although the preceding preneoplastic states are quite different: acinar-ductal metaplasia gives rise to pancreatic intraepithelial neoplasia culminating in PDAC, while ducts give rise to PDAC via. mucinous cell metaplasia that may have a polyclonal origin.
Collapse
Affiliation(s)
- Malcolm R. Alison
- Centre for Tumour BiologyBarts Cancer Institute, Charterhouse SquareBarts and The London School of Medicine and DentistryLondonUK
| |
Collapse
|
33
|
Muraoka M, Maekawa S, Suzuki Y, Sato M, Tatsumi A, Matsuda S, Miura M, Nakakuki N, Shindo H, Amemiya F, Takano S, Fukasawa M, Nakayama Y, Yamaguchi T, Inoue T, Sato T, Yamashita A, Moriishi K, Matsuda M, Enomoto N. Cancer-related genetic changes in multistep hepatocarcinogenesis and their correlation with imaging and histological findings. Hepatol Res 2020; 50:1071-1082. [PMID: 32510681 DOI: 10.1111/hepr.13529] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 04/28/2020] [Accepted: 05/17/2020] [Indexed: 02/07/2023]
Abstract
AIM The landscape of cancer-related genetic aberrations in hepatocellular carcinoma (HCC) has gradually become clear through recent next-generation sequencing studies. However, it remains unclear how genetic aberrations correlate with imaging and histological findings. METHODS Using 117 formalin-fixed paraffin-embedded specimens of primary liver tumors, we undertook targeted next-generation sequencing of 50 cancer-related genes and digital polymerase chain reaction of hTERT. After classifying tumors into several imaging groups by hierarchal clustering with the information from gadoxetic acid enhanced magnetic resonance imaging, contrast-enhanced computed tomography, contrast-enhanced ultrasound, and diffusion-weighted imaging magnetic resonance imaging, the correlation between genetic aberrations and imaging and histology were investigated. RESULTS Most frequent mutations were hTERT (61.5%), followed by TP53 (42.7%), RB1 (24.8%), and CTNNB1 (18.8%). Liver tumors were classified into six imaging groups/grades, and the prevalence of hTERT mutations tended to increase with the advancement of imaging/histological grades (P = 0.026 and 0.13, respectively), whereas no such tendency was evident for TP53 mutation (P = 0.78 and 1.00, respectively). Focusing on the mutations in each tumor, although the variant frequency (VF) of hTERT did not change (P = 0.36 and 0.14, respectively) in association with imaging/histological grades, TP53 VF increased significantly (P = 0.004 and <0.001, respectively). In multivariate analysis, stage III or IV (hazard ratio, 3.64; P = 0.003), TP53 VF ≥ 50% (hazard ratio, 3.79; P = 0.020) was extracted as an independent risk for recurrence in primary HCC patients. CONCLUSIONS Increased prevalence of hTERT mutation and increased TP53 mutation VF are characteristic features of HCC progression, diagnosed with imaging/histological studies.
Collapse
Affiliation(s)
- Masaru Muraoka
- First Department of Internal Medicine, Faculty of Medicine, University of Yamanashi, Chuo, Japan
| | - Shinya Maekawa
- First Department of Internal Medicine, Faculty of Medicine, University of Yamanashi, Chuo, Japan
| | - Yuichiro Suzuki
- First Department of Internal Medicine, Faculty of Medicine, University of Yamanashi, Chuo, Japan
| | - Mitsuaki Sato
- First Department of Internal Medicine, Faculty of Medicine, University of Yamanashi, Chuo, Japan
| | - Akihisa Tatsumi
- First Department of Internal Medicine, Faculty of Medicine, University of Yamanashi, Chuo, Japan
| | - Shuya Matsuda
- First Department of Internal Medicine, Faculty of Medicine, University of Yamanashi, Chuo, Japan
| | - Mika Miura
- First Department of Internal Medicine, Faculty of Medicine, University of Yamanashi, Chuo, Japan
| | - Natsuko Nakakuki
- First Department of Internal Medicine, Faculty of Medicine, University of Yamanashi, Chuo, Japan
| | - Hiroko Shindo
- First Department of Internal Medicine, Faculty of Medicine, University of Yamanashi, Chuo, Japan
| | - Fumitake Amemiya
- First Department of Internal Medicine, Faculty of Medicine, University of Yamanashi, Chuo, Japan
| | - Shinichi Takano
- First Department of Internal Medicine, Faculty of Medicine, University of Yamanashi, Chuo, Japan
| | - Mitsuharu Fukasawa
- First Department of Internal Medicine, Faculty of Medicine, University of Yamanashi, Chuo, Japan
| | - Yasuhiro Nakayama
- First Department of Internal Medicine, Faculty of Medicine, University of Yamanashi, Chuo, Japan
| | - Tatsuya Yamaguchi
- First Department of Internal Medicine, Faculty of Medicine, University of Yamanashi, Chuo, Japan
| | - Taisuke Inoue
- First Department of Internal Medicine, Faculty of Medicine, University of Yamanashi, Chuo, Japan
| | - Tadashi Sato
- First Department of Internal Medicine, Faculty of Medicine, University of Yamanashi, Chuo, Japan
| | - Atsuya Yamashita
- Department of Microbiology, University of Yamanashi, Chuo, Japan
| | - Kohji Moriishi
- Department of Microbiology, University of Yamanashi, Chuo, Japan
| | - Masanori Matsuda
- Department of Surgery, Fujiyoshida Municipal Hospital, Fujiyoshida, Japan
| | - Nobuyuki Enomoto
- First Department of Internal Medicine, Faculty of Medicine, University of Yamanashi, Chuo, Japan
| |
Collapse
|
34
|
Wen X, Wu Y, Awadasseid A, Tanaka Y, Zhang W. New Advances in Canonical Wnt/β-Catenin Signaling in Cancer. Cancer Manag Res 2020; 12:6987-6998. [PMID: 32821165 PMCID: PMC7418153 DOI: 10.2147/cmar.s258645] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 07/19/2020] [Indexed: 12/16/2022] Open
Abstract
Wnt/β-catenin-mediated signaling is a key pathway regulating tissue growth and development, and tumorigenesis, and has received increasing attention in recent years. In addition to participating in healthy tissue and organ development, ectopic activation of the pathway can cause a variety of tumors and other pathologies. The pathway plays a critical role in many processes such as proliferation, differentiation, apoptosis, migration, invasion, epithelial–mesenchymal transition and cancer cell stemness. The importance of the Wnt signal is self-evident. This review describes the underlying mechanism of Wnt signaling pathway and highlights the latest findings on the relationship between Wnt signaling pathway and tumorigenesis. In addition, the potential relationship between miRNAs and Wnt signaling is presented. Furthermore, we discuss the intrinsic link between Wnt signaling and cancer cell stemness, which shed light on the malignant progression of tumor cells. Finally, cancer treatment strategies based on the canonical Wnt signaling pathway are summarized, hoping to help clinical development.
Collapse
Affiliation(s)
- Xiaolan Wen
- Laboratory of Chemical Biology and Molecular Drug Design, College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China.,Laboratory of Molecular Immunology, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051, People's Republic of China
| | - Yanling Wu
- Laboratory of Chemical Biology and Molecular Drug Design, College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China.,Laboratory of Molecular Immunology, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051, People's Republic of China
| | - Annoor Awadasseid
- Laboratory of Chemical Biology and Molecular Drug Design, College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China.,Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, People's Republic of China
| | - Yoshimasa Tanaka
- Laboratory of Bioinformatics and Molecular Medicine, Center for Medical Innovation, Nagasaki University, Nagasaki, 852-8588, Japan
| | - Wen Zhang
- Laboratory of Chemical Biology and Molecular Drug Design, College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| |
Collapse
|
35
|
in der Stroth L, Tharehalli U, Günes C, Lechel A. Telomeres and Telomerase in the Development of Liver Cancer. Cancers (Basel) 2020; 12:E2048. [PMID: 32722302 PMCID: PMC7464754 DOI: 10.3390/cancers12082048] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/16/2020] [Accepted: 07/22/2020] [Indexed: 02/07/2023] Open
Abstract
Liver cancer is one of the most common cancer types worldwide and the fourth leading cause of cancer-related death. Liver carcinoma is distinguished by a high heterogeneity in pathogenesis, histopathology and biological behavior. Dysregulated signaling pathways and various gene mutations are frequent in hepatocellular carcinoma (HCC) and intrahepatic cholangiocarcinoma (iCCA), which represent the two most common types of liver tumors. Both tumor types are characterized by telomere shortening and reactivation of telomerase during carcinogenesis. Continuous cell proliferation, e.g., by oncogenic mutations, can cause extensive telomere shortening in the absence of sufficient telomerase activity, leading to dysfunctional telomeres and genome instability by breakage-fusion-bridge cycles, which induce senescence or apoptosis as a tumor suppressor mechanism. Telomerase reactivation is required to stabilize telomere functionality and for tumor cell survival, representing a genetic risk factor for the development of liver cirrhosis and liver carcinoma. Therefore, telomeres and telomerase could be useful targets in hepatocarcinogenesis. Here, we review similarities and differences between HCC and iCCA in telomere biology.
Collapse
Affiliation(s)
- Lena in der Stroth
- Department of Internal Medicine I, University Hospital Ulm, 89081 Ulm, Germany; (L.i.d.S.); (U.T.)
| | - Umesh Tharehalli
- Department of Internal Medicine I, University Hospital Ulm, 89081 Ulm, Germany; (L.i.d.S.); (U.T.)
| | - Cagatay Günes
- Department of Urology, University Hospital Ulm, 89081 Ulm, Germany;
| | - André Lechel
- Department of Internal Medicine I, University Hospital Ulm, 89081 Ulm, Germany; (L.i.d.S.); (U.T.)
| |
Collapse
|
36
|
Choi SH, Cho KJ, Yun SH, Jin B, Lee HY, Ro SW, Kim DY, Ahn SH, Han KH, Park JY. HKR3 regulates cell cycle through the inhibition of hTERT in hepatocellular carcinoma cell lines. J Cancer 2020; 11:2442-2452. [PMID: 32201515 PMCID: PMC7066026 DOI: 10.7150/jca.39380] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 01/20/2020] [Indexed: 12/12/2022] Open
Abstract
Hepatocellular carcinoma is a malignant disease with improved hepatic regeneration and survival, and is activated by human telomere transferase (hTERT). hTERT is expressed during early fetal development and switched off in most adult tissues, but it becomes reactivated in HCC. The exact mechanism regulating these expression changes remains unknown during HCC progress. We evaluated the relationship between hTERT expression and human kruppel-related 3 (HKR3) and cell cycle-related factors in HCC cell lines. Following transfection for hTERT knockdown and HKR3 overexpression, proteomic and transcriptomic analyses related to hTERT were performed using liquid chromatography/mass spectrometry (LC/MS) and RNA sequencing (RNAseq) in HCC cell lines. The expression levels of hTERT, HKR3, and cell cycle-related factors were measured using western blotting, and tumor growth were evaluated via cell proliferation and cell cycle assays. Transcriptomic and proteomic analyses showed that HKR3, hTERT and cyclin-dependent kinase inhibitor 2A (CDKN2A) were correlated. Up-regulation of HKR3 expression decreased hTERT and cyclin activation and suppressed the G1/S phase of the cell cycle through CDKN2A activation. Our results suggest that HKR3 induced regulation of cell cycle through hTERT inhibition and CDKN2A activation. Our results will facilitate further exploration of the pathways regulating human telomerase activity in HCC cell lines.
Collapse
Affiliation(s)
- Sung Hoon Choi
- Yonsei Liver Center, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Kyung Joo Cho
- Yonsei Liver Center, Yonsei University College of Medicine, Seoul, Republic of Korea.,BK21 plus project for medical science, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Sung Ho Yun
- Division of Bioconvergence Analysis, Drug & Disease Target Team, Korea Basic Science Institute (KBSI), Cheongju, Republic of Korea
| | - Bora Jin
- Yonsei Liver Center, Yonsei University College of Medicine, Seoul, Republic of Korea.,BK21 plus project for medical science, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Ha Young Lee
- Division of Bioconvergence Analysis, Drug & Disease Target Team, Korea Basic Science Institute (KBSI), Cheongju, Republic of Korea.,Bio-Analysis Science, University of Science & Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon, Republic of Korea
| | - Simon W Ro
- Yonsei Liver Center, Yonsei University College of Medicine, Seoul, Republic of Korea.,Department of Internal Medicine, Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Do Young Kim
- Yonsei Liver Center, Yonsei University College of Medicine, Seoul, Republic of Korea.,Department of Internal Medicine, Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Sang Hoon Ahn
- Yonsei Liver Center, Yonsei University College of Medicine, Seoul, Republic of Korea.,BK21 plus project for medical science, Yonsei University College of Medicine, Seoul, Republic of Korea.,Department of Internal Medicine, Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Kwang-Hyub Han
- Yonsei Liver Center, Yonsei University College of Medicine, Seoul, Republic of Korea.,Division of Bioconvergence Analysis, Drug & Disease Target Team, Korea Basic Science Institute (KBSI), Cheongju, Republic of Korea.,Department of Internal Medicine, Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jun Yong Park
- Yonsei Liver Center, Yonsei University College of Medicine, Seoul, Republic of Korea.,BK21 plus project for medical science, Yonsei University College of Medicine, Seoul, Republic of Korea.,Department of Internal Medicine, Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
37
|
Lombardo D, Saitta C, Giosa D, Di Tocco FC, Musolino C, Caminiti G, Chines V, Franzè MS, Alibrandi A, Navarra G, Raimondo G, Pollicino T. Frequency of somatic mutations in TERT promoter, TP53 and CTNNB1 genes in patients with hepatocellular carcinoma from Southern Italy. Oncol Lett 2020; 19:2368-2374. [PMID: 32194736 PMCID: PMC7039085 DOI: 10.3892/ol.2020.11332] [Citation(s) in RCA: 147] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 11/25/2019] [Indexed: 12/24/2022] Open
Abstract
Somatic mutations in the TERT promoter and in the TP53 and CTNNB1 genes are considered drivers for hepatocellular carcinoma (HCC) development. They show variable frequencies in different geographic areas, possibly depending on liver disease etiology and environmental factors. TP53, CTNNB1 and TERT genetic mutations were investigated in tumor and non-tumor liver tissues from 67 patients with HCC and liver tissue specimens from 41 control obese subjects from Southern Italy. Furthermore, TERT expression was assessed by reverse transcription-quantitative PCR. Neither CTNNB1 mutations or TP53 R249S substitution were detected in any case. The TP53 R72P polymorphism was found in 10/67 (14.9%) tumors, but was not found in either non-tumor tissues (P=0.001) or controls (P=0.009). TERT gene promoter mutations were found in 29/67 (43.3%) tumor tissues but were not found in either non-tumor (P<0.0001) or control liver specimens (P<0.0001). The most frequent mutation in the tumors was the known hot spot at -124 bp from the TERT ATG start site (-124G>A, 28 cases, 41.8%; P<0.0001). A new previously never reported TERT promoter mutation (at -297 bp from the ATG, -297C>T) was found in 5/67 (7.5%) tumors, in 0/67 (0%) non-tumor (P<0.0001), and in 0/41 (0%) controls (P=0.07). This mutation creates an AP2 consensus sequence, and was found alone (1 case) or in combination (4 cases) with the -124 bp mutation. The mutation at -124 and -297 bp induced a 33-fold (P<0.0001) and 40-fold increase of TERT expression levels, respectively. When both mutations were present, TERT expression levels were increased >300-fold (P=0.001). A new TERT promoter mutation was identified, which generates a de novo binding motif for AP2 transcription factors, and which significantly increases TERT promoter transcriptional activity.
Collapse
Affiliation(s)
- Daniele Lombardo
- Division of Clinical and Molecular Hepatology, University Hospital 'G. Martino' of Messina, 98124 Messina, Italy.,Department of Clinical and Experimental Medicine, University Hospital 'G. Martino' of Messina, 98124 Messina, Italy
| | - Carlo Saitta
- Division of Clinical and Molecular Hepatology, University Hospital 'G. Martino' of Messina, 98124 Messina, Italy.,Department of Internal Medicine, University Hospital 'G. Martino' of Messina, 98124 Messina, Italy
| | - Domenico Giosa
- Division of Clinical and Molecular Hepatology, University Hospital 'G. Martino' of Messina, 98124 Messina, Italy.,Department of Clinical and Experimental Medicine, University Hospital 'G. Martino' of Messina, 98124 Messina, Italy
| | - Francesca Casuscelli Di Tocco
- Division of Clinical and Molecular Hepatology, University Hospital 'G. Martino' of Messina, 98124 Messina, Italy.,Department of Clinical and Experimental Medicine, University Hospital 'G. Martino' of Messina, 98124 Messina, Italy
| | - Cristina Musolino
- Division of Clinical and Molecular Hepatology, University Hospital 'G. Martino' of Messina, 98124 Messina, Italy.,Department of Clinical and Experimental Medicine, University Hospital 'G. Martino' of Messina, 98124 Messina, Italy
| | - Giuseppe Caminiti
- Department of Internal Medicine, University Hospital 'G. Martino' of Messina, 98124 Messina, Italy
| | - Valeria Chines
- Division of Clinical and Molecular Hepatology, University Hospital 'G. Martino' of Messina, 98124 Messina, Italy.,Department of Clinical and Experimental Medicine, University Hospital 'G. Martino' of Messina, 98124 Messina, Italy
| | - Maria Stella Franzè
- Division of Clinical and Molecular Hepatology, University Hospital 'G. Martino' of Messina, 98124 Messina, Italy.,Department of Clinical and Experimental Medicine, University Hospital 'G. Martino' of Messina, 98124 Messina, Italy
| | - Angela Alibrandi
- Department of Economics, University Hospital 'G. Martino' of Messina, 98124 Messina, Italy
| | - Giuseppe Navarra
- Department of Human Pathology, University Hospital 'G. Martino' of Messina, 98124 Messina, Italy
| | - Giovanni Raimondo
- Division of Clinical and Molecular Hepatology, University Hospital 'G. Martino' of Messina, 98124 Messina, Italy.,Department of Clinical and Experimental Medicine, University Hospital 'G. Martino' of Messina, 98124 Messina, Italy
| | - Teresa Pollicino
- Division of Clinical and Molecular Hepatology, University Hospital 'G. Martino' of Messina, 98124 Messina, Italy.,Department of Human Pathology, University Hospital 'G. Martino' of Messina, 98124 Messina, Italy
| |
Collapse
|
38
|
Wrighton PJ, Oderberg IM, Goessling W. There Is Something Fishy About Liver Cancer: Zebrafish Models of Hepatocellular Carcinoma. Cell Mol Gastroenterol Hepatol 2019; 8:347-363. [PMID: 31108233 PMCID: PMC6713889 DOI: 10.1016/j.jcmgh.2019.05.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 05/03/2019] [Accepted: 05/03/2019] [Indexed: 12/16/2022]
Abstract
The incidence of hepatocellular carcinoma (HCC) and the mortality resulting from HCC are both increasing. Most patients with HCC are diagnosed at advanced stages when curative treatments are impossible. Current drug therapy extends mean overall survival by only a short period of time. Genetic mutations associated with HCC vary widely. Therefore, transgenic and mutant animal models are needed to investigate the molecular effects of specific mutations, classify them as drivers or passengers, and develop targeted treatments. Cirrhosis, however, is the premalignant state common to 90% of HCC patients. Currently, no specific therapies are available to halt or reverse the progression of cirrhosis to HCC. Understanding the genetic drivers of HCC as well as the biochemical, mechanical, hormonal, and metabolic changes associated with cirrhosis could lead to novel treatments and cancer prevention strategies. Although additional therapies recently received Food and Drug Administration approval, significant clinical breakthroughs have not emerged since the introduction of the multikinase inhibitor sorafenib, necessitating alternate research strategies. Zebrafish (Danio rerio) are effective for disease modeling because of their high degree of gene and organ architecture conservation with human beings, ease of transgenesis and mutagenesis, high fecundity, and low housing cost. Here, we review zebrafish models of HCC and identify areas on which to focus future research efforts to maximize the advantages of the zebrafish model system.
Collapse
Affiliation(s)
- Paul J Wrighton
- Division of Genetics, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Isaac M Oderberg
- Division of Genetics, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Wolfram Goessling
- Division of Genetics, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts; Harvard Stem Cell Institute, Cambridge, Massachusetts; Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts; Broad Institute, Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts; Division of Health Sciences and Technology, Harvard and Massachusetts Institute of Technology, Boston, Massachusetts; Division of Gastroenterology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
39
|
Marchio A, Dhifallah I, Bahri O, Pineau P. Circulating Aflatoxin B1-Related TP53 Mutation Detected by Digital PCR in Tunisian Patients with and Without Hepatocellular Carcinoma. HEPATITIS MONTHLY 2019; In Press. [DOI: 10.5812/hepatmon.85775] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
|
40
|
Kang HJ, Haq F, Sung CO, Choi J, Hong SM, Eo SH, Jeong HJ, Shin J, Shim JH, Lee HC, An J, Kim MJ, Kim KP, Ahn SM, Yu E. Characterization of Hepatocellular Carcinoma Patients with FGF19 Amplification Assessed by Fluorescence in situ Hybridization: A Large Cohort Study. Liver Cancer 2019; 8:12-23. [PMID: 30815392 PMCID: PMC6388559 DOI: 10.1159/000488541] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 03/18/2018] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND FGF19 amplification is a relatively novel type of genetic aberration that has been proposed to be a driver of hepatocarcinogenesis. Selective inhibitors of FGFR4, a receptor of FGF19, have been developed as targeted therapies for hepatocellular carcinoma (HCC). Despite the role of FGF19 in mediating HCC progression, the clinicopathological characterization of patients exhibiting FGF19 amplification remains unclear. Immunohistochemical staining is the simplest and most widely used method of identifying aberrations in the FGF19 gene, although its specificity is very low. METHODS This study investigated the prognostic significance of FGF19 amplification in a large cohort of 989 HCC patients using fluorescence in situ hybridization (FISH), which has a high degree of specificity. In addition, FISH data from formalin-fixed, paraffin-embedded sections were compared with copy number variation (CNV) data obtained from fresh frozen sections to validate the use of FISH as a diagnostic tool. RESULTS FGF19 amplifications were detected by FISH in 51 (5.15%) of the 989 patients, and were independently associated with poor survival and a higher risk of tumor recurrence, as well as with poor prognostic factors such as a high α-fetoprotein level, hepatitis B or C virus infection, a large tumor size, microvascular invasion, and necrosis. In addition, FGF19 amplification was associated with TP53 mutation, and was mutually exclusive with CTNNB1 mutation. The results of the FISH and CNV analyses exhibited a significant concordance rate of 96% (κ = 0.618, p < 0.001). CONCLUSIONS These data indicate that FGF19 amplification represents a unique molecular subtype associated with poor prognostic characteristics, which supports the hypothesis that the FGF19-FGFR4 signaling pathway plays an important role in hepatocarcinogenesis. We have also demonstrated that FISH is a viable alternative to CNV analysis, offering a number of advantages in the clinical setting.
Collapse
Affiliation(s)
- Hyo Jeong Kang
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Farhan Haq
- Department of Biosciences, COMSATS Institute of Information and Technology, Islamabad, Pakistan
| | - Chang Ohk Sung
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Jene Choi
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Seung-Mo Hong
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Soo-Heang Eo
- Department of Statistics, Korea University, Seoul, Republic of Korea
| | - Hui Jeong Jeong
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Jinho Shin
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Ju Hyun Shim
- Department of Gastroenterology, Asan Liver Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Han Chu Lee
- Department of Gastroenterology, Asan Liver Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Jihyun An
- Department of Gastroenterology, Asan Liver Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Mi-Ju Kim
- Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Kyu-pyo Kim
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Sung-Min Ahn
- Department of Hematology-Oncology, Gachon Institute of Genome Medicine and Science, Gachon University Gil Medical Center, Incheon, Republic of Korea,*Sung-Min Ahn, Department of Hematology-Oncology, Gachon University Gil Medical Center, Namdong-daero, Namdong-gu, Incheon 21565 (Republic of Korea), E-Mail , Eunsil Yu, Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43 gil, Songpa-gu, Seoul 05505 (Republic of Korea), E-Mail
| | - Eunsil Yu
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
41
|
Amisaki M, Tsuchiya H, Sakabe T, Fujiwara Y, Shiota G. Identification of genes involved in the regulation of TERT in hepatocellular carcinoma. Cancer Sci 2019; 110:550-560. [PMID: 30447097 PMCID: PMC6361581 DOI: 10.1111/cas.13884] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 11/08/2018] [Accepted: 11/15/2018] [Indexed: 02/06/2023] Open
Abstract
Telomerase reverse transcriptase (TERT) promotes immortalization by protecting telomeres in cancer cells. Mutation of the TERT promoter is one of the most common genetic alterations in hepatocellular carcinoma (HCC), indicating that TERT upregulation is a critical event in hepatocarcinogenesis. Regulators of TERT transcription are, therefore, predicted to be plausible targets for HCC treatment. We undertook a genome‐wide shRNA library screen and identified C15orf55 and C7orf43 as regulators of TERT expression in HepG2 cells. Promoter assays showed that C15orf55‐ and C7orf43‐responsive sites exist between base pairs −58 and +36 and −169 and −59 in the TERT promoter, respectively. C15orf55 upregulates TERT expression by binding to two GC motifs in the SP1 binding site of the TERT promoter. C7orf43 upregulates TERT expression through Yes‐associated protein 1. The expression levels of C15orf55 and C7orf43 also correlated with that of TERT, and were significantly increased in both HCC tissues and their adjacent non‐tumor tissues, compared to normal liver tissues from non‐HCC patients. Analysis of 377 HCC patients in The Cancer Genome Atlas dataset showed that overall survival of patients with low levels of C15orf55 and C7orf43 expression in tumor tissues was better compared with patients with high levels of C15orf55 and/or high C7orf43 expression. These results indicate that C15orf55 and C7orf43 are involved in the incidence and progression of HCC by upregulating TERT. In conclusion, we identified C15orf55 and C7orf43 as positive regulators of TERT expression in HCC tissues. These genes are promising targets for HCC treatment.
Collapse
Affiliation(s)
- Masataka Amisaki
- Division of Molecular and Genetic Medicine, Graduate School of Medicine, Tottori University, Yonago, Japan.,Division of Surgical Oncology, Department of Surgery, School of Medicine, Tottori University Faculty of Medicine, Yonago, Japan
| | - Hiroyuki Tsuchiya
- Division of Molecular and Genetic Medicine, Graduate School of Medicine, Tottori University, Yonago, Japan
| | - Tomohiko Sakabe
- Division of Organ Pathology, Department of Pathology, Faculty of Medicine, Tottori University, Yonago, Japan
| | - Yoshiyuki Fujiwara
- Division of Surgical Oncology, Department of Surgery, School of Medicine, Tottori University Faculty of Medicine, Yonago, Japan
| | - Goshi Shiota
- Division of Molecular and Genetic Medicine, Graduate School of Medicine, Tottori University, Yonago, Japan
| |
Collapse
|
42
|
Dynamics of Axl Receptor Shedding in Hepatocellular Carcinoma and Its Implication for Theranostics. Int J Mol Sci 2018; 19:ijms19124111. [PMID: 30567378 PMCID: PMC6321118 DOI: 10.3390/ijms19124111] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 12/14/2018] [Accepted: 12/17/2018] [Indexed: 12/20/2022] Open
Abstract
Signaling of the receptor tyrosine kinase Axl and its ligand Gas6 is crucially involved in the development of liver fibrosis and hepatocellular carcinoma (HCC) by activation of hepatic stellate cells and modulation of hepatocyte differentiation. Shedding of Axl’s ectodomain leads to the release of soluble Axl (sAxl), which is increased in advanced fibrosis and in early-to-late stage HCC in the presence and absence of cirrhosis. Here, we focus on the dynamics of Axl receptor shedding and delineate possible scenarios how Axl signaling might act as driver of fibrosis progression and HCC development. Based on experimental and clinical data, we discuss the consequences of modifying Axl signaling by sAxl cleavage, as well as cellular strategies to escape from antagonizing effects of Axl shedding by the involvement of the hepatic microenvironment. We emphasize a correlation between free Gas6 and free sAxl levels favoring abundant Gas6/Axl signaling in advanced fibrosis and HCC. The raised scenario provides a solid basis for theranostics allowing the use of sAxl as an accurate diagnostic biomarker of liver cirrhosis and HCC, as well as Axl receptor signaling for therapeutic intervention in stratified HCC patients.
Collapse
|
43
|
Lee M, Ko H, Yun M. Cancer Metabolism as a Mechanism of Treatment Resistance and Potential Therapeutic Target in Hepatocellular Carcinoma. Yonsei Med J 2018; 59:1143-1149. [PMID: 30450847 PMCID: PMC6240564 DOI: 10.3349/ymj.2018.59.10.1143] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Indexed: 12/14/2022] Open
Abstract
Various molecular targeted therapies and diagnostic modalities have been developed for the treatment of hepatocellular carcinoma (HCC); however, HCC still remains a difficult malignancy to cure. Recently, the focus has shifted to cancer metabolism for the diagnosis and treatment of various cancers, including HCC. In addition to conventional diagnostics, the measurement of enhanced tumor cell metabolism using F-18 fluorodeoxyglucose (18F-FDG) for increased glycolysis or C-11 acetate for fatty acid synthesis by positron emission tomography/computed tomography (PET/CT) is well established for clinical management of HCC. Unlike tumors displaying the Warburg effect, HCCs vary substantially in terms of 18F-FDG uptake, which considerably reduces the sensitivity for tumor detection. Accordingly, C-11 acetate has been proposed as a complementary radiotracer for detecting tumors that are not identified by 18F-FDG. In addition to HCC diagnosis, since the degree of 18F-FDG uptake converted to standardized uptake value (SUV) correlates well with tumor aggressiveness, 18F-FDG PET/CT scans can predict patient outcomes such as treatment response and survival with an inverse relationship between SUV and survival. The loss of tumor suppressor genes or activation of oncogenes plays an important role in promoting HCC development, and might be involved in the "metabolic reprogramming" of cancer cells. Mutations in various genes such as TERT, CTNNB1, TP53, and Axin1 are responsible for the development of HCC. Some microRNAs (miRNAs) involved in cancer metabolism are deregulated in HCC, indicating that the modulation of genes/miRNAs might affect HCC growth or metastasis. In this review, we will discuss cancer metabolism as a mechanism for treatment resistance, as well as an attractive potential therapeutic target in HCC.
Collapse
Affiliation(s)
- Misu Lee
- Department of Nuclear Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
- Division of Life Science, College of Life Science and Bioengineering, Incheon National University, Incheon, Korea
| | - Haeyong Ko
- Department of Nuclear Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Mijin Yun
- Department of Nuclear Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea.
| |
Collapse
|
44
|
Baheti S, Tang X, O'Brien DR, Chia N, Roberts LR, Nelson H, Boughey JC, Wang L, Goetz MP, Kocher JPA, Kalari KR. HGT-ID: an efficient and sensitive workflow to detect human-viral insertion sites using next-generation sequencing data. BMC Bioinformatics 2018; 19:271. [PMID: 30016933 PMCID: PMC6050683 DOI: 10.1186/s12859-018-2260-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 06/25/2018] [Indexed: 12/11/2022] Open
Abstract
Background Transfer of genetic material from microbes or viruses into the host genome is known as horizontal gene transfer (HGT). The integration of viruses into the human genome is associated with multiple cancers, and these can now be detected using next-generation sequencing methods such as whole genome sequencing and RNA-sequencing. Results We designed a novel computational workflow, HGT-ID, to identify the integration of viruses into the human genome using the sequencing data. The HGT-ID workflow primarily follows a four-step procedure: i) pre-processing of unaligned reads, ii) virus detection using subtraction approach, iii) identification of virus integration site using discordant and soft-clipped reads and iv) HGT candidates prioritization through a scoring function. Annotation and visualization of the events, as well as primer design for experimental validation, are also provided in the final report. We evaluated the tool performance with the well-understood cervical cancer samples. The HGT-ID workflow accurately detected known human papillomavirus (HPV) integration sites with high sensitivity and specificity compared to previous HGT methods. We applied HGT-ID to The Cancer Genome Atlas (TCGA) whole-genome sequencing data (WGS) from liver tumor-normal pairs. Multiple hepatitis B virus (HBV) integration sites were identified in TCGA liver samples and confirmed by HGT-ID using the RNA-Seq data from the matched liver pairs. This shows the applicability of the method in both the data types and cross-validation of the HGT events in liver samples. We also processed 220 breast tumor WGS data through the workflow; however, there were no HGT events detected in those samples. Conclusions HGT-ID is a novel computational workflow to detect the integration of viruses in the human genome using the sequencing data. It is fast and accurate with functions such as prioritization, annotation, visualization and primer design for future validation of HGTs. The HGT-ID workflow is released under the MIT License and available at http://kalarikrlab.org/Software/HGT-ID.html.
Collapse
Affiliation(s)
- Saurabh Baheti
- Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - Xiaojia Tang
- Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - Daniel R O'Brien
- Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - Nicholas Chia
- Department of Surgery, Mayo Clinic, Rochester, MN, USA
| | - Lewis R Roberts
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA
| | - Heidi Nelson
- Department of Surgery, Mayo Clinic, Rochester, MN, USA
| | | | - Liewei Wang
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
| | - Matthew P Goetz
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA.,Department of Medical Oncology, Mayo Clinic, Rochester, MN, USA
| | - Jean-Pierre A Kocher
- Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - Krishna R Kalari
- Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
45
|
Denis JA, Guillerm E, Coulet F, Larsen AK, Lacorte JM. The Role of BEAMing and Digital PCR for Multiplexed Analysis in Molecular Oncology in the Era of Next-Generation Sequencing. Mol Diagn Ther 2018; 21:587-600. [PMID: 28667577 DOI: 10.1007/s40291-017-0287-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BEAMing polymerase chain reaction (PCR) and digital PCR (dPCR) are used for robust and accurate quantification of nucleic acids. These methods are particularly well suited for the identification of very small fractions (<1%) of variant copies such as the presence of mutant genes in a predominantly wild-type background. BEAMing and dPCR are increasingly used in diverse fields including bacteriology, virology, non-invasive prenatal testing, and oncology, in particular for the molecular analysis of liquid biopsies. In this review, we present the principles of BEAMing and dPCR as well as the trends of future technical development, focusing on the possibility of developing multiplexed mutation analysis. Finally, we will discuss why such techniques will remain useful despite the ever-decreasing costs and increased automatization of next-generation sequencing (NGS), using molecular characterization of cancer cells as an example.
Collapse
Affiliation(s)
- Jérôme Alexandre Denis
- UPMC Univ Paris 06, Sorbonne Universités, Paris, France. .,Cancer Biology and Therapeutics, Centre de Recherche Saint-Antoine, INSERM, UMRS 938, 75571, Paris Cedex 12, France. .,Department of Endocrine and Oncological Biochemistry, AP-HP, University Hospitals of Pitié-Salpétrière - Charles Foix, 75651, Paris, France.
| | - Erell Guillerm
- UPMC Univ Paris 06, Sorbonne Universités, Paris, France.,INSERM, UMRS 938 Centre de Recherche Saint-Antoine, "Instability of Microsatellites and Cancers", Team approved by the National League Against Cancer, 75571, Paris Cedex 12, France.,Departement of Genetics, Unit of Molecular Oncogenetics and Angiogenetics, AP-HP, University Hospitals of Pitié-Salpétrière - Charles Foix, 75651, Paris Cedex, France
| | - Florence Coulet
- UPMC Univ Paris 06, Sorbonne Universités, Paris, France.,INSERM, UMRS 938 Centre de Recherche Saint-Antoine, "Instability of Microsatellites and Cancers", Team approved by the National League Against Cancer, 75571, Paris Cedex 12, France.,Departement of Genetics, Unit of Molecular Oncogenetics and Angiogenetics, AP-HP, University Hospitals of Pitié-Salpétrière - Charles Foix, 75651, Paris Cedex, France
| | - Annette K Larsen
- UPMC Univ Paris 06, Sorbonne Universités, Paris, France.,Cancer Biology and Therapeutics, Centre de Recherche Saint-Antoine, INSERM, UMRS 938, 75571, Paris Cedex 12, France
| | - Jean-Marc Lacorte
- UPMC Univ Paris 06, Sorbonne Universités, Paris, France.,INSERM, UMR_S 1166, Research Institute of Cardiovascular Disease, Metabolism and Nutrition, 75013, Paris, France.,Department of Endocrine and Oncological Biochemistry, AP-HP, University Hospitals of Pitié-Salpétrière - Charles Foix, 75651, Paris, France
| |
Collapse
|
46
|
Gaspar TB, Sá A, Lopes JM, Sobrinho-Simões M, Soares P, Vinagre J. Telomere Maintenance Mechanisms in Cancer. Genes (Basel) 2018; 9:E241. [PMID: 29751586 PMCID: PMC5977181 DOI: 10.3390/genes9050241] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 04/20/2018] [Accepted: 04/23/2018] [Indexed: 12/12/2022] Open
Abstract
Tumour cells can adopt telomere maintenance mechanisms (TMMs) to avoid telomere shortening, an inevitable process due to successive cell divisions. In most tumour cells, telomere length (TL) is maintained by reactivation of telomerase, while a small part acquires immortality through the telomerase-independent alternative lengthening of telomeres (ALT) mechanism. In the last years, a great amount of data was generated, and different TMMs were reported and explained in detail, benefiting from genome-scale studies of major importance. In this review, we address seven different TMMs in tumour cells: mutations of the TERT promoter (TERTp), amplification of the genes TERT and TERC, polymorphic variants of the TERT gene and of its promoter, rearrangements of the TERT gene, epigenetic changes, ALT, and non-defined TMM (NDTMM). We gathered information from over fifty thousand patients reported in 288 papers in the last years. This wide data collection enabled us to portray, by organ/system and histotypes, the prevalence of TERTp mutations, TERT and TERC amplifications, and ALT in human tumours. Based on this information, we discuss the putative future clinical impact of the aforementioned mechanisms on the malignant transformation process in different setups, and provide insights for screening, prognosis, and patient management stratification.
Collapse
Affiliation(s)
- Tiago Bordeira Gaspar
- Cancer Signaling and Metabolism Group, Institute for Research and Innovation in Health Sciences (i3S), University of Porto, 4200-135 Porto, Portugal.
- Cancer Signaling and Metabolism Group, Institute of Molecular Pathology and Immunology of the University of Porto (Ipatimup), 4200-135 Porto, Portugal.
- Medical Faculty of University of Porto (FMUP), 4200-139 Porto, Portugal.
- Abel Salazar Biomedical Sciences Institute (ICBAS), University of Porto, 4050-313 Porto, Portugal.
| | - Ana Sá
- Cancer Signaling and Metabolism Group, Institute for Research and Innovation in Health Sciences (i3S), University of Porto, 4200-135 Porto, Portugal.
- Cancer Signaling and Metabolism Group, Institute of Molecular Pathology and Immunology of the University of Porto (Ipatimup), 4200-135 Porto, Portugal.
- Abel Salazar Biomedical Sciences Institute (ICBAS), University of Porto, 4050-313 Porto, Portugal.
| | - José Manuel Lopes
- Cancer Signaling and Metabolism Group, Institute for Research and Innovation in Health Sciences (i3S), University of Porto, 4200-135 Porto, Portugal.
- Cancer Signaling and Metabolism Group, Institute of Molecular Pathology and Immunology of the University of Porto (Ipatimup), 4200-135 Porto, Portugal.
- Medical Faculty of University of Porto (FMUP), 4200-139 Porto, Portugal.
- Department of Pathology and Oncology, Centro Hospitalar São João, 4200-139 Porto, Portugal.
| | - Manuel Sobrinho-Simões
- Cancer Signaling and Metabolism Group, Institute for Research and Innovation in Health Sciences (i3S), University of Porto, 4200-135 Porto, Portugal.
- Cancer Signaling and Metabolism Group, Institute of Molecular Pathology and Immunology of the University of Porto (Ipatimup), 4200-135 Porto, Portugal.
- Medical Faculty of University of Porto (FMUP), 4200-139 Porto, Portugal.
- Department of Pathology and Oncology, Centro Hospitalar São João, 4200-139 Porto, Portugal.
| | - Paula Soares
- Cancer Signaling and Metabolism Group, Institute for Research and Innovation in Health Sciences (i3S), University of Porto, 4200-135 Porto, Portugal.
- Cancer Signaling and Metabolism Group, Institute of Molecular Pathology and Immunology of the University of Porto (Ipatimup), 4200-135 Porto, Portugal.
- Abel Salazar Biomedical Sciences Institute (ICBAS), University of Porto, 4050-313 Porto, Portugal.
| | - João Vinagre
- Cancer Signaling and Metabolism Group, Institute for Research and Innovation in Health Sciences (i3S), University of Porto, 4200-135 Porto, Portugal.
- Cancer Signaling and Metabolism Group, Institute of Molecular Pathology and Immunology of the University of Porto (Ipatimup), 4200-135 Porto, Portugal.
- Medical Faculty of University of Porto (FMUP), 4200-139 Porto, Portugal.
| |
Collapse
|
47
|
Jiao J, Watt GP, Stevenson HL, Calderone TL, Fisher-Hoch SP, Ye Y, Wu X, Vierling JM, Beretta L. Telomerase reverse transcriptase mutations in plasma DNA in patients with hepatocellular carcinoma or cirrhosis: Prevalence and risk factors. Hepatol Commun 2018; 2:718-731. [PMID: 29881823 PMCID: PMC5983165 DOI: 10.1002/hep4.1187] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 03/02/2018] [Accepted: 03/28/2018] [Indexed: 02/06/2023] Open
Abstract
Telomerase reverse transcriptase (TERT) mutation is the most frequent genetic alteration in hepatocellular carcinoma (HCC). Our aims were to investigate whether TERT mutations can be detected in circulating cell‐free DNA (cfDNA) of patients with HCC and/or cirrhosis and characterize clinical parameters associated with these mutations. We retrieved data on TERT C228T and C250T promoter mutations in 196 HCCs from The Cancer Genome Atlas. We measured these TERT mutations in plasma cfDNA in 218 patients with HCC and 81 patients with cirrhosis without imaging evidence of HCC. The prevalence of TERT mutations in The Cancer Genome Atlas HCC specimens was 44.4%. TERT mutations were detected with similar prevalence (47.7%) in plasma cfDNAs from 218 patients with HCC. TERT mutations, either within the HCC or in cfDNA, were associated with male sex, hepatitis C virus (HCV), alcoholic cirrhosis, family history of cancer, and poor prognosis. The high prevalence of TERT mutations in HCCs in male patients with cirrhosis caused by HCV and/or alcohol was confirmed in an independent set of HCCs (86.6%). Finally, TERT mutations were detected in cfDNA of 7 out of 81 (8.6%) patients with cirrhosis without imaging evidence of HCC, including 5 male patients with cirrhosis due to HCV and/or alcohol. Genes involved in xenobiotic and alcohol metabolism were enriched in HCCs with TERT mutations, and vitamin K2 was identified as an upstream regulator. Conclusion: TERT mutations are detectable in plasma cfDNA. Long‐term imaging surveillance of patients with cirrhosis with cfDNA TERT mutations without evidence of HCC is required to assess their potential as early biomarkers of HCC. (Hepatology Communications 2018;2:718‐731)
Collapse
Affiliation(s)
- Jingjing Jiao
- Department of Molecular and Cellular Oncology University of Texas MD Anderson Cancer Center Houston TX
| | - Gordon P Watt
- Department of Molecular and Cellular Oncology University of Texas MD Anderson Cancer Center Houston TX.,School of Public Health University of Texas Health Science Center at Houston Brownsville Regional Campus Brownsville TX
| | | | - Tiffany L Calderone
- Department of Molecular and Cellular Oncology University of Texas MD Anderson Cancer Center Houston TX
| | - Susan P Fisher-Hoch
- School of Public Health University of Texas Health Science Center at Houston Brownsville Regional Campus Brownsville TX
| | - Yuanqing Ye
- Department of Epidemiology University of Texas MD Anderson Cancer Center Houston TX
| | - Xifeng Wu
- Department of Epidemiology University of Texas MD Anderson Cancer Center Houston TX
| | - John M Vierling
- Departments of Medicine and Surgery Baylor College of Medicine Houston TX
| | - Laura Beretta
- Department of Molecular and Cellular Oncology University of Texas MD Anderson Cancer Center Houston TX
| |
Collapse
|
48
|
Ringelhan M, McKeating JA, Protzer U. Viral hepatitis and liver cancer. Philos Trans R Soc Lond B Biol Sci 2018; 372:rstb.2016.0274. [PMID: 28893941 PMCID: PMC5597741 DOI: 10.1098/rstb.2016.0274] [Citation(s) in RCA: 227] [Impact Index Per Article: 32.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/09/2017] [Indexed: 02/07/2023] Open
Abstract
Hepatitis B and C viruses are a global health problem causing acute and chronic infections that can lead to liver cirrhosis and hepatocellular carcinoma (HCC). These infections are the leading cause for HCC worldwide and are associated with significant mortality, accounting for more than 1.3 million deaths per year. Owing to its high incidence and resistance to treatment, liver cancer is the second leading cause of cancer-related death worldwide, with HCC representing approximately 90% of all primary liver cancer cases. The majority of viral-associated HCC cases develop in subjects with liver cirrhosis; however, hepatitis B virus infection can promote HCC development without prior end-stage liver disease. Thus, understanding the role of hepatitis B and C viral infections in HCC development is essential for the future design of treatments and therapies for this cancer. In this review, we summarize the current knowledge on hepatitis B and C virus hepatocarcinogenesis and highlight direct and indirect risk factors. This article is part of the themed issue ‘Human oncogenic viruses’.
Collapse
Affiliation(s)
- Marc Ringelhan
- Institute of Virology, Technical University of Munich/Helmholtz Zentrum München, Trogerstrasse 30, 81675 Muenchen, Germany.,Department of Internal Medicine II, University Hopsital rechts der Isar, Technical University of Munich, Ismaninger Strasse 22, 81675 Muenchen, Germany.,German Center for Infection Research (DZIF), partner site Munich
| | - Jane A McKeating
- Institute for Advanced Science, Technical University of Munich, Muenchen, Germany .,Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Ulrike Protzer
- Institute of Virology, Technical University of Munich/Helmholtz Zentrum München, Trogerstrasse 30, 81675 Muenchen, Germany .,German Center for Infection Research (DZIF), partner site Munich.,Institute for Advanced Science, Technical University of Munich, Muenchen, Germany
| |
Collapse
|
49
|
Pezzuto F, Izzo F, Buonaguro L, Annunziata C, Tatangelo F, Botti G, Buonaguro FM, Tornesello ML. Tumor specific mutations in TERT promoter and CTNNB1 gene in hepatitis B and hepatitis C related hepatocellular carcinoma. Oncotarget 2018; 7:54253-54262. [PMID: 27276713 PMCID: PMC5342339 DOI: 10.18632/oncotarget.9801] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 05/25/2016] [Indexed: 02/07/2023] Open
Abstract
Recurrent somatic mutations in the promoter region of telomerase reverse transcriptase (TERT) gene and in the exon 3 of CTNNB1 gene have been recognized as common events in hepatocellular carcinoma (HCC) with variable frequencies depending on etiology and geographical region. We have analyzed TERT promoter and CTNNB1 gene mutations in 122 cases of hepatitis B (HBV) and hepatitis C (HCV) related HCCs, in 7 cases of cholangiocarcinoma (CC) and hepatocholangiocarcinoma (HCC-CC) as well as in autologous cirrhotic tissues. Overall, 50.4% and 26% of HCC as well as 14.3% and none of CC and HCC-CC were mutated in TERT promoter and in CTNNB1 exon 3, respectively. TERT and CTNNB1 mutations were found more frequently in HCV related (53.6% and 26.4%, respectively) than HBV related (41.7% and 16.7%, respectively) HCCs and coexisted in 57.6% of CTNNB1 mutated tumors. Mutations in TERT and CTNNB1 were not associated with the functional promoter polymorphism rs2853669. No mutations were detected in the 129 non-HCC cirrhotic tissues. In conclusion, mutations in TERT promoter and in CTNNB1 gene represent specific cancer signatures in the pathogenesis of viral related HCC and could be promising early biomarkers as well as targets for tailored therapies.
Collapse
Affiliation(s)
- Francesca Pezzuto
- Molecular Biology and Viral Oncology Unit, Istituto Nazionale Tumori "Fondazione G Pascale" - IRCCS, Napoli, Italy
| | - Francesco Izzo
- Hepatobiliary Surgery Unit, Istituto Nazionale Tumori "Fondazione G Pascale" - IRCCS, Napoli, Italy
| | - Luigi Buonaguro
- Molecular Biology and Viral Oncology Unit, Istituto Nazionale Tumori "Fondazione G Pascale" - IRCCS, Napoli, Italy
| | - Clorinda Annunziata
- Molecular Biology and Viral Oncology Unit, Istituto Nazionale Tumori "Fondazione G Pascale" - IRCCS, Napoli, Italy
| | - Fabiana Tatangelo
- Department of Pathology, Istituto Nazionale Tumori "Fondazione G Pascale" - IRCCS Napoli, Italy
| | - Gerardo Botti
- Department of Pathology, Istituto Nazionale Tumori "Fondazione G Pascale" - IRCCS Napoli, Italy
| | - Franco M Buonaguro
- Molecular Biology and Viral Oncology Unit, Istituto Nazionale Tumori "Fondazione G Pascale" - IRCCS, Napoli, Italy
| | - Maria Lina Tornesello
- Molecular Biology and Viral Oncology Unit, Istituto Nazionale Tumori "Fondazione G Pascale" - IRCCS, Napoli, Italy
| |
Collapse
|
50
|
Abstract
Senescence is a durable cell cycle arrest that can be induced in response to various stress factors, such as telomere erosion, DNA damage or the aberrant activation of oncogenes. In addition to its well-established role as a stress response programme, research has revealed important physiological roles of senescence in nondisease settings, such as embryonic development, wound healing, tissue repair and ageing. Senescent cells secrete various cytokines, chemokines, matrix remodelling proteases and growth factors, a phenotype collectively referred to as the senescence-associated secretory phenotype. These factors evoke immune responses that, depending on the pathophysiological context, can either prevent or even fuel disease and tumorigenesis. Remarkably, even the gut microbiota can influence senescence in various organs. In this Review, we provide an introduction to cellular senescence, addressed particularly to gastroenterologists and hepatologists, and discuss the implications of senescence for the pathogenesis of malignant and nonmalignant gastrointestinal and hepatobiliary diseases. We conclude with an outlook on how modulation of cellular senescence might be used for therapeutic purposes.
Collapse
|