1
|
Su F, Su M, Wei W, Wu J, Chen L, Sun X, Liu M, Sun S, Mao R, Bourgonje AR, Hu S. Integrating multi-omics data to reveal the host-microbiota interactome in inflammatory bowel disease. Gut Microbes 2025; 17:2476570. [PMID: 40063366 PMCID: PMC11901428 DOI: 10.1080/19490976.2025.2476570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 02/14/2025] [Accepted: 03/03/2025] [Indexed: 03/14/2025] Open
Abstract
Numerous studies have accelerated the knowledge expansion on the role of gut microbiota in inflammatory bowel disease (IBD). However, the precise mechanisms behind host-microbe cross-talk remain largely undefined, due to the complexity of the human intestinal ecosystem and multiple external factors. In this review, we introduce the interactome concept to systematically summarize how intestinal dysbiosis is involved in IBD pathogenesis in terms of microbial composition, functionality, genomic structure, transcriptional activity, and downstream proteins and metabolites. Meanwhile, this review also aims to present an updated overview of the relevant mechanisms, high-throughput multi-omics methodologies, different types of multi-omics cohort resources, and computational methods used to understand host-microbiota interactions in the context of IBD. Finally, we discuss the challenges pertaining to the integration of multi-omics data in order to reveal host-microbiota cross-talk and offer insights into relevant future research directions.
Collapse
Affiliation(s)
- Fengyuan Su
- Institute of Precision Medicine, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
- Department of Gastroenterology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Meng Su
- The First Clinical Medical School, Nanfang Hospital of Southern Medical University, Guangzhou, China
| | - Wenting Wei
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Jiayun Wu
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Leyan Chen
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Xiqiao Sun
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Moyan Liu
- Amsterdam UMC location Academic Medical Center, Department of Experimental Vascular Medicine, Amsterdam, The Netherlands
| | - Shiqiang Sun
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Ren Mao
- Department of Gastroenterology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Arno R. Bourgonje
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
- The Henry D. Janowitz Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Shixian Hu
- Institute of Precision Medicine, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
- Department of Gastroenterology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
2
|
Xu W, Liu A, Gong Z, Xiao W. L-theanine prevents ulcerative colitis by regulating the CD4+ T cell immune response through the gut microbiota and its metabolites. J Nutr Biochem 2025; 139:109845. [PMID: 39922394 DOI: 10.1016/j.jnutbio.2025.109845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 12/29/2024] [Accepted: 01/20/2025] [Indexed: 02/10/2025]
Abstract
The disturbance of gut microbiota and its metabolites are considered to be the causes of ulcerative colitis (UC), which leads to immune abnormalities. Diet is the most important regulator of gut microbiota; therefore, it has a beneficial impact on UC. A novel food ingredient, l-theanine, alters the gut microbiota, thereby regulating gut immunity. However, whether l-theanine prevents UC by altering the gut microbiota, as well as the underlying mechanisms, remains unknown. Here, l-theanine was used to optimize the gut microbiota and its metabolites. Furthermore, to explore the mechanism by which l-theanine prevents UC, an l-theanine fecal microbiota solution was used to prevent dextran sulfate sodium-induced UC via fecal microbiota transplantation. Improvements in the colonic structure, colon histology scores, immune factors (IL-10), and inflammatory factors (IL-1β) demonstrated the preventive effect of l-theanine on UC. The 16S rDNA and metabolomic results showed that tryptophan-, short chain fatty acid-, and bile acid-related microbiota, such as Muribaculaceae, Lachnospiraceae, Alloprevotella, and Prevotellaceae were the dominant. Flow cytometry results showed that l-theanine decreased helper T (Th)1 and Th17 immune responses, and increased Th2 and T-regulatory immune responses via regulation of antigen-presenting cell responses, such as dendritic cells and macrophages. Therefore, l-theanine regulated the immune response of colon CD4 + T cells to dendritic cell and macrophage antigen presentation via tryptophan-, short chain fatty acid-, and bile acid-related microbiota, thereby preventing dextran sulfate sodium-induced UC.
Collapse
Affiliation(s)
- Wei Xu
- Key Lab of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan, China; National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, Hunan, China
| | - Aoxiang Liu
- Key Lab of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan, China; National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, Hunan, China
| | - Zhihua Gong
- Key Lab of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan, China; National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, Hunan, China; Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, Hunan, China
| | - Wenjun Xiao
- Key Lab of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan, China; National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, Hunan, China; Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, Hunan, China; Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops, Ministry of Agriculture and Rural Affairs of China, Hunan Agricultural University, Changsha, Hunan, China.
| |
Collapse
|
3
|
Wang F, Wang J, Chen T, Wang S, Meng X, Shen Y, Xu X. Systematic Identification of Mitochondrial Signatures in Alzheimer's Disease and Inflammatory Bowel Disease. Mol Neurobiol 2025:10.1007/s12035-025-04826-4. [PMID: 40085351 DOI: 10.1007/s12035-025-04826-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 03/07/2025] [Indexed: 03/16/2025]
Abstract
Mitochondrial dysfunction is increasingly recognized as a shared feature of Alzheimer's disease (AD) and inflammatory bowel disease (IBD), linked through overlapping pathways of hypoxia and immune dysregulation. Our study integrated transcriptomic and genetic analyses to uncover mitochondria-related mechanisms underlying these diseases. By analyzing multiple AD and IBD datasets through differential expression gene (DEG) analyses, biological pathway enrichment, and co-expression module construction, we identified hypoxia-induced mitochondrial dysfunction as a central risk factor for both conditions. Key findings revealed several mitochondrial-related genes shared between AD and IBD, including BCL6, PFKFB3, NDUFS3, and COX5B, which serve as critical regulators bridging mitochondrial and immune pathways. Drug enrichment analyses using Drug Signatures Database (DsigDB) and the Connectivity Map (cMAP) identified promising therapeutic candidates, including decitabine, DMOG, and estradiol, targeting shared regulators such as BCL6, PFKFB3, MAFF, and TGFBI. These drugs demonstrated potential to modulate mitochondrial autophagy and oxidative phosphorylation (OXPHOS), pathways enriched in the constructed interaction network with BCL6 and PFKFB3 as central nodes. Mendelian randomization (MR) analysis further identified MAP1LC3A as significantly associated with increased risk for both AD and IBD, while NME1 emerged as strongly protective, suggesting their roles as therapeutic targets. Our findings underscore hypoxia-induced mitochondrial dysfunction as a unifying mechanism in AD and IBD, mediated by hypoxia-inducible factor-1α (HIF-1α). By identifying key mitochondria-associated genes and pathways, this study highlights innovative therapeutic targets and contributes to a deeper understanding of the gut-brain interplay in neurodegeneration and chronic inflammation. These insights pave the way for precision medicine strategies targeting mitochondrial dysfunction in AD and IBD.
Collapse
Affiliation(s)
- Fei Wang
- School of Basic Medical Science, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Jiaqi Wang
- School of Life Sciences, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Tong Chen
- School of Biomedical Engineering, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Shuaibin Wang
- School of Biomedical Engineering, Anhui Medical University, Hefei, 230032, Anhui, China
| | - XiangYu Meng
- School of Basic Medical Sciences, Medical School, Hubei Minzu University, Enshi, 445000, Hubei, China
| | - Yin Shen
- School of Biomedical Engineering, Anhui Medical University, Hefei, 230032, Anhui, China.
| | - Xuan Xu
- School of Life Sciences, Anhui Medical University, Hefei, 230032, Anhui, China.
| |
Collapse
|
4
|
Zhao X, Xu J, Wu D, Chen N, Liu Y. Gut Microbiota in Different Treatment Response Types of Crohn's Disease Patients Treated with Biologics over a Long Disease Course. Biomedicines 2025; 13:708. [PMID: 40149684 PMCID: PMC11940770 DOI: 10.3390/biomedicines13030708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 03/06/2025] [Accepted: 03/11/2025] [Indexed: 03/29/2025] Open
Abstract
Background and Aims: Crohn's disease (CD) is a chronic inflammatory bowel disease (IBD) with a globally increasing prevalence, partially driven by alterations in gut microbiota. Although biological therapy is the first-line treatment for CD, a significant proportion of patients experience a primary non-response or secondary loss of response over time. This study aimed to explore the differences in gut microbiota among CD patients with divergent long-term responses to biological therapy, focusing on a long disease course. Methods: Sixteen CD patients who applied the biological agents for a while were enrolled in this study and were followed for one year, during which fecal specimens were collected monthly. Metagenomic analysis was used to determine the microbiota profiles in fecal samples. The response to biological therapy was evaluated both endoscopically and clinically. Patients were categorized into three groups based on their response: R (long-term remission), mA (mild active), and R2A group (remission to active). The differences in the gut microbiota among the groups were analyzed. Results: Significant differences in fecal bacterial composition were observed between the groups. The R2A group exhibited a notable decline in gut microbial diversity compared to the other two groups (p < 0.05). Patients in the R group had higher abundances of Akkermansia muciniphila, Bifidobacterium adolescentis, and Megasphaera elsdenii. In contrast, Veillonella parvula, Veillonella atypica, and Klebsiella pneumoniae were higher in the R2A group. Conclusions: Gut microbial diversity and specific bacterial significantly differed among groups, reflecting distinct characteristics between responders and non-responders.
Collapse
Affiliation(s)
- Xiaolei Zhao
- Department of Gastroenterology, Peking University People’s Hospital, Beijing 100044, China;
- Clinical Center of Immune-Mediated Digestive Diseases, Peking University People’s Hospital, Beijing 100044, China
| | - Jun Xu
- Department of Gastroenterology, Peking University People’s Hospital, Beijing 100044, China;
- Clinical Center of Immune-Mediated Digestive Diseases, Peking University People’s Hospital, Beijing 100044, China
| | - Dong Wu
- Department of Gastroenterology, Peking Union Medical College Hospital, Beijing 100730, China;
| | - Ning Chen
- Department of Gastroenterology, Peking University People’s Hospital, Beijing 100044, China;
- Clinical Center of Immune-Mediated Digestive Diseases, Peking University People’s Hospital, Beijing 100044, China
| | - Yulan Liu
- Department of Gastroenterology, Peking University People’s Hospital, Beijing 100044, China;
- Clinical Center of Immune-Mediated Digestive Diseases, Peking University People’s Hospital, Beijing 100044, China
| |
Collapse
|
5
|
Massaro CA, Meade S, Lemarié FL, Kaur G, Bressler B, Rosenfeld G, Leung Y, Williams AJ, Lunken G. Gut microbiome predictors of advanced therapy response in Crohn's disease: protocol for the OPTIMIST prospective, longitudinal, observational pilot study in Canada. BMJ Open 2025; 15:e094280. [PMID: 40082000 PMCID: PMC11907035 DOI: 10.1136/bmjopen-2024-094280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/16/2025] Open
Abstract
INTRODUCTION Inflammatory bowel disease (IBD), including Crohn's disease (CD) and ulcerative colitis, is characterised by chronic and relapsing inflammation of the gastrointestinal tract, leading to significant morbidity and reduced quality of life. The global rise in IBD incidence is driven by a complex interplay of genetic, environmental, dietary and microbiome-related factors. Despite advancements in treatment, such as biologics, response rates remain variable, highlighting the need for personalised approaches. Recent research suggests that specific microbiome signatures may serve as biomarkers for predicting therapeutic efficacy, offering a potential tool for optimising treatment strategies in CD. The aim of the Optimising IBD Patient Treatment with Integrated Microbiome Investigation for Specialised Therapeutics (OPTIMIST) study is to evaluate microbiome profiles across various sample types in a Canadian CD cohort starting or already on advanced therapy, with the goal of developing predictive models for personalised therapeutics. METHODS AND ANALYSIS This study is a two-phase, longitudinal, prospective observational pilot study conducted in British Columbia, Canada, involving both CD patients and non-IBD controls. Phase 1 focuses on baseline microbiome differences across participant cohorts through cross-sectional analysis. Phase 2 follows participants over 12 months to assess microbiome changes and their association with treatment response. Stool samples, intestinal biopsies from the left colon, right colon and ileum, as well as mucosal wash samples from the proximal part of the distal colon, will undergo metagenomics, metaproteomics and metabolomics analyses to explore compositional and functional differences. Data will be analysed using alpha and beta diversity metrics, differential abundance analyses and multivariate analyses to identify microbiome-based predictors of therapeutic response. ETHICS AND DISSEMINATION Ethical approval was received by the Research Ethics Board (REB) of University of British Columbia-Providence Healthcare (UBC-PHC) with a REB number H23-02927. All amendments to the protocol are reported and adapted based on the requirements of the REB. The results of this study will be submitted to peer-reviewed journals and will be communicated in editorials/articles by the IBD Centre of BC and BC Children's Hospital Research Institute. TRIAL REGISTRATION NUMBER NCT06453720. PROTOCOL VERSION 2024-06-21, version 3.0.
Collapse
Affiliation(s)
- Cristian Aldo Massaro
- Department of Pediatrics, The University of British Columbia, Vancouver, British Columbia, Canada
- BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada
| | - Susanna Meade
- Department of Gastroenterology, NHS North Bristol NHS Trust, Bristol, UK
- IBD Centre of BC, Vancouver, British Columbia, Canada
| | - Fanny Laure Lemarié
- Department of Pediatrics, The University of British Columbia, Vancouver, British Columbia, Canada
- BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada
| | - Gurpreet Kaur
- Department of Pediatrics, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Brian Bressler
- IBD Centre of BC, Vancouver, British Columbia, Canada
- Department of Medicine, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Greg Rosenfeld
- IBD Centre of BC, Vancouver, British Columbia, Canada
- Department of Medicine, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Yvette Leung
- IBD Centre of BC, Vancouver, British Columbia, Canada
- Department of Medicine, The University of British Columbia, Vancouver, British Columbia, Canada
| | | | - Genelle Lunken
- Department of Pediatrics, The University of British Columbia, Vancouver, British Columbia, Canada
- BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada
- IBD Centre of BC, Vancouver, British Columbia, Canada
- Department of Medicine, The University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
6
|
Iliev ID, Ananthakrishnan AN, Guo CJ. Microbiota in inflammatory bowel disease: mechanisms of disease and therapeutic opportunities. Nat Rev Microbiol 2025:10.1038/s41579-025-01163-0. [PMID: 40065181 DOI: 10.1038/s41579-025-01163-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/07/2025] [Indexed: 03/26/2025]
Abstract
Perturbations in the intestinal microbiome are strongly linked to the pathogenesis of inflammatory bowel disease (IBD). Bacteria, fungi and viruses all make up part of a complex multi-kingdom community colonizing the gastrointestinal tract, often referred to as the gut microbiome. They can exert various effects on the host that can contribute to an inflammatory state. Advances in screening, multiomics and experimental approaches have revealed insights into host-microbiota interactions in IBD and have identified numerous mechanisms through which the microbiota and its metabolites can exert a major influence on the gastrointestinal tract. Looking into the future, the microbiome and microbiota-associated processes will be likely to provide unparalleled opportunities for novel diagnostic, therapeutic and diet-inspired solutions for the management of IBD through harnessing rationally designed microbial communities, powerful bacterial and fungal metabolites, individually or in combination, to foster intestinal health. In this Review, we examine the current understanding of the cross-kingdom gut microbiome in IBD, focusing on bacterial and fungal components and metabolites. We examine therapeutic and diagnostic opportunities, the microbial metabolism, immunity, neuroimmunology and microbiome-inspired interventions to link mechanisms of disease and identify novel research and therapeutic opportunities for IBD.
Collapse
Affiliation(s)
- Iliyan D Iliev
- Joan and Sanford I. Weill Department of Medicine, Gastroenterology and Hepatology Division, Weill Cornell Medicine, New York, NY, USA.
- The Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, New York, NY, USA.
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY, USA.
- Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, Cornell University, New York, NY, USA.
| | - Ashwin N Ananthakrishnan
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Chun-Jun Guo
- Joan and Sanford I. Weill Department of Medicine, Gastroenterology and Hepatology Division, Weill Cornell Medicine, New York, NY, USA
- The Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, New York, NY, USA
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY, USA
- Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, Cornell University, New York, NY, USA
| |
Collapse
|
7
|
Guggeis MA, Harris DM, Welz L, Rosenstiel P, Aden K. Microbiota-derived metabolites in inflammatory bowel disease. Semin Immunopathol 2025; 47:19. [PMID: 40032666 DOI: 10.1007/s00281-025-01046-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 01/25/2025] [Indexed: 03/05/2025]
Abstract
Understanding the role of the gut microbiota in the pathogenesis of inflammatory bowel diseases (IBD) has been an area of intense research over the past decades. Patients with IBD exhibit alterations in their microbial composition compared to healthy controls. However, studies focusing solely on taxonomic analyses have struggled to deliver replicable findings across cohorts regarding which microbial species drive the distinct patterns in IBD. The focus of research has therefore shifted to studying the functionality of gut microbes, especially by investigating their effector molecules involved in the immunomodulatory functions of the microbiota, namely metabolites. Metabolic profiles are altered in IBD, and several metabolites have been shown to play a causative role in shaping immune functions in animal models. Therefore, understanding the complex communication between the microbiota, metabolites, and the host bears great potential to unlock new biomarkers for diagnosis, disease course and therapy response as well as novel therapeutic options in the treatment of IBD. In this review, we primarily focus on promising classes of metabolites which are thought to exert beneficial effects and are generally decreased in IBD. Though results from human trials are promising, they have not so far provided a large-scale break-through in IBD-therapy improvement. We therefore propose tailored personalized supplementation of microbiota and metabolites based on multi-omics analysis which accounts for the individual microbial and metabolic profiles in IBD patients rather than one-size-fits-all approaches.
Collapse
Affiliation(s)
- Martina A Guggeis
- Institute of Clinical Molecular Biology, Kiel University and University Medical Center Schleswig-Holstein, Rosalind Franklin Straße 11, Campus Kiel, 24105, Kiel, Germany
- Department of Internal Medicine I, Kiel University and University Medical Center Schleswig-Holstein, Rosalind Franklin Straße 11, Campus Kiel, 24105, Kiel, Germany
| | - Danielle Mm Harris
- Institute of Clinical Molecular Biology, Kiel University and University Medical Center Schleswig-Holstein, Rosalind Franklin Straße 11, Campus Kiel, 24105, Kiel, Germany
- Department of Internal Medicine I, Kiel University and University Medical Center Schleswig-Holstein, Rosalind Franklin Straße 11, Campus Kiel, 24105, Kiel, Germany
- Division Nutriinformatics, Institute for Human Nutrition and Food Science, Kiel University, Kiel, Germany
| | - Lina Welz
- Institute of Clinical Molecular Biology, Kiel University and University Medical Center Schleswig-Holstein, Rosalind Franklin Straße 11, Campus Kiel, 24105, Kiel, Germany
- Department of Internal Medicine I, Kiel University and University Medical Center Schleswig-Holstein, Rosalind Franklin Straße 11, Campus Kiel, 24105, Kiel, Germany
| | - Philip Rosenstiel
- Institute of Clinical Molecular Biology, Kiel University and University Medical Center Schleswig-Holstein, Rosalind Franklin Straße 11, Campus Kiel, 24105, Kiel, Germany
| | - Konrad Aden
- Institute of Clinical Molecular Biology, Kiel University and University Medical Center Schleswig-Holstein, Rosalind Franklin Straße 11, Campus Kiel, 24105, Kiel, Germany.
- Department of Internal Medicine I, Kiel University and University Medical Center Schleswig-Holstein, Rosalind Franklin Straße 11, Campus Kiel, 24105, Kiel, Germany.
| |
Collapse
|
8
|
Lu X, Xv Y, Hu W, Sun B, Hu H. Targeting CD4+ T cells through gut microbiota: therapeutic potential of traditional Chinese medicine in inflammatory bowel disease. Front Cell Infect Microbiol 2025; 15:1557331. [PMID: 40099014 PMCID: PMC11911530 DOI: 10.3389/fcimb.2025.1557331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Accepted: 02/18/2025] [Indexed: 03/19/2025] Open
Abstract
Inflammatory Bowel Disease (IBD) is an autoimmune disease characterized by chronic relapsing inflammation of the intestinal tract. Gut microbiota (GM) and CD4+T cells are important in the development of IBD. A lot of studies have shown that GM and their metabolites like short-chain fatty acids, bile acids and tryptophan can be involved in the differentiation of CD4+T cells through various mechanisms, which in turn regulate the immune homeostasis of the IBD patients. Therefore, regulating CD4+T cells through GM may be a potential therapeutic direction for the treatment of IBD. Many studies have shown that Traditional Chinese Medicine (TCM) formulas and some herbal extracts can affect CD4+T cell differentiation by regulating GM and its metabolites. In this review, we mainly focus on the role of GM and their metabolites in regulating the differentiation of CD4+T cells and their correlation with IBD. We also summarize the current research progress on the regulation of this process by TCM.
Collapse
Affiliation(s)
- Xingyao Lu
- Department of Gastroenterology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yichuan Xv
- Department of Gastroenterology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Weiye Hu
- Department of Liver Disease, Shanghai Yueyang Integrated Traditional Chinese Medicine and Western Medicine Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Boyun Sun
- Department of Gastroenterology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hongyi Hu
- Department of Gastroenterology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
9
|
Spencer EA. Long-term VEDOKIDS results: implications for practice and research. Lancet Gastroenterol Hepatol 2025; 10:189-190. [PMID: 39788135 DOI: 10.1016/s2468-1253(24)00381-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 10/30/2024] [Accepted: 10/31/2024] [Indexed: 01/12/2025]
Affiliation(s)
- Elizabeth A Spencer
- Division of Pediatric Gastroenterology and Nutrition, Mount Sinai, Icahn School of Medicine, New York, NY 10029, USA.
| |
Collapse
|
10
|
Sedano R, Solitano V, Vuyyuru SK, Yuan Y, Hanžel J, Ma C, Nardone OM, Jairath V. Artificial intelligence to revolutionize IBD clinical trials: a comprehensive review. Therap Adv Gastroenterol 2025; 18:17562848251321915. [PMID: 39996136 PMCID: PMC11848901 DOI: 10.1177/17562848251321915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Accepted: 02/04/2025] [Indexed: 02/26/2025] Open
Abstract
Integrating artificial intelligence (AI) into clinical trials for inflammatory bowel disease (IBD) has potential to be transformative to the field. This article explores how AI-driven technologies, including machine learning (ML), natural language processing, and predictive analytics, have the potential to enhance important aspects of IBD trials-from patient recruitment and trial design to data analysis and personalized treatment strategies. As AI advances, it has potential to improve long-standing challenges in trial efficiency, accuracy, and personalization with the goal of accelerating the discovery of novel therapies and improve outcomes for people living with IBD. AI can streamline multiple trial phases, from target identification and patient recruitment to data analysis and monitoring. By integrating multi-omics data, electronic health records, and imaging repositories, AI can uncover molecular targets and personalize trial strategies, ultimately expediting drug development. However, the adoption of AI in IBD clinical trials encounters significant challenges. These include technical barriers in data integration, ethical concerns regarding patient privacy, and regulatory issues related to AI validation standards. Additionally, AI models risk producing biased outcomes if training datasets lack diversity, potentially impacting underrepresented populations in clinical trials. Addressing these limitations requires standardized data formats, interdisciplinary collaboration, and robust ethical frameworks to ensure inclusivity and accuracy. Continued partnerships among clinicians, researchers, data scientists, and regulators will be essential to establish transparent, patient-centered AI frameworks. By overcoming these obstacles, AI has the potential to enhance the efficiency, equity, and efficacy of IBD clinical trials, ultimately benefiting patient care.
Collapse
Affiliation(s)
- Rocio Sedano
- Division of Gastroenterology, Department of Medicine, Western University, London, ON, Canada
- Department of Epidemiology and Biostatistics, Western University, London, ON, Canada
- Lawson Health Research Institute, London, ON, Canada
| | - Virginia Solitano
- Department of Epidemiology and Biostatistics, Western University, London, ON, Canada
- Division of Gastroenterology and Gastrointestinal Endoscopy, IRCCS Ospedale San Raffaele, Università Vita-Salute San Raffaele, Milan, Lombardy, Italy
| | - Sudheer K. Vuyyuru
- Division of Gastroenterology, Department of Medicine, Western University, London, ON, Canada
| | - Yuhong Yuan
- Division of Gastroenterology, Department of Medicine, Western University, London, ON, Canada
- Lawson Health Research Institute, London, ON, Canada
| | - Jurij Hanžel
- Department of Gastroenterology, University Medical Centre Ljubljana, University of Ljubljana, Ljubljana, Slovenia
| | - Christopher Ma
- Department of Community Health Sciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Calgary, Calgary, AB, Canada
| | - Olga Maria Nardone
- Gastroenterology, Department of Public Health, University Federico II of Naples, Naples, Italy
| | - Vipul Jairath
- Division of Gastroenterology, Department of Medicine, Western University, London, ON, Canada
- Department of Epidemiology and Biostatistics, Western University, London, ON, Canada
- Lawson Health Research Institute, Room A10-219, University Hospital, 339 Windermere Rd, London, ON N6A 5A5, Canada
| |
Collapse
|
11
|
Elmassry MM, Sugihara K, Chankhamjon P, Kim Y, Camacho FR, Wang S, Sugimoto Y, Chatterjee S, Chen LA, Kamada N, Donia MS. A meta-analysis of the gut microbiome in inflammatory bowel disease patients identifies disease-associated small molecules. Cell Host Microbe 2025; 33:218-234.e12. [PMID: 39947133 DOI: 10.1016/j.chom.2025.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 08/14/2024] [Accepted: 01/06/2025] [Indexed: 02/19/2025]
Abstract
Gut microbiome changes have been associated with several human diseases, but the molecular and functional details underlying these associations remain largely unknown. Here, we performed a meta-analysis of small molecule biosynthetic gene clusters (BGCs) in metagenomic samples of the gut microbiome from inflammatory bowel disease (IBD) patients and matched healthy subjects and identified two Clostridia-derived BGCs that are significantly associated with Crohn's disease (CD), a main IBD type. Using synthetic biology, we discovered and solved the structures of six fatty acid amides as the products of the CD-enriched BGCs, which we subsequently detected in fecal samples from IBD patients. Finally, we show that the discovered molecules disrupt gut permeability and exacerbate disease in chemically or genetically susceptible mouse models of colitis. These findings suggest that microbiome-derived small molecules may play a role in the etiology of IBD and represent a generalizable approach for discovering molecular mediators of disease-relevant microbiome-host interactions.
Collapse
Affiliation(s)
- Moamen M Elmassry
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Kohei Sugihara
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | | | - Yeji Kim
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Francine R Camacho
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
| | - Shuo Wang
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA
| | - Yuki Sugimoto
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Seema Chatterjee
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Lea Ann Chen
- Department of Medicine, Division of Gastroenterology and Hepatology, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ 08901, USA
| | - Nobuhiko Kamada
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA; Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA; WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan
| | - Mohamed S Donia
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA; Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA.
| |
Collapse
|
12
|
Buffet-Bataillon S, Durão G, Le Huërou-Luron I, Rué O, Le Cunff Y, Cattoir V, Bouguen G. Gut microbiota dysfunction in Crohn's disease. Front Cell Infect Microbiol 2025; 15:1540352. [PMID: 40007605 PMCID: PMC11850416 DOI: 10.3389/fcimb.2025.1540352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Accepted: 01/20/2025] [Indexed: 02/27/2025] Open
Abstract
Introduction Crohn's disease (CD) results from alterations in the gut microbiota and the immune system. However, the exact metabolic dysfunctions of the gut microbiota during CD are still unclear. Here, we investigated metagenomic functions using PICRUSt2 during the course of CD to better understand microbiota-related disease mechanisms and provide new insights for novel therapeutic strategies. Methods We performed 16S rRNA-based microbial profiling of 567 faecal samples collected from a cohort of 383 CD patients, including 291 remissions (CR), 177 mild-moderate (CM) and 99 severe (CS) disease states. Gene and pathway composition was assessed using PICRUSt2 analyses of 16S data. Results As expected, changes in alpha and beta diversity, in interaction networks and increases in Proteobacteria abundance were associated with disease severity. However, microbial function was more consistently disrupted than composition from CR, to CM and then to CS. Major shifts in oxidative stress pathways and reduced carbohydrate and amino acid metabolism in favour of nutrient transport were identified in CS compared to CR. Virulence factors involved in host invasion, host evasion and inflammation were also increased in CS. Conclusions This functional metagenomic information provides new insights into community-wide microbial processes and pathways associated with CD pathogenesis. This study paves the way for new advanced strategies to rebalance gut microbiota and/or eliminate oxidative stress, and biofilm to downregulate gut inflammation.
Collapse
Affiliation(s)
- Sylvie Buffet-Bataillon
- Department of Clinical Microbiology, CHU Rennes, Rennes, France
- Institut NUMECAN, INRAE, INSERM, Univ Rennes, Rennes, France
| | - Gabriela Durão
- Department of Clinical Microbiology, CHU Rennes, Rennes, France
| | | | - Olivier Rué
- Université Paris-Saclay, INRAE, MaIAGE, Jouy-en-Josas, France
- Université Paris-Saclay, INRAE, BioinfOmics, MIGALE Bioinformatics Facility, Jouy-en-Josas, France
| | | | - Vincent Cattoir
- Department of Clinical Microbiology, CHU Rennes, Rennes, France
| | | |
Collapse
|
13
|
Agudelo C, Kateete DP, Nasinghe E, Kamulegeya R, Lubega C, Mbabazi M, Baker N, Lin KY, Liu CC, Kasambula AS, Kigozi E, Komakech K, Mukisa J, Mulumba K, Mwachan P, Nakalanda BS, Nalubega GP, Nsubuga J, Sitenda D, Ssenfuka H, Cirolia GT, Gustafson JT, Wang R, Nsubuga ML, Yiga F, Stanley SA, Bagaya BS, Elliott A, Joloba M, Wolf AR. Enterococcus and Eggerthella species are enriched in the gut microbiomes of COVID-19 cases in Uganda. Gut Pathog 2025; 17:9. [PMID: 39905557 DOI: 10.1186/s13099-025-00678-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 01/02/2025] [Indexed: 02/06/2025] Open
Abstract
BACKGROUND Infection with the COVID-19-causing pathogen SARS-CoV-2 is associated with disruption in the human gut microbiome. The gut microbiome enables protection against diverse pathogens and exhibits dysbiosis during infectious and autoimmune disease. Studies based in the United States and China have found that severe COVID-19 cases have altered gut microbiome composition when compared to mild COVID-19 cases. We present the first study to investigate the gut microbiome composition of COVID-19 cases in a population from Sub-Saharan Africa. Given the impact of geography and cultural traditions on microbiome composition, it is important to investigate the microbiome globally and not draw broad conclusions from homogenous populations. RESULTS We used stool samples in a Ugandan biobank collected from COVID-19 cases during 2020-2022. We profiled the gut microbiomes of 83 symptomatic individuals who tested positive for SARS-CoV-2 along with 43 household contacts who did not present any symptoms of COVID-19. The inclusion of healthy controls enables us to generate hypotheses about bacterial strains potentially related to susceptibility to COVID-19 disease, which is highly heterogeneous. Comparison of the COVID-19 patients and their household contacts revealed decreased alpha diversity and blooms of Enterococcus and Eggerthella in COVID-19 cases. CONCLUSIONS Our study finds that the microbiome of COVID-19 individuals is more likely to be disrupted, as indicated by decreased diversity and increased pathobiont levels. This is either a consequence of the disease or may indicate that certain microbiome states increase susceptibility to COVID-19 disease. Our findings enable comparison with cohorts previously published in the Global North, as well as support new hypotheses about the interaction between the gut microbiome and SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Carolina Agudelo
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA, USA
| | - David Patrick Kateete
- Department of Immunology and Molecular Biology, School of Biomedical Sciences, Makerere University College of Health Sciences, Kampala, Uganda
- Integrated Biorepository of H3Africa Uganda (IBRH3AU), Kampala, Uganda
| | - Emmanuel Nasinghe
- Department of Immunology and Molecular Biology, School of Biomedical Sciences, Makerere University College of Health Sciences, Kampala, Uganda
- Integrated Biorepository of H3Africa Uganda (IBRH3AU), Kampala, Uganda
| | - Rogers Kamulegeya
- Department of Immunology and Molecular Biology, School of Biomedical Sciences, Makerere University College of Health Sciences, Kampala, Uganda
- Integrated Biorepository of H3Africa Uganda (IBRH3AU), Kampala, Uganda
| | - Christopher Lubega
- Department of Immunology and Molecular Biology, School of Biomedical Sciences, Makerere University College of Health Sciences, Kampala, Uganda
- Integrated Biorepository of H3Africa Uganda (IBRH3AU), Kampala, Uganda
| | - Monica Mbabazi
- Department of Immunology and Molecular Biology, School of Biomedical Sciences, Makerere University College of Health Sciences, Kampala, Uganda
- Integrated Biorepository of H3Africa Uganda (IBRH3AU), Kampala, Uganda
| | - Noah Baker
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA, USA
| | - Kathryn Y Lin
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA, USA
| | - Chang C Liu
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA, USA
| | - Arthur Shem Kasambula
- Department of Immunology and Molecular Biology, School of Biomedical Sciences, Makerere University College of Health Sciences, Kampala, Uganda
| | - Edgar Kigozi
- Department of Immunology and Molecular Biology, School of Biomedical Sciences, Makerere University College of Health Sciences, Kampala, Uganda
| | - Kevin Komakech
- Department of Immunology and Molecular Biology, School of Biomedical Sciences, Makerere University College of Health Sciences, Kampala, Uganda
| | - John Mukisa
- Department of Immunology and Molecular Biology, School of Biomedical Sciences, Makerere University College of Health Sciences, Kampala, Uganda
| | - Kassim Mulumba
- Department of Immunology and Molecular Biology, School of Biomedical Sciences, Makerere University College of Health Sciences, Kampala, Uganda
| | - Patricia Mwachan
- Department of Immunology and Molecular Biology, School of Biomedical Sciences, Makerere University College of Health Sciences, Kampala, Uganda
| | - Brenda Sharon Nakalanda
- Department of Immunology and Molecular Biology, School of Biomedical Sciences, Makerere University College of Health Sciences, Kampala, Uganda
| | - Gloria Patricia Nalubega
- Department of Immunology and Molecular Biology, School of Biomedical Sciences, Makerere University College of Health Sciences, Kampala, Uganda
| | - Julius Nsubuga
- Department of Immunology and Molecular Biology, School of Biomedical Sciences, Makerere University College of Health Sciences, Kampala, Uganda
| | - Diana Sitenda
- Department of Immunology and Molecular Biology, School of Biomedical Sciences, Makerere University College of Health Sciences, Kampala, Uganda
| | - Henry Ssenfuka
- Department of Immunology and Molecular Biology, School of Biomedical Sciences, Makerere University College of Health Sciences, Kampala, Uganda
| | - Giana T Cirolia
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA, USA
- Biophysics PhD Program, University of California, Berkeley, Berkeley, CA, USA
| | - Jeshua T Gustafson
- College of Engineering, University of California, Berkeley, Berkeley, CA, USA
| | - Ruohong Wang
- College of Engineering, University of California, Berkeley, Berkeley, CA, USA
| | - Moses Luutu Nsubuga
- Department of Immunology and Molecular Biology, School of Biomedical Sciences, Makerere University College of Health Sciences, Kampala, Uganda
- Integrated Biorepository of H3Africa Uganda (IBRH3AU), Kampala, Uganda
| | - Fahim Yiga
- Department of Immunology and Molecular Biology, School of Biomedical Sciences, Makerere University College of Health Sciences, Kampala, Uganda
- Integrated Biorepository of H3Africa Uganda (IBRH3AU), Kampala, Uganda
| | - Sarah A Stanley
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA, USA
- Department of Molecular Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Bernard Ssentalo Bagaya
- Department of Immunology and Molecular Biology, School of Biomedical Sciences, Makerere University College of Health Sciences, Kampala, Uganda
- Integrated Biorepository of H3Africa Uganda (IBRH3AU), Kampala, Uganda
| | - Alison Elliott
- MRC/UVRI and LSHTM Uganda Research Unit, Entebbe, Uganda
| | - Moses Joloba
- Department of Immunology and Molecular Biology, School of Biomedical Sciences, Makerere University College of Health Sciences, Kampala, Uganda.
- Integrated Biorepository of H3Africa Uganda (IBRH3AU), Kampala, Uganda.
| | - Ashley R Wolf
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA, USA.
- Center for Computational Biology, University of California, Berkeley, Berkeley, CA, USA.
| |
Collapse
|
14
|
Johnson SD, Pino M, Acharya A, Clain JA, Bose D, Nguyen K, Harper J, Villinger F, Paiardini M, Byrareddy SN. IL-21 and anti-α4β7 dual therapy during ART promotes immunological and microbiome responses in SIV-infected macaques. JCI Insight 2025; 10:e184491. [PMID: 39903521 PMCID: PMC11949015 DOI: 10.1172/jci.insight.184491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 01/28/2025] [Indexed: 02/06/2025] Open
Abstract
Despite combination antiretroviral therapy (ART), HIV causes persistent gut barrier dysfunction, immune depletion, and dysbiosis. Furthermore, ART interruption results in reservoir reactivation and rebound viremia. Both IL-21 and anti-α4β7 improve gut barrier functions, and we hypothesized that combining them would synergize as a dual therapy to improve immunological outcomes in SIV-infected rhesus macaques (RMs). We found no significant differences in CD4+ T cell reservoir size by intact proviral DNA assay. SIV rebounded in both dual-treated and control RMs following analytical therapy interruption (ATI), with time to rebound and initial rebound viremia comparable between groups; however, dual-treated RMs showed slightly better control of viral replication at the latest time points after ATI. Additionally, following ATI, dual-treated RMs showed immunological benefits, including T cell preservation and lower PD-1+ central memory T cell (TCM) frequency. Notably, PD-1+ TCMs were associated with reservoir size, which predicted viral loads (VLs) after ATI. Finally, 16S rRNA-Seq revealed better recovery from dysbiosis in treated animals, and the butyrate-producing Firmicute Roseburia predicted PD-1-expressing TCMs and VLs after ATI. PD-1+ TCMs and gut dysbiosis represent mechanisms of HIV persistence and pathogenesis, respectively. Therefore, combining IL-21 and anti-α4β7 may be an effective therapeutic strategy to improve immunological outcomes for people with HIV.
Collapse
Affiliation(s)
- Samuel D. Johnson
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center (UNMC), Omaha, Nebraska, USA
| | - Maria Pino
- Division of Microbiology and Immunology, Emory National Primate Research Center (ENPRC), Emory University, Atlanta, Georgia, USA
| | - Arpan Acharya
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center (UNMC), Omaha, Nebraska, USA
| | - Julien A. Clain
- Division of Microbiology and Immunology, Emory National Primate Research Center (ENPRC), Emory University, Atlanta, Georgia, USA
| | - Deepanwita Bose
- New Iberia Research Center, University of Louisiana at Lafayette, New Iberia, Louisiana, USA
| | - Kevin Nguyen
- Division of Microbiology and Immunology, Emory National Primate Research Center (ENPRC), Emory University, Atlanta, Georgia, USA
| | - Justin Harper
- Division of Microbiology and Immunology, Emory National Primate Research Center (ENPRC), Emory University, Atlanta, Georgia, USA
| | - Francois Villinger
- New Iberia Research Center, University of Louisiana at Lafayette, New Iberia, Louisiana, USA
| | - Mirko Paiardini
- Division of Microbiology and Immunology, Emory National Primate Research Center (ENPRC), Emory University, Atlanta, Georgia, USA
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Siddappa N. Byrareddy
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center (UNMC), Omaha, Nebraska, USA
- Department of Genetics, Cell Biology and Anatomy, and
- Department of Biochemistry and Molecular Biology, UNMC, Omaha, Nebraska, USA
| |
Collapse
|
15
|
Pribyl AL, Hugenholtz P, Cooper MA. A decade of advances in human gut microbiome-derived biotherapeutics. Nat Microbiol 2025; 10:301-312. [PMID: 39779879 DOI: 10.1038/s41564-024-01896-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 11/20/2024] [Indexed: 01/11/2025]
Abstract
Microbiome science has evolved rapidly in the past decade, with high-profile publications suggesting that the gut microbiome is a causal determinant of human health. This has led to the emergence of microbiome-focused biotechnology companies and pharmaceutical company investment in the research and development of gut-derived therapeutics. Despite the early promise of this field, the first generation of microbiome-derived therapeutics (faecal microbiota products) have only recently been approved for clinical use. Next-generation therapies based on readily culturable and as-yet-unculturable colonic bacterial species (with the latter estimated to comprise 63% of all detected species) have not yet progressed to pivotal phase 3 trials. This reflects the many challenges involved in developing a new class of drugs in an evolving field. Here we discuss the evolution of the live biotherapeutics field over the past decade, from the development of first-generation products to the emergence of rationally designed second- and third-generation live biotherapeutics. Finally, we present our outlook for the future of this field.
Collapse
Affiliation(s)
| | - Philip Hugenholtz
- The University of Queensland, School of Chemistry and Molecular Biosciences, Australian Centre for Ecogenomics, Brisbane, Queensland, Australia.
| | | |
Collapse
|
16
|
Horn V, Cancino CA, Steinheuer LM, Obermayer B, Fritz K, Nguyen AL, Juhran KS, Plattner C, Bösel D, Oldenburg L, Burns M, Schulz AR, Saliutina M, Mantzivi E, Lissner D, Conrad T, Mashreghi MF, Zundler S, Sonnenberg E, Schumann M, Haag LM, Beule D, Flatz L, Trajanoski Z, D'Haens G, Weidinger C, Mei HE, Siegmund B, Thurley K, Hegazy AN. Multimodal Profiling of Peripheral Blood Identifies Proliferating Circulating Effector CD4 + T Cells as Predictors for Response to Integrin α4β7-Blocking Therapy in Inflammatory Bowel Disease. Gastroenterology 2025; 168:327-343. [PMID: 39343250 DOI: 10.1053/j.gastro.2024.09.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 09/06/2024] [Accepted: 09/18/2024] [Indexed: 10/01/2024]
Abstract
BACKGROUND & AIMS Despite the success of biological therapies in treating inflammatory bowel disease, managing patients remains challenging due to the absence of reliable predictors of therapy response. METHODS In this study, we prospectively sampled 2 cohorts of patients with inflammatory bowel disease receiving the anti-integrin α4β7 antibody vedolizumab. Samples were subjected to mass cytometry; single-cell RNA sequencing; single-cell B and T cell receptor sequencing (BCR/TCR-seq); serum proteomics; and multiparametric flow cytometry to comprehensively assess vedolizumab-induced immunologic changes in the peripheral blood and their potential associations with treatment response. RESULTS Vedolizumab treatment led to substantial alterations in the abundance of circulating immune cell lineages and modified the T-cell receptor diversity of gut-homing CD4+ memory T cells. Through integration of multimodal parameters and machine learning, we identified a significant increase in proliferating CD4+ memory T cells among nonresponders before treatment compared with responders. This predictive T-cell signature demonstrated an activated T-helper 1/T-helper 17 cell phenotype and exhibited elevated levels of integrin α4β1, potentially making these cells less susceptible to direct targeting by vedolizumab. CONCLUSIONS These findings provide a reliable predictive classifier with significant implications for personalized inflammatory bowel disease management.
Collapse
MESH Headings
- Humans
- Antibodies, Monoclonal, Humanized/therapeutic use
- Antibodies, Monoclonal, Humanized/pharmacology
- Integrins/antagonists & inhibitors
- Male
- Female
- Prospective Studies
- Adult
- CD4-Positive T-Lymphocytes/immunology
- CD4-Positive T-Lymphocytes/drug effects
- CD4-Positive T-Lymphocytes/metabolism
- Middle Aged
- Cell Proliferation/drug effects
- Gastrointestinal Agents/therapeutic use
- Treatment Outcome
- Proteomics/methods
- Memory T Cells/immunology
- Memory T Cells/drug effects
- Single-Cell Analysis
- Inflammatory Bowel Diseases/drug therapy
- Inflammatory Bowel Diseases/immunology
- Inflammatory Bowel Diseases/blood
- Colitis, Ulcerative/drug therapy
- Colitis, Ulcerative/immunology
- Colitis, Ulcerative/blood
- Colitis, Ulcerative/diagnosis
- Th17 Cells/immunology
- Th17 Cells/drug effects
- Th17 Cells/metabolism
- Predictive Value of Tests
- Flow Cytometry
- Phenotype
- Th1 Cells/immunology
- Th1 Cells/drug effects
- Young Adult
- Receptors, Antigen, T-Cell/metabolism
- Receptors, Antigen, T-Cell/immunology
- Crohn Disease/drug therapy
- Crohn Disease/immunology
- Crohn Disease/blood
- Biomarkers/blood
- Sequence Analysis, RNA
Collapse
Affiliation(s)
- Veronika Horn
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Gastroenterology, Infectious Diseases and Rheumatology, Berlin, Germany; Deutsches Rheuma-Forschungszentrum, ein Institut der Leibniz-Gemeinschaft, Berlin, Germany
| | - Camila A Cancino
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Gastroenterology, Infectious Diseases and Rheumatology, Berlin, Germany; Deutsches Rheuma-Forschungszentrum, ein Institut der Leibniz-Gemeinschaft, Berlin, Germany
| | - Lisa M Steinheuer
- Institute of Experimental Oncology, Biomathematics Division, University Hospital Bonn, Bonn, Germany
| | - Benedikt Obermayer
- Berlin Institute of Health at Charité-Universitätsmedizin Berlin, Core Unit Bioinformatics, Berlin, Germany
| | - Konstantin Fritz
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Gastroenterology, Infectious Diseases and Rheumatology, Berlin, Germany; Deutsches Rheuma-Forschungszentrum, ein Institut der Leibniz-Gemeinschaft, Berlin, Germany
| | - Anke L Nguyen
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Gastroenterology, Infectious Diseases and Rheumatology, Berlin, Germany; Department of Gastroenterology, Central Clinical School, Monash University and Alfred Health, Melbourne, Victoria, Australia
| | - Kim Susan Juhran
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Gastroenterology, Infectious Diseases and Rheumatology, Berlin, Germany; Deutsches Rheuma-Forschungszentrum, ein Institut der Leibniz-Gemeinschaft, Berlin, Germany
| | - Christina Plattner
- Biocenter, Institute of Bioinformatics, Medical University of Innsbruck, Innsbruck, Austria
| | - Diana Bösel
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Gastroenterology, Infectious Diseases and Rheumatology, Berlin, Germany; Deutsches Rheuma-Forschungszentrum, ein Institut der Leibniz-Gemeinschaft, Berlin, Germany
| | - Lotte Oldenburg
- Department of Gastroenterology, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Marie Burns
- Deutsches Rheuma-Forschungszentrum, ein Institut der Leibniz-Gemeinschaft, Berlin, Germany
| | - Axel Ronald Schulz
- Deutsches Rheuma-Forschungszentrum, ein Institut der Leibniz-Gemeinschaft, Berlin, Germany
| | - Mariia Saliutina
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Gastroenterology, Infectious Diseases and Rheumatology, Berlin, Germany; Deutsches Rheuma-Forschungszentrum, ein Institut der Leibniz-Gemeinschaft, Berlin, Germany
| | - Eleni Mantzivi
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Gastroenterology, Infectious Diseases and Rheumatology, Berlin, Germany
| | - Donata Lissner
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Gastroenterology, Infectious Diseases and Rheumatology, Berlin, Germany
| | - Thomas Conrad
- Genomics Technology Platform, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany; Core Unit Genomics, Berlin Institute of Health at Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Mir-Farzin Mashreghi
- Deutsches Rheuma-Forschungszentrum, ein Institut der Leibniz-Gemeinschaft, Berlin, Germany; German Center for Child and Adolescent Health (DZKJ), Partner Site Berlin, Berlin, Germany
| | - Sebastian Zundler
- Department of Medicine 1, University Hospital Erlangen and Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany
| | - Elena Sonnenberg
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Gastroenterology, Infectious Diseases and Rheumatology, Berlin, Germany
| | - Michael Schumann
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Gastroenterology, Infectious Diseases and Rheumatology, Berlin, Germany
| | - Lea-Maxie Haag
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Gastroenterology, Infectious Diseases and Rheumatology, Berlin, Germany
| | - Dieter Beule
- Berlin Institute of Health at Charité-Universitätsmedizin Berlin, Core Unit Bioinformatics, Berlin, Germany
| | - Lukas Flatz
- Institute of Immunobiology, Kantonsspital St. Gallen, St. Gallen, Switzerland; Department of Dermatology, University Hospital Tübingen, University of Tübingen, Tübingen, Germany
| | - Zlatko Trajanoski
- Biocenter, Institute of Bioinformatics, Medical University of Innsbruck, Innsbruck, Austria
| | - Geert D'Haens
- Department of Gastroenterology, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Carl Weidinger
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Gastroenterology, Infectious Diseases and Rheumatology, Berlin, Germany
| | - Henrik E Mei
- Deutsches Rheuma-Forschungszentrum, ein Institut der Leibniz-Gemeinschaft, Berlin, Germany
| | - Britta Siegmund
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Gastroenterology, Infectious Diseases and Rheumatology, Berlin, Germany
| | - Kevin Thurley
- Deutsches Rheuma-Forschungszentrum, ein Institut der Leibniz-Gemeinschaft, Berlin, Germany; Institute of Experimental Oncology, Biomathematics Division, University Hospital Bonn, Bonn, Germany.
| | - Ahmed N Hegazy
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Gastroenterology, Infectious Diseases and Rheumatology, Berlin, Germany; Deutsches Rheuma-Forschungszentrum, ein Institut der Leibniz-Gemeinschaft, Berlin, Germany; Berlin Institute of Health at Charité-Universitätsmedizin Berlin, Berlin Institute of Health Academy, Clinician Scientist Program, Berlin, Germany.
| |
Collapse
|
17
|
Hall JC, Hall AK, Lozko Y, Hui C, Baniel CC, Jackson S, Vitzthum LK, Chang DT, Rahimy E, Pollom EL. Safety of Pelvic and Abdominal Radiation Therapy for Patients With Inflammatory Bowel Disease: A Dosimetric Analysis of Acute Bowel Toxicity. Int J Radiat Oncol Biol Phys 2025; 121:442-451. [PMID: 39270827 DOI: 10.1016/j.ijrobp.2024.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 07/15/2024] [Accepted: 09/02/2024] [Indexed: 09/15/2024]
Abstract
PURPOSE Inflammatory bowel disease (IBD) has been considered a relative contraindication to radiation therapy (RT) because of the potential greater risk of RT-induced toxicities. This study aimed to assess acute toxicity outcomes in patients with IBD treated with abdominal/pelvic RT. METHODS AND MATERIALS After institutional review board approval, patients with IBD who received RT to the abdomen/pelvis were identified from an institutional research repository, and their electronic medical records were reviewed. The IBD cohort was matched 1:1 with controls according to all of the following: RT, gender, disease site, age, and year of RT. Acute toxicity was defined as toxicity occurring within 3 months of RT. Primary outcomes were assessed via univariable logistic regression models and the predicted probability of acute toxicity and acute gastrointestinal (GI) toxicity were plotted for the most significant covariates. IBD and control cohorts were compared on demographic and toxicity variables using χ2/Fisher exact tests and Kruskal-Wallis tests where appropriate. RESULTS We identified 62 patients with a median age of 64 years (IQR, 54-70 years) who received RT from 2006 to 2022. Patients were treated with intensity modulated RT (38; 61.3%), 3-dimensional conformal RT (12; 19.4%), and stereotactic body RT/brachytherapy (12; 19.4%). After RT, 28 (45.2%) and 23 (37.1%) patients experienced grade ≥2 acute (any) and acute GI toxicity, respectively. Higher overall RT dose and RT dose to small bowel were found to be significantly associated with increased risk of grade ≥2 acute toxicities (OR, 1.041 per unit Gy; 95% CI, 1.005-1.084; P = .034 and OR, 1.046; 95% CI, 1.018-1.082; P = .003, respectively). Between IBD and control cohorts, there were no significant differences in grade ≥2 acute (any) and acute GI toxicities (P = .710 and P = .704, respectively). CONCLUSIONS In patients with IBD treated with abdominal/pelvic RT for malignancy, RT was effective and well-tolerated. RT treatment planning should carefully consider the location(s) of IBD inflammation and dose to bowel structures, in particular, dose to the small bowel.
Collapse
Affiliation(s)
- Jennifer C Hall
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California
| | - Abbie K Hall
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California
| | - Yuliia Lozko
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California
| | - Caressa Hui
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California
| | - Claire C Baniel
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California
| | - Scott Jackson
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California
| | - Lucas K Vitzthum
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California
| | - Daniel T Chang
- Department of Radiation Oncology, Michigan University School of Medicine, Ann Arbor, Michigan
| | - Elham Rahimy
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California
| | - Erqi L Pollom
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California.
| |
Collapse
|
18
|
Melograna F, Sudhakar P, Yousefi B, Caenepeel C, Falony G, Vieira-Silva S, Krishnamoorthy S, Fardo D, Verstockt B, Raes J, Vermeire S, Van Steen K. Individual-network based predictions of microbial interaction signatures for response to biological therapies in IBD patients. Front Mol Biosci 2025; 11:1490533. [PMID: 39944755 PMCID: PMC11813754 DOI: 10.3389/fmolb.2024.1490533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 12/31/2024] [Indexed: 03/06/2025] Open
Abstract
Inflammatory Bowel Disease (IBD), which includes Ulcerative Colitis (UC) and Crohn's Disease (CD), is marked by dysbiosis of the gut microbiome. Despite therapeutic interventions with biological agents like Vedolizumab, Ustekinumab, and anti-TNF agents, the variability in clinical, histological, and molecular responses remains significant due to inter-individual and inter-population differences. This study introduces a novel approach using Individual Specific Networks (ISNs) derived from faecal microbial measurements of IBD patients across multiple cohorts. These ISNs, constructed from baseline and follow-up data post-treatment, successfully predict therapeutic outcomes based on endoscopic remission criteria. Our analysis revealed that ISNs characterised by core gut microbial families, including Lachnospiraceae and Ruminococcaceae, are predictive of treatment responses. We identified significant changes in abundance levels of specific bacterial genera in response to treatment, confirming the robustness of ISNs in capturing both linear and non-linear microbiota signals. Utilising network topological metrics, we further validated these findings, demonstrating that critical microbial features identified through ISNs can differentiate responders from non-responders with respect to various therapeutic outcomes. The study highlights the potential of ISNs to provide individualised insights into microbiota-driven therapeutic responses, emphasising the need for larger cohort studies to enhance the accuracy of molecular biomarkers. This innovative methodology paves the way for more personalised and effective treatment strategies in managing IBD.
Collapse
Affiliation(s)
- Federico Melograna
- BIO3 Laboratory for Systems Medicine, Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Padhmanand Sudhakar
- Department of Biotechnology, Kumaraguru College Technology, Coimbatore, Tamil Nadu, India
| | - Behnam Yousefi
- Institute of Medical Systems Biology, Center for Biomedical AI (bAIome), Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- German Center for Child and Adolescent Health (DZKJ), Partner Site Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Clara Caenepeel
- Department of Gastroenterology and Hepatology, University Hospitals Leuven, KU Leuven, Leuven, Belgium
| | - Gwen Falony
- Laboratory of Molecular Bacteriology, Department of Microbiology and Immunology, Rega Institute, Katholieke Universiteit Leuven, Leuven, Belgium
- Center for Microbiology, Vlaams Instituut voor Biotechnologie (VIB), Leuven, Belgium
- Institute of Medical Microbiology and Hygiene and Research Center for Immunotherapy (FZI), University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Sara Vieira-Silva
- Laboratory of Molecular Bacteriology, Department of Microbiology and Immunology, Rega Institute, Katholieke Universiteit Leuven, Leuven, Belgium
- Institute of Medical Microbiology and Hygiene and Research Center for Immunotherapy (FZI), University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
- Institute of Molecular Biology (IMB), Mainz, Germany
| | | | - David Fardo
- College of Public Health, University of Kentucky, Lexington, KY, United States
| | - Bram Verstockt
- Department of Gastroenterology and Hepatology, University Hospitals Leuven, KU Leuven, Leuven, Belgium
- KU Leuven Department of Chronic Diseases and Metabolism, Translational Research Center for Gastrointestinal Disorders (TARGID), Leuven, Belgium
| | - Jeroen Raes
- Laboratory of Molecular Bacteriology, Department of Microbiology and Immunology, Rega Institute, Katholieke Universiteit Leuven, Leuven, Belgium
- Center for Microbiology, Vlaams Instituut voor Biotechnologie (VIB), Leuven, Belgium
| | - Severine Vermeire
- Department of Gastroenterology and Hepatology, University Hospitals Leuven, KU Leuven, Leuven, Belgium
- KU Leuven Department of Chronic Diseases and Metabolism, Translational Research Center for Gastrointestinal Disorders (TARGID), Leuven, Belgium
| | - Kristel Van Steen
- BIO3 Laboratory for Systems Medicine, Department of Human Genetics, KU Leuven, Leuven, Belgium
| |
Collapse
|
19
|
Mulenga M, Rajamanikam A, Kumar S, Muhammad SB, Bhassu S, Samudid C, Sabri AQM, Seera M, Eke CI. Revolutionizing colorectal cancer detection: A breakthrough in microbiome data analysis. PLoS One 2025; 20:e0316493. [PMID: 39879257 PMCID: PMC11778789 DOI: 10.1371/journal.pone.0316493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 12/10/2024] [Indexed: 01/31/2025] Open
Abstract
The emergence of Next Generation Sequencing (NGS) technology has catalyzed a paradigm shift in clinical diagnostics and personalized medicine, enabling unprecedented access to high-throughput microbiome data. However, the inherent high dimensionality, noise, and variability of microbiome data present substantial obstacles to conventional statistical methods and machine learning techniques. Even the promising deep learning (DL) methods are not immune to these challenges. This paper introduces a novel feature engineering method that circumvents these limitations by amalgamating two feature sets derived from input data to generate a new dataset, which is then subjected to feature selection. This innovative approach markedly enhances the Area Under the Curve (AUC) performance of the Deep Neural Network (DNN) algorithm in colorectal cancer (CRC) detection using gut microbiome data, elevating it from 0.800 to 0.923. The proposed method constitutes a significant advancement in the field, providing a robust solution to the intricacies of microbiome data analysis and amplifying the potential of DL methods in disease detection.
Collapse
Affiliation(s)
- Mwenge Mulenga
- Business Studies Division, National Institute of Public Administration, Lusaka, Zambia
- Centre for Research and Emerging Technologies, New Mulungushi, Kabwe, Zambia
| | | | - Suresh Kumar
- Department of Parasitology, Faculty of Medicine, University Malaya, Kuala Lumpur, Malaysia
| | - Saharuddin bin Muhammad
- Institute of Biological Sciences, Faculty of Science, University Malaya, Kuala Lumpur, Malaysia
| | - Subha Bhassu
- Institute of Biological Sciences, Faculty of Science, University Malaya, Kuala Lumpur, Malaysia
| | - Chandramathi Samudid
- Department of Medical Microbiology, Faculty of Medicine, University Malaya, Kuala Lumpur, Malaysia
| | - Aznul Qalid Md Sabri
- Faculty of Computer Science and Information Technology, University of Malaya, Kuala Lumpur, Malaysia
| | - Manjeevan Seera
- School of Business, Monash University Malaysia, Selangor, Malaysia
| | - Christopher Ifeanyi Eke
- Department of Computer Science, Faculty of Computing, Federal University of Lafia, Lafia, Nasarawa State, Nigeria
| |
Collapse
|
20
|
Chaemsupaphan T, Arzivian A, Leong RW. Comprehensive care of ulcerative colitis: new treatment strategies. Expert Rev Gastroenterol Hepatol 2025. [PMID: 39865726 DOI: 10.1080/17474124.2025.2457451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 01/16/2025] [Accepted: 01/20/2025] [Indexed: 01/28/2025]
Abstract
INTRODUCTION Ulcerative colitis is a chronic inflammatory condition of the colon driven by aberrant immune activation. Although advanced medical therapies form the cornerstone of ulcerative colitis management, unmet needs include failure to induce and sustain remission in a substantial proportion of patients and in managing acute severe ulcerative colitis. We review new treatment strategies that might improve patient outcomes in the management of moderate-to-severe ulcerative colitis. AREAS COVERED A literature search was conducted using the PubMed database, including studies published from inception to October 2024, selected for their relevance. Recognizing current limitations, this article reviews strategies to improve treatment outcomes in ulcerative colitis using advanced therapies. These approaches include early treatment initiation, dose optimization, positioning newer agents as first-line therapies, combination therapy, targeting novel therapeutic endpoints, and the management of acute severe ulcerative colitis. EXPERT OPINION The strategies discussed may contribute to establishing new standards of care aimed at achieving long-term remission and enhancing patient outcomes. Personalized therapy, which tailors treatment based on individual disease characteristics and risk factors, is anticipated to become a critical aspect of delivering more effective care in the future.
Collapse
Affiliation(s)
- Thanaboon Chaemsupaphan
- Division of Gastroenterology, Department of Medicine, Siriraj Hospital, Mahidol University, Thailand
- Department of Gastroenterology and Hepatology, Concord Repatriation General Hospital, Sydney, Australia
| | - Arteen Arzivian
- Department of Gastroenterology and Hepatology, St Vincent's Hospital, Sydney, Australia
| | - Rupert W Leong
- Department of Gastroenterology and Hepatology, Concord Repatriation General Hospital, Sydney, Australia
- Faculty of Medicine and Health, University of Sydney, Sydney, Australia
- Faculty of Medicine and Health Sciences, Macquarie University, Sydney, Australia
| |
Collapse
|
21
|
Krynicka P, Koulaouzidis G, Skonieczna-Żydecka K, Marlicz W, Koulaouzidis A. Application of Raman Spectroscopy in Non-Invasive Analysis of the Gut Microbiota and Its Impact on Gastrointestinal Health. Diagnostics (Basel) 2025; 15:292. [PMID: 39941222 PMCID: PMC11817668 DOI: 10.3390/diagnostics15030292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 01/21/2025] [Accepted: 01/23/2025] [Indexed: 02/16/2025] Open
Abstract
The gut microbiota, a complex community of microorganisms, plays a crucial role in gastrointestinal (GI) health, influencing digestion, metabolism, immune function, and the gut-brain axis. Dysbiosis, or an imbalance in microbiota composition, is associated with GI disorders, including irritable bowel syndrome (IBS), inflammatory bowel disease (IBD), and colorectal cancer (CRC). Conventional microbiota analysis methods, such as next-generation sequencing (NGS) and nuclear magnetic resonance (NMR), provide valuable insights but are often expensive, time-consuming, and destructive. Raman spectroscopy (RS) is a non-invasive, cost-effective, and highly sensitive alternative. This analytical technique relies on inelastic light scattering to generate molecular "fingerprints", enabling real-time, marker-free analysis of microbiota composition and metabolic activity. This review explores the principles, sample preparation techniques, and advancements in RS, including surface-enhanced Raman spectroscopy (SERS), for microbiota research. RS facilitates identifying microbial species, analysing key metabolites like short-chain fatty acids (SCFA), and monitoring microbiota responses to dietary and therapeutic interventions. The comparative analysis highlights RS's advantages over conventional techniques, such as the minimal sample preparation, real-time capabilities, and non-destructive nature. The integration of RS with machine learning enhances its diagnostic potential, enabling biomarker discovery and personalised treatment strategies for GI disorders. Challenges, including weak Raman signals and spectral complexity, are discussed alongside emerging solutions. As RS technology advances, mainly through portable spectrometers and AI integration, its clinical application in microbiota diagnostics and personalised medicine is poised to transform GI healthcare, bridging microbiota research with practical therapeutic strategies.
Collapse
Affiliation(s)
- Patrycja Krynicka
- Department of Gastroenterology, Pomeranian Medical University, 71-252 Szczecin, Poland; (P.K.); (W.M.)
| | - George Koulaouzidis
- Department of Biochemical Sciences, Pomeranian Medical University, 71-460 Szczecin, Poland; (G.K.); (K.S.-Ż.)
| | - Karolina Skonieczna-Żydecka
- Department of Biochemical Sciences, Pomeranian Medical University, 71-460 Szczecin, Poland; (G.K.); (K.S.-Ż.)
| | - Wojciech Marlicz
- Department of Gastroenterology, Pomeranian Medical University, 71-252 Szczecin, Poland; (P.K.); (W.M.)
| | - Anastasios Koulaouzidis
- Department of Gastroenterology, Pomeranian Medical University, 71-252 Szczecin, Poland; (P.K.); (W.M.)
- Department of Clinical Research, University of Southern Denmark, 57000 Odense, Denmark
| |
Collapse
|
22
|
Zheng ZL, Zheng QF, Wang LQ, Liu Y. Bowel preparation before colonoscopy: Consequences, mechanisms, and treatment of intestinal dysbiosis. World J Gastroenterol 2025; 31:100589. [PMID: 39811511 PMCID: PMC11684204 DOI: 10.3748/wjg.v31.i2.100589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 10/22/2024] [Accepted: 11/12/2024] [Indexed: 12/18/2024] Open
Abstract
The term "gut microbiota" primarily refers to the ecological community of various microorganisms in the gut, which constitutes the largest microbial community in the human body. Although adequate bowel preparation can improve the results of colonoscopy, it may interfere with the gut microbiota. Bowel preparation for colonoscopy can lead to transient changes in the gut microbiota, potentially affecting an individual's health, especially in vulnerable populations, such as patients with inflammatory bowel disease. However, measures such as oral probiotics may ameliorate these adverse effects. We focused on the bowel preparation-induced changes in the gut microbiota and host health status, hypothesized the factors influencing these changes, and attempted to identify measures that may reduce dysbiosis, thereby providing more information for individualized bowel preparation for colonoscopy in the future.
Collapse
Affiliation(s)
- Ze-Long Zheng
- Department of Gastroenterology (Endoscopy Center), China-Japan Union Hospital of Jilin University, Changchun 130033, Jilin Province, China
| | - Qing-Fan Zheng
- Department of Gastroenterology (Endoscopy Center), China-Japan Union Hospital of Jilin University, Changchun 130033, Jilin Province, China
| | - Li-Qiang Wang
- Department of Gastroenterology (Endoscopy Center), China-Japan Union Hospital of Jilin University, Changchun 130033, Jilin Province, China
| | - Yi Liu
- Department of Gastroenterology (Endoscopy Center), China-Japan Union Hospital of Jilin University, Changchun 130033, Jilin Province, China
| |
Collapse
|
23
|
Shang J, Del Valle DM, Britton GJ, Mead K, Rajpal U, Chen-Liaw A, Mogno I, Li Z, Menon R, Gonzalez-Kozlova E, Elkrief A, Peled JU, Gonsalves TR, Shah NJ, Postow M, Colombel JF, Gnjatic S, Faleck DM, Faith JJ. Baseline colitogenicity and acute perturbations of gut microbiota in immunotherapy-related colitis. J Exp Med 2025; 222:e20232079. [PMID: 39666007 PMCID: PMC11636624 DOI: 10.1084/jem.20232079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 09/17/2024] [Accepted: 11/21/2024] [Indexed: 12/13/2024] Open
Abstract
Immunotherapy-related colitis (irC) frequently emerges as an immune-related adverse event during immune checkpoint inhibitor therapy and is presumably influenced by the gut microbiota. We longitudinally studied microbiomes from 38 ICI-treated cancer patients. We compared 13 ICI-treated subjects who developed irC against 25 ICI-treated subjects who remained irC-free, along with a validation cohort. Leveraging a preclinical mouse model, predisease stools from irC subjects induced greater colitigenicity upon transfer to mice. The microbiota during the first 10 days of irC closely resembled inflammatory bowel disease microbiomes, with reduced diversity, increased Proteobacteria and Veillonella, and decreased Faecalibacterium, which normalized before irC remission. These findings highlight the irC gut microbiota as functionally distinct but phylogenetically similar to non-irC and healthy microbiomes, with the exception of an acute, transient disruption early in irC. We underscore the significance of longitudinal microbiome profiling in developing clinical avenues to detect, monitor, and mitigate irC in ICI therapy cancer patients.
Collapse
Affiliation(s)
- Joan Shang
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Diane Marie Del Valle
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Graham J. Britton
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - K.R. Mead
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Urvija Rajpal
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Alice Chen-Liaw
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ilaria Mogno
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Zhihua Li
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Edgar Gonzalez-Kozlova
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Arielle Elkrief
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jonathan U. Peled
- Department of Medicine, Adult Bone Marrow Transplantation Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Weill Cornell Medical College, New York, NY, USA
| | - Tina Ruth Gonsalves
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Neil J. Shah
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Weill Cornell Medical College, New York, NY, USA
| | - Michael Postow
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Weill Cornell Medical College, New York, NY, USA
| | - Jean-Frederic Colombel
- Division of Gastroenterology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sacha Gnjatic
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - David M. Faleck
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Weill Cornell Medical College, New York, NY, USA
| | - Jeremiah J. Faith
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
24
|
El-Shafie S, Metwaly A. Diet-specific impacts on the gut microbiome and their relation to health and inflammation. NUTRITION IN THE CONTROL OF INFLAMMATION 2025:77-124. [DOI: 10.1016/b978-0-443-18979-1.00005-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
25
|
Hu Y, Wu Z, Yang X, Ding J, Wang Q, Fang H, Zhu L, Hu M. Reduced gut microbiota diversity in ulcerative colitis patients with latent tuberculosis infection during vedolizumab therapy: insights on prophylactic anti-tuberculosis effects. BMC Microbiol 2024; 24:543. [PMID: 39731099 DOI: 10.1186/s12866-024-03705-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 12/13/2024] [Indexed: 12/29/2024] Open
Abstract
BACKGROUND The gut microbiota plays a pivotal role in ulcerative colitis (UC) development. This study explores the impact of latent tuberculosis infection (LTBI) on the gut microbiota in UC and assesses changes during vedolizumab treatment, investigating prophylactic anti-tuberculosis therapy. RESULTS This cohort study included adult patients with UC receiving vedolizumab treatment at Jinhua Hospital, Zhejiang University from April 2021 to December 2022. Patients were divided into LTBI (n = 24) and non-LTBI (n = 21) groups. Patients in the LTBI group were further subdivided into prophylactic (n = 13) and non-prophylactic (n = 11) groups. Clinical and fecal samples were collected pre- and post-vedolizumab treatment for the LTBI groups and pre-treatment for the non-LTBI group. The gut microbiota was analyzed using 16 S rRNA sequencing. Patients in the non-LTBI group exhibited higher diversity indices. Vedolizumab demonstrated efficacy in the LTBI group, with clinical response and remission rates of 83.3% and 75.0%, respectively. The gut microbiota diversity in the LTBI group increased post-vedolizumab treatment, and receiving prophylactic isoniazid showed no significant difference in vedolizumab treatment response compared to not receiving prophylactic isoniazid. Microbiota changes were similar between groups, with an increase in [Ruminococcus] expression after vedolizumab treatment. CONCLUSIONS This cohort study, conducted at a single center, highlights that LTBI can reduce gut microbiota diversity among adult patient with UC. The observed efficacy of vedolizumab treatment in the LTBI group indicates a potential association with microbiota changes. However, mono-isoniazid exhibited limited impact, underscoring the potential of vedolizumab as a promising candidate for prophylactic anti-tuberculosis treatment in the context of UC.
Collapse
Affiliation(s)
- Yibing Hu
- Department of Gastroenterology, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, No.365 Renming East Road, Jinhua, Zhejiang, P. R. China
| | - Zhenping Wu
- Department of Gastroenterology, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, No.365 Renming East Road, Jinhua, Zhejiang, P. R. China
| | - Xiaoyun Yang
- Department of Gastroenterology, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, No.365 Renming East Road, Jinhua, Zhejiang, P. R. China
| | - Jin Ding
- Department of Gastroenterology, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, No.365 Renming East Road, Jinhua, Zhejiang, P. R. China
| | - Qunying Wang
- Department of Gastroenterology, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, No.365 Renming East Road, Jinhua, Zhejiang, P. R. China
| | - Hao Fang
- Department of Traumatology, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang, P. R. China
| | - Lujian Zhu
- Department of Infection, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang, P. R. China
| | - Minli Hu
- Department of Gastroenterology, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, No.365 Renming East Road, Jinhua, Zhejiang, P. R. China.
| |
Collapse
|
26
|
Ha SM, Lee K, Kim GH, Hurych J, Cinek O, Shim JO. Gut-microbiota-based ensemble model predicts prognosis of pediatric inflammatory bowel disease. iScience 2024; 27:111442. [PMID: 39691780 PMCID: PMC11650326 DOI: 10.1016/j.isci.2024.111442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 09/06/2024] [Accepted: 11/18/2024] [Indexed: 12/19/2024] Open
Abstract
Developing microbiome-based markers for pediatric inflammatory bowel disease (PIBD) is challenging. Here, we evaluated the diagnostic and prognostic potential of the gut microbiome in PIBD through a case-control study and cross-cohort analyses. In a Korean PIBD cohort (24 patients with PIBD, 43 controls), we observed that microbial diversity and composition shifted in patients with active PIBD versus controls and recovered at remission. We employed a differential abundance meta-analysis approach to identify microbial markers consistently associated with active inflammation and remission across seven PIBD cohorts from six countries (n = 1,670) including our dataset. Finally, we trained and tested various machine learning models for their ability to predict a patient's future remission based on baseline bacterial composition. An ensemble model trained with the amplicon sequence variants effectively predicted future remission of PIBD. This research highlights the gut microbiome's potential to guide precision therapy for PIBD.
Collapse
Affiliation(s)
- Sung Min Ha
- Department of Integrative Biology and Physiology, UCLA, Los Angeles, CA 957246, USA
| | - Kihyun Lee
- CJ Bioscience, Seoul 04527, Republic of Korea
| | - Gun-Ha Kim
- Department of Pediatrics, Korea Cancer Center Hospital, Korea Institute of Radiological & Medical Sciences, Seoul 01812, Republic of Korea
| | - Jakub Hurych
- Department of Medical Microbiology, 2nd Faculty of Medicine, Charles University and Motol University Hospital, 15006 Prague, Czechia
- Department of Paediatrics, 2nd Faculty of Medicine, Charles University and Motol University Hospital, 15006 Prague, Czechia
| | - Ondřej Cinek
- Department of Medical Microbiology, 2nd Faculty of Medicine, Charles University and Motol University Hospital, 15006 Prague, Czechia
- Department of Paediatrics, 2nd Faculty of Medicine, Charles University and Motol University Hospital, 15006 Prague, Czechia
| | - Jung Ok Shim
- Department of Pediatrics, Korea University College of Medicine, Korea University Guro Hospital, Seoul 08308, Republic of Korea
| |
Collapse
|
27
|
Johnson SD, Pilli N, Yu J, Knight LA, Kane MA, Byrareddy SN. Dual role for microbial short-chain fatty acids in modifying SIV disease trajectory following anti-α4β7 antibody administration. Ann Med 2024; 56:2315224. [PMID: 38353210 PMCID: PMC10868432 DOI: 10.1080/07853890.2024.2315224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 01/23/2024] [Accepted: 02/02/2024] [Indexed: 02/16/2024] Open
Abstract
BACKGROUND Human Immunodeficiency Virus (HIV)/Simian Immunodeficiency Virus (SIV) infection is associated with significant gut damage, similar to that observed in patients with inflammatory bowel disease (IBD). This pathology includes loss of epithelial integrity, microbial translocation, dysbiosis, and resultant chronic immune activation. Additionally, the levels of all-trans-retinoic acid (atRA) are dramatically attenuated. Data on the therapeutic use of anti-α4β7 antibodies has shown promise in patients with ulcerative colitis and Crohn's disease. Recent evidence has suggested that the microbiome and short-chain fatty acid (SCFA) metabolites it generates may be critical for anti-α4β7 efficacy and maintaining intestinal homeostasis. MATERIALS AND METHODS To determine whether the microbiome contributes to gut homeostasis after anti-α4β7 antibody administered to SIV-infected rhesus macaques, faecal SCFA concentrations were determined, 16S rRNA sequencing was performed, plasma viral loads were determined, plasma retinoids were measured longitudinally, and gut retinoid synthesis/response gene expression was quantified. RESULTS Our results suggest that anti-α4β7 antibody facilitates the return of retinoid metabolism to baseline levels after SIV infection. Furthermore, faecal SCFAs were shown to be associated with retinoid synthesis gene expression and rebound viral loads after therapy interruption. CONCLUSIONS Taken together, these data demonstrate the therapeutic advantages of anti-α4β7 antibody administration during HIV/SIV infection and that the efficacy of anti-α4β7 antibody may depend on microbiome composition and SCFA generation.
Collapse
Affiliation(s)
- Samuel D. Johnson
- Department of Pathology and Microbiology, University of NE Medical Center, Omaha, NE, USA
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Nageswara Pilli
- Department of Pharmaceutical Sciences, University of MD School of Pharmacy, Baltimore, MD, USA
| | - Jianshi Yu
- Department of Pharmaceutical Sciences, University of MD School of Pharmacy, Baltimore, MD, USA
| | - Lindsey A. Knight
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Maureen A. Kane
- Department of Pharmaceutical Sciences, University of MD School of Pharmacy, Baltimore, MD, USA
| | - Siddappa N. Byrareddy
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE, USA
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| |
Collapse
|
28
|
Long S, Xia Y, Liang L, Yang Y, Xie H, Wang X. PyNetCor: a high-performance Python package for large-scale correlation analysis. NAR Genom Bioinform 2024; 6:lqae177. [PMID: 39703431 PMCID: PMC11655297 DOI: 10.1093/nargab/lqae177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 11/19/2024] [Accepted: 11/28/2024] [Indexed: 12/21/2024] Open
Abstract
The development of multi-omics technologies has generated an abundance of biological datasets, providing valuable resources for investigating potential relationships within complex biological systems. However, most correlation analysis tools face computational challenges when dealing with these high-dimensional datasets containing millions of features. Here, we introduce pyNetCor, a fast and scalable tool for constructing correlation networks on large-scale and high-dimensional data. PyNetCor features optimized algorithms for both full correlation coefficient matrix computation and top-k correlation search, outperforming other tools in the field in terms of runtime and memory consumption. It utilizes a linear interpolation strategy to rapidly estimate P-values and achieve false discovery rate control, demonstrating a speedup of over 110 times compared to existing methods. Overall, pyNetCor supports large-scale correlation analysis, a crucial foundational step for various bioinformatics workflows, and can be easily integrated into downstream applications to accelerate the process of extracting biological insights from data.
Collapse
Affiliation(s)
- Shibin Long
- Department of Data Science, 01Life Institute, Shenzhen 518000, China
| | - Yan Xia
- Department of Data Science, 01Life Institute, Shenzhen 518000, China
- State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Lifeng Liang
- Department of Data Science, 01Life Institute, Shenzhen 518000, China
| | - Ying Yang
- Department of Data Science, 01Life Institute, Shenzhen 518000, China
| | - Hailiang Xie
- Department of Data Science, 01Life Institute, Shenzhen 518000, China
| | - Xiaokai Wang
- Department of Data Science, 01Life Institute, Shenzhen 518000, China
| |
Collapse
|
29
|
Cannarozzi AL, Latiano A, Massimino L, Bossa F, Giuliani F, Riva M, Ungaro F, Guerra M, Brina ALD, Biscaglia G, Tavano F, Carparelli S, Fiorino G, Danese S, Perri F, Palmieri O. Inflammatory bowel disease genomics, transcriptomics, proteomics and metagenomics meet artificial intelligence. United European Gastroenterol J 2024; 12:1461-1480. [PMID: 39215755 PMCID: PMC11652336 DOI: 10.1002/ueg2.12655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 08/15/2024] [Indexed: 09/04/2024] Open
Abstract
Various extrinsic and intrinsic factors such as drug exposures, antibiotic treatments, smoking, lifestyle, genetics, immune responses, and the gut microbiome characterize ulcerative colitis and Crohn's disease, collectively called inflammatory bowel disease (IBD). All these factors contribute to the complexity and heterogeneity of the disease etiology and pathogenesis leading to major challenges for the scientific community in improving management, medical treatments, genetic risk, and exposome impact. Understanding the interaction(s) among these factors and their effects on the immune system in IBD patients has prompted advances in multi-omics research, the development of new tools as part of system biology, and more recently, artificial intelligence (AI) approaches. These innovative approaches, supported by the availability of big data and large volumes of digital medical datasets, hold promise in better understanding the natural histories, predictors of disease development, severity, complications and treatment outcomes in complex diseases, providing decision support to doctors, and promising to bring us closer to the realization of the "precision medicine" paradigm. This review aims to provide an overview of current IBD omics based on both individual (genomics, transcriptomics, proteomics, metagenomics) and multi-omics levels, highlighting how AI can facilitate the integration of heterogeneous data to summarize our current understanding of the disease and to identify current gaps in knowledge to inform upcoming research in this field.
Collapse
Affiliation(s)
- Anna Lucia Cannarozzi
- Division of Gastroenterology and EndoscopyFondazione IRCCS Casa Sollievo della SofferenzaSan Giovanni RotondoItaly
| | - Anna Latiano
- Division of Gastroenterology and EndoscopyFondazione IRCCS Casa Sollievo della SofferenzaSan Giovanni RotondoItaly
| | - Luca Massimino
- Gastroenterology and Digestive Endoscopy DepartmentIRCCS Ospedale San RaffaeleMilanItaly
| | - Fabrizio Bossa
- Division of Gastroenterology and EndoscopyFondazione IRCCS Casa Sollievo della SofferenzaSan Giovanni RotondoItaly
| | - Francesco Giuliani
- Innovation & Research UnitFondazione IRCCS “Casa Sollievo della Sofferenza”San Giovanni RotondoItaly
| | - Matteo Riva
- Gastroenterology and Digestive Endoscopy DepartmentIRCCS Ospedale San RaffaeleMilanItaly
| | - Federica Ungaro
- Gastroenterology and Digestive Endoscopy DepartmentIRCCS Ospedale San RaffaeleMilanItaly
| | - Maria Guerra
- Division of Gastroenterology and EndoscopyFondazione IRCCS Casa Sollievo della SofferenzaSan Giovanni RotondoItaly
| | - Anna Laura Di Brina
- Division of Gastroenterology and EndoscopyFondazione IRCCS Casa Sollievo della SofferenzaSan Giovanni RotondoItaly
| | - Giuseppe Biscaglia
- Division of Gastroenterology and EndoscopyFondazione IRCCS Casa Sollievo della SofferenzaSan Giovanni RotondoItaly
| | - Francesca Tavano
- Division of Gastroenterology and EndoscopyFondazione IRCCS Casa Sollievo della SofferenzaSan Giovanni RotondoItaly
| | - Sonia Carparelli
- Division of Gastroenterology and EndoscopyFondazione IRCCS Casa Sollievo della SofferenzaSan Giovanni RotondoItaly
| | - Gionata Fiorino
- Gastroenterology and Digestive EndoscopySan Camillo‐Forlanini HospitalRomeItaly
| | - Silvio Danese
- Faculty of MedicineUniversità Vita‐Salute San RaffaeleMilanItaly
| | - Francesco Perri
- Division of Gastroenterology and EndoscopyFondazione IRCCS Casa Sollievo della SofferenzaSan Giovanni RotondoItaly
| | - Orazio Palmieri
- Division of Gastroenterology and EndoscopyFondazione IRCCS Casa Sollievo della SofferenzaSan Giovanni RotondoItaly
| |
Collapse
|
30
|
Wu G, Xu T, Zhao N, Lam YY, Ding X, Wei D, Fan J, Shi Y, Li X, Li M, Ji S, Wang X, Fu H, Zhang F, Shi Y, Zhang C, Peng Y, Zhao L. A core microbiome signature as an indicator of health. Cell 2024; 187:6550-6565.e11. [PMID: 39378879 DOI: 10.1016/j.cell.2024.09.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 07/29/2024] [Accepted: 09/11/2024] [Indexed: 10/10/2024]
Abstract
The gut microbiota is crucial for human health, functioning as a complex adaptive system akin to a vital organ. To identify core health-relevant gut microbes, we followed the systems biology tenet that stable relationships signify core components. By analyzing metagenomic datasets from a high-fiber dietary intervention in type 2 diabetes and 26 case-control studies across 15 diseases, we identified a set of stably correlated genome pairs within co-abundance networks perturbed by dietary interventions and diseases. These genomes formed a "two competing guilds" (TCGs) model, with one guild specialized in fiber fermentation and butyrate production and the other characterized by virulence and antibiotic resistance. Our random forest models successfully distinguished cases from controls across multiple diseases and predicted immunotherapy outcomes through the use of these genomes. Our guild-based approach, which is genome specific, database independent, and interaction focused, identifies a core microbiome signature that serves as a holistic health indicator and a potential common target for health enhancement.
Collapse
Affiliation(s)
- Guojun Wu
- Department of Biochemistry and Microbiology, School of Environmental and Biological Sciences and Center for Microbiome, Nutrition, and Health, New Jersey Institute for Food, Nutrition, and Health, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA; Rutgers-Jiaotong Joint Laboratory for Microbiome and Human Health, New Brunswick, NJ, USA
| | - Ting Xu
- State Key Laboratory of Microbial Metabolism and Ministry of Education Key Laboratory of Systems Biomedicine, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Naisi Zhao
- Department of Public Health and Community Medicine, School of Medicine, Tufts University, Boston, MA 02111, USA
| | - Yan Y Lam
- Department of Medicine, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Xiaoying Ding
- Department of Endocrinology and Metabolism, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Dongqin Wei
- Department of Endocrinology and Metabolism, Qidong People's Hospital, Qidong, Jiangsu 226200, China
| | - Jian Fan
- Department of Endocrinology and Metabolism, Qidong People's Hospital, Qidong, Jiangsu 226200, China
| | - Yajuan Shi
- Department of Endocrinology and Metabolism, Qidong People's Hospital, Qidong, Jiangsu 226200, China
| | - Xiaofeng Li
- Department of Endocrinology and Metabolism, Qidong People's Hospital, Qidong, Jiangsu 226200, China
| | - Mi Li
- Department of Endocrinology and Metabolism, Qidong People's Hospital, Qidong, Jiangsu 226200, China
| | - Shenjie Ji
- Department of Endocrinology and Metabolism, Qidong People's Hospital, Qidong, Jiangsu 226200, China
| | - Xuejiao Wang
- Department of Endocrinology and Metabolism, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Huaqing Fu
- State Key Laboratory of Microbial Metabolism and Ministry of Education Key Laboratory of Systems Biomedicine, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Feng Zhang
- Nutrition Department (Clinical Study Center of Functional Food), The Affiliated Hospital of Jiangnan University Wuxi, Wuxi, Jiangsu 214122, China
| | - Yu Shi
- Department of Endocrinology and Metabolism, Qidong People's Hospital, Qidong, Jiangsu 226200, China.
| | - Chenhong Zhang
- State Key Laboratory of Microbial Metabolism and Ministry of Education Key Laboratory of Systems Biomedicine, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Yongde Peng
- Department of Endocrinology and Metabolism, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China.
| | - Liping Zhao
- State Key Laboratory of Microbial Metabolism and Ministry of Education Key Laboratory of Systems Biomedicine, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; Department of Biochemistry and Microbiology, School of Environmental and Biological Sciences and Center for Microbiome, Nutrition, and Health, New Jersey Institute for Food, Nutrition, and Health, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA; Rutgers-Jiaotong Joint Laboratory for Microbiome and Human Health, New Brunswick, NJ, USA.
| |
Collapse
|
31
|
Wang J, Meng Y, Guo ZG. Contribution of gut microbiota to the development of Crohn's disease: Insights gained from fecal microbiota transplantation studies in mice. World J Gastroenterol 2024; 30:4514-4517. [PMID: 39534419 PMCID: PMC11551669 DOI: 10.3748/wjg.v30.i41.4514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 09/23/2024] [Accepted: 10/08/2024] [Indexed: 10/23/2024] Open
Abstract
We would like to present some new thoughts on the publication in the journal published in August 2024 in World Journal of Gastroenterology. We specifically focused on the alterations in the intestinal tract, mesenteric adipose tissue (MAT), and systemic inflammatory changes in mice following fecal flora transplantation into a mouse model of Crohn's disease (CD). Accumulating evidence suggests that the occurrence of CD is influenced by environmental factors, host immune status, genetic susceptibility, and flora imbalance. One microbiota-based intervention, fecal microbiota transplantation, has emerged as a potential treatment option for CD. The MAT is considered a "second barrier" around the inflamed intestine. The interaction between gut microbes and inflammatory changes in MAT has attracted considerable interest. In the study under discussion, the authors transplanted fetal fecal microorganisms from patients with CD and clinically healthy donors, respectively, into 2,4,6-trinitrobenzene sulfonic acid-induced CD mice. The research explored the complex interplay between MAT, creeping fat, inflammation, and intestinal flora in CD by evaluating intestinal and mesenteric lesions, along with the systemic inflammatory state in the mice. This article provides several important insights. First, the transplantation of intestinal flora holds significant potential as a therapeutic strategy for CD, offering hope for patients with CD. Second, it presents a novel approach to the diagnosis and treatment of CD: The inflammatory response in CD could potentially be assessed through pathological or imaging changes in the MAT, and CD could be treated by targeting the inflammation of the MAT.
Collapse
Affiliation(s)
- Jin Wang
- Department of Gastroenterology, Suzhou Hospital of Anhui Medical University, Suzhou 234000, Anhui Province, China
| | - Yao Meng
- Department of Gastroenterology, Suzhou Hospital of Anhui Medical University, Suzhou 234000, Anhui Province, China
| | - Zhi-Guo Guo
- Department of Gastroenterology, Suzhou Hospital of Anhui Medical University, Suzhou 234000, Anhui Province, China
| |
Collapse
|
32
|
Tamburini FB, Tripathi A, Gold MP, Yang JC, Biancalani T, McBride JM, Keir ME, GARDENIA Study Group. Gut Microbial Species and Endotypes Associate with Remission in Ulcerative Colitis Patients Treated with Anti-TNF or Anti-integrin Therapy. J Crohns Colitis 2024; 18:1819-1831. [PMID: 38836628 PMCID: PMC11532613 DOI: 10.1093/ecco-jcc/jjae084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/19/2024] [Accepted: 06/03/2024] [Indexed: 06/06/2024]
Abstract
BACKGROUND AND AIMS The gut microbiota contributes to aberrant inflammation in inflammatory bowel disease, but the bacterial factors causing or exacerbating inflammation are not fully understood. Further, the predictive or prognostic value of gut microbial biomarkers for remission in response to biologic therapy is unclear. METHODS We perform whole metagenomic sequencing of 550 stool samples from 287 ulcerative colitis patients from a large, phase 3, head-to-head study of infliximab and etrolizumab. RESULTS We identify several bacterial species in baseline and/or post-treatment samples that associate with clinical remission. These include previously described associations [Faecalibacterium prausnitzii_F] as well as new associations with remission to biologic therapy [Flavonifractor plautii]. We build multivariate models and find that gut microbial species are better predictors for remission than clinical variables alone. Finally, we describe patient groups that differ in microbiome composition and remission rate after induction therapy, suggesting the potential utility of microbiome-based endotyping. CONCLUSIONS In this large study of ulcerative colitis patients, we show that few individual species associate strongly with clinical remission, but multivariate models including microbiome can predict clinical remission and have better predictive power compared with clinical data alone.
Collapse
Affiliation(s)
- Fiona B Tamburini
- Human Pathobiology & OMNI Reverse Translation, Genentech, South San Francisco, CA, USA
| | | | - Maxwell P Gold
- Biological Research & AI Development, Genentech, South San Francisco, CA, USA
| | - Julianne C Yang
- Vatche and Tamar Manoukian Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Tommaso Biancalani
- Biological Research & AI Development, Genentech, South San Francisco, CA, USA
| | - Jacqueline M McBride
- Translational Medicine OMNI-Biomarker Development, Genentech, South San Francisco, CA, USA
| | - Mary E Keir
- Human Pathobiology & OMNI Reverse Translation, Genentech, South San Francisco, CA, USA
| | - GARDENIA Study Group
- Human Pathobiology & OMNI Reverse Translation, Genentech, South San Francisco, CA, USA
| |
Collapse
|
33
|
Caruso R, Lo BC, Chen GY, Núñez G. Host-pathobiont interactions in Crohn's disease. Nat Rev Gastroenterol Hepatol 2024:10.1038/s41575-024-00997-y. [PMID: 39448837 DOI: 10.1038/s41575-024-00997-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/23/2024] [Indexed: 10/26/2024]
Abstract
The mammalian intestine is colonized by trillions of microorganisms that are collectively referred to as the gut microbiota. The majority of symbionts have co-evolved with their host in a mutualistic relationship that benefits both. Under certain conditions, such as in Crohn's disease, a subtype of inflammatory bowel disease, some symbionts bloom to cause disease in genetically susceptible hosts. Although the identity and function of disease-causing microorganisms or pathobionts in Crohn's disease remain largely unknown, mounting evidence from animal models suggests that pathobionts triggering Crohn's disease-like colitis inhabit certain niches and penetrate the intestinal tissue to trigger inflammation. In this Review, we discuss the distinct niches occupied by intestinal symbionts and the evidence that pathobionts triggering Crohn's disease live in the mucus layer or near the intestinal epithelium. We also discuss how Crohn's disease-associated mutations in the host disrupt intestinal homeostasis by promoting the penetration and accumulation of pathobionts in the intestinal tissue. Finally, we discuss the potential role of microbiome-based interventions in precision therapeutic strategies for the treatment of Crohn's disease.
Collapse
Affiliation(s)
- Roberta Caruso
- Department of Pathology and Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, USA.
| | - Bernard C Lo
- Department of Pathology and Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Grace Y Chen
- Department of Internal Medicine and Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Gabriel Núñez
- Department of Pathology and Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, USA.
| |
Collapse
|
34
|
Nichols B, Russell RK, Short B, Papadopoulou R, Focht G, Ijaz UZ, Walters TD, Sladek M, Hansen R, Mack DR, Wine E, Griffiths AM, Turner D, Gerasimidis K. Gut Microbial Signatures in Pediatric Crohn's Disease Vary According to Disease Activity Measures and Are Influenced by Proxies of Gastrointestinal Transit Time: An ImageKids Study. Inflamm Bowel Dis 2024:izae199. [PMID: 39419819 DOI: 10.1093/ibd/izae199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Indexed: 10/19/2024]
Abstract
INTRODUCTION We investigated relationships between disease activity measures and the gut microbiome in children with Crohn's disease (CD) and how these were confounded by gastrointestinal transit time. METHODS Microbiome was profiled (16S rRNA sequencing) in feces from 196 children with CD. Sixty participants also provided samples after 18 months. Mural inflammation (Pediatric Inflammatory Crohn's Magnetic Resonance Enterography Index, PICMI), the simple endoscopic score for CD, and the weighted pediatric Crohn's disease activity index (wPCDAI) were assessed. Fecal calprotectin, plasma C-reactive protein (CRP), and fecal water content (FWC), a proxy of gastrointestinal transit time, were measured too. RESULTS Microbiome α diversity, clustering, and differential taxa were related to disease status, but varied remarkably by disease activity measure used. The strongest relationships between microbiome and disease activity status were observed using wPCDAI; fewer or no relationships were seen using more objective measures like PICMI. Taxa predictive of disease activity status were dependent on the disease activity measure used with negligible overlap. Active disease was associated with more pathobionts (eg, Viellonella, Enterobacterales) and fewer fiber-fermenting organisms. The effect FWC had on microbiome superseded the effect of active disease for all disease activity measures, particularly with wPCDAI. Accounting for FWC, the differences in microbial signatures explained by disease activity status were attenuated or lost. CONCLUSIONS In CD, microbiome signatures fluctuate depending on the measure used to assess disease severity; several of these signals might be secondary disease effects linked with changes in gut motility in active disease. PICMI appears to be less influenced when studying relationships between microbiome and mural inflammation in CD.
Collapse
Affiliation(s)
- Ben Nichols
- Human Nutrition, School of Medicine, Dentistry & Nursing, University of Glasgow, New Lister Building, Glasgow Royal Infirmary, Glasgow G31 2ER, UK
| | - Richard K Russell
- Department of Paediatric Gastroenterology, Royal Hospital for Children and Young People, 50 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Bryn Short
- Human Nutrition, School of Medicine, Dentistry & Nursing, University of Glasgow, New Lister Building, Glasgow Royal Infirmary, Glasgow G31 2ER, UK
| | - Rodanthi Papadopoulou
- Human Nutrition, School of Medicine, Dentistry & Nursing, University of Glasgow, New Lister Building, Glasgow Royal Infirmary, Glasgow G31 2ER, UK
| | - Gili Focht
- Juliet Keidan Institute of Pediatric Gastroenterology, Hepatology and Nutrition, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Umer Z Ijaz
- James Watt School of Engineering, University of Glasgow, UK
| | - Thomas D Walters
- Department of Gastroenterology, Hospital for Sick Children, University of Toronto, Toronto, Canada
| | - Malgorzata Sladek
- Department of Pediatrics, Gastroenterology and Nutrition, Jagiellonian University Medical College, Cracow, Poland
| | - Richard Hansen
- Division of Clinical and Molecular Medicine, School of Medicine, University of Dundee, Dundee, UK
| | - David R Mack
- CHEO Inflammatory Bowel Disease Centre, Division of Gastroenterology, Hepatology and Nutrition, Children's Hospital of Eastern Ontario, Ottawa, ON K1H 8L1, Canada
- Department of Pediatrics, University of Ottawa, Ottawa, ON, Canada
| | - Eytan Wine
- Department of Pediatrics, University of Alberta, Edmonton, AB, Canada
| | - Anne M Griffiths
- Department of Gastroenterology, Hospital for Sick Children, University of Toronto, Toronto, Canada
| | - Dan Turner
- Juliet Keidan Institute of Pediatric Gastroenterology, Hepatology and Nutrition, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Konstantinos Gerasimidis
- Human Nutrition, School of Medicine, Dentistry & Nursing, University of Glasgow, New Lister Building, Glasgow Royal Infirmary, Glasgow G31 2ER, UK
| |
Collapse
|
35
|
Yang C, Wusigale, You L, Li X, Kwok LY, Chen Y. Inflammation, Gut Microbiota, and Metabolomic Shifts in Colorectal Cancer: Insights from Human and Mouse Models. Int J Mol Sci 2024; 25:11189. [PMID: 39456970 PMCID: PMC11508446 DOI: 10.3390/ijms252011189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 10/09/2024] [Accepted: 10/13/2024] [Indexed: 10/28/2024] Open
Abstract
Colorectal cancer (CRC) arises from aberrant mutations in colorectal cells, frequently linked to chronic inflammation. This study integrated human gut metagenome analysis with an azoxymethane and dextran sulfate sodium-induced CRC mouse model to investigate the dynamics of inflammation, gut microbiota, and metabolomic profiles throughout tumorigenesis. The analysis of stool metagenome data from 30 healthy individuals and 40 CRC patients disclosed a significant escalation in both gut microbiota diversity and abundance in CRC patients compared to healthy individuals (p < 0.05). Marked structural disparities were identified between the gut microbiota of healthy individuals and those with CRC (p < 0.05), characterized by elevated levels of clostridia and diminished bifidobacteria in CRC patients (p < 0.05). In the mouse model, CRC mice exhibited distinct gut microbiota structures and metabolite signatures at early and advanced tumor stages, with subtle variations noted during the intermediate phase. Additionally, inflammatory marker levels increased progressively during tumor development in CRC mice, in contrast to their stable levels in healthy counterparts. These findings suggest that persistent inflammation might precipitate gut dysbiosis and altered microbial metabolism. Collectively, this study provides insights into the interplay between inflammation, gut microbiota, and metabolite changes during CRC progression, offering potential biomarkers for diagnosis. While further validation with larger cohorts is warranted, the data obtained support the development of CRC prevention and diagnosis strategies.
Collapse
Affiliation(s)
- Chengcong Yang
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot 010018, China; (C.Y.); (W.); (L.Y.); (X.L.); (L.-Y.K.)
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Hohhot 010018, China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Wusigale
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot 010018, China; (C.Y.); (W.); (L.Y.); (X.L.); (L.-Y.K.)
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Hohhot 010018, China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Lijun You
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot 010018, China; (C.Y.); (W.); (L.Y.); (X.L.); (L.-Y.K.)
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Hohhot 010018, China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Xiang Li
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot 010018, China; (C.Y.); (W.); (L.Y.); (X.L.); (L.-Y.K.)
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Hohhot 010018, China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Lai-Yu Kwok
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot 010018, China; (C.Y.); (W.); (L.Y.); (X.L.); (L.-Y.K.)
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Hohhot 010018, China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Yongfu Chen
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot 010018, China; (C.Y.); (W.); (L.Y.); (X.L.); (L.-Y.K.)
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Hohhot 010018, China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
| |
Collapse
|
36
|
Vich Vila A, Zhang J, Liu M, Faber KN, Weersma RK. Untargeted faecal metabolomics for the discovery of biomarkers and treatment targets for inflammatory bowel diseases. Gut 2024; 73:1909-1920. [PMID: 39002973 PMCID: PMC11503092 DOI: 10.1136/gutjnl-2023-329969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 06/23/2024] [Indexed: 07/15/2024]
Abstract
The gut microbiome has been recognised as a key component in the pathogenesis of inflammatory bowel diseases (IBD), and the wide range of metabolites produced by gut bacteria are an important mechanism by which the human microbiome interacts with host immunity or host metabolism. High-throughput metabolomic profiling and novel computational approaches now allow for comprehensive assessment of thousands of metabolites in diverse biomaterials, including faecal samples. Several groups of metabolites, including short-chain fatty acids, tryptophan metabolites and bile acids, have been associated with IBD. In this Recent Advances article, we describe the contribution of metabolomics research to the field of IBD, with a focus on faecal metabolomics. We discuss the latest findings on the significance of these metabolites for IBD prognosis and therapeutic interventions and offer insights into the future directions of metabolomics research.
Collapse
Affiliation(s)
- Arnau Vich Vila
- Department of Gastroenterology and Hepatology, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
- Department of Genetics, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
| | - Jingwan Zhang
- Department of Medicine & Therapeutics, The Chinese University of Hong Kong, Hong Kong (SAR), People's Republic of China
- Microbiota I-Center (MagIC), Hong Kong (SAR), People's Republic of China
| | - Moting Liu
- Department of Gastroenterology and Hepatology, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
| | - Klaas Nico Faber
- Department of Gastroenterology and Hepatology, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
| | - Rinse K Weersma
- Department of Gastroenterology and Hepatology, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
37
|
Al Radi ZMA, Prins FM, Collij V, Vich Vila A, Festen EAM, Dijkstra G, Weersma RK, Klaassen MAY, Gacesa R. Exploring the Predictive Value of Gut Microbiome Signatures for Therapy Intensification in Patients With Inflammatory Bowel Disease: A 10-Year Follow-up Study. Inflamm Bowel Dis 2024; 30:1642-1653. [PMID: 38635882 PMCID: PMC11446998 DOI: 10.1093/ibd/izae064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Indexed: 04/20/2024]
Abstract
BACKGROUND Inflammatory bowel diseases (IBDs) pose a significant challenge due to their diverse, often debilitating, and unpredictable clinical manifestations. The absence of prognostic tools to anticipate the future complications that require therapy intensification presents a substantial burden to patient private life and health. We aimed to explore whether the gut microbiome is a potential biomarker for future therapy intensification in a cohort of 90 IBD patients. METHODS We conducted whole-genome metagenomics sequencing on fecal samples from these patients, allowing us to profile the taxonomic and functional composition of their gut microbiomes. Additionally, we conducted a retrospective analysis of patients' electronic records over a period of 10 years following the sample collection and classified patients into (1) those requiring and (2) not requiring therapy intensification. Therapy intensification included medication escalation, intestinal resections, or a loss of response to a biological treatment. We applied gut microbiome diversity analysis, dissimilarity assessment, differential abundance analysis, and random forest modeling to establish associations between baseline microbiome profiles and future therapy intensification. RESULTS We identified 12 microbial species (eg, Roseburia hominis and Dialister invisus) and 16 functional pathways (eg, biosynthesis of L-citrulline and L-threonine) with significant correlations to future therapy intensifications. Random forest models using microbial species and pathways achieved areas under the curve of 0.75 and 0.72 for predicting therapy intensification. CONCLUSIONS The gut microbiome is a potential biomarker for therapy intensification in IBD patients and personalized management strategies. Further research should validate our findings in other cohorts to enhance the generalizability of these results.
Collapse
Affiliation(s)
- Zainab M A Al Radi
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Femke M Prins
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Department of Cardiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Valerie Collij
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Arnau Vich Vila
- Department of Microbiology and Immunology, Rega Institute for Medical Research, Leuven, Belgium
- VIB-KU Leuven Center for Microbiology, Leuven, Belgium
| | - Eleonora A M Festen
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Gerard Dijkstra
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Rinse K Weersma
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Marjolein A Y Klaassen
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, USA
- Center for Crohns and Colitis, Massachusetts General Hospital, Boston, USA
| | - Ranko Gacesa
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
38
|
Qusty N, Sarhan A, Taha M, Alshanqiti A, Almuteb AM, Alfaraidi AT, Alkhairi HA, Alzahrani MM, Alamry AHA, Alomry TQB, Bannan OA, Almaashi MS. The Role of Gut Microbiota in the Efficacy and Side Effect Profile of Biologic Therapies for Autoimmune Diseases. Cureus 2024; 16:e71111. [PMID: 39525264 PMCID: PMC11548951 DOI: 10.7759/cureus.71111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/08/2024] [Indexed: 11/16/2024] Open
Abstract
The role of gut microbiota in influencing the efficacy and side effect profile of biological therapies for autoimmune diseases has gained increasing attention. Understanding these interactions is crucial for optimizing treatment outcomes and minimizing adverse events associated with biological therapies. This systematic review was conducted following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. We comprehensively analyzed studies involving human subjects with autoimmune diseases treated with biological therapies. Data on gut microbiota composition, therapeutic efficacy, and side effect profiles were extracted and synthesized to assess the impact of microbiota on treatment outcomes. Our review identified a significant relationship between gut microbiota composition and the efficacy of biological therapies. Specific bacterial taxa, such as Clostridiales and Roseburia inulinivorans, were associated with improved therapeutic responses, while alterations in microbiota were linked to increased adverse events. The predictive potential was demonstrated with microbiota signatures correlating with treatment success and side effects, highlighting the relevance of microbial profiles in therapeutic outcomes. The findings suggest that gut microbiota plays a pivotal role in modulating the efficacy and side effect profile of biological therapies for autoimmune diseases. Integrating microbiota assessments into clinical practice could enhance personalized treatment strategies and improve patient outcomes.
Collapse
Affiliation(s)
- Naeem Qusty
- Department of Clinical Laboratory Sciences, Umm Al-Qura University, Makkah, SAU
| | - Anas Sarhan
- Department of Internal Medicine, Umm Al-Qura University, Makkah, SAU
| | - Medhat Taha
- Department of Anatomy, Umm Al-Qura University, Al-Qunfudhah, SAU
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Wagner K, Müller TM, Vitali F, Fischer S, Haberkamp S, Rouse-Merkel R, Atreya R, Neurath MF, Zundler S. Treatment trajectories and outcomes in inflammatory bowel disease: a tertiary single-centre experience. Therap Adv Gastroenterol 2024; 17:17562848241284051. [PMID: 39381754 PMCID: PMC11459667 DOI: 10.1177/17562848241284051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 08/28/2024] [Indexed: 10/10/2024] Open
Abstract
Background There is an increasing diversification in the treatment landscape for inflammatory bowel diseases (IBD) leading to therapeutic challenges that can only incompletely be covered by prospective randomized double-blind trials. Real-world observations are therefore an important tool to provide insights into therapeutic strategies. Objectives To describe the real-world treatment algorithms in an IBD referral centre. Design Single-centre retrospective cohort study. Methods We retrospectively analysed prospectively collected data on treatment sequences and outcomes from 502 patients with Crohn's disease (CD) and ulcerative colitis (UC) treated with infliximab, adalimumab, vedolizumab or ustekinumab at a large German tertiary referral centre. Results Treatment decisions correlated to baseline patient characteristics. Over time, infliximab continued to be the preferred first-line option in CD and UC, although ustekinumab and vedolizumab, respectively, became increasingly important choices. Remission rates decreased with the advancement of therapy lines. Conclusion We provide insights into the evolution of tertiary centre real-world treatment sequences that might - together with other observations - help to guide the selection of therapies in IBD. Our data also strongly underscore the unmet need for biomarkers supporting treatment decisions. Trial registration None.
Collapse
Affiliation(s)
- Kim Wagner
- Department of Medicine 1, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Tanja M. Müller
- Department of Medicine 1, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), University Hospital Erlangen, Erlangen, Germany
| | - Francesco Vitali
- Department of Medicine 1, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Sarah Fischer
- Department of Medicine 1, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Sophie Haberkamp
- Department of Medicine 1, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Rachel Rouse-Merkel
- Department of Medicine 1, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Raja Atreya
- Department of Medicine 1, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), University Hospital Erlangen, Erlangen, Germany
| | - Markus F. Neurath
- Department of Medicine 1, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), University Hospital Erlangen, Erlangen, Germany
| | - Sebastian Zundler
- Department of Medicine 1, Friedrich-Alexander University Erlangen-Nuremberg, Ulmenweg 18, Erlangen, D-91054, Germany
- Deutsches Zentrum Immuntherapie (DZI), University Hospital Erlangen, Erlangen, Germany
| |
Collapse
|
40
|
Bacsur P, Resál T, Farkas B, Jójárt B, Gyuris Z, Jaksa G, Pintér L, Takács B, Pál S, Gácser A, Szántó KJ, Rutka M, Bor R, Fábián A, Farkas K, Maléth J, Szepes Z, Molnár T, Bálint A. Shotgun Analysis of Gut Microbiota with Body Composition and Lipid Characteristics in Crohn's Disease. Biomedicines 2024; 12:2100. [PMID: 39335613 PMCID: PMC11429102 DOI: 10.3390/biomedicines12092100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/28/2024] [Accepted: 09/09/2024] [Indexed: 09/30/2024] Open
Abstract
Alterations to intestinal microbiota are assumed to occur in the pathogenesis of inflammatory bowel disease (IBD). This study aims to analyze the association of fecal microbiota composition, body composition, and lipid characteristics in patients with Crohn's disease (CD). In our cross-sectional study, patients with CD were enrolled and blood and fecal samples were collected. Clinical and endoscopic disease activity and body composition were assessed and laboratory tests were made. Fecal bacterial composition was analyzed using the shotgun method. Microbiota alterations based on obesity, lipid parameters, and disease characteristics were analyzed. In this study, 27 patients with CD were analyzed, of which 37.0% were obese based on visceral fat area (VFA). Beta diversities were higher in non-obese patients (p < 0.001), but relative abundances did not differ. C. innocuum had a higher abundance at a high cholesterol level than Bacillota (p = 0.001, p = 0.0034). Adlercreutzia, B. longum, and Blautia alterations were correlated with triglyceride levels. Higher Clostridia (p = 0.009) and B. schinkii (p = 0.032) and lower Lactobacillus (p = 0.035) were connected to high VFA. Disease activity was coupled with dysbiotic elements. Microbiota alterations in obesity highlight the importance of gut microbiota in diseases with a similar inflammatory background and project therapeutic options.
Collapse
Affiliation(s)
- Péter Bacsur
- Department of Medicine, Albert Szent-Györgyi Medical School, University of Szeged, Kálvária Ave. 57, H-6725 Szeged, Hungary
- HCEMM-USZ Translational Colorectal Research Group, H-6725 Szeged, Hungary
| | - Tamás Resál
- Department of Medicine, Albert Szent-Györgyi Medical School, University of Szeged, Kálvária Ave. 57, H-6725 Szeged, Hungary
| | - Bernadett Farkas
- Department of Medicine, Albert Szent-Györgyi Medical School, University of Szeged, Kálvária Ave. 57, H-6725 Szeged, Hungary
| | - Boldizsár Jójárt
- Department of Medicine, Albert Szent-Györgyi Medical School, University of Szeged, Kálvária Ave. 57, H-6725 Szeged, Hungary
- Momentum Epithelial Cell Signaling and Secretion Research Group, Hungarian Academy of Science, University of Szeged, H-6720 Szeged, Hungary
- HCEMM-USZ Molecular Gastroenterology Research Group, H-6720 Szeged, Hungary
| | | | | | | | - Bertalan Takács
- Mutagenesis and Carcinogenesis Research Group, Hungarian Centre of Excellence of Molecular Medicine, University of Szeged, H-6720 Szeged, Hungary
| | - Sára Pál
- HCEMM-USZ Pathogen Fungi Research Group, H-6726 Szeged, Hungary
| | - Attila Gácser
- HCEMM-USZ Pathogen Fungi Research Group, H-6726 Szeged, Hungary
| | - Kata Judit Szántó
- Department of Medicine, Albert Szent-Györgyi Medical School, University of Szeged, Kálvária Ave. 57, H-6725 Szeged, Hungary
| | - Mariann Rutka
- Department of Medicine, Albert Szent-Györgyi Medical School, University of Szeged, Kálvária Ave. 57, H-6725 Szeged, Hungary
| | - Renáta Bor
- Department of Medicine, Albert Szent-Györgyi Medical School, University of Szeged, Kálvária Ave. 57, H-6725 Szeged, Hungary
| | - Anna Fábián
- Department of Medicine, Albert Szent-Györgyi Medical School, University of Szeged, Kálvária Ave. 57, H-6725 Szeged, Hungary
| | - Klaudia Farkas
- Department of Medicine, Albert Szent-Györgyi Medical School, University of Szeged, Kálvária Ave. 57, H-6725 Szeged, Hungary
- HCEMM-USZ Translational Colorectal Research Group, H-6725 Szeged, Hungary
| | - József Maléth
- Department of Medicine, Albert Szent-Györgyi Medical School, University of Szeged, Kálvária Ave. 57, H-6725 Szeged, Hungary
- Momentum Epithelial Cell Signaling and Secretion Research Group, Hungarian Academy of Science, University of Szeged, H-6720 Szeged, Hungary
- HCEMM-USZ Molecular Gastroenterology Research Group, H-6720 Szeged, Hungary
| | - Zoltán Szepes
- Department of Medicine, Albert Szent-Györgyi Medical School, University of Szeged, Kálvária Ave. 57, H-6725 Szeged, Hungary
| | - Tamás Molnár
- Department of Medicine, Albert Szent-Györgyi Medical School, University of Szeged, Kálvária Ave. 57, H-6725 Szeged, Hungary
| | - Anita Bálint
- Department of Medicine, Albert Szent-Györgyi Medical School, University of Szeged, Kálvária Ave. 57, H-6725 Szeged, Hungary
| |
Collapse
|
41
|
Kang JW, Khatib LA, Heston MB, Dilmore AH, Labus JS, Deming Y, Schimmel L, Blach C, McDonald D, Gonzalez A, Bryant M, Sanders K, Schwartz A, Ulland TK, Johnson SC, Asthana S, Carlsson CM, Chin NA, Blennow K, Zetterberg H, Rey FE, Kaddurah-Daouk R, Knight R, Bendlin BB. Gut Microbiome Compositional and Functional Features Associate with Alzheimer's Disease Pathology. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.09.04.24313004. [PMID: 39281749 PMCID: PMC11398448 DOI: 10.1101/2024.09.04.24313004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/18/2024]
Abstract
BACKGROUND The gut microbiome is a potentially modifiable factor in Alzheimer's disease (AD); however, understanding of its composition and function regarding AD pathology is limited. METHODS Shallow-shotgun metagenomic data was used to analyze fecal microbiome from participants enrolled in the Wisconsin Microbiome in Alzheimer's Risk Study, leveraging clinical data and cerebrospinal fluid (CSF) biomarkers. Differential abundance and ordinary least squares regression analyses were performed to find differentially abundant gut microbiome features and their associations with CSF biomarkers of AD and related pathologies. RESULTS Gut microbiome composition and function differed between people with AD and cognitively unimpaired individuals. The compositional difference was replicated in an independent cohort. Differentially abundant gut microbiome features were associated with CSF biomarkers of AD and related pathologies. DISCUSSION These findings enhance our understanding of alterations in gut microbial composition and function in AD, and suggest that gut microbes and their pathways are linked to AD pathology.
Collapse
Affiliation(s)
- Jea Woo Kang
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA Address: 600 Highland Ave, J5/1 Mezzanine, Madison, WI, USA 53792
| | - Lora A Khatib
- Department of Pediatrics, University of California San Diego, La Jolla, California, USA Address: 9461 Gilman Dr, La Jolla, CA, USA 92093
- Neurosciences Graduate Program, University of California San Diego, La Jolla, California, USA Address: 9500 Gilman Dr, La Jolla, CA, USA 92093
| | - Margo B Heston
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA Address: 600 Highland Ave, J5/1 Mezzanine, Madison, WI, USA 53792
| | - Amanda H Dilmore
- Department of Pediatrics, University of California San Diego, La Jolla, California, USA Address: 9461 Gilman Dr, La Jolla, CA, USA 92093
| | - Jennifer S Labus
- Integrative Biostatistics and Bioinformatics Core (IBBC) at the Goodman-Luskin Microbiome Center Address: 42-210 CHS, Los Angeles, CA, USA 90095
- G. Oppenheimer Center for Neurobiology of Stress and Resilience Address: 10833 Le Conte Ave, Los Angeles, CA, USA 90095
- UCLA Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine at UCLA Address: 100 Medical Plaza, Los Angeles, CA, USA 90095
| | - Yuetiva Deming
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA Address: 600 Highland Ave, J5/1 Mezzanine, Madison, WI, USA 53792
| | - Leyla Schimmel
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC, USA Address: 905 W Main St, Durham, NC, USA 27701
| | - Colette Blach
- Duke Molecular Physiology Institute, Duke University, Durham, NC, USA Address: 300 N Duke St, Durham, NC, USA 27701
| | - Daniel McDonald
- Department of Pediatrics, University of California San Diego, La Jolla, California, USA Address: 9461 Gilman Dr, La Jolla, CA, USA 92093
| | - Antonio Gonzalez
- Department of Pediatrics, University of California San Diego, La Jolla, California, USA Address: 9461 Gilman Dr, La Jolla, CA, USA 92093
| | - MacKenzie Bryant
- Department of Pediatrics, University of California San Diego, La Jolla, California, USA Address: 9461 Gilman Dr, La Jolla, CA, USA 92093
| | - Karenina Sanders
- Department of Pediatrics, University of California San Diego, La Jolla, California, USA Address: 9461 Gilman Dr, La Jolla, CA, USA 92093
| | - Ara Schwartz
- Department of Pediatrics, University of California San Diego, La Jolla, California, USA Address: 9461 Gilman Dr, La Jolla, CA, USA 92093
| | - Tyler K Ulland
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA Address: 600 Highland Ave, J5/1 Mezzanine, Madison, WI, USA 53792
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI, USA Address: 1685 Highland Ave, Madison, WI, USA 53705
| | - Sterling C Johnson
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA Address: 600 Highland Ave, J5/1 Mezzanine, Madison, WI, USA 53792
| | - Sanjay Asthana
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA Address: 600 Highland Ave, J5/1 Mezzanine, Madison, WI, USA 53792
| | - Cynthia M Carlsson
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA Address: 600 Highland Ave, J5/1 Mezzanine, Madison, WI, USA 53792
| | - Nathaniel A Chin
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA Address: 600 Highland Ave, J5/1 Mezzanine, Madison, WI, USA 53792
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden Address: Blå stråket 15, vån 3 SU/Sahlgrenska 413 45 Göteborg, Sweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden Address: Blå stråket 15, vån 3 SU/Sahlgrenska 413 45 Göteborg, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden Address: Blå stråket 5, 413 45 Göteborg, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK Address: Queen Square, London WC1N 3BG, United Kingdom
- UK Dementia Research Institute at UCL, London, UK Address: 6th Floor, Maple House, Tottenham Ct Rd, London W1T 7NF, United Kingdom
- Hong Kong Center for Neurodegenerative Diseases, Clear Water Bay, Hong Kong, China Address: Units 1501-1502, 1512-1518, 15/F, Building 17W, Hong Kong Science Park, Shatin, N.T., Hong Kong
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA Address: 600 Highland Ave, J5/1 Mezzanine, Madison, WI, USA 53792
| | - Federico E Rey
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA Address: 1550 Linden Dr, Madison, WI, USA 53706
| | - Rima Kaddurah-Daouk
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC, USA Address: 905 W Main St, Durham, NC, USA 27701
- Duke Institute of Brain Sciences, Duke University, Durham, NC, USA Address: 308 Research Dr, Durham, NC, USA 27710
- Department of Medicine, Duke University, Durham, NC, USA Address: 40 Duke Medicine Circle, 124 Davison Building, Durham, NC, USA 27710
| | - Rob Knight
- Department of Pediatrics, University of California San Diego, La Jolla, California, USA Address: 9461 Gilman Dr, La Jolla, CA, USA 92093
- Center for Microbiome Innovation, Joan and Irwin Jacobs School of Engineering, University of California San Diego, La Jolla, California, USA Address: Franklin Antonio Hall, Jacobs School of Engineering, 9500 Gilman Dr, La Jolla, CA, USA 92093
- Department of Computer Science and Engineering, University of California, San Diego, La Jolla, CA, USA Address: 3235 Voigt Dr, La Jolla, CA, USA 92093
- Halıcıoğlu Data Science Institute, University of California, San Diego, La Jolla, CA, USA Address: 3234 Matthews Ln, La Jolla, CA, USA 92093
- Shu Chien-Gene Lay Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA Address: 3223 Voigt Dr, La Jolla, CA, USA 92093
| | - Barbara B Bendlin
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA Address: 600 Highland Ave, J5/1 Mezzanine, Madison, WI, USA 53792
- Wisconsin Alzheimer's Institute, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA Address: 610 Walnut Street, 9th Floor, Madison, WI, USA 53726
| |
Collapse
|
42
|
Su Q, Wong OWH, Lu W, Wan Y, Zhang L, Xu W, Li MKT, Liu C, Cheung CP, Ching JYL, Cheong PK, Leung TF, Chan S, Leung P, Chan FKL, Ng SC. Multikingdom and functional gut microbiota markers for autism spectrum disorder. Nat Microbiol 2024; 9:2344-2355. [PMID: 38977906 DOI: 10.1038/s41564-024-01739-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 05/20/2024] [Indexed: 07/10/2024]
Abstract
Associations between the gut microbiome and autism spectrum disorder (ASD) have been investigated although most studies have focused on the bacterial component of the microbiome. Whether gut archaea, fungi and viruses, or function of the gut microbiome, is altered in ASD is unclear. Here we performed metagenomic sequencing on faecal samples from 1,627 children (aged 1-13 years, 24.4% female) with or without ASD, with extensive phenotype data. Integrated analyses revealed that 14 archaea, 51 bacteria, 7 fungi, 18 viruses, 27 microbial genes and 12 metabolic pathways were altered in children with ASD. Machine learning using single-kingdom panels showed area under the curve (AUC) of 0.68 to 0.87 in differentiating children with ASD from those that are neurotypical. A panel of 31 multikingdom and functional markers showed a superior diagnostic accuracy with an AUC of 0.91, with comparable performance for males and females. Accuracy of the model was predominantly driven by the biosynthesis pathways of ubiquinol-7 or thiamine diphosphate, which were less abundant in children with ASD. Collectively, our findings highlight the potential application of multikingdom and functional gut microbiota markers as non-invasive diagnostic tools in ASD.
Collapse
Affiliation(s)
- Qi Su
- Microbiota I-Center (MagIC), Hong Kong SAR, China
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Oscar W H Wong
- Department of Psychiatry, The Chinese University of Hong Kong, Hong Kong SAR, China
- The D.H. Chen Foundation Hub of Advanced Technology for Child Health (HATCH), The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Wenqi Lu
- Microbiota I-Center (MagIC), Hong Kong SAR, China
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Yating Wan
- Microbiota I-Center (MagIC), Hong Kong SAR, China
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong SAR, China
- The D.H. Chen Foundation Hub of Advanced Technology for Child Health (HATCH), The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Lin Zhang
- Microbiota I-Center (MagIC), Hong Kong SAR, China
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Wenye Xu
- Microbiota I-Center (MagIC), Hong Kong SAR, China
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Moses K T Li
- Microbiota I-Center (MagIC), Hong Kong SAR, China
| | - Chengyu Liu
- Microbiota I-Center (MagIC), Hong Kong SAR, China
| | - Chun Pan Cheung
- Microbiota I-Center (MagIC), Hong Kong SAR, China
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong SAR, China
| | | | | | - Ting Fan Leung
- The D.H. Chen Foundation Hub of Advanced Technology for Child Health (HATCH), The Chinese University of Hong Kong, Hong Kong SAR, China
- Department of Paediatrics, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Sandra Chan
- Department of Psychiatry, The Chinese University of Hong Kong, Hong Kong SAR, China
- The D.H. Chen Foundation Hub of Advanced Technology for Child Health (HATCH), The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Patrick Leung
- The D.H. Chen Foundation Hub of Advanced Technology for Child Health (HATCH), The Chinese University of Hong Kong, Hong Kong SAR, China
- Department of Psychology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Francis K L Chan
- Microbiota I-Center (MagIC), Hong Kong SAR, China
- The D.H. Chen Foundation Hub of Advanced Technology for Child Health (HATCH), The Chinese University of Hong Kong, Hong Kong SAR, China
- Centre for Gut Microbiota Research, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Siew C Ng
- Microbiota I-Center (MagIC), Hong Kong SAR, China.
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong SAR, China.
- The D.H. Chen Foundation Hub of Advanced Technology for Child Health (HATCH), The Chinese University of Hong Kong, Hong Kong SAR, China.
- Li Ka Shing Institute of Health Sciences, State Key Laboratory of Digestive Disease, Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
43
|
Chang D, Gupta VK, Hur B, Cobo-López S, Cunningham KY, Han NS, Lee I, Kronzer VL, Teigen LM, Karnatovskaia LV, Longbrake EE, Davis JM, Nelson H, Sung J. Gut Microbiome Wellness Index 2 enhances health status prediction from gut microbiome taxonomic profiles. Nat Commun 2024; 15:7447. [PMID: 39198444 PMCID: PMC11358288 DOI: 10.1038/s41467-024-51651-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 08/09/2024] [Indexed: 09/01/2024] Open
Abstract
Recent advancements in translational gut microbiome research have revealed its crucial role in shaping predictive healthcare applications. Herein, we introduce the Gut Microbiome Wellness Index 2 (GMWI2), an enhanced version of our original GMWI prototype, designed as a standardized disease-agnostic health status indicator based on gut microbiome taxonomic profiles. Our analysis involves pooling existing 8069 stool shotgun metagenomes from 54 published studies across a global demographic landscape (spanning 26 countries and six continents) to identify gut taxonomic signals linked to disease presence or absence. GMWI2 achieves a cross-validation balanced accuracy of 80% in distinguishing healthy (no disease) from non-healthy (diseased) individuals and surpasses 90% accuracy for samples with higher confidence (i.e., outside the "reject option"). This performance exceeds that of the original GMWI model and traditional species-level α-diversity indices, indicating a more robust gut microbiome signature for differentiating between healthy and non-healthy phenotypes across multiple diseases. When assessed through inter-study validation and external validation cohorts, GMWI2 maintains an average accuracy of nearly 75%. Furthermore, by reevaluating previously published datasets, GMWI2 offers new insights into the effects of diet, antibiotic exposure, and fecal microbiota transplantation on gut health. Available as an open-source command-line tool, GMWI2 represents a timely, pivotal resource for evaluating health using an individual's unique gut microbial composition.
Collapse
Affiliation(s)
- Daniel Chang
- Department of Computer Science and Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Vinod K Gupta
- Microbiomics Program, Center for Individualized Medicine, Mayo Clinic, Rochester, MN, USA
| | - Benjamin Hur
- Microbiomics Program, Center for Individualized Medicine, Mayo Clinic, Rochester, MN, USA
| | - Sergio Cobo-López
- Viral Information Institute, San Diego State University, San Diego, CA, USA
| | - Kevin Y Cunningham
- Bioinformatics and Computational Biology Program, University of Minnesota, Minneapolis, MN, USA
| | - Nam Soo Han
- Brain Korea 21 Center for Bio-Health Industry, Department of Food Science and Biotechnology, Chungbuk National University, Cheongju, South Korea
| | - Insuk Lee
- Department of Biotechnology, Yonsei University, Seoul, South Korea
| | - Vanessa L Kronzer
- Division of Rheumatology, Department of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Levi M Teigen
- Department of Food Science and Nutrition, University of Minnesota, St. Paul, MN, USA
| | | | | | - John M Davis
- Division of Rheumatology, Department of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Heidi Nelson
- Emeritus, Department of Surgery, Mayo Clinic, Rochester, MN, USA
| | - Jaeyun Sung
- Microbiomics Program, Center for Individualized Medicine, Mayo Clinic, Rochester, MN, USA.
- Division of Rheumatology, Department of Medicine, Mayo Clinic, Rochester, MN, USA.
- Division of Computational Biology, Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
44
|
Oh HN, Shin SY, Kim JH, Baek J, Kim HJ, Lee KM, Park SJ, Kim SY, Choi HK, Kim W, Sul WJ, Choi CH. Dynamic changes in the gut microbiota composition during adalimumab therapy in patients with ulcerative colitis: implications for treatment response prediction and therapeutic targets. Gut Pathog 2024; 16:44. [PMID: 39187879 PMCID: PMC11346184 DOI: 10.1186/s13099-024-00637-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 08/16/2024] [Indexed: 08/28/2024] Open
Abstract
BACKGROUND While significant research exists on gut microbiota changes after anti-tumor necrosis factor-alpha (anti TNF-α) therapy for ulcerative colitis, little is known about the longitudinal changes related to the effects of anti TNF-α. This study aimed to investigate the dynamics of gut microbiome changes during anti TNF-α (adalimumab) therapy in patients with ulcerative colitis (UC). RESULTS The microbiota composition was affected by the disease severity and extent in patients with UC. Regardless of clinical remission status at each time point, patients with UC exhibited microbial community distinctions from healthy controls. Distinct amplicon sequence variants (ASVs) differences were identified throughout the course of Adalimumab (ADA) treatment at each time point. A notable reduction in gut microbiome dissimilarity was observed only in remitters. Remitters demonstrated a decrease in the relative abundances of Burkholderia-Caballeronia-Paraburkholderia and Staphylococcus as the treatment progressed. Additionally, there was an observed increase in the relative abundances of Bifidobacterium and Dorea. Given the distribution of the 48 ASVs with high or low relative abundances in the pre-treatment samples according to clinical remission at week 8, a clinical remission at week 8 with a sensitivity and specificity of 72.4% and 84.3%, respectively, was predicted on the receiver operating characteristic curve (area under the curve, 0.851). CONCLUSIONS The gut microbiota undergoes diverse changes according to the treatment response during ADA treatment. These changes provide insights into predicting treatment responses to ADA and offer new therapeutic targets for UC.
Collapse
Affiliation(s)
- Han Na Oh
- Department of Systems Biotechnology, Chung-Ang University, Anseong, 17546, Republic of Korea
- Inflamm-Aging Translational Research Center, Ajou University Medical Center, Suwon, Republic of Korea
| | - Seung Yong Shin
- Department of Internal Medicine, Chung-Ang University College of Medicine, 102 Heukseok-Ro, Dongjak-Gu, Seoul, Republic of Korea, 06973
| | - Jong-Hwa Kim
- Department of Microbiology, Chung-Ang University College of Medicine, Seoul, Republic of Korea
| | - Jihye Baek
- Department of Microbiology, Chung-Ang University College of Medicine, Seoul, Republic of Korea
| | - Hyo Jong Kim
- Department of Gastroenterology, Kyung Hee University Hospital, Seoul, Republic of Korea
| | - Kang-Moon Lee
- Department of Gastroenterology, The Catholic University of Korea St. Vincent's Hospital, Suwon, Republic of Korea
| | - Soo Jung Park
- Department of Internal Medicine and Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Seok-Young Kim
- College of Pharmacy, Chung-Ang University, Seoul, Republic of Korea
| | - Hyung-Kyoon Choi
- College of Pharmacy, Chung-Ang University, Seoul, Republic of Korea
| | - Wonyong Kim
- Department of Microbiology, Chung-Ang University College of Medicine, Seoul, Republic of Korea
| | - Woo Jun Sul
- Department of Systems Biotechnology, Chung-Ang University, Anseong, 17546, Republic of Korea.
| | - Chang Hwan Choi
- Department of Internal Medicine, Chung-Ang University College of Medicine, 102 Heukseok-Ro, Dongjak-Gu, Seoul, Republic of Korea, 06973.
| |
Collapse
|
45
|
Alexandrescu L, Nicoara AD, Tofolean DE, Herlo A, Nelson Twakor A, Tocia C, Trandafir A, Dumitru A, Dumitru E, Aftenie CF, Preotesoiu I, Dina E, Tofolean IT. Healing from Within: How Gut Microbiota Predicts IBD Treatment Success-A Systematic Review. Int J Mol Sci 2024; 25:8451. [PMID: 39126020 PMCID: PMC11313389 DOI: 10.3390/ijms25158451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 07/29/2024] [Accepted: 07/30/2024] [Indexed: 08/12/2024] Open
Abstract
Recent research indicates that the microbiome has a significant impact on the progression of inflammatory bowel disease (IBD) and that creating therapies that change its composition could positively impact the outcomes of IBD treatment. This review summarizes the results of extensive studies that examined IBD patients undergoing several therapies, including anti-TNF medication, vedolizumab, ustekinumab, probiotics, and fecal microbiota transplantation (FMT), and the alterations in their gut microbiota's composition and function. The objective was to investigate the variety and effectiveness of microbial species in order to discover new biomarkers or therapeutic targets that could improve the outcome of treatment for these patients. This research aimed to offer useful insights into personalized medicine techniques for managing IBD. Beneficial bacteria such as Faecalibacterium prausnitzii and Roseburia have been consistently linked to favorable clinical outcomes, whereas pathogenic bacteria such as Escherichia coli and Clostridioides difficile are associated with worsening disease conditions. Although many studies have examined the role of gut microbiota in IBD, there is still a need for more targeted research on the connection between specific microbial communities and treatment outcomes. This study sought to address this gap by exploring the intricate relationship between the gut microbiota composition and the effectiveness of IBD medications.
Collapse
Affiliation(s)
- Luana Alexandrescu
- Gastroenterology Department, “Sf. Apostol Andrei” Emergency County Hospital, 145 Tomis Blvd., 900591 Constanta, Romania; (L.A.); (C.T.); (A.D.); (E.D.); (E.D.); (I.T.T.)
- Medicine Faculty, “Ovidius” University of Constanta, 1 Universitatii Street, 900470 Constanta, Romania; (D.E.T.); (A.T.); (C.F.A.); (I.P.)
| | - Alina Doina Nicoara
- Medicine Faculty, “Ovidius” University of Constanta, 1 Universitatii Street, 900470 Constanta, Romania; (D.E.T.); (A.T.); (C.F.A.); (I.P.)
- Internal Medicine Department, “Sf. Apostol Andrei” Emergency County Hospital, 145 Tomis Blvd., 900591 Constanta, Romania;
| | - Doina Ecaterina Tofolean
- Medicine Faculty, “Ovidius” University of Constanta, 1 Universitatii Street, 900470 Constanta, Romania; (D.E.T.); (A.T.); (C.F.A.); (I.P.)
- Pneumology Department, “Sf. Apostol Andrei” Emergency County Hospital, 145 Tomis Blvd., 900591 Constanta, Romania
| | - Alexandra Herlo
- Department XIII, Discipline of Infectious Diseases, “Victor Babes” University of Medicine and Pharmacy Timisoara, 2 Eftimie Murgu Square, 300041 Timisoara, Romania;
| | - Andreea Nelson Twakor
- Internal Medicine Department, “Sf. Apostol Andrei” Emergency County Hospital, 145 Tomis Blvd., 900591 Constanta, Romania;
| | - Cristina Tocia
- Gastroenterology Department, “Sf. Apostol Andrei” Emergency County Hospital, 145 Tomis Blvd., 900591 Constanta, Romania; (L.A.); (C.T.); (A.D.); (E.D.); (E.D.); (I.T.T.)
- Medicine Faculty, “Ovidius” University of Constanta, 1 Universitatii Street, 900470 Constanta, Romania; (D.E.T.); (A.T.); (C.F.A.); (I.P.)
| | - Anamaria Trandafir
- Medicine Faculty, “Ovidius” University of Constanta, 1 Universitatii Street, 900470 Constanta, Romania; (D.E.T.); (A.T.); (C.F.A.); (I.P.)
| | - Andrei Dumitru
- Gastroenterology Department, “Sf. Apostol Andrei” Emergency County Hospital, 145 Tomis Blvd., 900591 Constanta, Romania; (L.A.); (C.T.); (A.D.); (E.D.); (E.D.); (I.T.T.)
| | - Eugen Dumitru
- Gastroenterology Department, “Sf. Apostol Andrei” Emergency County Hospital, 145 Tomis Blvd., 900591 Constanta, Romania; (L.A.); (C.T.); (A.D.); (E.D.); (E.D.); (I.T.T.)
- Medicine Faculty, “Ovidius” University of Constanta, 1 Universitatii Street, 900470 Constanta, Romania; (D.E.T.); (A.T.); (C.F.A.); (I.P.)
- Academy of Romanian Scientist, 3 Ilfov Street, 050044 Bucharest, Romania
| | - Cristian Florentin Aftenie
- Medicine Faculty, “Ovidius” University of Constanta, 1 Universitatii Street, 900470 Constanta, Romania; (D.E.T.); (A.T.); (C.F.A.); (I.P.)
| | - Ionela Preotesoiu
- Medicine Faculty, “Ovidius” University of Constanta, 1 Universitatii Street, 900470 Constanta, Romania; (D.E.T.); (A.T.); (C.F.A.); (I.P.)
| | - Elena Dina
- Gastroenterology Department, “Sf. Apostol Andrei” Emergency County Hospital, 145 Tomis Blvd., 900591 Constanta, Romania; (L.A.); (C.T.); (A.D.); (E.D.); (E.D.); (I.T.T.)
| | - Ioan Tiberiu Tofolean
- Gastroenterology Department, “Sf. Apostol Andrei” Emergency County Hospital, 145 Tomis Blvd., 900591 Constanta, Romania; (L.A.); (C.T.); (A.D.); (E.D.); (E.D.); (I.T.T.)
- Medicine Faculty, “Ovidius” University of Constanta, 1 Universitatii Street, 900470 Constanta, Romania; (D.E.T.); (A.T.); (C.F.A.); (I.P.)
| |
Collapse
|
46
|
Cobo F, Aguilera-Franco M, Pérez-Carrasco V, García-Salcedo JA, Navarro-Marí JM. Bacteremia caused by Veillonella parvula: Two case reports and a review of the literature. Anaerobe 2024; 88:102879. [PMID: 38906317 DOI: 10.1016/j.anaerobe.2024.102879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 05/29/2024] [Accepted: 06/16/2024] [Indexed: 06/23/2024]
Abstract
Veillonella parvula is a non-motile gram-negative coccus that forms part of the normal microbiota in several body sites and which has been rarely isolated as cause of infections in human population, particularly in bacteremias. Here we give the overview of characteristics of genus Veillonella and the summary of its role in infections, particularly in bacteremia. We additionally report two patients with bacteremia due to V. parvula. Two sets of blood cultures of each patient yielded a pure culture of an anaerobic microorganism identified as V. parvula by MALDI-TOF MS, and confirmed by 16S rRNA gene sequencing. The two patients were male and one of them had risk factors for anaerobic bacteremia. The isolates were susceptible to most antibiotics and the outcome was successful in both patients. Bacteremia due to V. parvula is still rare. MALDI-TOF MS appear to be an excellent tool for the correct identification of these species.
Collapse
Affiliation(s)
- Fernando Cobo
- Department of Microbiology and Instituto de Investigación Biosanitaria Ibs.GRANADA, University Hospital Virgen de las Nieves, Granada, Spain.
| | - María Aguilera-Franco
- Department of Microbiology and Instituto de Investigación Biosanitaria Ibs.GRANADA, University Hospital Virgen de las Nieves, Granada, Spain
| | - Virginia Pérez-Carrasco
- Department of Microbiology and Instituto de Investigación Biosanitaria Ibs.GRANADA, University Hospital Virgen de las Nieves, Granada, Spain
| | - José A García-Salcedo
- Department of Microbiology and Instituto de Investigación Biosanitaria Ibs.GRANADA, University Hospital Virgen de las Nieves, Granada, Spain
| | - José María Navarro-Marí
- Department of Microbiology and Instituto de Investigación Biosanitaria Ibs.GRANADA, University Hospital Virgen de las Nieves, Granada, Spain
| |
Collapse
|
47
|
Lan J, Zhang Y, Jin C, Chen H, Su Z, Wu J, Ma N, Zhang X, Lu Y, Chen Y, Zeng X, Zhang H, Zheng G, Sun Y, Wang C, Hu Y, Wang Y, Liu Y, Zeng Z, Shi L, He J, Cao A, Wang Y, Pan X, Jin G, Wang Y, Jiang X, Shen H, Tang Q, Xie X, Xiao Y, Zhong X, Zhang X, Zeng L, Ye L, Xie J, Geng L, Li Z, Wu X, Wang Y, Mao R, Zhang S, Huang S, Liu S, Zeng H, Xu W, Gong S, Guo Y, Yang M. Gut Dysbiosis Drives Inflammatory Bowel Disease Through the CCL4L2-VSIR Axis in Glycogen Storage Disease. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2309471. [PMID: 38889269 PMCID: PMC11321658 DOI: 10.1002/advs.202309471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 05/04/2024] [Indexed: 06/20/2024]
Abstract
Patients with glycogen storage disease type Ib (GSD-Ib) frequently have inflammatory bowel disease (IBD). however, the underlying etiology remains unclear. Herein, this study finds that digestive symptoms are commonly observed in patients with GSD-Ib, presenting as single or multiple scattered deep round ulcers, inflammatory pseudo-polyps, obstructions, and strictures, which differ substantially from those in typical IBD. Distinct microbiota profiling and single-cell clustering of colonic mucosae in patients with GSD are conducted. Heterogeneous oral pathogenic enteric outgrowth induced by GSD is a potent inducer of gut microbiota immaturity and colonic macrophage accumulation. Specifically, a unique population of macrophages with high CCL4L2 expression is identified in response to pathogenic bacteria in the intestine. Hyper-activation of the CCL4L2-VSIR axis leads to increased expression of AGR2 and ZG16 in epithelial cells, which mediates the unique progression of IBD in GSD-Ib. Collectively, the microbiota-driven pathomechanism of IBD is demonstrated in GSD-Ib and revealed the active role of the CCL4L2-VSIR axis in the interaction between the microbiota and colonic mucosal immunity. Thus, targeting gut dysbiosis and/or the CCL4L2-VISR axis may represent a potential therapy for GSD-associated IBD.
Collapse
|
48
|
Atreya R, Neurath MF. Biomarkers for Personalizing IBD Therapy: The Quest Continues. Clin Gastroenterol Hepatol 2024; 22:1353-1364. [PMID: 38320679 DOI: 10.1016/j.cgh.2024.01.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 01/13/2024] [Accepted: 01/16/2024] [Indexed: 02/08/2024]
Abstract
Despite recent advances in the understanding of the pathogenesis of inflammatory bowel diseases (IBD) and advent of multiple targeted therapies, approximately one-third of patients are primary non-responders to initiated treatment, and half of patients lose response over time. There is currently a lack of available biomarkers that would prognosticate therapeutic effectiveness of these advanced therapies. This is partly explained by insufficient characterization of the functional roles assumed by the chosen molecular targets during disease treatment. There is a dire need for validated objective biomarkers, which could be indicators of a biological process, that can be applied in clinical practice to assist us in assigning therapies to patients with the highest probability of response. An appropriate molecular and cellular characterization that accounts for the interindividual differences in drug efficacy and potential side effects would help to guide clinicians in the management of patients with IBD and represent a major step to tailor a more personalized approach to treatment. An appropriate combination of complementing biomarkers should ideally incorporate a multimodal analysis in which genetic, microbial, transcriptional, proteomic, metabolic, and immunologic data are combined to enable a truly personalized approach. This would classify patients into disease subgroups according to molecular characteristics, which would enable us to initiate the most appropriate therapeutic substance. Emergence of single-cell technologies to map the intestinal cellular landscape and multiomic approaches have helped to further dissect the pathogenic mechanisms of mucosal inflammation, but the clinical translation of potential biomarkers remains cumbersome, and an ongoing concerted effort by the IBD community is required.
Collapse
Affiliation(s)
- Raja Atreya
- First Department of Medicine, Erlangen University Hospital, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany; Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany.
| | - Markus F Neurath
- First Department of Medicine, Erlangen University Hospital, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany; Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany
| |
Collapse
|
49
|
Palmieri O, Bossa F, Castellana S, Latiano T, Carparelli S, Martino G, Mangoni M, Corritore G, Nardella M, Guerra M, Biscaglia G, Perri F, Mazza T, Latiano A. Deciphering Microbial Composition in Patients with Inflammatory Bowel Disease: Implications for Therapeutic Response to Biologic Agents. Microorganisms 2024; 12:1260. [PMID: 39065032 PMCID: PMC11278628 DOI: 10.3390/microorganisms12071260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 06/19/2024] [Indexed: 07/28/2024] Open
Abstract
Growing evidence suggests that alterations in the gut microbiome impact the development of inflammatory bowel diseases (IBDs), including Crohn's disease (CD) and ulcerative colitis (UC). Although IBD often requires the use of immunosuppressant drugs and biologic therapies to facilitate clinical remission and mucosal healing, some patients do not benefit from these drugs, and the reasons for this remain poorly understood. Despite advancements, there is still a need to develop biomarkers to help predict prognosis and guide treatment decisions. The aim of this study was to investigate the gut microbiome of IBD patients using biologics to identify microbial signatures associated with responses, following standard accepted criteria. Microbiomes in 66 stool samples from 39 IBD patients, comprising 20 CD and 19 UC patients starting biologic therapies, and 29 samples from healthy controls (HCs) were prospectively analyzed via NGS and an ensemble of metagenomics analysis tools. At baseline, differences were observed in alpha and beta metrics among patients with CD, UC and HC, as well as between the CD and UC groups. The degree of dysbiosis was more pronounced in CD patients, and those with dysbiosis exhibited a limited response to biological drugs. Pairwise differential abundance analyses revealed an increasing trend in the abundance of an unannotated genus from the Clostridiales order, Gemmiger genus and an unannotated genus from the Rikenellaceae family, which were consistently identified in greater abundance in HC. The Clostridium genus was more abundant in CD patients. At baseline, a greater abundance of the Odoribacter and Ruminococcus genera was found in IBD patients who responded to biologics at 14 weeks, whereas a genus identified as SMB53 was more enriched at 52 weeks. The Collinsella genus showed a higher prevalence among non-responder IBD patients. Additionally, a greater abundance of an unclassified genus from the Barnesiellaceae family and one from Lachnospiraceae was observed in IBD patients responding to Vedolizumab at 14 weeks. Our analyses showed global microbial diversity, mainly in CD. This indicated the absence or depletion of key taxa responsible for producing short-chain fatty acids (SCFAs). We also identified an abundance of pathobiont microbes in IBD patients at baseline, particularly in non-responders to biologic therapies. Furthermore, specific bacteria-producing SCFAs were abundant in patients responding to biologics and in those responding to Vedolizumab.
Collapse
Affiliation(s)
- Orazio Palmieri
- Division of Gastroenterology and Endoscopy, Fondazione IRCCS “Casa Sollievo della Sofferenza”, 71013 San Giovanni Rotondo, Italy; (F.B.); (T.L.); (S.C.); (G.M.); (G.C.); (M.G.); (G.B.); (F.P.); (A.L.)
| | - Fabrizio Bossa
- Division of Gastroenterology and Endoscopy, Fondazione IRCCS “Casa Sollievo della Sofferenza”, 71013 San Giovanni Rotondo, Italy; (F.B.); (T.L.); (S.C.); (G.M.); (G.C.); (M.G.); (G.B.); (F.P.); (A.L.)
| | - Stefano Castellana
- Unit of Bioinformatics, Fondazione IRCCS “Casa Sollievo della Sofferenza”, 71013 San Giovanni Rotondo, Italy (M.M.); (T.M.)
| | - Tiziana Latiano
- Division of Gastroenterology and Endoscopy, Fondazione IRCCS “Casa Sollievo della Sofferenza”, 71013 San Giovanni Rotondo, Italy; (F.B.); (T.L.); (S.C.); (G.M.); (G.C.); (M.G.); (G.B.); (F.P.); (A.L.)
| | - Sonia Carparelli
- Division of Gastroenterology and Endoscopy, Fondazione IRCCS “Casa Sollievo della Sofferenza”, 71013 San Giovanni Rotondo, Italy; (F.B.); (T.L.); (S.C.); (G.M.); (G.C.); (M.G.); (G.B.); (F.P.); (A.L.)
| | - Giuseppina Martino
- Division of Gastroenterology and Endoscopy, Fondazione IRCCS “Casa Sollievo della Sofferenza”, 71013 San Giovanni Rotondo, Italy; (F.B.); (T.L.); (S.C.); (G.M.); (G.C.); (M.G.); (G.B.); (F.P.); (A.L.)
| | - Manuel Mangoni
- Unit of Bioinformatics, Fondazione IRCCS “Casa Sollievo della Sofferenza”, 71013 San Giovanni Rotondo, Italy (M.M.); (T.M.)
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy
| | - Giuseppe Corritore
- Division of Gastroenterology and Endoscopy, Fondazione IRCCS “Casa Sollievo della Sofferenza”, 71013 San Giovanni Rotondo, Italy; (F.B.); (T.L.); (S.C.); (G.M.); (G.C.); (M.G.); (G.B.); (F.P.); (A.L.)
| | - Marianna Nardella
- Division of Gastroenterology and Endoscopy, Fondazione IRCCS “Casa Sollievo della Sofferenza”, 71013 San Giovanni Rotondo, Italy; (F.B.); (T.L.); (S.C.); (G.M.); (G.C.); (M.G.); (G.B.); (F.P.); (A.L.)
| | - Maria Guerra
- Division of Gastroenterology and Endoscopy, Fondazione IRCCS “Casa Sollievo della Sofferenza”, 71013 San Giovanni Rotondo, Italy; (F.B.); (T.L.); (S.C.); (G.M.); (G.C.); (M.G.); (G.B.); (F.P.); (A.L.)
| | - Giuseppe Biscaglia
- Division of Gastroenterology and Endoscopy, Fondazione IRCCS “Casa Sollievo della Sofferenza”, 71013 San Giovanni Rotondo, Italy; (F.B.); (T.L.); (S.C.); (G.M.); (G.C.); (M.G.); (G.B.); (F.P.); (A.L.)
| | - Francesco Perri
- Division of Gastroenterology and Endoscopy, Fondazione IRCCS “Casa Sollievo della Sofferenza”, 71013 San Giovanni Rotondo, Italy; (F.B.); (T.L.); (S.C.); (G.M.); (G.C.); (M.G.); (G.B.); (F.P.); (A.L.)
| | - Tommaso Mazza
- Unit of Bioinformatics, Fondazione IRCCS “Casa Sollievo della Sofferenza”, 71013 San Giovanni Rotondo, Italy (M.M.); (T.M.)
| | - Anna Latiano
- Division of Gastroenterology and Endoscopy, Fondazione IRCCS “Casa Sollievo della Sofferenza”, 71013 San Giovanni Rotondo, Italy; (F.B.); (T.L.); (S.C.); (G.M.); (G.C.); (M.G.); (G.B.); (F.P.); (A.L.)
| |
Collapse
|
50
|
Davoutis E, Gkiafi Z, Lykoudis PM. Bringing gut microbiota into the spotlight of clinical research and medical practice. World J Clin Cases 2024; 12:2293-2300. [PMID: 38765739 PMCID: PMC11099419 DOI: 10.12998/wjcc.v12.i14.2293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 01/30/2024] [Accepted: 04/07/2024] [Indexed: 04/29/2024] Open
Abstract
Despite the increasing scientific interest and expanding role of gut microbiota (GM) in human health, it is rarely reported in case reports and deployed in clinical practice. Proteins and metabolites produced by microbiota contribute to immune system development, energy homeostasis and digestion. Exo- and endogenous factors can alter its composition. Disturbance of microbiota, also known as dysbiosis, is associated with various pathological conditions. Specific bacterial taxa and related metabolites are involved in disease pathogenesis and therefore can serve as a diagnostic tool. GM could also be a useful prognostic factor by predicting future disease onset and preventing hospital-associated infections. Additionally, it can influence response to treatments, including those for cancers, by altering drug bioavailability. A thorough understanding of its function has permitted significant development in therapeutics, such as probiotics and fecal transplantation. Hence, GM should be considered as a ground-breaking biological parameter, and it is advisable to be investigated and reported in literature in a more consistent and systematic way.
Collapse
Affiliation(s)
- Efstathia Davoutis
- School of Medicine, National and Kapodistrian University of Athens, Athens 11527, Greece
| | - Zoi Gkiafi
- School of Medicine, National and Kapodistrian University of Athens, Athens 11527, Greece
| | - Panagis M Lykoudis
- School of Medicine, National and Kapodistrian University of Athens, Athens 11527, Greece
- Division of Surgery and Interventional Science, University College London, London WC1E 6BT, United Kingdom
| |
Collapse
|