1
|
Jin Y, Ji W, Zhang L, Dang D, Yu B, Zhang X, Zhang Y, Li J, Zhang Y, Yang R, Yang H, Chen S, Wang F, Duan G. Arginine depletion-induced autophagy and metabolic dysregulation are involved in the disease severity of hand, foot, and mouth disease. Virulence 2025; 16:2440541. [PMID: 39731500 DOI: 10.1080/21505594.2024.2440541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 10/22/2024] [Accepted: 12/02/2024] [Indexed: 12/30/2024] Open
Abstract
Amino acid metabolism provides significant insight into the development and prevention of many viral diseases. Therefore, the present study aimed to compare the amino acid profiles of hand, foot, and mouth disease (HFMD) patients with those of healthy individuals and to further reveal the molecular mechanisms of HFMD severity. Using UPLC-MS/MS, we determined the plasma amino acid expression profiles of pediatric patients with HFMD (mild, n = 42; severe, n = 43) and healthy controls (n = 25). Brain tissues from CVA6-infected mice were examined using untargeted metabolomics. Several amino acids were significantly different between the three groups. Pathway analysis revealed that arginine, proline, and tryptophan metabolism are implicated in the pathogenesis of HFMD. A similar arginine depletion was observed in the brain tissues of CVA6-infected mice. Importantly, L-arginine supplementation improved the survival rate of CVA6-infected mice, inhibited virus multiplication, and reduced pathological autophagy associated with mTOR-autophagy pathway in the brain. Collectively, arginine, as the hub amino acid metabolite of the mammalian target of rapamycin (mTOR) signaling pathway affecting autophagy, plays an important role in the pathogenesis of severe HFMD. L-arginine supplementation may serve as a potential therapeutic option for critical patients with HFMD.
Collapse
Affiliation(s)
- Yuefei Jin
- Department of Infectious Diseases, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Wangquan Ji
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Liang Zhang
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Dejian Dang
- Department of Infection Control, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Bingqing Yu
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Xiaolong Zhang
- NHC Key Laboratory of Birth Defects Prevention, Henan Key Laboratory of Population Defects Prevention, Zhengzhou, China
| | - Yuxiang Zhang
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Jiaqi Li
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Yaodong Zhang
- Henan International Joint Laboratory of Children's Infectious Diseases, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Rongxin Yang
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Haiyan Yang
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Shuaiyin Chen
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Fang Wang
- Department of Infectious Diseases, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Guangcai Duan
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
2
|
Sun Y, Zhong M, Wang J, Feng M, Shen C, Han Z, Cao X, Zhang Q. Cordycepin extends the longevity of Caenorhabditis elegans via antioxidation and regulation of fatty acid metabolism. Eur J Pharmacol 2025; 994:177388. [PMID: 39971228 DOI: 10.1016/j.ejphar.2025.177388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 02/09/2025] [Accepted: 02/13/2025] [Indexed: 02/21/2025]
Abstract
Aging can cause age-related diseases such as cancer, cardiovascular and neurodegenerative diseases. Cordycepin exerts anti-oxidation, anti-inflammatory and neuroprotective effects. However, the anti-aging effect of cordycepin is still unclear. This study aimed to investigate the anti-aging effect of cordycepin and unravel the underlying mechanism. Cordycepin prolonged the lifespan of C. elegans under normal and heat stress conditions, without effects on the normal growth and reproduction of C. elegans. Cordycepin also improved the locomotion ability, inhibited the deposition of aging pigment lipofuscin and alleviated the oxidative stress damage by decreasing the excessive accumulation of ROS and raising the antioxidant enzyme activities in C. elegans. The metabolomics study showed that cordycepin changed 19 metabolites including citric acid, linoleic acid, oleic acid, glutamic acid, pyruvic acid and so on. Transcriptomics study revealed that cordycepin up-regulated the gene expression of acox-1.2, acox-1.3, acox-1.4, acs-1, acs-15, acdh-1, acdh-4 and acdh-8 in C. elegans, suggesting that cordycepin prolonged its lifespan via regulating fatty acid degradation, fatty acid metabolism and so on. In summary, the current study demonstrated that cordycepin exerted the anti-aging effect on C. elegans by improving the antioxidant system and regulating the genes involved in fatty acid metabolism to inhibit the accumulation of linoleic acid and oleic acid. Therefore, cordycepin might be a promising agent for aging and age-related diseases.
Collapse
Affiliation(s)
- Yang Sun
- School of Pharmaceutical Sciences, Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, People's Republic of China.
| | - Mengling Zhong
- School of Pharmaceutical Sciences, Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, People's Republic of China
| | - Jingjie Wang
- School of Pharmaceutical Sciences, Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, People's Republic of China
| | - Mingmei Feng
- School of Pharmaceutical Sciences, Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, People's Republic of China
| | - Caihong Shen
- Luzhou Laojiao Co., Ltd., 71 Nanguang Road, Luzhou, 646000, People's Republic of China
| | - Zhipeng Han
- School of Pharmaceutical Sciences, Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, People's Republic of China
| | - Xiaonian Cao
- Luzhou Laojiao Co., Ltd., 71 Nanguang Road, Luzhou, 646000, People's Republic of China.
| | - Qi Zhang
- School of Pharmaceutical Sciences, Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, People's Republic of China; College of Food Science and Light Industry, Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, People's Republic of China.
| |
Collapse
|
3
|
Hamadmad S, Heisler-Taylor T, Goswami S, Hawthorn E, Chaurasia S, Martini D, Summitt D, Zatari A, Shalash R, Sohail M, Urbanski EG, Bernstein K, Racine J, Satoskar A, El-Hodiri HM, Fischer AJ, Cebulla CM. Ibudilast Protects Retinal Bipolar Cells From Excitotoxic Retinal Damage and Activates the mTOR Pathway. Glia 2025; 73:905-927. [PMID: 39916387 PMCID: PMC11920683 DOI: 10.1002/glia.24657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 10/09/2024] [Accepted: 11/24/2024] [Indexed: 02/12/2025]
Abstract
Ibudilast, an inhibitor of macrophage migration inhibitory factor (MIF) and phosphodiesterase (PDE), has been recently shown to have neuroprotective effects in a variety of neurologic diseases. We utilize a chick excitotoxic retinal damage model to investigate ibudilast's potential to protect retinal neurons. Using single cell RNA-sequencing (scRNA-seq), we find that MIF, putative MIF receptors CD74 and CD44, and several PDEs are upregulated in different retinal cells during damage. Intravitreal ibudilast is well tolerated in the eye and causes no evidence of toxicity. Ibudilast effectively protects neurons in the inner nuclear layer from NMDA-induced cell death, restores retinal layer thickness on spectral domain optical coherence tomography (SD-OCT), and preserves retinal neuron function, particularly for the ON bipolar cells, as assessed by electroretinography. PDE inhibition seems essential for ibudilast's neuroprotection, as AV1013, the analogue that lacks PDE inhibitor activity, is ineffective. scRNA-seq analysis reveals upregulation of multiple signaling pathways, including mTOR, in damaged Müller glia (MG) with ibudilast treatment compared to AV1013. Components of mTORC1 and mTORC2 are upregulated in both bipolar cells and MG with ibudilast. The mTOR inhibitor rapamycin blocked accumulation of pS6 but did not reduce TUNEL positive dying cells. Additionally, through ligand-receptor interaction analysis, crosstalk between bipolar cells and MG may be important for neuroprotection. We have identified several paracrine signaling pathways that are known to contribute to cell survival and neuroprotection and might play essential roles in ibudilast function. These findings highlight ibudilast's potential to protect inner retinal neurons during damage and show promise for future clinical translation.
Collapse
Affiliation(s)
- Sumaya Hamadmad
- Department of Ophthalmology and Visual Sciences, Havener Eye Institute, The Ohio State University, Wexner Medical Center, Columbus, Ohio, USA
| | - Tyler Heisler-Taylor
- Department of Ophthalmology and Visual Sciences, Havener Eye Institute, The Ohio State University, Wexner Medical Center, Columbus, Ohio, USA
| | - Sandeep Goswami
- Department of Ophthalmology and Visual Sciences, Havener Eye Institute, The Ohio State University, Wexner Medical Center, Columbus, Ohio, USA
| | - Evan Hawthorn
- Department of Ophthalmology and Visual Sciences, Havener Eye Institute, The Ohio State University, Wexner Medical Center, Columbus, Ohio, USA
| | - Sameer Chaurasia
- Department of Ophthalmology and Visual Sciences, Havener Eye Institute, The Ohio State University, Wexner Medical Center, Columbus, Ohio, USA
| | - Dena Martini
- Department of Ophthalmology and Visual Sciences, Havener Eye Institute, The Ohio State University, Wexner Medical Center, Columbus, Ohio, USA
| | - Diana Summitt
- Department of Ophthalmology and Visual Sciences, Havener Eye Institute, The Ohio State University, Wexner Medical Center, Columbus, Ohio, USA
| | - Ali Zatari
- Department of Ophthalmology and Visual Sciences, Havener Eye Institute, The Ohio State University, Wexner Medical Center, Columbus, Ohio, USA
| | - Rahaf Shalash
- Department of Ophthalmology and Visual Sciences, Havener Eye Institute, The Ohio State University, Wexner Medical Center, Columbus, Ohio, USA
| | - Misha Sohail
- Department of Ophthalmology and Visual Sciences, Havener Eye Institute, The Ohio State University, Wexner Medical Center, Columbus, Ohio, USA
| | - Elizabeth G Urbanski
- Department of Ophthalmology and Visual Sciences, Havener Eye Institute, The Ohio State University, Wexner Medical Center, Columbus, Ohio, USA
| | - Kayla Bernstein
- Department of Ophthalmology and Visual Sciences, Havener Eye Institute, The Ohio State University, Wexner Medical Center, Columbus, Ohio, USA
| | - Julie Racine
- Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Abhay Satoskar
- Department of Pathology, The Ohio State University, Wexner Medical Center, Columbus, Ohio, USA
| | - Heithem M El-Hodiri
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Andy J Fischer
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Colleen M Cebulla
- Department of Ophthalmology and Visual Sciences, Havener Eye Institute, The Ohio State University, Wexner Medical Center, Columbus, Ohio, USA
| |
Collapse
|
4
|
Zhang Y, Jin H, Jia W, Liu Y, Wang Y, Xue S, Liu Y, Hao H. Ermiao San attenuating rheumatoid arthritis via PI3K/AKT/mTOR signaling activate HIF-1α induced glycolysis. JOURNAL OF ETHNOPHARMACOLOGY 2025; 345:119615. [PMID: 40081512 DOI: 10.1016/j.jep.2025.119615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/14/2025] [Accepted: 03/08/2025] [Indexed: 03/16/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE As a classic formula, Ermiao San (EMS) characterized by its less medicinal flavor and strong potency had been proven to be effective and safe in the treatment of rheumatoid arthritis (RA) during clinical experience and our previous research. AIM OF THE STUDY The therapeutic characteristics of multi-component and multi-target of traditional Chinese medicine prompted us to further investigated the effective compounds of EMS, and evaluated its potential mechanisms in treating RA. MATERIALS AND METHODS Ultra-high-performance liquid chromatography high-resolution mass spectrometry (UPLC-HRMS) was used to analyze the primary absorption components of EMS in rat serum, with secondary mass spectrometry used to assist in identifying the structures of the compounds. Open field experiments, H&E staining, safranin-O-turquoise staining, ELISA, and other methods were applied to verify the alleviating effects of EMS on exercise capacity, inflammation, and cartilage damage in CIA rats. The RA-FLS model was established using TNF-α, and observed the effects of EMS on cell migration and invasion were observed through wound healing and transwell assays. In addition, immunohistochemistry and western blotting were employed to investigate the PI3K/AKT/mTOR/HIF-1α pathway both in vivo and in vitro. RESULTS Seventeen compounds were identified in rat serum, which were considered as active ingredients involved in the improvement of RA by EMS. Furthermore, EMS demonstrated the outstanding anti-RA ability, as evidenced by the improvement in foot swelling and arthritis scores, alleviation of pathological changes in joint tissue, inhibition of inflammatory factors, and restoration of exercise ability. In vivo data showed that EMS reduced joint injury through the PI3K/AKT/mTOR/HIF-1α signaling pathway. In vitro studies indicated that TNF-α induced the expression of Glut1 and HK2 proteins, accelerated the glycolysis rate, and promoted migration and invasion of RA-FLS cells, leading to adverse outcomes. However, EMS regulated the expression of glycolysis-related molecules, HK2 and Glut1 through the PI3K/AKT/mTOR/HIF-1α pathway, thereby inhibiting inflammation, migration, and invasion of RA-FLS cells. CONCLUSION The beneficial effects of EMS in CIA rats can be attributed to the inhibition of glycolysis in synovial fibroblasts via the PI3K/AKT/mTOR/HIF-1α pathway. This finding further enriches our understanding of the mechanisms by which EMS contributes to the treatment of RA.
Collapse
Affiliation(s)
- Yumeng Zhang
- Shanxi University of Chinese Medicine, Jinzhong, 030619, China; Basic Laboratory of Integrated Traditional Chinese and Western Medicine, Shanxi University of Chinese Medicine, Jinzhong, 030619, China; Engineering Research Center of Cross Innovation for Chinese Traditional Medicine of Shanxi Province, Jinzhong, 030619, China
| | - Haizhu Jin
- Shanxi University of Chinese Medicine, Jinzhong, 030619, China
| | - Wenyue Jia
- Shanxi University of Chinese Medicine, Jinzhong, 030619, China
| | - Yuqi Liu
- Shanxi University of Chinese Medicine, Jinzhong, 030619, China
| | - Yuru Wang
- Shanxi University of Chinese Medicine, Jinzhong, 030619, China
| | - Shuyan Xue
- Shanxi University of Chinese Medicine, Jinzhong, 030619, China
| | - Yang Liu
- Shanxi University of Chinese Medicine, Jinzhong, 030619, China; Basic Laboratory of Integrated Traditional Chinese and Western Medicine, Shanxi University of Chinese Medicine, Jinzhong, 030619, China; Engineering Research Center of Cross Innovation for Chinese Traditional Medicine of Shanxi Province, Jinzhong, 030619, China.
| | - Huiqin Hao
- Shanxi University of Chinese Medicine, Jinzhong, 030619, China; Basic Laboratory of Integrated Traditional Chinese and Western Medicine, Shanxi University of Chinese Medicine, Jinzhong, 030619, China; Engineering Research Center of Cross Innovation for Chinese Traditional Medicine of Shanxi Province, Jinzhong, 030619, China.
| |
Collapse
|
5
|
Cheng AC, Lin CJ, Wang ST, Liu CH. Salinity stress impairs disease resistance in white shrimp, Penaeus vannamei through AMPK pathway, ameliorated by dietary glucose-mediated energy homeostasis. Comp Biochem Physiol A Mol Integr Physiol 2025; 302:111799. [PMID: 39765311 DOI: 10.1016/j.cbpa.2024.111799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 12/22/2024] [Accepted: 12/30/2024] [Indexed: 01/11/2025]
Abstract
This study presents a comprehensive examination of the physiological adaptations of white shrimp (Penaeus vannamei) to low-salinity conditions and evaluates the effects of supplementing dietary glucose on disease resistance. Compared to the control group, shrimp cultured at a salinity of 4 psu exhibit significantly elevated expression levels of adenosine 5'-monophosphate-activated protein kinase (AMPK) in the hepatopancreas, which leads to increased energy expenditure and a corresponding reduction in resistance to infection by Vibrio alginolyticus. The suppression of AMPK via dsAMPK treatment markedly enhances disease resistance. Moreover, shrimp raised in low salinity conditions exhibit downregulation of mTOR-associated molecules, including Lipin-1 and hypoxia-inducible factor 1-α (HIF-1α), both of which are essential for immune regulation. Metabolic assessments revealed reduced ATP levels and disrupted ATP/AMP and ATP/ADP ratios, indicating energy imbalance under low salinity stress. Notably, supplementing the diet with 1 % glucose significantly increased glycogen reserves and ATP content, stabilized hemolymph glucose levels, and upregulated glycolysis-related genes, thereby optimizing energy metabolism and enhancing resilience to stress. This study underscores that AMPK activation in response to low salinity conditions leads to increased energy expenditure, which in turn lowers disease resistance. Furthermore, it underscores the critical role of strategic dietary management in maintaining energy homeostasis and improving disease resistance in white shrimp under stressful environmental conditions associated with climate change, offering valuable insights for aquaculture nutrition strategies.
Collapse
Affiliation(s)
- Ann-Chang Cheng
- Department and Graduate Institute of Aquaculture, National Kaohsiung University of Science and Technology, Kaohsiung 811, Taiwan
| | - Chien-Ju Lin
- Department of Aquaculture, National Pingtung University of Science and Technology, Pingtung 912, Taiwan
| | - Sz-Tsan Wang
- Department of Aquaculture, National Pingtung University of Science and Technology, Pingtung 912, Taiwan
| | - Chun-Hung Liu
- Department of Aquaculture, National Pingtung University of Science and Technology, Pingtung 912, Taiwan.
| |
Collapse
|
6
|
Shi Q, Gutierrez RA, Bhat MA. Microglia, Trem2, and Neurodegeneration. Neuroscientist 2025; 31:159-176. [PMID: 38769824 PMCID: PMC11576490 DOI: 10.1177/10738584241254118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Microglia are a specialized type of neuroimmune cells that undergo morphological and molecular changes through multiple signaling pathways in response to pathological protein aggregates, neuronal death, tissue injury, or infections. Microglia express Trem2, which serves as a receptor for a multitude of ligands enhancing their phagocytic activity. Trem2 has emerged as a critical modulator of microglial activity, especially in many neurodegenerative disorders. Human TREM2 mutations are associated with an increased risk of developing Alzheimer disease (AD) and other neurodegenerative diseases. Trem2 plays dual roles in neuroinflammation and more specifically in disease-associated microglia. Most recent developments on the molecular mechanisms of Trem2, emphasizing its role in uptake and clearance of amyloid β (Aβ) aggregates and other tissue debris to help protect and preserve the brain, are encouraging. Although Trem2 normally stimulates defense mechanisms, its dysregulation can intensify inflammation, which poses major therapeutic challenges. Recent therapeutic approaches targeting Trem2 via agonistic antibodies and gene therapy methodologies present possible avenues for reducing the burden of neurodegenerative diseases. This review highlights the promise of Trem2 as a therapeutic target, especially for Aβ-associated AD, and calls for more mechanistic investigations to understand the context-specific role of microglial Trem2 in developing effective therapies against neurodegenerative diseases.
Collapse
Affiliation(s)
- Qian Shi
- Department of Cellular and Integrative Physiology, Center for Biomedical Neuroscience, Joe R. and Teresa Lozano Long School of Medicine, University of Texas Health Science Center San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA
| | - Raul A. Gutierrez
- Department of Cellular and Integrative Physiology, Center for Biomedical Neuroscience, Joe R. and Teresa Lozano Long School of Medicine, University of Texas Health Science Center San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA
| | - Manzoor A. Bhat
- Department of Cellular and Integrative Physiology, Center for Biomedical Neuroscience, Joe R. and Teresa Lozano Long School of Medicine, University of Texas Health Science Center San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA
| |
Collapse
|
7
|
Mazzilli R, Zamponi V, Mancini C, Giorgini B, Golisano B, Mikovic N, Pecora G, Russo F, Martiradonna M, Paravani P, Prosperi D, Faggiano A. Neuroendocrine tumors and diabetes mellitus: which treatment and which effect. Endocrine 2025; 88:36-50. [PMID: 39752043 DOI: 10.1007/s12020-024-04149-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 12/23/2024] [Indexed: 01/04/2025]
Abstract
Diabetes mellitus (DM) and neuroendocrine tumors (NET) can exert unfavorable effects on each other prognosis. In this narrative review, we evaluated the effects of NET therapies on glycemic control and DM management and the effects of anti-diabetic therapies on NET outcome and management. For this purpose, we searched the PubMed, Science Direct, and Google Scholar databases for studies reporting the effects of NET therapy on DM as well as the effect of DM therapy on NET. The majority of NET treatments appear to impair glycaemic control, both inducing hypoglycemic or, more commonly, hyperglycemia and even new-onset DM. However, glucose metabolism imbalance can be effectively managed by modulating anti-diabetic therapy and adopting an appropriate nutritional approach. On the other hand, the effects of anti-diabetic treatment, like insulin, sulfonylureas, thiazolidinediones, ipeptidyl-peptidase-4 inhibitors, Glucagon-like peptide-1 receptor agonists, and Sodium-glucose cotransporter-2 inhibitors on NET are unclear. Recently, metformin has been investigated in patients with gastroenteropancreatic NET resulting in improved progression free survival suggesting a potential antineoplastic role. Finally, the management of DM in patients with NET is of great clinical relevance to correctly perform radiological procedures and even more functional imaging procedures, as well as to optimize the therapy and avoid treatment withdrawal or discontinuation. In conclusion, understanding the mechanisms underlying therapy-induced DM and implementing appropriate monitoring and management strategies of DM are essential for optimizing NET patient outcome and quality of life.
Collapse
Affiliation(s)
- Rossella Mazzilli
- Unit of Endocrinology, Department of Clinical and Molecular Medicine, ENETS Center of Excellence, Sapienza University of Rome, Rome, Italy.
| | - Virginia Zamponi
- Unit of Endocrinology, Department of Clinical and Molecular Medicine, ENETS Center of Excellence, Sapienza University of Rome, Rome, Italy
| | - Camilla Mancini
- Unit of Endocrinology, Department of Clinical and Molecular Medicine, ENETS Center of Excellence, Sapienza University of Rome, Rome, Italy
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Beatrice Giorgini
- Unit of Endocrinology, Department of Clinical and Molecular Medicine, ENETS Center of Excellence, Sapienza University of Rome, Rome, Italy
| | - Bianca Golisano
- Unit of Endocrinology, Department of Clinical and Molecular Medicine, ENETS Center of Excellence, Sapienza University of Rome, Rome, Italy
| | - Nevena Mikovic
- Unit of Endocrinology, Department of Clinical and Molecular Medicine, ENETS Center of Excellence, Sapienza University of Rome, Rome, Italy
| | - Giulia Pecora
- Unit of Endocrinology, Department of Clinical and Molecular Medicine, ENETS Center of Excellence, Sapienza University of Rome, Rome, Italy
| | - Flaminia Russo
- Unit of Endocrinology, Department of Clinical and Molecular Medicine, ENETS Center of Excellence, Sapienza University of Rome, Rome, Italy
| | - Maurizio Martiradonna
- Unit of Endocrinology, Department of Clinical and Molecular Medicine, ENETS Center of Excellence, Sapienza University of Rome, Rome, Italy
| | - Piero Paravani
- Unit of Endocrinology, Department of Clinical and Molecular Medicine, ENETS Center of Excellence, Sapienza University of Rome, Rome, Italy
| | - Daniela Prosperi
- Unit of Nuclear Medicine, ENETS Center of Excellence, Sant'Andrea University Hospital, Rome, Italy
| | - Antongiulio Faggiano
- Unit of Endocrinology, Department of Clinical and Molecular Medicine, ENETS Center of Excellence, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
8
|
van Veggel L, Schepers M, Tiane A, Kumar V, Willems E, Rombaut B, Noordijk J, Vangansewinkel T, Li A, Wolfs E, Ozcan B, Nouboers E, Moya PR, Sauer DB, Diliën H, Hellings N, Schreiber R, Vanmierlo T. EAAT3 modulation: A potential novel avenue towards remyelination in multiple sclerosis. Biomed Pharmacother 2025; 186:117960. [PMID: 40138922 DOI: 10.1016/j.biopha.2025.117960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 02/24/2025] [Accepted: 03/04/2025] [Indexed: 03/29/2025] Open
Abstract
Modulating the excitatory amino acid transporter 3 (EAAT3) can be considered a novel approach for the treatment of multiple sclerosis (MS). EAAT3 plays a crucial role in regulating oxidative stress and oligodendrocyte function through its ability to transport cysteine, the rate-limiting building block in the synthesis of the antioxidant glutathione. Therefore, EAAT3 activation is hypothesised to improve oligodendrocyte health and relieve its differentiation block in MS, improving remyelination capacity. Using a cuprizone-induced demyelination model, the effects of EAAT3 overexpression by viral transduction of oligodendrocytes and pharmacological inhibition of EAAT3 were examined. Surprisingly, EAAT3 overexpression significantly hampered remyelination, while EAAT3 inhibition prevented demyelination and improved functional remyelination as assessed by visual evoked potentials and post mortem myelin basic protein fluorescent staining. Next, cellular mechanisms underlying these results were investigated. Consistent with the in vivo findings, post mortem gene expression analysis of the corpus callosum of cuprizone treated animals revealed a trend towards upregulation of oligodendrocyte lineage genes in response to EAAT3 inhibition, supporting its role in oligodendrocyte health and myelination processes. In vitro studies using the human oligodendroglioma (HOG) cell line demonstrated the beneficial effects of EAAT3 inhibition on cellular morphology, indicating potential roles in promoting oligodendrocyte maturation and myelination. In contrast, EAAT3 overexpression appears to hamper these processes. These findings suggest that, contrary to our initial hypothesis, EAAT3 inhibition could improve oligodendrocyte function and myelination processes, highlighting its potential as a therapeutic target for demyelinating disorders. Future studies should address the exact molecular mechanism through which this effect is obtained.
Collapse
Affiliation(s)
- Lieve van Veggel
- Department of Neuroscience, BIOMED Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Hasselt, Belgium; Department of Psychiatry and Neuropsychology, Division of Translational Neuroscience, European Graduate School of Neuroscience, Mental Health and Neuroscience Research Institute, Maastricht University, Maastricht, the Netherlands; University MS Center (UMSC), Hasselt-Pelt, Belgium
| | - Melissa Schepers
- Department of Neuroscience, BIOMED Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Hasselt, Belgium; Department of Psychiatry and Neuropsychology, Division of Translational Neuroscience, European Graduate School of Neuroscience, Mental Health and Neuroscience Research Institute, Maastricht University, Maastricht, the Netherlands; University MS Center (UMSC), Hasselt-Pelt, Belgium
| | - Assia Tiane
- Department of Neuroscience, BIOMED Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Hasselt, Belgium; Department of Psychiatry and Neuropsychology, Division of Translational Neuroscience, European Graduate School of Neuroscience, Mental Health and Neuroscience Research Institute, Maastricht University, Maastricht, the Netherlands; University MS Center (UMSC), Hasselt-Pelt, Belgium
| | - Vijay Kumar
- Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Emily Willems
- Department of Neuroscience, BIOMED Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Hasselt, Belgium; Department of Psychiatry and Neuropsychology, Division of Translational Neuroscience, European Graduate School of Neuroscience, Mental Health and Neuroscience Research Institute, Maastricht University, Maastricht, the Netherlands; University MS Center (UMSC), Hasselt-Pelt, Belgium
| | - Ben Rombaut
- Department of Neuroscience, BIOMED Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Hasselt, Belgium; Department of Psychiatry and Neuropsychology, Division of Translational Neuroscience, European Graduate School of Neuroscience, Mental Health and Neuroscience Research Institute, Maastricht University, Maastricht, the Netherlands; University MS Center (UMSC), Hasselt-Pelt, Belgium
| | - Jurrie Noordijk
- Sensor Engineering Department, Faculty of Science and Engineering, Maastricht University, Maastricht, the Netherlands
| | - Tim Vangansewinkel
- Department of Neuroscience, BIOMED Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Hasselt, Belgium.
| | - Anna Li
- Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Esther Wolfs
- Department of Neuroscience, BIOMED Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Hasselt, Belgium
| | - Berra Ozcan
- Department of Neuroscience, BIOMED Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Hasselt, Belgium
| | - Evelien Nouboers
- Department of Neuroscience, BIOMED Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Hasselt, Belgium
| | - Pablo R Moya
- Facultad de Ciencias, Instituto de Fisiología, Centro Interdisciplinario de Neurociencia de Valparaíso (CINV), Universidad de Valparaíso, Valparaíso, Chile
| | - David B Sauer
- Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Hanne Diliën
- Sensor Engineering Department, Faculty of Science and Engineering, Maastricht University, Maastricht, the Netherlands
| | - Niels Hellings
- Department of Neuroscience, BIOMED Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Hasselt, Belgium; Department of Psychiatry and Neuropsychology, Division of Translational Neuroscience, European Graduate School of Neuroscience, Mental Health and Neuroscience Research Institute, Maastricht University, Maastricht, the Netherlands
| | - Rudy Schreiber
- Section of Psychopharmacology, Neuropsychology and Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, the Netherlands
| | - Tim Vanmierlo
- Department of Neuroscience, BIOMED Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Hasselt, Belgium; Department of Psychiatry and Neuropsychology, Division of Translational Neuroscience, European Graduate School of Neuroscience, Mental Health and Neuroscience Research Institute, Maastricht University, Maastricht, the Netherlands; University MS Center (UMSC), Hasselt-Pelt, Belgium
| |
Collapse
|
9
|
Zheng Z, Li Z, Liu X, Liu L, Zhang P, Cui Y, Ding G. Rapamycin ameliorates senescence of periodontal ligament stem cells and promotes their osteogenesis via the PI3K/AKT pathway. Int Immunopharmacol 2025; 153:114517. [PMID: 40127621 DOI: 10.1016/j.intimp.2025.114517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 02/26/2025] [Accepted: 03/17/2025] [Indexed: 03/26/2025]
Abstract
Periodontal ligament stem cells (PDLSCs) have been regarded as ideal candidates for tissue regeneration due to their excellent self-renewal and multipotent differentiation ability. Rapamycin (RAPA) is reported to play an important role in the regulation of biological properties of stem cells and a variety of physiological processes. This study investigates whether RAPA could ameliorate the senescence and accelerate the osteogenic differentiation of PDLSCs, particularly the regenerative potential in a rat calvarial bone defect model, and the underlying mechanisms involved. β-galactosidase staining, quantitative real-time polymerase chain reaction, and western blot analysis were performed to assess the effects of RAPA on senescent PDLSCs. The osteogenic differentiation ability of PDLSCs was detected by alkaline phosphatase staining and activity, Alizarin Red S staining, and gene and protein levels of osteogenesis-related markers. The underlying signaling pathways were investigated via RNA transcriptome sequencing analysis and WB tests. Calvarial bone defects in rat were treated with PDLSCs pre-incubated with or without RAPA and/or H2O2. The results showed that RAPA could enhance the osteogenic potentials of PDLSCs via PI3K/AKT signaling pathway, and reversed H2O2-induced senescence and osteogenic differentiation inhibition of PDLSCs. Moreover, calvarial defects transplanted with RAPA-treated PDLSCs showed significantly greater new bone formation compared with other groups, and also improved the H2O2-induced impairment of bone formation, whether by micro-computed tomography examination or by histological analysis. Collectively, RAPA was capable of promoting osteogenic differentiation of PDLSCs via PI3K/AKT signaling pathway in vitro, facilitating calvarial bone regeneration and reversing H2O2-induced impairment of osteogenic differentiation and cell senescence in PDLSCs.
Collapse
Affiliation(s)
- Zejun Zheng
- School of Stomatology, Shandong Second Medical University, Weifang 261053, Shandong Province, China; Department of Stomatology, Affiliated Hospital of Shandong Second Medical University, Weifang 261035, Shandong Province, China
| | - Zekun Li
- School of Stomatology, Shandong Second Medical University, Weifang 261053, Shandong Province, China; Department of Stomatology, Affiliated Hospital of Shandong Second Medical University, Weifang 261035, Shandong Province, China
| | - Xinjuan Liu
- School of Stomatology, Shandong Second Medical University, Weifang 261053, Shandong Province, China; Department of Stomatology, Affiliated Hospital of Shandong Second Medical University, Weifang 261035, Shandong Province, China
| | - Luyun Liu
- School of Stomatology, Shandong Second Medical University, Weifang 261053, Shandong Province, China; Department of Stomatology, Affiliated Hospital of Shandong Second Medical University, Weifang 261035, Shandong Province, China
| | - Ping Zhang
- School of Stomatology, Shandong Second Medical University, Weifang 261053, Shandong Province, China; Department of Stomatology, Affiliated Hospital of Shandong Second Medical University, Weifang 261035, Shandong Province, China
| | - Yu Cui
- School of Stomatology, Shandong Second Medical University, Weifang 261053, Shandong Province, China; Department of Stomatology, Affiliated Hospital of Shandong Second Medical University, Weifang 261035, Shandong Province, China.
| | - Gang Ding
- School of Stomatology, Shandong Second Medical University, Weifang 261053, Shandong Province, China; Department of Stomatology, Affiliated Hospital of Shandong Second Medical University, Weifang 261035, Shandong Province, China.
| |
Collapse
|
10
|
Khilar P, Ummanni R. TPD52 (isoform 3) promotes resistance to mTOR-targeted inhibitors by regulating c-Myc, PTEN, and direct activation of 4E-BP1 in LNCaP androgen-dependent cells. Biochem Biophys Res Commun 2025; 753:151495. [PMID: 39983549 DOI: 10.1016/j.bbrc.2025.151495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 02/03/2025] [Accepted: 02/14/2025] [Indexed: 02/23/2025]
Abstract
A therapeutic strategy targeting the PI3K-AKT-mTOR pathway is widely seen as promising against prostate cancer (PCa) treatment. However, resistance to targeted inhibitors is still a major challenge. Herein we observed that the overexpression of TPD52 (isoform 3) in LNCaP, PCa cells confers resistance to mTOR inhibitors, specifically everolimus and rapamycin. This study demonstrates that TPD52 promotes the proliferation and survival of tumor cells treated with mTOR inhibitors by hyperactivating PI3K/AKT. Despite the inactivation of downstream targets like p70S6K and S6 upon mTOR inhibition, p4E-BP1 remained consistently high in TPD52 overexpressing LNCaP cells, suggesting activation of an alternative regulatory mechanism independent of mTOR. Furthermore, elevated c-Myc levels were correlated with overexpression of TPD52 and were linked to loss of PTEN expression further promoting drug resistance. Contrarily, silencing of TPD52 and c-Myc sensitized LNCaP cells to mTOR inhibitors by restoring PTEN levels and further downregulation of 4E-BP1. Above all, downregulation of both TPD52 and c-Myc enhanced the sensitivity of LNCaP-TPD52 cells facilitating apoptosis indicating a potential strategy to overcome resistance to mTOR inhibitors in PCa. Taken together, these findings underscore the role of TPD52 through c-Myc in conferring resistance to mTOR inhibitors and warrant further exploration of their molecular mechanisms in PCa treatment.
Collapse
Affiliation(s)
- Priyanka Khilar
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Ramesh Ummanni
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
11
|
Li TL, Blair JD, Yoo T, Grant GA, Hockemeyer D, Porter BE, Bateup HS. mTORC1 activation drives astrocyte reactivity in cortical tubers and brain organoid models of TSC. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.28.640914. [PMID: 40093155 PMCID: PMC11908165 DOI: 10.1101/2025.02.28.640914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Tuberous Sclerosis Complex (TSC) is a genetic neurodevelopmental disorder associated with early onset epilepsy, intellectual disability and neuropsychiatric disorders. A hallmark of the disorder is cortical tubers, which are focal malformations of brain development containing dysplastic cells with hyperactive mTORC1 signaling. One barrier to developing therapeutic approaches and understanding the origins of tuber cells is the lack of a model system that recapitulates this pathology. To address this, we established a genetically mosaic cortical organoid system that models a somatic "second-hit" mutation, which is thought to drive the formation of tubers in TSC. With this model, we find that loss of TSC2 cell-autonomously promotes the differentiation of astrocytes, which exhibit features of a disease-associated reactive state. TSC2 -/- astrocytes have pronounced changes in morphology and upregulation of proteins that are risk factors for neurodegenerative diseases, such as clusterin and APOE. Using multiplexed immunofluorescence in primary tubers from TSC patients, we show that tuber cells with hyperactive mTORC1 activity also express reactive astrocyte proteins, and we identify a unique population of cells with expression profiles that match those observed in organoids. Together, this work reveals that reactive astrogliosis is a primary feature of TSC that arises early in cortical development. Dysfunctional glia are therefore poised to be drivers of pathophysiology, nominating a potential therapeutic target for treating TSC and related mTORopathies.
Collapse
Affiliation(s)
- Thomas L. Li
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
- Department of Neuroscience, University of California, Berkeley, Berkeley, CA, USA
| | - John D. Blair
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Taesun Yoo
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
- Department of Neuroscience, University of California, Berkeley, Berkeley, CA, USA
| | - Gerald A. Grant
- Department of Neurosurgery, Lucile Packard Children’s Hospital and Stanford University Medical Center, Stanford, CA, USA
| | - Dirk Hockemeyer
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA, USA
| | - Brenda E. Porter
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
| | - Helen S. Bateup
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
- Department of Neuroscience, University of California, Berkeley, Berkeley, CA, USA
| |
Collapse
|
12
|
Li W, Dong P, Zhang G, Hu J, Yang S. Emerging Therapeutic Innovations for Vitiligo Treatment. Curr Issues Mol Biol 2025; 47:191. [PMID: 40136446 PMCID: PMC11940846 DOI: 10.3390/cimb47030191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Revised: 03/11/2025] [Accepted: 03/13/2025] [Indexed: 03/27/2025] Open
Abstract
Vitiligo is a chronic autoimmune disorder with a multifactorial etiology, typically manifesting as localized or generalized hypopigmentation or depigmentation of the skin and mucous membranes. The pathogenesis of vitiligo is complex and significantly impacts patients' quality of life. Although traditional treatments such as hormone therapy, topical medications, and laser therapy can help control the disease to some extent, their outcomes remain unsatisfactory. Therefore, ongoing research is crucial to explore and develop novel treatment strategies while assessing their efficacy and safety. This review aims to classify and summarize various new candidate drugs for vitiligo currently undergoing clinical trials, providing a reference for clinical practice. Recent advancements in the understanding of the pathogenesis of vitiligo have facilitated the development of potential treatment strategies, such as Janus kinase inhibitors, cytokine blockers, and agents targeting tissue-resident memory or regulatory T cells. These emerging therapies offer hope to patients with vitiligo, though further investigation is needed to confirm their safety, efficacy, and optimal treatment regimens.
Collapse
Affiliation(s)
- Weiran Li
- Institute of Dermatology and Department of Dermatology, The First Affiliated Hospital, Anhui Medical University, Hefei 230000, China; (P.D.); (G.Z.); (J.H.)
- Department of Dermatology, Dushu Lake Hospital Affiliated to Soochow University, Suzhou 215128, China
- Key Laboratory of Dermatology, Ministry of Education of the People’s Republic of China, Hefei 230000, China
| | - Penghao Dong
- Institute of Dermatology and Department of Dermatology, The First Affiliated Hospital, Anhui Medical University, Hefei 230000, China; (P.D.); (G.Z.); (J.H.)
- Key Laboratory of Dermatology, Ministry of Education of the People’s Republic of China, Hefei 230000, China
| | - Guiyuan Zhang
- Institute of Dermatology and Department of Dermatology, The First Affiliated Hospital, Anhui Medical University, Hefei 230000, China; (P.D.); (G.Z.); (J.H.)
- Key Laboratory of Dermatology, Ministry of Education of the People’s Republic of China, Hefei 230000, China
| | - Junjie Hu
- Institute of Dermatology and Department of Dermatology, The First Affiliated Hospital, Anhui Medical University, Hefei 230000, China; (P.D.); (G.Z.); (J.H.)
- Key Laboratory of Dermatology, Ministry of Education of the People’s Republic of China, Hefei 230000, China
| | - Sen Yang
- Institute of Dermatology and Department of Dermatology, The First Affiliated Hospital, Anhui Medical University, Hefei 230000, China; (P.D.); (G.Z.); (J.H.)
- Department of Dermatology, Dushu Lake Hospital Affiliated to Soochow University, Suzhou 215128, China
- Key Laboratory of Dermatology, Ministry of Education of the People’s Republic of China, Hefei 230000, China
| |
Collapse
|
13
|
Koundouros N, Nagiec MJ, Bullen N, Noch EK, Burgos-Barragan G, Li Z, He L, Cho S, Parang B, Leone D, Andreopoulou E, Blenis J. Direct sensing of dietary ω-6 linoleic acid through FABP5-mTORC1 signaling. Science 2025; 387:eadm9805. [PMID: 40080571 DOI: 10.1126/science.adm9805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 10/09/2024] [Accepted: 01/14/2025] [Indexed: 03/15/2025]
Abstract
Diet influences macronutrient availability to cells, and although mechanisms of sensing dietary glucose and amino acids are well characterized, less is known about sensing lipids. We defined a nutrient signaling mechanism involving fatty acid-binding protein 5 (FABP5) and mechanistic target of rapamycin complex 1 (mTORC1) that is activated by the essential polyunsaturated fatty acid (PUFA) ω-6 linoleic acid (LA). FABP5 directly bound to the regulatory-associated protein of mTOR (Raptor) to enhance formation of functional mTORC1 and substrate binding, ultimately converging on increased mTOR signaling and proliferation. The amounts of FABP5 protein were increased in tumors and serum from triple-negative compared with those from receptor-positive breast cancer patients, which highlights its potential role as a biomarker that mediates cellular responses to ω-6 LA intake in this disease subtype.
Collapse
Affiliation(s)
- Nikos Koundouros
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA
| | - Michal J Nagiec
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA
| | - Nayah Bullen
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Evan K Noch
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Department of Neurology, Division of Neuro-oncology, Weill Cornell Medicine, New York, NY, USA
| | - Guillermo Burgos-Barragan
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA
| | - Zhongchi Li
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA
| | - Long He
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA
| | - Sungyun Cho
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA
| | - Bobak Parang
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA
- Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Dominique Leone
- Cancer Clinical Trials Office - Breast, Weill Cornell Medicine, New York, NY, USA
| | - Eleni Andreopoulou
- Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medicine, New York Presbyterian Hospital, New York, NY, USA
| | - John Blenis
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA
- Department of Biochemistry, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
14
|
Mitchell W, Pharaoh G, Tyshkovskiy A, Campbell M, Marcinek DJ, Gladyshev VN. The Mitochondria-Targeted Peptide Therapeutic Elamipretide Improves Cardiac and Skeletal Muscle Function During Aging Without Detectable Changes in Tissue Epigenetic or Transcriptomic Age. Aging Cell 2025:e70026. [PMID: 40080911 DOI: 10.1111/acel.70026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 01/23/2025] [Accepted: 02/10/2025] [Indexed: 03/15/2025] Open
Abstract
Aging-related decreases in cardiac and skeletal muscle function are strongly associated with various comorbidities. Elamipretide (ELAM), a novel mitochondria-targeted peptide, has demonstrated broad therapeutic efficacy in ameliorating disease conditions associated with mitochondrial dysfunction across both clinical and pre-clinical models. Herein, we investigated the impact of 8-week ELAM treatment on pre- and post-measures of C57BL/6J mice frailty, skeletal muscle, and cardiac muscle function, coupled with post-treatment assessments of biological age and affected molecular pathways. We found that health status, as measured by frailty index, cardiac strain, diastolic function, and skeletal muscle force, is significantly diminished with age, with skeletal muscle force changing in a sex-dependent manner. Conversely, ELAM mitigated frailty accumulation and was able to partially reverse these declines, as evidenced by treatment-induced increases in cardiac strain and muscle fatigue resistance. Despite these improvements, we did not detect statistically significant changes in gene expression or DNA methylation profiles indicative of molecular reorganization or reduced biological age in most ELAM-treated groups. However, pathway analyses revealed that ELAM treatment showed pro-longevity shifts in gene expression, such as upregulation of genes involved in fatty acid metabolism, mitochondrial translation, and oxidative phosphorylation, and downregulation of inflammation. Together, these results indicate that ELAM treatment is effective at mitigating signs of sarcopenia and cardiac dysfunction in an aging mouse model, but that these functional improvements occur independently of detectable changes in epigenetic and transcriptomic age. Thus, some age-related changes in function may be uncoupled from changes in molecular biological age.
Collapse
Affiliation(s)
- Wayne Mitchell
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Gavin Pharaoh
- Department of Radiology, University of Washington, Seattle, Washington, USA
| | - Alexander Tyshkovskiy
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Matthew Campbell
- Department of Radiology, University of Washington, Seattle, Washington, USA
| | - David J Marcinek
- Department of Radiology, University of Washington, Seattle, Washington, USA
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
| | - Vadim N Gladyshev
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
15
|
Turck JW, Sultana H, Neelakanta G. Arthropod autophagy molecules facilitate Anaplasma phagocytophilum infection of Ixodes scapularis tick cells. Commun Biol 2025; 8:433. [PMID: 40082564 PMCID: PMC11906822 DOI: 10.1038/s42003-025-07859-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 02/28/2025] [Indexed: 03/16/2025] Open
Abstract
Ixodes scapularis ticks transmit several medically important pathogens including Anaplasma phagocytophilum to humans and animals. In this study, we provide evidence that A. phagocytophilum modulates autophagy molecules for its survival in tick cells. qRT-PCR analysis revealed that A. phagocytophilum infection results in the upregulation of tyrosine phosphatase, shp-2, and serine/threonine-protein kinase, mTOR, in ticks and tick cells. RNAi-mediated knockdown of shp-2 or functional blocking with SHP-2 inhibitor resulted in significantly increased bacterial burden and reduced phospho-mTOR levels in A. phagocytophilum-infected tick cells. In addition, treatment of A. phagocytophilum-infected tick cells with rapamycin (mTOR inhibitor) resulted in significantly increased bacterial burden and reduced phospho-mTOR levels. Furthermore, expression of autophagy molecules such as atg14 and ulk1 were noted to be upregulated in both A. phagocytophilum-infected unfed ticks and tick cells. RNAi-mediated silencing of atg14 or ulk1 affected bacterial growth in tick cells. Collectively, these results not only indicate distinct host and pathogen responses in tick-A. phagocytophilum interactions but also suggest that this bacterium modulates autophagy molecules for its survival in ticks.
Collapse
Affiliation(s)
- Jeremy W Turck
- Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, TN, USA
| | - Hameeda Sultana
- Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, TN, USA
| | - Girish Neelakanta
- Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, TN, USA.
| |
Collapse
|
16
|
Yan L, Li X, Xu J, Tang S, Wang G, Shi M, Liu P. The CNC-family transcription factor NRF3: A crucial therapeutic target for cancer treatment. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167794. [PMID: 40081618 DOI: 10.1016/j.bbadis.2025.167794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 02/20/2025] [Accepted: 03/08/2025] [Indexed: 03/16/2025]
Abstract
The CNC-bZIP family member NRF3 (NFE2L3) has received limited attention since its discovery. However, recent research has gradually revealed its biological functions, such as involvement in the regulation of cell differentiation, lipid metabolism, and malignant cell proliferation. Under physiological conditions, NRF3 is anchored to the endoplasmic reticulum within the cytoplasm and is biologically inactive. Upon cellular exposure to microenvironmental stresses such as oxidative stress, NRF3 translocates to the nucleus, binds to DNA, and acts as a transcription factor by inducing or repressing the expression of various genes. In terms of tumor regulation, NRF3 exhibits a dual role. It can function as a tumor suppressor to prevent the malignant progression of tumor tissues, protecting the organism from harm. Conversely, current research indicates that NRF3 plays a tumor-promoting role in most tumor tissues. NRF3 enhances the proliferation, migration and invasion of tumor cells by regulating cell cycle-related proteins and enhancing proteasome assembly to degrade tumor suppressors. Studies correlating NRF3 expression with clinical tumor features have found that elevated NRF3 expression is often associated with poor prognoses in various cancers, with patients exhibiting higher NRF3 expression typically having lower survival rates. Several studies suggest that NRF3 could serve as a clinical diagnostic and prognostic marker for tumors. Finally, from the clinical perspective, exploring the feasibility of inhibiting NRF3 activity in tumor treatment provides new insights for the development of NRF3-targeted oncological therapies.
Collapse
Affiliation(s)
- Liangwen Yan
- Department of Critical Care Medicine, National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China; International Joint Research Center on Cell Stress and Disease Diagnosis and Therapy, National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xinyan Li
- International Joint Research Center on Cell Stress and Disease Diagnosis and Therapy, National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Jiayi Xu
- International Joint Research Center on Cell Stress and Disease Diagnosis and Therapy, National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Shenkang Tang
- Department of Oncology, Affiliated Hospital of Shaanxi University of Chinese Medicine, Xianyang, China
| | - Gang Wang
- Department of Critical Care Medicine, National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China; Key Laboratory of Surgical Critical Care and Life Support, Xi'an Jiaotong University, Ministry of Education of China, Xi'an, China
| | - Mengjiao Shi
- International Joint Research Center on Cell Stress and Disease Diagnosis and Therapy, National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.
| | - Pengfei Liu
- International Joint Research Center on Cell Stress and Disease Diagnosis and Therapy, National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China; Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education of China, Xi'an, China.
| |
Collapse
|
17
|
Dou C, Liu D, Kong L, Chen M, Ye C, Zhu Z, Zheng J, Xu M, Xu Y, Li M, Zhao Z, Lu J, Chen Y, Ning G, Wang W, Bi Y, Wang T. Shared genetic architecture of type 2 diabetes with muscle mass and function and frailty reveals comorbidity etiology and pleiotropic druggable targets. Metabolism 2025; 164:156112. [PMID: 39710002 DOI: 10.1016/j.metabol.2024.156112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 12/19/2024] [Accepted: 12/19/2024] [Indexed: 12/24/2024]
Abstract
BACKGROUND Delineating the shared genetic architecture of type 2 diabetes with muscle mass and function and frailty is essential for unraveling the common etiology and developing holistic therapeutic strategies for these co-existing conditions. METHODS In this genome-wide pleiotropic association study, we performed multi-level pairwise trait pleiotropic analyses using genome-wide association study summary statistics from up to 461,026 European ancestry individuals to dissect the shared genetic factors and causal relationships of type 2 diabetes and seven glycemic traits with four muscle mass- and function-related phenotypes and the frailty index. RESULTS We first identified 27 pairs with significant genetic correlations through the linkage disequilibrium score regression and high-definition likelihood analysis. Then we determined 79 pleiotropic loci and 109 pleiotropic genes across linkage pairs via the pleiotropic analysis under the composite null hypothesis (PLACO), the colocalization, and the Multi-marker Analysis of GenoMic Annotation (MAGMA) analyses. We subsequently performed transcriptome-wide association study (TWAS) analyses using joint-tissue imputation, refined by gene-based integrative fine-mapping through a conditional TWAS approach, and identified 44 unique causal shared genes across 13 tissues in linkage pairs, including eight druggable genes (ABO, AOC1, FTO, GCKR, MTOR, POLK, PPARG, and APEH), with MTOR and PPARG categorized as clinically actionable. Two-sample Mendelian randomization analysis supported bidirectional causality between diabetes and frailty index and unidirectional causal effects of muscle phenotypes on glycemic profiles. CONCLUSIONS Our findings highlight the common genetic underpinnings between type 2 diabetes and muscle loss and frailty and inform drug targets with pleiotropic effects on both of these aging-related challenges.
Collapse
Affiliation(s)
- Chun Dou
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dong Liu
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lijie Kong
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mingling Chen
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chaojie Ye
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zheng Zhu
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jie Zheng
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Min Xu
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yu Xu
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mian Li
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhiyun Zhao
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jieli Lu
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuhong Chen
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guang Ning
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weiqing Wang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yufang Bi
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tiange Wang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
18
|
Xie K, Yano S, Wang J, Yamakoshi S, Ohta T, Uto T, Sakai M, He X, Yoshizaki K, Kubota T, Ohnishi K, Hara T. The Yeast-Fermented Garlic and a Balance of Spermine/Spermidine Activates Autophagy via EGR1 Transcriptional Factor. Mol Nutr Food Res 2025; 69:e202400606. [PMID: 39945057 PMCID: PMC11874185 DOI: 10.1002/mnfr.202400606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 12/03/2024] [Accepted: 12/11/2024] [Indexed: 03/04/2025]
Abstract
Spermine (SPM) and spermidine (SPD) are polyamines found in all organisms, and their concentrations can be regulated by ingestion. We demonstrated that yeast-fermented garlic (YF) extract significantly increased autophag flux in OUMS-36T-1 and HeLa cells expressing the fluorescent probe (GFP-LC3-RFP-LC3ΔG). YF-induced increase of autophagy occurred independently of mTORC1 signaling, and RNA-sequencing analysis revealed that EGR1 was the most significantly altered gene in YF-treated OUMS-36T-1 cells. YF-treated EGR1-deficient HAP1 cells displayed reduced autophagic flux (p < 0.05). YF-induced increasing of autophagic flux occurred via a specific SPM/SPD ratio. HAP1 cells treated with equivalent amounts of SPD or SPM as that found in YF did not increase autophagic flux (p > 0.05); however, treatment with SPD and SPM in the same ratio as that found in YF increased autophagic flux (p < 0.05). This specific SPM/SPD ratio reduced MG132-induced proteostress via EGR1-dependent pathways (p < 0.05). Thus, the SPM/SPD balance may regulate autophagy via EGR1-dependent pathways, and controlling this balance may provide a strategy to maintain cellular homeostasis.
Collapse
Affiliation(s)
- Kun Xie
- Laboratory of Food and Life ScienceFaculty of Human SciencesWaseda UniversityTokorozawaJapan
- College of Animal Science and TechnologyHunan Agricultural UniversityChangshaHunanChina
| | - Satoshi Yano
- Laboratory of Food and Life ScienceFaculty of Human SciencesWaseda UniversityTokorozawaJapan
| | - Jinyun Wang
- Laboratory of Food and Life ScienceFaculty of Human SciencesWaseda UniversityTokorozawaJapan
| | - Shota Yamakoshi
- Laboratory of Food and Life ScienceFaculty of Human SciencesWaseda UniversityTokorozawaJapan
| | - Tomoe Ohta
- Faculty of Pharmaceutical SciencesDepartment of PharmacognosyNagasaki International UniversitySaseboNagasakiJapan
| | - Takuhiro Uto
- Faculty of Pharmaceutical SciencesDepartment of PharmacognosyNagasaki International UniversitySaseboNagasakiJapan
| | - Maiko Sakai
- Department of Clinical Nutrition and Food ManagementInstitute of Biomedical SciencesTokushima University Graduate SchoolTokushimaJapan
| | - Xi He
- College of Animal Science and TechnologyHunan Agricultural UniversityChangshaHunanChina
| | - Kaichi Yoshizaki
- Department of Disease ModelInstitute for Developmental ResearchAichi Developmental Disability CenterAichiJapan
| | | | - Kohta Ohnishi
- Department of Clinical Nutrition and Food ManagementInstitute of Biomedical SciencesTokushima University Graduate SchoolTokushimaJapan
| | - Taichi Hara
- Laboratory of Food and Life ScienceFaculty of Human SciencesWaseda UniversityTokorozawaJapan
| |
Collapse
|
19
|
Samadi M, Daryanoosh F, Mojtahedi Z, Samsamy Pour A, Nobari H, Zarifkar AH, Khoramipour K. Resistance Training and Resveratrol Supplementation Improve Cancer Cachexia and Tumor Volume in Muscle Tissue of Male Mice Bearing Colon Cancer CT26 Cell Tumors. Cell Biochem Biophys 2025; 83:619-631. [PMID: 39412707 DOI: 10.1007/s12013-024-01491-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/21/2024] [Indexed: 03/03/2025]
Abstract
Losing muscle functions due to reducing muscle mass and quality is one of the main features of cancer cachexia that impairs patients' quality of life and decrease their survival. This study aimed to investigate the synergistic effects of resistance training and resveratrol supplementation on cachexia induced by CT26 tumors in male mice. Forty-eight mice were divided into eight groups randomly: healthy sedentary vehicle (HSV), healthy exercise vehicle (HEV), healthy sedentary resveratrol (HSR), healthy exercise resveratrol (HER), CT-26 tumor-bearing sedentary vehicle (TSV), CT-26 tumor-bearing exercise vehicle (TEV), CT-26 tumor-bearing sedentary resveratrol (TSR) and CT-26 tumor-bearing exercise resveratrol (TER). Training groups performed ladder climbing with weights tied to their tails, for six weeks. Resveratrol-treated groups received 50 mg/kg daily by gavage. The results showed muscle weight, and mTORC1 phosphorylation decreased in TSV compared to the HSV group. mTORC1 phosphorylation was increased in TER compared to TSV, TEV, and TSR. In addition, AMPK phosphorylation was more elevated in HER compared to HSV, HEV, and HSR. LC3BII/I ratio was higher in TSV than HSV group. Tumor volume was increased in all groups, with the lowest increase in TER group. In tumor tissue, mTORC1 phosphorylation was decreased in TER than in TSV, TEV, and TSR groups; AMPK phosphorylation and LC3BII/I ratio were increased in TSV than in TEV, TSR, and TER groups. In conclusion, the synergistic effect of resistance training and resveratrol supplementation is the most effective in reducing tumor volume. These advantages were mostly in line with molecular findings.
Collapse
Affiliation(s)
- Mahdi Samadi
- Department of Sports Sciences, Shiraz University, Shiraz, Iran
| | | | - Zahra Mojtahedi
- Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Hadi Nobari
- Department of Exercise Physiology, Faculty of Educational Sciences and Psychology, University of Mohaghegh Ardabili, Ardabil, 5619911367, Iran
| | - Amir Hossein Zarifkar
- Cellular and Molecular Biology Research Center, Larestan University of Medical Sciences, Larestan, Iran.
| | - Kayvan Khoramipour
- i+HeALTH Strategic Research Group, Department of Health Sciences, Miguel de Cervantes European University (UEMC), Valladolid, 47012, Spain.
| |
Collapse
|
20
|
Huang Y, Lu H, Liu Y, Wang J, Xia Q, Shi X, Jin Y, Liang X, Wang W, Ma X, Wang Y, Gong M, Li C, Cang C, Cui Q, Chen C, Shen T, Liu L, Wang X. Micropeptide hSPAR regulates glutamine levels and suppresses mammary tumor growth via a TRIM21-P27KIP1-mTOR axis. EMBO J 2025; 44:1414-1441. [PMID: 39875724 DOI: 10.1038/s44318-024-00359-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 11/26/2024] [Accepted: 12/04/2024] [Indexed: 01/30/2025] Open
Abstract
mTOR plays a pivotal role in cancer growth control upon amino acid response. Recently, CDK inhibitor P27KIP1 has been reported as a noncanonical inhibitor of mTOR signaling in MEFs, via unclear mechanisms. Here, we find that P27KIP1 degradation via E3 ligase TRIM21 is inhibited by human micropeptide hSPAR through its C-terminus (hSPAR-C), causing P27KIP1's cytoplasmic accumulation in breast cancer cells. Furthermore, hSPAR/hSPAR-C also serves as an inhibitor of glutamine transporter SLC38A2 expression and thereby decreases the cellular glutamine levels specifically in cancer cells. The resultant glutamine deprivation sequentially triggers translocation of cytoplasmic P27KIP1 to lysosomes, where P27KIP1 disrupts the Ragulator complex and suppresses mTORC1 assembly. Administration of hSPAR or hSPAR-C significantly impedes breast cancer cell proliferation and tumor growth in xenograft models. These findings define hSPAR as an intrinsic control factor for cellular glutamine levels and as a novel tumor suppressor inhibiting mTORC1 assembly.
Collapse
Affiliation(s)
- Yan Huang
- Department of Geriatrics, Gerontology Institute of Anhui Province, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Anhui Provincial Key Laboratory of Tumor Immunotherapy and Nutrition Therapy, Hefei, Anhui, China
| | - Hua Lu
- Department of Geriatrics, Gerontology Institute of Anhui Province, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Anhui Provincial Key Laboratory of Tumor Immunotherapy and Nutrition Therapy, Hefei, Anhui, China
| | - Yao Liu
- Department of Hepatobiliary Surgery, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Jiabei Wang
- Department of Hepatobiliary Surgery, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Qingan Xia
- Department of Pathology, Tangshan Gongren Hospital, Tangshan, Hebei, China
| | - Xiangmin Shi
- Department of Geriatrics, Gerontology Institute of Anhui Province, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Anhui Provincial Key Laboratory of Tumor Immunotherapy and Nutrition Therapy, Hefei, Anhui, China
| | - Yan Jin
- Department of Geriatrics, Gerontology Institute of Anhui Province, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Anhui Provincial Key Laboratory of Tumor Immunotherapy and Nutrition Therapy, Hefei, Anhui, China
| | - Xiaolin Liang
- Department of Geriatrics, Gerontology Institute of Anhui Province, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Anhui Provincial Key Laboratory of Tumor Immunotherapy and Nutrition Therapy, Hefei, Anhui, China
| | - Wei Wang
- Department of Geriatrics, Gerontology Institute of Anhui Province, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Anhui Provincial Key Laboratory of Tumor Immunotherapy and Nutrition Therapy, Hefei, Anhui, China
| | - Xiaopeng Ma
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Yangyi Wang
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Meng Gong
- Department of Geriatrics, Gerontology Institute of Anhui Province, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Anhui Provincial Key Laboratory of Tumor Immunotherapy and Nutrition Therapy, Hefei, Anhui, China
| | - Canjun Li
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Chunlei Cang
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Qinghua Cui
- School of Sports Medicine, Wuhan Institute of Physical Education, Wuhan, Hubei, China
- Department of Biomedical Informatics, Centre for Noncoding RNA Medicine, State Key Laboratory of Vascular Homeostasis and Remodeling, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Ceshi Chen
- Yunnan Key Laboratory of Breast Cancer Precision Medicine, Academy of Biomedical Engineering, Kunming Medical University, Kunming, Yunnan, China
- Yunnan Key Laboratory of Breast Cancer Precision Medicine, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Peking University Cancer Hospital Yunnan, Kunming, Yunnan, China
| | - Tao Shen
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Metabolic Diseases, Anhui Provincial Engineering Research Centre for Molecular Detection and Diagnostics, College of Life Sciences, Anhui Normal University, Wuhu, Anhui, China.
| | - Lianxin Liu
- Department of Hepatobiliary Surgery, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China.
| | - Xiangting Wang
- Department of Geriatrics, Gerontology Institute of Anhui Province, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China.
- Anhui Provincial Key Laboratory of Tumor Immunotherapy and Nutrition Therapy, Hefei, Anhui, China.
| |
Collapse
|
21
|
Li T, Huang N, Chen H, Yang Y, Zhang J, Xu W, Gong H, Gong C, Yang M, Zhao T, Wang F, Xiao H. Daytime-Restricted Feeding Alleviates D-Galactose-Induced Aging in Mice and Regulates the AMPK and mTORC1 Activities. J Cell Physiol 2025; 240:e70020. [PMID: 40070151 DOI: 10.1002/jcp.70020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 02/25/2025] [Accepted: 02/26/2025] [Indexed: 03/17/2025]
Abstract
Time-restricted feeding (TRF) is a distinct regimen of intermittent fasting advocated for health improving. Although nighttime TRF (NRF) in rodents is analogous to daytime TRF (DRF) in humans and has health benefits, the effects of DRF on rodent's health remain uncertain. The adverse health effects of DRF in rodents are primarily attributed to its implementation-induced temporal shift in the expression of circadian rhythm-related genes. However, studies also demonstrate the health-beneficial effect of restricted feeding itself on metabolic homeostasis, particularly in periphery tissues. Moreover, the direct effects of DRF on aging progression in rodents are underexplored, highlighting a gap in current research. To explore the overall health effects of long-term DRF in rodents, especially its influence on aging progression, we investigated the impact of long-term DRF on mice under a progeric aging condition. Results showed that both 4-h and 8-h DRF regimens exerted positive effects on aging retardation; these effects were manifested as improved physical and memory capacities, enhanced liver and kidney functions, and reduced oxidative damage and inflammatory response. These DRF regimens also lowered the manifestation of aging-related markers in peripheral tissues, with decreased SA-β-gal staining and p16 expression. Mechanistically, DRF regimens, especially DRF8, upregulated AMPK signaling and downregulated mTORC1 signaling. Interestingly, the health benefits of DRF are similar to those of metformin intervention. In conclusion, our study demonstrates for the first time that DRF effectively counteracts oxidative stress-induced aging progression in mice, supporting the viewpoint that TRF as a promising strategy for preventing aging and aging-related disorders.
Collapse
Affiliation(s)
- Tiepeng Li
- National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ning Huang
- National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
- Development and Regeneration Key Laboratory of Sichuan Province, Chengdu Medical College, Chengdu, China
| | - Honghan Chen
- National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Yu Yang
- National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Jian Zhang
- National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Weitong Xu
- National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Hui Gong
- National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Chuhui Gong
- National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Ming Yang
- National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Tingting Zhao
- National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Fangfang Wang
- National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Hengyi Xiao
- National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
22
|
Hsu CY, Jasim SA, Bansal P, Kaur H, Ahmad I, Saud A, Deorari M, Al-Mashhadani ZI, Kumar A, Zwamel AH. Delving Into lncRNA-Mediated Regulation of Autophagy-Associated Signaling Pathways in the Context of Breast Cancer. Cell Biol Int 2025; 49:221-234. [PMID: 39873206 DOI: 10.1002/cbin.12277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 12/15/2024] [Accepted: 01/10/2025] [Indexed: 01/30/2025]
Abstract
Breast cancer is a multifaceted and prevalent malignancy, impacting a considerable proportion of women globally. Numerous signaling pathways intricately regulate cellular functions such as growth, proliferation, and survival. Among the various regulators, lncRNAs have emerged as significant players despite their inability to encode proteins. An expanding body of literature underscores the pivotal roles lncRNAs play in cancer biology, particularly in the context of breast cancer. Autophagy, the cellular process dedicated to the degradation and recycling of cellular components, is now recognized as a crucial factor in cancer initiation and progression. The interplay between lncRNAs, various signaling pathways, and autophagy in the pathophysiology of breast cancer remains an active area of investigation. Researchers have identified specific lncRNAs that are dysregulated in breast cancer patients, influencing the modulation of key signaling pathways. Using experimental methodologies and bioinformatics approaches, multiple lncRNAs have been elucidated, providing deeper insights into their contributions to breast cancer pathogenesis and metastatic processes. In summary, the pathophysiological landscape of breast cancer is characterized by the complex interactions involving lncRNA-mediated autophagy. This understanding paves the way for identifying novel therapeutic targets, prognostic markers, and diagnostic markers, ultimately contributing to improved treatment outcomes in breast cancer management.
Collapse
Affiliation(s)
- Chou-Yi Hsu
- Thunderbird School of Global Management, Arizona State University, Tempe Campus, Phoenix, Arizona, USA
| | - Saade Abdalkareem Jasim
- Medical Laboratory Techniques Department, College of Health and Medical Technology, Al-Maarif University College, Anbar, Iraq
| | - Pooja Bansal
- Department of Biotechnology and Genetics, Jain (Deemed-to-be) University, Bengaluru, Karnataka, India
- Department of Allied Healthcare and Sciences, Vivekananda Global University, Jaipur, Rajasthan, India
| | - Harpreet Kaur
- School of Basic & Applied Sciences, Shobhit University, Gangoh, India
- Department of Health & Allied Sciences, Arka Jain University, Jamshedpur, India
| | - Irfan Ahmad
- Department of Clinical Laboratory Sciences, College of Applied Medical Science, King Khalid University, Abha, Saudi Arabia
| | - Abdulnaser Saud
- Department of Pharmacy, Al-Hadi University College, Baghdad, Iraq
| | - Mahamedha Deorari
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | | | - Abhinav Kumar
- Department of Nuclear and Renewable Energy, Ural Federal University Named After the First President of Russia Boris Yeltsin, Ekaterinburg, Russia
- Department of Mechanical Engineering, Karpagam Academy of Higher Education, Coimbatore, India
| | - Ahmed Hussein Zwamel
- Department of Medical Laboratory Technology, College of Medical Technology, The Islamic University, Najaf, Iraq
| |
Collapse
|
23
|
Zhang X, Zhang L, Tian J, Li Y, Wu M, Zhang L, Qin X, Gong L. The application and prospects of drug delivery systems in idiopathic pulmonary fibrosis. BIOMATERIALS ADVANCES 2025; 168:214123. [PMID: 39615374 DOI: 10.1016/j.bioadv.2024.214123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 11/06/2024] [Accepted: 11/25/2024] [Indexed: 12/13/2024]
Abstract
Idiopathic pulmonary fibrosis (IPF) is an interstitial lung disease primarily affecting elderly individuals aged >65 years and has a poor prognosis. No effective treatment is currently available for IPF. The two antipulmonary fibrosis drugs nintedanib and pirfenidone approved by the FDA in the United States have somewhat decelerated IPF progression. However, the side effects of these drugs can lead to poor patient tolerance and compliance with the medications. Researchers have recently developed various methods for IPF treatment, such as gene silencing and pathway inhibitors, which hold great promise in IPF treatment. Nevertheless, the nonselectivity and nonspecificity of drugs often affect their efficacies. Drug delivery systems (DDS) are crucial for delivering drugs to specific target tissues or cells, thereby minimizing potential side effects, enhancing drug bioavailability, and reducing lung deposition. This review comprehensively summarizes the current state of DDS and various delivery strategies for IPF treatment (e.g., nano-delivery, hydrogel delivery, and biological carrier delivery) to completely expound the delivery mechanisms of different drug delivery carriers. Subsequently, the advantages and disadvantages of different DDS are fully discussed. Finally, the challenges and difficulties associated with the use of different DDS are addressed so as to accelerate their rapid clinical translation.
Collapse
Affiliation(s)
- Xi Zhang
- School of Biological Engineering, Zunyi Medical University, Guangdong 519000, China; Department of Clinical Medicine, The Fifth Clinical Institution, Zhuhai Campus of Zunyi Medical University, Guangdong 519000, China
| | - Ling Zhang
- Department of Respiratory and Critical Care Medicine, The First People's Hospital of Zunyi (The Third Affiliated Hospital of Zunyi Medical University), GuiZhou 563000, China
| | - Jiahua Tian
- Department of Clinical Medicine, Zunyi Medical University, Zunyi 563000, China
| | - Yunfei Li
- Department of Respiratory and Critical Care Medicine, The First People's Hospital of Zunyi (The Third Affiliated Hospital of Zunyi Medical University), GuiZhou 563000, China
| | - Manli Wu
- Department of Respiratory and Critical Care Medicine, The First People's Hospital of Zunyi (The Third Affiliated Hospital of Zunyi Medical University), GuiZhou 563000, China
| | - Longju Zhang
- Department of Respiratory and Critical Care Medicine, The First People's Hospital of Zunyi (The Third Affiliated Hospital of Zunyi Medical University), GuiZhou 563000, China
| | - Xiaofei Qin
- School of Biological Engineering, Zunyi Medical University, Guangdong 519000, China.
| | - Ling Gong
- Department of Respiratory and Critical Care Medicine, The First People's Hospital of Zunyi (The Third Affiliated Hospital of Zunyi Medical University), GuiZhou 563000, China.
| |
Collapse
|
24
|
Lv R, Liu B, Jiang Z, Zhou R, Liu X, Lu T, Bao Y, Huang C, Zou G, Zhang Z, Lu L, Yin Q. Intermittent fasting and neurodegenerative diseases: Molecular mechanisms and therapeutic potential. Metabolism 2025; 164:156104. [PMID: 39674569 DOI: 10.1016/j.metabol.2024.156104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 12/08/2024] [Accepted: 12/09/2024] [Indexed: 12/16/2024]
Abstract
Neurodegenerative disorders are straining public health worldwide. During neurodegenerative disease progression, aberrant neuronal network activity, bioenergetic impairment, adaptive neural plasticity impairment, dysregulation of neuronal Ca2+ homeostasis, oxidative stress, and immune inflammation manifest as characteristic pathological changes in the cellular milieu of the brain. There is no drug for the treatment of neurodegenerative disorders, and therefore, strategies/treatments for the prevention or treatment of neurodegenerative disorders are urgently needed. Intermittent fasting (IF) is characterized as an eating pattern that alternates between periods of fasting and eating, requiring fasting durations that vary depending on the specific protocol implemented. During IF, depletion of liver glycogen stores leads to the production of ketone bodies from fatty acids derived from adipocytes, thereby inducing an altered metabolic state accompanied by cellular and molecular adaptive responses within neural networks in the brain. At the cellular level, adaptive responses can promote the generation of synapses and neurons. At the molecular level, IF triggers the activation of associated transcription factors, thereby eliciting the expression of protective proteins. Consequently, this regulatory process governs central and peripheral metabolism, oxidative stress, inflammation, mitochondrial function, autophagy, and the gut microbiota, all of which contribute to the amelioration of neurodegenerative disorders. Emerging evidence suggests that weight regulation significantly contributes to the neuroprotective effects of IF. By alleviating obesity-related factors such as blood-brain barrier dysfunction, neuroinflammation, and β-amyloid accumulation, IF enhances metabolic flexibility and insulin sensitivity, further supporting its potential in mitigating neurodegenerative disorders. The present review summarizes animal and human studies investigating the role and underlying mechanisms of IF in physiology and pathology, with an emphasis on its therapeutic potential. Furthermore, we provide an overview of the cellular and molecular mechanisms involved in regulating brain energy metabolism through IF, highlighting its potential applications in neurodegenerative disorders. Ultimately, our findings offer novel insights into the preventive and therapeutic applications of IF for neurodegenerative disorders.
Collapse
Affiliation(s)
- Renjun Lv
- Department of Geriatric Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China.
| | - Bin Liu
- Department of Neurology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Institute of Neuroimmunology, Jinan 250014, China
| | - Ziying Jiang
- Department of Neurology, Xuanwu Hospital Capital Medical University, National Center for Neurological Disorders, Beijing, 100053, China
| | - Runfa Zhou
- Experimental Pharmacology Mannheim, European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, Ludolf-Krehlstr. 13-17, Mannheim 68167, Germany
| | - Xiaoxing Liu
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), 100191 Beijing, China
| | - Tangsheng Lu
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence Research, Peking University, Beijing 100191, China
| | - Yanping Bao
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence Research, Peking University, Beijing 100191, China
| | - Chunxia Huang
- Institute of Brain Science and Brain-inspired Research, Shandong First Medical University & Shandong Academy of Medical Sciences, 250117 Jinan, Shandong, China
| | - Guichang Zou
- Institute of Brain Science and Brain-inspired Research, Shandong First Medical University & Shandong Academy of Medical Sciences, 250117 Jinan, Shandong, China
| | - Zongyong Zhang
- Institute of Brain Science and Brain-inspired Research, Shandong First Medical University & Shandong Academy of Medical Sciences, 250117 Jinan, Shandong, China.
| | - Lin Lu
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), 100191 Beijing, China; National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence Research, Peking University, Beijing 100191, China; Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, 100871 Beijing, China.
| | - Qingqing Yin
- Department of Geriatric Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China.
| |
Collapse
|
25
|
Chen XM, Wang MX, Zhang P, Jing KM, Yue BL, Wu ZJ, Chai ZX, Liu XR, Zhong JC, Cai X. Comparative RNA-Seq analysis of differentially expressed genes in the sertoli cells of yak and cattle-yak. BMC Vet Res 2025; 21:86. [PMID: 39987073 PMCID: PMC11846318 DOI: 10.1186/s12917-025-04540-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 01/29/2025] [Indexed: 02/24/2025] Open
Abstract
BACKGROUND To study the problem of male sterility of cattle-yak and improve the yak crossbreeding, this study obtained the testicular Sertoli cells of yak and cattle-yak and compared the differences in transcriptome levels between the two bovine species. The testicular tissues of 3 healthy male cattle-yaks and 3 F1 generation male yaks were collected at the age of 24 months. The Sertoli cells were isolated after enzymatic digestion, differential adhesion and starvation treatment. DATA-4 and SOX9 immunofluorescence staining were used to identify the cell type. Sertoli cells were subjected to transcriptome sequencing, GO analysis, KEGG analysis and differentially expressed gene were validated by RT-qPCR and Western blotting. RESULTS The study successfully isolated and purified Sertoli cells of yak and cattle-yak. The transcriptome sequencing data were compared, analyzed and annotated. Compared to yak Sertoli cells, 6592 differentially expressed genes were identified, with 3007 genes upregulated and 3585 genes downregulated in cattle-yak Sertoli cells. GO analysis suggested that the upregulated genes might be mainly involved in processes such as translation, peptide biosynthetic process, amide biosynthetic process, peptide metabolic process, ribosome, cytoplasmic part, structural constituent of ribosome, structural molecule activity, endomembrane system, protein kinase activity, and phosphotransferase activity. The downregulated genes appeared to be primarily involved in protein phosphorylation, phosphorylation, endomembrane system, protein kinase activity, and phosphotransferase activity. KEGG analysis compared differential genes across 316 pathways, with 8 pathways showing significant enrichment. The upregulated pathways were potentially enriched in cattle-yak Sertoli cells, including ribosome, thermogenesis, and oxidative phosphorylation, while the downregulated pathways seemed to be significantly enriched in adherens junction, mTOR signaling pathway, AMPK signaling pathway, FoxO signaling pathway, and focal adhesion. Compared with yak Sertoli cells, ISOC2, RPL27A and FISI were highly expressed in cattle-yak, as confirmed by RT-qPCR analysis. PDPN, SORBS2, TF, PLSCR1, TJP2, KIF2C, ITGA3, SMTNL2, DSP, ADGRG1, DDR1, GSK3A, RBBP6, ZC3H15 and Claudin 11 showed low expression levels in cattle-yak. CONCLUSIONS Compared with yak Sertoli cells, the expression of genes related to protein activation, cell function, and membranous organelle composition in cattle-yak Sertoli cells appeared to be abnormal. The potential defects in cattle-yak Sertoli cells may hinder the creation of a suitable environment for spermatogenesis, which could be one of the factors contributing to male cattle-yak sterility. Claudin-11 might be a potentially important gene for further research into cattle-yak male sterility.
Collapse
Affiliation(s)
- Xue-Mei Chen
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu, Sichuan, 610041, China
- Core Facilities of West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Ming-Xiu Wang
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu, Sichuan, 610041, China
| | - Peng Zhang
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu, Sichuan, 610041, China
| | - Ke-Min Jing
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu, Sichuan, 610041, China
| | - Bing-Lin Yue
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu, Sichuan, 610041, China
| | - Zhi-Juan Wu
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu, Sichuan, 610041, China
| | - Zhi-Xin Chai
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu, Sichuan, 610041, China
| | - Xin-Rui Liu
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu, Sichuan, 610041, China
| | - Jin-Cheng Zhong
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu, Sichuan, 610041, China
| | - Xin Cai
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu, Sichuan, 610041, China.
| |
Collapse
|
26
|
Ma L, Pang Z, Zhang H, Yang X, Zheng S, Chen Y, Ding W, Han Q, Zhang X, Cao L, Fei T, Wang Q, Gao D, He A, Hu KB, Li X, Sheng R. Clear cell renal carcinoma essentially requires CDKL3 for oncogenesis. Proc Natl Acad Sci U S A 2025; 122:e2415244122. [PMID: 39937856 PMCID: PMC11848426 DOI: 10.1073/pnas.2415244122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 01/09/2025] [Indexed: 02/14/2025] Open
Abstract
Clear cell renal cell carcinoma (ccRCC) is the predominant human renal cancer with surging incidence and fatality lately. Hyperactivation of hypoxia-inducible factor (HIF) and mammalian target of rapamycin (mTOR) signaling are the common signatures in ccRCC. Herein, we employed spontaneous ccRCC model to demonstrate the indispensability of an underappreciated Ser/Thr kinase, CDKL3, in the initiation and progression of ccRCC. Ablation of CDKL3 does not affect normal kidney, but abrogates Akt-mTOR hyperactivity and thoroughly prevents the formation and growth of the HIF-agitated ccRCC in vivo. Remarkable clinical correlations also supported the oncogenic role of CDKL3. Mechanism-wise, cytosolic CDKL3 unexpectedly behaves as the adaptor to physically potentiate mTORC2-dependent Akt activation without functioning through kinase activity. And mTORC2 can phosphorylate and stabilize CDKL3 to form a positive feedback loop to sustain the cancer-favored Akt-mTOR overactivation. Together, we revealed the pathological importance and molecular mechanism of CDKL3-mediated Akt-mTOR axis in ccRCC initiation and progression.
Collapse
Affiliation(s)
- Lanjing Ma
- College of Life and Health Sciences, Northeastern University, Shenyang110819, China
| | - Zhongqiu Pang
- College of Life and Health Sciences, Northeastern University, Shenyang110819, China
| | - Haijiao Zhang
- College of Life and Health Sciences, Northeastern University, Shenyang110819, China
| | - Xueling Yang
- College of Life and Health Sciences, Northeastern University, Shenyang110819, China
| | - Shaoqin Zheng
- College of Life and Health Sciences, Northeastern University, Shenyang110819, China
| | - Yi Chen
- Division of Hematology and Oncology, Department of Medicine, Columbia Stem Cell Initiative, Columbia University Irving Medical Center, New York10032
| | - Weijie Ding
- College of Life and Health Sciences, Northeastern University, Shenyang110819, China
| | - Qing Han
- College of Life and Health Sciences, Northeastern University, Shenyang110819, China
| | - Xi Zhang
- College of Sciences, Northeastern University, Shenyang110004, China
| | - Liu Cao
- College of Basic Medical Science, China Medical University, Shenyang110122, China
| | - Teng Fei
- College of Life and Health Sciences, Northeastern University, Shenyang110819, China
| | - Qiang Wang
- Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou510006, China
| | - Daming Gao
- State Key Laboratory of Cell Biology, Chinese Academy of Sciences Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai200031, China
| | - Aina He
- Department of Oncology, the Sixth People’s Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai200233, China
| | - Ke-Bang Hu
- Department of Urology, The First Hospital of Jilin University, Changchun130021, China
| | - Xuexin Li
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang110032, China
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang110122, China
- Institute of Health Sciences, China Medical University, Shenyang110122, China
- Department of Physiology and Pharmacology, Karolinska Institute, Solna17165, Sweden
| | - Ren Sheng
- College of Life and Health Sciences, Northeastern University, Shenyang110819, China
| |
Collapse
|
27
|
Saunders RA, Allen WE, Pan X, Sandhu J, Lu J, Lau TK, Smolyar K, Sullivan ZA, Dulac C, Weissman JS, Zhuang X. A platform for multimodal in vivo pooled genetic screens reveals regulators of liver function. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.11.18.624217. [PMID: 39605605 PMCID: PMC11601512 DOI: 10.1101/2024.11.18.624217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Organ function requires coordinated activities of thousands of genes in distinct, spatially organized cell types. Understanding the basis of emergent tissue function requires approaches to dissect the genetic control of diverse cellular and tissue phenotypes in vivo. Here, we develop paired imaging and sequencing methods to construct large-scale, multi-modal genotype-phenotypes maps in tissue with pooled genetic perturbations. Using imaging, we identify genetic perturbations in individual cells while simultaneously measuring their gene expression and subcellular morphology. Using single-cell sequencing, we measure transcriptomic responses to the same genetic perturbations. We apply this approach to study hundreds of genetic perturbations in the mouse liver. Our study reveals regulators of hepatocyte zonation and liver unfolded protein response, as well as distinct pathways that cause hepatocyte steatosis. Our approach enables new ways of interrogating the genetic basis of complex cellular and organismal physiology and provides crucial training data for emerging machine-learning models of cellular function.
Collapse
Affiliation(s)
- Reuben A. Saunders
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
- Whitehead Institute, Cambridge, MA 02139, USA
- University of California, San Francisco, San Francisco, CA 94158, USA
- Present address: Society of Fellows, Harvard University, MA 02138, USA
- These authors contributed equally
| | - William E. Allen
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
- Society of Fellows, Harvard University, Cambridge, MA 02138, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
- Present address: Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305; Arc Institute, Palo Alto, CA 94304
- These authors contributed equally
- Lead contact
| | - Xingjie Pan
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
- Lead AI Scientist
| | - Jaspreet Sandhu
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
- Whitehead Institute, Cambridge, MA 02139, USA
- Division of Gastroenterology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Jiaqi Lu
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | - Thomas K. Lau
- Department of Statistics, Stanford University, Stanford, CA 94305
| | - Karina Smolyar
- Whitehead Institute, Cambridge, MA 02139, USA
- Department of Biology, MIT, Cambridge, MA 02139 USA
| | - Zuri A. Sullivan
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | - Catherine Dulac
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | - Jonathan S. Weissman
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
- Whitehead Institute, Cambridge, MA 02139, USA
- Department of Biology, MIT, Cambridge, MA 02139 USA
| | - Xiaowei Zhuang
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
- Department of Physics, Harvard University, Cambridge, MA 02138, USA
| |
Collapse
|
28
|
Xu ZJ, Xu J, Lei WJ, Wang X, Zou QL, Lv LC, Liu C, Hu WM, Xiang YJ, Shen JY, Wei TM, Zeng CL. RANBP1 Regulates NOTCH3-Mediated Autophagy in High Glucose-Induced Vascular Smooth Muscle Cells. FRONT BIOSCI-LANDMRK 2025; 30:26850. [PMID: 40018934 DOI: 10.31083/fbl26850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 11/29/2024] [Accepted: 12/16/2024] [Indexed: 03/01/2025]
Abstract
BACKGROUND Vascular smooth muscle cells(VSMCs) phenotypic switching under hyperglycemic conditions accelerates atherosclerotic progression. Notch receptor 3(NOTCH3), a critical stabilizer of VSMC homeostasis implicated in cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) pathogenesis, ensures vascular integrity; however, its interplay with RAN Binding Protein 1(RANBP1) during pathological hyperglycemia remains uncharacterized. We hypothesize that hyperglycemia-induced autophagic dysregulation is mechanistically governed by theNotch receptor 3 (NOTCH3)/RANBP1 axis, proliferative capacity, and apoptotic signaling in high glucose (HG)-stimulated VSMCs. The aim of this study was to elucidate the regulatory mechanisms of autophagy in VSMCs under HG conditions, with a focus on the NOTCH3/RANBP1 axis and its implications for vascular health. METHODS Bioinformatics analysis was performed on NOTCH3 sequencing data, including weighted gene co-expression network analysis (WGCNA), screening of differentially expressed genes (DEGs), and construction of a protein-protein interaction (PPI) network, to identify the key gene, RANBP1. In vitro experiments, including cell counting kit-8 (CCK-8) assays, quantitative real-time polymerase chain reaction (qRT-PCR), Western blotting (WB), and flow cytometry, were conducted to examine the effects of NOTCH3 knockdown combined with RANBP1 overexpression on glucose-induced autophagy marker expression and cell viability in VSMCs. RESULTS NOTCH3 knockdown suppressed VSMC proliferation and induced apoptosis, and the cell cycle was stopped at the S phase. Analysis of VSMC sequencing data revealed 38 overlapping genes between the turquoise module and DEGs, 11 (HPF1, RANBP1, CRNKL1, LGALS3, RDX, ECM1, CXCL5, PA2G4, CENPS, ZNF830, and HIST1H4L) of which were significantly underexpressed in VSMC samples with si-NOTCH3. In a dose-dependent manner, HG therapy altered the expression of autophagy-related markers, upregulated NOTCH3, and downregulated phosphorylated mammalian target of rapamycin (p-mTOR). Downregulation of NOTCH3 aggravated the effects of HG on cell viability and autophagy, whereas overexpression of RANBP1 reversed these effects, suggesting an offsetting effect on HG-induced autophagy. CONCLUSION On the basis of sequencing technology, bioinformatics analysis and cell experiments, we conclude that the RANBP1/NOTCH3 axis is essential for the control of autophagy and survival of VSMCs under hyperglycemic stress and could provide new insight for the clinical treatment of VSMC-related diseases.
Collapse
Affiliation(s)
- Zhong-Jiao Xu
- Department of Cardiology, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui Central Hospital, 323000 Lishui, Zhejiang, China
| | - Jian Xu
- Department of Cardiology, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui Central Hospital, 323000 Lishui, Zhejiang, China
| | - Wen-Jing Lei
- Department of Cardiology, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui Central Hospital, 323000 Lishui, Zhejiang, China
| | - Xiang Wang
- Department of Cardiology, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui Central Hospital, 323000 Lishui, Zhejiang, China
| | - Qi-Lin Zou
- Department of Cardiology, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui Central Hospital, 323000 Lishui, Zhejiang, China
| | - Lin-Chun Lv
- Department of Cardiology, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui Central Hospital, 323000 Lishui, Zhejiang, China
| | - Chong Liu
- Department of Cardiology, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui Central Hospital, 323000 Lishui, Zhejiang, China
| | - Wu-Ming Hu
- Department of Cardiology, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui Central Hospital, 323000 Lishui, Zhejiang, China
| | - Yi-Jia Xiang
- Department of Cardiology, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui Central Hospital, 323000 Lishui, Zhejiang, China
| | - Jia-Yi Shen
- Department of Cardiology, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui Central Hospital, 323000 Lishui, Zhejiang, China
| | - Tie-Min Wei
- Department of Cardiology, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui Central Hospital, 323000 Lishui, Zhejiang, China
| | - Chun-Lai Zeng
- Department of Cardiology, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui Central Hospital, 323000 Lishui, Zhejiang, China
| |
Collapse
|
29
|
Yan Z, He L, Yuan J, Niu Y, Shuai S, Luo S, Du C, Rao H. The splicing factor SRRM2 modulates two S6K kinases to promote colorectal cancer growth. Oncogene 2025:10.1038/s41388-025-03307-1. [PMID: 39956864 DOI: 10.1038/s41388-025-03307-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 01/16/2025] [Accepted: 02/10/2025] [Indexed: 02/18/2025]
Abstract
The mechanistic target of rapamycin (mTOR) pathway plays a critical role in cell growth and metabolic homeostasis. The ribosomal protein S6 kinases S6K1 and S6K2 are the major effectors of the mTOR pathway key to translation efficiency, but the underlying regulatory mechanisms remain largely unclear. In this study, we searched for mTOR regulators and found that the splicing factor SRRM2 modulates the levels of S6K1 and S6K2, thereby activating the mTOR-S6K pathway. Interestingly, SRRM2 facilitates the expression of S6K2 by modulating alternative splicing, and enhances the stability of the S6K1 protein by regulating the E3 ubiquitin ligase WWP2. Moreover, SRRM2 is highly expressed in colorectal cancer (CRC) tissues and is associated with a poor prognosis. SRRM2 promotes CRC growth in vitro and in vivo. Combined, these data reveal an oncogenic role of SRRM2 in CRC through activating the mTOR-S6K pathway by two different approaches, further suggesting SRRM2 as a potential therapeutic target for CRC.
Collapse
Affiliation(s)
- Zhengwei Yan
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Luling He
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Jiawei Yuan
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Yulong Niu
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Shimin Shuai
- Department of Human Cell Biology and Genetics, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Shiwen Luo
- School of Medicine, Nanchang University, Nanchang, Jiangxi, China
| | - Changzheng Du
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Shenzhen, China
- Beijing Tsinghua Changgung Hospital & Tsinghua University School of Medicine, 168 Litang Road, Changping District, Beijing, 102218, PR China
| | - Hai Rao
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Shenzhen, China.
- Key University Laboratory of Metabolism and Health of Guangdong, Southern University of Science and Technology, Shenzhen, China.
| |
Collapse
|
30
|
Zhao S, Zhang Y, Zhao Y, Lu X. Cellular senescence as a key player in chronic heart failure pathogenesis: Unraveling mechanisms and therapeutic opportunities. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2025; 196:8-18. [PMID: 39961550 DOI: 10.1016/j.pbiomolbio.2025.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 02/09/2025] [Accepted: 02/13/2025] [Indexed: 02/26/2025]
Abstract
Chronic heart failure (CHF) is the final stage of heart disease and is caused by various factors. Unfortunately, CHF has a poor prognosis and a high mortality rate. Recent studies have found that aging is a significant risk factor for the development of CHF and that cellular senescence plays a vital role in its development. This article reviews different types of cellular senescence, mitochondrial dysfunction in senescent cells, autophagy in senescent cells, and senescence-associated secretory phenotype (SASP), and epigenetic regulation, to provide new perspectives on the research and treatment of CHF.
Collapse
Affiliation(s)
- Shuqing Zhao
- The First Clinical College of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yu Zhang
- The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Ying Zhao
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China.
| | - Xiaohui Lu
- The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China.
| |
Collapse
|
31
|
D'Amore A, Sundberg M, Lin R, Lubbers ET, Winden KD, Yu L, Gawlinska K, Gawlinski D, Lopez SG, Choe Y, Wightman EV, Liang Y, Modi M, Yuskaitis CJ, Lee HHC, Rotenberg A, Sahin M. Phenotypic rescue via mTOR inhibition in neuron-specific Pten knockout mice reveals AKT and mTORC1-site specific changes. Mol Psychiatry 2025:10.1038/s41380-025-02916-2. [PMID: 39953287 DOI: 10.1038/s41380-025-02916-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/22/2024] [Accepted: 01/30/2025] [Indexed: 02/17/2025]
Abstract
Phosphatase and Tensin Homolog (PTEN) is a dual-specific protein and lipid phosphatase that regulates AKT and downstream signaling of the mechanistic target of rapamycin (mTOR). PTEN functions as a tumor suppressor gene whose mutations result in PTEN Hamartoma Tumor Syndrome (PHTS) characterized by increased cancer risk and neurodevelopmental comorbidity. Here, we generated a novel neuron-specific Pten knock-out mouse model (Syn-Cre/Pten HOM) to test the ability of pharmacologic mTOR inhibition to rescue Pten mutation-associated disease phenotypes in vivo and in vitro. We found that treatment with the mTOR inhibitor, everolimus, increased the survival of Syn-Cre/Pten HOM mice while some neurologic phenotypes persisted. Transcriptomic analyses revealed that in contrast to mice harboring a neuron-specific deletion of the Tuberous Sclerosis Complex 2 gene (Syn-Cre/Tsc2 KO), genes that are under AKT regulation were significantly increased in the Syn-Cre/Pten HOM mice. In addition, genes associated with synapse, extracellular matrix, and myelination were broadly increased in Syn-Cre/Pten HOM mouse neocortex. These findings were confirmed by immunostaining of cortical sections in vivo, which revealed excessive immunoreactivity of myelin basic protein and perineuronal nets (PNN), the specialized extracellular matrix surrounding fast-spiking parvalbumin (PV) interneurons. We also detected increased expression of Synapsin I/PSD95 positive synapses and network hyperactivity phenotypes in Syn-Cre/Pten HOM mice neurons compared to wild-type (WT) neurons in vitro. Strikingly, everolimus treatment rescued the number of synapses and network hyperactivity in the Syn-Cre/Pten HOM mice cortical neuron cultures. Taken together, our results revealed in vivo and in vitro molecular and neuronal network mechanisms underlying neurological phenotypes of PHTS. Notably, pharmacologic mTOR inhibition by everolimus led to successful downstream signaling rescue, including mTOR complex 1 (mTORC1) site-specific suppression of S6 phosphorylation, correlating with phenotypic rescue found in our novel neuron-specific Syn-Cre/Pten HOM mice.
Collapse
Affiliation(s)
- Angelica D'Amore
- Department of Neurology, FM Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, USA
| | - Maria Sundberg
- Department of Neurology, FM Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, USA
| | - Rui Lin
- Department of Neurology, FM Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, USA
| | - Ella T Lubbers
- Department of Neurology, FM Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, USA
| | - Kellen D Winden
- Department of Neurology, FM Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, USA
| | - Lucy Yu
- Department of Neurology, FM Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, USA
| | - Kinga Gawlinska
- Department of Neurology, FM Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, USA
- Department of Clinical Pharmacy, Jagiellonian University, Medical College, Medyczna 9, PL 30-688, Krakow, Poland
| | - Dawid Gawlinski
- Department of Neurology, FM Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, USA
| | - Sam G Lopez
- Department of Neurology, FM Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, USA
| | - Yongho Choe
- Department of Neurology, FM Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, USA
| | - Emma V Wightman
- Department of Neurology, FM Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, USA
| | - Yini Liang
- Department of Neurology, FM Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, USA
| | - Meera Modi
- Department of Neurology, FM Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, USA
| | - Christopher J Yuskaitis
- Department of Neurology, FM Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, USA
- Division of Epilepsy and Clinical Neurophysiology, Boston Children's Hospital, Boston, USA
| | - Henry Hing Cheong Lee
- Department of Neurology, FM Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, USA
- Rosamund Stone Zander Translational Neuroscience Center, Boston Children's Hospital, Boston, USA
| | - Alexander Rotenberg
- Department of Neurology, FM Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, USA
- Division of Epilepsy and Clinical Neurophysiology, Boston Children's Hospital, Boston, USA
| | - Mustafa Sahin
- Department of Neurology, FM Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, USA.
- Rosamund Stone Zander Translational Neuroscience Center, Boston Children's Hospital, Boston, USA.
| |
Collapse
|
32
|
Jiang Y, Tao Q, Qiao X, Yang Y, Peng C, Han M, Dong K, Zhang W, Xu M, Wang D, Zhu W, Li X. Targeting amino acid metabolism to inhibit gastric cancer progression and promote anti-tumor immunity: a review. Front Immunol 2025; 16:1508730. [PMID: 40018041 PMCID: PMC11864927 DOI: 10.3389/fimmu.2025.1508730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 01/24/2025] [Indexed: 03/01/2025] Open
Abstract
The incidence of gastric cancer remains high and poses a serious threat to human health. Recent comprehensive investigations into amino acid metabolism and immune system components within the tumor microenvironment have elucidated the functional interactions between tumor cells, immune cells, and amino acid metabolism. This study reviews the characteristics of amino acid metabolism in gastric cancer, with a particular focus on the metabolism of methionine, cysteine, glutamic acid, serine, taurine, and other amino acids. It discusses the relationship between these metabolic processes, tumor development, and the body's anti-tumor immunity, and analyzes the importance of targeting amino acid metabolism in gastric cancer for chemotherapy and immunotherapy.
Collapse
Affiliation(s)
- Yuchun Jiang
- Department of Oncology, The Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Qing Tao
- Department of Oncology, The Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Xuehan Qiao
- Department of Oncology, The Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Yufei Yang
- Department of Oncology, The Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Chen Peng
- Department of Oncology, The Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Miao Han
- Department of Oncology, The Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Kebin Dong
- Department of Oncology, The Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Wei Zhang
- Institute of Digestive Diseases, Jiangsu University, Zhenjiang, China
| | - Min Xu
- Institute of Digestive Diseases, Jiangsu University, Zhenjiang, China
| | - Deqiang Wang
- Department of Oncology, The Affiliated Hospital of Jiangsu University, Zhenjiang, China
- Institute of Digestive Diseases, Jiangsu University, Zhenjiang, China
| | - Wen Zhu
- Department of Oncology, The Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Xiaoqin Li
- Department of Oncology, The Affiliated Hospital of Jiangsu University, Zhenjiang, China
| |
Collapse
|
33
|
Uchida K, Scarborough EA, Prosser BL. Dual Translational Control in Cardiomyocytes by Heterogeneous mTORC1 and Hypertrophic ERK Activation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.10.635974. [PMID: 39990478 PMCID: PMC11844361 DOI: 10.1101/2025.02.10.635974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
Background Cardiac hypertrophy allows post-mitotic cardiomyocytes to meet increased hemodynamic demands but can predispose the heart to adverse clinical outcomes. Despite its central role in cardiac adaptation, the translational control mechanisms that drive cardiac hypertrophy are poorly understood. In this study, we elucidate the relative contributions of the various translational control mechanisms operant during homeostasis and hypertrophic growth. Methods A combination of immunofluorescence and single myocyte protein synthesis assays were used to dissect the single-cardiomyocyte mechanisms of translational control under basal and hypertrophic conditions in isolated adult rat cardiomyocytes. Translational control mechanism were examined in a mouse model of acute hypertrophic phenylephrine (PE) stimulation prior to overt cardiac growth. Results We observed strikingly heterogeneous activity of mTORC1, the master regulator of translation, across cardiomyocytes both in situ and ex vivo. Heterogeneous mTORC1 activity drove heterogeneous protein synthesis, with translation primarily controlled via canonical mTORC1-dependent 4EBP1 phosphorylation at Thr36/Thr45/Thr69 under baseline conditions. Hypertrophic PE stimulation recruited more cardiomyocytes into a high mTORC1 activity state. PE induced a switch in 4EBP1 phosphorylation by increasing mTORC1-dependent phosphorylation at Thr36/Thr45, but not Thr69. Further, PE induced a novel mTORC1-independent, but MEK-ERK-dependent, pathway driving 4EBP1 phosphorylation at Ser64 in both isolated cardiomyocytes and in vivo. Ribosome biogenesis was also observed within hours upon hypertrophic stimulation, while the mTORC1-S6K-eEF2K-eEF2 pathway was not found to be a major driver of protein translation. Conclusions Protein synthesis is heterogeneous across cardiomyocytes driven by heterogeneous mTORC1 activity. MEK-ERK signaling directly controls 4EBP1 phosphorylation to augment translation during cardiac hypertrophy and challenges the canonical model of translation initiation.
Collapse
Affiliation(s)
- Keita Uchida
- Department of Physiology, Pennsylvania Muscle Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Emily A. Scarborough
- Department of Physiology, Pennsylvania Muscle Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Benjamin L. Prosser
- Department of Physiology, Pennsylvania Muscle Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| |
Collapse
|
34
|
Zhang Q, Zhu F, Tong Y, Huang Y, Zhang J. ATF3-SLC7A7 Axis Regulates mTORC1 Signaling to Suppress Lipogenesis and Tumorigenesis in Hepatocellular Carcinoma. Cells 2025; 14:253. [PMID: 39996726 PMCID: PMC11854064 DOI: 10.3390/cells14040253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 12/10/2024] [Accepted: 12/28/2024] [Indexed: 02/26/2025] Open
Abstract
Hepatocellular carcinoma (HCC) poses a substantial global health burden, with poor prognosis and high mortality rates. Dysregulated lipid metabolism has emerged as a critical driver of HCC progression. While mTORC1 signaling is known to promote lipid synthesis in HCC, the regulatory mechanisms governing mTORC1 remain largely unclear. Here, we demonstrate that mTORC1 inhibition significantly reduces lipogenesis in HCC and uncover a regulatory axis involving the transcription factor ATF3 and the leucine-arginine transporter SLC7A7. Transcriptomic analysis of HCC patients reveals an inverse correlation between ATF3 expression and lipid synthesis, a finding corroborated by experimental validation. Mechanistically, ATF3 suppresses mTORC1 signaling, thereby inhibiting lipid biosynthesis, with SLC7A7 identified as a key intermediary in this process. Specifically, ATF3 binds to the enhancer region of SLC7A7, driving its transcriptional activation and subsequently restraining mTORC1 activity. Functional assays in ATF3-overexpressing and -knockdown HCC cell lines further confirm ATF3's role as a tumor suppressor. Our study identifies a novel ATF3-SLC7A7-mTORC1 regulatory axis that attenuates lipogenesis and tumorigenesis in HCC, establishing a critical link between lipid metabolism and hepatocarcinogenesis. These findings offer new insights into potential therapeutic targets for the treatment of HCC.
Collapse
Affiliation(s)
- Qinglin Zhang
- School of Biological Sciences, The University of Hong Kong, Hong Kong SAR, China; (Q.Z.); (Y.H.)
| | - Fengzhi Zhu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China;
| | - Yin Tong
- Department of Pathology, School of Clinical Medicine, The University of Hong Kong, Queen Mary Hospital, Pokfulam, Hong Kong SAR, China;
- Centre for Oncology and Immunology, Hong Kong Science Park, Hong Kong SAR, China
| | - Yunxing Huang
- School of Biological Sciences, The University of Hong Kong, Hong Kong SAR, China; (Q.Z.); (Y.H.)
| | - Jiangwen Zhang
- School of Biological Sciences, The University of Hong Kong, Hong Kong SAR, China; (Q.Z.); (Y.H.)
| |
Collapse
|
35
|
Suri C, Pande B, Suhasini Sahithi L, Swarnkar S, Khelkar T, Verma HK. Metabolic crossroads: unravelling immune cell dynamics in gastrointestinal cancer drug resistance. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2025; 8:7. [PMID: 40051496 PMCID: PMC11883236 DOI: 10.20517/cdr.2024.164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 01/15/2025] [Accepted: 01/20/2025] [Indexed: 03/09/2025]
Abstract
Metabolic reprogramming within the tumor microenvironment (TME) plays a critical role in driving drug resistance in gastrointestinal cancers (GI), particularly through the pathways of fatty acid oxidation and glycolysis. Cancer cells often rewire their metabolism to sustain growth and reshape the TME, creating conditions such as nutrient depletion, hypoxia, and acidity that impair antitumor immune responses. Immune cells within the TME also undergo metabolic alterations, frequently adopting immunosuppressive phenotypes that promote tumor progression and reduce the efficacy of therapies. The competition for essential nutrients, particularly glucose, between cancer and immune cells compromises the antitumor functions of effector immune cells, such as T cells. Additionally, metabolic by-products like lactate and kynurenine further suppress immune activity and promote immunosuppressive populations, including regulatory T cells and M2 macrophages. Targeting metabolic pathways such as fatty acid oxidation and glycolysis presents new opportunities to overcome drug resistance and improve therapeutic outcomes in GI cancers. Modulating these key pathways has the potential to reinvigorate exhausted immune cells, shift immunosuppressive cells toward antitumor phenotypes, and enhance the effectiveness of immunotherapies and other treatments. Future strategies will require continued research into TME metabolism, the development of novel metabolic inhibitors, and clinical trials evaluating combination therapies. Identifying and validating metabolic biomarkers will also be crucial for patient stratification and treatment monitoring. Insights into metabolic reprogramming in GI cancers may have broader implications across multiple cancer types, offering new avenues for improving cancer treatment.
Collapse
Affiliation(s)
- Chahat Suri
- Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton AB T6G 1Z2, Canada
| | - Babita Pande
- Department of Physiology, All India Institute of Medical Sciences, Raipur 492099, India
| | | | | | - Tuneer Khelkar
- Department of Botany and Biotechnology, Govt. Kaktiya P G College, Jagdalpur 494001, India
| | - Henu Kumar Verma
- Department of Immunopathology, Institute of Lung Health and Immunity, Comprehensive Pneumology Center, Helmholtz Zentrum, Munich 85764, Germany
| |
Collapse
|
36
|
Liu X, Zhang L, Li L, Hou J, Qian M, Zheng N, Liu Y, Song Y. Transcriptomic profiles of single-cell autophagy-related genes (ATGs) in lung diseases. Cell Biol Toxicol 2025; 41:40. [PMID: 39920481 PMCID: PMC11805875 DOI: 10.1007/s10565-025-09990-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 01/03/2025] [Indexed: 02/09/2025]
Abstract
Autophagy related genes (ATGs) play essential roles in maintaining cellular functions, although biological and pathological alterations of ATG phenotypes remain poorly understood. To address this knowledge gap, we utilized the single-cell sequencing technology to elucidate the transcriptomic atlas of ATGs in lung diseases, with a focus on lung epithelium and lymphocytes. This study conducted a comprehensive investigation into RNA profiles of ATGs in the lung tissues obtained from healthy subjects and patients with different lung diseases through single-cell RNA sequencing (scRNA-seq), including COVID-19 related acute lung damage, idiopathic pulmonary fibrosis (IPF), chronic obstructive pulmonary disease (COPD), systemic sclerosis (SSC), and lung adenocarcinoma (LUAD). Our findings revealed significant variations of ATGs expression across lung epithelial cell subsets, e.g., over-expression of MAPK8 in basal cells, ATG10 in club cells, and BCL2 in a goblet cell subset. The changes of autophagy-related pathways varied between lung epithelial and lymphocyte subsets. We identified the disease-associated changes in ATG expression, including significant alterations in BCL2, BCL2L1, PRKCD, and PRKCQ in inflammatory lung diseases (COPD and IPF), and MAP2K7, MAPK3, and RHEB in lung cancer (LUAD), as compared to normal lung tissues. Key ligand-receptor pairs (e.g., CD6-ALCAM, CD99-CD99) and signaling pathways (e.g., APP, CD74) might serve as biomarkers for lung diseases. To evaluate ATGs responses to external challenges, we examined ATGs expression in different epithelial cell lines exposed to cigarette smoking extract (CSE), lysophosphatidylcholine (lysoPC), lipopolysaccharide (LPS), and cholesterol at various doses and durations. Notable changes were observed in CFLAR, EIF2S1, PPP2CA, and PPP2CB in A549 and H1299 against CSE and LPS. The heterogeneity of ATGs expression was dependent on cell subsets, pathologic conditions, and challenges, as well as varied among cellular phenotypes, functions, and behaviors, and the severity of lung diseases. In conclusion, our data might provide new insights into the roles of ATGs in epithelial biology and pulmonary disease pathogenesis, with implications for disease progression and prognosis.
Collapse
Affiliation(s)
- Xuanqi Liu
- Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, China.
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Fudan University Shanghai Medical College, Shanghai, China.
- Shanghai Institute of Clinical Bioinformatics, Shanghai, China.
| | - Linlin Zhang
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Fudan University Shanghai Medical College, Shanghai, China
| | - Liyang Li
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Fudan University Shanghai Medical College, Shanghai, China
| | - Jiayun Hou
- Shanghai Institute of Clinical Bioinformatics, Shanghai, China
| | - Mengjia Qian
- Shanghai Institute of Clinical Bioinformatics, Shanghai, China
| | - Nannan Zheng
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Fudan University Shanghai Medical College, Shanghai, China
| | - Yifei Liu
- Center of Molecular Diagnosis and Therapy, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Yuanlin Song
- Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, China.
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Fudan University Shanghai Medical College, Shanghai, China.
- Shanghai Institute of Clinical Bioinformatics, Shanghai, China.
| |
Collapse
|
37
|
Dong H, Lyu Y, Huang CY, Tsai SY. Limiting cap-dependent translation increases 20S proteasomal degradation and protects the proteomic integrity in autophagy-deficient skeletal muscle. Autophagy 2025:1-16. [PMID: 39878121 DOI: 10.1080/15548627.2025.2457925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 01/21/2025] [Accepted: 01/21/2025] [Indexed: 01/31/2025] Open
Abstract
Postmitotic skeletal muscle critically depends on tightly regulated protein degradation to maintain proteomic stability. Impaired macroautophagy/autophagy-lysosomal or ubiquitin-proteasomal protein degradation causes the accumulation of damaged proteins, ultimately accelerating muscle dysfunction with age. While in vitro studies have demonstrated the complementary nature of these systems, their interplay at the organism levels remains poorly understood. Here, our study reveals novel insights into this complex relationship in autophagy-deficient skeletal muscle. We demonstrated that despite a compensatory increase in proteasome level in response to autophagy impairment, 26S proteasome activity was not proportionally enhanced in autophagy-deficient skeletal muscle. This functional deficit was partly attributed to reduced ATP levels to fuel the 26S proteasome. Remarkably, we found that activation of EIF4EBP1, a crucial inhibitor of cap-dependent translation, restored and even augmented proteasomal function through dual mechanisms. First, genetically activating EIF4EBP1 enhanced both ATP-dependent 26S proteasome and ATP-independent 20S proteasome activities, thereby expanding overall protein degradation capacity. Second, EIF4EBP1 activation caused muscle fiber transformation and increased mitochondrial biogenesis, thus replenishing ATP levels for 26S proteasome activation. Notably, the improved performance of the 20S proteasome in EIF4EBP1-activated skeletal muscle was attributed to an increased abundance of the immunoproteasome, a subtype specially adapted to function under oxidative stress conditions. This dual action of EIF4EBP1 activation preserved proteomic integrity in autophagy-deficient skeletal muscle. Our findings uncover a novel role of EIF4EBP1 in improving protein quality control, presenting a promising therapeutic strategy for autophagy-related muscular disorders and potentially other conditions characterized by proteostatic imbalance.Abbreviations: 3-MA: 3-methyladenine; ACAC/ACC: acetyl-Coenzyme A carboxylase; AMPK: AMP-activated protein kinase; ATG5: autophagy related 5; ATG7: autophagy related 7; ATP: adenosine triphosphate; ATP5F1A/ATP5A: ATP synthase F1 subunit alpha; CKM-Cre: creatine kinase, muscle-Cre; CMA: chaperone-mediated autophagy; CTSB: cathepsin B; CTSK: cathepsin K; CTSL: cathepsin L; CUL3: cullin 3; EDL: extensor digitorum longus; EIF4E: eukaryotic translation initiation factor 4E; EIF4EBP1: eukaryotic translation initiation factor 4E binding protein 1; EIF4F: eukaryotic translation initiation factor 4F complex; FBXO32/ATROGIN1/MAFbx: F-box protein 32; GFP: green fluorescent protein; IFNG/IFN-γ: interferon gamma; KEAP1: kelch-like ECH-associated protein 1; LAMP1: lysosomal-associated membrane protein 1; LAMP2: lysosomal-associated membrane protein 2; MAP1LC3/LC3: microtubule-associated protein 1 light chain 3; MEF: mouse embryonic fibroblast; Myl1/Mlc1f-Cre: myosin, light polypeptide 1 (promoter driving Cre recombinase); mRFP: monomeric red fluorescent protein; MTOR: mechanistic target of rapamycin kinase; MTORC1: MTOR complex 1; NFE2L1/NRF1: nuclear factor, erythroid derived 2, like 1; NFE2L2/NRF2: nuclear factor, erythroid derived 2, like 2; NFKB1/NFκB1: nuclear factor of kappa light polypeptide gene enhancer in B cells 1, p105; OXPHOS: oxidative phosphorylation; PPARGC1A/PGC1α: peroxisome proliferator activated receptor, gamma, coactivator 1 alpha; PSMB5: proteasome (prosome, macropain) subunit, beta type 5; PSMB6: proteasome (prosome, macropain) subunit, beta type 6; PSMB7: proteasome (prosome, macropain) subunit, beta type 7; PSMB8: proteasome (prosome, macropain) subunit, beta type 8 (large multifunctional peptidase 7); PSMB9: proteasome (prosome, macropain) subunit, beta type 9 (large multifunctional peptidase 2); PSMB10: proteasome (prosome, macropain) subunit, beta type 10; PSME1: proteasome (prosome, macropain) activator subunit 1 (PA28 alpha); PSME2: proteasome (prosome, macropain) activator subunit 2 (PA28 beta); RBX1: ring-box 1; SQSTM1/p62: sequestosome 1; SREBF1/SREBP1: sterol regulatory element binding transcription factor 1; STAT3: signal transducer and activator of transcription 3; TRIM63/MURF1: tripartite motif-containing 63; ULK1: unc-51 like kinase 1; UPS: ubiquitin-proteasome system.
Collapse
Affiliation(s)
- Han Dong
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Yifan Lyu
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Healthy Longevity Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Chien-Yung Huang
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Healthy Longevity Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Shih-Yin Tsai
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Healthy Longevity Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| |
Collapse
|
38
|
Wen F, Ling H, Ran R, Li X, Wang H, Liu Q, Li M, Yu T. LPCAT3 regulates the proliferation and metastasis of serous ovarian cancer by modulating arachidonic acid. Transl Oncol 2025; 52:102256. [PMID: 39733744 PMCID: PMC11743812 DOI: 10.1016/j.tranon.2024.102256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 11/30/2024] [Accepted: 12/23/2024] [Indexed: 12/31/2024] Open
Abstract
BACKGROUND Lysophosphatidylcholine acyltransferase 3 (LPCAT3) promotes ferroptosis through the incorporating polyunsaturated fatty acids into membrane phospholipids, however, its role in serous ovarian cancer remains unclear. Here explored cancer proliferation and metastasis after modulating LPCAP3. METHODS LPCAT3 protein in ovarian cancer tissues was detected using bioinformatic and immunohistoche mical assays. Cell behaviors were observed after up- or down-regulating LPCAT3. Lipid metabolites were determined, and then the pathway enrichment analysis was performed. RESULTS The expression level of LPCAT3 in serous ovarian cancer tissues was lower than that in other types of ovarian cancer, and high expression was associated with a longer survival time. Overexpressing LPCAT3 reduced cell proliferation, migration and invasion via enhancing ferroptosis and decreasing the survival signaling; these behaviors were enhanced in LPCAT3-downknocked cells, where a higher abundance of arachidonic acid was observed followed by up-regulation of the downstream survival signaling. In vivo, up-regulation of LPCAT3 decreased tumor growth, but down-regulation enhanced tumor growth and metastasis. CONCLUSIONS LPCAT3 modulated metabolism of arachidonic acid, thereby regulating ferroptosis and the survival signaling to determine cancer growth and metastasis.
Collapse
Affiliation(s)
- Fang Wen
- Laboratory of Obstetrics and Gynecology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Hongjian Ling
- Laboratory of Obstetrics and Gynecology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Rui Ran
- Laboratory of Obstetrics and Gynecology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Xinya Li
- Laboratory of Obstetrics and Gynecology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Houmei Wang
- Laboratory of Obstetrics and Gynecology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Qianfen Liu
- Women and Children's Hospital, Chongqing Medical University (Chongqing Health Center for Women and Children), China
| | - Min Li
- Laboratory of Obstetrics and Gynecology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China.
| | - Tinghe Yu
- Laboratory of Obstetrics and Gynecology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China.
| |
Collapse
|
39
|
Yu J, Gu X, Guo Y, Gao M, Cheng S, Meng M, Cui X, Zhang Z, Guo W, Yan D, Sheng M, Zhai L, Ji J, Ma X, Li Y, Cao Y, Wu X, Zhao J, Hu Y, Tan M, Lu Y, Xu L, Liu B, Hu C, Ma X. E3 ligase FBXW7 suppresses brown fat expansion and browning of white fat. EMBO Rep 2025; 26:748-767. [PMID: 39747664 PMCID: PMC11811183 DOI: 10.1038/s44319-024-00337-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 10/26/2024] [Accepted: 11/08/2024] [Indexed: 01/04/2025] Open
Abstract
Thermogenic fat, including brown and beige fat, dissipates heat via thermogenesis and enhances energy expenditure. Thus, its activation represents a therapeutic strategy to combat obesity. Here, we demonstrate that levels of F-box and WD repeat domain-containing 7 (FBXW7), an E3 ubiquitin protein ligase, negatively correlate with thermogenic fat functionality. FBXW7 overexpression in fat suppresses energy expenditure and thermogenesis, thus aggravates obesity and metabolic dysfunctions in mice. Conversely, FBXW7 depletion in fat leads to brown fat expansion and browning of white fat, and protects mice from diet induced obesity, hepatic steatosis, and hyperlipidemia. Mechanistically, FBXW7 binds to S6K1 and promotes its ubiquitination and proteasomal degradation, which in turn impacts glycolysis and brown preadipocyte proliferation via lactate. Besides, the beneficial metabolic effects of FBXW7 depletion in fat are attenuated by fat-specific knockdown of S6K1 in vivo. In summary, we provide evidence that adipose FBXW7 acts as a major regulator for thermogenic fat biology and energy homeostasis and serves as potential therapeutic target for obesity and metabolic diseases.
Collapse
Grants
- 32325024,82300979,32222024,32271224,32071148,22225702,82000802 MOST | National Natural Science Foundation of China (NSFC)
- 2023YFA1800400,2019YFA09004500 MOST | National Key Research and Development Program of China (NKPs)
- 22ZR1421200,21140904300 Science and Technology Commission of Shanghai Municipality (STCSM)
- CSTB2022NSCQ-JQX0033 Natural Science Foundation of Chongqing, China
- 2021C03069 Key Research and Development Project of Zhejiang Province, China
- LY20H070003 Zhejiang Provincial Natural Science Foundation of China
- SHSMU-ZDCX20212700 Innovation research team of high-level local universities in Shanghai
- 2022ZZ01002 Shanghai Research Center for Endocrine and Metabolic Diseases
- 2023M741184 China Postdoctoral Science Foundation(China Postdoctoral Foundation Project)
Collapse
Affiliation(s)
- Jian Yu
- Joint Center for Translational Medicine, Fengxian District Central Hospital, Fengxian District, Shanghai, 201400, China
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
- Chongqing Key Laboratory of Precision Optics, Chongqing Institute of East China Normal University, Chongqing, 401120, China
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Xuejiang Gu
- Department of Endocrine and Metabolic Diseases, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Yingying Guo
- Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Centre for Diabetes, Shanghai, 200233, China
| | - Mingyuan Gao
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Shimiao Cheng
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Meiyao Meng
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Xiangdi Cui
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Zhe Zhang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Wenxiu Guo
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Dandan Yan
- Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Centre for Diabetes, Shanghai, 200233, China
| | - Maozheng Sheng
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Linhui Zhai
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Jing Ji
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Xinhui Ma
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Yu Li
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Yuxiang Cao
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Xia Wu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Jiejie Zhao
- Ministry of Education Key Laboratory of Metabolism and Molecular Medicine, Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, 200000, China
| | - Yepeng Hu
- Department of Endocrine and Metabolic Diseases, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Minjia Tan
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Yan Lu
- Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Centre for Diabetes, Shanghai, 200233, China
- Ministry of Education Key Laboratory of Metabolism and Molecular Medicine, Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, 200000, China
| | - Lingyan Xu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China.
- Institute for Aging, East China Normal University, Shanghai, 200241, China.
| | - Bin Liu
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China.
| | - Cheng Hu
- Joint Center for Translational Medicine, Fengxian District Central Hospital, Fengxian District, Shanghai, 201400, China.
- Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Centre for Diabetes, Shanghai, 200233, China.
| | - Xinran Ma
- Joint Center for Translational Medicine, Fengxian District Central Hospital, Fengxian District, Shanghai, 201400, China.
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China.
- Chongqing Key Laboratory of Precision Optics, Chongqing Institute of East China Normal University, Chongqing, 401120, China.
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China.
- Institute for Aging, East China Normal University, Shanghai, 200241, China.
| |
Collapse
|
40
|
Ling S, Dexter A, Race AM, Sharma S, Hamm G, Polanska UM, Marshall JF, Takats Z, Brindle K, Yuneva MO, Poulogiannis G, Campbell AD, Sansom OJ, Goodwin RJA, Bunch J, Barry ST. Use of metabolic imaging to monitor heterogeneity of tumour response following therapeutic mTORC1/2 pathway inhibition. Dis Model Mech 2025; 18:DMM050804. [PMID: 40019006 DOI: 10.1242/dmm.050804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 12/16/2024] [Indexed: 03/01/2025] Open
Abstract
The PI3K-mTOR-AKT pathway regulates tumour proliferation, gene expression and metabolism, but pathway inhibition induces heterogeneous feedback reactivation, limiting anti-tumour responses. Measuring heterogeneity of pathway inhibition in tissues using protein biomarker phosphorylation or location is challenging. An integrated multi-modal imaging workflow was developed to assess the heterogeneity of AZD2014 (mTORC1/2 inhibitor) response in a PTEN-null renal cancer model. Spatial responses of metabolite biomarkers were analysed by mass spectrometry imaging (MSI). Control and treated tumours were classified according to metabolite-defined regions enriched in control versus AZD2014-treated tumours, respectively. Noticeably, AZD2014-treated tumours retained regions similar to regions dominant in untreated tumours. Imaging mass cytometry analysis of protein biomarkers in 'control-like' regions following AZD2014 treatment showed reduced phospho-S6, indicating suppression, but retained high expression of the glucose transporter GLUT1. Increasing PI3K-AKT inhibition by combining with AZD8186 (PI3Kβ inhibitor) further decreased the control-like metabolic signature, showing PI3K-dependent resistance. This demonstrates that MSI-based workflows yield novel insights into the pharmacodynamic effects of mTORC1/2 inhibition in tumours, which classical biomarkers do not resolve. Coupling these workflows with spatial-omics approaches can deliver greater insights into heterogeneity of treatment response.
Collapse
Affiliation(s)
- Stephanie Ling
- Imaging and Data Analytics, AstraZeneca, Cambridge CB2 0AA, UK
| | - Alex Dexter
- National Physical Laboratory, Teddington TW11 0LA, UK
| | - Alan M Race
- National Physical Laboratory, Teddington TW11 0LA, UK
| | - Shreya Sharma
- National Physical Laboratory, Teddington TW11 0LA, UK
| | - Gregory Hamm
- Imaging and Data Analytics, AstraZeneca, Cambridge CB2 0AA, UK
| | | | | | - Zoltan Takats
- Imperial College London, London SW7 2AZ, UK
- The Rosalind Franklin Institute, Harwell Campus, Didcot OX11 0QS, UK
| | - Kevin Brindle
- The Rosalind Franklin Institute, Harwell Campus, Didcot OX11 0QS, UK
- CRUK Cambridge Institute, Cambridge CB2 0RE, UK
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Zhang C, Liang D, Ercan-Sencicek AG, Bulut AS, Cortes J, Cheng IQ, Henegariu O, Nishimura S, Wang X, Peksen AB, Takeo Y, Caglar C, Lam TT, Koroglu MN, Narayanan A, Lopez-Giraldez F, Miyagishima DF, Mishra-Gorur K, Barak T, Yasuno K, Erson-Omay EZ, Yalcinkaya C, Wang G, Mane S, Kaymakcalan H, Guzel A, Caglayan AO, Tuysuz B, Sestan N, Gunel M, Louvi A, Bilguvar K. Dysregulation of mTOR signalling is a converging mechanism in lissencephaly. Nature 2025; 638:172-181. [PMID: 39743596 PMCID: PMC11798849 DOI: 10.1038/s41586-024-08341-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 11/05/2024] [Indexed: 01/04/2025]
Abstract
Cerebral cortex development in humans is a highly complex and orchestrated process that is under tight genetic regulation. Rare mutations that alter gene expression or function can disrupt the structure of the cerebral cortex, resulting in a range of neurological conditions1. Lissencephaly ('smooth brain') spectrum disorders comprise a group of rare, genetically heterogeneous congenital brain malformations commonly associated with epilepsy and intellectual disability2. However, the molecular mechanisms underlying disease pathogenesis remain unknown. Here we establish hypoactivity of the mTOR pathway as a clinically relevant molecular mechanism in lissencephaly spectrum disorders. We characterized two types of cerebral organoid derived from individuals with genetically distinct lissencephalies with a recessive mutation in p53-induced death domain protein 1 (PIDD1) or a heterozygous chromosome 17p13.3 microdeletion leading to Miller-Dieker lissencephaly syndrome (MDLS). PIDD1-mutant organoids and MDLS organoids recapitulated the thickened cortex typical of human lissencephaly and demonstrated dysregulation of protein translation, metabolism and the mTOR pathway. A brain-selective activator of mTOR complex 1 prevented and reversed cellular and molecular defects in the lissencephaly organoids. Our findings show that a converging molecular mechanism contributes to two genetically distinct lissencephaly spectrum disorders.
Collapse
Affiliation(s)
- Ce Zhang
- Interdepartmental Neuroscience Program, Yale University, New Haven, CT, USA
- MD-PhD Program, Yale School of Medicine, New Haven, CT, USA
| | - Dan Liang
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, USA
- Bexorg, Inc., New Haven, CT, USA
| | - A Gulhan Ercan-Sencicek
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA
- Yale Program on Neurogenetics, Yale School of Medicine, New Haven, CT, USA
| | - Aybike S Bulut
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA
- Department of Genome Sciences, Health Sciences Institute, Acibadem University, Istanbul, Turkey
| | - Joelly Cortes
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA
| | - Iris Q Cheng
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA
| | | | - Sayoko Nishimura
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA
| | - Xinyuan Wang
- Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - A Buket Peksen
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA
| | - Yutaka Takeo
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA
| | - Caner Caglar
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA
- Department of Molecular Biology, Beykoz Institute of Life Sciences and Biotechnology, Bezmialem Vakif University, Istanbul, Turkey
| | - TuKiet T Lam
- Keck MS and Proteomics Resource, Yale School of Medicine, New Haven, CT, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Merve Nur Koroglu
- Department of Biostatistics and Bioinformatics, Health Sciences Institute, Acibadem University, Istanbul, Turkey
| | - Anand Narayanan
- Yale Center for Genome Analysis, Yale University, New Haven, CT, USA
| | | | - Danielle F Miyagishima
- MD-PhD Program, Yale School of Medicine, New Haven, CT, USA
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
| | - Ketu Mishra-Gorur
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA
| | - Tanyeri Barak
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA
- Yale Program on Neurogenetics, Yale School of Medicine, New Haven, CT, USA
| | - Katsuhito Yasuno
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA
- Yale Program on Neurogenetics, Yale School of Medicine, New Haven, CT, USA
| | - E Zeynep Erson-Omay
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA
- Department of Biomedical Informatics and Data Science, Yale School of Medicine, New Haven, CT, USA
| | - Cengiz Yalcinkaya
- Department of Neurology, Cerrahpasa Medical School, Istanbul University Cerrahpasa, Istanbul, Turkey
| | - Guilin Wang
- Yale Center for Genome Analysis, Yale University, New Haven, CT, USA
- Keck Microarray Shared Resource, Yale School of Medicine, New Haven, CT, USA
| | - Shrikant Mane
- Yale Center for Genome Analysis, Yale University, New Haven, CT, USA
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
| | - Hande Kaymakcalan
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA
- Department of Translational Medicine, Health Sciences Institute, Acibadem University, Istanbul, Turkey
| | - Aslan Guzel
- Department of Neurosurgery, Faculty of Medicine, Bahcesehir University, Istanbul, Turkey
- Department of Neurosurgery, Medical Point Hospital, Gaziantep, Turkey
| | - A Okay Caglayan
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA
- Yale Program on Neurogenetics, Yale School of Medicine, New Haven, CT, USA
- Department of Medical Genetics, Faculty of Medicine, Dokuz Eylul University, Izmir, Turkey
- Department of Molecular Medicine, Institute of Health Sciences, Dokuz Eylul University, Izmir, Turkey
| | - Beyhan Tuysuz
- Department of Pediatric Genetics, Cerrahpasa Medical School, Istanbul University Cerrahpasa, Istanbul, Turkey
| | - Nenad Sestan
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, USA
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
- Department of Comparative Medicine, Yale School of Medicine, New Haven, CT, USA
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
- Kavli Institute for Neuroscience, Yale School of Medicine, New Haven, CT, USA
| | - Murat Gunel
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, USA.
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA.
- Yale Program on Neurogenetics, Yale School of Medicine, New Haven, CT, USA.
- Yale Center for Genome Analysis, Yale University, New Haven, CT, USA.
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA.
- Yale Program in Brain Tumor Research, Yale School of Medicine, New Haven, CT, USA.
- Yale Cancer Center, Yale School of Medicine, New Haven, CT, USA.
| | - Angeliki Louvi
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, USA.
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA.
- Yale Program on Neurogenetics, Yale School of Medicine, New Haven, CT, USA.
| | - Kaya Bilguvar
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA.
- Yale Program on Neurogenetics, Yale School of Medicine, New Haven, CT, USA.
- Department of Genome Sciences, Health Sciences Institute, Acibadem University, Istanbul, Turkey.
- Department of Biostatistics and Bioinformatics, Health Sciences Institute, Acibadem University, Istanbul, Turkey.
- Yale Center for Genome Analysis, Yale University, New Haven, CT, USA.
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA.
- Department of Translational Medicine, Health Sciences Institute, Acibadem University, Istanbul, Turkey.
- Department of Medical Genetics, School of Medicine, Acibadem University, Istanbul, Turkey.
- Rare Diseases and Orphan Drugs Application and Research Center-ACURARE, Acibadem University, Istanbul, Turkey.
| |
Collapse
|
42
|
Chen T, Ashwood LM, Kondrashova O, Strasser A, Kelly G, Sutherland KD. Breathing new insights into the role of mutant p53 in lung cancer. Oncogene 2025; 44:115-129. [PMID: 39567755 PMCID: PMC11725503 DOI: 10.1038/s41388-024-03219-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 10/25/2024] [Accepted: 11/01/2024] [Indexed: 11/22/2024]
Abstract
The tumour suppressor gene p53 is one of the most frequently mutated genes in lung cancer and these defects are associated with poor prognosis, albeit some debate exists in the lung cancer field. Despite extensive research, the exact mechanisms by which mutant p53 proteins promote the development and sustained expansion of cancer remain unclear. This review will discuss the cellular responses controlled by p53 that contribute to tumour suppression, p53 mutant lung cancer mouse models and characterisation of p53 mutant lung cancer. Furthermore, we discuss potential approaches of targeting mutant p53 for the treatment of lung cancer.
Collapse
Affiliation(s)
- Tianwei Chen
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia
| | - Lauren M Ashwood
- QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
- The University of Queensland, Brisbane, QLD, Australia
| | - Olga Kondrashova
- QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
- The University of Queensland, Brisbane, QLD, Australia
| | - Andreas Strasser
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia.
| | - Gemma Kelly
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia.
| | - Kate D Sutherland
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia.
| |
Collapse
|
43
|
Corradi C, Gentiluomo M, Adsay V, Sainz J, Camisa PR, Wlodarczyk B, Crippa S, Tavano F, Capurso G, Campa D. Multi-omic markers of intraductal papillary mucinous neoplasms progression into pancreatic cancer. Semin Cancer Biol 2025; 109:25-43. [PMID: 39733817 DOI: 10.1016/j.semcancer.2024.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 12/19/2024] [Accepted: 12/23/2024] [Indexed: 12/31/2024]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is the most lethal and common form of pancreatic cancer, it has no specific symptoms, and most of the patients are diagnosed when the disease is already at an advanced stage. Chemotherapy typically has only a modest effect, making surgery the most effective treatment option. However, only a small percentage of patients are amenable to surgery. One viable strategy to reduce PDAC death burden associated with the disease is to focus on precursor lesions and identify markers able to predict who will evolve into PDAC. While most PDACs are believed to be preceded by pancreatic intraepithelial neoplasms (PanINs), 5-10 % arise from Intraductal papillary mucinous neoplasms (IPMNs), which are mass-forming cystic lesions that are very common in the general population. IPMNs offer an invaluable model of pancreatic carcinogenesis for researchers to analyse, as well as a target population for PDAC early detection by clinicians. The evolution of IPMN into cancer is a complex and multistep process, therefore the identification of individual markers will not be the solution. In recent years, multiple omics technologies have been instrumental to identify possible biomarkers of IPMN progression and carcinogenesis. The only foreseeable strategy will be to integrate multi-omics data, alongside clinical and morphological features, into a progression score or signature using either standard epidemiologic tools or artificial intelligence. The aim of this manuscript is to review the current knowledge on genetic biomarkers and to briefly mention also additional omics, such as metabolomics, the exposome, the miRNome and epigenomics of IPMNs.
Collapse
Affiliation(s)
| | | | - Volkan Adsay
- Department of Pathology, Koç University School of Medicine and Koç University Research Center for Translational Medicine, Istanbul, Turkey
| | - Juan Sainz
- Department of Biochemistry and Molecular Biology, University of Granada, Granada, Spain
| | - Paolo Riccardo Camisa
- Division of Pancreatic Surgery and Transplantation, Pancreas Translational and Clinical Research Center, IRCCS San Raffaele Scientific Institute, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy
| | - Barbara Wlodarczyk
- Department of Digestive Tract Diseases, Medical University of Lodz, Lodz, Poland
| | - Stefano Crippa
- Division of Pancreatic Surgery and Transplantation, Pancreas Translational and Clinical Research Center, IRCCS San Raffaele Scientific Institute, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy
| | - Francesca Tavano
- Division of Gastroenterology and Research Laboratory, Fondazione IRCCS "Casa Sollievo della Sofferenza" Hospital, San Giovanni Rotondo, Italy
| | - Gabriele Capurso
- Vita-Salute San Raffaele University, Milan, Italy; Pancreato-Biliary Endoscopy and Endosonography Division, Pancreas Translational and Clinical Research Center, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Daniele Campa
- Department of Biology, University of Pisa, Pisa, Italy.
| |
Collapse
|
44
|
Gugnoni M, Kashyap MK, Wary KK, Ciarrocchi A. lncRNAs: the unexpected link between protein synthesis and cancer adaptation. Mol Cancer 2025; 24:38. [PMID: 39891197 PMCID: PMC11783725 DOI: 10.1186/s12943-025-02236-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 01/15/2025] [Indexed: 02/03/2025] Open
Abstract
Cancer progression relies on the ability of cells to adapt to challenging environments overcoming stresses and growth constraints. Such adaptation is a multifactorial process that depends on the rapid reorganization of many basic cellular mechanisms. Protein synthesis is often dysregulated in cancer, and translational reprogramming is emerging as a driving force of cancer adaptive plasticity. Long non-coding RNAs (lncRNAs) represent the main product of genome transcription. They outnumber mRNAs by an order of magnitude and their expression is regulated in an extremely specific manner depending on context, space and time. This heterogeneity is functional and allows lncRNAs to act as context-specific, fine-tuning controllers of gene expression. Multiple recent evidence underlines how, besides their consolidated role in transcription, lncRNAs are major players in translation control. Their capacity to establish multiple and highly dynamic interactions with proteins and other transcripts makes these molecules able to play a central role across all phases of protein synthesis. Even if through a myriad of different mechanisms, the action of these transcripts is dual. On one hand, by modulating the overall translation speed, lncRNAs participate in the process of metabolic adaptation of cancer cells under stress conditions. On the other hand, by prioritizing the synthesis of specific transcripts they help cancer cells to maintain high levels of essential oncogenes. In this review, we aim to discuss the most relevant evidence regarding the involvement of lncRNAs in translation regulation and to discuss how this specific function may affect cancer plasticity and resistance to stress. We also expect to provide one of the first collective perspectives on the way these transcripts modulate gene expression beyond transcription.
Collapse
Affiliation(s)
- Mila Gugnoni
- Laboratory of Translational Research, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Manoj Kumar Kashyap
- Molecular Oncology Laboratory, Amity Stem Cell Institute, Amity Medical School, Amity University Haryana, Panchgaon (Manesar), Gurugram, Haryana, India.
| | - Kishore K Wary
- Department of Pharmacology and Regenerative Medicine, University of Illinois, Chicago, IL, USA.
| | - Alessia Ciarrocchi
- Laboratory of Translational Research, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, Reggio Emilia, Italy.
| |
Collapse
|
45
|
Mastromoro G, Guadagnolo D, Gianno F, Khaleghi Hashemian N, Terracciano A, Bernardini L, Giancotti A, Novelli A, Piacentini G, Di Gioia C, Pizzuti A. Cardiac Involvement and TBCK-Related Neurodevelopmental Disorder: Is It a New Feature of This Condition? Am J Med Genet A 2025:e64001. [PMID: 39865381 DOI: 10.1002/ajmg.a.64001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 12/26/2024] [Accepted: 01/10/2025] [Indexed: 01/28/2025]
Abstract
TBCK (TBC1 Domain-Containing Kinase) encodes a protein playing a role in actin organization and cell growth/proliferation via the mTOR signaling pathway. Deleterious biallelic TBCK variants cause Hypotonia, infantile, with psychomotor retardation and characteristic facies 3. We report on three affected sibs, also displaying cardiac malformations. The parents, a consanguineous couple of first cousins, were referred to schedule invasive diagnosis for their sixth pregnancy. They were known to carry the pathogenic c.1532G>A TBCK variant. The variant was originally identified in homozygosity in the first and second children of the couple, both affected. One also presented a right-sided aortic arch. The other had Tetralogy of Fallot. Present pregnancy ultrasound revealed cystic hygroma and hypoplastic nasal bone, not previously reported in this condition. Chromosomal microarray analysis found no imbalance and identified 8.6% runs of homozygosity. Whole exome sequencing confirmed the TBCK variant without additional pathogenic or candidate variants. Fetal echocardiography revealed left ventricle and aortic arch hypoplasia. The couple opted for pregnancy termination. Fetopsy confirmed sonographic findings and revealed a hypoplastic aorta arising from right ventricle and corpus callosum agenesis. Interestingly, the cardiac phenotype segregates with variants and cardiac involvement might be considered a new feature of this variant causing Hypotonia, infantile, with psychomotor retardation and characteristic facies 3.
Collapse
Affiliation(s)
- Gioia Mastromoro
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Daniele Guadagnolo
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Francesca Gianno
- Department of Radiological, Oncological and Anatomic Pathology, Sapienza University, Rome, Italy
| | | | - Alessandra Terracciano
- Translational Cytogenomics Research Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Laura Bernardini
- Medical Genetics Unit, Fondazione IRCCS Casa Sollievo Della Sofferenza, San Giovanni Rotondo, Italy
| | - Antonella Giancotti
- Maternal and Child Health and Urological Sciences, Sapienza University of Rome, Rome, Italy
| | - Antonio Novelli
- Translational Cytogenomics Research Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Gerardo Piacentini
- Fetal and Neonatal Cardiology Unit, Isola Tiberina Hospital - Gemelli Isola, Roma, Italy
| | - Cira Di Gioia
- Department of Radiological, Oncological and Anatomic Pathology, Sapienza University, Rome, Italy
| | - Antonio Pizzuti
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
46
|
Li D, Xie Z, Shaikh SB, Rahman I. Altered expression profile of plasma exosomal microRNAs in exclusive electronic cigarette adult users. Sci Rep 2025; 15:2714. [PMID: 39837838 PMCID: PMC11751386 DOI: 10.1038/s41598-025-85373-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 01/02/2025] [Indexed: 01/23/2025] Open
Abstract
Little is known about how exclusive e-cigarette use affects exosomal microRNA (miRNA) expression, which is crucial in inflammation and disease processes like cancer. We compared exosomal miRNA profiles between exclusive e-cigarette users and non-users. We used plasma samples from 15 exclusive e-cigarette users and 15 non-users from the Population Assessment of Tobacco and Health (PATH) Wave 1 study (2013-2014) and sequenced miRNAs with Illumina NextSeq 500/550. We performed differential analyses using DESeq2 in R/Bioconductor, adjusting for race, and conducted gene enrichment analyses on target genes regulated by significant miRNAs. Further, molecular-based techniques using the miRNA mimics and inhibitors were applied for the validation of the expressions of the miRNAs in vitro. We identified four miRNAs that were upregulated in exclusive e-cigarette users compared to non-users: hsa-miR-100-5p, hsa-miR-125a-5p, hsa-miR-125b-5p, and hsa-miR-99a-5p, after adjusting for the confounding effects of race. However, none of the miRNAs remained statistically significant after controlling for the false discovery rate (FDR) at 5%. Subgroup analysis of White participants only identified four miRNAs (hsa-miR-100-5p, hsa-miR-125b-5p, hsa-miR-200b-3p, and hsa-miR-99a-5p) that were also upregulated in e-cigarette users with one miRNA hsa-miR-200b-3p remaining statistical significance after controlling for the FDR at 5%. GO enrichment analysis showed that these miRNAs are involved in processes like transcription regulation and cellular protein modification. KEGG pathway analysis indicated their involvement in cancer pathways, including small cell lung cancer, renal cell carcinoma, and signaling pathways (neurotrophin, ErbB, PI3K-Akt, FoxO, Hippo, MAPK, TGF-beta). Overexpression of hsa-miR-125b-5p promoted DNA damage in bronchial epithelial cells. These findings suggest an elevation of carcinogenic cellular signaling pathways in exclusive e-cigarette users.
Collapse
Affiliation(s)
- Dongmei Li
- Department of Clinical and Translational Research, University of Rochester Medical Center, Rochester, NY, US.
| | - Zidian Xie
- Department of Clinical and Translational Research, University of Rochester Medical Center, Rochester, NY, US
| | - Sadiya Bi Shaikh
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, US
| | - Irfan Rahman
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, US
| |
Collapse
|
47
|
Tanu T, Cox AM, Karlow J, Sharma P, He X, Wu C, Babu S, Brown J, Brown KM, Chanock SJ, Liu D, Zhang T, Burns KH, Boutz PL, Insco ML. Recurrent oncogenic ZC3H18 mutations stabilize endogenous retroviral RNA. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.10.632423. [PMID: 39868094 PMCID: PMC11760258 DOI: 10.1101/2025.01.10.632423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Endogenous retroviral (ERV) RNA is highly expressed in cancer, although the molecular causes and consequences remain unknown. We found that ZC3H18 (Z18), a component of multiple nuclear RNA surveillance complexes, has recurrent truncating mutations in cancer. We show that Z18trunc mutations are oncogenic and that Z18 plays an evolutionarily conserved role in nuclear RNA surveillance of ERV RNA. In zebrafish, Z18trunc expedited melanoma onset and promoted a specific accumulation of ERV RNA. Z18 mutant human cell lines from the Cancer Cell Line Encyclopedia also expressed higher levels of ERV RNA. In engineered human melanoma cells, Z18trunc enhanced ERV RNA accumulation more than loss of one Z18 copy, indicating dominant negative activity. Z18trunc directly bound and stabilized ERV RNA. Notably, expression of ERV RNA was sufficient to expedite oncogenesis in a zebrafish model, which is the first evidence of which we are aware that ERV transcripts can play a functional role in cancer. Our work illuminates a mechanism for elevated ERV transcripts in cancer and supports that aberrant RNA accumulation is broadly oncogenic.
Collapse
Affiliation(s)
- Tanzina Tanu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Anna M. Cox
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Jennifer Karlow
- Department of Pathology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Priyanka Sharma
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Xueyang He
- University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
- Center for RNA Biology, University of Rochester, Rochester, NY 14642, USA
- Wilmot Cancer Institute, Rochester, NY 14642, USA
| | - Constance Wu
- Stem Cell Program and Division of Hematology/Oncology, Boston Children’s Hospital, Boston, MA, 02115, USA
| | - Swathy Babu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Jared Brown
- Department of Data Science, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Kevin M. Brown
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD 20850, USA
| | - Stephen J. Chanock
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD 20850, USA
| | - David Liu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Tongwu Zhang
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD 20850, USA
| | - Kathleen H. Burns
- Department of Pathology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Paul L. Boutz
- University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
- Center for RNA Biology, University of Rochester, Rochester, NY 14642, USA
- Wilmot Cancer Institute, Rochester, NY 14642, USA
| | - Megan L. Insco
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| |
Collapse
|
48
|
Zhao N, Xiong Q, Li P, Chen G, Xiao H, Wu C. TSC complex decrease the expression of mTOR by regulated miR-199b-3p. Sci Rep 2025; 15:1892. [PMID: 39806027 PMCID: PMC11730325 DOI: 10.1038/s41598-025-85706-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 01/06/2025] [Indexed: 01/16/2025] Open
Abstract
The TSC complex formed by TSC1 and TSC2 is the most important upstream negative regulator of mTORC1. Genetic variations in either TSC1 or TSC2 cause tuberous sclerosis complex (TSC) disease which is a rare autosomal dominant disorder resulting in impairment of multiple organ systems. In this study, besides a reported variation, c.2509_2512del (p.Asn837Valfs*11, p.N837fs) in TSC1, we found a de novo TSC2 variation c.1113delG (p.Gln371Hisfs*18, p.Q371fs), which these two mutation influence the formation of TSC complex. We found that the decrease of TSC complex with the appearance of the decreased miR-199b-3p expression. At the same time, the reduction of miR-199b-3p increased the expression of mTOR and the activation of mTORC1 and mTORC2, the additional miR-199b-3p caused the decrease the expression of mTOR and the activation of mTORC1 and mTORC2. In brief, our results may illustrate a novel mechanism of TSC caused by variations in either TSC1 or TSC2, and a new mTOR expression regulator, miR-199b-3p.
Collapse
Affiliation(s)
- Na Zhao
- Key Laboratory of Chemical Biology and Molecular Engineering of National Ministry of Education, Institutes of Biomedical Sciences, Shanxi University, Taiyuan, 030006, China
- Department of Pathology, The Second Hospital of ShanXi Medical University, No.382 WuYi Road, Tai Yuan, ShanXi, Taiyuan, 030000, China
| | - Qiuhong Xiong
- Key Laboratory of Chemical Biology and Molecular Engineering of National Ministry of Education, Institutes of Biomedical Sciences, Shanxi University, Taiyuan, 030006, China
| | - Ping Li
- Key Laboratory of Chemical Biology and Molecular Engineering of National Ministry of Education, Institutes of Biomedical Sciences, Shanxi University, Taiyuan, 030006, China
| | - Guangxin Chen
- Key Laboratory of Chemical Biology and Molecular Engineering of National Ministry of Education, Institutes of Biomedical Sciences, Shanxi University, Taiyuan, 030006, China
| | - Han Xiao
- Key Laboratory of Chemical Biology and Molecular Engineering of National Ministry of Education, Institutes of Biomedical Sciences, Shanxi University, Taiyuan, 030006, China.
| | - Changxin Wu
- Key Laboratory of Chemical Biology and Molecular Engineering of National Ministry of Education, Institutes of Biomedical Sciences, Shanxi University, Taiyuan, 030006, China.
| |
Collapse
|
49
|
Guo Y, Zhang Q, Zhang B, Pan T, Ronan EA, Huffman A, He Y, Inoki K, Liu J, Xu XZS. Dietary cinnamon promotes longevity and extends healthspan via mTORC1 and autophagy signaling. Aging Cell 2025:e14448. [PMID: 39760475 DOI: 10.1111/acel.14448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 11/12/2024] [Accepted: 12/04/2024] [Indexed: 01/07/2025] Open
Abstract
Cinnamon, renowned for its aromatic flavor, represents one of the most widely used spices worldwide. Cinnamon is also considered beneficial to human health with therapeutic potential for treating various diseases, ranging from diabetes and cancer to neurodegenerative diseases. However, the mechanisms underlying cinnamon's health benefits remain elusive. It is also unclear whether cinnamon has any role in aging. Using C. elegans as a model, here we show that feeding worms cinnamaldehyde (CA), the active ingredient in cinnamon oil, prolongs longevity. CA also promotes stress resistance and reduces β-Amyloid toxicity in a C. elegans model of Alzheimer's disease. Mechanistically, CA exerts its beneficial effects through mTORC1 and autophagy signaling. Interestingly, CA promotes longevity by inducing a dietary restriction-like state without affecting food intake, suggesting CA as a dietary restriction mimetic. In human cells, CA exerts a similar effect on mTORC1 and autophagy signaling, suggesting a conserved mechanism. Our results demonstrate that dietary cinnamon promotes both lifespan and healthspan and does so by regulating mTORC1 and autophagy signaling.
Collapse
Affiliation(s)
- Yuling Guo
- College of Life Science and Technology, Key Laboratory of Molecular Biophysics of MOE, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, USA
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, USA
| | - Qing Zhang
- College of Life Science and Technology, Key Laboratory of Molecular Biophysics of MOE, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Bi Zhang
- College of Life Science and Technology, Key Laboratory of Molecular Biophysics of MOE, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Tong Pan
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, USA
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, USA
| | - Elizabeth A Ronan
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, USA
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, USA
| | - Anthony Huffman
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan, USA
| | - Yongqun He
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan, USA
- Unit for Laboratory Animal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Ken Inoki
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, USA
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, USA
| | - Jianfeng Liu
- College of Life Science and Technology, Key Laboratory of Molecular Biophysics of MOE, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Bioland Laboratory, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, China
| | - X Z Shawn Xu
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, USA
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
50
|
Ge H, Wang C, Zhao H, Chen H, Gong Y, Qiao L, Zhang Y, Liu P, Yang B. Targeting NCAPD2 as a Therapeutic Strategy for Crohn's Disease: Implications for Autophagy and Inflammation. Inflamm Bowel Dis 2025; 31:178-188. [PMID: 39340820 DOI: 10.1093/ibd/izae211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Indexed: 09/30/2024]
Abstract
BACKGROUND Our earlier studies identified that non-SMC condensin I complex subunit D2 (NCAPD2) induces inflammation through the IKK/NF-κB pathway in ulcerative colitis. However, its role in the development of Crohn's disease (CD) and the specific molecular mechanism still need to be further studied. METHODS NCAPD2 expression in clinical ileal CD mucosa vs normal mucosa was examined, alongside its correlation with CD patients' clinical characteristics via their medical records. The biological function and molecular mechanism of NCAPD2 in CD were explored using a 2,4,6-trinitrobenzene sulfonic acid (TNBS)-induced CD mouse model, along with immunofluorescence, western blot, quantitative real-time PCR, immunohistochemistry, hematoxylin and eosin staining, and cell functional analysis. RESULTS NCAPD2 was overexpressed in CD tissues and significantly correlated with disease activity in CD patients (P = .016). In a TNBS-induced CD mouse model, NCAPD2 knockdown inhibited the development of TNBS-induced intestinal inflammation in mice. In addition, we found that NCAPD2 inhibited autophagy. Mechanistically, NCAPD2 promoted the phosphorylation of mammalian target of the rapamycin (mTOR) and its direct effector S6K and downregulated the expression of autophagy-related proteins Beclin1, LC3II, and Atg5. In addition, NCAPD2 activates the NF-κB signaling pathway, and the downstream inflammatory factors are continuously released, leading to the persistence of inflammation. CONCLUSIONS Our results show that NCAPD2 suppresses autophagy and worsens intestinal inflammation by modulating mTOR signaling and impacting the NF-κB pathway, suggesting a critical role in CD progression. Targeting NCAPD2 could be a promising therapeutic approach to stop CD advancement.
Collapse
Affiliation(s)
- Hao Ge
- First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Can Wang
- First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
- Inflammatory Bowel Disease Center/Department of Colorectal Surgery, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Haoran Zhao
- First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Hao Chen
- First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Yuxia Gong
- First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
- Inflammatory Bowel Disease Center/Department of Colorectal Surgery, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Lichao Qiao
- First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
- Inflammatory Bowel Disease Center/Department of Colorectal Surgery, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Yi Zhang
- College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu, China
| | - Ping Liu
- College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu, China
| | - Bolin Yang
- First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
- Inflammatory Bowel Disease Center/Department of Colorectal Surgery, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| |
Collapse
|