1
|
Fumagalli A, Castells-Nobau A, Trivedi D, Garre-Olmo J, Puig J, Ramos R, Ramió-Torrentà L, Pérez-Brocal V, Moya A, Swann J, Martin-Garcia E, Maldonado R, Fernández-Real JM, Mayneris-Perxachs J. Archaea methanogens are associated with cognitive performance through the shaping of gut microbiota, butyrate and histidine metabolism. Gut Microbes 2025; 17:2455506. [PMID: 39910065 PMCID: PMC11810085 DOI: 10.1080/19490976.2025.2455506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 12/28/2024] [Accepted: 01/13/2025] [Indexed: 02/07/2025] Open
Abstract
The relationship between bacteria, cognitive function and obesity is well established, yet the role of archaeal species remains underexplored. We used shotgun metagenomics and neuropsychological tests to identify microbial species associated with cognition in a discovery cohort (IRONMET, n = 125). Interestingly, methanogen archaeas exhibited the strongest positive associations with cognition, particularly Methanobrevibacter smithii (M. smithii). Stratifying individuals by median-centered log ratios (CLR) of M. smithii (low and high M. smithii groups: LMs and HMs) revealed that HMs exhibited better cognition and distinct gut bacterial profiles (PERMANOVA p = 0.001), characterized by increased levels of Verrucomicrobia, Synergistetes and Lentisphaerae species and reduced levels of Bacteroidetes and Proteobacteria. Several of these species were linked to the cognitive test scores. These findings were replicated in a large-scale validation cohort (Aging Imageomics, n = 942). Functional analyses revealed an enrichment of energy, butyrate, and bile acid metabolism in HMs in both cohorts. Global plasma metabolomics by CIL LC-MS in IRONMET identified an enrichment of methylhistidine, phenylacetate, alpha-linolenic and linoleic acid, and secondary bile acid metabolism associated with increased levels of 3-methylhistidine, phenylacetylgluamine, adrenic acid, and isolithocholic acid in the HMs group. Phenylacetate and linoleic acid metabolism also emerged in the Aging Imageomics cohort performing untargeted HPLC-ESI-MS/MS metabolic profiling, while a targeted bile acid profiling identified again isolithocholic acid as one of the most significant bile acid increased in the HMs. 3-Methylhistidine levels were also associated with intense physical activity in a second validation cohort (IRONMET-CGM, n = 116). Finally, FMT from HMs donors improved cognitive flexibility, reduced weight, and altered SCFAs, histidine-, linoleic acid- and phenylalanine-related metabolites in the dorsal striatum of recipient mice. M. smithii seems to interact with the bacterial ecosystem affecting butyrate, histidine, phenylalanine, and linoleic acid metabolism with a positive impact on cognition, constituting a promising therapeutic target to enhance cognitive performance, especially in subjects with obesity.
Collapse
Affiliation(s)
- Andrea Fumagalli
- Department of Diabetes, Endocrinology and Nutrition, Dr. Josep Trueta University Hospital, Girona, Spain
- Nutrition, Eumetabolism and Health Group, Girona Biomedical Research Institute (IDIBGI-CERCA), Girona, Spain
- Integrative Systems Medicine and Biology Group, Girona Biomedical Research Institute (IDIBGI-CERCA), Salt, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III; Madrid, Spain
| | - Anna Castells-Nobau
- Department of Diabetes, Endocrinology and Nutrition, Dr. Josep Trueta University Hospital, Girona, Spain
- Nutrition, Eumetabolism and Health Group, Girona Biomedical Research Institute (IDIBGI-CERCA), Girona, Spain
- Integrative Systems Medicine and Biology Group, Girona Biomedical Research Institute (IDIBGI-CERCA), Salt, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III; Madrid, Spain
| | - Dakshat Trivedi
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Josep Garre-Olmo
- serra-hunter program Department of Nursing, University of Girona, Girona, Spain
| | - Josep Puig
- Department of Medical Sciences, School of Medicine, University of Girona, Girona, Spain
- Institute of Diagnostic Imaging (IDI)-Research Unit (IDIR), Parc Sanitari Pere Virgili, Barcelona, Spain
- Medical Imaging, Girona Biomedical Research Institute (IdibGi), Girona, Spain
- Department of Radiology (IDI), Dr. Josep Trueta University Hospital, Girona, Spain
| | - Rafel Ramos
- Department of Medical Sciences, School of Medicine, University of Girona, Girona, Spain
- Vascular Health Research Group of Girona (ISV-Girona), Jordi Gol Institute for Primary Care Research (Institut Universitari per a la Recerca en Atenció Primària Jordi Gol I Gorina -IDIAPJGol), Red de Investigación en Cronicidad, Atención Primaria y Promoción de la Salud-RICAPPS- ISCIII Girona Biomedical Research Institute (IDIBGI), Dr. Josep Trueta University Hospital, Girona, Catalonia, Spain
- Research in Vascular Health Group, Girona Biomedical Research Institute (IDIBGI-CERCA), Dr. Josep Trueta University Hospital, Girona, Spain
| | - Lluís Ramió-Torrentà
- Department of Medical Sciences, School of Medicine, University of Girona, Girona, Spain
- Neuroimmunology and Multiple Sclerosis Unit, Department of Neurology, Dr. Josep Trueta University Hospital, Girona, Spain
- Neurodegeneration and Neuroinflammation Research Group, IDIBGI-CERCA, Girona, Spain
| | - Vicente Pérez-Brocal
- Area of Genomics and Health, Foundation for the Promotion of Sanitary and Biomedical Research of Valencia Region (FISABIO-Public Health), Valencia, Spain
- Biomedical Research Networking Center for Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - Andrés Moya
- Area of Genomics and Health, Foundation for the Promotion of Sanitary and Biomedical Research of Valencia Region (FISABIO-Public Health), Valencia, Spain
- Biomedical Research Networking Center for Epidemiology and Public Health (CIBERESP), Madrid, Spain
- Institute for Integrative Systems Biology (I2SysBio), University of Valencia and Spanish National Research Council (CSIC), Valencia, Spain
| | - Jonathan Swann
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Elena Martin-Garcia
- Laboratory of Neuropharmacology, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
- Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
| | - Rafael Maldonado
- Laboratory of Neuropharmacology, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
- Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
| | - José Manuel Fernández-Real
- Department of Diabetes, Endocrinology and Nutrition, Dr. Josep Trueta University Hospital, Girona, Spain
- Nutrition, Eumetabolism and Health Group, Girona Biomedical Research Institute (IDIBGI-CERCA), Girona, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III; Madrid, Spain
| | - Jordi Mayneris-Perxachs
- Department of Diabetes, Endocrinology and Nutrition, Dr. Josep Trueta University Hospital, Girona, Spain
- Integrative Systems Medicine and Biology Group, Girona Biomedical Research Institute (IDIBGI-CERCA), Salt, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III; Madrid, Spain
| |
Collapse
|
2
|
You X, Niu L, Fu J, Ge S, Shi J, Zhang Y, Zhuang P. Bidirectional regulation of the brain-gut-microbiota axis following traumatic brain injury. Neural Regen Res 2025; 20:2153-2168. [PMID: 39359076 PMCID: PMC11759007 DOI: 10.4103/nrr.nrr-d-24-00088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 03/20/2024] [Accepted: 05/11/2024] [Indexed: 10/04/2024] Open
Abstract
JOURNAL/nrgr/04.03/01300535-202508000-00002/figure1/v/2024-09-30T120553Z/r/image-tiff Traumatic brain injury is a prevalent disorder of the central nervous system. In addition to primary brain parenchymal damage, the enduring biological consequences of traumatic brain injury pose long-term risks for patients with traumatic brain injury; however, the underlying pathogenesis remains unclear, and effective intervention methods are lacking. Intestinal dysfunction is a significant consequence of traumatic brain injury. Being the most densely innervated peripheral tissue in the body, the gut possesses multiple pathways for the establishment of a bidirectional "brain-gut axis" with the central nervous system. The gut harbors a vast microbial community, and alterations of the gut niche contribute to the progression of traumatic brain injury and its unfavorable prognosis through neuronal, hormonal, and immune pathways. A comprehensive understanding of microbiota-mediated peripheral neuroimmunomodulation mechanisms is needed to enhance treatment strategies for traumatic brain injury and its associated complications. We comprehensively reviewed alterations in the gut microecological environment following traumatic brain injury, with a specific focus on the complex biological processes of peripheral nerves, immunity, and microbes triggered by traumatic brain injury, encompassing autonomic dysfunction, neuroendocrine disturbances, peripheral immunosuppression, increased intestinal barrier permeability, compromised responses of sensory nerves to microorganisms, and potential effector nuclei in the central nervous system influenced by gut microbiota. Additionally, we reviewed the mechanisms underlying secondary biological injury and the dynamic pathological responses that occur following injury to enhance our current understanding of how peripheral pathways impact the outcome of patients with traumatic brain injury. This review aimed to propose a conceptual model for future risk assessment of central nervous system-related diseases while elucidating novel insights into the bidirectional effects of the "brain-gut-microbiota axis."
Collapse
Affiliation(s)
- Xinyu You
- National Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Lin Niu
- National Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jiafeng Fu
- National Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Shining Ge
- National Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jiangwei Shi
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Yanjun Zhang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Pengwei Zhuang
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
3
|
Wan M, Wang W, He M, Yang S, Feng Y, Luo Y. Cubebin alleviates chronic stress-induced depression-like behavior in mice by regulating the gut microbiome. Eur J Pharmacol 2025; 994:177384. [PMID: 39956262 DOI: 10.1016/j.ejphar.2025.177384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 01/27/2025] [Accepted: 02/13/2025] [Indexed: 02/18/2025]
Abstract
The gut-brain axis is dysregulated as a consequence of alterations in the gut microbiota. These alterations increase toxic microbial metabolites, endotoxemia, and the release of immune mediators and contribute to the development of depression. Cubebin is a dibenzyl butyrolactone lignan, and its stem is also known as Agaru in Tibetan areas, it is commonly used as a sedative and tranquilizing medicine. This study aimed to investigate the effects of cubebin on chronic stress-induced depression-like behavior in mice. Cubebin was observed to mitigate depressive-like behavior in chronic unpredictable mild stress (CUMS) mice, influence the restoration of their cerebral cortex and hippocampal tissue morphology, and enhance the abundance of relevant intestinal flora in depression model mice, particularly by decreasing the abundance of Clostridium, Dorea, and Ruminococcus. The final protein function expression was normalized by regulating depression-related metabolic pathways. Concomitantly, the concentrations of neurotransmitters serotonin (5-HT), norepinephrine (NE), and dopamine (DA) in the brains of mice in the model group were enhanced, and their depressive symptoms were mitigated. Our study findings suggest that cubebin may ameliorate CUMS-induced depression in mice by modulating the microbe-gut-brain axis, elucidating the key effect of gut metabolites on depressive symptoms.
Collapse
Affiliation(s)
- Mengqiang Wan
- National Pharmaceutical Engineering Center for Solid Preparation of Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, Nanchang, 330006, Jiangxi, China
| | - Wei Wang
- National Pharmaceutical Engineering Center for Solid Preparation of Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, Nanchang, 330006, Jiangxi, China
| | - Mingzhen He
- National Pharmaceutical Engineering Center for Solid Preparation of Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, Nanchang, 330006, Jiangxi, China
| | - Shilin Yang
- National Pharmaceutical Engineering Center for Solid Preparation of Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, Nanchang, 330006, Jiangxi, China
| | - Yulin Feng
- National Pharmaceutical Engineering Center for Solid Preparation of Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, Nanchang, 330006, Jiangxi, China
| | - Yingying Luo
- National Pharmaceutical Engineering Center for Solid Preparation of Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, Nanchang, 330006, Jiangxi, China.
| |
Collapse
|
4
|
Zhang L, Li MJ, Li XP, Yang B, Xiao T, Wang P, Zhang WD. Respiratory microbiota diversity as a predictive biomarker for the efficacy of PD‑1 blockades in patients with advanced non‑small cell lung cancer: A retrospective exploratory study. Oncol Lett 2025; 29:251. [PMID: 40201032 PMCID: PMC11977453 DOI: 10.3892/ol.2025.14997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Accepted: 03/04/2025] [Indexed: 04/10/2025] Open
Abstract
Despite advancements in immunotherapy, particularly regarding programmed cell death protein 1 (PD-1)/programmed death-ligand 1 blockades, the clinical outcomes in non-small cell lung cancer (NSCLC) remain variable with limited predictive biomarkers currently available. The present study investigated respiratory microbiota diversity as a potential biomarker to predict the efficacy of PD-1 blockades in patients with advanced NSCLC. A retrospective analysis was conducted on 60 patients treated with PD-1 blockades from May 2019 to May 2023. Clinical data were collected and respiratory microbiota from deep induced sputum specimens were analyzed using 16S rRNA gene sequencing. An index of respiratory microbiota α diversity was applied and exploratory analysis was performed accordingly. The objective response rate (ORR) and disease control rate among the 60 patients receiving PD-1 blockades was 23.3% (95% CI, 13.4-36.0%) and 58.3% (95% CI, 44.9-70.9%), respectively. Analysis of prognostic data of patients with advanced NSCLC receiving PD-1 blockades monotherapy demonstrated a median progression-free survival of 3.4 months (95% CI, 2.54-4.26) and a median overall survival (OS) of 12.3 months (95% CI, 6.29-18.31). Patients were stratified into high and low α diversity groups based on the Shannon diversity index of respiratory microbiota. The ORR was increased in the high diversity group (26.7%) compared with that of the low diversity group (20.0%), although the difference was not statistically significant (P=0.542). Notably, the high diversity group demonstrated a longer median PFS (3.9 vs. 2.8 months; P=0.017) and median OS (16.8 vs. 6.8 months; P=0.016) compared with that of the low diversity group. These findings suggested that PD-1 blockades demonstrate promising therapeutic activity for patients with previously treated advanced NSCLC in clinical practice. Respiratory microbiota α diversity might serve as a potential biomarker to predict the efficacy of PD-1 blockades monotherapy in patients with advanced NSCLC in the future. Therefore, further prospective studies are warranted to validate these findings and to explore the underlying mechanisms by which respiratory microbiota might modulate the immune response to cancer therapy.
Collapse
Affiliation(s)
- Liang Zhang
- Department of Thoracic Surgery, Tianjin First Central Hospital, Tianjin 300190, P.R. China
| | - Ming-Jiang Li
- Department of Thoracic Surgery, Tianjin First Central Hospital, Tianjin 300190, P.R. China
| | - Xiao-Ping Li
- Department of Thoracic Surgery, Tianjin First Central Hospital, Tianjin 300190, P.R. China
| | - Bo Yang
- Department of Thoracic Surgery, Tianjin First Central Hospital, Tianjin 300190, P.R. China
| | - Ting Xiao
- Department of Pharmacy, College of Pharmacy and Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300071, P.R. China
| | - Ping Wang
- Department of Radiotherapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300202, P.R. China
| | - Wei-Dong Zhang
- Department of Thoracic Surgery, Tianjin First Central Hospital, Tianjin 300190, P.R. China
| |
Collapse
|
5
|
Lai Y, Xiong P. Analysis of gut microbiota and depression and anxiety: Mendelian randomization from three datasets. Gen Hosp Psychiatry 2025; 94:206-218. [PMID: 40154232 DOI: 10.1016/j.genhosppsych.2025.03.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 03/14/2025] [Accepted: 03/14/2025] [Indexed: 04/01/2025]
Abstract
BACKGROUND Emerging evidence supports gut microbiota's association with mental distress, particularly depression and anxiety, the microbiota-gut-brain axis was the believed to be the underlying mechanism. This study investigated the causal relationships between specific gut microbiota and depression and anxiety disorders using large-scale genome-wide association study (GWAS) data. METHODS A two-sample bidirectional Mendelian randomization (MR) analysis was conducted to explore the causal effects of 211 microbial taxa on depression and anxiety across three large GWAS databases: FinnGen, Pan-UKBB, and PGC. Sensitive analyses were followed to validate the robustness of results. Random-effect meta-analysis was further performed to enhance the statistical power. RESULTS The MR analysis revealed that the Bifidobacteriales (IVW: OR 0.90, 95 %CI 0.83 to 0.98) and Bifidobacteriaceae (IVW: OR 0.90, 95 %CI 0.83 to 0.98) had a protective effect against depression. Clostridiales (cML-MA: OR 0.88, 95 %CI 0.81 to 0.95) and Parasutterella (cML-MA: OR 0.75, 95 %CI 0.64 to 0.88) showed negative associations with depression. Increased abundance of Oxalobacteraceae (cML-MA: OR 1.78, 95 %CI 1.24 to 2.56), Deltaproteobacteria (cML-MA: OR 2.17, 95 %CI 1.38 to 3.40), and Desulfovibrionales (cML-MA: OR 2.22, 95 %CI 1.41 to 3.49) was associated with a higher risk of depression. For anxiety, protective effects were found for Actinobacteria (phylum: IVW: OR 0.83, 95 %CI 0.76 to 0.87; class: IVW: OR 0.84, 95 %CI 0.75 to 0.93), Bifidobacteriales (IVW: OR 0.80, 95 %CI 0.75 to 0.85), Bifidobacteriaceae (IVW: OR 0.80, 95 %CI 0.75 to 0.85) and Bifidobacterium [g] (IVW: OR 0.79, 95 %CI 0.74 to 0.84). Lactobacillaceae [f] (cML-MA: OR 1.18, 95 %CI 1.08 to 1.28), Clostridia [c] (cML-MA: OR 1.15, 95 %CI 0.1.06 to 1.26) and Clostridiales [o] (IVW: OR 1.15, 95 %CI 1.05 to 1.27) were associated with increased anxiety risk. Meta-analysis results indicated significant associations, particularly the protective effects of Actinobacteria (OR 0.90, 95 % CI, 0.83 to 0.98) and Clostridiaceae1 (OR 0.91, 95 % CI, 0.83 to 0.99) on depression and several taxa on anxiety. No significant instrumental variables for depression or anxiety on gut microbiota were identified. CONCLUSIONS Our findings highlight specific gut microbiota that are associated with depression and anxiety, underscoring the causal relationships between these intestinal microbes and psychiatric disorders. These results suggest potential strategies for mitigating disease symptoms and improving quality of life through microbiome-targeted therapies. Further studies, including randomized controlled trials and investigations into sex-specific effects, are essential to validate and expand upon these findings.
Collapse
Affiliation(s)
- Yaoyong Lai
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, China
| | - Peng Xiong
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, China.
| |
Collapse
|
6
|
Zhou J, Zhao Y, Li Y, Li J, Huang J, Liu L, Liu Z, Zhu M. Jasmine tea extract prevents CUMS-induced depression-like behaviors through the modulation of microbiota-gut-brain axis. Food Res Int 2025; 209:116214. [PMID: 40253129 DOI: 10.1016/j.foodres.2025.116214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 02/21/2025] [Accepted: 03/11/2025] [Indexed: 04/21/2025]
Abstract
Depression is strongly linked to dysfunctions in the microbiota-gut-brain axis. Jasmine tea, a traditional Chinese beverage made by combining green tea with Jasminum sambac, has potential antidepressant effects. However, its potential to alleviate depression via modulation of the microbiota-gut-brain axis remains largely unstudied. In this study, we used a rat model of depression induced by chronic unpredictable mild stress (CUMS) to investigate the effects of jasmine tea extract (JT) on depression-related symptoms. Behavioral assessments, inflammatory marker analysis, hippocampal histology, and brain-derived neurotrophic factor (BDNF) expression assays demonstrated that JT alleviated depressive behaviors, reduced brain tissue damage, and restored cognitive function in CUMS-exposed rats. JT also significantly reduced intestinal levels of pro-inflammatory cytokines (IL-1β, IL-6, and TNF-α) and modulated oxidative stress markers (MDA, SOD, and CAT), suggesting a role in preserving intestinal integrity. Further, 16S rRNA sequencing revealed that JT shifted the gut microbiota composition in favor of beneficial bacteria such as Romboutsia, Blautia, and Monoglobus, while decreasing the abundance of potentially harmful bacteria, including Bifidobacterium, Clostridium_sensu_stricto_1, and Escherichia-Shigella. Meanwhile, non-targeted and targeted metabolomics analyses showed that JT influenced key metabolic pathways involving tryptophan, short-chain fatty acids, and bile acids, helping to restore metabolic balance across various tissues (feces, colon, serum, and cerebral cortex) in the depressed rats. These findings indicate that JT may alleviate depression by modulating the microbiota-gut-brain axis, highlighting its potential as a dietary intervention for depression management.
Collapse
Affiliation(s)
- Jiaxin Zhou
- Key Laboratory of Tea Science of Ministry of Education, National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha, Hunan 410128, PR China
| | - Yiqiao Zhao
- Key Laboratory of Tea Science of Ministry of Education, National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha, Hunan 410128, PR China
| | - Yilong Li
- Key Laboratory of Tea Science of Ministry of Education, National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha, Hunan 410128, PR China
| | - Jie Li
- Key Laboratory of Tea Science of Ministry of Education, National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha, Hunan 410128, PR China
| | - Jianan Huang
- Key Laboratory of Tea Science of Ministry of Education, National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha, Hunan 410128, PR China
| | - Lin Liu
- The First Hospital of Hunan University of Chinese Medicine, Hunan 410128, PR China.
| | - Zhonghua Liu
- Key Laboratory of Tea Science of Ministry of Education, National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha, Hunan 410128, PR China.
| | - Mingzhi Zhu
- Key Laboratory of Tea Science of Ministry of Education, National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha, Hunan 410128, PR China.
| |
Collapse
|
7
|
Kimmel M, Tong B, Devall AE, Björvang RD, Schuppe-Koistinen I, Engstrand L, Fransson E, Skalkidou A, Hugerth LW. Investigating the Microbiome in Relation to Mental Distress Across Two Points During Pregnancy: Data From U.S. and Swedish Cohorts. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2025; 5:100453. [PMID: 40115744 PMCID: PMC11925571 DOI: 10.1016/j.bpsgos.2025.100453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 01/12/2025] [Accepted: 01/15/2025] [Indexed: 03/23/2025] Open
Abstract
Background In this study, we aimed to characterize the gut microbiome and its potential functioning in 2 populations at 2 time points during pregnancy in relation to mental distress. Methods During the second and third trimester, individuals from the United States and Sweden completed the Edinburgh Postnatal Depression Scale and provided fecal samples for whole-genome metagenomics. A total of 832 and 161 samples were sequenced and analyzed from the Swedish cohort and the U.S. cohort, respectively. Multiple characterizations of the microbial community were analyzed in relation to distress measured using the Edinburgh Postnatal Depression Scale. Principal coordinate analysis and distance-based redundancy analysis assessed variation in functional gut-brain modules. For the U.S. cohort, the Trier Social Stress Test was administered 8 weeks postpartum while collecting salivary cortisol. Results Principal coordinate analysis identified 4 sample clusters based on the gut-brain modules distinguished by functions such as short-chain fatty acid synthesis and cortisol degradation. While with distance-based redundancy analysis, mental distress subtypes did not significantly contribute to variation in gut-brain modules (p = .085 for Sweden, p = .23 for the U.S.), a U.S. sample cluster distinguished by lower cortisol degradation from another cluster with higher gut microbial cortisol degradation abundance had significantly higher odds of being associated with depression (p = .024). The U.S. sample cluster with lower gut microbial cortisol degradation abundance also had significantly higher cortisol levels after a postpartum social stressor. Conclusions Further studies are warranted to investigate the potential for the gut microbiome to serve as biomarkers of gut-brain axis health during pregnancy across disparate populations.
Collapse
Affiliation(s)
- Mary Kimmel
- Department of Women's and Children's Health, Uppsala University, Uppsala, Sweden
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
- Department of Psychiatry, Washington University, St. Louis, Missouri
| | - Bangzhuo Tong
- Department of Medical Biochemistry and Microbiology, Uppsala University, Science for Life Laboratory, Uppsala, Sweden
| | - Alfons Edbom Devall
- Department of Medical Biochemistry and Microbiology, Uppsala University, Science for Life Laboratory, Uppsala, Sweden
- Department of Molecular Biology, Umeå University, Umeå, Sweden
| | - Richelle D Björvang
- Department of Women's and Children's Health, Uppsala University, Uppsala, Sweden
| | - Ina Schuppe-Koistinen
- Centre for Translational Microbiome Research, Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Lars Engstrand
- Centre for Translational Microbiome Research, Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Emma Fransson
- Department of Women's and Children's Health, Uppsala University, Uppsala, Sweden
- Centre for Translational Microbiome Research, Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Alkistis Skalkidou
- Department of Women's and Children's Health, Uppsala University, Uppsala, Sweden
| | - Luisa W Hugerth
- Department of Medical Biochemistry and Microbiology, Uppsala University, Science for Life Laboratory, Uppsala, Sweden
- Centre for Translational Microbiome Research, Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
8
|
Frazão Tavares de Melo MF, Moura RDL, da Silva EB, Pereira DE, Alves MDC, Gomes Dutra LM, Guerra GCB, Araújo DFDS, Estevez Pintado MM, Correia Sales GF, Bruno de Oliveira CJ, Barbosa Soares JK. Avocado (Persea americana Mill.) consumption during pregnancy and lactation induces anxiogenic-like behavior, cerebral oxidative stress and compromises fecal microbiota in rat offspring. Brain Res 2025; 1854:149544. [PMID: 40024360 DOI: 10.1016/j.brainres.2025.149544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 01/23/2025] [Accepted: 02/26/2025] [Indexed: 03/04/2025]
Abstract
This study aimed to evaluate the impact of consumption of avocado oil (AO) and pulp (AP) on anxiety-like behavior, cerebral oxidative stress and alteration of the fecal microbiota in the mother and male Wistar rats offspring treated during gestation and lactation. Anxiety-like behavior was measured through the elevated plus maze (EPM) and open field test (OFT) tests. Cerebral malondialdehyde (MDA) and glutathione (GLUT) levels were measured in mothers and offspring. The fatty acid profile was determined for maternal milk and brain. Data showed a shorter time spent on the open arms of EPM in mothers and offspring for those fed AO and AP (P < 0.001). Moreover, the AO offspring adolescent and adult spent less time in the central area (P < 0.05). Furthermore, offspring adults from the AO moved about less and offspring from the AP ambulated more (P < 0.001). MDA was increased in mothers and decreased in the offspring in AO and AP and GLUT was lower in mothers and higher in adolescent and adult offspring in AP (P < 0.05). Polyunsaturated fatty acids in the brain and breast milk in AO and AP were decreased (P < 0.05). Furthermore, there was an increase in the abundance of intestinal bacteria related to the production of inflammatory metabolites that compromised brain function in offspring treated with avocado. These results suggest that avocado induces anxiogenic-like behavior and increases cerebral oxidative stress in mothers and offspring of rats treated during pregnancy and lactation, negatively altering the fecal microbiota of the offspring. So, we report for the first time how the consumption of avocado oil and pulp interferes with a developing organism when consumed in the early stages of life in rats.
Collapse
Affiliation(s)
- Marília Ferreira Frazão Tavares de Melo
- Program of Food Science and Technology, Federal University of Paraíba, João Pessoa, PB, Brazil; Laboratory of Experimental Nutrition, Department of Nutrition, Federal University of Campina Grande, Cuité, PB, Brazil
| | - Renally de Lima Moura
- Program of Food Science and Technology, Federal University of Paraíba, João Pessoa, PB, Brazil; Laboratory of Experimental Nutrition, Department of Nutrition, Federal University of Campina Grande, Cuité, PB, Brazil
| | - Elisiane Beatriz da Silva
- Laboratory of Experimental Nutrition, Department of Nutrition, Federal University of Campina Grande, Cuité, PB, Brazil
| | - Diego Elias Pereira
- Program of Food Science and Technology, Federal University of Paraíba, João Pessoa, PB, Brazil; Laboratory of Experimental Nutrition, Department of Nutrition, Federal University of Campina Grande, Cuité, PB, Brazil
| | - Maciel da Costa Alves
- Laboratory of Experimental Nutrition, Department of Nutrition, Federal University of Campina Grande, Cuité, PB, Brazil; Department of Biofísica and Pharmacology, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Larissa Maria Gomes Dutra
- Program of Food Science and Technology, Federal University of Paraíba, João Pessoa, PB, Brazil; Laboratory of Experimental Nutrition, Department of Nutrition, Federal University of Campina Grande, Cuité, PB, Brazil.
| | | | | | | | | | | | - Juliana Késsia Barbosa Soares
- Program of Food Science and Technology, Federal University of Paraíba, João Pessoa, PB, Brazil; Laboratory of Experimental Nutrition, Department of Nutrition, Federal University of Campina Grande, Cuité, PB, Brazil
| |
Collapse
|
9
|
Zeng Y, Jia X, Li H, Zhou N, Liang X, Liu K, Yang BZ, Xiang B. Oral microbiota among treatment-naïve adolescents with depression: A case-control study. J Affect Disord 2025; 375:93-102. [PMID: 39855566 PMCID: PMC11934967 DOI: 10.1016/j.jad.2025.01.089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 12/04/2024] [Accepted: 01/18/2025] [Indexed: 01/27/2025]
Abstract
BACKGROUND Adolescent depression has profound impacts on physical, cognitive, and emotional development. While gut microbiota changes have been linked to depression, the relationship between oral microbiota and depression remains elusive. Our study aims to investigate the oral microbiota in treatment-naïve adolescents experiencing depression and examine their potential associations with cognitive function. METHODS Our case-control study comprised two groups of adolescents aged 12-17: the depression group, including treatment-naïve individuals diagnosed with DSM-5 major depressive disorder (MDD), and a healthy control group of non-depressed individuals (HC). Participants underwent structured neuropsychiatric assessments, and fasting morning saliva samples were collected for the 16S rRNA sequencing to investigate the oral microbiota. RESULTS Significant differences were identified in the α- and β-diversities of the oral microbiota between MDD and HC groups. Specific bacterial taxa, including genera Streptococcus, Neisseria, Hemophilus, Fusobacterium, and g_norank_f_norank_o_Absconditabacteriales_SR1, were significantly associated with MDD. The association extends to cognitive functions, where correlations were observed between certain oral bacteria and cognitive scores, including instant and delayed memory, visual breadth, and speech features for the combined MDD and HC individuals (p < 0.05). Random forest analysis identified ten genera of oral microbes with the highest predictive values for MDD. The area under the curve (AUC) is 0.78 in the receiver operating characteristic (ROC) curve analysis. CONCLUSION Our results highlight the oral microbiota's role as a biomarker for adolescent depression and its impact on cognitive functions. These insights underscore the need for further research into the links between oral health, mental health, and cognitive functions.
Collapse
Affiliation(s)
- Yingying Zeng
- Department of Psychiatry, Fundamental and Clinical Research on Mental Disorders Key Laboratory of Luzhou, Laboratory of Neurological Diseases & Brain Function, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, China
| | - Xiaonan Jia
- Department of Psychiatry, Fundamental and Clinical Research on Mental Disorders Key Laboratory of Luzhou, Laboratory of Neurological Diseases & Brain Function, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, China
| | - Houyi Li
- Department of Psychiatry, Fundamental and Clinical Research on Mental Disorders Key Laboratory of Luzhou, Laboratory of Neurological Diseases & Brain Function, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, China
| | - Ni Zhou
- Division of Paediatric Dentistry & Orthodontics, Faculty of Dentistry, The University of Hong Kong, Hong Kong
| | - Xuemei Liang
- Department of Psychiatry, Fundamental and Clinical Research on Mental Disorders Key Laboratory of Luzhou, Laboratory of Neurological Diseases & Brain Function, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, China
| | - Kezhi Liu
- Department of Psychiatry, Fundamental and Clinical Research on Mental Disorders Key Laboratory of Luzhou, Laboratory of Neurological Diseases & Brain Function, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, China
| | - Bao-Zhu Yang
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, and VA CT Healthcare Center, West Haven, CT, USA..
| | - Bo Xiang
- Department of Psychiatry, Fundamental and Clinical Research on Mental Disorders Key Laboratory of Luzhou, Laboratory of Neurological Diseases & Brain Function, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, China; Zigong Affiliated Hospital of Southwest Medical University, Zigong Institute of Brain Science, Zigong, Sichuan Province, China; Central Nervous System Drug Key Laboratory of Sichuan Province, Luzhou, Sichuan Province, China.
| |
Collapse
|
10
|
Cheng Y, Zhu Z, Yang Z, Liu X, Qian X, Zhu J, Hu X, Jiang P, Cui T, Wang Y, Ding W, Lei W, Gao J, Zhang J, Li Y, Shao L, Ling Z, Hu W. Alterations in fecal microbiota composition and cytokine expression profiles in adolescents with depression: a case-control study. Sci Rep 2025; 15:12177. [PMID: 40204825 PMCID: PMC11982373 DOI: 10.1038/s41598-025-97369-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Accepted: 04/03/2025] [Indexed: 04/11/2025] Open
Abstract
Emerging evidence has highlighted that altered gut microbiota are associated with the onset and progression of depression via regulating the gut-brain axis. However, existing research has predominantly focused on children and adults, frequently neglecting adolescent depression. Given the rising prevalence and substantial impact of adolescent depression on functional impairment and suicidality, it is essential to focus more on this age group. In this study, we examined the fecal microbiota and inflammatory profiles of 99 depressed adolescents and 106 age-matched healthy controls using Illumina NovaSeq sequencing and multiplex immunoassays, respectively. Our findings revealed lower bacterial α-diversity and richness, alongside altered β-diversity in adolescents with depression. Gut dysbiosis associated with adolescent depression was characterized by increased pro-inflammatory genera such as Streptococcus and decreased anti-inflammatory genera like Faecalibacterium. These differential genera may serve as potential non-invasive biomarkers for adolescent depression, either individually or in combination. We also observed disruptions in the inferred microbiota functions in adolescent depression-associated microbiota, particularly in glycolysis and gluconeogenesis. Additionally, depressed adolescents exhibited systemic immune dysfunction, with elevated levels of pro-inflammatory cytokines and chemokines, which showed significant correlations with the differential genera. Our study bridges the gap between children and adults by providing new insights into the fecal microbiota characteristics and their links to immune system disruptions in depressed adolescents, which offer new targets for the diagnosis and treatment of depression in this age group.
Collapse
Affiliation(s)
- Yiwen Cheng
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, Zhejiang, China
| | - Zhangcheng Zhu
- Department of Preventive Medicine, School of Public Health and Management, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Zhi Yang
- Department of Psychiatry, Quzhou Third Hospital, Quzhou, 324003, Zhejiang, China
| | - Xia Liu
- Department of Intensive Care Unit, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, Zhejiang, China
| | - Xiulian Qian
- Department of Psychiatry, Quzhou Third Hospital, Quzhou, 324003, Zhejiang, China
| | - Juntao Zhu
- Department of Psychiatry, Quzhou Third Hospital, Quzhou, 324003, Zhejiang, China
| | - Xinzhu Hu
- Department of Psychiatry, Quzhou Third Hospital, Quzhou, 324003, Zhejiang, China
| | - Peijie Jiang
- Department of Psychiatry, Quzhou Third Hospital, Quzhou, 324003, Zhejiang, China
| | - Tingting Cui
- Department of Psychiatry, Quzhou Third Hospital, Quzhou, 324003, Zhejiang, China
| | - Yuwei Wang
- Department of Psychiatry, Quzhou Third Hospital, Quzhou, 324003, Zhejiang, China
| | - Wenwen Ding
- Department of Anesthesiology, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China
| | - Wenhui Lei
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, 250000, Shandong, China
| | - Jie Gao
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, Zhejiang, China
| | - Jingchen Zhang
- Department of Intensive Care Unit, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, Zhejiang, China
| | - Yating Li
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, Zhejiang, China
| | - Li Shao
- School of Clinical Medicine, Institute of Hepatology and Metabolic Diseases, Hangzhou Normal University, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, 310015, Zhejiang, China
| | - Zongxin Ling
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, Zhejiang, China.
| | - Weiming Hu
- Department of Psychiatry, Quzhou Third Hospital, Quzhou, 324003, Zhejiang, China.
| |
Collapse
|
11
|
Yang C, Na X, Yang H, Xi M, Yang Y, Yan Y, Duan S, Li T, Szeto IMY, Zhao A. Maternal sleep and psychological status in the postpartum period are associated with functional protein alterations in breast milk:a mother-infant cohort study. Clin Nutr ESPEN 2025; 67:510-522. [PMID: 40187732 DOI: 10.1016/j.clnesp.2025.03.167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 10/29/2024] [Accepted: 03/25/2025] [Indexed: 04/07/2025]
Abstract
BACKGROUND & AIMS Postpartum sleep disorder and mental disorders are common unpleasant conditions faced by women after delivery, and they have many adverse effects on both mothers and infants. It is unclear whether breast milk composition is affected by maternal sleep, psychological state, diet and gut microbiome. This study aims to explore the effects of these key factors on the functional protein components of breast milk. METHODS With a prospective design, this pilot study included a total of 41 postpartum women. Breast milk and maternal faecal samples collected at 42 days and 3 months postpartum were tested by liquid chromatography-mass spectrometry and 16S RNA sequencing, respectively. Sleep state, psychological state and dietary intake data were also collected from the mothers with validated questionnaires. RESULTS In the early postpartum period, sleep disorders and depression were associated with a decrease in the functional proteins in breast milk. Disordered sleep was significantly negatively correlated with α-lactalbumin (cor = -0.578, p < 0.001), osteopontin (cor = -0.522, p < 0.01) and κ-casein (cor = -0.451, p < 0.01). Depression was negatively correlated with αs1-casein (cor = -0.422, p < 0.01), β-casein (cor = -0.317, p < 0.05) and casein (cor = -0.318, p < 0.05). In 3 months postpartum, most associations were disappeared. But a positive correlation was observed between β-casein (cor = 0.414, p < 0.01), casein (cor = 0.372, p < 0.05), total protein (cor = 0.376, p < 0.05) and depression, while a positive correlation was found between total protein (cor = 0.357, p < 0.05) and disordered sleep at 3 months postpartum. Faecal microbiome data illustrated that changes in the gut microbiome at early postpartum were associated with sleep disorders/depression, but not with the diet. Furthermore, functional pathway analysis revealed metabolic regulation in the amino acid synthesis and metabolic pathways associated with specific microbes was involved in the reduction of breast milk protein. CONCLUSION Sleep disorders/depression could lead to significant changes in breast milk profiles at 42 days postpartum. Maternal gut microbiome might affect breast milk protein composition through regulating amino acid synthesis and metabolic pathways.
Collapse
Affiliation(s)
- Celi Yang
- Vanke School of Public Health, Tsinghua University, Beijing, China; Institute for Healthy China, Tsinghua University, Beijing, China
| | - Xiaona Na
- Vanke School of Public Health, Tsinghua University, Beijing, China; Institute for Healthy China, Tsinghua University, Beijing, China
| | - Haibing Yang
- Vanke School of Public Health, Tsinghua University, Beijing, China; Institute for Healthy China, Tsinghua University, Beijing, China
| | - Menglu Xi
- Vanke School of Public Health, Tsinghua University, Beijing, China; Institute for Healthy China, Tsinghua University, Beijing, China
| | - Yucheng Yang
- Vanke School of Public Health, Tsinghua University, Beijing, China; Institute for Healthy China, Tsinghua University, Beijing, China
| | - Yalu Yan
- National Center of Technology Innovation for Dairy, Hohhot 010110, China
| | - Sufang Duan
- National Center of Technology Innovation for Dairy, Hohhot 010110, China
| | - Ting Li
- National Center of Technology Innovation for Dairy, Hohhot 010110, China
| | | | - Ai Zhao
- Vanke School of Public Health, Tsinghua University, Beijing, China; Institute for Healthy China, Tsinghua University, Beijing, China.
| |
Collapse
|
12
|
Gorenshtein A, Shihada K, Leibovitch L, Liba T, Goren A. The association between migraine and gut microbiota: a systematic review. Acta Neurol Belg 2025:10.1007/s13760-025-02779-y. [PMID: 40175732 DOI: 10.1007/s13760-025-02779-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Accepted: 03/27/2025] [Indexed: 04/04/2025]
Abstract
INTRODUCTION Recent studies suggest a link between gut microbiota and neurological diseases, implicating the microbiome's role in neurological health. However, the specific alterations in the microbiome associated with migraine remain underexplored. This study aims to systematically review the existing literature to determine whether migraine patients are associated with changes in gut microbiota composition. METHODS A systematic review was conducted in accordance with the PRISMA statement. We included original empirical studies investigating the microbiome in migraine patients. Data extracted included study design, participant demographics, microbiome differences at various taxonomic levels, and measures of microbial diversity (alpha and beta diversity). The search and selection process involved four independent reviewers who assessed abstracts and full texts to ensure eligibility. The gut microbiota was evaluated using relative abundance and diversity indices. RESULTS Six studies, encompassing various regions including China, Korea, and Italy, were included in the analysis. The results indicated significant differences in gut microbiota between migraine patients and controls. Key findings include a reduction in Faecalibacterium, a genus known for its anti-inflammatory properties, in migraine patients, including those with chronic migraine. Conversely, Veillonella exhibited elevated abundance compared to controls. Other taxa, such as Prevotella and Parabacteroides, showed variable associations with migraine across different studies, suggesting a dysbiotic gut environment in migraine patients. CONCLUSION This review highlights that migraines are associated with specific alterations in gut microbiota, including decreased microbial diversity and changes in the abundance of key taxa. These findings suggest that gut microbiota dysbiosis may play a role in migraine pathophysiology. Further research is needed to explore the potential causal relationships and therapeutic implications, particularly targeting the microbiome in migraine management.
Collapse
Affiliation(s)
- Alon Gorenshtein
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed, 1311502, Israel.
- Rambam Medical Center, Haifa, Israel.
| | - Kamel Shihada
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed, 1311502, Israel
- Rambam Medical Center, Haifa, Israel
| | - Liron Leibovitch
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed, 1311502, Israel
| | - Tom Liba
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed, 1311502, Israel
| | - Avner Goren
- Maccabi Healthcare Services, Tel Aviv, Israel
| |
Collapse
|
13
|
Wang H, Lei Z, Zhai Y, Sun M, Chen S, Yin P, Duan Z, Wang X. Latroeggtoxin-VI improves depression by regulating the composition and function of gut microbiota in a mouse model of depression. J Med Microbiol 2025; 74. [PMID: 40202502 DOI: 10.1099/jmm.0.001977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2025] Open
Abstract
Introduction. Depression has become one of the mental diseases that seriously affect human health. Its mechanism is very complex, and many factors influence the condition. An imbalance of the gut microbiota is being considered as a factor that impacts the occurrence and progression of depression. Future therapies may therefore tap into this connection, treating depression through manipulation of the gut microbiome.Hypothesis/Gap Statement. Latroeggtoxin-VI (LETX-VI), a proteinaceous neurotoxin from Latrodectus tredecimguttatus eggs, was previously demonstrated to inhibit excessive inflammation and improve depression behaviours, suggesting that it might be able to regulate the balance of gut microbiota. The aim of this study was to explore the effects of LPS and LETX-VI on depressive behaviours and gut microbiota and to analyse correlations between changes in the gut microbiota and depressive behaviours.Methodology. A murine model of depression was established, and the effects of LPS and LETX-VI treatment on depressive behaviours and gut microbiota were investigated.Results. In the murine model, depressive behaviour was induced by LPS; the ratio of Firmicutes to Bacteroidetes (F/B) and the number of pro-inflammatory bacteria in the gut microbiota increased (P<0.01), while butyric acid-producing bacteria with anti-inflammatory effect decreased (P<0.05). Furthermore, the metabolic function of the gut microbiota was disrupted, and the level of virulence factors among gut microbiota was up-regulated (P<0.05). Association analysis showed that the changes in the composition and function of gut microbiota were closely related to the depression phenotype of mice, suggesting that the abnormal function of gut microbiota is linked to depression. However, when LETX-VI was applied before LPS injection, the LPS-induced changes in the gut microbiota were alleviated, and the depressive behaviour greatly improved.Conclusion. LETX-VI can prevent depressive behaviour by regulating the composition and/or function of the gut microbiota.
Collapse
Affiliation(s)
- Haiyan Wang
- State Key Laboratory of Developmental Biology of Freshwater Fish, Protein Chemistry Laboratory, College of Life Sciences, Hunan Normal University, Changsha 410081, Hunan, PR China
| | - Zhixiang Lei
- State Key Laboratory of Developmental Biology of Freshwater Fish, Protein Chemistry Laboratory, College of Life Sciences, Hunan Normal University, Changsha 410081, Hunan, PR China
| | - Yiwen Zhai
- State Key Laboratory of Developmental Biology of Freshwater Fish, Protein Chemistry Laboratory, College of Life Sciences, Hunan Normal University, Changsha 410081, Hunan, PR China
| | - Minglu Sun
- State Key Laboratory of Developmental Biology of Freshwater Fish, Protein Chemistry Laboratory, College of Life Sciences, Hunan Normal University, Changsha 410081, Hunan, PR China
| | - Si Chen
- State Key Laboratory of Developmental Biology of Freshwater Fish, Protein Chemistry Laboratory, College of Life Sciences, Hunan Normal University, Changsha 410081, Hunan, PR China
| | - Panfeng Yin
- State Key Laboratory of Developmental Biology of Freshwater Fish, Protein Chemistry Laboratory, College of Life Sciences, Hunan Normal University, Changsha 410081, Hunan, PR China
| | - Zhigui Duan
- State Key Laboratory of Developmental Biology of Freshwater Fish, Protein Chemistry Laboratory, College of Life Sciences, Hunan Normal University, Changsha 410081, Hunan, PR China
| | - Xianchun Wang
- State Key Laboratory of Developmental Biology of Freshwater Fish, Protein Chemistry Laboratory, College of Life Sciences, Hunan Normal University, Changsha 410081, Hunan, PR China
| |
Collapse
|
14
|
Liu Z, Zhai G. Cardiometabolic index and major depressive disorder: Stroke and diabetes as mediators. Prog Neuropsychopharmacol Biol Psychiatry 2025; 138:111340. [DOI: https:/doi.org/10.1016/j.pnpbp.2025.111340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/31/2025]
|
15
|
Mallick K, Khodve G, Ruwatia R, Banerjee S. Gut microbes: Therapeutic Target for neuropsychiatric disorders. J Psychiatr Res 2025; 184:27-38. [PMID: 40036939 DOI: 10.1016/j.jpsychires.2025.02.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 01/28/2025] [Accepted: 02/20/2025] [Indexed: 03/06/2025]
Abstract
Neuropsychiatric diseases encompass a range of mental and neurological disorders that have a significant and far-reaching effect on an individual's quality of life. These conditions affect not only the mental status but also the physical well-being of individuals, which leads to weakened immune systems and other diseases. Emerging research underscores a significant connection between the gut microbiome and neuropsychiatric diseases, suggesting that microbial communities within the gastrointestinal tract may influence brain function and mental health. Gut dysbiosis is caused by various factors, including stress, diet, inappropriate usage of antibiotics, infections, and so on, all of which can disrupt numerous pathways, resulting in abnormal neurotransmitter signaling, inflammation, and impaired brain function. Similarly, various neuropsychiatric diseases can disrupt the specific microbiome in the gut, leading to gut dysbiosis, often impairing memory and cognitive function. The growing evidence supporting the role of gut dysbiosis in neuropsychiatric disorders has opened up new avenues for therapeutic interventions. Modulating the gut microbiome through strategies such as probiotics, prebiotics, or fecal microbiota transplantation has shown promising results in various studies of neuropsychiatric disorders. However, further research is needed to fully elucidate the mechanisms involved in gut dysbiosis-associated brain changes to develop effective and personalized treatment strategies for neuropsychiatric diseases.
Collapse
Affiliation(s)
- Keya Mallick
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Kolkata, West Bengal, 700054, India
| | - Gopal Khodve
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Kolkata, West Bengal, 700054, India
| | - Ritika Ruwatia
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Kolkata, West Bengal, 700054, India
| | - Sugato Banerjee
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Kolkata, West Bengal, 700054, India.
| |
Collapse
|
16
|
Liu Y, Chen Y, Zhang Q, Zhang Y, Xu F. A double blinded randomized placebo trial of Bifidobacterium animalis subsp. lactis BLa80 on sleep quality and gut microbiota in healthy adults. Sci Rep 2025; 15:11095. [PMID: 40169760 PMCID: PMC11961682 DOI: 10.1038/s41598-025-95208-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 03/19/2025] [Indexed: 04/03/2025] Open
Abstract
Human sleep quality is intricately linked to gut health. Emerging research indicates that Bifidobacterium animalis subsp. lactis BLa80 has the potential to ameliorate gut microbiota dysbiosis. This randomized, placebo-controlled study evaluated the impact of BLa80 supplementation on sleep quality and gut microbiota in healthy individuals. One hundred and six participants were randomly assigned to receive either a placebo (maltodextrin) or BLa80 (maltodextrin + BLa80 at 10 billion CFU/day) for 8 weeks. Sleep quality was evaluated using the Pittsburgh Sleep Quality Index (PSQI), a validated tool consisting of 18 items assessing seven components of sleep quality over a one-month period, and the Insomnia Severity Index (ISI), a secondary measure of insomnia severity. Gut microbiota changes were assessed using 16S rRNA sequencing, while the in vitro gamma-aminobutyric acid (GABA) production capacity of BLa80 was analyzed by HPLC. After 8 weeks, the intervention group exhibited a significant reduction in the PSQI total score compared to the placebo group, suggesting improved sleep quality. While no significant changes in alpha diversity were noted, beta diversity differed markedly between groups. The gut microbiota predominantly consisted of Firmicutes, Bacteroidetes, Actinobacteria, Proteobacteria and Fusobacteria, collectively accounting for over 99.9% of the gut microbiota. Statistical analysis showed that BLa80 significantly decreased the relative abundance of Proteobacteria phylum and increased the abundance of Bacteroidetes, Fusicatenbacter, and Parabacteroides compared to placebo. PICRUSt2 analysis indicated noteworthy enhancements in the pathways of purine metabolism, glycolysis/gluconeogenesis, and arginine biosynthesis due to BLa80 intervention. Moreover, BLa80 demonstrated notable GABA production, potentially contributing to its effects on sleep quality modulation. These results demonstrate the ability of BLa80 to improve sleep quality through modulating gut microbiota and GABA synthesis, highlighting its potential as a beneficial probiotic strain.
Collapse
Affiliation(s)
- Yinhua Liu
- College of Food Science and Technology, Henan University of Technology, 100, Lianhua Street, High-tech, Zhengzhou, 450001, People's Republic of China
| | - Yanyan Chen
- College of Food Science and Technology, Henan University of Technology, 100, Lianhua Street, High-tech, Zhengzhou, 450001, People's Republic of China
| | - Qingya Zhang
- College of Food Science and Technology, Henan University of Technology, 100, Lianhua Street, High-tech, Zhengzhou, 450001, People's Republic of China
| | - Yanyan Zhang
- Department of Food Quality and Safety, Shanghai Business School, Shanghai, 200235, China
| | - Fei Xu
- College of Food Science and Technology, Henan University of Technology, 100, Lianhua Street, High-tech, Zhengzhou, 450001, People's Republic of China.
- Henan Province Wheat-flour Staple Food Engineering Technology Research Centre, Zhengzhou, 450001, China.
| |
Collapse
|
17
|
Dacaya P, Sarapis K, Moschonis G. The Role and Mechanisms of Probiotic Supplementation on Depressive Symptoms: A Narrative Review. Curr Nutr Rep 2025; 14:53. [PMID: 40153103 PMCID: PMC11953144 DOI: 10.1007/s13668-025-00644-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/14/2025] [Indexed: 03/30/2025]
Abstract
PURPOSE OF REVIEW The microbiota-gut-brain-axis (MGBA) plays a role in the aetiology of mental disorders. Depression, a leading cause of disability worldwide, may be improved by probiotics. The aim of this narrative review is to investigate and synthesize the current evidence linking probiotic food supplementation with depressive symptomology. RECENT FINDINGS The gut and the brain communicate and interact via the MGBA through inflammation and the immune system, short chain fatty acid production, neuronal innervation and activation as well as endocrine and neurotransmitter modulation. Dysregulation of gut-brain pathways are caused by gut dysbiosis and implicated in the onset, persistence and exacerbation of depression related symptoms. Modulation of the gut microbiota via administration of probiotics has shown to reduce depressive symptom severity with Bifidobacterium and Lactobacillus strains being the most reported. Probiotics may produce greater benefits in mild depression rather than in chronic, treatment resistant depression. Probiotic supplementation is a promising and safe approach for the prevention of severe depressive disorders in high-risk individuals such as people with subthreshold depression. However, the mechanistic pathways of the MGBA require further investigation and additional human clinical trials are necessary to evaluate the role of probiotics on depression.
Collapse
Affiliation(s)
- Pauline Dacaya
- Discipline of Food, Nutrition and Dietetics, Department of Sport, Exercise and Nutrition Sciences, School of Allied Health, Human Services and Sport, La Trobe University, Melbourne, VIC, 3086, Australia
| | - Katerina Sarapis
- Discipline of Food, Nutrition and Dietetics, Department of Sport, Exercise and Nutrition Sciences, School of Allied Health, Human Services and Sport, La Trobe University, Melbourne, VIC, 3086, Australia
| | - George Moschonis
- Discipline of Food, Nutrition and Dietetics, Department of Sport, Exercise and Nutrition Sciences, School of Allied Health, Human Services and Sport, La Trobe University, Melbourne, VIC, 3086, Australia.
| |
Collapse
|
18
|
Zhao J, Jia H, Ma P, Zhu D, Fang Y. Multidimensional mechanisms of anxiety and depression in Parkinson's Disease: integrating neuroimaging, neurocircuits, and molecular pathways. Pharmacol Res 2025; 215:107717. [PMID: 40157405 DOI: 10.1016/j.phrs.2025.107717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 03/25/2025] [Accepted: 03/26/2025] [Indexed: 04/01/2025]
Abstract
Anxiety and depression are common non-motor symptoms of Parkinson's disease (PD) that significantly affect patients' quality of life. In recent years, our understanding of PD has advanced through multifaceted studies on the pathological mechanisms associated with anxiety and depression in PD. These classic psychiatric symptoms involve complex pathophysiology, with both distinct features and connections to the mechanisms underlying the aetiology of PD. Furthermore, the co-occurrence of anxiety and depression in PD blurs the boundaries between them. Therefore, a comprehensive summary of the pathogenic mechanisms associated with anxiety and depression will aid in better addressing the emergence of these classic psychiatric symptoms in PD. This article integrates neuroanatomical, neural projection, neurotransmitter, neuroinflammatory, brain-gut axis, neurotrophic, hypothalamic-pituitary-adrenal axis, and genetic perspectives to provide a comprehensive description of the core pathological alterations underlying anxiety and depression in PD, aiming to provide an up-to-date perspective and broader therapeutic prospects for PD patients suffering from anxiety or depression.
Collapse
Affiliation(s)
- Jihu Zhao
- Department of Neurovascular Disease, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, China.
| | - Huafang Jia
- Qingdao Medical College of Qingdao University, Qingdao, Shandong, China.
| | - Pengju Ma
- Department of Neurosurgery, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China.
| | - Deyuan Zhu
- Department of Neurovascular Disease, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, China.
| | - Yibin Fang
- Department of Neurovascular Disease, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, China.
| |
Collapse
|
19
|
Liu Z, Zhai G. Cardiometabolic index and major depressive disorder: Stroke and diabetes as mediators. Prog Neuropsychopharmacol Biol Psychiatry 2025; 138:111340. [PMID: 40147810 DOI: 10.1016/j.pnpbp.2025.111340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 03/08/2025] [Accepted: 03/22/2025] [Indexed: 03/29/2025]
Abstract
BACKGROUND Major depressive disorder (MDD) is a severe affective disorder that is clearly linked to stroke and diabetes. This study aimed to investigate the mediating role of stroke and diabetes in the association between the cardiometabolic index (CMI) and MDD. METHODS This cross-sectional study analyzed data from 8312 participants in the National Health and Nutrition Examination Survey (NHANES, 2005-2018). MDD was diagnosed using the Patient Health Questionnaire-9 (PHQ-9; score > 10). Associations were evaluated using multivariate logistic/linear regression, stratified interaction analyses, restricted cubic spline (RCS) models for nonlinearity, and bootstrap mediation testing. RESULTS There was a robust positive correlation between the incidence of MDD [OR = 1.36 (95 % CI: 1.21-1.51)] and the PHQ-9 score [β = 0.55 (95 % CI: 0.37-0.73)], with a one-unit increase in CMI. The participants in CMIQ4 had a 64 % greater risk of stroke than did the participants in CMIQ1 [OR = 1.64 (95 % CI: 1.17-2.29)]. The forest plot shows that the results remained stable under the grouping of stroke, diabetes, race, gender, and age. Moreover, stroke and diabetes both exhibited partial mediating roles, with indirect effects accounting for 4.03 % and 5.37 % of the total effect, respectively. Through RCS analysis, a nonlinear correlation was observed between CMI and MDD and between CMI and diabetes. There is a linear relationship between stroke and MDD, and maintaining CMI levels below 0.518 may mitigate the risk of MDD. CONCLUSION Stroke and diabetes partially mediated the associations between CMI and MDD. However, additional prospective studies are warranted to scrutinize the impact of CMI on MDD.
Collapse
Affiliation(s)
- Zhenyu Liu
- Department of Cardiology, Beijing Luhe Hospital, Capital Medical University, No. 82, Xinhua South Road, Tongzhou District, Beijing 101199, China.
| | - Guangyao Zhai
- Department of Cardiology, Beijing Luhe Hospital, Capital Medical University, No. 82, Xinhua South Road, Tongzhou District, Beijing 101199, China.
| |
Collapse
|
20
|
Sasaki H, Masutomi H, Nakamura S, Tanigawa C, Cui Y, Ishihara K, Yanagisawa M, Kokubo T. Granola consumption with multiple prebiotics in Japanese participants increases Bifidobacterium abundance and improves stress and subjective sleepiness. Front Nutr 2025; 12:1551313. [PMID: 40181940 PMCID: PMC11965129 DOI: 10.3389/fnut.2025.1551313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Accepted: 03/03/2025] [Indexed: 04/05/2025] Open
Abstract
Background Sleep is essential for physical and mental health. However, stress-related sleep disorders are common in Japan, and the gut-brain axis may play a role in sleep and stress management. This study investigated whether the consumption of granola containing multiple prebiotic ingredients could alleviate stress and improve insomnia in adults with stress-related sleep problems, regardless of individual differences in the gut microbiota. Additionally, we aimed to investigate the relationship between changes in gut microbiota and the observed improvements. Method A single-arm uncontrolled trial was conducted with 27 adults with high stress levels and sleep disturbance. The participants consumed 50 g of prebiotics-containing granola daily for 8 weeks. Subjective sleep quality was assessed using the Athens Insomnia Scale, Epworth Sleep Scale, and Oguri-Shirakawa-Azumi Sleep Inventory-Middle-aged and Aged version (OSA-MA). Stress levels were assessed by administering the Brief Job Stress Questionnaire and Profile of Mood States 2nd edition (POMS2). Gut microbiota composition was analyzed using 16S rDNA sequencing. Results After 8 weeks, subjective insomnia scores and sleep onset and maintenance improved significantly, whereas the stress and mood disturbance scores decreased significantly. Gut microbiota analysis showed that the relative abundance of Bifidobacterium increased, whereas that of Bacteroides decreased. Correlation analysis suggested a significant association between increased Bifidobacterium level and reduced stress (r = -0.39, p = 0.0035) and insomnia levels (r = -0.3, p = 0.026). Conclusion Prebiotics-containing granola improved subjective sleep quality and reduced stress in adults with stress-related sleep disturbances, which may be attributed to alterations in gut microbiota, particularly the increase in Bifidobacterium abundance.
Collapse
Affiliation(s)
- Hiroyuki Sasaki
- Research & Development Division, Calbee, Inc., Utsunomiya, Japan
| | | | - Shuji Nakamura
- Sleep is the Ultimate Intelligent Mechanism In Nature (S’UIMIN) Inc., Tokyo, Japan
| | - Chiemi Tanigawa
- Sleep is the Ultimate Intelligent Mechanism In Nature (S’UIMIN) Inc., Tokyo, Japan
| | - Yufei Cui
- Sleep is the Ultimate Intelligent Mechanism In Nature (S’UIMIN) Inc., Tokyo, Japan
| | | | - Masashi Yanagisawa
- Sleep is the Ultimate Intelligent Mechanism In Nature (S’UIMIN) Inc., Tokyo, Japan
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Japan
- The Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Toshio Kokubo
- Sleep is the Ultimate Intelligent Mechanism In Nature (S’UIMIN) Inc., Tokyo, Japan
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
21
|
Xu CC, Zhao WX, Sheng Y, Yun YJ, Ma T, Fan N, Song JQ, Wang J, Zhang Q. Serum homocysteine showed potential association with cognition and abnormal gut microbiome in major depressive disorder. World J Psychiatry 2025; 15:102567. [PMID: 40109991 PMCID: PMC11886347 DOI: 10.5498/wjp.v15.i3.102567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 12/18/2024] [Accepted: 01/06/2025] [Indexed: 02/26/2025] Open
Abstract
BACKGROUND Cognitive impairment is one of the common clinical manifestations of depression, causing negative distress to patients. Elevated homocysteine (Hcy) concentrations and gut microbiome dysfunction may be observed in patients with depression. AIM To investigate the relationship between Hcy, microbiome, and cognition in depressive patients. METHODS We recruited 67 patients with major depressive disorder (MDD) (MDD group) and 94 healthy controls (HCs) individuals (HCs group). Serum Hcy levels were determined using the enzyme circulation method. 16s rRNA sequencing was used to classify and identify the fecal bacteria. 17 Hamilton depression rating scale and MATRICS consensus cognitive battery were used to evaluate mood states and cognition in patients with MDD. Correlation analysis was performed to explore the correlation between fecal flora, Hcy, and depressive cognitive function. RESULTS Elevated serum levels of Hcy were seen in patients with MDD compared to healthy individuals. Patients with MDD indicated significant decreases in cognitive scores (P < 0.001) in six modules: Speed of processing, working memory, visual learning, reasoning and problem-solving, social cognition, and total scores. Hcy levels showed a negative correlation with processing speed, social cognition, and total MDD scores (P < 0.05). Hcy was also significantly negatively correlated with Alistipes, Ruminococcae, Tenericides, and Porphyromonas (P < 0.05). CONCLUSION Our results highlight that Hcy was correlated with cognition and gut microbiome in MDD. This interaction may be related to the physiological and pathological mechanisms underlying cognitive deficits in depression.
Collapse
Affiliation(s)
- Chen-Chen Xu
- Department of Psychiatry, The Affiliated Wuxi Mental Health Center of Nanjing Medical University, Wuxi 214151, Jiangsu Province, China
| | - Wen-Xuan Zhao
- Department of Psychiatry, Beijing Huilongguan Hospital, Peking University Huilongguan Clinical Medical School, Beijing 100096, China
| | - Yu Sheng
- Department of Psychiatry, Chinese People’s Liberation Army Unit 94710, Wuxi 214141, Jiangsu Province, China
| | - Ya-Jun Yun
- Department of Psychiatry, Beijing Huilongguan Hospital, Peking University Huilongguan Clinical Medical School, Beijing 100096, China
| | - Ting Ma
- Department of Psychiatry, Beijing Huilongguan Hospital, Peking University Huilongguan Clinical Medical School, Beijing 100096, China
| | - Ning Fan
- Department of Psychiatry, Beijing Huilongguan Hospital, Peking University Huilongguan Clinical Medical School, Beijing 100096, China
| | - Jia-Qi Song
- Department of Psychiatry, Beijing Huilongguan Hospital, Peking University Huilongguan Clinical Medical School, Beijing 100096, China
| | - Jun Wang
- Department of Psychiatry, The Affiliated Wuxi Mental Health Center of Nanjing Medical University, Wuxi 214151, Jiangsu Province, China
- Department of Psychiatry, The Affiliated Mental Health Center of Jiangnan University, Wuxi 214151, Jiangsu Province, China
| | - Qi Zhang
- Department of Psychiatry, The Affiliated Wuxi Mental Health Center of Nanjing Medical University, Wuxi 214151, Jiangsu Province, China
- Department of Psychiatry, The Affiliated Mental Health Center of Jiangnan University, Wuxi 214151, Jiangsu Province, China
| |
Collapse
|
22
|
Gao X, Sun Y, Yang Y, Yang X, Liu Q, Guo X, Wu L, Wang Q. Directed evolution of hydroxylase XcP4H for enhanced 5-HTP production in engineered probiotics to treat depression. Int J Biol Macromol 2025; 307:142250. [PMID: 40113000 DOI: 10.1016/j.ijbiomac.2025.142250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 02/24/2025] [Accepted: 03/16/2025] [Indexed: 03/22/2025]
Abstract
Depression exhibits a complex and multifaceted pathophysiology, accompanied by high rates of relapse and disability with current medication treatments. 5-Hydroxytryptophan (5-HTP) is a promising candidate for depression therapy, but its poor pharmacokinetics hinders its clinical application. To address this limitation, we introduced the hydroxylase XcP4H into Escherichia coli Nissle 1917 (EcN) to biosynthesize 5-HTP in vivo. To create a high-yielding EcN strain for 5-HTP production, we engineered XcP4H through enzyme-directed evolution using a novel genetic code expansion-based high-throughput screening method. The most effective XcP4H variant achieved a 22-fold increase in 5-HTP production, and molecular dynamic simulations elucidated the underlying mechanisms. After pathway engineering and gene editing, we further improved the 5-HTP yield in EcN. When the most robust strain, EcN@5-HTP, was employed as a live therapeutic, it alleviated depressive-like behaviors in mice by increasing 5-HT levels in both the gut and brain, repairing neurological abnormalities, inhibiting inflammation, elevating SCFAs concentrations, and modulating gut microbiota dysbiosis. By integrating synthetic biology with enzyme-directed evolution, we successfully addressed the pharmacokinetic limitations of 5-HTP through a live therapeutic approach. This proof-of-concept design clearly demonstrates that combining synthetic biology with probiotics has the potential to significantly revolutionize our strategies for disease detection, prevention, and treatment.
Collapse
Affiliation(s)
- Xiaowei Gao
- Green Pharmaceutical Technology Key Laboratory of Luzhou, School of Pharmacy, Southwest Medical University, Luzhou 646000, China; State Key Laboratory of Neurology and Oncology Drug Development, Nanjing 210000, China.
| | - Yingjie Sun
- Green Pharmaceutical Technology Key Laboratory of Luzhou, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Yanhong Yang
- Green Pharmaceutical Technology Key Laboratory of Luzhou, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Xiu Yang
- School of Integrated Traditional Chinese and Western Medicine, Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Qiuyu Liu
- Green Pharmaceutical Technology Key Laboratory of Luzhou, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Xiurong Guo
- Green Pharmaceutical Technology Key Laboratory of Luzhou, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Lijuan Wu
- Department of Endocrinology, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou 646000, Sichuan, China.
| | - Qin Wang
- Dazhou Vocational College of Chinese Medicine, Dazhou 635000, China.
| |
Collapse
|
23
|
Lewis N, Villani A, Lagopoulos J. Gut dysbiosis as a driver of neuroinflammation in attention-deficit/hyperactivity disorder: A review of current evidence. Neuroscience 2025; 569:298-321. [PMID: 39848564 DOI: 10.1016/j.neuroscience.2025.01.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 01/12/2025] [Accepted: 01/13/2025] [Indexed: 01/25/2025]
Abstract
There is mounting evidence for the involvement of the immune system, neuroinflammation and disturbed gut microbiota, or dysbiosis, in attention-deficit/hyperactivity disorder (ADHD). Gut dysbiosis is strongly implicated in many physical, autoimmune, neurological, and neuropsychiatric conditions, however knowledge of its particular pathogenic role in ADHD is sparse. As such, this narrative review examines and synthesizes the available evidence related to inflammation, dysbiosis, and neural processes in ADHD. Minimal differences in microbiota diversity measures between cases and controls were found, however many relative abundance differences were observed at all classification levels (phylum to strain). Compositional differences of taxa important to key gut-brain axis pathways, in particular Bacteroides species and Faecalibacterium, may contribute to inflammation, brain functioning differences, and symptoms, in ADHD. We have identified one possible model of ADHD etiopathogenesis involving systemic inflammation, an impaired blood-brain barrier, and neural disturbances as downstream consequences of gut dysbiosis. Nevertheless, studies conducted to date have varied degrees of methodological rigour and involve diverse participant characteristics and analytical techniques, highlighting a need for additional research.
Collapse
Affiliation(s)
- Naomi Lewis
- School of Health, University of the Sunshine Coast, 90 Sippy Downs Dr, Sippy Downs, QLD 4556, Australia; Thompson Institute, University of the Sunshine Coast, 12 Innovation Pkwy, Birtinya, QLD 4575, Australia.
| | - Anthony Villani
- School of Health, University of the Sunshine Coast, 90 Sippy Downs Dr, Sippy Downs, QLD 4556, Australia.
| | - Jim Lagopoulos
- Thompson Brain and Mind Healthcare, Eccles Blvd, Birtinya, QLD 4575, Australia.
| |
Collapse
|
24
|
Ladakis DC, Harrison KL, Smith MD, Solem K, Gadani S, Jank L, Hwang S, Farhadi F, Dewey BE, Fitzgerald KC, Sotirchos ES, Saidha S, Calabresi PA, Bhargava P. Bile acid metabolites predict multiple sclerosis progression and supplementation is safe in progressive disease. MED 2025; 6:100522. [PMID: 39447576 PMCID: PMC11911100 DOI: 10.1016/j.medj.2024.09.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 07/31/2024] [Accepted: 09/25/2024] [Indexed: 10/26/2024]
Abstract
BACKGROUND Bile acid metabolism is altered in multiple sclerosis (MS) and tauroursodeoxycholic acid (TUDCA) supplementation ameliorated disease in mouse models of MS. METHODS Global metabolomics was performed in an observational cohort of people with MS, followed by pathway analysis to examine relationships between baseline metabolite levels and subsequent brain and retinal atrophy. A double-blind, placebo-controlled trial was completed in people with progressive MS (PMS), randomized to receive either TUDCA (2 g/day) or placebo for 16 weeks. Participants were followed with serial clinical and laboratory assessments. Primary outcomes were safety and tolerability of TUDCA, and exploratory outcomes included changes in clinical, laboratory, and gut microbiome parameters. FINDINGS In the observational cohort, higher primary bile acid levels at baseline predicted slower whole-brain atrophy, brain substructure atrophy, and specific retinal layer atrophy. In the clinical trial, 47 participants were included in our analyses (21 in placebo arm, 26 in TUDCA arm). Adverse events did not differ significantly between arms (p = 0.77). The TUDCA arm demonstrated increased serum levels of multiple bile acids. No significant differences were noted in clinical or fluid biomarker outcomes. Central memory CD4+ and Th1/17 cells decreased, while CD4+ naive cells increased in the TUDCA arm compared to placebo. Changes in the composition and function of gut microbiota were also noted between the two groups. CONCLUSIONS Bile acid metabolism in MS is linked to brain and retinal atrophy. TUDCA supplementation in PMS is safe, tolerable, and has measurable biological effects that warrant further evaluation in larger trials with a longer treatment duration. FUNDING National MS Society grant RG-1707-28601 to P.B., R01 NS082347 from the National Institute of Neurological Disorders and Stroke to P.A.C., and National MS Society grant RG-1606-08768 to S.S.
Collapse
Affiliation(s)
- Dimitrios C Ladakis
- Johns Hopkins University School of Medicine, Department of Neurology, Baltimore, MD 21205, USA
| | - Kimystian L Harrison
- Johns Hopkins University School of Medicine, Department of Neurology, Baltimore, MD 21205, USA
| | - Matthew D Smith
- Johns Hopkins University School of Medicine, Department of Neurology, Baltimore, MD 21205, USA
| | - Krista Solem
- Johns Hopkins University School of Medicine, Department of Neurology, Baltimore, MD 21205, USA
| | - Sachin Gadani
- Johns Hopkins University School of Medicine, Department of Neurology, Baltimore, MD 21205, USA
| | - Larissa Jank
- Johns Hopkins University School of Medicine, Department of Neurology, Baltimore, MD 21205, USA
| | - Soonmyung Hwang
- Johns Hopkins University School of Medicine, Department of Neurology, Baltimore, MD 21205, USA
| | - Farzaneh Farhadi
- Johns Hopkins University School of Medicine, Department of Neurology, Baltimore, MD 21205, USA
| | - Blake E Dewey
- Johns Hopkins University School of Medicine, Department of Neurology, Baltimore, MD 21205, USA
| | - Kathryn C Fitzgerald
- Johns Hopkins University School of Medicine, Department of Neurology, Baltimore, MD 21205, USA
| | - Elias S Sotirchos
- Johns Hopkins University School of Medicine, Department of Neurology, Baltimore, MD 21205, USA
| | - Shiv Saidha
- Johns Hopkins University School of Medicine, Department of Neurology, Baltimore, MD 21205, USA
| | - Peter A Calabresi
- Johns Hopkins University School of Medicine, Department of Neurology, Baltimore, MD 21205, USA
| | - Pavan Bhargava
- Johns Hopkins University School of Medicine, Department of Neurology, Baltimore, MD 21205, USA.
| |
Collapse
|
25
|
Ma CM, Zhang FS, Zhao XH, Yang Y, Wang B, Wang Y, Liu XF, Bian X, Xu ZX, Zhang G, Qu LZ, Zhang N. Genistein improves depression-like behavior in rats by regulating intestinal flora and altering glutamate gene expression. Curr Res Food Sci 2025; 10:101020. [PMID: 40124394 PMCID: PMC11930109 DOI: 10.1016/j.crfs.2025.101020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 02/19/2025] [Accepted: 03/02/2025] [Indexed: 03/25/2025] Open
Abstract
Depression is a mental disorder, and genistein is known to have antidepressant effects, but its mechanism of action is still unclear. Here, the mechanism of genistein improving depression based on gut microbiota was explored using classic behavioral indicators of depression combined with genomic technology. The behavioral evaluation showed that rats gavaged with 20-40 mg/kg genistein showed an increase in body weight, glucose preference, absenteeism score, body temperature, and 5-hydroxytryptamine (5-HT) content, while a decrease in adrenocorticotropic hormone (ACTH) and corticosterone (CORT) content compared to the depression rat model group, but there was no significant difference compared to the positive control (fluoxetine). The results of high-throughput sequencing showed that genistein increased the relative abundance of Firmicutes and Actinobacteriota and decreased the relative abundance of Bacteroidota at the phylum level. At the genus level, the abundance of Bifidobacterium, a short-chain fatty acid producing bacterium, was increased. Furthermore, metagenome results revealed that the antidepressant effect of genistein can be achieved by promoting glutamate metabolism, increasing glutamic acid decarboxylase (GAD) expression levels, promoting γ-aminobutyric acid (GABA) synthesis, and indirectly increasing 5-HT levels.
Collapse
Affiliation(s)
- Chun-min Ma
- College of Food Engineering, Harbin University of Commerce, Harbin, 150076, PR China
| | - Fu-shun Zhang
- College of Food Engineering, Harbin University of Commerce, Harbin, 150076, PR China
| | - Xin-huai Zhao
- School of Biological and Food Engineering, Guangdong University of Petrochemical Technology, 525000, Maoming, PR China
| | - Yang Yang
- College of Food Engineering, Harbin University of Commerce, Harbin, 150076, PR China
| | - Bing Wang
- College of Food Engineering, Harbin University of Commerce, Harbin, 150076, PR China
| | - Yan Wang
- College of Food Engineering, Harbin University of Commerce, Harbin, 150076, PR China
| | - Xiao-fei Liu
- College of Food Engineering, Harbin University of Commerce, Harbin, 150076, PR China
| | - Xin Bian
- College of Food Engineering, Harbin University of Commerce, Harbin, 150076, PR China
| | - Zi-Xuan Xu
- College of Food Engineering, Harbin University of Commerce, Harbin, 150076, PR China
| | - Guang Zhang
- College of Food Engineering, Harbin University of Commerce, Harbin, 150076, PR China
| | - Li-zhe Qu
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, PR China
| | - Na Zhang
- College of Food Engineering, Harbin University of Commerce, Harbin, 150076, PR China
| |
Collapse
|
26
|
Park SC, Kato TA, Lee JH, Yu SH. Exploring the Bidirectional Relationship Between Depression and Obesity. Endocrinol Metab Clin North Am 2025; 54:193-206. [PMID: 39919875 DOI: 10.1016/j.ecl.2024.10.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2025]
Abstract
The paper explores the intricate bidirectional relationship between depression and obesity, emphasizing that each condition increases the risk of the other. Shared biologic mechanisms, such as neuroinflammation, dysregulation of the hypothalamic-pituitary-adrenal axis, and dysfunction of the gut-brain axis, contribute to the co-occurrence of these conditions. In addition, the emerging social withdrawal syndrome, hikikomori, is suggested as an associated socio-behavioral factor with the comorbidity of depression and obesity. Among antidepressants, selective serotonin reuptake inhibitors and bupropion (a norepinephrine/dopamine reuptake inhibitor), but not tricyclic antidepressants, are considered pharmacotherapeutic options for the co-occurrence of depression and obesity.
Collapse
Affiliation(s)
- Seon-Cheol Park
- Department of Psychiatry, Hanyang University College of Medicine, Seoul, Republic of Korea; Department of Psychiatry, Hanyang University Guri Hospital, Guri, Republic of Korea; Hanyang Institute of Bioscience and Biotechnology, Hanyang University, Seoul, Republic of Korea.
| | - Takahiro A Kato
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Jae-Hon Lee
- Department of Psychiatry, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Sung Hoon Yu
- Division of Endocrinology and Metabolism, Hanyang University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
27
|
Xu S, Xiong J, Qin X, Ma M, Peng Y, Cheng J, Nie X, Fan X, Deng Y, Ju Y, Liu J, Zhang L, Liu B, Zhang Y, Li L. Association between gut microbiota and perinatal depression and anxiety among a pregnancy cohort in Hunan, China. Brain Behav Immun 2025; 125:168-177. [PMID: 39736365 DOI: 10.1016/j.bbi.2024.12.150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 12/11/2024] [Accepted: 12/21/2024] [Indexed: 01/01/2025] Open
Abstract
BACKGROUND Perinatal depression and anxiety pose significant risks to maternal health and may lead to suicide. The gut microbiota may play a crucial role in perinatal depression and anxiety. However, the relationship between the alterations in gut microbiota and perinatal depression and anxiety remains unclear. This study aimed to investigate the dynamic changes of gut microbiota over various perinatal stages and their associations with perinatal depression and anxiety symptoms, especially suicide ideation. METHODS A total of 177 pregnant and 19 postpartum women were recruited in this study, with 48 of them participating longitudinally. Maternal depression and anxiety symptoms were assessed using the Edinburgh Postnatal Depression Scale (EPDS), 9-item Patient Health Questionnaire (PHQ-9), and 7-item Generalized Anxiety Disorder Scale (GAD-7). Fecal samples collected during the perinatal period were analyzed using 16S rRNA gene sequencing. RESULTS Significant changes in microbial diversity and multi-taxonomic levels were observed during pregnancy. The random forest regression model showed significant associations of some gut microbial features with depression and anxiety symptoms. Several genera were significantly associated with gestation age and perinatal depression and anxiety, such as Akkermansia, Bifidobacterium and Streptococcus. In addition, Erysipelotrichaceae_UCG-003 and Eubacterium_hallii_group were positively associated with suicidal ideation. The glycine biosynthesis pathway might act as a mediator between Eubacterium_hallii_group and suicidal ideation (ab = 3.27, p < 0.05). CONCLUSION The gut microbiota undergoes a programmed shift during pregnancy, which may play a critical role in perinatal depression and anxiety. Our findings underscore the impact of certain bacterial genera and metabolic pathways on perinatal mental health, which may help to develop new diagnostic tools and targeted interventions to reduce perinatal mental disorders and improve the outcomes for both mothers and infants.
Collapse
Affiliation(s)
- Shuyin Xu
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China; Mental Health Institute of Central South University, China National Technology Institute on Mental Disorders, Hunan Technology Institute of Psychiatry, Hunan Key Laboratory of Psychiatry and Mental Health, Hunan Medical Center for Mental Health, Changsha 410011, Hunan, China
| | - Jintao Xiong
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China; Mental Health Institute of Central South University, China National Technology Institute on Mental Disorders, Hunan Technology Institute of Psychiatry, Hunan Key Laboratory of Psychiatry and Mental Health, Hunan Medical Center for Mental Health, Changsha 410011, Hunan, China
| | - Xuemei Qin
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China; Mental Health Institute of Central South University, China National Technology Institute on Mental Disorders, Hunan Technology Institute of Psychiatry, Hunan Key Laboratory of Psychiatry and Mental Health, Hunan Medical Center for Mental Health, Changsha 410011, Hunan, China
| | - Mohan Ma
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China; Mental Health Institute of Central South University, China National Technology Institute on Mental Disorders, Hunan Technology Institute of Psychiatry, Hunan Key Laboratory of Psychiatry and Mental Health, Hunan Medical Center for Mental Health, Changsha 410011, Hunan, China
| | - Yilin Peng
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China; Mental Health Institute of Central South University, China National Technology Institute on Mental Disorders, Hunan Technology Institute of Psychiatry, Hunan Key Laboratory of Psychiatry and Mental Health, Hunan Medical Center for Mental Health, Changsha 410011, Hunan, China
| | - Junzhe Cheng
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China; Mental Health Institute of Central South University, China National Technology Institute on Mental Disorders, Hunan Technology Institute of Psychiatry, Hunan Key Laboratory of Psychiatry and Mental Health, Hunan Medical Center for Mental Health, Changsha 410011, Hunan, China
| | - Xueqing Nie
- Changsha Hospital for Maternal and Child Health Care, Changsha 410007, Hunan, China
| | - Xing Fan
- Changsha Hospital for Maternal and Child Health Care, Changsha 410007, Hunan, China
| | - Yali Deng
- Department of Obstetrics, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Yumeng Ju
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China; Mental Health Institute of Central South University, China National Technology Institute on Mental Disorders, Hunan Technology Institute of Psychiatry, Hunan Key Laboratory of Psychiatry and Mental Health, Hunan Medical Center for Mental Health, Changsha 410011, Hunan, China
| | - Jin Liu
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China; Mental Health Institute of Central South University, China National Technology Institute on Mental Disorders, Hunan Technology Institute of Psychiatry, Hunan Key Laboratory of Psychiatry and Mental Health, Hunan Medical Center for Mental Health, Changsha 410011, Hunan, China
| | - Li Zhang
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China; Mental Health Institute of Central South University, China National Technology Institute on Mental Disorders, Hunan Technology Institute of Psychiatry, Hunan Key Laboratory of Psychiatry and Mental Health, Hunan Medical Center for Mental Health, Changsha 410011, Hunan, China
| | - Bangshan Liu
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China; Mental Health Institute of Central South University, China National Technology Institute on Mental Disorders, Hunan Technology Institute of Psychiatry, Hunan Key Laboratory of Psychiatry and Mental Health, Hunan Medical Center for Mental Health, Changsha 410011, Hunan, China.
| | - Yan Zhang
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China; Mental Health Institute of Central South University, China National Technology Institute on Mental Disorders, Hunan Technology Institute of Psychiatry, Hunan Key Laboratory of Psychiatry and Mental Health, Hunan Medical Center for Mental Health, Changsha 410011, Hunan, China.
| | - Lingjiang Li
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China; Mental Health Institute of Central South University, China National Technology Institute on Mental Disorders, Hunan Technology Institute of Psychiatry, Hunan Key Laboratory of Psychiatry and Mental Health, Hunan Medical Center for Mental Health, Changsha 410011, Hunan, China.
| |
Collapse
|
28
|
Tao W, Zhang Y, Wang B, Nie S, Fang L, Xiao J, Wu Y. Advances in molecular mechanisms and therapeutic strategies for central nervous system diseases based on gut microbiota imbalance. J Adv Res 2025; 69:261-278. [PMID: 38579985 PMCID: PMC11954836 DOI: 10.1016/j.jare.2024.03.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 03/12/2024] [Accepted: 03/29/2024] [Indexed: 04/07/2024] Open
Abstract
BACKGROUD Central nervous system (CNS) diseases pose a serious threat to human health, but the regulatory mechanisms and therapeutic strategies of CNS diseases need to be further explored. It has been demonstrated that the gut microbiota (GM) is closely related to CNS disease. GM structure disorders, abnormal microbial metabolites, intestinal barrier destruction and elevated inflammation exist in patients with CNS diseases and promote the development of CNS diseases. More importantly, GM remodeling alleviates CNS pathology to some extent. AIM OF REVIEW Here, we have summarized the regulatory mechanism of the GM in CNS diseases and the potential treatment strategies for CNS repair based on GM regulation, aiming to provide safer and more effective strategies for CNS repair from the perspective of GM regulation. KEY SCIENTIFIC CONCEPTS OF REVIEW The abundance and composition of GM is closely associated with the CNS diseases. On the basis of in-depth analysis of GM changes in mice with CNS disease, as well as the changes in its metabolites, therapeutic strategies, such as probiotics, prebiotics, and FMT, may be used to regulate GM balance and affect its microbial metabolites, thereby promoting the recovery of CNS diseases.
Collapse
Affiliation(s)
- Wei Tao
- The Institute of Life Sciences, Wenzhou University, Wenzhou 325035, China
| | - Yanren Zhang
- The Institute of Life Sciences, Wenzhou University, Wenzhou 325035, China
| | - Bingbin Wang
- The Institute of Life Sciences, Wenzhou University, Wenzhou 325035, China
| | - Saiqun Nie
- The Institute of Life Sciences, Wenzhou University, Wenzhou 325035, China
| | - Li Fang
- The Institute of Life Sciences, Wenzhou University, Wenzhou 325035, China
| | - Jian Xiao
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China.
| | - Yanqing Wu
- The Institute of Life Sciences, Wenzhou University, Wenzhou 325035, China.
| |
Collapse
|
29
|
Tofani GSS, Clarke G, Cryan JF. I "Gut" Rhythm: the microbiota as a modulator of the stress response and circadian rhythms. FEBS J 2025; 292:1454-1479. [PMID: 39841560 PMCID: PMC11927059 DOI: 10.1111/febs.17400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 11/20/2024] [Accepted: 01/07/2025] [Indexed: 01/24/2025]
Abstract
Modern habits are becoming more and more disruptive to health. As our days are often filled with circadian disruption and stress exposures, we need to understand how our responses to these external stimuli are shaped and how their mediators can be targeted to promote health. A growing body of research demonstrates the role of the gut microbiota in influencing brain function and behavior. The stress response and circadian rhythms, which are essential to maintaining appropriate responses to the environment, are known to be impacted by the gut microbiota. Gut microbes have been shown to alter the host's response to stress and modulate circadian rhythmicity. Although studies demonstrated strong links between the gut microbiota, circadian rhythms and the stress response, such studies were conducted in an independent manner not conducive to understanding the interface between these factors. Due to the interconnected nature of the stress response and circadian rhythms, in this review we explore how the gut microbiota may play a role in regulating the integration of stress and circadian signals in mammals and the consequences for brain health and disease.
Collapse
Affiliation(s)
- Gabriel S S Tofani
- APC Microbiome, University College Cork, Ireland
- Department of Anatomy & Neuroscience, University College Cork, Ireland
| | - Gerard Clarke
- APC Microbiome, University College Cork, Ireland
- Department of Psychiatry & Neurobehavioural Science, University College Cork, Ireland
| | - John F Cryan
- APC Microbiome, University College Cork, Ireland
- Department of Anatomy & Neuroscience, University College Cork, Ireland
| |
Collapse
|
30
|
Kadam O, Dalai S, Chauhan B, Guru RR, Mitra S, Raytekar N, Kumar R. Nanobiotechnology Unveils the Power of Probiotics: A Comprehensive Review on the Synergistic Role of Probiotics and Advanced Nanotechnology in Enhancing Geriatric Health. Cureus 2025; 17:e80478. [PMID: 40225478 PMCID: PMC11990693 DOI: 10.7759/cureus.80478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/12/2025] [Indexed: 04/15/2025] Open
Abstract
The geriatric population, comprising ages 65 and above, encounters distinct health obstacles because of physiological changes and heightened vulnerability to diseases. New technologies are being investigated to tackle the intricate health requirements of this population. Recent advancements in probiotics and nanotechnology offer promising strategies to enhance geriatric health by improving nutrient absorption, modulating gut microbiota, and delivering targeted therapeutic agents. Probiotics play a crucial role in maintaining gut homeostasis, reducing inflammation, and supporting metabolic functions. However, challenges such as limited viability and efficacy in harsh gastrointestinal conditions hinder their therapeutic potential. Advanced nanotechnology can overcome these constraints by enhancing the efficacy of probiotics through nano-encapsulation, controlled delivery, and improvement of bioavailability. This review explores the synergistic potential of probiotics and advanced nanotechnology in addressing age-related health concerns. It highlights key developments in probiotic formulations, nano-based delivery systems, and their combined impact on gut health, immunity, and neuroprotection. The convergence of probiotics and nanotechnology represents a novel and transformative approach to promoting healthy aging, paving the way for innovative therapeutic interventions.
Collapse
Affiliation(s)
- Onkar Kadam
- Biotechnology, Symbiosis Centre for Nanoscience and Nanotechnology, Symbiosis International (Deemed) University, Pune, IND
| | - Swayamprava Dalai
- Biotechnology, Symbiosis Centre for Nanoscience and Nanotechnology, Symbiosis International (Deemed) University, Pune, IND
| | - Bhawna Chauhan
- School of Biotech Engineering and Food Technology, Chandigarh University, Chandigarh, IND
| | - Rashmi Ranjan Guru
- Hospital Administration, All India Institute of Medical Sciences, Jodhpur, Jodhpur, IND
- Hospital Administration, Postgraduate Institute of Medical Education and Research, Chandigarh, Chandigarh, IND
| | - Subhodip Mitra
- Hospital Administration, All India Institute of Medical Sciences, Kalyani, Kolkata, IND
| | - Namita Raytekar
- Medical Technology, Symbiosis Institute of Health Sciences, Pune, IND
| | - Rahul Kumar
- Hospital Administration, Symbiosis University Hospital & Research Centre, Pune, IND
| |
Collapse
|
31
|
Zhou X, Ganz AB, Rayner A, Cheng TY, Oba H, Rolnik B, Lancaster S, Lu X, Li Y, Johnson JS, Hoyd R, Spakowicz DJ, Slavich GM, Snyder MP. Dynamic human gut microbiome and immune shifts during an immersive psychosocial intervention program. Brain Behav Immun 2025; 125:428-443. [PMID: 39701328 PMCID: PMC11903166 DOI: 10.1016/j.bbi.2024.12.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 10/24/2024] [Accepted: 12/16/2024] [Indexed: 12/21/2024] Open
Abstract
BACKGROUND Although depression is a leading cause of disability worldwide, the pathophysiological mechanisms underlying this disorder-particularly those involving the gut microbiome-are poorly understood. METHOD To investigate, we conducted a community-based observational study to explore complex associations between changes in the gut microbiome, cytokine levels, and depression symptoms in 51 participants (Mage = 49.56, SD = 13.31) receiving an immersive psychosocial intervention. A total of 142 multi-omics samples were collected from participants before, during, and three months after the nine-day inquiry-based stress reduction program. RESULTS Results revealed that depression was associated with both an increased presence of putatively pathogenic bacteria and reduced microbial beta-diversity. Following the intervention, we observed reductions in neuroinflammatory cytokines and improvements in several mental health indicators. Interestingly, participants with a Prevotella-dominant microbiome showed milder symptoms when depressed, along with a more resilient microbiome and more favorable inflammatory cytokine profile, including reduced levels of CXCL-1. CONCLUSIONS These findings reveal a potentially protective link between the Prevotella-dominant microbiome and depression, as evidenced by a reduced pro-inflammatory environment and fewer depressive symptoms. These insights, coupled with observed improvements in neuroinflammatory markers and mental health from the intervention, may highlight potential avenues for microbiome-targeted therapies for managing depression.
Collapse
Affiliation(s)
- Xin Zhou
- Department of Genetics, Stanford University School of Medicine, CA, USA; Stanford Center for Genomics and Personalized Medicine, Stanford University School of Medicine, CA, USA
| | - Ariel B Ganz
- Department of Genetics, Stanford University School of Medicine, CA, USA; Stanford Healthcare Innovation Lab, Stanford University, CA, USA
| | - Andre Rayner
- Department of Genetics, Stanford University School of Medicine, CA, USA
| | - Tess Yan Cheng
- Department of Genetics, Stanford University School of Medicine, CA, USA; Department of Microbiology, College of Arts and Sciences, University of Washington, WA, USA
| | - Haley Oba
- Department of Genetics, Stanford University School of Medicine, CA, USA
| | - Benjamin Rolnik
- Department of Genetics, Stanford University School of Medicine, CA, USA; Stanford Healthcare Innovation Lab, Stanford University, CA, USA
| | - Samuel Lancaster
- Department of Genetics, Stanford University School of Medicine, CA, USA
| | - Xinrui Lu
- West China Biomedical Big Data Center, West China Hospital, Sichuan University, Sichuan, China
| | - Yizhou Li
- West China Biomedical Big Data Center, West China Hospital, Sichuan University, Sichuan, China
| | - Jethro S Johnson
- Oxford Centre for Microbiome Studies, Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Rebecca Hoyd
- The Ohio State University Comprehensive Cancer Center, OH, USA
| | | | - George M Slavich
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, CA, USA
| | - Michael P Snyder
- Department of Genetics, Stanford University School of Medicine, CA, USA; Stanford Center for Genomics and Personalized Medicine, Stanford University School of Medicine, CA, USA; Stanford Healthcare Innovation Lab, Stanford University, CA, USA.
| |
Collapse
|
32
|
Thongsepee N, Amonyingcharoen S, Chamod P, Himakhun W, Sangpairoj K, Martviset P, Chantree P, Sornchuer P. Modulatory effects of Kratom extract on the gut microbiota of rats: implications for health. BMC Complement Med Ther 2025; 25:85. [PMID: 40016684 DOI: 10.1186/s12906-025-04836-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 02/20/2025] [Indexed: 03/01/2025] Open
Abstract
BACKGROUND Kratom (Mitragyna speciosa), a plant native to Southeast Asia, is commonly used as a supplement for fatigue, pain relief, mood enhancement, and euphoria. Kratom extract exhibits diverse pharmacological properties, including antioxidant, anti-inflammatory, and gastrointestinal effects, with studies showing its ability to modulate gut microbiota and stimulate beneficial bacteria growth. Given these properties, kratom treatment may produce significant effects in a rat model, warranting further investigation. METHODS Male Wistar rats were administered kratom extract orally on a daily basis for 28 days. Fresh fecal samples were collected and analyzed for changes in gut microbiome composition using 16S rRNA sequencing. Hematological parameters and lipid profiles were also measured to evaluate any systemic effects. RESULTS The administration of kratom extract did not significantly affect hematological parameters or lipid profiles. However, notable changes were observed in gut microbiota composition, with significant increases in specific bacteria such as Candidatus Stoquefichus and Prevotellaceae UCG-001, and a decrease in Corynebacterium. LEfSe and cladogram analyses corroborated the higher prevalence of Candidatus Stoquefichus, Prevotellaceae UCG-001, and Erysipelatoclostridiaceae in the kratom treatment group compared to controls. CONCLUSIONS Kratom extract significantly alters gut microbiome composition in rats, promoting beneficial bacteria while also elevating certain taxa associated with negative health outcomes. These mixed effects highlight the need for further research on the long-term implications of kratom use for gut health and its broader health consequences, as well as potential therapeutic applications. CLINICAL TRIAL NUMBER Not applicable.
Collapse
Affiliation(s)
- Nattaya Thongsepee
- Department of Preclinical Science, Faculty of Medicine, Thammasat University, Pathum Thani, 12120, Thailand
- Thammasat University Research Unit in Nutraceuticals and Food Safety, Faculty of Medicine, Thammasat University, Pathum Thani, 12120, Thailand
| | - Sumet Amonyingcharoen
- Medical Life Sciences Institute, Department of Medical Sciences, Ministry of Public Health, Nonthaburi, 11000, Thailand
| | - Pholasit Chamod
- Department of Preclinical Science, Faculty of Medicine, Thammasat University, Pathum Thani, 12120, Thailand
| | - Wanwisa Himakhun
- Department of Pathology, Faculty of Medicine, Thammasat University, Pathum Thani, 12120, Thailand
| | - Kant Sangpairoj
- Department of Preclinical Science, Faculty of Medicine, Thammasat University, Pathum Thani, 12120, Thailand
- Thammasat University Research Unit in Nutraceuticals and Food Safety, Faculty of Medicine, Thammasat University, Pathum Thani, 12120, Thailand
| | - Pongsakorn Martviset
- Department of Preclinical Science, Faculty of Medicine, Thammasat University, Pathum Thani, 12120, Thailand
| | - Pathanin Chantree
- Department of Preclinical Science, Faculty of Medicine, Thammasat University, Pathum Thani, 12120, Thailand
| | - Phornphan Sornchuer
- Department of Preclinical Science, Faculty of Medicine, Thammasat University, Pathum Thani, 12120, Thailand.
- Thammasat University Research Unit in Nutraceuticals and Food Safety, Faculty of Medicine, Thammasat University, Pathum Thani, 12120, Thailand.
| |
Collapse
|
33
|
Almheiri RT, Hajjar B, Alkhaaldi SMI, Rabeh N, Aljoudi S, Abd-Elrahman KS, Hamdan H. Beyond weight loss: exploring the neurological ramifications of altered gut microbiota post-bariatric surgery. J Transl Med 2025; 23:223. [PMID: 39994634 PMCID: PMC11852891 DOI: 10.1186/s12967-025-06201-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 02/04/2025] [Indexed: 02/26/2025] Open
Abstract
This review discusses findings related to neurological disorders, gut microbiota, and bariatric surgery, focusing on neurotransmitters, neuroendocrine, the pathophysiology of bacteria contributing to disorders, and possible therapeutic interventions. Research on neurotransmitters suggests that their levels are heavily influenced by gut microbiota, which may link them to neurological disorders such as Alzheimer's disease, Parkinson's disease, Multiple sclerosis, Depression, and Autism spectrum disorder. The pathophysiology of bacteria that reach and influence the central nervous system has been documented. Trends in microbiota are often observed in specific neurological disorders, with a prominence of pro-inflammatory bacteria and a reduction in anti-inflammatory types. Furthermore, bariatric surgery has been shown to alter microbiota profiles similar to those observed in neurological disorders. Therapeutic interventions, including fecal microbiota transplants and probiotics, have shown potential to alleviate neurological symptoms. We suggest a framework for future studies that integrates knowledge from diverse research areas, employs rigorous methodologies, and includes long-trial clinical control groups.
Collapse
Affiliation(s)
- Rashed T Almheiri
- Department of Biological Sciences, College of Medicine and Health Sciences, Khalifa University, 127788, Abu Dhabi, United Arab Emirates
| | - Baraa Hajjar
- Department of Biological Sciences, College of Medicine and Health Sciences, Khalifa University, 127788, Abu Dhabi, United Arab Emirates
| | - Saif M I Alkhaaldi
- Department of Biological Sciences, College of Medicine and Health Sciences, Khalifa University, 127788, Abu Dhabi, United Arab Emirates
| | - Nadia Rabeh
- Department of Biological Sciences, College of Medicine and Health Sciences, Khalifa University, 127788, Abu Dhabi, United Arab Emirates
| | - Sara Aljoudi
- Department of Biological Sciences, College of Medicine and Health Sciences, Khalifa University, 127788, Abu Dhabi, United Arab Emirates
| | - Khaled S Abd-Elrahman
- Department of Anesthesiology, Pharmacology and Therapeutics, and Djavad Mowafaghian Center for Brain Health, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada.
- Department of Medical Sciences, College of Medicine and Health Science, Khalifa University, 127788, Abu Dhabi, United Arab Emirates.
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt.
| | - Hamdan Hamdan
- Department of Biological Sciences, College of Medicine and Health Sciences, Khalifa University, 127788, Abu Dhabi, United Arab Emirates.
- Healthcare Engineering Innovation Group (HEIG), Khalifa University of Science and Technology, 127788, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
34
|
Yu J, Park S, Jeong S, Ko A, Lee J, Han S, Park SM. Association of cholecystectomy with short-term and long-term risks of depression and suicide. Sci Rep 2025; 15:6557. [PMID: 39994212 PMCID: PMC11850815 DOI: 10.1038/s41598-025-87523-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 01/20/2025] [Indexed: 02/26/2025] Open
Abstract
In addition to the known link between cholecystectomy and depression, the risk of developing short-term and long-term depression after surgery and whether such mental health issues leads to suicide were not known. Therefore, this study aimed to address these questions. Using data from the National Health Insurance Service of Korea (2002-2019), we conducted a retrospective cohort study including 6,688 cholecystectomy patients matched with 66,880 individuals without a history of cholecystectomy for suicide analysis and 6,694 cholecystectomy patients matched with 66,940 individuals for depression analysis. The non-cholecystectomy group was matched at a 1:10 ratio for sex and age. The incidence of depression and suicide were followed from the day of cholecystectomy to December 31, 2019. Adjusted hazard ratios (aHRs) and 95% confidence intervals (CIs) were estimated using multivariable Cox proportional hazards regression. Short-term depression risk within three years of cholecystectomy was significantly elevated (aHR 1.38, 95% CI 1.19-1.59), while the long-term depression risk beyond three years was not significantly greater (aHR 1.09, 95% CI 0.98-1.22). Cholecystectomy was not associated with an increased risk of suicide in any period. These findings highlight the importance of monitoring and providing postoperative mental health support for patients at risk of short-term depression after cholecystectomy. However, no association was observed with long-term depression or suicide risk.
Collapse
Affiliation(s)
- Jiwon Yu
- Department of Biomedical Sciences, Seoul National University Graduate School, Seoul, South Korea
- Department of Artificial Intelligence Convergence, Hallym University Graduate School, Chuncheon, South Korea
| | - Sangwoo Park
- Department of Biomedical Sciences, Seoul National University Graduate School, Seoul, South Korea
| | - Seogsong Jeong
- Department of Biomedical Informatics, Korea University College of Medicine, Seoul, South Korea
| | - Ahryoung Ko
- Department of Family Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, South Korea
| | - Jaewon Lee
- Department of Psychiatry, University of Rochester Medical Center, Rochester, NY, USA
| | - Saemi Han
- Department of Medicine, Seoul National University College of Medicine, Seoul, South Korea
| | - Sang Min Park
- Department of Biomedical Sciences, Seoul National University Graduate School, Seoul, South Korea.
- Department of Family Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, South Korea.
- Department of Family Medicine and Biomedical Sciences, College of Medicine, Seoul National University, 101, Daehak-ro, Jongno-gu, Seoul, South Korea.
| |
Collapse
|
35
|
Duan J, Sun J, Ma X, Du P, Dong P, Xue J, Lu Y, Jiang T. Association of escitalopram-induced shifts in gut microbiota and sphingolipid metabolism with depression-like behavior in wistar-kyoto rats. Transl Psychiatry 2025; 15:54. [PMID: 39962083 PMCID: PMC11833111 DOI: 10.1038/s41398-025-03277-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 01/14/2025] [Accepted: 02/07/2025] [Indexed: 02/20/2025] Open
Abstract
The microbiota-gut-brain axis plays a pivotal role in neuropsychiatric disorders, particularly in depression. Escitalopram (ESC) is a first-line antidepressant, however, its regulatory mechanisms on the microbiota-gut-brain axis in the treatment of depression remain unclear. The antidepressant effects of ESC were evaluated using the forced swim test in Wistar-Kyoto (WKY) rats, while damage in the gut and brain regions was assessed through H&E staining and immunohistochemistry. The therapeutic mechanisms in WKY rats with depression-like behavior were investigated through 16S rRNA sequencing of the gut microbiota, serum untargeted metabolomics, and hippocampal proteomics. Results indicated that ESC intervention improved depressive-like behaviors, as evidenced by increased swimming times in WKY rats, and also restored intestinal permeability and brain tissue integrity. Significant changes in the gut microbiota composition, particularly an increase in Bacteroides barnesiae, as well as increases in serum sphingolipid metabolites (Sphinganine 1-phosphate, Sphingosine, and Sphingosine-1-phosphate) and hippocampal proteins (Sptlc1, Enpp5, Enpp2), were strongly correlated. These robust correlations suggest that ESC may exert its antidepressant effects by modulating sphingolipid metabolism through the influence of gut microbiota. Accordingly, this research elucidates novel mechanisms underlying the antidepressant efficacy of ESC and highlights the pivotal importance of the microbiota-gut-brain axis in mediating these effects.
Collapse
Affiliation(s)
- Jiajia Duan
- Department of Clinical Laboratory, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China
| | - Jiaxing Sun
- Department of Clinical Laboratory, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China
| | - Xiao Ma
- Department of Clinical Laboratory, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China
| | - Peipei Du
- Department of Clinical Laboratory, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China
| | - Pengfei Dong
- Department of Clinical Laboratory, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China
| | - Juan Xue
- Department of Clinical Laboratory, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China
| | - Yanli Lu
- College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang, China
| | - Tao Jiang
- Department of Clinical Laboratory, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China.
| |
Collapse
|
36
|
Salberg S, Macowan M, Doshen A, Yamakawa GR, Sgro M, Marsland B, Henderson LA, Mychasiuk R. A high fat, high sugar diet exacerbates persistent post-surgical pain and modifies the brain-microbiota-gut axis in adolescent rats. Neuroimage 2025; 307:121057. [PMID: 39870258 DOI: 10.1016/j.neuroimage.2025.121057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 01/11/2025] [Accepted: 01/24/2025] [Indexed: 01/29/2025] Open
Abstract
Persistent post-surgical pain (PPSP) occurs in a proportion of patients following surgical interventions. Research suggests that specific microbiome components are important for brain development and function, with recent studies demonstrating that chronic pain results in changes to the microbiome. Consumption of a high fat, high sugar (HFHS) diet can drastically alter composition of the microbiome and is a modifiable risk factor for many neuroinflammatory conditions. Therefore, we investigated how daily consumption of a HFHS diet modified the development of PPSP, brain structure and function, and the microbiome. In addition, we identified significant correlations between the microbiome and brain in animals with PPSP. Male and female rats were maintained on a control or HFHS diet. Animals were further allocated to a sham or surgery on postnatal day (p) p35. The von Frey task measured mechanical nociceptive sensitivity at a chronic timepoint (p65-67). Between p68-72 rats underwent in-vivo MRI to examine brain volume and diffusivity. At p73 fecal samples were used for downstream 16 s rRNA sequencing. Spearman correlation analyses were performed between individual microbial abundance and MRI diffusivity to determine if specific bacterial species were associated with PPSP-induced brain changes. We found that consumption of a HFHS diet exacerbated PPSP in adolescents. The HFHS diet reduced overall brain volume and increased white and grey matter density. The HFHS diet interacted with the surgical intervention to modify diffusivity in numerous brain regions which were associated with specific changes to the microbiome. These findings demonstrate that premorbid characteristics can influence the development of PPSP and advance our understanding of the contribution that the microbiome has on function of the brain-microbiota-gut axis.
Collapse
Affiliation(s)
- Sabrina Salberg
- Department of Neuroscience, Monash University, Melbourne, VIC, Australia; Gastroenterology, Immunology, Neuroscience (GIN) Discovery Program, Australia
| | - Matthew Macowan
- Gastroenterology, Immunology, Neuroscience (GIN) Discovery Program, Australia; Department of Immunology, Monash University, Melbourne, VIC, Australia
| | - Angela Doshen
- School of Medical Sciences (Neuroscience), Brain and Mind Centre, University of Sydney, NSW, Australia
| | - Glenn R Yamakawa
- Department of Neuroscience, Monash University, Melbourne, VIC, Australia; Gastroenterology, Immunology, Neuroscience (GIN) Discovery Program, Australia
| | - Marissa Sgro
- Department of Neuroscience, Monash University, Melbourne, VIC, Australia; Gastroenterology, Immunology, Neuroscience (GIN) Discovery Program, Australia
| | - Benjamin Marsland
- Gastroenterology, Immunology, Neuroscience (GIN) Discovery Program, Australia; Department of Immunology, Monash University, Melbourne, VIC, Australia
| | - Luke A Henderson
- School of Medical Sciences (Neuroscience), Brain and Mind Centre, University of Sydney, NSW, Australia
| | - Richelle Mychasiuk
- Department of Neuroscience, Monash University, Melbourne, VIC, Australia; Gastroenterology, Immunology, Neuroscience (GIN) Discovery Program, Australia.
| |
Collapse
|
37
|
Zhang Y, Hu T, Wang X, Sun N, Cai Q, Kim HY, Fan Y, Liu D, Guan X. Profiles of gut microbiota and metabolites for high risk of transgenerational depression-like behavior by paternal methamphetamine exposure. FASEB J 2025; 39:e70386. [PMID: 39927989 DOI: 10.1096/fj.202402839r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 01/20/2025] [Accepted: 01/31/2025] [Indexed: 02/11/2025]
Abstract
Parental substance abuse increases the risk of neurological and psychiatric disorders in offsprings. However, its underlying mechanism remains elusive. Our previous study demonstrated that long-term exposure to methamphetamine (Meth), a psychostimulant drug with high addiction potential, remarkably alters the gut microbiome and metabolites in male mice, which contribute to Meth-induced anxiety-like behaviors. The current study aimed to investigate whether gut microbiota and metabolism serve as potential peripheral targets for transgenerational mental problems by paternal Meth exposure. We found that paternal Meth exposure induced depression-like behaviors both in the first (F1) and the second (F2) generations of male mice. Further, the depletion of gut bacteria through antibiotic treatments normalized the depression-like behaviors to normal levels in both F1 and F2 male mice. Then, alterations in gut bacterial composition were observed in both F1 and F2 male mice. Specifically, Eubacterium_ruminantium_group, Enterorhabdus, Alloprevotella, and Parabacteroides were the commonly affected bacterial taxa in F1 and F2 male mice. In addition, the results of alterations in gut metabolism showed that LPC 14:1-SN1 emerged as the consistently altered metabolite in the colons of F1 and F2 male mice. Taken together, our findings provide the first evidence that paternal Meth exposure enhances depression-like behaviors in F1 and F2 male mice, potentially mediated by the gut microbiome and metabolism.
Collapse
Affiliation(s)
- Yuanyuan Zhang
- Department of Human Anatomy and Histoembryology, Nanjing University of Chinese Medicine, Nanjing, China
| | - Tao Hu
- Department of Human Anatomy and Histoembryology, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xinyu Wang
- Department of Human Anatomy and Histoembryology, Nanjing University of Chinese Medicine, Nanjing, China
| | - Nongyuan Sun
- Department of Human Anatomy and Histoembryology, Nanjing University of Chinese Medicine, Nanjing, China
| | - Qinglong Cai
- Department of Human Anatomy and Histoembryology, Nanjing University of Chinese Medicine, Nanjing, China
| | - Hee Young Kim
- Department of Physiology, Yonsei University College of Medicine, Seoul, South Korea
| | - Yu Fan
- Department of Human Anatomy and Histoembryology, Nanjing University of Chinese Medicine, Nanjing, China
| | - Dekang Liu
- Department of Human Anatomy and Histoembryology, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xiaowei Guan
- Department of Human Anatomy and Histoembryology, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
38
|
Kalaga P, Ray SK. Mental Health Disorders Due to Gut Microbiome Alteration and NLRP3 Inflammasome Activation After Spinal Cord Injury: Molecular Mechanisms, Promising Treatments, and Aids from Artificial Intelligence. Brain Sci 2025; 15:197. [PMID: 40002529 PMCID: PMC11852823 DOI: 10.3390/brainsci15020197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 02/06/2025] [Accepted: 02/12/2025] [Indexed: 02/27/2025] Open
Abstract
Aside from its immediate traumatic effects, spinal cord injury (SCI) presents multiple secondary complications that can be harmful to those who have been affected by SCI. Among these secondary effects, gut dysbiosis (GD) and the activation of the NOD (nucleotide-binding oligomerization domain) like receptor-family pyrin-domain-containing three (NLRP3) inflammasome are of special interest for their roles in impacting mental health. Studies have found that the state of the gut microbiome is thrown into disarray after SCI, providing a chance for GD to occur. Metabolites such as short-chain fatty acids (SCFAs) and a variety of neurotransmitters produced by the gut microbiome are hampered by GD. This disrupts healthy cognitive processes and opens the door for SCI patients to be impacted by mental health disorders. Additionally, some studies have found an increased presence and activation of the NLRP3 inflammasome and its respective parts in SCI patients. Preclinical and clinical studies have shown that NLRP3 inflammasome plays a key role in the maturation of pro-inflammatory cytokines that can initiate and eventually aggravate mental health disorders after SCI. In addition to the mechanisms of GD and the NLRP3 inflammasome in intensifying mental health disorders after SCI, this review article further focuses on three promising treatments: fecal microbiome transplants, phytochemicals, and melatonin. Studies have found these treatments to be effective in combating the pathogenic mechanisms of GD and NLRP3 inflammasome, as well as alleviating the symptoms these complications may have on mental health. Another area of focus of this review article is exploring how artificial intelligence (AI) can be used to support treatments. AI models have already been developed to track changes in the gut microbiome, simulate drug-gut interactions, and design novel anti-NLRP3 inflammasome peptides. While these are promising, further research into the applications of AI for the treatment of mental health disorders in SCI is needed.
Collapse
Affiliation(s)
| | - Swapan K. Ray
- Department of Pathology, Microbiology, and Immunology, University of South Carolina School of Medicine, 6439 Garners Ferry Road, Columbia, SC 29209, USA;
| |
Collapse
|
39
|
Lan Y, Song Y, Zhang W, Zhao S, Wang X, Wang L, Wang Y, Yang X, Wu H, Liu X. Quinoa Ethanol Extract Ameliorates Cognitive Impairments Induced by Hypoxia in Mice: Insights into Antioxidant Defense and Gut Microbiome Modulation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:3427-3443. [PMID: 39873455 DOI: 10.1021/acs.jafc.4c07530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2025]
Abstract
Quinoa, rich in pharmacologically active ingredients, possesses the potential benefit in preventing cognitive impairments induced by hypoxia. In this study, the efficacy of quinoa ethanol extracts (QEE) consumption (200 and 500 mg/kg/d, respectively) against hypobaric hypoxia (HH)-induced cognitive deficits in mice was investigated. QEE significantly ameliorated hypoxic stress induced by HH, as evidenced by improvements in baseline indices and reductions in hypoxia-inducible factor 1α levels. Furthermore, QEE enhanced antioxidant defense mechanisms, alleviated neuroinflammation in brain regions associated with memory, and improved HH-induced cognitive impairments by modulating the cyclic adenosine monophosphate response element-binding protein/brain-derived neurotrophic factor signaling pathway. Higher doses generally yielded more effective outcomes than lower doses. QEE also significantly reshaped the gut microbiome structure of HH mice, inhibited gut barrier damage, and reduced lipopolysaccharide migration, thereby increasing short-chain fatty acids (SCFAs) levels. Our findings suggest that QEE may be a promising strategy for preventing hypoxia-induced cognitive impairments by maintaining gut microbiome stability and increasing SCFAs levels.
Collapse
Affiliation(s)
- Yongli Lan
- College of Food Science and Engineering, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi 712100, China
| | - Yujie Song
- College of Food Science and Engineering, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi 712100, China
| | - Wengang Zhang
- College of Food Science and Engineering, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi 712100, China
- Laboratory for Research and Utilization of Qinghai Tibet Plateau Germplasm Resources, Qinghai University, Xining 810016, China
| | - Shiyang Zhao
- College of Food Science and Engineering, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi 712100, China
| | - Xinze Wang
- College of Food Science and Engineering, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi 712100, China
| | - Lei Wang
- College of Food Science and Engineering, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi 712100, China
| | - Yutang Wang
- College of Food Science and Engineering, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi 712100, China
| | - Xijuan Yang
- Laboratory for Research and Utilization of Qinghai Tibet Plateau Germplasm Resources, Qinghai University, Xining 810016, China
| | - Hao Wu
- Shandong Technology Innovation Center of Special Food, Qingdao 266109, China
- Qingdao Special Food Research Institute, Qingdao 266109, China
| | - Xuebo Liu
- College of Food Science and Engineering, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi 712100, China
| |
Collapse
|
40
|
Clerici L, Bottari D, Bottari B. Gut Microbiome, Diet and Depression: Literature Review of Microbiological, Nutritional and Neuroscientific Aspects. Curr Nutr Rep 2025; 14:30. [PMID: 39928205 PMCID: PMC11811453 DOI: 10.1007/s13668-025-00619-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/24/2025] [Indexed: 02/11/2025]
Abstract
PURPOSE OF REVIEW This review explores the intricate relationships among the gut microbiota, dietary patterns, and mental health, focusing specifically on depression. It synthesizes insights from microbiological, nutritional, and neuroscientific perspectives to understand how the gut-brain axis influences mood and cognitive function. RECENT FINDINGS Recent studies underscore the central role of gut microbiota in modulating neurological and psychological health via the gut-brain axis. Key findings highlight the importance of dietary components, including probiotics, prebiotics, and psychobiotics, in restoring microbial balance and enhancing mood regulation. Different dietary patterns exhibit a profound impact on gut microbiota composition, suggesting their potential as complementary strategies for mental health support. Furthermore, mechanisms like tryptophan metabolism, the HPA axis, and microbial metabolites such as SCFAs are implicated in linking diet and microbiota to depression. Clinical trials show promising effects of probiotics in alleviating depressive symptoms. This review illuminates the potential of diet-based interventions targeting the gut microbiota to mitigate depression and improve mental health. While the interplay between microbial diversity, diet, and brain function offers promising therapeutic avenues, further clinical research is needed to validate these findings and establish robust, individualized treatment strategies.
Collapse
Affiliation(s)
- Laura Clerici
- Department of Food and Drug, University of Parma, Parma, Italy
| | | | | |
Collapse
|
41
|
Lu D, Ma X, Tao K, Lei H. Advancements in the Pathogenesis, Diagnosis, and Therapeutic Implications of Intestinal Bacteria. Curr Issues Mol Biol 2025; 47:106. [PMID: 39996827 PMCID: PMC11853859 DOI: 10.3390/cimb47020106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 01/28/2025] [Accepted: 02/06/2025] [Indexed: 02/26/2025] Open
Abstract
Intestinal bacteria form one of the most complex microbial communities in the human body, playing a crucial role in maintaining host health and contributing to the development of various diseases. Here, we provide a comprehensive overview of the composition and function of intestinal bacteria, the factors affecting their homeostasis, and their association and mechanisms with a range of diseases (e.g., inflammatory bowel diseases, colorectal cancer, metabolic diseases). Additionally, their advanced potential in disease diagnosis and treatment is highlighted. Therapies, such as chemotherapy, radiotherapy, and immunotherapy, are significantly impacted by intestinal bacteria, with research indicating that bacteria can enhance chemoimmunotherapy efficiency by affecting T cell recruitment and immune cell infiltration. Fecal microbiota transplantation has emerged as a promising option for treating recurrent Clostridium difficile infections and certain metabolic and neurological disorders. Gut bacteria-related serum metabolites serve as non-invasive indicators for diagnosing CRC, while fecal immunochemical tests offer promising applications in CRC screening. Future research is needed to better understand the causal relationships between intestinal bacteria and diseases, develop more precise diagnostic tools, and evaluate the effectiveness and safety of microbiome-targeted therapies in clinical treatment. This study provides deeper insights into the role of intestinal bacteria in human health and disease, providing a scientific basis for innovative therapeutic strategies that have the potential to transform the landscape of healthcare.
Collapse
Affiliation(s)
| | | | - Kaixiong Tao
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (D.L.); (X.M.)
| | - Hongwei Lei
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (D.L.); (X.M.)
| |
Collapse
|
42
|
Zhang X, Hu H, Zhang Y, Hu S, Lu J, Peng W, Luo D. Dietary Capsaicin Exacerbates Gut Microbiota Dysbiosis and Mental Disorders in Type 1 Diabetes Mice. Nutrients 2025; 17:593. [PMID: 39940450 PMCID: PMC11821225 DOI: 10.3390/nu17030593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 01/27/2025] [Accepted: 02/03/2025] [Indexed: 02/16/2025] Open
Abstract
Background/Objectives: Diabetes mellitus is often accompanied by mental health complications, including anxiety, depression, and cognitive decline. Recent research suggested that capsaicin, the active component of chili peppers, may influence mental health. This study aimed to determine the effect of dietary capsaicin on mental disorders in a type 1 diabetes (T1D) mouse model, while also exploring the potential involvement of the microbiota-gut-brain axis. Methods: We induced T1D in mice using streptozotocin (STZ) and administered a diet supplemented with 0.005% capsaicin for five weeks. Behavioral assessments, including the open field test (OFT), tail suspension test (TST), forced swimming test (FST), elevated plus maze (EPM) test, and Morris water maze (MWM) test, were conducted to evaluate depressive and anxiety-like behaviors as well as cognitive function. Targeted and untargeted metabolomics analyses were performed to assess neurotransmitter levels in the hippocampus and serum metabolites, while 16S rRNA sequencing was utilized to analyze gut microbiota composition. Intestinal barriers were determined using western blot detection of the tight junction proteins ZO-1 and occludin. Results: Dietary capsaicin exacerbated anxiety and depressive-like behaviors along with cognitive declines in T1D mice. Capsaicin reduced gut microbiota diversity and levels of beneficial bacteria, while broad-spectrum antibiotic treatment further intensified anxiety and depression behaviors. Metabolomic analysis indicated that capsaicin disrupted metabolic pathways related to tryptophan and phenylalanine, leading to decreased neuroprotective metabolites, such as kynurenic acid, hippurate, and butyric acid. Additionally, capsaicin diminished the expression of ZO-1 and occludin, indicating increased intestinal permeability. Conclusions: Dietary capsaicin aggravates gut microbiota and metabolic disturbances in diabetic mice, thereby worsening anxiety, depression, and cognitive decline.
Collapse
Affiliation(s)
- Xiaohui Zhang
- Department of Physiology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330006, China; (X.Z.); (H.H.); (Y.Z.); (J.L.)
| | - Houjia Hu
- Department of Physiology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330006, China; (X.Z.); (H.H.); (Y.Z.); (J.L.)
| | - Yue Zhang
- Department of Physiology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330006, China; (X.Z.); (H.H.); (Y.Z.); (J.L.)
| | - Shuting Hu
- School of Pharmaceutics, Jiangxi Medical College, Nanchang University, Nanchang 330006, China; (S.H.); (W.P.)
| | - Jiaqin Lu
- Department of Physiology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330006, China; (X.Z.); (H.H.); (Y.Z.); (J.L.)
| | - Weijie Peng
- School of Pharmaceutics, Jiangxi Medical College, Nanchang University, Nanchang 330006, China; (S.H.); (W.P.)
| | - Dan Luo
- Department of Physiology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330006, China; (X.Z.); (H.H.); (Y.Z.); (J.L.)
| |
Collapse
|
43
|
Chen VCH, Wu SI. An exploratory analysis on the association between suicidal ideation and the microbiome in patients with or without major depressive disorder. J Affect Disord 2025; 370:362-372. [PMID: 39481689 DOI: 10.1016/j.jad.2024.10.120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 10/14/2024] [Accepted: 10/26/2024] [Indexed: 11/02/2024]
Abstract
BACKGROUND Scarce research has investigated associations between suicidal ideation and the gut microbiota. We aimed to explore variations in the gut microbiome associated with suicidal ideation and major depressive disorder (MDD). METHOD A case-control study compared abundances of fecal microbiota and biomarkers of gut permeability among patients with MDD, with or without suicidal ideation, and healthy volunteers without depression. Information on demographic variables and assessments of suicidal ideation (Beck Suicidal Ideation Scale), depression (Hamilton Depression Scale, Patient Health Questionnaire, Hospital Anxiety and Depression Scale- Depression), as well as anxiety (Hospital Anxiety and Depression Scale- Anxiety), were obtained. Univariate and multivariate regression model was performed to explore the possible predictors of suicidal ideation. RESULTS Among the 140 participants, significant differences in Beta diversity were found between MDD patients with (n = 43) or without suicidal ideation (n = 34), and healthy volunteers (n = 42) (all p < 0.001). The strain of g-Phascolarctobacterium was found to have significant positive associations with scores of BSSI and BSSI Part 1 (suicidal ideation), particularly in MDD patients with suicidal ideation, after controlling for demographic and mood covariates. Mediation analyses revealed that g-Phascolarctobacterium may be a partial mediator between depression and suicidal ideation; however, it is also possible that the association between g-Phascolarctobacterium and suicidal ideation was partially mediated by the level of depression. CONCLUSION We found different compositions, diversities, and possible mediating of the gut microbiome associated with suicidal ideations. Potential mechanisms need further investigation to establish whether this reflects a biological process that might be the focus for intervention development. SYNOPSIS Our objective was to investigate whether the diversities and abundances of the gut microbiome varied in people with or without suicidal ideation and with or without MDD after considering possible demographic and mood confounders.
Collapse
Affiliation(s)
- Vincent Chin-Hung Chen
- Department of Psychiatry, Chang Gung Memorial Hospital, 6, Sec. West Chia-Pu Road, Pu-Zi City, Chiayi County 613, Taiwan; School of Medicine, Chang Gung University, 259 Wen-Hwa 1st Road, Kwei- Shan Tao-Yuan, Taiwan
| | - Shu-I Wu
- Department of Medicine, Mackay Medical College, No. 46, Sec. 3, Zhongzheng Rd, Sanzhi Dist 252., New Taipei City, Taiwan; Department of Psychiatry, Mackay Memorial Hospital, No.45, Ming-Shen Rd., Danshui., New Taipei City 25140, Taiwan.
| |
Collapse
|
44
|
Su T, Lang Y, Ren J, Yin X, Zhang W, Cui L. Exploring the Relationship Between Sporadic Creutzfeldt-Jakob Disease and Gut Microbiota Through a Mendelian Randomization Study. Mol Neurobiol 2025; 62:1945-1959. [PMID: 39052184 DOI: 10.1007/s12035-024-04376-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Accepted: 07/17/2024] [Indexed: 07/27/2024]
Abstract
Observational studies have shown gut microbiota changes in sporadic Creutzfeldt-Jakob disease patients, but the causal relationship remains unknown. We aimed to determine any causal links between gut microbiota and this prion disease. Using Mendelian randomization analysis, we examined the causal relationship between gut microbiota composition and sporadic Creutzfeldt-Jakob disease. Data on gut microbiota (N = 18,340) and disease cases (5208) were obtained. Various analysis methods were used, including inverse variance weighted, Mendelian randomization-Egger, weighted median, simple mode, and weighted mode. In addition, MR-PRESSO was used to evaluate horizontal pleiotropy and detect outliers. Pleiotropy and heterogeneity were assessed, and reverse analysis was conducted. Negative associations were found between sporadic Creutzfeldt-Jakob disease and family Defluviitaleaceae, family Ruminococcaceae, genus Butyricicoccus, genus Desulfovibrio, and genus Eubacterium nodatum. Genus Lachnospiraceae UCG010 showed a positive correlation. Reverse analysis indicated genetic associations between the disease and decreased levels of family Peptococcaceae, genus Faecalibacterium, and genus Phascolarctobacterium, as well as increased levels of genus Butyrivibrio. No pleiotropy, heterogeneity, outliers, or weak instrument bias were observed. This study revealed bidirectional causal effects between specific gut microbiota components and sporadic Creutzfeldt-Jakob disease. Certain components demonstrated inhibitory effects on disease pathogenesis, while others were positively associated with the disease. Modulating gut microbiota may provide new insights into prion disease therapies. Further research is needed to clarify mechanisms and explore treatments for sporadic Creutzfeldt-Jakob disease.
Collapse
Affiliation(s)
- Tengfei Su
- Department of Neurology, The First Hospital of Jilin University, Changchun, Jilin Province, China
| | - Yue Lang
- Department of Neurology, The First Hospital of Jilin University, Changchun, Jilin Province, China
| | - Jiaxin Ren
- Department of Neurology, The First Hospital of Jilin University, Changchun, Jilin Province, China
| | - Xiang Yin
- Department of Neurology, The First Hospital of Jilin University, Changchun, Jilin Province, China
| | - Weiguanliu Zhang
- Department of Neurology, The First Hospital of Jilin University, Changchun, Jilin Province, China
| | - Li Cui
- Department of Neurology, The First Hospital of Jilin University, Changchun, Jilin Province, China.
| |
Collapse
|
45
|
Yu H, Song Y, Lou M, Shen S. Mitigation and mechanism of low dose linoleic acid on depression caused by disorder of gut microbiome. Nutr Neurosci 2025; 28:245-262. [PMID: 38963806 DOI: 10.1080/1028415x.2024.2366648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/06/2024]
Abstract
OBJECTIVES Depression is a widely prevalent mental disorder, and nutritional interventions play an increasingly important role in its treatment. In this paper, effects of linoleic acid (LA) on depressive behavior in mice induced by gut microbiome disorders were investigated. METHODS Fifty C57BL/6J male mice were randomly separated into five groups, control group (CK), ceftriaxone sodium group (CRO), low-dose linoleic acid group (LLA, 1 g/kg), medium-dose linoleic acid group (MLA, 2 g/kg), and high-dose linoleic acid group (HLA, 5 g/kg). In the LLA, MLA, and HLA groups, mice were treated with ceftriaxone sodium (CRO) to induce depressive behaviors, followed by LA administration. Behavioral tests were used to evaluate depressive behavior. High-throughput sequencing and Hematoxylin-eosin (H&E) staining in gut microenvironment were carried out. ELISA kits were used to measure brain inflammatory factors, and 5-hydroxy-tryptamine (5-HT). Gas chromatography and western blot were used to determine fatty acids compositions and the enzymes expression involved in lipid metabolism in brain respectively. RESULTS The results showed that 10 weeks CRO treatment contribute to depressive behavior, gut microbiome disturbance, and serotonin system disturbance. LLA and MLA improved the depressive-like behavior, and significantly increased the levels of 5-HT1A, 5-HTT and 5-HT in the hippocampus. LLA was found to improve the diversity of gut microbiome and alleviate colon tissue damage. Meantime, LLA increased the content of linoleic acid, improved the expression of FADS2 and COX-2, increased IL-10 levels, and decreased IL-6 levels in the brain. DISCUSSION LA alleviated depressive behavior in mice by improving the gut microenvironment, regulate fatty acid metabolism, and modulate inflammation.
Collapse
Affiliation(s)
- Haining Yu
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, People's Republic of China
| | - Yinan Song
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, People's Republic of China
| | - Maoshan Lou
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, People's Republic of China
| | - Shengrong Shen
- Department of Nutrition, Zhejiang University, Hangzhou, People's Republic of China
| |
Collapse
|
46
|
Costa A, Lucarini E. Treating chronic stress and chronic pain by manipulating gut microbiota with diet: can we kill two birds with one stone? Nutr Neurosci 2025; 28:221-244. [PMID: 38889540 DOI: 10.1080/1028415x.2024.2365021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Background: Chronic stress and chronic pain are closely linked by the capacity to exacerbate each other, sharing common roots in the brain and in the gut. The strict intersection between these two neurological diseases makes important to have a therapeutic strategy aimed at preventing both to maintain mental health in patients. Diet is an modifiable lifestyle factor associated with gut-brain axis diseases and there is growing interest in its use as adjuvant to main therapies. Several evidence attest the impact of specific diets or nutrients on chronic stress-related disorders and pain with a good degree of certainty. A daily adequate intake of foods containing micronutrients such as amino acids, minerals and vitamins, as well as the reduction in the consumption of processed food products can have a positive impact on microbiota and gut health. Many nutrients are endowed of prebiotic, anti-inflammatory, immunomodulatory and neuroprotective potential which make them useful tools helping the management of chronic stress and pain in patients. Dietary regimes, as intermittent fasting or caloric restriction, are promising, although further studies are needed to optimize protocols according to patient's medical history, age and sex. Moreover, by supporting gut microbiota health with diet is possible to attenuate comorbidities such as obesity, gastrointestinal dysfunction and mood disorders, thus reducing healthcare costs related to chronic stress or pain.Objective: This review summarize the most recent evidence on the microbiota-mediated beneficial effects of macro- and micronutrients, dietary-related factors, specific nutritional regimens and dietary intervention on these pathological conditions.
Collapse
Affiliation(s)
- Alessia Costa
- Department of Neuroscience, Psychology, Drug Area and Child Health (NEUROFARBA), University of Florence, Florence, Italy
| | - Elena Lucarini
- Department of Neuroscience, Psychology, Drug Area and Child Health (NEUROFARBA), University of Florence, Florence, Italy
| |
Collapse
|
47
|
Abdelhamid M, Counts SE, Zhou C, Hida H, Kim JI, Michikawa M, Jung CG. Protective Effects of Bifidobacterium Breve MCC1274 as a Novel Therapy for Alzheimer's Disease. Nutrients 2025; 17:558. [PMID: 39940416 PMCID: PMC11820889 DOI: 10.3390/nu17030558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 01/14/2025] [Accepted: 01/30/2025] [Indexed: 02/16/2025] Open
Abstract
Alzheimer's disease (AD) is the most common form of dementia and is characterized by memory impairment that significantly interferes with daily life. Therapeutic options for AD that substantively modify disease progression remain a critical unmet need. In this regard, the gut microbiota is crucial in maintaining human health by regulating metabolism and immune responses, and increasing evidence suggests that probiotics, particularly beneficial bacteria, can enhance memory and cognitive functions. Recent studies have highlighted the positive effects of Bifidobacterium breve MCC1274 (B. breve MCC1274) on individuals with mild cognitive impairment (MCI) and schizophrenia. Additionally, oral supplementation with B. breve MCC1274 has been shown to effectively prevent memory decline in AppNL-G-F mice. In relation to Alzheimer's pathology, oral supplementation with B. breve MCC1274 has been found to reduce amyloid-β (Aβ) accumulation and tau phosphorylation in both AppNL-G-F and wild-type (WT) mice. It also decreases microglial activation and increases levels of synaptic proteins. In this review, we examine the beneficial effects of B. breve MCC1274 on AD, exploring potential mechanisms of action and how this probiotic strain may aid in preventing or treating the disease. Furthermore, we discuss the broader implications of B. breve MCC1274 for improving overall host health and provide insights into future research directions for this promising probiotic therapy.
Collapse
Affiliation(s)
- Mona Abdelhamid
- Department of Translational Neuroscience, College of Human Medicine, Michigan State University, 400 Monroe Avenue NW, Grand Rapids, MI 49503, USA; (M.A.); (S.E.C.)
| | - Scott E. Counts
- Department of Translational Neuroscience, College of Human Medicine, Michigan State University, 400 Monroe Avenue NW, Grand Rapids, MI 49503, USA; (M.A.); (S.E.C.)
| | - Chunyu Zhou
- Department of Biochemistry, Nagoya City University Graduate School of Medical Sciences, Nagoya 467-8601, Japan;
| | - Hideki Hida
- Department of Neurophysiology and Brain Science, Nagoya City University Graduate School of Medical Sciences, Nagoya 467-8601, Japan;
| | - Jae-Il Kim
- Department of Food Science and Nutrition, Pukyong National University, Busan 48513, Republic of Korea;
| | - Makoto Michikawa
- Department of Geriatric Medicine, School of Life Dentistry at Niigata, Nippon Dental University, Niigata 951-8580, Japan
| | - Cha-Gyun Jung
- Center for Nursing International Promotion, Nagoya City University Graduate School of Nursing, Nagoya 467-8601, Japan
| |
Collapse
|
48
|
Tchinda Defo SH, Moussa D, Bouvourné P, Guédang Nyayi SD, Woumitna GC, Kodji K, Wado EK, Ngatanko Abaissou HH, Foyet HS. Unpredictable chronic mild stress induced anxio-depressive disorders and enterobacteria dysbiosis: Potential protective effects of Detariummicrocarpum. JOURNAL OF ETHNOPHARMACOLOGY 2025; 337:118940. [PMID: 39423942 DOI: 10.1016/j.jep.2024.118940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 10/11/2024] [Accepted: 10/12/2024] [Indexed: 10/21/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Detarium microcarpum Guill. & Perr. is used traditionally in Far North Cameroun to treat stomach aches, anxiety, epilepsy, and other mental disorders. AIM OF THE STUDY Evaluate the anxiolytic and antidepressant-like effects of D. microcarpum (DM) in unpredictable chronic mild stress (UCMS) model of depression in male rats and its impact on fecal enterobacteria of stressed rats. MATERIALS AND METHODS Rats were handled daily (control) or subjected to the UCMS procedure for 42 days. Anxiety-like behaviors were assessed using the light and dark box test (LBD) and the open field test (OFT). Depressive-like behaviors were assessed using the forced swimming test (FST), the sucrose preference test (SPT), and the novelty suppressed feeding test (NSFT). Feces were then collected, followed by blood, brain, and duodenum sections after sacrifice. Monoamine levels, pro-inflammatory cytokines, oxidative stress factors, and nitrosative stress were assessed. Feces were introduced into Hectoen enteric agar for the identification of enterobacteria. An in vitro growth test was performed. RESULTS The DM ethanolic extract has significantly increased the time spent in the light box, in the LBD, and in the center area of the OFT. Moreover, the extract has significantly reduced the preference for sucrose in the SPT, the time of immobility in the FST, and the latency period to consume the pet in the NSFT. DM extract has significantly reduced serum cortisol levels. It also significantly decreased the pro-inflammatory cytokines TNF-α and Il-1β in both brain and duodenum homogenate. DM has increased the brain's serotonin, GABA, and dopamine levels. The DM extract also decreased the MDA and nitrite levels. It also increased the SOD and CAT activities in both brain and duodenal homogenate. Histologically, the DM extract restored the cell's density in hippocampi sections and prevented gut inflammation and peroxidation characterizing leaky gut syndrome. DM extract has no effect on the growth of enterobacteria species isolated in vitro. CONCLUSION The ethanolic extract of DM would have anxiolytic and antidepressant effects via the modulation of the HPA axis, brain antioxidant enzyme activities, inflammation, and nitrosative stress. Moreover, it could act by preventing leaky gut syndrome.
Collapse
Affiliation(s)
- Serge Hermann Tchinda Defo
- Laboratory of Cognitive and Behavioural Neuroscience, Faculty of Science, University of Maroua, Cameroon P.O. Box: 814, Maroua, Cameroon.
| | - Djaouda Moussa
- Department of Life and Earth Sciences, Higher Teachers' Training College, University of Maroua, P.O. Box: 55, Maroua, Cameroon.
| | - Parfait Bouvourné
- Laboratory of Cognitive and Behavioural Neuroscience, Faculty of Science, University of Maroua, Cameroon P.O. Box: 814, Maroua, Cameroon.
| | - Simon Désiré Guédang Nyayi
- Laboratory of Cognitive and Behavioural Neuroscience, Faculty of Science, University of Maroua, Cameroon P.O. Box: 814, Maroua, Cameroon.
| | - Guillaume Camdi Woumitna
- Laboratory of Cognitive and Behavioural Neuroscience, Faculty of Science, University of Maroua, Cameroon P.O. Box: 814, Maroua, Cameroon.
| | - Kalib Kodji
- Laboratory of Cognitive and Behavioural Neuroscience, Faculty of Science, University of Maroua, Cameroon P.O. Box: 814, Maroua, Cameroon.
| | - Eglantine Keugong Wado
- Laboratory of Cognitive and Behavioural Neuroscience, Faculty of Science, University of Maroua, Cameroon P.O. Box: 814, Maroua, Cameroon.
| | - Hervé Hervé Ngatanko Abaissou
- Laboratory of Cognitive and Behavioural Neuroscience, Faculty of Science, University of Maroua, Cameroon P.O. Box: 814, Maroua, Cameroon.
| | - Harquin Simplice Foyet
- Laboratory of Cognitive and Behavioural Neuroscience, Faculty of Science, University of Maroua, Cameroon P.O. Box: 814, Maroua, Cameroon.
| |
Collapse
|
49
|
Zhang W, Jia J, Yang Y, Ye D, Li Y, Li D, Wang J. Estradiol metabolism by gut microbiota in women's depression pathogenesis: inspiration from nature. Front Psychiatry 2025; 16:1505991. [PMID: 39935532 PMCID: PMC11811108 DOI: 10.3389/fpsyt.2025.1505991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 01/10/2025] [Indexed: 02/13/2025] Open
Abstract
The recurrence and treatment resistance of depression remain significant issues, primarily due to an inadequate understanding of its pathogenesis. Recent scientific evidence indicates that gut microbiota influence estradiol metabolism and are associated with the development of depression in nonpremenopausal women. Integrating existing studies on the regulation of estradiol metabolism by microorganisms in nature and the relevance of its degradation products to depression, recent scientific explorations have further elucidated the key mechanisms by which gut microbiota catabolize estradiol through specific metabolic pathways. These emerging scientific findings suggest that the unique metabolic effects of gut microbiota on estradiol may be one of the central drivers in the onset and course of depression in non-menopausal women.
Collapse
Affiliation(s)
- Wei Zhang
- Division of Colorectal Surgery, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences Tongji Shanxi Hospital, Taiyuan, China
| | - Jinghan Jia
- Division of Colorectal Surgery, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences Tongji Shanxi Hospital, Taiyuan, China
| | - Yuhang Yang
- Division of Colorectal Surgery, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences Tongji Shanxi Hospital, Taiyuan, China
| | - Dawei Ye
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yan Li
- Neurology, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences Tongji Shanxi Hospital, Taiyuan, China
| | - Di Li
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jinxi Wang
- Division of Colorectal Surgery, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences Tongji Shanxi Hospital, Taiyuan, China
| |
Collapse
|
50
|
Atanasova K, Knödler LL, Reindl W, Ebert MP, Thomann AK. Role of the gut microbiome in psychological symptoms associated with inflammatory bowel diseases. Semin Immunopathol 2025; 47:12. [PMID: 39870972 PMCID: PMC11772462 DOI: 10.1007/s00281-025-01036-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 01/02/2025] [Indexed: 01/29/2025]
Abstract
The brain-gut axis constitutes the basis for the bidirectional communication between the central nervous system and the gastrointestinal tract driven by neural, hormonal, metabolic, immunological, and microbial signals. Alterations in the gut microbiome composition as observed in inflammatory bowel diseases can modulate brain function and emerging empirical evidence has indicated that interactions among the brain-gut microbiome-axis seem to play a significant role in the pathogenesis of both inflammatory bowel diseases and psychiatric disorders and their comorbidity. Yet, the immunological and molecular mechanisms underlying the co-occurrence of inflammatory bowel diseases and psychological symptoms are still poorly understood. The aim of this narrative review is to highlight contemporary empirical findings supporting a pivotal role of the gut microbiome in the pathophysiology of highly prevalent neuropsychiatric symptoms in inflammatory bowel diseases such as fatigue, depression, and anxiety. Finally, we focus on microbiome modulation as potential treatment option for comorbid neuropsychiatric symptoms in immune-mediated diseases and especially in inflammatory bowel diseases. High-quality clinical trials are required to clarify how microbiome modulation through dietary interventions or probiotic, prebiotic or synbiotic treatment can be used clinically to improve mental health and thus quality of life of patients with inflammatory bowel diseases.
Collapse
Affiliation(s)
- Konstantina Atanasova
- Department of Medicine II, Medical Faculty Mannheim, University Medical Center Mannheim, Heidelberg University, Mannheim, Germany.
- Department of Psychosomatic Medicine, Medical Faculty Mannheim, Central Institute for Mental Health Mannheim, Heidelberg University, Mannheim, Germany.
| | - Laura-Louise Knödler
- Department of Medicine II, Medical Faculty Mannheim, University Medical Center Mannheim, Heidelberg University, Mannheim, Germany
| | - Wolfgang Reindl
- Department of Medicine II, Medical Faculty Mannheim, University Medical Center Mannheim, Heidelberg University, Mannheim, Germany
| | - Matthias Philip Ebert
- Department of Medicine II, Medical Faculty Mannheim, University Medical Center Mannheim, Heidelberg University, Mannheim, Germany
| | - Anne Kerstin Thomann
- Department of Medicine II, Medical Faculty Mannheim, University Medical Center Mannheim, Heidelberg University, Mannheim, Germany
| |
Collapse
|