1
|
He Z, Zhang H, Xiao H, Zhang X, Xu H, Sun R, Li S. Ubiquitylation of RUNX3 by RNA-binding ubiquitin ligase MEX3C promotes tumorigenesis in lung adenocarcinoma. J Transl Med 2024; 22:216. [PMID: 38424632 PMCID: PMC10905843 DOI: 10.1186/s12967-023-04700-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 11/03/2023] [Indexed: 03/02/2024] Open
Abstract
Lung adenocarcinoma (LUAD) is the most common pathological type of lung cancer, but the early diagnosis rate is low. The RNA-binding ubiquitin ligase MEX3C promotes tumorigenesis in several cancers but its mechanism of action in LUAD is unclear. In this study, the biological activity of MEX3C was assessed in LUAD. MEX3C and RUNX3 mRNA levels in the tissues of LUAD patients were determined using reverse transcription‑quantitative PCR. The involvement of MEX3C in the growth and metastasis of LUAD cells was measured by EdU assay, CCK-8, colony formation, Transwell assay, TUNEL, and flow cytometry. Expression of apoptosis and epithelial-mesenchymal transition related proteins were determined using western blotting analysis. LUAD cells transfected with si-MEX3C were administered to mice subcutaneously to monitor tumor progression and metastasis. We found that MEX3C is strongly upregulated in LUAD tissue sections, and involved in proliferation and migration. A549 and H1299 cells had significantly higher levels of MEX3C expression compared to control HBE cells. Knockdown of MEX3C dramatically decreased cell proliferation, migration, and invasion, and accelerated apoptosis. Mechanistically, we demonstrate MEX3C induces ubiquitylation and degradation of tumor suppressor RUNX3. Moreover, RUNX3 transcriptionally represses Suv39H1, as revealed by RNA pull-down and chromatin immunoprecipitation assays. The in vivo mice model demonstrated that knockdown of MEX3C reduced LUAD growth and metastasis significantly. Collectively, we reveal a novel MEX3C-RUNX3-Suv39H1 signaling axis driving LUAD pathogenesis. Targeting MEX3C may represent a promising therapeutic strategy against LUAD.
Collapse
Affiliation(s)
- Zelai He
- Department of Radiation Oncology, The first affiliated hospital of Bengbu Medical University, Bengbu, 233000, Anhui, China
| | - Huijun Zhang
- Department of Cardiothoracic Surgery, Huashan Hospital of Fudan University, Shanghai, 200040, China
| | - Haibo Xiao
- Department of Cardiothoracic Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Xiangyu Zhang
- Department of Pathology, Jining First People's Hospital, Jining Medical University, Jining, 272002, Shandong, China
| | - Hongbo Xu
- Department of Radiation Oncology, The first affiliated hospital of Bengbu Medical University, Bengbu, 233000, Anhui, China.
| | - Ruifen Sun
- Science and Technology Division, Yunnan University of Chinese Medicine, Kunming, 650500, Yunnan, China.
| | - Siwen Li
- Department of Thoracic Surgery, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan, 511500, Guangdong, China.
| |
Collapse
|
2
|
Asim A, Kiani YS, Saeed MT, Jabeen I. Decoding the Role of Epigenetics in Breast Cancer Using Formal Modeling and Machine-Learning Methods. Front Mol Biosci 2022; 9:882738. [PMID: 35898303 PMCID: PMC9309526 DOI: 10.3389/fmolb.2022.882738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 05/25/2022] [Indexed: 11/17/2022] Open
Abstract
Breast carcinogenesis is known to be instigated by genetic and epigenetic modifications impacting multiple cellular signaling cascades, thus making its prevention and treatments a challenging endeavor. However, epigenetic modification, particularly DNA methylation-mediated silencing of key TSGs, is a hallmark of cancer progression. One such tumor suppressor gene (TSG) RUNX3 (Runt-related transcription factor 3) has been a new insight in breast cancer known to be suppressed due to local promoter hypermethylation mediated by DNA methyltransferase 1 (DNMT1). However, the precise mechanism of epigenetic-influenced silencing of the RUNX3 signaling resulting in cancer invasion and metastasis remains inadequately characterized. In this study, a biological regulatory network (BRN) has been designed to model the dynamics of the DNMT1–RUNX3 network augmented by other regulators such as p21, c-myc, and p53. For this purpose, the René Thomas qualitative modeling was applied to compute the unknown parameters and the subsequent trajectories signified important behaviors of the DNMT1–RUNX3 network (i.e., recovery cycle, homeostasis, and bifurcation state). As a result, the biological system was observed to invade cancer metastasis due to persistent activation of oncogene c-myc accompanied by consistent downregulation of TSG RUNX3. Conversely, homeostasis was achieved in the absence of c-myc and activated TSG RUNX3. Furthermore, DNMT1 was endorsed as a potential epigenetic drug target to be subjected to the implementation of machine-learning techniques for the classification of the active and inactive DNMT1 modulators. The best-performing ML model successfully classified the active and least-active DNMT1 inhibitors exhibiting 97% classification accuracy. Collectively, this study reveals the underlined epigenetic events responsible for RUNX3-implicated breast cancer metastasis along with the classification of DNMT1 modulators that can potentially drive the perception of epigenetic-based tumor therapy.
Collapse
|
3
|
Fukushima K, Fujino H. Identification and Characterization of Human Colorectal Cancer Cluster Predominantly Expressing EP3 Prostanoid Receptor Subtype. Biol Pharm Bull 2022; 45:698-702. [PMID: 35650098 DOI: 10.1248/bpb.b22-00104] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Colorectal cancer (CRC) is one of the common types of cancer in humans. Prostaglandin E2 (PGE2) is a well-known mediator of colorectal cancer through stimulation of four E-type prostanoid (EP) receptor subtypes: EP1, EP2, EP3, and EP4 receptors. All subtypes of EP receptors are involved in CRC promotion or malignancy. However, the characteristics of CRC that highly expresses EP receptor subtypes have not been clarified. In the present study, we classified CRC from a cancer genomic database and identified CRC clusters which highly express EP receptor subtypes. Most of these clusters predominantly expressed one subtype of EP receptor and showed different gene expression patterns. Among them, we focused on the cluster highly expressing the EP3 receptor (CL-EP3). As the result of characterization of gene expression, CL-EP3 was characterized as: epithelial mesenchymal transition (EMT)-induced progressed cancer with activation of transforming growth factor-β pathway, activation of hypoxia-inducible factor-1α, and suppression of runt-related transcription factor 3. Since we previously reported that EP3 receptor is involved in and induce colon cancer cell migration, EP3 receptor-expressing CRC may induce metastasis through these signaling pathways. Thus, the findings suggest the effectiveness of cancer clustering by gene expression of the EP receptor subtype to elucidate the mechanism of human CRC.
Collapse
Affiliation(s)
- Keijo Fukushima
- Department of Pharmacology for Life Sciences, Graduate School of Pharmaceutical Sciences & Graduate School of Institute of Biomedical Sciences, Tokushima University
| | - Hiromichi Fujino
- Department of Pharmacology for Life Sciences, Graduate School of Pharmaceutical Sciences & Graduate School of Institute of Biomedical Sciences, Tokushima University
| |
Collapse
|
4
|
El-shaarawy F, Abo ElAzm MM, Mohamed RH, Radwan MI, Abo-Elmatty DM, Mehanna ET. Relation of the methylation state of RUNX3 and p16 gene promoters with hepatocellular carcinoma in Egyptian patients. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2022. [DOI: 10.1186/s43042-022-00256-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Hepatocellular carcinoma (HCC) is the most common primary hepatic malignancy of adults. RUNX3 and p16 are tumor suppressor genes that may be inactivated by hypermethylation which is a key epigenetic mechanism that contributes to the initiation and progression of various types of human carcinomas including HCC. The aim of this study was to assess the association of hypermethylation of RUNX3 and p16 gene promoters with the incidence of HCC in Egyptian patients. The study included 120 subjects: 30 HCC patients, 30 patients with hepatitis C virus (HCV) without cirrhosis, 30 cirrhotic patients, and 30 healthy volunteers. Methylation-specific polymerase chain reaction (PCR) was done for detection of hypermethylated p16 and RUNX3. Serum levels of liver enzymes and albumin were detected spectrophotometrically and alpha fetoprotein (AFP) was measured in serum by ELISA.
Results
Methylation of RUNX3 and p16 was detected in 25/30 (83.3%) and 26/30 (86.7%) of HCC patients, respectively. The methylation state of both RUNX3 and p16 genes was significantly higher in HCC patients compared to the control subjects (P = 0.016, OR = 4.38) and (P = 0.014, OR = 4.97), respectively. The methylation of both promoters was associated with higher AFP levels in the serum of all patients.
Conclusions
Hypermethylation of RUNX3 and p16 is significantly associated with the development of HCC and may be implicated in its pathogenesis.
Collapse
|
5
|
RUNX3 Transcript Variants Have Distinct Roles in Ovarian Carcinoma and Differently Influence Platinum Sensitivity and Angiogenesis. Cancers (Basel) 2021; 13:cancers13030476. [PMID: 33530588 PMCID: PMC7866085 DOI: 10.3390/cancers13030476] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 01/15/2021] [Accepted: 01/21/2021] [Indexed: 12/14/2022] Open
Abstract
Simple Summary Epithelial ovarian cancer treatment is limited by missing predictive markers, frequent chemotherapy resistance and an incomplete understanding of the biology of tumors. Earlier work proved that hypermethylation of the gene RUNX3 coding for a transcription factor has prognostic value, and RUNX3 transcript variant overexpression, regulated by this epigenetic mechanism, influences cisplatin sensitivity and malignant properties of cells contrary. The present data validate RUNX3 transcript variant-specific effects for high-grade serous ovarian cancer and identify RUNX3-regulated genes and processes. Specifically, DNA damage repair and angiogenesis are influenced by RUNX3, and transcript variant 1 mediates stronger carcinogenic properties. Abstract The prognosis of late-stage epithelial ovarian cancer (EOC) patients is affected by chemotherapy response and the malignant potential of the tumor cells. In earlier work, we identified hypermethylation of the runt-related transcription factor 3 gene (RUNX3) as a prognostic biomarker and contrary functions of transcript variants (TV1 and TV2) in A2780 and SKOV3 cells. The aim of the study was to further validate these results and to increase the knowledge about RUNX3 function in EOC. New RUNX3 overexpression models of high-grade serous ovarian cancer (HGSOC) were established and analyzed for phenotypic (IC50 determination, migration, proliferation and angiogenesis assay, DNA damage analysis) and transcriptomic consequences (NGS) of RUNX3 TV1 and TV2 overexpression. Platinum sensitivity was affected by a specific transcript variant depending on BRCA background. RUNX3 TV2 induced an increased sensitivity in BRCA1wt cells (OVCAR3), whereas TV1 increased the sensitivity and induced a G2/M arrest under treatment in BRCA1mut cells (A13-2-12). These different phenotypes relate to differences in DNA repair: homologous recombination deficient A13-2-12 cells show less γH2AX foci despite higher levels of Pt-DNA adducts. RNA-Seq analyses prove transcript variant and cell-line-specific RUNX3 effects. Pathway analyses revealed another clinically important function of RUNX3—regulation of angiogenesis. This was confirmed by thrombospondin1 analyses, HUVEC spheroid sprouting assays and proteomic profiling. Importantly, conditioned media (CM) from RUNX3 TV1 overexpressing A13-2-12 cells induced an increased HUVEC sprouting. Altogether, the presented data support the hypothesis of different functions of RUNX3 transcript variants related to the clinically relevant processes—platinum resistance and angiogenesis.
Collapse
|
6
|
Transcription factors in colorectal cancer: molecular mechanism and therapeutic implications. Oncogene 2020; 40:1555-1569. [PMID: 33323976 DOI: 10.1038/s41388-020-01587-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 11/02/2020] [Accepted: 11/24/2020] [Indexed: 12/17/2022]
Abstract
Colorectal cancer (CRC) is a major cause of cancer mortality worldwide, however, the molecular mechanisms underlying the pathogenesis of CRC remain largely unclear. Recent studies have revealed crucial roles of transcription factors in CRC development. Transcription factors essential for the regulation of gene expression by interacting with transcription corepressor/enhancer complexes and they orchestrate downstream signal transduction. Deregulation of transcription factors is a frequent occurrence in CRC, and the accompanying drastic changes in gene expression profiles play fundamental roles in multistep process of tumorigenesis, from cellular transformation, disease progression to metastatic disease. Herein, we summarized current and emerging key transcription factors that participate in CRC tumorigenesis, and highlighted their oncogenic or tumor suppressive functions. Moreover, we presented critical transcription factors of CRC, emphasized the major molecular mechanisms underlying their effect on signal cascades associated with tumorigenesis, and summarized of their potential as molecular biomarkers for CRC prognosis therapeutic response, as well as drug targets for CRC treatment. A better understanding of transcription factors involved in the development of CRC will provide new insights into the pathological mechanisms and reveal novel prognostic biomarkers and therapeutic strategies for CRC.
Collapse
|
7
|
Dodla P, Bhoopalan V, Khoo SK, Miranti C, Sridhar S. Gene expression analysis of human prostate cell lines with and without tumor metastasis suppressor CD82. BMC Cancer 2020; 20:1211. [PMID: 33298014 PMCID: PMC7724878 DOI: 10.1186/s12885-020-07675-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 11/22/2020] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND Tetraspanin CD82 is a tumor metastasis suppressor that is known to down regulate in various metastatic cancers. However, the exact mechanism by which CD82 prevents cancer metastasis is unclear. This study aims to identify genes that are regulated by CD82 in human prostate cell lines. METHODS We used whole human genome microarray to obtain gene expression profiles in a normal prostate epithelial cell line that expressed CD82 (PrEC-31) and a metastatic prostate cell line that does not express CD82 (PC3). Then, siRNA silencing was used to knock down CD82 expression in PrEC-31 while CD82 was re-expressed in PC3 to acquire differentially-expressed genes in the respective cell line. RESULTS Differentially-expressed genes with a P < 0.05 were identified in 3 data sets: PrEC-31 (+CD82) vs PrEC-31(-CD82), PC3-57 (+CD82) vs. PC3-5 V (-CD82), and PC3-29 (+CD82) vs. PC3-5 V (-CD82). Top 25 gene lists did not show overlap within the data sets, except (CALB1) the calcium binding protein calbindin 1 which was significantly up-regulated (2.8 log fold change) in PrEC-31 and PC3-29 cells that expressed CD82. Other most significantly up-regulated genes included serine peptidase inhibitor kazal type 1 (SPINK1) and polypeptide N-acetyl galactosaminyl transferase 14 (GALNT14) and most down-regulated genes included C-X-C motif chemokine ligand 14 (CXCL14), urotensin 2 (UTS2D), and fibroblast growth factor 13 (FGF13). Pathways related with cell proliferation and angiogenesis, migration and invasion, cell death, cell cycle, signal transduction, and metabolism were highly enriched in cells that lack CD82 expression. Expression of two mutually inclusive genes in top 100 gene lists of all data sets, runt-related transcription factor (RUNX3) and trefoil factor 3 (TFF3), could be validated with qRT-PCR. CONCLUSION Identification of genes and pathways regulated by CD82 in this study may provide additional insights into the role that CD82 plays in prostate tumor progression and metastasis, as well as identify potential targets for therapeutic intervention.
Collapse
Affiliation(s)
- Pushpaja Dodla
- Department of Cell and Molecular Biology, Grand Valley State University, Allendale, MI, 49401, USA
| | - Vanitha Bhoopalan
- Department of Cell and Molecular Biology, Grand Valley State University, Allendale, MI, 49401, USA
| | - Sok Kean Khoo
- Department of Cell and Molecular Biology, Grand Valley State University, Allendale, MI, 49401, USA
| | - Cindy Miranti
- Department of Cellular and Molecular Medicine, University of Arizona Cancer Center, University of Arizona, Tucson, AZ, 85724, USA
| | - Suganthi Sridhar
- Department of Integrative Biology, University of South Florida, 140, 7Th Avenue S, University of South Florida, St. Petersburg, FL, 33701, USA.
| |
Collapse
|
8
|
Ning K, Shao Y, He Y, Wang F, Cui X, Liu F, Li D, Li F. Histone demethylase Jumonji domain-containing 1A inhibits proliferation and progression of gastric cancer by upregulating runt-related transcription factor 3. Cancer Sci 2020; 111:3679-3692. [PMID: 32762126 PMCID: PMC7541000 DOI: 10.1111/cas.14594] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 07/22/2020] [Accepted: 07/26/2020] [Indexed: 12/24/2022] Open
Abstract
The histone demethylase Jumonji domain‐containing 1A (JMJD1A) is overexpressed in multiple cancers and promotes cancer progression. However, the role and mechanism of JMJD1A in gastric cancer (GC) remains poorly understood. Here, we found that JMJD1A could suppress GC cell proliferation and xenograft tumor growth. Using RNA sequencing, we identified runt‐related transcription factor 3 (RUNX3) as a novel target gene of JMJD1A. Mechanistically, we identified that JMJD1A upregulated RUNX3 through co–activating Ets‐1 and reducing the H3K9me1/2 levels at the RUNX3 promoter in GC cells. Functionally, JMJD1A inhibits the growth of GC cells in vivo, which is partially dependent on RUNX3. Moreover, JMJD1A expression was decreased in GC and low expression of JMJD1A was correlated with an aggressive phenotype and a poor prognosis in patients with GC. Importantly, JMJD1A expression was positively associated with RUNX3 expression in GC samples. These studies indicated that JMJD1A upregulates RUNX3 expression via co–activation of transcription factor Ets‐1 to inhibit proliferation of GC cells. Our findings provide new insight into the mechanism by which JMJD1A regulates RUNX3 transcription and suggest that JMJD1A and/or RUNX3 may be used as a therapeutic intervention for GC.
Collapse
Affiliation(s)
- Ke Ning
- Department of Cell Biology, Key Laboratory of Cell Biology, National Health Commission of the PRC, Shenyang, China.,Key Laboratory of Medical Cell Biology, Ministry of Education of the PRC, China Medical University, Shenyang, China
| | - Yangguang Shao
- Department of Cell Biology, Key Laboratory of Cell Biology, National Health Commission of the PRC, Shenyang, China.,Key Laboratory of Medical Cell Biology, Ministry of Education of the PRC, China Medical University, Shenyang, China
| | - Yuxin He
- Department of Cell Biology, Key Laboratory of Cell Biology, National Health Commission of the PRC, Shenyang, China.,Key Laboratory of Medical Cell Biology, Ministry of Education of the PRC, China Medical University, Shenyang, China
| | - Fei Wang
- Department of Cell Biology, Key Laboratory of Cell Biology, National Health Commission of the PRC, Shenyang, China.,Key Laboratory of Medical Cell Biology, Ministry of Education of the PRC, China Medical University, Shenyang, China
| | - Xi Cui
- Department of Cell Biology, Key Laboratory of Cell Biology, National Health Commission of the PRC, Shenyang, China.,Key Laboratory of Medical Cell Biology, Ministry of Education of the PRC, China Medical University, Shenyang, China
| | - Furong Liu
- Department of Cell Biology, Key Laboratory of Cell Biology, National Health Commission of the PRC, Shenyang, China.,Key Laboratory of Medical Cell Biology, Ministry of Education of the PRC, China Medical University, Shenyang, China
| | - Danni Li
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, China
| | - Feng Li
- Department of Cell Biology, Key Laboratory of Cell Biology, National Health Commission of the PRC, Shenyang, China
| |
Collapse
|
9
|
Reis RSD, Santos JAD, Abreu PMD, Dettogni RS, Santos EDVWD, Stur E, Agostini LP, Anders QS, Alves LNR, Valle IBD, Lima MA, Souza ED, Podestá JRV, Zeidler SVV, Cordeiro-Silva MDF, Louro ID. Hypermethylation status of DAPK, MGMT and RUNX3 in HPV negative oral and oropharyngeal squamous cell carcinoma. Genet Mol Biol 2020; 43:e20190334. [PMID: 32870234 PMCID: PMC7452731 DOI: 10.1590/1678-4685-gmb-2019-0334] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 06/28/2020] [Indexed: 01/08/2023] Open
Abstract
Squamous cell carcinoma of the oral cavity and oropharynx is the sixth most common type of cancer in the world. During tumorigenesis, gene promoter hypermethylation is considered an important mechanism of transcription silencing of tumor suppressor genes, such as DAPK, MGMT and RUNX3. These genes participate in signaling pathways related to apoptosis, DNA repair and proliferation whose loss of expression is possibly associated with cancer development and progression. In order to investigate associations between hypermethylation and clinicopathological and prognostic parameters, promoter methylation was evaluated in 72 HPV negative oral and oropharyngeal tumors using methylation-specific PCR. Hypermethylation frequencies found for DAPK, MGMT and RUNX3 were 38.88%, 19.44% and 1.38% respectively. Patients with MGMT hypermethylation had a better 2-year overall survival compared to patients without methylation. Being MGMT a repair gene for alkylating agents, it could be a biomarker of treatment response for patients who are candidates for cisplatin chemotherapy, predicting drug resistance. In view of the considerable levels of hypermethylation in cancer cells and, for MGMT, its prognostic relevance, DAPK and MGMT show potential as epigenetic markers, in a way that additional studies may test its viability and efficacy in clinical management.
Collapse
Affiliation(s)
- Raquel Silva Dos Reis
- Universidade Federal do Espírito Santo, Departamento de Ciências Biológicas, Núcleo de Genética Humana e Molecular, Vitória, ES, Brazil
| | - Jéssica Aflávio Dos Santos
- Universidade Federal do Espírito Santo, Departamento de Ciências Biológicas, Núcleo de Genética Humana e Molecular, Vitória, ES, Brazil
| | - Priscila Marinho de Abreu
- Universidade Federal do Espírito Santo, Programa de Pós-Graduação em Biotecnologia, Vitória, ES, Brazil.,Universidade Federal do Espírito Santo, Departamento de Patologia, Laboratório de Patologia Molecular, Vitória, ES, Brazil
| | - Raquel Spinassé Dettogni
- Universidade Federal do Espírito Santo, Departamento de Ciências Biológicas, Núcleo de Genética Humana e Molecular, Vitória, ES, Brazil
| | | | - Elaine Stur
- Universidade Federal do Espírito Santo, Departamento de Ciências Biológicas, Núcleo de Genética Humana e Molecular, Vitória, ES, Brazil
| | - Lidiane Pignaton Agostini
- Universidade Federal do Espírito Santo, Departamento de Ciências Biológicas, Núcleo de Genética Humana e Molecular, Vitória, ES, Brazil
| | - Quézia Silva Anders
- Universidade Federal do Espírito Santo, Programa de Pós-Graduação em Ciências Fisiológicas, Vitória, ES, Brazil
| | - Lyvia Neves Rebello Alves
- Universidade Federal do Espírito Santo, Departamento de Ciências Biológicas, Núcleo de Genética Humana e Molecular, Vitória, ES, Brazil.,Universidade Federal do Espírito Santo, Programa de Pós-Graduação em Biotecnologia, Vitória, ES, Brazil
| | - Isabella Bittencourt do Valle
- Universidade Federal do Espírito Santo, Programa de Pós-Graduação em Biotecnologia, Vitória, ES, Brazil.,Universidade Federal do Espírito Santo, Departamento de Patologia, Laboratório de Patologia Molecular, Vitória, ES, Brazil
| | - Marília Arantes Lima
- Universidade Federal do Espírito Santo, Departamento de Patologia, Laboratório de Patologia Molecular, Vitória, ES, Brazil
| | - Evandro Duccini Souza
- Hospital Santa Rita de Cássia - SESA, Programa de Prevenção e Detecção Precoce do Câncer Bucal, Setor de Cirurgia de Cabeça e Pescoço, Vitória, ES, Brazil
| | - José Roberto Vasconcelos Podestá
- Hospital Santa Rita de Cássia - SESA, Programa de Prevenção e Detecção Precoce do Câncer Bucal, Setor de Cirurgia de Cabeça e Pescoço, Vitória, ES, Brazil
| | - Sandra Ventorin von Zeidler
- Universidade Federal do Espírito Santo, Programa de Pós-Graduação em Biotecnologia, Vitória, ES, Brazil.,Universidade Federal do Espírito Santo, Departamento de Patologia, Laboratório de Patologia Molecular, Vitória, ES, Brazil
| | - Melissa de Freitas Cordeiro-Silva
- Universidade Federal do Espírito Santo, Departamento de Ciências Biológicas, Núcleo de Genética Humana e Molecular, Vitória, ES, Brazil
| | - Iúri Drumond Louro
- Universidade Federal do Espírito Santo, Departamento de Ciências Biológicas, Núcleo de Genética Humana e Molecular, Vitória, ES, Brazil.,Universidade Federal do Espírito Santo, Programa de Pós-Graduação em Biotecnologia, Vitória, ES, Brazil
| |
Collapse
|
10
|
Circular RNA circREPS2 Acts as a Sponge of miR-558 to Suppress Gastric Cancer Progression by Regulating RUNX3/β-catenin Signaling. MOLECULAR THERAPY-NUCLEIC ACIDS 2020; 21:577-591. [PMID: 32721878 PMCID: PMC7390859 DOI: 10.1016/j.omtn.2020.06.026] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 03/17/2020] [Accepted: 06/24/2020] [Indexed: 12/14/2022]
Abstract
Circular RNAs (circRNAs) play an essential regulatory role in multiple cancers. However, the role of a large number of circRNAs in gastric cancer (GC) is still unknown. Here, hsa_circ_0139996 (circREPS2), a novel circRNA that was significantly downregulated in GC, was selected for further investigation. circREPS2 was validated and analyzed by DNA sequencing and quantitative real-time PCR. The roles of circREPS2 in GC cells were verified by gain- and loss-of-function experiments. Bioinformatics analysis, luciferase reporter, RNA pull-down, and RNA immunoprecipitation assays were performed to evaluate the functional mechanism of circREPS2 on microRNA-558 (miR-558)/RUNX3/β-catenin axis in GC cells. In the present study, we found that circREPS2 was downregulated in GC tissues and cell lines. Low expression of circREPS2 was associated with a higher tumor-node-metastasis (TNM) stage, poor tumor differentiation, and larger tumor size in GC patients. Functionally, circREPS2 significantly inhibited GC cell proliferation, migration, invasion, and epithelial-mesenchymal transformation (EMT) in vitro and tumorigenesis in vivo. Furthermore, our data demonstrated that circREPS2 acted as a miR-558 sponge and upregulated RUNX3 expression to inactivate β-catenin signaling in GC cells. In conclusion, circREPS2 suppresses the progression of GC via miR-558/RUNX3/β-catenin signaling and is a novel promising biomarker and target for GC treatment.
Collapse
|
11
|
Gao QQ, Zhou B, Yu XZ, Zhang Z, Wang YY, Song YP, Zhang L, Luo H, Xi MR. Transcriptome changes induced by RUNX3 in cervical cancer cells in vitro. Oncol Lett 2020; 19:651-662. [PMID: 31897181 PMCID: PMC6924183 DOI: 10.3892/ol.2019.11128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Accepted: 09/06/2019] [Indexed: 11/06/2022] Open
Abstract
Runt-related transcription factor 3 (RUNX3) is a member of Runt domain family that is known to play key roles in various different types of tumor. It was recently demonstrated that RUNX3 may also be associated with cervical cancer. The aim of the present study was to investigate the potential association between transcriptome changes and RUNX3 expression in cervical cancer. A RUNX3 overexpression model was constructed using cervical cancer cell lines by RUNX3 plasmid transfection. It was demonstrated that the upregulated expression of RUNX3 inhibited proliferation of cervical cancer cell lines, particularly SiHa cells, and was associated with the expression of the IL-6, PTGS2, FOSL1 and TNF genes. In addition, it was revealed that the TNF and FoxO pathways may also be affected by RUNX3. Therefore, the expression of the RUNX3 gene may be involved in the occurrence and progression of cervical cancer.
Collapse
Affiliation(s)
- Qian-Qian Gao
- Department of Ultrasound, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Bin Zhou
- Laboratory of Molecular Translational Medicine, West China Institute of Women and Children's Health, Key Laboratory of Obstetric and Gynecological and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Xiu-Zhang Yu
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Zhu Zhang
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Yan-Yun Wang
- Laboratory of Molecular Translational Medicine, West China Institute of Women and Children's Health, Key Laboratory of Obstetric and Gynecological and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Ya-Ping Song
- Laboratory of Molecular Translational Medicine, West China Institute of Women and Children's Health, Key Laboratory of Obstetric and Gynecological and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Lin Zhang
- Laboratory of Molecular Translational Medicine, West China Institute of Women and Children's Health, Key Laboratory of Obstetric and Gynecological and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Hong Luo
- Department of Ultrasound, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Ming-Rong Xi
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| |
Collapse
|
12
|
Oncosuppressive Role of RUNX3 in Human Astrocytomas. JOURNAL OF ONCOLOGY 2019; 2019:1232434. [PMID: 31467531 PMCID: PMC6699290 DOI: 10.1155/2019/1232434] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 05/30/2019] [Accepted: 06/10/2019] [Indexed: 01/29/2023]
Abstract
Background Gliomas are the most common and aggressive among primary malignant brain tumours with significant inter- and intratumour heterogeneity in histology, molecular profile, and patient outcome. However, molecular targets that could provide reliable diagnostic and prognostic information on this type of cancer are currently unknown. Recent studies show that certain phenotypes of gliomas such as malignancy, resistance to therapy, and relapses are associated with the epigenetic alterations of tumour-specific genes. Runt-related transcription factor 3 (RUNX3) is feasible tumour suppressor gene since its inactivation was shown to be related to carcinogenesis. Aim The aim of the study was to elucidate RUNX3 changes in different regulation levels of molecular biology starting from epigenetics to function in particular cases of astrocytic origin tumours of different grade evaluating significance of molecular changes of RUNX3 for patient clinical characteristics as well as evaluate RUNX3 reexpression effect to GBM cells. Methods The methylation status and protein expression levels of RUNX3 were measured by methylation-specific PCR and Western blot in 136 and 72 different malignancy grade glioma tissues, respectively. Lipotransfection and MTT were applied for proliferation assessment in U87-MG cells. Results We found that RUNX3 was highly methylated and downregulated in GBM. RUNX3 promoter methylation was detected in 69.4% of GBM (n=49) as compared to 0 to 17.2% in I-III grade astrocytomas (n=87). Weighty lower RUNX3 protein level was observed in GMB specimens compared to grade II-III astrocytomas. Correlation test revealed a weak but significant link among Runx3 methylation and protein level. Kaplan-Meier analysis showed that increased RUNX3 methylation and low protein level were both associated with shorter patient survival (p<0.05). Reexpression of RUNX3 in U87-MG cells significantly reduced glioma cell viability compared to control transfection. Conclusions The results demonstrate that RUNX3 gene methylation and protein expression downregulation are glioma malignancy dependent and contribute to tumour progression.
Collapse
|
13
|
An X, Ge J, Guo H, Mi H, Zhou J, Liu Y, Weiyue, Wu Z. Retracted
: Overexpression of miR‐4286 is an unfavorable prognostic marker in individuals with non–small cell lung cancer. J Cell Biochem 2019; 120:17573-17583. [PMID: 31111550 DOI: 10.1002/jcb.29024] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 04/20/2019] [Accepted: 04/29/2019] [Indexed: 02/06/2023]
Affiliation(s)
- Xian An
- Health Care Unit Jining No.1 People's Hospital Jining China
| | - Jiwen Ge
- Department of Respiratory Medicine Affiliated Hospital of Jining Medical College Jining China
| | - Huihui Guo
- Department of Respiratory Medicine Jining No.1 People's Hospital Jining China
| | - Huaixue Mi
- Department of Cardiac Surgery Jining No.1 People's Hospital Jining China
| | - Jinhua Zhou
- Department of Respiratory Medicine Jining No.1 People's Hospital Jining China
| | - Yongrui Liu
- Department of Respiratory Medicine Jining No.1 People's Hospital Jining China
| | - Weiyue
- Department of Respiratory Medicine Jining No.1 People's Hospital Jining China
| | - Zhilian Wu
- Health Care Unit Jining No.1 People's Hospital Jining China
| |
Collapse
|
14
|
Roles of Methylated DNA Biomarkers in Patients with Colorectal Cancer. DISEASE MARKERS 2019; 2019:2673543. [PMID: 30944663 PMCID: PMC6421784 DOI: 10.1155/2019/2673543] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 11/22/2018] [Indexed: 12/25/2022]
Abstract
Colorectal cancer (CRC) is a leading cancer globally; therefore, early diagnosis and surveillance of this cancer are of paramount importance. Current methods of CRC diagnosis rely heavily on endoscopy or radiological imaging. Noninvasive tests including serum detection of the carcinoembryonic antigen (CEA) and faecal occult blood testing (FOBT) are associated with low sensitivity and specificity, especially at early stages. DNA methylation biomarkers have recently been found to have higher accuracy in CRC detection and enhanced prediction of prognosis and chemotherapy response. The most widely studied biomarker in CRC is methylated septin 9 (SEPT9), which is the only FDA-approved methylation-based biomarker for CRC. Apart from SEPT9, other methylated biomarkers including tachykinin-1 (TAC1), somatostatin (SST), and runt-related transcription factor 3 (RUNX3) have been shown to effectively detect CRC in a multitude of sample types. This review will discuss the performances of various methylated biomarkers used for CRC diagnosis and monitoring, when used alone or in combination.
Collapse
|
15
|
Zhou WN, Du YF, Zheng Y, Zhang W, Wu YN, Song XM, Bai J. Inactivation of RUNX3 protein expression in tongue squamous cell carcinoma and its association with clinicopathological characteristics. Mol Med Rep 2018; 19:885-894. [PMID: 30535462 PMCID: PMC6323263 DOI: 10.3892/mmr.2018.9705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 10/17/2018] [Indexed: 11/09/2022] Open
Abstract
The function of runt-related transcription factor 3 (RUNX3) in oral cancer remains controversial. The present study aimed to determine the status of RUNX3 protein expression and its association with clinicopathological characteristics in tongue squamous cell carcinomas (SCC). The present study used three pairs of tongue SCC and non-cancerous tissues to assess RUNX3 protein expression by western blot analysis, and two tongue SCC cell lines to determine RUNX3 protein localization by immunofluorescence and immunocytochemistry. Tissue microarray immunohistochemistry was performed to detect the clinical relevance of RUNX3 in 79 patients with tongue SCC. The results demonstrated that RUNX3 protein expression was reduced in tongue SCC tissues compared with in paired non-cancerous tissues. Similarly, the expression of RUNX3 was low in SCC25 and Cal27 cells, and was predominantly localized to the cytoplasm. In the 79 patients with tongue SCC, RUNX3 protein expression was presented in different manners in carcinoma nests and tumor stroma. RUNX3 in carcinoma nests (nRUNX3) exhibited nuclear positive staining in 24/79 samples, cytoplasmic mislocalization in 41/79 samples and was undetectable in 14/79 samples. RUNX3 in stroma (sRUNX3) exhibited nuclear positive staining in 40/79 samples and nuclear negative staining in 39/79 samples. Negative nRUNX3 expression was significantly associated with lymph node metastasis (P=0.014), clinical stage (P=0.027), and overall and disease-free survival (P=0.008 and P=0.007, respectively). In addition, negative sRUNX3 expression was associated with lymph node metastasis (P=0.003) and clinical stage (P=0.003); however, not with overall survival. The findings of the present study preliminarily suggested that cytoplasmic mislocalization of RUNX3 protein may be a common event in tongue SCC, and that sRUNX3 protein expression may be a potential prognostic biomarker.
Collapse
Affiliation(s)
- Wei-Na Zhou
- Jiangsu Key Laboratory of Oral Diseases, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Yi-Fei Du
- Jiangsu Key Laboratory of Oral Diseases, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Yang Zheng
- Jiangsu Key Laboratory of Oral Diseases, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Wei Zhang
- Jiangsu Key Laboratory of Oral Diseases, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Yu-Nong Wu
- Jiangsu Key Laboratory of Oral Diseases, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Xiao-Meng Song
- Jiangsu Key Laboratory of Oral Diseases, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Jin Bai
- Jiangsu Center for The Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu 221002, P.R. China
| |
Collapse
|
16
|
Zhang L, Zhang Y, Zhu H, Sun X, Wang X, Wu P, Xu X. Overexpression of miR‐301a‐3p promotes colorectal cancer cell proliferation and metastasis by targeting deleted in liver cancer‐1 and runt‐related transcription factor 3. J Cell Biochem 2018; 120:6078-6089. [PMID: 30362160 DOI: 10.1002/jcb.27894] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 09/24/2018] [Indexed: 12/27/2022]
Affiliation(s)
- Liuliu Zhang
- Department of Medical Oncology Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University Nanjing China
| | - Yi Zhang
- Pathology Department Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University Nanjing China
| | - Huayun Zhu
- Department of Medical Oncology Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University Nanjing China
| | - Xiaofeng Sun
- Department of Medical Oncology Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University Nanjing China
| | - Xiaohua Wang
- Department of Medical Oncology Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University Nanjing China
| | - Pingping Wu
- Department of Medical Oncology Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University Nanjing China
| | - Xinyu Xu
- Pathology Department Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University Nanjing China
| |
Collapse
|
17
|
Li Z, Fan P, Deng M, Zeng C. The roles of RUNX3 in cervical cancer cells in vitro. Oncol Lett 2018; 15:8729-8734. [PMID: 29805611 DOI: 10.3892/ol.2018.8419] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Accepted: 03/21/2018] [Indexed: 01/28/2023] Open
Abstract
RUNX3 serves an important role in development of various types of human cancer. The purpose of the present study was to investigate the potential biological function of RUNX3 in cervical cancer cells. In the present study, a RUNX3 overexpressed model was constructed in Hce1 cells by PCDNA3.1-RUNX3 transfection. Western blot analysis was used to measure RUNX3 expression in cervical cancer cells. Immunofluorescence analysis was performed to examine subcellular localization of RUNX3 in cervical cancer cells. Effects of RUNX3 expression on proliferation, migration and invasion of cervical cancer cells were detected by colony formation assay, wound healing assay and Transwell assay, respectively. Immunofluorescence confirmed the nuclear location of RUNX3 in cervical cancer cell. Result sindicated that upregulation of RUNX3 expression inhibited proliferation, migration and invasion of cervical cancer cells. However, knockdown of RUNX3 expression promoted the proliferation, migration and invasion of cervical cancer cells. Hence, RUNX3 may serve as a tumor suppressor gene in cervical cancer.
Collapse
Affiliation(s)
- Zhen Li
- Department of Pathology, Guangdong Medical University, Dongguan, Guangdong 523808, P.R. China
| | - Pan Fan
- Department of Pathology, Guangdong Medical University, Dongguan, Guangdong 523808, P.R. China
| | - Min Deng
- Cancer Hospital and Cancer Research Institute, Guangzhou Medical University, Guangzhou, Guangdong 510095, P.R. China
| | - Chao Zeng
- Department of Pathology, Guangdong Medical University, Dongguan, Guangdong 523808, P.R. China
| |
Collapse
|
18
|
Um SW, Kim Y, Lee BB, Kim D, Lee KJ, Kim HK, Han J, Kim H, Shim YM, Kim DH. Genome-wide analysis of DNA methylation in bronchial washings. Clin Epigenetics 2018; 10:65. [PMID: 29796116 PMCID: PMC5960087 DOI: 10.1186/s13148-018-0498-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 05/09/2018] [Indexed: 12/03/2022] Open
Abstract
Background The objective of this study was to discover DNA methylation biomarkers for detecting non-small lung cancer (NSCLC) in bronchial washings and understanding the association between DNA methylation and smoking cessation. Methods DNA methylation was analyzed in bronchial washing samples from 70 NSCLCs and 53 hospital-based controls using Illumina HumanMethylation450K BeadChip. Methylation levels in these bronchial washings were compared to those in 897 primary lung tissues of The Cancer Genome Atlas (TCGA) data. Results Twenty-four CpGs (p < 1.03E−07) were significantly methylated in bronchial washings from 70 NSCLC patients compared to those from 53 controls. The CpGs also had significant methylation in the TCGA cohort. The 123 participants were divided into a training set (N = 82) and a test set (N = 41) to build a classification model. Logistic regression model showed the best performance for classification of lung cancer in bronchial washing samples: the sensitivity and specificity of a marker panel consisting of seven CpGs in TFAP2A, TBX15, PHF11, TOX2, PRR15, PDGFRA, and HOXA11 genes were 87.0 and 83.3% in the test set, respectively. The area under the curve (AUC) was equal to 0.87 (95% confidence interval = 0.73–0.96, p < 0.001). Methylation levels of two CpGs in RUNX3 and MIR196A1 genes were inversely associated with duration of smoking cessation in the controls, but not in NSCLCs, after adjusting for pack-years of smoking. Conclusions The present study suggests that NSCLC may be detected by analyzing methylation changes of seven CpGs in bronchial washings. Furthermore, smoking cessation may lead to decreased DNA methylation in nonmalignant bronchial epithelial cells in a gene-specific manner. Electronic supplementary material The online version of this article (10.1186/s13148-018-0498-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sang-Won Um
- 1Department of Internal Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 135-710 South Korea
| | - Yujin Kim
- Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon, 440-746 South Korea
| | - Bo Bin Lee
- Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon, 440-746 South Korea
| | - Dongho Kim
- Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon, 440-746 South Korea
| | - Kyung-Jong Lee
- 1Department of Internal Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 135-710 South Korea
| | - Hong Kwan Kim
- 3Department of Thoracic and Cardiovascular Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 135-710 South Korea
| | - Joungho Han
- 4Department of Pathology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 135-710 South Korea
| | - Hojoong Kim
- 1Department of Internal Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 135-710 South Korea
| | - Young Mog Shim
- 3Department of Thoracic and Cardiovascular Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 135-710 South Korea
| | - Duk-Hwan Kim
- Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon, 440-746 South Korea.,Samsung Medical Center, Research Institute for Future Medicine, #50 Ilwon-dong, Kangnam-gu, Professor Rm #5, Seoul, 135-710 South Korea
| |
Collapse
|
19
|
Huang L, Zeng L, Chu J, Xu P, Lv M, Xu J, Wen J, Li W, Wang L, Wu X, Fu Z, Xie H, Wang S. Chemoresistance‑related long non‑coding RNA expression profiles in human breast cancer cells. Mol Med Rep 2018; 18:243-253. [PMID: 29749447 PMCID: PMC6059676 DOI: 10.3892/mmr.2018.8942] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 03/07/2017] [Indexed: 12/21/2022] Open
Abstract
Breast cancer is the most commonly diagnosed cancer and the leading cause of cancer death in females worldwide. Chemoresistance has been a major reason for the drug therapy failure. The present study performed a microarray analysis between MCF-7 and MCF-7/adriamycin (ADR) cells, and intended to identify long non-coding (lnc)RNA expression character in drug resistant breast cancer cells. MCF-7/ADR cells were induced from MCF-7 cells via pulse-selection with doxorubicin for 4 weeks, and the resistance to doxorubicin of ADR cells was confirmed by MTT assay. Microarray analysis was performed between MCF-7 and MCF-7/ADR cells. Total RNA was extracted from the two cell lines respectively and was transcribed into cDNA. The results of the microarray were verified by reverse transcription-quantitative polymerase chain reaction (RT-qPCR). Gene Ontology (GO) and pathways analysis were conducted to enrich the dysregulated lncRNAs presented in the microarray results. Compared to the MCF-7 cells, 8,892 lncRNAs were differentially expressed in MCF/ADR cells (absolute fold-change >2.0). A total of 32 lncRNAs were selected for RT-qPCR by fold-change filtering, standard Student's t-test, and multiple hypothesis testing. Among the dysregulated lncRNAs, AX747207 was prominent because its associated gene RUNX3 was previously reported to be relative to malignant tumor chemoresistance. GO analysis results also indicated some biological processes and molecular functions linked to chemoresistance. The pathway enrichment results provided some potential pathways associated with chemoresistance. In the present study, the authors intended to identify lncRNA expression character in drug resistant cell line MCF-7/ADR, corresponding to the parental MCF-7 cell line. In addition, the study identified the lncRNA AX747207, and its potential targeted gene RUNX3, may be related to chemoresistance in breast cancer. These results may new insights into exploring the mechanisms of chemoresistance in breast cancer.
Collapse
Affiliation(s)
- Lei Huang
- Department of Breast Surgery, First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Lihua Zeng
- Nanjing Maternity and Child Health Medical Institute, Affiliated Nanjing Maternal and Child Health Hospital, Nanjing Medical University, Nanjing, Jiangsu 210004, P.R. China
| | - Jiahui Chu
- Department of Breast Surgery, First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Pengfei Xu
- Nanjing Maternity and Child Health Medical Institute, Affiliated Nanjing Maternal and Child Health Hospital, Nanjing Medical University, Nanjing, Jiangsu 210004, P.R. China
| | - Mingming Lv
- Nanjing Maternity and Child Health Medical Institute, Affiliated Nanjing Maternal and Child Health Hospital, Nanjing Medical University, Nanjing, Jiangsu 210004, P.R. China
| | - Juan Xu
- Nanjing Maternity and Child Health Medical Institute, Affiliated Nanjing Maternal and Child Health Hospital, Nanjing Medical University, Nanjing, Jiangsu 210004, P.R. China
| | - Juan Wen
- Nanjing Maternity and Child Health Medical Institute, Affiliated Nanjing Maternal and Child Health Hospital, Nanjing Medical University, Nanjing, Jiangsu 210004, P.R. China
| | - Wenqu Li
- Nanjing Maternity and Child Health Medical Institute, Affiliated Nanjing Maternal and Child Health Hospital, Nanjing Medical University, Nanjing, Jiangsu 210004, P.R. China
| | - Luyu Wang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, P.R. China
| | - Xiaowei Wu
- Department of Pharmacology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Ziyi Fu
- Nanjing Maternity and Child Health Medical Institute, Affiliated Nanjing Maternal and Child Health Hospital, Nanjing Medical University, Nanjing, Jiangsu 210004, P.R. China
| | - Hui Xie
- Department of Breast Surgery, First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Shui Wang
- Department of Breast Surgery, First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| |
Collapse
|
20
|
Loss of RUNX3 expression inhibits bone invasion of oral squamous cell carcinoma. Oncotarget 2018; 8:9079-9092. [PMID: 28030842 PMCID: PMC5354716 DOI: 10.18632/oncotarget.14071] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 12/15/2016] [Indexed: 11/25/2022] Open
Abstract
High recurrence and lower survival rates in patients with oral squamous cell carcinoma (OSCC) are associated with its bone invasion. We identified the oncogenic role of RUNX3 during bone invasion by OSCC. Tumor growth and the generation of osteolytic lesions were significantly inhibited in mice that were subcutaneously inoculated with RUNX3-knockdown human OSCC cells. RUNX3 knockdown enhanced TGF-β-induced growth arrest and inhibited OSCC cell migration and invasion in the absence or presence of transforming growth factor-β (TGF-β), a major growth factor abundant in the bone microenvironment. RUNX3 knockdown induced cell cycle arrest at the G1 and G2 phases and promoted G2 arrest by TGF-β in Ca9.22 OSCC cells. RUNX3 knockdown also inhibited both the basal and TGF-β-induced epithelial-to-mesenchymal transition by increasing E-cadherin expression and suppressing the nuclear translocation of β-catenin. In addition, the expression and TGF-β-mediated induction of parathyroid hormone-related protein (PTHrP), one of key osteolytic factors, was blocked in RUNX3-knockdown OSCC cells. Furthermore, treating human osteoblastic cells with conditioned medium derived from RUNX3-knockdown OSCC cells reduced the receptor activator of nuclear factor-kappaB ligand (RANKL)/osteoprotegerin ratio compared with treatment with conditioned medium from RUNX3-expressing cells. These findings indicate that RUNX3 expression in OSCC cells contributes to their bone invasion and the resulting osteolysis by inducing their malignant behaviors and production of osteolytic factors. RUNX3 alone or in combination with TGF-β and PTHrP may be a useful predictive biomarker and therapeutic target for bone invasion by oral cancer.
Collapse
|
21
|
Chen F, Liu X, Cheng Q, Zhu S, Bai J, Zheng J. RUNX3 regulates renal cell carcinoma metastasis via targeting miR-6780a-5p/E-cadherin/EMT signaling axis. Oncotarget 2017; 8:101042-101056. [PMID: 29254144 PMCID: PMC5731854 DOI: 10.18632/oncotarget.13205] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Accepted: 07/06/2016] [Indexed: 12/15/2022] Open
Abstract
Runt-related transcription factor 3 (RUNX3) is a tumor suppressor in many human solid tumors. In this study, renal cell carcinoma (RCC) microarray analysis showed that the level of RUNX3 expression was lower in RCC tissue than in adjacent normal renal tissues, and was correlated with depth of invasion (pT stage) (P<0.001) and Tumor Node Metastasis (TNM) stage (P<0.001). RUNX3 expression was negatively correlated with poor 5-year overall and disease-free patient survival. RUNX3 suppressed RCC metastasis and invasion and increased levels of E-cadherin, an important marker of epithelial-mesenchymal transition, in vitro and in vivo. RUNX3 also inhibited microRNA-6780a-5p, which directly targeted the E-cadherin 3'untranslated region and decreased its expression. We confirmed that miR-6780a-5p mimics abrogated RUNX3-mediated E-cadherin upregulation and RCC metastasis/invasion inhibition. Thus, RUNX3 targeted the miR-6780a-5p/E-cadherin/EMT signaling axis to suppress renal carcinoma cell migration and invasion. This pathway illustrates a new RUNX3 function and provides potential targets for the treatment of RUNX3 mutant and loss-of-function RCC tumors. RUNX3 may also act as an effective prognostic indicator in RCC.
Collapse
Affiliation(s)
- Feifei Chen
- Jiangsu Cancer Biotherapy Institute, Xuzhou Medical College, Xuzhou, Jiangsu, P.R. China
| | - Xin Liu
- Jiangsu Cancer Biotherapy Institute, Xuzhou Medical College, Xuzhou, Jiangsu, P.R. China.,Department of Urology, Affiliated Hospital of Xuzhou Medical College, Xuzhou, China
| | - Qian Cheng
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical College, Xuzhou, Jiangsu, China
| | - Shudong Zhu
- State Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, China
| | - Jin Bai
- Jiangsu Cancer Biotherapy Institute, Xuzhou Medical College, Xuzhou, Jiangsu, P.R. China
| | - Junnian Zheng
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical College, Xuzhou, Jiangsu, China.,Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical College, Xuzhou, China
| |
Collapse
|
22
|
Lian R, Ma H, Wu Z, Zhang G, Jiao L, Miao W, Jin Q, Li R, Chen P, Shi H, Yu W. EZH2 promotes cell proliferation by regulating the expression of RUNX3 in laryngeal carcinoma. Mol Cell Biochem 2017; 439:35-43. [PMID: 28795320 DOI: 10.1007/s11010-017-3133-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 07/26/2017] [Indexed: 01/12/2023]
Abstract
Enhancer of zeste homolog 2 (EZH2) is a highly conserved histone methyltransferase, which is overexpressed in different types of cancers such as breast and prostate cancer. It is reported that EZH2 can directly down-regulate RUNX3 by increasing histone H3 methylation. However, the role of EZH2 in the development and progression of laryngeal carcinoma has not yet been investigated, and the relationship between EZH2 and RUNX3 in laryngeal carcinoma is rarely reported. The current study aims to determine the role of EZH2 in the progression of laryngeal carcinoma, and investigate the interaction between EZH2 and the tumor suppressor RUNX3. Our study found that EZH2 is overexpressed in laryngeal carcinoma patients, and silencing EZH2 by EZH2 siRNA significantly inhibited the proliferation of laryngeal carcinoma cells. Besides, we also found that RUNX3 is repressed in laryngeal carcinoma patients. Moreover, RUNX3 as a downstream target protein of EZH2 is up-regulated by EZH2 siRNA accompanied by a decrease in the trimethylation modification pattern of H3K27. RUNX3 siRNA inhibits the decreased proliferation induced by EZH2 siRNA. Furthermore, β-catenin protein expression is down-regulated by EZH2 siRNA and up-regulated by RUNX3 siRNA, and RUNX3 siRNA inhibits the down-regulation effect of EZH2 siRNA on β-catenin protein expression. Additionally, the Wnt/β-catenin activator BIO reverses the inhibitory effect of EZH2 siRNA on Hep-2 cell proliferation. Taken together, our results suggest that EZH2 regulates cell proliferation potentially by targeting RUNX3 through the Wnt/β-catenin signaling pathway in laryngeal carcinoma.
Collapse
Affiliation(s)
- Rong Lian
- Department of Otolaryngology, The First Affiliated Hospital of Xinxiang Medical College, No. 88 Healthy Road, Weihui, 453100, Henan, People's Republic of China
| | - Huimin Ma
- Department of Otolaryngology, The First Affiliated Hospital of Xinxiang Medical College, No. 88 Healthy Road, Weihui, 453100, Henan, People's Republic of China
| | - Zhiyan Wu
- Department of Otolaryngology, The First Affiliated Hospital of Xinxiang Medical College, No. 88 Healthy Road, Weihui, 453100, Henan, People's Republic of China
| | - Guozheng Zhang
- Department of Otolaryngology, The First Affiliated Hospital of Xinxiang Medical College, No. 88 Healthy Road, Weihui, 453100, Henan, People's Republic of China
| | - Lei Jiao
- Department of Otolaryngology, The First Affiliated Hospital of Xinxiang Medical College, No. 88 Healthy Road, Weihui, 453100, Henan, People's Republic of China
| | - Wenjie Miao
- Department of Otolaryngology, The First Affiliated Hospital of Xinxiang Medical College, No. 88 Healthy Road, Weihui, 453100, Henan, People's Republic of China
| | - Qianqian Jin
- Department of Otolaryngology, The First Affiliated Hospital of Xinxiang Medical College, No. 88 Healthy Road, Weihui, 453100, Henan, People's Republic of China
| | - Ruixue Li
- Department of Otolaryngology, The First Affiliated Hospital of Xinxiang Medical College, No. 88 Healthy Road, Weihui, 453100, Henan, People's Republic of China
| | - Ping Chen
- Department of Otolaryngology, The First Affiliated Hospital of Xinxiang Medical College, No. 88 Healthy Road, Weihui, 453100, Henan, People's Republic of China
| | - Haixu Shi
- Department of Otolaryngology, The First Affiliated Hospital of Xinxiang Medical College, No. 88 Healthy Road, Weihui, 453100, Henan, People's Republic of China
| | - Wenfa Yu
- Department of Otolaryngology, The First Affiliated Hospital of Xinxiang Medical College, No. 88 Healthy Road, Weihui, 453100, Henan, People's Republic of China.
| |
Collapse
|
23
|
Gou Y, Zhai F, Zhang L, Cui L. RUNX3 regulates hepatocellular carcinoma cell metastasis via targeting miR-186/E-cadherin/EMT pathway. Oncotarget 2017; 8:61475-61486. [PMID: 28977878 PMCID: PMC5617438 DOI: 10.18632/oncotarget.18424] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 05/23/2017] [Indexed: 12/13/2022] Open
Abstract
Runt-related transcription factor 3 (RUNX3) has been reported as a tumor suppressor in some kinds of cancers. In the present study, hepatocellular carcinoma (HCC) microarray analysis showed that RUNX3 expression was significantly lower in HCC tissues compared with that in adjacent non-tumor tissues, and was negatively associated with metastasis and TNM stage. RUNX3 was an independently prognostic factor for 5-year overall and disease-free patient survival. Mechanically, RUNX3 repressed metastasis and invasion of HCC, and increased E-cadherin expression. RUNX3 also repressed microRNA-186 to increase E-cadherin expression. We demonstrated that miR-186 mimics attenuated RUNX3-induced increase of E-cadherin and inhibition of metastasis and invasion. In conclusion, RUNX3 suppressed HCC cell migration and invasion by targeting the miR-186/E-cadherin/EMT pathway. RUNX3 may be recommended as an effective prognostic indicator and therapeutic target for patients with HCC.
Collapse
Affiliation(s)
- Yuli Gou
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian 116027, Liaoning, China
| | - Fangbing Zhai
- Department of Radiology, The Second Affiliated Hospital of Dalian Medical University, Dalian 116027, Liaoning, China
| | - Liang Zhang
- Department of Interventional Therapy, The Second Affiliated Hospital of Dalian Medical University, Dalian 116027, Liaoning, China
| | - Lan Cui
- Department of Ophthalmology, The Second Affiliated Hospital of Dalian Medical University, Dalian 116027, Liaoning, China
| |
Collapse
|
24
|
Qattan MY, Bakker EY, Rajendran R, Chen DWC, Saha V, Liu J, Zeef L, Schwartz JM, Mutti L, Demonacos C, Krstic-Demonacos M. Differential regulation of cell death pathways by the microenvironment correlates with chemoresistance and survival in leukaemia. PLoS One 2017; 12:e0178606. [PMID: 28582465 PMCID: PMC5459454 DOI: 10.1371/journal.pone.0178606] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 05/16/2017] [Indexed: 12/22/2022] Open
Abstract
Glucocorticoids (GCs) and topoisomerase II inhibitors are used to treat acute lymphoblastic leukaemia (ALL) as they induce death in lymphoid cells through the glucocorticoid receptor (GR) and p53 respectively. Mechanisms underlying ALL cell death and the contribution of the bone marrow microenvironment to drug response/resistance remain unclear. The role of the microenvironment and the identification of chemoresistance determinants were studied by transcriptomic analysis in ALL cells treated with Dexamethasone (Dex), and Etoposide (Etop) grown in the presence or absence of bone marrow conditioned media (CM). The necroptotic (RIPK1) and the apoptotic (caspase-8/3) markers were downregulated by CM, whereas the inhibitory effects of chemotherapy on the autophagy marker Beclin-1 (BECN1) were reduced suggesting CM exerts cytoprotective effects. GCs upregulated the RIPK1 ubiquitinating factor BIRC3 (cIAP2), in GC-sensitive (CEM-C7-14) but not in resistant (CEM-C1-15) cells. In addition, CM selectively affected GR phosphorylation in a site and cell-specific manner. GR is recruited to RIPK1, BECN1 and BIRC3 promoters in the sensitive but not in the resistant cells with phosphorylated GR forms being generally less recruited in the presence of hormone. FACS analysis and caspase-8 assays demonstrated that CM promoted a pro-survival trend. High molecular weight proteins reacting with the RIPK1 antibody were modified upon incubation with the BIRC3 inhibitor AT406 in CEM-C7-14 cells suggesting that they represent ubiquitinated forms of RIPK1. Our data suggest that there is a correlation between microenvironment-induced ALL proliferation and altered response to chemotherapy.
Collapse
Affiliation(s)
- Malak Yahia Qattan
- College of Applied Medical Sciences and Community Services (CAMS&CS), King Saud University, Riyadh, Saudi Arabia
| | - Emyr Yosef Bakker
- School of Environment and Life Sciences, University of Salford, Salford, United Kingdom
| | - Ramkumar Rajendran
- School of Pharmacy, International Medical University, Kuala Lumpur, Malaysia
| | - Daphne Wei-Chen Chen
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Vaskar Saha
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
- Tata Translational Cancer Research Centre, Kolkata, India
| | - Jizhong Liu
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Leo Zeef
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Jean-Marc Schwartz
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Luciano Mutti
- School of Environment and Life Sciences, University of Salford, Salford, United Kingdom
| | - Constantinos Demonacos
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Marija Krstic-Demonacos
- School of Environment and Life Sciences, University of Salford, Salford, United Kingdom
- * E-mail:
| |
Collapse
|
25
|
Li DJ, Shi M, Wang Z. RUNX3 reverses cisplatin resistance in esophageal squamous cell carcinoma via suppression of the protein kinase B pathway. Thorac Cancer 2016; 7:570-580. [PMID: 27766776 PMCID: PMC5129150 DOI: 10.1111/1759-7714.12370] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2016] [Accepted: 05/02/2016] [Indexed: 01/02/2023] Open
Abstract
Background Preoperative chemoradiation combined with surgery has been of focus recently in order to improve prognosis in esophageal squamous cell carcinoma (ESCC) patients. Finding biological markers that may assist in predicting the therapeutic effect of chemoradiation may benefit the treatment effect. In this study, the role of RUNX3 in the formation of cisplatin resistance in ESCC was examined. Methods The study enrolled 103 stage IIa–IIIb ESCC patients who had undergone esophagectomy. RUNX3 expression in ESCC tissue was detected. Results A higher expression of RUNX3 in ESCC patients correlated with a more sensitive response to cisplatin‐based chemotherapy. A consistently lower expression of RUNX3 was found in the ESCC tissues of patients who agreed to perioperative chemotherapy compared with patients who had undergone no preoperative treatment. A lower RUNX3 expression in cisplatin‐resistant ESCC cell lines, Eca109 and TE‐1, was observed compared with parental cell lines. Heterologous RUNX3 expression significantly suppressed cisplatin resistance in Eca109 and TE‐1, both in vitro and vivo. Meanwhile, heterologous RUNX3 expression could inhibit growth and induce apoptosis in cisplatin resistant Eca109 and TE‐1 cell lines in vitro. Remarkable inhibition of the Akt pathway was observed in heterologous RUNX3 expression in Eca109 and TE‐1. Silencing Akt1 could reverse cisplatin resistance in Eca109 and TE‐1. Conclusion Our results confirmed that a loss of RUNX3 in ESCC may contribute to cisplatin‐resistance. RUNX3 could reverse cisplatin resistance via suppression of the Akt pathway in ESCC patients.
Collapse
Affiliation(s)
- De-Jun Li
- Department of ICU, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Mo Shi
- Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Zhou Wang
- Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| |
Collapse
|
26
|
Ojima F, Saito Y, Tsuchiya Y, Kayo D, Taniuchi S, Ogoshi M, Fukamachi H, Takeuchi S, Takahashi S. Runx3 transcription factor regulates ovarian functions and ovulation in female mice. J Reprod Dev 2016; 62:479-486. [PMID: 27301496 PMCID: PMC5081735 DOI: 10.1262/jrd.2016-005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We previously demonstrated that the Runx3 transcription factor is expressed in the hypothalami, pituitaries, and ovaries of mice, and that
Runx3 knockout (Runx3−/−) mice are anovulatory and their uteri are atrophic. Runx3 mRNA
expression was detected in the granulosa cells of ovarian follicles, and in the anteroventral periventricular nucleus (AVPV) and arcuate nucleus (ARC). In the
present study, we examined the effects of Runx3 knockout on the gene expression of enzymes associated with steroidogenesis. We found decreased
Cyp11a1 mRNA expression in Runx3−/− mouse ovaries compared with that in wild-type (wt) mouse ovaries at the age
of 8 weeks. In situ hybridization analysis showed that the percentages of Cyp11a1 mRNA-expressing theca cells in follicles of
Runx3−/− mice were decreased compared with those of wt mice. In accord with the alterations in
Runx3−/− mouse ovaries, Kiss1 mRNA levels in ARC were increased, whereas mRNA levels of kisspeptin in AVPV were
decreased, and gonadotropin-releasing hormone in the preoptic area and follicle-stimulating hormone β subunit gene were increased in
Runx3−/− mice. Following an ovarian transplantation experiment between Runx3−/− mice and wt mice,
corpora lutea were observed when ovaries from Runx3−/− mice were transplanted into wt mice, but not when those from wt mice were
transplanted into Runx3−/− mice, suggesting that Runx3 in the hypothalamo-pituitary system may drive gonadotropin release to induce
ovulation in the ovary. These findings indicate that Runx3 plays a crucial role in the hypothalamo-pituitary-gonadal axis.
Collapse
Affiliation(s)
- Fumiya Ojima
- The Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Duncan VE, Ping Z, Varambally S, Peker D. Loss of RUNX3 expression is an independent adverse prognostic factor in diffuse large B-cell lymphoma. Leuk Lymphoma 2016; 58:179-184. [DOI: 10.1080/10428194.2016.1180686] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
28
|
Fu D, Song X, Hu H, Sun M, Li Z, Tian Z. Downregulation of RUNX3 moderates the frequency of Th17 and Th22 cells in patients with psoriasis. Mol Med Rep 2016; 13:4606-12. [PMID: 27082311 PMCID: PMC4878538 DOI: 10.3892/mmr.2016.5108] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Accepted: 01/22/2016] [Indexed: 12/17/2022] Open
Abstract
Psoriasis is a common chronic inflammatory and T cell-meditated skin disease. Runt-related transcription factor 3 (RUNX3), one of the runt-domain family of transcription factors, has been reported to be a susceptibility gene for psoriasis. The present study was designed to delineate the role and underlying mechanism of RUNX3 involved in the differentiation of T helper (Th) 17 and Th22 cells in psoriasis. The results of the present study demonstrated that the expression of RUNX3 increased significantly in CD4-positive (CD4+) T cells from patients with psoriasis, compared with healthy controls. In addition, increased levels of interleukin (IL)-6, IL-20 and IL-22, and increased frequencies of Th17 and Th22 cells were found in the patients with psoriasis patients, compared with the healthy controls. It was also found that the overexpression of RUNX3 increased the levels of Th17- and Th22-associated cytokines in the CD4+ T cells from the healthy controls. However, the inhibition of RUNX3 reduced the levels of the associated cytokines and decreased the frequency of Th17 and Th22 cells in the CD4+ T cells from the patients with psoriasis. Taken together, the present study suggested that RUNX3 regulated the differentiation of Th17 and Th22 cells in psoriasis, providing a promising therapeutic strategy for the treatment of psoriasis.
Collapse
Affiliation(s)
- Dandan Fu
- Department of Dermatology, The First Affiliated Hospital of Xinxiang Medical University, Weihui, Henan 453100, P.R. China
| | - Xiangfeng Song
- Department of Dermatology, The First Affiliated Hospital of Xinxiang Medical University, Weihui, Henan 453100, P.R. China
| | - Hua Hu
- Department of Dermatology, The First Affiliated Hospital of Xinxiang Medical University, Weihui, Henan 453100, P.R. China
| | - Min Sun
- Department of Dermatology, The First Affiliated Hospital of Xinxiang Medical University, Weihui, Henan 453100, P.R. China
| | - Zhanguo Li
- Department of Dermatology, The First Affiliated Hospital of Xinxiang Medical University, Weihui, Henan 453100, P.R. China
| | - Zhongwei Tian
- Department of Dermatology, The First Affiliated Hospital of Xinxiang Medical University, Weihui, Henan 453100, P.R. China
| |
Collapse
|
29
|
Kataoka J, Shiraha H, Horiguchi S, Sawahara H, Uchida D, Nagahara T, Iwamuro M, Morimoto H, Takeuchi Y, Kuwaki K, Onishi H, Nakamura S, Takaki A, Nouso K, Yagi T, Yamamoto K, Okada H. Loss of Runt-related transcription factor 3 induces resistance to 5-fluorouracil and cisplatin in hepatocellular carcinoma. Oncol Rep 2016; 35:2576-82. [PMID: 26985715 PMCID: PMC4811400 DOI: 10.3892/or.2016.4681] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 12/18/2015] [Indexed: 12/17/2022] Open
Abstract
Runt-related transcription factor 3 (RUNX3) is known to function as a tumor suppressor in gastric cancer and other types of cancers, including hepatocellular carcinoma (HCC). However, its role has not been fully elucidated. In the present study, we aimed to evaluate the role of RUNX3 in HCC. We used the human HCC cell lines Hep3B, Huh7 and HLF; RUNX3 cDNA was introduced into Hep3B and Huh7 cells, which were negative for endogenous RUNX3 expression, and RUNX3 siRNA was transfected into HLF cells, which were positive for endogenous RUNX3. We analyzed the expression of RUNX3 and multidrug resistance-associated protein (MRP) by immunoblotting. MTT assays were used to determine the effects of RUNX3 expression on 5-fluorouracil (5-FU) and cisplatin (CDDP) sensitivity. Finally, 23 HCC specimens resected from patients with HCC at Okayama University Hospital were analyzed, and correlations among immunohistochemical expression of RUNX3 protein and MRP protein were evaluated in these specimens. Exogenous RUNX3 expression reduced the expression of MRP1, MRP2, MRP3 and MRP5 in the RUNX3-negative cells, whereas knockdown of RUNX3 in the HLF cells stimulated the expression of these MRPs. An inverse correlation between RUNX3 and MRP expression was observed in the HCC tissues. Importantly, loss of RUNX3 expression contributed to 5-FU and CDDP resistance by inducing MRP expression. These data have important implications in the study of chemotherapy resistance in HCC.
Collapse
Affiliation(s)
- Junro Kataoka
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Hidenori Shiraha
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Shigeru Horiguchi
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Hiroaki Sawahara
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Daisuke Uchida
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Teruya Nagahara
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Masaya Iwamuro
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Hiroki Morimoto
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Yasuto Takeuchi
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Kenji Kuwaki
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Hideki Onishi
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Shinichiro Nakamura
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Akinobu Takaki
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Kazuhiro Nouso
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Takahito Yagi
- Department of Gastroenterological Surgery, Transplant and Surgical Oncology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Kazuhide Yamamoto
- Department of Gastroenterology, Okayama Saiseikai General Hospital, Okayama 700-8511, Japan
| | - Hiroyuki Okada
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| |
Collapse
|
30
|
Novel Implications of DNA Damage Response in Drug Resistance of Malignant Cancers Obtained from the Functional Interaction between p53 Family and RUNX2. Biomolecules 2015; 5:2854-76. [PMID: 26512706 PMCID: PMC4693260 DOI: 10.3390/biom5042854] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Revised: 09/17/2015] [Accepted: 10/16/2015] [Indexed: 12/31/2022] Open
Abstract
During the lifespan of cells, their genomic DNA is continuously exposed to the endogenous and exogenous DNA insults. Thus, the appropriate cellular response to DNA damage plays a pivotal role in maintaining genomic integrity and also acts as a molecular barrier towards DNA legion-mediated carcinogenesis. The tumor suppressor p53 participates in an integral part of proper regulation of DNA damage response (DDR). p53 is frequently mutated in a variety of human cancers. Since mutant p53 displays a dominant-negative behavior against wild-type p53, cancers expressing mutant p53 sometimes acquire drug-resistant phenotype, suggesting that mutant p53 prohibits the p53-dependent cell death pathway following DNA damage, and thereby contributing to the acquisition and/or maintenance of drug resistance of malignant cancers. Intriguingly, we have recently found that silencing of pro-oncogenic RUNX2 enhances drug sensitivity of aggressive cancer cells regardless of p53 status. Meanwhile, cancer stem cells (CSCs) have stem cell properties such as drug resistance. Therefore, the precise understanding of the biology of CSCs is quite important to overcome their drug resistance. In this review, we focus on molecular mechanisms behind DDR as well as the serious drug resistance of malignant cancers and discuss some attractive approaches to improving the outcomes of patients bearing drug-resistant cancers.
Collapse
|
31
|
Kim HJ, Park J, Lee SK, Kim KR, Park KK, Chung WY. Loss of RUNX3 expression promotes cancer-associated bone destruction by regulating CCL5, CCL19 and CXCL11 in non-small cell lung cancer. J Pathol 2015; 237:520-31. [PMID: 26239696 PMCID: PMC4832375 DOI: 10.1002/path.4597] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Revised: 07/10/2015] [Accepted: 07/22/2015] [Indexed: 12/21/2022]
Abstract
Non‐small cell lung cancer (NSCLC) frequently metastasizes to bone, which is associated with significant morbidity and a dismal prognosis. RUNX3 functions as a tumour suppressor in lung cancer and loss of expression occurs more frequently in invasive lung adenocarcinoma than in pre‐invasive lesions. Here, we show that RUNX3 and RUNX3‐regulated chemokines are linked to NSCLC‐mediated bone resorption. Notably, the receptor activator of nuclear factor‐κB ligand (RANKL)/osteoprotegerin (OPG) ratio, an index of osteoclastogenic stimulation, was significantly increased in human osteoblastic cells treated with conditioned media derived from RUNX3‐knockdown NSCLC cells. We aimed to identify RUNX3‐regulated factors that modify the osteoblastic RANKL/OPG ratio and found that RUNX3 knockdown led to CCL5 up‐regulation and down‐regulation of CCL19 and CXCL11 in NSCLC cells. Tumour size was noticeably increased and more severe osteolytic lesions were induced in the calvaria and tibiae of mice that received RUNX3‐knockdown cells. In response to RUNX3 knockdown, serum and tissue levels of CCL5 increased, whereas CCL19 and CXCL11 decreased. Furthermore, CCL5 increased the proliferation, migration, and invasion of lung cancer cells in a dose‐dependent manner; however, CCL19 and CXCL11 did not show any significant effects. The RANKL/OPG ratio in osteoblastic cells was increased by CCL5 but reduced by CCL19 and CXCL11. CCL5 promoted osteoclast differentiation, but CCL19 and CXCL11 reduced osteoclastogenesis in RANKL‐treated bone marrow macrophages. These findings suggest that RUNX3 and related chemokines are useful markers for the prediction and/or treatment of NSCLC‐induced bone destruction. © 2015 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Hyun-Jeong Kim
- Department of Oral Biology, Oral Cancer Research Institute, BK21 PLUS Project, Yonsei University College of Dentistry, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, Korea.,Department of Applied Life Science, The Graduate School, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, Korea
| | - Junhee Park
- Department of Applied Life Science, The Graduate School, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, Korea
| | - Sun Kyoung Lee
- Department of Oral Biology, Oral Cancer Research Institute, BK21 PLUS Project, Yonsei University College of Dentistry, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, Korea.,Department of Applied Life Science, The Graduate School, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, Korea
| | - Ki Rim Kim
- Department of Dental Hygiene, Kyungpook National University, Sangju, Korea
| | - Kwang-Kyun Park
- Department of Oral Biology, Oral Cancer Research Institute, BK21 PLUS Project, Yonsei University College of Dentistry, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, Korea.,Department of Applied Life Science, The Graduate School, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, Korea
| | - Won-Yoon Chung
- Department of Oral Biology, Oral Cancer Research Institute, BK21 PLUS Project, Yonsei University College of Dentistry, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, Korea.,Department of Applied Life Science, The Graduate School, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, Korea
| |
Collapse
|
32
|
Jennen DGJ, van Leeuwen DM, Hendrickx DM, Gottschalk RWH, van Delft JHM, Kleinjans JCS. Bayesian Network Inference Enables Unbiased Phenotypic Anchoring of Transcriptomic Responses to Cigarette Smoke in Humans. Chem Res Toxicol 2015; 28:1936-48. [PMID: 26360787 DOI: 10.1021/acs.chemrestox.5b00145] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Microarray-based transcriptomic analysis has been demonstrated to hold the opportunity to study the effects of human exposure to, e.g., chemical carcinogens at the whole genome level, thus yielding broad-ranging molecular information on possible carcinogenic effects. Since genes do not operate individually but rather through concerted interactions, analyzing and visualizing networks of genes should provide important mechanistic information, especially upon connecting them to functional parameters, such as those derived from measurements of biomarkers for exposure and carcinogenic risk. Conventional methods such as hierarchical clustering and correlation analyses are frequently used to address these complex interactions but are limited as they do not provide directional causal dependence relationships. Therefore, our aim was to apply Bayesian network inference with the purpose of phenotypic anchoring of modified gene expressions. We investigated a use case on transcriptomic responses to cigarette smoking in humans, in association with plasma cotinine levels as biomarkers of exposure and aromatic DNA-adducts in blood cells as biomarkers of carcinogenic risk. Many of the genes that appear in the Bayesian networks surrounding plasma cotinine, and to a lesser extent around aromatic DNA-adducts, hold biologically relevant functions in inducing severe adverse effects of smoking. In conclusion, this study shows that Bayesian network inference enables unbiased phenotypic anchoring of transcriptomics responses. Furthermore, in all inferred Bayesian networks several dependencies are found which point to known but also to new relationships between the expression of specific genes, cigarette smoke exposure, DNA damaging-effects, and smoking-related diseases, in particular associated with apoptosis, DNA repair, and tumor suppression, as well as with autoimmunity.
Collapse
Affiliation(s)
- Danyel G J Jennen
- Department of Toxicogenomics, Maastricht University , Universiteitssingel 40, 6229 ER Maastricht, The Netherlands
| | - Danitsja M van Leeuwen
- Department of Toxicogenomics, Maastricht University , Universiteitssingel 40, 6229 ER Maastricht, The Netherlands
| | - Diana M Hendrickx
- Department of Toxicogenomics, Maastricht University , Universiteitssingel 40, 6229 ER Maastricht, The Netherlands
| | - Ralph W H Gottschalk
- Department of Toxicogenomics, Maastricht University , Universiteitssingel 40, 6229 ER Maastricht, The Netherlands
| | - Joost H M van Delft
- Department of Toxicogenomics, Maastricht University , Universiteitssingel 40, 6229 ER Maastricht, The Netherlands
| | - Jos C S Kleinjans
- Department of Toxicogenomics, Maastricht University , Universiteitssingel 40, 6229 ER Maastricht, The Netherlands
| |
Collapse
|
33
|
Xu L, Lan H, Su Y, Li J, Wan J. Clinicopathological significance and potential drug target of RUNX3 in non-small cell lung cancer: a meta-analysis. DRUG DESIGN DEVELOPMENT AND THERAPY 2015; 9:2855-65. [PMID: 26082616 PMCID: PMC4461130 DOI: 10.2147/dddt.s76358] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
BACKGROUND Emerging evidence indicates that RUNX3 is a candidate tumor suppressor in several types of human tumors, including non-small cell lung cancer (NSCLC). However, the correlation between RUNX3 hypermethylation and clinicopathological characteristics of NSCLC remains unclear. Here, we conducted a systematic review and meta-analysis to quantitatively evaluate the effects of RUNX3 hypermethylation on the incidence of NSCLC and clinicopathological characteristics. METHODS A detailed literature search was made using Medline, Embase and Web of Science for related research publications written in English. The methodological quality of the studies was evaluated. The data were extracted and assessed independently by two reviewers. Analysis of pooled data was performed. The odds ratio (OR) and hazard ratio were calculated and summarized. RESULTS Final analysis of 911 NSCLC patients from 13 eligible studies was performed. We observed that RUNX3 hypermethylation was significantly higher in NSCLC than in normal lung tissue; the pooled OR from seven studies including 361 NSCLC and 345 normal lung tissue (OR 7.08, confidence interval 4.12-12.17, P<0.00001). RUNX3 hypermethylation may also be associated with pathological types. The pooled OR was obtained from eleven studies including 271 squamous cell carcinoma and 389 adenocarcinoma (OR 0.41, confidence interval 0.19-0.89, P=0.02), which indicated that RUNX3 hypermethylation is significantly higher in adenocarcinoma that in squamous cell carcinoma. We did not find that RUNX3 hypermethylation was correlated with clinical stage or differentiated status. However, NSCLC patients with RUNX3 hypermethylation had a lower survival rate than those without RUNX3 hypermethylation. CONCLUSION The results of this meta-analysis suggest that RUNX3 hypermethylation is associated with an increased risk and worse survival in NSCLC. RUNX3 hypermethylation, which induces inactivation of the RUNX3 gene, plays an important role in lung carcinogenesis and clinical outcome.
Collapse
Affiliation(s)
- Lijun Xu
- Department of Cardiothoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Hongwen Lan
- Department of Cardiothoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Yushu Su
- Department of Cardiothoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Jun Li
- Department of Cardiothoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Jingwen Wan
- Department of Surgery (Operation Room), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei, People's Republic of China
| |
Collapse
|
34
|
Zheng F, Wu J, Zhao S, Luo Q, Tang Q, Yang L, Li L, Wu W, Hann SS. Baicalein increases the expression and reciprocal interplay of RUNX3 and FOXO3a through crosstalk of AMPKα and MEK/ERK1/2 signaling pathways in human non-small cell lung cancer cells. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2015; 34:41. [PMID: 25948105 PMCID: PMC4457308 DOI: 10.1186/s13046-015-0160-7] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 04/20/2015] [Indexed: 12/19/2022]
Abstract
Background Baicalein, a natural flavonoid obtained from the Scutellaria baicalensis root, has been reported to inhibit growth of human lung cancer. However, the detailed mechanism underlying this has not been well elucidated. Methods Cell viability was measured using a 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assays. Apoptosis was detected by flow cytometry analysis and caspase 3/7 assays. The expression of RUNX3 and FOXO3a mRNA were measured by real time RT-PCR methods. Western blot analysis was performed to measure the phosphorylation and protein expression of AMP-activated protein kinase alpha (AMPKα) and extracellular signal-regulated kinase 1/2 (ERK1/2), runt-related transcription factor 3 (RUNX3) and forkhead box O3a (FOXO3a). Silencing of FOXO3a and RUNX3 were performed by small interfering RNA (siRNA) methods. Exogenous expression of FOXO3a or RUNX3 was carried out by electroporated transfection assays. Results We showed that baicalein significantly inhibited growth and induced apoptosis of non-small cell lung cancer (NSCLC) cells in a time- and dose-dependent manner. Baicalein induced RUNX3 and FOXO3a protein expression, and increased phosphorylation of AMPKα and ERK1/2. Moreover, the inhibitors of AMPK and MEK/ERK1/2 reversed the effect of baicalein on RUNX3 and FOXO3a protein expression. Interestingly, while compound C had little effect on blockade of baicalein-induced phosphorylation of ERK1/2, PD98059 significantly abrogated baicalein-induced phosphorylation of AMPKα. Intriguingly, while silencing of RUNX3 abolished the effect of baicalein on expression of FOXO3a and apoptosis, silencing of FOXO3a significantly attenuated baicalein-reduced cell proliferation. On the contrary, overexpression of FOXO3a restored the effect of baicalein on cell growth inhibition in cells silencing of endogenous FOXO3a gene and enhanced the effect of baicalein on RUNX3 protein expression. Finally, exogenous expression of RUNX3 increased FOXO3a protein and strengthened baicalein-induced phosphorylation of ERK1/2. Conclusion Collectively, our results show that baicalein inhibits growth and induces apoptosis of NSCLC cells through AMPKα- and MEK/ERK1/2-mediated increase and interaction of FOXO3a and RUNX3 protein. The crosstalk between AMPKα and MEK/ERK1/2 signaling pathways, and the reciprocal interplay of FOXO3a and RUNX3 converge on the overall response of baicalein. This study reveals a novel mechanism for regulating FOXO3a and RUNX3 signaling axis in response to baicalein and suggests a new strategy for NSCLC associated targeted therapy.
Collapse
Affiliation(s)
- Fang Zheng
- Laboratory of Tumor Biology, Guangdong Provincial Hospital of Chinese Medicine, The Second Clinical Medical Collage, University of Guangzhou Traditional Chinese Medicine, Guangzhou, Guangdong Province, 510120, China.
| | - Jingjing Wu
- Laboratory of Tumor Biology, Guangdong Provincial Hospital of Chinese Medicine, The Second Clinical Medical Collage, University of Guangzhou Traditional Chinese Medicine, Guangzhou, Guangdong Province, 510120, China.
| | - Shunyu Zhao
- Laboratory of Tumor Biology, Guangdong Provincial Hospital of Chinese Medicine, The Second Clinical Medical Collage, University of Guangzhou Traditional Chinese Medicine, Guangzhou, Guangdong Province, 510120, China.
| | - Qingmei Luo
- Laboratory of Tumor Biology, Guangdong Provincial Hospital of Chinese Medicine, The Second Clinical Medical Collage, University of Guangzhou Traditional Chinese Medicine, Guangzhou, Guangdong Province, 510120, China.
| | - Qing Tang
- Laboratory of Tumor Biology, Guangdong Provincial Hospital of Chinese Medicine, The Second Clinical Medical Collage, University of Guangzhou Traditional Chinese Medicine, Guangzhou, Guangdong Province, 510120, China.
| | - LiJun Yang
- Laboratory of Tumor Biology, Guangdong Provincial Hospital of Chinese Medicine, The Second Clinical Medical Collage, University of Guangzhou Traditional Chinese Medicine, Guangzhou, Guangdong Province, 510120, China.
| | - Liuning Li
- Department of Medical Oncology, Guangdong Provincial Hospital of Chinese Medicine, The Second Clinical Medical Collage, University of Guangzhou Traditional Chinese Medicine, Guangzhou, Guangdong Province, 510120, China.
| | - WanYing Wu
- Department of Medical Oncology, Guangdong Provincial Hospital of Chinese Medicine, The Second Clinical Medical Collage, University of Guangzhou Traditional Chinese Medicine, Guangzhou, Guangdong Province, 510120, China.
| | - Swei Sunny Hann
- Laboratory of Tumor Biology, Guangdong Provincial Hospital of Chinese Medicine, The Second Clinical Medical Collage, University of Guangzhou Traditional Chinese Medicine, Guangzhou, Guangdong Province, 510120, China. .,Higher Education Mega Center, No. 55, Neihuan West Road, Panyu District, Guangzhou, Guangdong Province, 510006, People's Republic of China.
| |
Collapse
|
35
|
Shi M, Wang Z, Liu XY, Chen D. Inactivation of RUNX3 predicts poor prognosis in esophageal squamous cell carcinoma after Ivor-Lewis esophagectomy. Med Oncol 2014; 31:309. [PMID: 25391920 DOI: 10.1007/s12032-014-0309-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 10/28/2014] [Indexed: 11/26/2022]
Abstract
The inactivation of RUNX3 in various cancers has been reported while the expression of RUNX3 on protein level in esophageal squamous cell carcinoma (ESCC) and its relationship with pathological parameters and prognosis still remained unclear. In this study, we examined the expression of RUNX3 in 158 ESCC samples and 20 normal esophageal mucosa samples by immunohistochemistry and qRT-PCR. The IHC result showed that RUNX3 was detected mainly in the nuclei of basal layer cells in 18 of 20 normal mucosa samples while in 158 ESCC samples, there were 46 with RUNX3 nuclei expression, 37 RUNX3 cytoplasmic expression, and 75 negative expression. The qRT-PCR confirmed the downregulation of RUNX3 mRNA in the RUNX3 protein negative group than in the RUNX3 nuclei and cytoplasmic expression group (P < 0.001), and the methylation-specific PCR showed a low methylation rate in the ESCC tissue samples with RUNX3 protein negative expression (6/40, 15%). The RUNX3 nuclei expression negatively correlated with the lymph node metastasis (P = 0.033) and recurrence status (P = 0.019), and the survival analysis showed that the patients with RUNX3 nuclei expression had a higher 5-year survival rate than the patients with RUNX3 cytoplasmic/negative expression (P = 0.022). The Cox regression analysis showed that the T classification (P = 0.001), lymph node metastasis (P < 0.001), and RUNX3 inactivation (negative/cytoplasmic expression, P = 0.039) were independent risk factor of poor prognosis. In conclusion, we found a frequent inactivation of RUNX3 due to low expression and cytoplasmic dislocalization in ESCC. The inactivation of RUNX3 may be involved in the progression of ESCC, and RUNX3 could be an indicator of prognosis for patients with ESCC after surgery.
Collapse
Affiliation(s)
- Mo Shi
- Department of Thoracic Surgery, Provincial Hospital Affiliated to Shandong University, Jinan, 250021, China
| | | | | | | |
Collapse
|
36
|
Association of promoter methylation of RUNX3 gene with the development of esophageal cancer: a meta analysis. PLoS One 2014; 9:e107598. [PMID: 25229459 PMCID: PMC4167998 DOI: 10.1371/journal.pone.0107598] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Accepted: 06/04/2014] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Runt-related transcription factor 3 (RUNX3) is a member of the runt-domain family of transcription factors. Emerging evidence indicates that RUNX3 is a tumor suppressor gene in several types of human cancers including esophageal cancer. However, the association between RUNX3 promoter methylation and esophageal cancer remains unclear. Here we conducted a systematic review and meta-analysis to quantitatively evaluate the effects of RUNX3 promoter methylation on the incidence of esophageal cancer. METHODS A detailed literature search was made on Medline, Pubmed and Web of Science for related research publications written in English and/or Chinese. Methodological quality of the studies was also evaluated. The data were extracted and assessed by two reviewers independently. Analysis of pooled data were performed, the odds ratios (OR) were calculated and summarized respectively. RESULTS Final analysis of 558 patients from 9 eligible studies was performed. The result showed that RUNX3 methylation was significantly higher in esophageal cancer than in normal squamous mucosa from the proximal resection margin or esophageal benign lesions (OR = 2.85, CI = 2.01-4.05, P<0.00001). The prevalence of lymph node involvement, tumor size (T1-T2 vs T3-T4) and histological grade was significantly greater in RUNX3-negative cases (RUNX3 unmethylated groups) than in RUNX3-positive cases (OR = 0.25, CI = 0.14-0.43, P<0.00001). RUNX3 methylation was significantly higher in esophageal adenocarcinoma (EAC) than Barrett's esophagus (OR = 0.35, CI = 0.20-0.59, P<0.0001). In addition, the pooled HR for overall survival (OS) showed that decreased RUNX3 expression was associated with worse survival in esophageal cancer (HR = 4.31, 95% CI = 2.57-7.37, P<0.00001). CONCLUSIONS The results of this meta-analysis suggest that RUNX3 methylation is associated with an increased risk, progression as well as worse survival in esophageal cancer. RUNX3 methylation, which induces the inactivation of RUNX3 gene, plays an important role in esophageal carcinogenesis.
Collapse
|
37
|
Kurklu B, Whitehead RH, Ong EK, Minamoto T, Fox JG, Mann JR, Judd LM, Giraud AS, Menheniott TR. Lineage-specific RUNX3 hypomethylation marks the preneoplastic immune component of gastric cancer. Oncogene 2014; 34:2856-66. [PMID: 25088199 DOI: 10.1038/onc.2014.233] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Accepted: 06/20/2014] [Indexed: 12/22/2022]
Abstract
Runt domain transcription factor 3 (RUNX3) is widely regarded as a tumour-suppressor gene inactivated by DNA hypermethylation of its canonical CpG (cytidine-phosphate-guanidine) island (CGI) promoter in gastric cancer (GC). Absence of RUNX3 expression from normal gastric epithelial cells (GECs), the progenitors to GC, coupled with frequent RUNX3 overexpression in GC progression, challenge this longstanding paradigm. However, epigenetic models to better describe RUNX3 deregulation in GC have not emerged. Here, we identify lineage-specific DNA methylation at an alternate, non-CGI promoter (P1) as a new mechanism of RUNX3 epigenetic control. In normal GECs, P1 was hypermethylated and repressed, whereas in immune lineages P1 was hypomethylated and widely expressed. In human GC development, we detected aberrant P1 hypomethylation signatures associated with the early inflammatory, preneoplastic and tumour stages. Aberrant P1 hypomethylation was fully recapitulated in mouse models of gastric inflammation and tumorigenesis. Cell sorting showed that P1 hypomethylation reflects altered cell-type composition of the gastric epithelium/tumour microenvironment caused by immune cell recruitment, not methylation loss. Finally, via long-term culture of gastric tumour epithelium, we revealed that de novo methylation of the RUNX3 canonical CGI promoter is a bystander effect of oncogenic immortalization and not likely causal in GC pathogenesis as previously argued. We propose a new model of RUNX3 epigenetic control in cancer, based on immune-specific, non-CGI promoter hypomethylation. This novel epigenetic signature may have utility in early detection of GC and possibly other epithelial cancers with premalignant immune involvement.
Collapse
Affiliation(s)
- B Kurklu
- 1] Infection and Immunity, Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, Victoria, Australia [2] Department of Paediatrics, University of Melbourne, Melbourne, Victoria, Australia
| | - R H Whitehead
- Department of Paediatrics, University of Melbourne, Melbourne, Victoria, Australia
| | - E K Ong
- Infection and Immunity, Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, Victoria, Australia
| | - T Minamoto
- Division of Translational and Clinical Oncology, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
| | - J G Fox
- Division of Comparative Medicine, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - J R Mann
- 1] Infection and Immunity, Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, Victoria, Australia [2] Department of Zoology, University of Melbourne, Melbourne, Victoria, Australia
| | - L M Judd
- 1] Infection and Immunity, Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, Victoria, Australia [2] Department of Paediatrics, University of Melbourne, Melbourne, Victoria, Australia
| | - A S Giraud
- 1] Infection and Immunity, Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, Victoria, Australia [2] Department of Paediatrics, University of Melbourne, Melbourne, Victoria, Australia
| | - T R Menheniott
- 1] Infection and Immunity, Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, Victoria, Australia [2] Department of Paediatrics, University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
38
|
Mu WP, Wang J, Niu Q, Shi N, Lian HF. Clinical significance and association of RUNX3 hypermethylation frequency with colorectal cancer: a meta-analysis. Onco Targets Ther 2014; 7:1237-45. [PMID: 25053885 PMCID: PMC4105273 DOI: 10.2147/ott.s62103] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Background The RUNX family, which is composed of RUNX1, RUNX2, and RUNX3, is a sequence-specific transcription factor family and is closely involved in a variety of cellular processes including development, differentiation, participation in the regulation of p53-dependent DNA damage response and/or tumorigenesis. Emerging evidence indicates that RUNX3 is a candidate tumor suppressor in several types of human tumors including colorectal cancer (CRC). However, the correlation of RUNX3 inactivation with CRC remains unclear. In the study reported here, we conducted a systematic review and meta-analysis to quantitatively evaluate the effects of RUNX3 hypermethylation/expression on the incidence of CRC. Methods A detailed search of the literature was made using Medline® and Web of Science for related research publications written in English. The methodological quality of the studies was also evaluated. The data were extracted and assessed by two reviewers independently. Analyses of the pooled data were performed. Odds ratios (ORs) and hazard ratios were calculated and summarized, respectively. Results A final analysis of 1,427 CRC patients from eleven eligible studies was performed. We observed that RUNX3 hypermethylation was significantly higher in CRC than in normal colorectal mucosa. The pooled OR from six studies comprising 289 CRC and 188 normal colorectal mucosa was OR =0.07 (confidence interval [CI] =0.03–0.18, P<0.00001). Aberrant RUNX3 hypermethylation/expression was significantly higher in advanced CRC than in early staged CRC (OR =0.54, CI =0.41–0.71, P<0.0001). Aberrant RUNX3 hypermethylation/expression was also significantly higher in microsatellite instability (MSI)-positive CRC than in MSI-negative CRC (OR =0.44, CI =0.3–0.66, P<0.0001). In addition, CRC patients with RUNX3 hypermethylation or lacking RUNX3 protein expression had a lower survival rate than those without RUNX3 hypermethylation or those who did not express RUNX3 protein. Conclusion The results of this meta-analysis suggest that RUNX3 hypermethylation is associated with an increased risk of CRC, increased risk of progression of CRC, and a poorer CRC survival rate. RUNX3 hypermethylation, which induces the inactivation of RUNX3 gene, plays an important role in colorectal carcinogenesis, high levels of MSI, as well as CRC progression and development.
Collapse
Affiliation(s)
- Wei-Ping Mu
- Department of Gastroenterology, Affiliated Hospital of Binzhou Medical College, Binzhou, People's Republic of China
| | - Jian Wang
- Department of Gastroenterology, Affiliated Hospital of Binzhou Medical College, Binzhou, People's Republic of China
| | - Qiong Niu
- Department of Gastroenterology, Affiliated Hospital of Binzhou Medical College, Binzhou, People's Republic of China
| | - Ning Shi
- Department of Gastroenterology, Affiliated Hospital of Binzhou Medical College, Binzhou, People's Republic of China
| | - Hai-Feng Lian
- Department of Gastroenterology, Affiliated Hospital of Binzhou Medical College, Binzhou, People's Republic of China
| |
Collapse
|
39
|
Wang L, Li D, Liu Y, Wang Y, Cui J, Cui A, Wu W. Expression of RUNX3 and β-catenin in the carcinogenesis of sporadic colorectal tubular adenoma. Tumour Biol 2014; 35:6039-46. [PMID: 24622886 DOI: 10.1007/s13277-014-1800-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Accepted: 02/25/2014] [Indexed: 12/24/2022] Open
Abstract
The aim of this study is to investigate the possible roles of runt-related transcription factor 3 (RUNX3) and β-catenin in the carcinogenesis of sporadic colorectal tubular adenomas. The expression of the RUNX3 and β-catenin proteins was evaluated by immunohistochemistry in 23 normal colorectal mucosa (NCM), 81 sporadic colorectal tubular adenomas with different dysplasias (SCTA-D) (mild n=33, moderate n=23, and severe n=25 dysplasia), and 48 sporadic colorectal tubular adenomas with cancerous changes (SCTA-Ca). RUNX3 methylation was assessed by methylation-specific polymerase chain reaction (MSP), combined with laser capture microdissection (LCM), in 17 NCM, 41 SCTA-D (mild n=15, moderate n=12, and severe n=14 dysplasia), and 17 SCTA-Ca tissues. Compared to NCM (82.6 %), RUNX3 in SCTA-D (54.3 %) and SCTA-Ca (27.1 %) was significantly downregulated (P<0.05). In NCM, SCTA-D, and SCTA-Ca, the incidence of positive expression for β-catenin was 13.0, 60.5, and 79.2 %, respectively. A statistically significant difference was observed (P<0.05). RUNX3 levels were markedly higher in adenoma with mild dysplasia (75.8 %) and moderate dysplasia (60.9 %) than in adenoma with severe dysplasia (20.0 %) (both with P<0.05). Likewise, the expression of β-catenin in severe dysplasia adenoma was 84.0 %, which was significantly higher than that in mild dysplasia adenoma (39.4 %). An inverse correlation was found between the protein expression of RUNX3 and β-catenin in SCTA-D and SCTA-Ca (P<0.05). MSP results showed that RUNX3 methylation in NCM, SCTA-D, and SCTA-Ca was 5.9, 17.1, and 41.2 %, respectively, with a statistically significant difference between NCM and SCTA-Ca (P<0.05). However, no significant difference of RUNX3 methylation was observed among different dysplasia groups. RUNX3 and β-catenin play important roles in the carcinogenesis of sporadic colorectal tubular adenomas. In addition, hypermethylation of RUNX3 can downregulate its expression.
Collapse
Affiliation(s)
- Linna Wang
- Department of Pathology, Second Hospital of Hebei Medical University, No 215, West Heping Rd, 050000, Shijiazhuang, Hebei, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
40
|
Role of RUNX3 in suppressing metastasis and angiogenesis of human prostate cancer. PLoS One 2014; 9:e86917. [PMID: 24475196 PMCID: PMC3901713 DOI: 10.1371/journal.pone.0086917] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Accepted: 12/16/2013] [Indexed: 02/07/2023] Open
Abstract
RUNX3 (runt-related transcription factor-3) has been reported to suppress tumor tumorigenesis and metastasis in different human cancers. In this study, we used tissue microarray (TMA) to determine the significance of RUNX3 in prostate cancer progession. Our results showed ectopic expression of RUNX3 in prostate cancer tissues when compared with tumor adjacent normal prostate tissues, and reduced RUNX3 staining was significantly correlated with TNM stage. Moreover, we demonstrated that RUNX3 overexpression inhibited prostate cancer cell migration and invasion resulting from the elevated upregulation of tissue inhibitor of matrix metalloproteinase-2 (TIMP-2), which subsequently inhibited metalloproteinase-2 (MMP-2) expression and activity in vitro. Knock down of RUNX3 expression broke up the balance of TIMP-2/MMP-2, whereas silence of TIMP-2 resulted in the inhibition of MMP-2 expression in prostate cells. We also showed that restoration of RUNX3 decreased vascular endothelial growth factor (VEGF) secretion and suppressed endothelial cell growth and tube formation. Strikingly, RUNX3 was demonstrated to inhibit tumor metastasis and angiogenesis in vivo. Altogether, our results support the tumor suppressive role of RUNX3 in human prostate cancer, and provide insights into development of targeted therapy for this disease.
Collapse
|
41
|
Yu YY, Chen C, Kong FF, Zhang W. Clinicopathological significance and potential drug target of RUNX3 in breast cancer. Drug Des Devel Ther 2014; 8:2423-30. [PMID: 25525332 PMCID: PMC4266273 DOI: 10.2147/dddt.s71815] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Previous reports indicate that RUNX3 is a tumor suppressor in several types of human tumors, including breast cancer (BC). However, the correlation between RUNX3 hypermethylation and the incidence of BC remains unclear. In this study, we conducted a systematic review and meta-analysis aiming to comprehensively assess the potential role of RUNX3 hypermethylation in the pathogenesis of BC. METHODS A detailed literature search was made to identify studies for related research publications. Methodological quality of the studies was evaluated. Analysis of pooled data was performed. Odds ratio (OR) was calculated and summarized respectively. RESULTS Final analysis of 565 BC patients from eleven eligible studies was performed. The results showed that RUNX3 hypermethylation was significantly higher in BC than in normal breast tissue, the pooled OR from nine studies including 339 BC and 248 normal breast tissue (OR =24.12, 95% confidence interval [CI] =13.50-43.11, Z=10.75, P<0.00001). Further analysis also showed significantly increased OR of RUNX3 hypermethylation in estrogen receptor (ER)-positive than in ER-negative BC patients (OR =5.67, 95% CI =2.69-11.95, Z=4.57, P<0.00001). In addition, RUNX3 messenger RNA (mRNA) high expression was found to be correlated to better overall survival in 3,455 cases of BC patients that were followed up for 20 years (hazard ratio [HR] 0.79, P=8.8×10(-5)). Interestingly, RUNX3 mRNA overexpression was found to be correlated to better overall survival in only 668 cases of ER-negative patients (HR 0.72, P=0.01), but not in 1,767 cases of ER-positive patients (HR 0.87, P=0.13). CONCLUSION The results of this meta-analysis suggest that RUNX3 hypermethylation may be implicated in the pathogenesis of BC. Detection of RUNX3 mRNA may be a helpful and valuable biomarker for diagnosis of BC, especially in ER-negative BC. We also discussed the significance of RUNX3 as a potential drug target.
Collapse
Affiliation(s)
- Ying-Ying Yu
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai, People’s Republic of China
| | - Chao Chen
- Department of Gynecology, Shanghai First Maternity and Infant Hospital Affiliated to TongJi University, Shanghai, People’s Republic of China
| | - Fan-fei Kong
- Department of Gynecology, Shanghai First Maternity and Infant Hospital Affiliated to TongJi University, Shanghai, People’s Republic of China
| | - Wei Zhang
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai, People’s Republic of China
- Correspondence: Wei Zhang, Obstetrics and Gynecology Hospital, Fudan University, 413 Zhaozhou Road, Shanghai 200011, People’s Republic of China, Email
| |
Collapse
|
42
|
Chung WC, Jung SH, Joo KR, Kim MJ, Youn GJ, Kim Y, Lee JS, Lee H, Jung JH, Lee YK. An inverse relationship between the expression of the gastric tumor suppressor RUNX3 and infection with Helicobacter pylori in gastric epithelial dysplasia. Gut Liver 2013; 7:688-95. [PMID: 24312710 PMCID: PMC3848534 DOI: 10.5009/gnl.2013.7.6.688] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Revised: 06/13/2013] [Accepted: 06/17/2013] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND/AIMS This study was performed to determine the association between RUNX3 expression and Helicobacter pylori infection in premalignant gastric lesions. METHODS We examined 107 patients with gastric epithelial dysplasia who had undergone endoscopic mucosal resection or submucosal dissection. All tissue samples were evaluated by RUNX3 staining and subclassified by immunophenotype. H. pylori infection in dysplastic lesions and the normal surrounding tissue was examined by silver staining, and cagA status was assessed by polymerase chain reaction. RESULTS The loss of RUNX3 expression was observed in 62 cases (57.9%), and an association with H. pylori infection was found in 54 cases (50.5%). The infection rate with the cagA-positive H. pylori strain was 63.0%. In RUNX3-negative lesions, the rate of H. pylori infection (p=0.03) and the frequency of category 4 lesions (according to the revised Vienna classification) were high (p=0.02). In addition, the gastric mucin phenotype was predominant. In RUNX3-negative category 4 lesions, the rate of cagA-positive H. pylori infection rate was high but not significantly increased (p=0.08). CONCLUSIONS Infection with H. pylori is associated with inactivation of RUNX3 in early gastric carcinogenesis. This mechanism was prominent in gastric cancer with a gastric mucin phenotype.
Collapse
Affiliation(s)
- Woo Chul Chung
- Department of Internal Medicine, St. Vincent's Hospital, The Catholic University of Korea College of Medicine, Suwon, Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Wang ZQ, Keita M, Bachvarova M, Gobeil S, Morin C, Plante M, Gregoire J, Renaud MC, Sebastianelli A, Trinh XB, Bachvarov D. Inhibition of RUNX2 transcriptional activity blocks the proliferation, migration and invasion of epithelial ovarian carcinoma cells. PLoS One 2013; 8:e74384. [PMID: 24124450 PMCID: PMC3790792 DOI: 10.1371/journal.pone.0074384] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Accepted: 07/31/2013] [Indexed: 01/19/2023] Open
Abstract
Previously, we have identified the RUNX2 gene as hypomethylated and overexpressed in post-chemotherapy (CT) primary cultures derived from serous epithelial ovarian cancer (EOC) patients, when compared to primary cultures derived from matched primary (prior to CT) tumors. However, we found no differences in the RUNX2 methylation in primary EOC tumors and EOC omental metastases, suggesting that DNA methylation-based epigenetic mechanisms have no impact on RUNX2 expression in advanced (metastatic) stage of the disease. Moreover, RUNX2 displayed significantly higher expression not only in metastatic tissue, but also in high-grade primary tumors and even in low malignant potential tumors. Knockdown of the RUNX2 expression in EOC cells led to a sharp decrease of cell proliferation and significantly inhibited EOC cell migration and invasion. Gene expression profiling and consecutive network and pathway analyses confirmed these findings, as various genes and pathways known previously to be implicated in ovarian tumorigenesis, including EOC tumor invasion and metastasis, were found to be downregulated upon RUNX2 suppression, while a number of pro-apoptotic genes and some EOC tumor suppressor genes were induced. Taken together, our data are indicative for a strong oncogenic potential of the RUNX2 gene in serous EOC progression and suggest that RUNX2 might be a novel EOC therapeutic target. Further studies are needed to more completely elucidate the functional implications of RUNX2 and other members of the RUNX gene family in ovarian tumorigenesis.
Collapse
Affiliation(s)
- Zhi-Qiang Wang
- Department of Molecular Medicine, Laval University, Québec (Québec), Canada
- Centre de recherche du CHU de Québec, L'Hôtel-Dieu de Québec, Québec (Québec), Canada
| | - Mamadou Keita
- Department of Molecular Medicine, Laval University, Québec (Québec), Canada
- Centre de recherche du CHU de Québec, L'Hôtel-Dieu de Québec, Québec (Québec), Canada
| | - Magdalena Bachvarova
- Centre de recherche du CHU de Québec, L'Hôtel-Dieu de Québec, Québec (Québec), Canada
| | - Stephane Gobeil
- Department of Molecular Medicine, Laval University, Québec (Québec), Canada
- Centre de recherche du CHU de Québec, CHUL, Québec (Québec), Canada
| | - Chantale Morin
- Centre de recherche du CHU de Québec, L'Hôtel-Dieu de Québec, Québec (Québec), Canada
| | - Marie Plante
- Centre de recherche du CHU de Québec, L'Hôtel-Dieu de Québec, Québec (Québec), Canada
- Department of Obstetrics and Gynecology, Laval University, Québec (Québec), Canada
| | - Jean Gregoire
- Centre de recherche du CHU de Québec, L'Hôtel-Dieu de Québec, Québec (Québec), Canada
- Department of Obstetrics and Gynecology, Laval University, Québec (Québec), Canada
| | - Marie-Claude Renaud
- Centre de recherche du CHU de Québec, L'Hôtel-Dieu de Québec, Québec (Québec), Canada
- Department of Obstetrics and Gynecology, Laval University, Québec (Québec), Canada
| | - Alexandra Sebastianelli
- Centre de recherche du CHU de Québec, L'Hôtel-Dieu de Québec, Québec (Québec), Canada
- Department of Obstetrics and Gynecology, Laval University, Québec (Québec), Canada
| | - Xuan Bich Trinh
- Centre de recherche du CHU de Québec, L'Hôtel-Dieu de Québec, Québec (Québec), Canada
- Department of Gynecological Oncology, Antwerp University Hospital, Antwerp, Belgium
| | - Dimcho Bachvarov
- Department of Molecular Medicine, Laval University, Québec (Québec), Canada
- Centre de recherche du CHU de Québec, L'Hôtel-Dieu de Québec, Québec (Québec), Canada
- * E-mail:
| |
Collapse
|
44
|
Horiguchi S, Shiraha H, Nagahara T, Kataoka J, Iwamuro M, Matsubara M, Nishina S, Kato H, Takaki A, Nouso K, Tanaka T, Ichimura K, Yagi T, Yamamoto K. Loss of runt-related transcription factor 3 induces gemcitabine resistance in pancreatic cancer. Mol Oncol 2013; 7:840-9. [PMID: 23664167 PMCID: PMC5528422 DOI: 10.1016/j.molonc.2013.04.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Revised: 03/27/2013] [Accepted: 04/15/2013] [Indexed: 02/09/2023] Open
Abstract
BACKGROUND & AIM Runt-related transcription factor 3 (RUNX3) is a tumor suppressor gene that is expressed in gastric and other cancers including pancreatic cancer. However, the precise function of RUNX3 in pancreatic cancer has not been fully elucidated. In this study, we aimed to determine the effect of decreased RUNX3 expression in pancreatic cancer. METHODS This study included 36 patients with primary pancreatic cancer, who had undergone pancreaticoduodenectomy. All patients were treated with 1000 mg/m2 gemcitabine after the surgery. The pancreatic cancer cell lines PANC-1, MIAPaCa-2, BxPC-3, SUIT-2, and KLM-1 were used for immunoblotting analysis of RUNX3 and multidrug resistance protein (MRP) expressions. Ectopic RUNX3 expression was achieved by cDNA transfection of the cells, and small interfering RNA (siRNA) against RUNX3 was used to knock down endogenous RUNX3. Cell growth in the presence of gemcitabine was assessed using the MTT assay. RESULTS Patients with RUNX3-positive and RUNX3-negative pancreatic cancer had a median survival of 1006 and 643 days, respectively. Exogenous RUNX3 expression reduced the expression of MRP1, MRP2, and MRP5 in endogenous RUNX3-negative cells, whereas RUNX3 siRNA increased the expressions of these genes in endogenous RUNX3-positive cells. Exogenous RUNX3 expression decreased gemcitabine IC50 in RUNX3-negative cells. CONCLUSION Loss of RUNX3 expression contributes to gemcitabine resistance by inducing MRP expression, thereby resulting in poor patient survival.
Collapse
Affiliation(s)
- Shigeru Horiguchi
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan
| | - Hidenori Shiraha
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan
| | - Teruya Nagahara
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan
| | - Jyunnro Kataoka
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan
| | - Masaya Iwamuro
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan
| | - Minoru Matsubara
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan
| | - Shinichi Nishina
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan
| | - Hironari Kato
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan
| | - Akinobu Takaki
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan
| | - Kazuhiro Nouso
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan
| | - Takehiro Tanaka
- Department of Pathology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Okayama 700-8558, Japan
| | - Koichi Ichimura
- Department of Pathology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Okayama 700-8558, Japan
| | - Takahito Yagi
- Department of Gastroenterological Surgery, Transplant, and Surgical Oncology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Okayama 700-8558, Japan
| | - Kazuhide Yamamoto
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan
| |
Collapse
|
45
|
Shi X, Deepak V, Wang L, Ba X, Komori T, Zeng X, Liu W. Thrombospondin-1 is a putative target gene of Runx2 and Runx3. Int J Mol Sci 2013; 14:14321-32. [PMID: 23846726 PMCID: PMC3742246 DOI: 10.3390/ijms140714321] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Accepted: 06/26/2013] [Indexed: 01/14/2023] Open
Abstract
Thrombospondin-1 (TSP-1), a matricellular protein widely acclaimed to be involved in the inhibition of angiogenesis and tumorigenesis, is synthesized and secreted by many cell types, including osteoblast and cancer cells. TSP-1 is highly upregulated during early stage of osteogenesis, whereas it inhibits terminal osteoblast differentiation. Expression of TSP-1 is downregulated in cancer cells, and its ectopic expression has been shown to restrain tumor growth. Transcriptional regulation of TSP-1 in osteogenesis and cancer is poorly understood; this prompted us to study its regulation by the two key regulators of the aforementioned processes: Runx2 and Runx3. Through a PCR-based cDNA subtraction technique, we identified and cloned a cDNA fragment for mouse TSP-1, whose expression was dramatically upregulated in response to Runx2 expression in mesenchymal stem cells. Moreover, TSP-1 expression was considerably reduced in the lung of Runx2 knockout mouse. On the other hand, TSP-1 gene expression drastically increased at both the transcriptional and translational levels in response to Runx3 expression in B16-F10 melanoma cells. In line with this, Runx2 and Runx3 bound to the TSP-1 promoter and stimulated its activity. Hence, these results provide first line of evidence that TSP-1 is a transcriptional target gene of Runx2 and Runx3.
Collapse
Affiliation(s)
- Xiuming Shi
- Institute of Genetics and Cell Biology, Northeast Normal University, Changchun 130024, China; E-Mails: (X.S.); (V.D.); (L.W.); (X.B.); (X.Z.)
| | - Vishwa Deepak
- Institute of Genetics and Cell Biology, Northeast Normal University, Changchun 130024, China; E-Mails: (X.S.); (V.D.); (L.W.); (X.B.); (X.Z.)
- Division of Surgery, Indian Veterinary Research Institute, Izatnagar 243122, India
| | - Linghui Wang
- Institute of Genetics and Cell Biology, Northeast Normal University, Changchun 130024, China; E-Mails: (X.S.); (V.D.); (L.W.); (X.B.); (X.Z.)
| | - Xueqing Ba
- Institute of Genetics and Cell Biology, Northeast Normal University, Changchun 130024, China; E-Mails: (X.S.); (V.D.); (L.W.); (X.B.); (X.Z.)
| | - Toshihisa Komori
- School of Dentistry, Nagasaki University, 1-7-1 Sakamoto, Nagasaki 852-8588, Japan; E-Mail:
| | - Xianlu Zeng
- Institute of Genetics and Cell Biology, Northeast Normal University, Changchun 130024, China; E-Mails: (X.S.); (V.D.); (L.W.); (X.B.); (X.Z.)
| | - Wenguang Liu
- Institute of Genetics and Cell Biology, Northeast Normal University, Changchun 130024, China; E-Mails: (X.S.); (V.D.); (L.W.); (X.B.); (X.Z.)
- Key Laboratory of Molecular Epigenetics of Ministry of Education of China, Northeast Normal University, Changchun 130024, China
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +86-431-8509-8837; Fax: +86-431-8892-2708
| |
Collapse
|
46
|
Chapa J, Bourgo RJ, Greene GL, Kulkarni S, An G. Examining the pathogenesis of breast cancer using a novel agent-based model of mammary ductal epithelium dynamics. PLoS One 2013; 8:e64091. [PMID: 23704974 PMCID: PMC3660364 DOI: 10.1371/journal.pone.0064091] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Accepted: 04/08/2013] [Indexed: 02/06/2023] Open
Abstract
The study of the pathogenesis of breast cancer is challenged by the long time-course of the disease process and the multi-factorial nature of generating oncogenic insults. The characterization of the longitudinal pathogenesis of malignant transformation from baseline normal breast duct epithelial dynamics may provide vital insight into the cascading systems failure that leads to breast cancer. To this end, extensive information on the baseline behavior of normal mammary epithelium and breast cancer oncogenesis was integrated into a computational model termed the Ductal Epithelium Agent-Based Model (DEABM). The DEABM is composed of computational agents that behave according to rules established from published cellular and molecular mechanisms concerning breast duct epithelial dynamics and oncogenesis. The DEABM implements DNA damage and repair, cell division, genetic inheritance and simulates the local tissue environment with hormone excretion and receptor signaling. Unrepaired DNA damage impacts the integrity of the genome within individual cells, including a set of eight representative oncogenes and tumor suppressors previously implicated in breast cancer, with subsequent consequences on successive generations of cells. The DEABM reproduced cellular population dynamics seen during the menstrual cycle and pregnancy, and demonstrated the oncogenic effect of known genetic factors associated with breast cancer, namely TP53 and Myc, in simulations spanning ∼40 years of simulated time. Simulations comparing normal to BRCA1-mutant breast tissue demonstrated rates of invasive cancer development similar to published epidemiologic data with respect to both cumulative incidence over time and estrogen-receptor status. Investigation of the modeling of ERα-positive (ER+) tumorigenesis led to a novel hypothesis implicating the transcription factor and tumor suppressor RUNX3. These data suggest that the DEABM can serve as a potentially valuable framework to augment the traditional investigatory workflow for future hypothesis generation and testing of the mechanisms of breast cancer oncogenesis.
Collapse
Affiliation(s)
- Joaquin Chapa
- Pritzker School of Medicine, University of Chicago, Chicago, Illinois, United States of America
| | - Ryan J. Bourgo
- Ben May Department of Cancer Research, University of Chicago, Chicago, Illinois, United States of America
| | - Geoffrey L. Greene
- Ben May Department of Cancer Research, University of Chicago, Chicago, Illinois, United States of America
| | - Swati Kulkarni
- Department of Surgery, University of Chicago, Chicago, Illinois, United States of America
| | - Gary An
- Department of Surgery, University of Chicago, Chicago, Illinois, United States of America
| |
Collapse
|
47
|
Lian C, Xie YB, Xiao Q. Role of RNA interference in research of multidrug resistance in gastric cancer. Shijie Huaren Xiaohua Zazhi 2013; 21:1096-1101. [DOI: 10.11569/wcjd.v21.i12.1096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Gastric cancer is one of the most common malignant tumors in the world. Chemotherapy is the main treatment for gastric cancer after operation. However, multidrug resistance of tumor cells always reduces its effectiveness and influences the prognosis of patients directly. For this reason, more and more scientific researchers have been dedicated to the in-depth study of multidrug resistance in gastric cancer. RNA interference allows specific and effective inhibition of the expression of target genes and has been gradually applied to gene treatment for multidrug resistance in gastric cancer. The widespread use of RNA interference in recent years has led to many achievements. This article aims to review the role of RNA interference in research of multidrug resistance in gastric cancer.
Collapse
|
48
|
Analysis of PPARGC1B, RUNX3 and TBKBP1 polymorphisms in Chinese Han patients with ankylosing spondylitis: a case-control study. PLoS One 2013; 8:e61527. [PMID: 23637848 PMCID: PMC3630117 DOI: 10.1371/journal.pone.0061527] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Accepted: 03/11/2013] [Indexed: 11/28/2022] Open
Abstract
Background Susceptibility to and severity of ankylosing spondylitis (AS) are largely genetically determined. PPARGC1B, RUNX3 and TBKBP1 have recently been found to be associated with AS in patients of western European descent. Our purpose is to examine the influence of PPARGC1B, RUNX3 and TBKBP1 polymorphisms on the susceptibility to and the severity of ankylosing spondylitis in Chinese ethnic majority Han population. Methods Blood samples are drawn from 396 AS patients and 404 unrelated healthy controls. All the patients and the controls are Han Chinese and the patients are HLA-B27 positive. The AS patients are classified based on the severity of the disease. Twelve tag single nucleotide polymorphisms (tagSNPs) in PPARGC1B, RUNX3 and TBKBP1 are selected and genotyped. Frequencies of different genotypes and alleles are analyzed among the different severity AS patients and the controls. Results After Bonferroni correction, the rs7379457 SNP in PPARGC1B shows significant difference when comparing all AS patients to controls (p = 0.005). This SNP also shows significant difference when comparing normal AS patients to controls (p = 0.002). The rs1395621 SNP in RUNX3 shows significant difference when comparing severe AS patients to controls (p = 0.007). The rs9438876 SNP in RUNX3 shows significant difference when comparing normal AS patients to controls (p = 0.007). The rs8070463 SNP in TBKBP1 shows significant difference in genotype distribution when comparing severe AS patients to controls (p = 0.003). Conclusions The rs7379457 SNP in PPARGC1B is related to susceptibility to AS in Chinese Han population. The rs7379457 SNP in PPARGC1B, the rs1395621 and rs9438876 SNPs in RUNX3, and the rs8070463 SNP in TBKBP1 are related to the severity of AS in Chinese Han population.
Collapse
|
49
|
Chen F, Bai J, Li W, Mei P, Liu H, Li L, Pan Z, Wu Y, Zheng J. RUNX3 suppresses migration, invasion and angiogenesis of human renal cell carcinoma. PLoS One 2013; 8:e56241. [PMID: 23457532 PMCID: PMC3572981 DOI: 10.1371/journal.pone.0056241] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Accepted: 01/07/2013] [Indexed: 11/19/2022] Open
Abstract
RUNX3 (runt-related transcription factor-3) is a known tumor suppressor gene which exhibits potent antitumor activity in several carcinomas. However, little is known about the role of RUNX3 in human renal cell carcinoma (RCC). To investigate the clinical relevance of RUNX3 in RCC patients, immunohistochemistry was performed to detect the clinical relevance of RUNX3 in 75 RCC tissues and paired non-cancerous tissues by using tissue microarray (TMA). We also investigated the role of RUNX3 in RCC cell migration, invasion and angiogenesis. The RUNX3 expression was decreased dramatically in human RCC tissue. The RUNX3 expression was significantly correlated with tumor size (P<0.001), depth of invasion (P<0.001), and of TNM stage (P<0.001). Restoration of RUNX3 significantly decreased renal carcinoma cell migration and invasion capacity compared with controls. In addition, we found that overexpression of RUNX3 reduced the proliferation and tube formation of human umbilical vascular endothelial cells (HUVECs). Gelatin zymography and Western blot showed that RUNX3 expression suppressed matrix metalloproteinase-9 (MMP-9) protein level and enzyme activity. Western blot and ELISA showed that RUNX3 restoration inhibited the expression and secretion of vascular endothelial growth factor (VEGF). Taken together, our studies indicate that decreased expression of RUNX3 in human RCC tissue is significantly correlated with RCC progression. Restoration of RUNX3 expression significantly inhibits RCC cells migration, invasion and angiogenesis. These findings provide new insights into the significance of RUNX3 in migration, invasion and angiogenesis of RCC.
Collapse
Affiliation(s)
- Feifei Chen
- Jiangsu Key Laboratory of Biological Cancer Therapy, Xuzhou Medical College, Xuzhou, Jiangsu, China
| | - Jin Bai
- Jiangsu Key Laboratory of Biological Cancer Therapy, Xuzhou Medical College, Xuzhou, Jiangsu, China
| | - Wang Li
- The Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu, China
| | - Pengjin Mei
- Jiangsu Key Laboratory of Biological Cancer Therapy, Xuzhou Medical College, Xuzhou, Jiangsu, China
- The Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu, China
| | - Hui Liu
- The Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu, China
- School of Pathology, Xuzhou Medical College, Xuzhou, Jiangsu, China
| | - Linlin Li
- The Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu, China
- School of Pathology, Xuzhou Medical College, Xuzhou, Jiangsu, China
| | - Zhenqiang Pan
- Jiangsu Key Laboratory of Biological Cancer Therapy, Xuzhou Medical College, Xuzhou, Jiangsu, China
- Department of Oncological Sciences, Mount Sinai School of Medicine, New York, New York, United States of America
| | - Yongping Wu
- School of Pathology, Xuzhou Medical College, Xuzhou, Jiangsu, China
- * E-mail: (JZ); (YW)
| | - Junnian Zheng
- Jiangsu Key Laboratory of Biological Cancer Therapy, Xuzhou Medical College, Xuzhou, Jiangsu, China
- The Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu, China
- * E-mail: (JZ); (YW)
| |
Collapse
|
50
|
Lotem J, Levanon D, Negreanu V, Groner Y. The False Paradigm of RUNX3 Function as Tumor Suppressor in Gastric Cancer. ACTA ACUST UNITED AC 2013. [DOI: 10.4236/jct.2013.41a003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|