1
|
Mahajan M, Sahoo RN, Khan MIR. Lanthanum supplementation with abscisic acid modulates rhizosphere dynamics through changes in nitric oxide synthesis in wheat. PHYSIOLOGIA PLANTARUM 2025; 177:e70126. [PMID: 39973005 DOI: 10.1111/ppl.70126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 12/12/2024] [Accepted: 01/02/2025] [Indexed: 02/21/2025]
Abstract
Lanthanum (La), a rare earth element (REE) found its wide applications in the agricultural land practices. Utilization of La as a fertilizer is based on its concentration for staple crops, including wheat (Triticum aestivum). We have investigated the role of a beneficial dose of La (60 μM) along with ABA (10 μM) in improving wheat root dynamics and defense systems (ascorbate-glutathione pathway, secondary metabolites, and nitric oxide (NO) biosynthesis). Co-application of La60 and ABA significantly enhanced all the root dynamic attributes along with defense systems and reduced production of reative oxygen species (ROS). The use of the NO inhibitor c-PTIO [2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxy-3-oxide], proved that the impact of co-application of La60 and ABA on root growth dynamics was mediated by NO biosynthesis. Thus, this study could work as the base to understand the dose-dependent behavior of La in plants, offering valuable implications for enhancing crop resilience, optimizing agricultural practices, and mitigating the detrimental effects of La toxicity on wheat root development. This research gives a comprehensive insight into root dynamics influenced by ABA with La dose optimisations in wheat.
Collapse
Affiliation(s)
- Moksh Mahajan
- Department of Botany, Jamia Hamdard, New Delhi, India
| | | | | |
Collapse
|
2
|
Violet PC, Munyan N, Luecke HF, Wang Y, Lloyd J, Patra K, Blakeslee K, Ebenuwa IC, Levine M. Dehydroascorbic acid quantification in human plasma: Simultaneous direct measurement of the ascorbic acid/dehydroascorbic acid couple by UPLC/MS-MS. Redox Biol 2024; 78:103425. [PMID: 39591903 PMCID: PMC11626825 DOI: 10.1016/j.redox.2024.103425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 11/06/2024] [Accepted: 11/08/2024] [Indexed: 11/28/2024] Open
Abstract
Ascorbic acid (AA, vitamin C) and dehydroascorbic acid (DHA) constitute a biological couple. No technique can accurately, independently, and simultaneously quantify both members of the couple in animal and human samples, thereby constraining advances in physiology and pathophysiology. Here we describe a new UPLC/MS/MS method to measure both compounds directly and independently in human plasma. Lower limits of quantification were 16 nM, with linear coefficients >0.99 over a 100-fold concentration range. The method was stable and reproducible with <10 % injection-to-injection variation. Use of isotopic labeled internal standards for both compounds ensured precision and accuracy. Plasma preparation required only 2 steps. In plasma samples from 14 anonymized subjects who met criteria for blood donation, mean concentrations were 6±2 μmol/L (mean ± SD) and 56 ± 14 μmol/L for DHA and AA respectively, with (DHA)/(AA + DHA) ratio of 9.8 %. This method represents a pioneering approach to measuring the AA/DHA couple in human plasma.
Collapse
Affiliation(s)
- P-C Violet
- Molecular and Clinical Nutrition Section, Digestive Diseases Branch, Intramural Research Program, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA, 20892
| | - N Munyan
- Molecular and Clinical Nutrition Section, Digestive Diseases Branch, Intramural Research Program, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA, 20892
| | - H F Luecke
- Intramural Research Division, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, NC, USA, 27709
| | - Y Wang
- Molecular and Clinical Nutrition Section, Digestive Diseases Branch, Intramural Research Program, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA, 20892
| | - J Lloyd
- Laboratory of Bioorganic Chemistry, Intramural Research Program, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA, 20892
| | - K Patra
- Molecular and Clinical Nutrition Section, Digestive Diseases Branch, Intramural Research Program, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA, 20892
| | - K Blakeslee
- Principal Technical Support Specialist, Waters Mid Atlantic District Office, Waters Corporation, Columbia, MD, 21046, USA
| | - I C Ebenuwa
- Molecular and Clinical Nutrition Section, Digestive Diseases Branch, Intramural Research Program, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA, 20892
| | - M Levine
- Molecular and Clinical Nutrition Section, Digestive Diseases Branch, Intramural Research Program, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA, 20892.
| |
Collapse
|
3
|
Krishnamurthy HK, Pereira M, Rajavelu I, Jayaraman V, Krishna K, Wang T, Bei K, Rajasekaran JJ. Oxidative stress: fundamentals and advances in quantification techniques. Front Chem 2024; 12:1470458. [PMID: 39435263 PMCID: PMC11491411 DOI: 10.3389/fchem.2024.1470458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 09/09/2024] [Indexed: 10/23/2024] Open
Abstract
Oxidative species, generated endogenously via metabolism or from exogenous sources, play crucial roles in the body. At low levels, these species support immune functions by participating in phagocytosis. They also aid in cellular signaling and contribute to vasomodulation. However, when the levels of oxidative species exceed the body's antioxidant capacity to neutralize them, oxidative stress occurs. This stress can damage cellular macromolecules such as lipids, DNA, RNA, and proteins, driving the pathogenesis of diseases and aging through the progressive deterioration of physiological functions and cellular structures. Therefore, the body's ability to manage oxidative stress and maintain it at optimal levels is essential for overall health. Understanding the fundamentals of oxidative stress, along with its reliable quantification, can enable consistency and comparability in clinical practice across various diseases. While direct quantification of oxidant species in the body would be ideal for assessing oxidative stress, it is not feasible due to their high reactivity, short half-life, and the challenges of quantification using conventional techniques. Alternatively, quantifying lipid peroxidation, damage products of nucleic acids and proteins, as well as endogenous and exogenous antioxidants, serves as appropriate markers for indicating the degree of oxidative stress in the body. Along with the conventional oxidative stress markers, this review also discusses the role of novel markers, focusing on their biological samples and detection techniques. Effective quantification of oxidative stress may enhance the understanding of this phenomenon, aiding in the maintenance of cellular integrity, prevention of age-associated diseases, and promotion of longevity.
Collapse
Affiliation(s)
| | | | | | | | | | - Tianhao Wang
- Vibrant Sciences LLC., Santa Clara, CA, United States
| | - Kang Bei
- Vibrant Sciences LLC., Santa Clara, CA, United States
| | | |
Collapse
|
4
|
Trivedi AK, Shukla SK, Pandey G, Singh A. Exogenous Melatonin Enhances Moisture Stress Tolerance in Mango (Mangifera indica L.) through Alleviating Oxidative Damages. PHYSIOLOGIA PLANTARUM 2024; 176:e14566. [PMID: 39385348 DOI: 10.1111/ppl.14566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/03/2024] [Accepted: 09/03/2024] [Indexed: 10/12/2024]
Abstract
In subtropical regions, April to June represents a temporary moisture stress for mango trees, leading to huge economic loss. Although water is available in the deep root zone, the upper soil surface, which has fibrous roots, is dry, and the tree transpiration rate is high. Moisture stress causes an increased oxidation state, which is detrimental to fruit growth and development. Finding substitutes for moisture stress management is important for sustainable mango production. To manage this moisture stress in mango, we tested if foliar application of 20, 50, 100 and 150 μM melatonin helped to maintain a reduced oxidation state in the cells. Applications were made at three phenological stages of fruit development (marble, egg and mature fruit stages) in 16-year-old trees and the same plants for each treatment were followed over three years. Melatonin application indeed improved the fruit yield of mango. Moisture stress decreased yield by 55.94% compared to irrigated trees but only by 7.5% in melatonin treatment. Also, more 'A' grade fruits were harvested in irrigated and melatonin-treated conditions than in non-irrigated and non-treated conditions. Indeed, the total chlorophyll content in the leaves of moisture-stressed melatonin-treated trees (12.58 mg.g-1 fresh weight) was well above non-treated trees (6.77 mg.g-1) and similar to irrigated trees (12.50 mg.g-1). A dose-dependent increase in the chlorophyll content of melatonin-treated plants was found. Similarly, the activities of catalase, peroxidase, superoxidase dismutase enzymes in leaves of irrigated and melatonin-treated trees were lower than in non-irrigated condition, and superoxide free radial formation was lower in moisture-stressed melatonin-treated trees (0.77 nmol H2O2.mg-1 protein) and irrigated trees (0.65) than moisture-stressed non-treated trees (4.27). Significant variations was found in antioxidants (total, reduced and oxidized glutathione and ascorbate) content and antioxidant enzymes' activities (i.e., glutathione reductase and ascorbate peroxidase) in irrigated, melatonin-treated and non-irrigated conditions. Overall, 150 μM exogenous melatonin applied three times at different fruit development stages may be a sustainable and useful approach to manage transient moisture stress in mango trees thanks to its positive action on the antioxidant system.
Collapse
Affiliation(s)
| | | | - Ghanshyam Pandey
- ICAR - Central Institute for Subtropical Horticulture, Lucknow, India
| | - Achal Singh
- ICAR-National Bureau of Fish Genetic Resources, Lucknow, India
| |
Collapse
|
5
|
Skwarek-Fadecka M, Nawrocka J, Sieczyńska K, Patykowski J, Posmyk MM. Effect of Oak Powdery Mildew on Ascorbate-Glutathione Cycle and Other Antioxidants in Plant- Erysiphe alphitoides Interaction. Cells 2024; 13:1035. [PMID: 38920663 PMCID: PMC11201405 DOI: 10.3390/cells13121035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/07/2024] [Accepted: 06/13/2024] [Indexed: 06/27/2024] Open
Abstract
Erysiphe alphitoides is a species of powdery mildew responsible for the major foliar disease of oak trees, including Quercus robur. Infection with E. alphitoides leads to a reduction in the growth of the trees and in their ability to survive. This paper reports on the biochemical changes characteristic of defence responses in oak leaves with different infection area sizes, collected in July, August, and September during three growing seasons. The study highlights the effect of E. alphitoides infection on changes in the ascorbate-glutathione cycle, phenolic compound profile, and metal content (mineral distribution). Visible symptoms of pathogen infection appeared gradually in July, but the most intense biochemical plant responses in oak leaves were detected mainly in August and September. These responses included increased ascorbate-glutathione enzyme activities, phenolic compounds, and metal contents. In addition, microscopic analyses revealed a strong fluorescence signal of lignin in the epidermis of pathogen-infected leaves. The involvement of the studied compounds in the basic defence mechanisms of oak against E. alphitoides infection is discussed in the paper.
Collapse
Affiliation(s)
- Monika Skwarek-Fadecka
- Department of Plant Ecophysiology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237 Łódź, Poland;
- Department of Plant Physiology and Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237 Łódź, Poland;
| | - Justyna Nawrocka
- Department of Plant Physiology and Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237 Łódź, Poland;
| | | | | | - Małgorzata Maria Posmyk
- Department of Plant Ecophysiology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237 Łódź, Poland;
| |
Collapse
|
6
|
Navarro A, Giménez R, Val J, Moreno MÁ. The Impact of Rootstock on "Big Top" Nectarine Postharvest Concerning Chilling Injury, Biochemical and Molecular Parameters. PLANTS (BASEL, SWITZERLAND) 2024; 13:677. [PMID: 38475523 DOI: 10.3390/plants13050677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/23/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024]
Abstract
Peaches and nectarines have a short shelf life even when harvested at appropriate physiological maturity. Market life is increased by storage at low temperatures. However, chilling injury symptoms can appear, causing physiological disorders and limiting shipping potential. The rootstock effect on the post-harvest quality has hardly been explored. Thus, the principal aim of this work was to study the influence of seven different Prunus rootstocks on the "Big Top" nectarine cv, considering harvest and post-harvest quality parameters and their correlation with chilling injury disorders. Basic fruit quality traits, individual sugars and organic acids analyzed by HPLC and other biochemical compounds such as relative antioxidant capacity, total phenolics content, flavonoids, anthocyanins, vitamin C and related enzyme activities (PAL, POD, PPO) were considered. In addition, correlations with possible candidate genes for chilling injury (CI) tolerance were searched by qPCR. Although a low susceptibility to CI symptoms has been found in "Big Top", rootstocks "PADAC 9902-01", "PADAC 99-05" and "ReplantPAC" exhibited lower CI symptoms. A statistically significant influence of the evaluated rootstocks was found concerning the parameters of this study. Phenols and anthocyanins seem to be important parameters to be considered in the prevention of chilling injury disorders. Moreover, PAL1, PPO4, PG2 and LDOX genes relative expressions were positively associated with chilling injury susceptibility. This study opens new perspectives for understanding peach fruit adaptation and response to cold storage temperatures during the post-harvest period.
Collapse
Affiliation(s)
- Aimar Navarro
- Department of Pomology, Estación Experimental de Aula Dei-Consejo Superior de Investigaciones Científicas (EEAD-CSIC), P.O. Box 13034, 50080 Zaragoza, Spain
- Department of Genetics and Plant Production, Estación Experimental de Aula Dei-Consejo Superior de Investigaciones Científicas (EEAD-CSIC), P.O. Box 13034, 50080 Zaragoza, Spain
| | - Rosa Giménez
- Department of Pomology, Estación Experimental de Aula Dei-Consejo Superior de Investigaciones Científicas (EEAD-CSIC), P.O. Box 13034, 50080 Zaragoza, Spain
| | - Jesús Val
- Department of Plant Biology, Estación Experimental de Aula Dei-Consejo Superior de Investigaciones Científicas (EEAD-CSIC), P.O. Box 13034, 50080 Zaragoza, Spain
| | - María Ángeles Moreno
- Department of Pomology, Estación Experimental de Aula Dei-Consejo Superior de Investigaciones Científicas (EEAD-CSIC), P.O. Box 13034, 50080 Zaragoza, Spain
| |
Collapse
|
7
|
Burian M, Podgórska A, Ostaszewska-Bugajska M, Kryzheuskaya K, Dziewit K, Wdowiak A, Laszczka M, Szal B. A prospective study of short-term apoplastic responses to ammonium treatment. JOURNAL OF PLANT PHYSIOLOGY 2023; 286:154008. [PMID: 37245458 DOI: 10.1016/j.jplph.2023.154008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 04/18/2023] [Accepted: 05/13/2023] [Indexed: 05/30/2023]
Abstract
The integration of external stimuli into plant cells has been extensively studied. Ammonium is a metabolic trigger because it affects plant nutrition status; on the contrary, it is also a stress factor inducing oxidative changes. Plants, upon quick reaction to the presence of ammonium, can avoid the development of toxicity symptoms, but their primary ammonium sensing mechanisms remain unknown. This study aimed to investigate the different signaling routes available in the extracellular space in response to supplying ammonium to plants. During short-term (30 min-24 h) ammonium treatment of Arabidopsis seedlings, no indication of oxidative stress development or cell wall modifications was observed. However, specific changes in reactive oxygen species (ROS) and redox status were observed in the apoplast, consequently leading to the activation of several ROS (RBOH, NQR), redox (MPK, OXI), and cell-wall (WAK, FER, THE, HERK) related genes. Therefore, it is expected that immediately after ammonium supply, a defense signaling route is initiated in the extracellular space. To conclude, the presence of ammonium is primarily perceived as a typical immune reaction.
Collapse
Affiliation(s)
- Maria Burian
- Department of Plant Bioenergetics, Institute of Experimental Plant Biology and Biotechnology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096, Warsaw, Poland
| | - Anna Podgórska
- Department of Plant Bioenergetics, Institute of Experimental Plant Biology and Biotechnology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096, Warsaw, Poland
| | - Monika Ostaszewska-Bugajska
- Department of Plant Bioenergetics, Institute of Experimental Plant Biology and Biotechnology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096, Warsaw, Poland
| | - Katsiaryna Kryzheuskaya
- Department of Plant Bioenergetics, Institute of Experimental Plant Biology and Biotechnology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096, Warsaw, Poland
| | - Kacper Dziewit
- Department of Plant Bioenergetics, Institute of Experimental Plant Biology and Biotechnology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096, Warsaw, Poland
| | - Agata Wdowiak
- Department of Plant Bioenergetics, Institute of Experimental Plant Biology and Biotechnology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096, Warsaw, Poland
| | - Marta Laszczka
- Department of Plant Bioenergetics, Institute of Experimental Plant Biology and Biotechnology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096, Warsaw, Poland
| | - Bożena Szal
- Department of Plant Bioenergetics, Institute of Experimental Plant Biology and Biotechnology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096, Warsaw, Poland.
| |
Collapse
|
8
|
Waheed A, Haxim Y, Islam W, Ahmad M, Ali S, Wen X, Khan KA, Ghramh HA, Zhang Z, Zhang D. Impact of Cadmium Stress on Growth and Physio-Biochemical Attributes of Eruca sativa Mill. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11212981. [PMID: 36365433 PMCID: PMC9654351 DOI: 10.3390/plants11212981] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/15/2022] [Accepted: 11/01/2022] [Indexed: 05/30/2023]
Abstract
Plants may experience adverse effects from Cadmium (Cd). As a result of its toxicity and mobility within the soil-plant continuum, it is attracting the attention of soil scientists and plant nutritionists. In this study, we subjected young Eruca sativa Mill. seedlings to different levels of Cd applications (0, 1.5, 6 and 30 µmol/L) via pot experiment to explore its morpho-physio-biochemical adaptations. Our results revealed a significant Cd accumulation in leaves at high Cd stress. It was also demonstrated that Cd stress inhibited photosynthetic rate and pigment levels, ascorbate peroxidase (APX), guaiacol peroxidase (GPX), catalase (CAT), and superoxide dismutase (SOD) enzyme activities, and increased malondialdehyde (MDA) levels. Conversely, the concentration of total ascorbate (TAS) increased at all levels of Cd application, whereas that of ascorbic acid (ASA), and dehydroascorbate (DHA) increased at 1.5 (non-significant), 6, 30 and 6 µmol/L (significant), though their concentrations decreased non-significantly at 30 µmol/L application. In conclusion, Cd-subjected E. sativa seedlings diverted much energy from growth towards the synthesis of anti-oxidant metabolites and osmolytes. However, they did not seem to have protected the E. sativa seedlings from Cd-induced oxidative stress, causing a decrease in osmotic adjustment, and an increase in oxidative damage, which resulted in a reduction in photosynthesis and growth. Accordingly, we recommend that the cultivation of E. sativa should be avoided on soil with Cd contamination.
Collapse
Affiliation(s)
- Abdul Waheed
- National Key Laboratory of Ecological Security and Resource Utilization in Arid Areas, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
- Xinjiang Key Laboratory of Conservation and Utilization of Plant Gene Resources, Xinjiang Institute of Ecology & Geography, Chinese Academy of Sciences, Urumqi 830011, China
- Turpan Eremophytes Botanical Garden, Chinese Academy of Sciences, Turpan 838008, China
| | - Yakupjan Haxim
- National Key Laboratory of Ecological Security and Resource Utilization in Arid Areas, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
- Xinjiang Key Laboratory of Conservation and Utilization of Plant Gene Resources, Xinjiang Institute of Ecology & Geography, Chinese Academy of Sciences, Urumqi 830011, China
- Turpan Eremophytes Botanical Garden, Chinese Academy of Sciences, Turpan 838008, China
| | - Waqar Islam
- Xinjiang Key Laboratory of Conservation and Utilization of Plant Gene Resources, Xinjiang Institute of Ecology & Geography, Chinese Academy of Sciences, Urumqi 830011, China
- Xinjiang Key Laboratory of Desert Plant Roots Ecology and Vegetation Restoration, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
| | - Mushtaq Ahmad
- Department of Zoology, Islamia College University, Peshawar 25120, Pakistan
| | - Sajjad Ali
- Department of Botany, Bacha Khan University, Charsadda 24461, Pakistan
| | - Xuejing Wen
- National Key Laboratory of Ecological Security and Resource Utilization in Arid Areas, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
- Xinjiang Key Laboratory of Conservation and Utilization of Plant Gene Resources, Xinjiang Institute of Ecology & Geography, Chinese Academy of Sciences, Urumqi 830011, China
- Turpan Eremophytes Botanical Garden, Chinese Academy of Sciences, Turpan 838008, China
| | - Khalid Ali Khan
- Unit of Bee Research and Honey Production, King Khalid University, Abha 61413, Saudi Arabia
- Applied College, Mahala Campus, King Khalid University, Abha 61413, Saudi Arabia
- Biology Department Faculty of Science, King Khalid University, Abha 61413, Saudi Arabia
| | - Hamed A. Ghramh
- Unit of Bee Research and Honey Production, King Khalid University, Abha 61413, Saudi Arabia
- Applied College, Mahala Campus, King Khalid University, Abha 61413, Saudi Arabia
- Biology Department Faculty of Science, King Khalid University, Abha 61413, Saudi Arabia
| | - Zhuqi Zhang
- Binzhou Vocational College, Binzhou 256603, China
| | - Daoyuan Zhang
- National Key Laboratory of Ecological Security and Resource Utilization in Arid Areas, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
- Xinjiang Key Laboratory of Conservation and Utilization of Plant Gene Resources, Xinjiang Institute of Ecology & Geography, Chinese Academy of Sciences, Urumqi 830011, China
- Turpan Eremophytes Botanical Garden, Chinese Academy of Sciences, Turpan 838008, China
| |
Collapse
|
9
|
Abidi W, Akrimi R. Phenotypic diversity of nutritional quality attributes and chilling injury symptoms in four early peach [ Prunus persica (L.) Batsch] cultivars grown in west central Tunisia. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2022; 59:3938-3950. [PMID: 36193378 PMCID: PMC9525473 DOI: 10.1007/s13197-022-05425-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 03/03/2022] [Accepted: 03/10/2022] [Indexed: 06/16/2023]
Abstract
The present study aimed to characterize the phenotypic diversity of agronomical and biochemical fruit quality traits in four early peach cultivars. The sensibility to chilling injury symptoms (CI) was studied after two cold storage periods (2 and 4 weeks) at 5 ºC and 95% relative humidity (RH) followed by 2 days at room temperature. Agronomical attributes such as fruit weight, firmness, soluble solids content (SSC), pH, titratable acidity (TA) and color parameters were recorded. Antioxidant compounds such as anthocyanins, flavonoids, total phenolics, vitamin C and relative antioxidant capacity (RAC) were evaluated. Chilling injury symptoms such as mealiness, graininess, flesh browning, flesh bleeding, leatheriness and off-flavor were analyzed. Results revealed high antioxidant compounds in peel regarding to flesh fruit. The antioxidant compounds content in both peel and pulp decreased during cold storage except anthocyanins which exhibited different pattern. After 2 weeks of storage, fruits presented high SSC and low score of chilling injury symptoms. At the end of the trial, the studied cultivars were unacceptable for consumption due to the severity of CI. PCA analysis showed that the cultivars Plagold 5 and Plagold 10 had less sensibility to chilling injury. Graphical abstract
Collapse
Affiliation(s)
- Walid Abidi
- Regional Center of Agricultural Research of Sidi Bouzid (CRRA), PB 357, 9100 Sidi Bouzid, Tunisia
| | - Rawaa Akrimi
- Regional Center of Agricultural Research of Sidi Bouzid (CRRA), PB 357, 9100 Sidi Bouzid, Tunisia
| |
Collapse
|
10
|
Gopan A, Srivastava A, Mathias A, Yachha SK, Jain SK, Mishra P, Sarma MS, Poddar U. Efficacy and Predictors of Pain Response to Combined Antioxidants in Children with Chronic Pancreatitis. Dig Dis Sci 2022; 68:1500-1510. [PMID: 36030482 DOI: 10.1007/s10620-022-07676-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 08/16/2022] [Indexed: 12/09/2022]
Abstract
BACKGROUND Pain is a major problem in 90% of patients with chronic pancreatitis (CP). Studies evaluating response to antioxidants (AO) are conflicting and no pediatric studies are available. AIMS To evaluate markers of oxidative stress (OS), and efficacy and predictors of response to AO in improving pain in children with CP. METHODS Antioxidants were given to CP children for 6 months. Subjects were assessed at baseline and post-therapy for pain and markers of OS [serum thiobarbituric acid reactive substances (TBARS), superoxide dismutase (S-SOD)] and antioxidant levels [vitamin C, selenium, total antioxidant capacity-ferric reducing ability of plasma (FRAP)]. Matched healthy controls were assessed for OS and antioxidant levels. Good response was defined as ≥ 50% reduction in number of painful days/month. RESULTS 48 CP children (25 boys, age 13 years) and 14 controls were enrolled. 38/48 cases completed 6 months of therapy. CP cases had higher OS [TBARS (7.8 vs 5.2 nmol/mL; p < 0.001)] and lower antioxidant levels [FRAP (231 vs. 381.3 µmol/L; p = 0.003), vitamin C (0.646 vs. 0.780 mg/dL; p < 0.001)] than controls. Significant reduction in TBARS and S-SOD and increase in FRAP, vitamin C, and selenium occurred after 6 months. 10.5% cases had minor side effects. 26(68%) cases had a good response, with 9(24%) becoming pain-free. Subjects with severe ductal changes had lower median BMI (- 0.73 vs 0.10; p = 0.04) and responded less often than those with mild changes (17/29 vs 9/9; p = 0.036). CONCLUSION CP children have higher OS than healthy controls. Antioxidant therapy is safe. Pain response is seen in 68% cases, less often in patients with severe ductal changes.
Collapse
Affiliation(s)
- Amrit Gopan
- Department of Pediatric Gastroenterology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, Uttar Pradesh, 226014, India
| | - Anshu Srivastava
- Department of Pediatric Gastroenterology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, Uttar Pradesh, 226014, India.
| | - Amrita Mathias
- Department of Pediatric Gastroenterology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, Uttar Pradesh, 226014, India
| | - Surender Kumar Yachha
- Department of Pediatric Gastroenterology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, Uttar Pradesh, 226014, India
| | - Sunil Kumar Jain
- Department of Radiodiagnosis, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, Uttar Pradesh, India
| | - Prabhakar Mishra
- Department of Biostatistics, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, Uttar Pradesh, India
| | - Moinak Sen Sarma
- Department of Pediatric Gastroenterology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, Uttar Pradesh, 226014, India
| | - Ujjal Poddar
- Department of Pediatric Gastroenterology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, Uttar Pradesh, 226014, India
| |
Collapse
|
11
|
Burian M, Podgórska A, Ostaszewska-Bugajska M, Szal B. Respiratory Burst Oxidase Homolog D as a Modulating Component of Oxidative Response under Ammonium Toxicity. Antioxidants (Basel) 2022; 11:antiox11040703. [PMID: 35453389 PMCID: PMC9031508 DOI: 10.3390/antiox11040703] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/30/2022] [Accepted: 03/30/2022] [Indexed: 12/25/2022] Open
Abstract
Delayed growth, a visible phenotypic component of the so-called ammonium syndrome, occurs when ammonium is the sole inorganic nitrogen source. Previously, we have shown that modification of apoplastic reactive oxygen species (apROS) metabolism is a key factor contributing to plant growth retardation under ammonium nutrition. Here, we further analyzed the changes in apROS metabolism in transgenic plants with disruption of the D isoform of the respiratory burst oxidase homolog (RBOH) that is responsible for apROS production. Ammonium-grown Arabidopsisrbohd plants are characterized by up to 50% lower contents of apoplastic superoxide and hydrogen peroxide. apROS sensing markers such as OZF1 and AIR12 were downregulated, and the ROS-responsive signaling pathway, including MPK3, was also downregulated in rbohd plants cultivated using ammonium as the sole nitrogen source. Additionally, the expression of the cell-wall-integrity marker FER and peroxidases 33 and 34 was decreased. These modifications may contribute to phenomenon wherein ammonium inhibited the growth of transgenic plants to a greater extent than that of wild-type plants. Overall, this study indicated that due to disruption of apROS metabolism, rbohd plants cannot adjust to ammonium toxicity and are more sensitive to these conditions.
Collapse
|
12
|
Carvalho LC, Santos ES, Saraiva JA, Magalhães MCF, Macías F, Abreu MM. The Potential of Cistus salviifolius L. to Phytostabilize Gossan Mine Wastes Amended with Ash and Organic Residues. PLANTS (BASEL, SWITZERLAND) 2022; 11:588. [PMID: 35270057 PMCID: PMC8912684 DOI: 10.3390/plants11050588] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/24/2022] [Accepted: 02/11/2022] [Indexed: 11/17/2022]
Abstract
The São Domingos mine is within the Iberian Pyrite Belt, a mining district with large concentrations of polymetallic massive sulfide deposits. Mine waste heaps are considered extreme environments, since they contain high total concentrations of potentially hazardous elements (PHE), which contribute to inhibiting the development of most plants. Autochthonous plant species, such as Cistus salviifolius L., are able to grow naturally in this degraded environment, and may contribute to minimizing the negative chemical impacts and improving the landscape quality. However, the environmental rehabilitation processes associated with the development of these plants (phytostabilization) are very slow, so the use of materials/wastes to improve some physicochemical properties of the matrix is necessary in order to speed up the process. This work studied the effectiveness of the phytostabilization with C. salviifolius of gossan mine wastes from the mine of São Domingos amended with organic and inorganic wastes in order to construct Technosols. The mine wastes have an acid pH (≈3.5), high total concentrations of PHE and low concentrations of organic C and available nutrients. The best vegetative development occurred without visible signs of toxicity in the Technosols containing a mixture of agriculture residues. These treatments allowed the improvement of the soil-plant system providing a better plant cover and improved several chemical properties of mine wastes, helping to speed up the environmental rehabilitation.
Collapse
Affiliation(s)
- Luísa C. Carvalho
- Linking Landscape, Environment, Agriculture and Food Research Center, Associated Laboratory TERRA, Instituto Superior de Agronomia, Universidade de Lisboa, 1349-017 Lisboa, Portugal; (E.S.S.); (M.C.F.M.); (M.M.A.)
| | - Erika S. Santos
- Linking Landscape, Environment, Agriculture and Food Research Center, Associated Laboratory TERRA, Instituto Superior de Agronomia, Universidade de Lisboa, 1349-017 Lisboa, Portugal; (E.S.S.); (M.C.F.M.); (M.M.A.)
| | - Jorge A. Saraiva
- QOPNA & LAQV-REQUIMTE, Departamento de Química, Campus Universitário de Santiago, Universidade de Aveiro, 3810-193 Aveiro, Portugal;
| | - M. Clara F. Magalhães
- Linking Landscape, Environment, Agriculture and Food Research Center, Associated Laboratory TERRA, Instituto Superior de Agronomia, Universidade de Lisboa, 1349-017 Lisboa, Portugal; (E.S.S.); (M.C.F.M.); (M.M.A.)
- School of Biological, Earth & Environmental Sciences, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Felipe Macías
- Departamento de Edafología y Química Agrícola, Facultad de Biología, Campus Universitario Sur, Universidad de Santiago de Compostela, 15782 Santiago de Compostela, Spain;
- Instituto de Investigaciones Tecnológicas, Campus Universitario Sur, Universidad de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Maria Manuela Abreu
- Linking Landscape, Environment, Agriculture and Food Research Center, Associated Laboratory TERRA, Instituto Superior de Agronomia, Universidade de Lisboa, 1349-017 Lisboa, Portugal; (E.S.S.); (M.C.F.M.); (M.M.A.)
| |
Collapse
|
13
|
Influence of Seed Source and Soil Contamination on Ecophysiological Responses of Lavandula pedunculata in Rehabilitation of Mining Areas. PLANTS 2021; 11:plants11010105. [PMID: 35009108 PMCID: PMC8747297 DOI: 10.3390/plants11010105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/22/2021] [Accepted: 12/23/2021] [Indexed: 11/16/2022]
Abstract
Mining activities have turned many areas of the Iberian Pyrite Belt (IPB) into extreme environments with high concentrations of metal(loid)s. These harsh conditions can inhibit or reduce the colonization and/or development of most vegetation. However, some species or populations have developed ecophysiological responses to tolerate stress factors and contaminated soils. The main objectives of this study are: (i) to assess the differences in germination, growth, development and physiological behaviour against oxidative stress caused by metal(loid)s in Lavandula pedunculata (Mill.) Cav. from two different origins (a contaminated area in São Domingos mine, SE of Portugal and an uncontaminated area from Serra do Caldeirão, S of Portugal) under controlled conditions; and (ii) to assess whether it is possible to use this species for the rehabilitation of mine areas of the IPB. After germination, seedlings from São Domingos (LC) and Caldeirão (L) were planted in pots with a contaminated soil developed on gossan (CS) and in pots with an uncontaminated soil (US) under controlled conditions. Multielemental concentrations were determined in soils (total and available fractions) and plants (shoots and roots). Germination rate, shoot height, dry biomass and leaf area were determined, and pigments, glutathione, ascorbate and H2O2 contents were measured in plant shoots. Total concentrations of As, Cr, Cu, Pb and Sb in CS, and As in US exceed the intervention and maximum limits for ecosystem protection and human health. The main results showed that L. pedunculata, regardless of the seed origin, activated defence mechanisms against oxidative stress caused by high concentrations of metal(loid)s. Plants grown from seeds of both origins increased the production of AsA to preserve its reduction levels and kept the contents of GSH stable to maintain the cell’s redox state. Plants grown from seeds collected in non-contaminated areas showed a high capacity for adaptation to extreme conditions. This species showed a greater growth capacity when seeds from a contaminated area were sown in uncontaminated soils. Thus, L. pedunculata, mainly grown from seeds from contaminated areas, may be used in phytostabilization programmes in areas with soils with high contents of metal(loid)s.
Collapse
|
14
|
Liu HL, Lee ZX, Chuang TW, Wu HC. Effect of heat stress on oxidative damage and antioxidant defense system in white clover (Trifolium repens L.). PLANTA 2021; 254:103. [PMID: 34674051 DOI: 10.1007/s00425-021-03751-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Accepted: 10/04/2021] [Indexed: 06/13/2023]
Abstract
This study leads to advances in the field of heat tolerance among different plant species. We concluded that a coordinated, increased antioxidant defense system enabled white clover to reduce heat-induced oxidative damage. The rise in global ambient temperature has a wide range of effects on plant growth, and, therefore, on the activation of various molecular defenses before the appearance of heat damage. Elevated temperatures result in accelerated generation of reactive oxygen species (ROS), causing an imbalance between ROS production and the ability of scavenging systems to detoxify and remove the reactive intermediates. The aim of this study was to determine the role of antioxidant defense systems in the alleviation of heat stress (HS) consequences in white clover (Trifolium repens L.), which is cultivated worldwide. We evaluated how temperature and time parameters contribute to the thermotolerance of white clover at different growth stages. We revealed HS protection in white clover from 37 to 40 °C, with 40 °C providing the greatest protection of 3-day-old seedlings and 28-day-old adult plants. Heat-provoked oxidative stress in white clover was confirmed by substantial changes in electrolyte leakage, malondialdehyde (MDA), and chlorophyll content, as well as superoxide anion (O2·-) and hydrogen peroxide (H2O2) production. Furthermore, superoxide dismutase (SOD) and ascorbate peroxidase (APX) as well as a high level of GSH non-enzymatic antioxidant were the most responsive, and were associated with acquired thermotolerance through the regulation of ROS generation. We demonstrated, by studying protoplast transient gene expression, direct genetic evidence of endogenous antioxidant-related genes that confer HS tolerance in white clover. Our present study clearly establishes that oxidative stress ensues from HS, which triggers the induction of antioxidant defense systems for ROS scavenging in white clover.
Collapse
Affiliation(s)
- Hsiang-Lin Liu
- Department of Biological Sciences and Technology, National University of Tainan, Tainan, 70005, Taiwan
| | - Zhu-Xuan Lee
- Department of Biological Sciences and Technology, National University of Tainan, Tainan, 70005, Taiwan
| | - Tzu-Wei Chuang
- Department of Biological Sciences and Technology, National University of Tainan, Tainan, 70005, Taiwan
| | - Hui-Chen Wu
- Department of Biological Sciences and Technology, National University of Tainan, Tainan, 70005, Taiwan.
| |
Collapse
|
15
|
Pignattelli S, Broccoli A, Piccardo M, Terlizzi A, Renzi M. Effects of polyethylene terephthalate (PET) microplastics and acid rain on physiology and growth of Lepidium sativum. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 282:116997. [PMID: 33819777 DOI: 10.1016/j.envpol.2021.116997] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 03/17/2021] [Accepted: 03/18/2021] [Indexed: 05/23/2023]
Abstract
This study evaluated the chronic toxicity (30 days) of different sizes of polyethylene terephthalate (PET) microplastics (60-3000 μm) provided alone or in combination with acid rain, on garden cress (Lepidium sativum). Both biometrical and physiological traits have been evaluated: i) percentage inhibition of seed germination, plant height, leaf number and fresh biomass production; ii) oxidative stress responses (hydrogen peroxide; ascorbic acid and glutathione production); iii) impairment in photosynthetic machinery in term of pigments production; iv) aminolevulinic acid and proline production. Results highlighted that different sizes of PET, alone or in combination with acid rain, are able to negatively affect both biometrical and physiological plant traits. In particular, the lower size of microplastics is able to negatively affect growth and development, as well as to trigger the oxidative burst. Regarding the pigments production, PET coupled with acid rain, induced a higher production of Chl-b, and an inhibition of aminolevulinic acid.
Collapse
Affiliation(s)
- Sara Pignattelli
- Bioscience Research Center, Via Aurelia Vecchia, 32, 58015, Orbetello, Italy; Laboratory of Environmental and Life Sciences, University of Nova Gorica, Vipavska Cesta 13, SI -5000, Rožna Dolina, Nova Gorica, Slovenia
| | - Andrea Broccoli
- Bioscience Research Center, Via Aurelia Vecchia, 32, 58015, Orbetello, Italy
| | - Manuela Piccardo
- Department of Life Sciences, University of Trieste, 34127, Trieste, Italy; Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Napoli, Italy
| | - Antonio Terlizzi
- Department of Life Sciences, University of Trieste, 34127, Trieste, Italy; Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Napoli, Italy
| | - Monia Renzi
- Department of Life Sciences, University of Trieste, 34127, Trieste, Italy.
| |
Collapse
|
16
|
Dong Y, Gao M, Qiu W, Song Z. Uptake of microplastics by carrots in presence of As (III): Combined toxic effects. JOURNAL OF HAZARDOUS MATERIALS 2021; 411:125055. [PMID: 33482507 DOI: 10.1016/j.jhazmat.2021.125055] [Citation(s) in RCA: 144] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 12/25/2020] [Accepted: 01/04/2021] [Indexed: 05/06/2023]
Abstract
Current research on the migration of microplastics into plants is in its most important phase; however, there is no such research on root vegetables, even though the edible parts of root vegetables are in direct contact with microplastics. Considering arsenic (As)-containing groundwater used in hydroponics and the degradation of plastic materials in hydroponic facilities, we investigated the impacts of As and polystyrene (PS) microplastics on carrot growth. We found that PS microplastics sized 1 µm can enter carrot roots and accumulate in the intercellular layer but are unable to enter the cells; those sized 0.2 µm can migrate to the leaves. Larger microplastics can enter the roots (PS particles sized 1219.7 nm) and leaves (607.2 nm) in presence of As (III). Gaussian analysis shows that As increases the negatively charged area of PS and causes a greater amount of microplastics to enter the carrot. As also causes cell walls to distort and deform, allowing PS particles (< 200 nm) to enter the cells. PS and 4 mg L-1 As can induce oxidative bursts in carrot tissue, reducing the carrot quality. Moreover, As exacerbates the effect of PS on carrots. Molecular docking results show that the presence of PS in carrots destroys the tertiary structure of pectin methyl esterase and causes carrots to lose their crispness. These findings indicate that plastic material in hydroponic facilities can be leached to crops. Microplastics produced by the degradation of such materials not only reduce the nutritional value of carrots, leading to economic losses, but also pose potential risks to human health. The presence of As in the hydroponic solution results in more PS entering the carrot tissue and even the cells, bringing greater health threats for the consumers.
Collapse
Affiliation(s)
- Youming Dong
- Agro-Environmental Protection Institute, Ministry of Agriculture of China, Tianjin 300191, China
| | - Minling Gao
- Department of Civil and Environmental Engineering, Shantou University, Shantou 515063, China
| | - Weiwen Qiu
- The New Zealand Institute for Plant and Food Research Limited, Private Bag 4704, Christchurch 8140, New Zealand
| | - Zhengguo Song
- Department of Civil and Environmental Engineering, Shantou University, Shantou 515063, China.
| |
Collapse
|
17
|
Kaolin Application Modulates Grapevine Photochemistry and Defence Responses in Distinct Mediterranean-Type Climate Vineyards. AGRONOMY-BASEL 2021. [DOI: 10.3390/agronomy11030477] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
At a local scale, kaolin particle-film technology is considered a short-term adaptation strategy to mitigate the adverse effects of global warming on viticulture. This study aims to evaluate kaolin application effects on photochemistry and related defence responses of Touriga Franca (TF) and Touriga Nacional (TN) grapevines planted at two Portuguese winegrowing regions (Douro and Alentejo) over two summer seasons (2017 and 2018). For this purpose, chlorophyll a fluorescence transient analysis, leaf temperature, foliar metabolites, and the expression of genes related to heat stress (VvHSP70) and stress tolerance (VvWRKY18) were analysed. Kaolin application had an inhibitory effect on VvHSP70 expression, reinforcing its protective role against heat stress. However, VvWRKY18 gene expression and foliar metabolites accumulation revealed lower gene expression in TN-treated leaves and higher in TF at Alentejo, while lipid peroxidation levels decreased in both treated varieties and regions. The positive kaolin effect on the performance index parameter (PIABS) increased at ripening, mainly in TN, suggesting that stress responses can differ among varieties, depending on the initial acclimation to kaolin treatment. Moreover, changes on chlorophyll fluorescence transient analysis were more pronounced at the Douro site in 2017, indicating higher stress severity and impacts at this site, which boosted kaolin efficiency in alleviating summer stress. Under applied contexts, kaolin application can be considered a promising practice to minimise summer stress impacts in grapevines grown in Mediterranean-like climate regions.
Collapse
|
18
|
Pignattelli S, Broccoli A, Piccardo M, Felline S, Terlizzi A, Renzi M. Short-term physiological and biometrical responses of Lepidium sativum seedlings exposed to PET-made microplastics and acid rain. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 208:111718. [PMID: 33396049 DOI: 10.1016/j.ecoenv.2020.111718] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 11/22/2020] [Accepted: 11/23/2020] [Indexed: 06/12/2023]
Abstract
Plastics enter in terrestrial natural system primarily by agricultural purposes, while acid rain is the result of anthropogenic activities. The synergistic effects of microplastics and acid rain on plant growth are not known. In this study, different sizes of polyethylene terephthalate (PET) and acid rain are tested on Lepidium sativum, in two separate experimental sets. In the first one we treated plants only with PET, in the second one we used PET and acid rain together. In both experimentations we analyzed: i) plant biometrical parameters (shoot height, leaf number, percentage inhibition of seed germination, fresh biomass), and ii) oxidative stress responses (hydrogen peroxide; ascorbic acid and glutathione). Results carried out from our experiments highlighted that different sizes of polyethylene terephthalate are able to affect plant growth and physiological responses, with or without acid rain supplied during acute toxicity (6 days). SHORT DESCRIPTION: This study showed that different sizes of PET microplastics affect physiological and biometrical responses of Lepidum sativum seedlings, with or without acid rain; roots and leaves responded differently.
Collapse
Affiliation(s)
- Sara Pignattelli
- Laboratory of Environmental and Life Sciences, University of Nova Gorica, Vipavska Cesta 13, SI-5000 Rožna Dolina, Nova Gorica, Slovenia; Bioscience Research Center, Via Aurelia Vecchia, 32, 58015 Orbetello, Italy
| | - Andrea Broccoli
- Bioscience Research Center, Via Aurelia Vecchia, 32, 58015 Orbetello, Italy
| | - Manuela Piccardo
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy; Stazione Zoologica Anton Dohrn, 80121 Napoli, Italy
| | | | - Antonio Terlizzi
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy; Stazione Zoologica Anton Dohrn, 80121 Napoli, Italy
| | - Monia Renzi
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy.
| |
Collapse
|
19
|
Metamitron and Shade Effects on Leaf Physiology and Thinning Efficacy of Malus × domestica Borkh. AGRONOMY-BASEL 2020. [DOI: 10.3390/agronomy10121924] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Thinning strategies, namely shade or photosynthetic inhibitors, rely on the reduction of carbon supply to the fruit below the demand, causing fruit abscission. In order to clarify the subject, seven field trials were carried out in Lleida, Girona, and Sint-Truiden (2017 + 2018), using orchards of ‘Golden’ and ‘Gala’ apple trees. At the stage of 9–14-mm fruit diameter, four treatments were implemented: (A) CTR-control, trees under natural environmental conditions; (B) SN-shaded trees, trees above which shading nets reducing 50% of irradiance were installed 24 h after metamitron application date—without application of metamitron—and removed after five days; (C) MET-trees sprayed with 247.5 ppm of metamitron; (D) MET + SN-trees submitted to the combined exposure to metamitron application and shading nets. Low radiation significantly increased metamitron absorption (36–53% in the three locations in 2018) and reduced its degradation. Net photosynthesis and stomatal conductance were strongly reduced in all treatments, with minimum values 2 days after spraying (DAS) and incomplete recovery 10 DAS in MET + SN. All treatments resulted in leaf sucrose and sorbitol decreases, leading to a negative carbon balance. SN and MET + SN promoted the highest thinning efficacy, increasing fruit weight and size, with MET + SN causing over-thinning in some trials. Leaf antioxidant enzymes showed moderate changes in activity increases under MET or MET + SN, accompanied by a rise of glutathione content and a reduction in ascorbate, however without lipid peroxidation. This work shows that environmental conditions, such as cloudy days, must be carefully considered upon metamitron application, since the low irradiance enhances metamitron efficacy and may cause over-thinning.
Collapse
|
20
|
Carvalho LC, Vieira C, Abreu MM, Magalhães MCF. Physiological response of Cistus salviifolius L. to high arsenic concentrations. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2020; 42:2305-2319. [PMID: 31473873 DOI: 10.1007/s10653-019-00389-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 08/08/2019] [Indexed: 06/10/2023]
Abstract
Arsenic is a trace element found in the environment which can be particularly toxic to living organisms. However, some plant species such as those of the genus Cistus are able to grow in soils with high As concentrations and could be used in the sustainable rehabilitation of mining areas through phytostabilization. In this work, the growth and the physiological response of Cistus salviifolius L. to As-induced oxidative stress at several concentrations (reaching 30 mg L-1) in an hydroponic system were evaluated for 30 days. Several growth parameters, chlorophyll content, chemical composition, one indicator of oxidative stress (H2O2) and two of the major antioxidative metabolites (ascorbate and glutathione) were analysed. The toxic effect of As was better perceived in the plants submitted to treatments with concentrations of 20 and 30 mg As L-1. Plants subjected to these treatments had higher concentration of As in roots and shoots. The concentrations of Ca, Mg, K and Fe in the plants as well as a large part of the evaluated growth parameters were also affected. Arsenic did not interfere with the ability of the plant to perform photosynthesis, as there were no significant differences in the contents of chlorophyll a, b and total between the different treatments. Plants from all treatments accumulated higher amount of As in roots than in shoots, and it was also in the roots that the concentrations of H2O2, AsA and GSH were higher. Cistus salviifolius showed high tolerance to As up to the concentration of 5 mg L-1, which makes it a species with high potential to be used in the phytostabilization of soils contaminated with As and presenting high concentrations of the element in the soil solution.
Collapse
Affiliation(s)
- Luísa C Carvalho
- Instituto Superior de Agronomia, Linking Landscape, Environment, Agriculture and Food Research Centre (LEAF), Universidade de Lisboa, Lisbon, Portugal.
| | - Cláudia Vieira
- Instituto Superior de Agronomia, Linking Landscape, Environment, Agriculture and Food Research Centre (LEAF), Universidade de Lisboa, Lisbon, Portugal
| | - Maria Manuela Abreu
- Instituto Superior de Agronomia, Linking Landscape, Environment, Agriculture and Food Research Centre (LEAF), Universidade de Lisboa, Lisbon, Portugal
| | - Maria Clara F Magalhães
- Departamento de Química and CICECO-Aveiro Institute of Materials, Universidade de Aveiro, 3810-193, Aveiro, Portugal
| |
Collapse
|
21
|
Pignattelli S, Broccoli A, Renzi M. Physiological responses of garden cress (L. sativum) to different types of microplastics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 727:138609. [PMID: 32339829 DOI: 10.1016/j.scitotenv.2020.138609] [Citation(s) in RCA: 161] [Impact Index Per Article: 32.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 04/08/2020] [Accepted: 04/08/2020] [Indexed: 05/23/2023]
Abstract
In this study, for the first time, acute and chronic toxicity caused by four different kinds of microplastics: polypropylene (PP), polyethylene (PE), polyvinylchloride (PVC), and a commercial mixture (PE + PVC) on Lepidium sativum were evaluated. Parameters considered were: i) biometric parameters (e.g. percentage inhibition of seed germination, plant height, leaf number and fresh biomass productions); and ii) oxidative stress (e.g. levels of hydrogen peroxide, glutathione, and ascorbic acid). On plants exposed to chronic stress chlorophylls, carotenoids, aminolaevulinic acid, and proline productions were, also, evaluated. PVC resulted the most toxic than other plastic materials tested. This study represents the first paper highlighting microplastics are able to produce oxidative burst in tested plants and could represent an important starting point for future researches on biochemical effects of microplastic in terrestrial environments such as agroecosystems.
Collapse
Affiliation(s)
- Sara Pignattelli
- Bioscience Research Center, via Aurelia Vecchia, 32, 58015 Orbetello, Italy; Laboratory of Environmental and Life Sciences, University of Nova Gorica, Vipavska cesta 13, SI-5000, Rožna Dolina, Nova Gorica, Slovenia
| | - Andrea Broccoli
- Bioscience Research Center, via Aurelia Vecchia, 32, 58015 Orbetello, Italy
| | - Monia Renzi
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy.
| |
Collapse
|
22
|
Jiang D, Tan MT, Wang Q, Wang GR, Yan SC. Evaluating the ecotoxicological effects of Pb contamination on the resistance against Lymantria dispar in forest plant, Larix olgensis. PEST MANAGEMENT SCIENCE 2020; 76:2490-2499. [PMID: 32061041 DOI: 10.1002/ps.5790] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 01/19/2020] [Accepted: 02/14/2020] [Indexed: 06/10/2023]
Abstract
BACKGROUND Heavy metal contamination in forest ecosystems has become increasingly severe, and there is an urgent need to better understand the ecotoxicological effects of heavy metals on the whole forest ecosystems, especially their effects on insect resistance of forest plant. In the present study, the resistance against gypsy moth (Lymantria dispar) larvae in Larix olgensis seedlings grown in non-amended or Pb-amended (at 500 and 1500 mg kg-1 ) soil was evaluated. RESULTS Pb from the treated soil could be transferred and exerted bio-toxicological effects along the food chain consisting of L. olgensis seedlings and gypsy moth larvae, eventually causing significantly reduction in seedlings growth, as well as larval weight, survival rate and antioxidant capacity. With regard to phytochemical defense, the activities or contents of protease inhibitors (trypsin and chymotrypsin inhibitors) and secondary metabolites (condensed tannin and total phenolics) in Pb-treated larch needles presented a tendency of 'low-promotion, high-inhibition' with the increase of Pb exposure concentration. At the same time, Pearson's correlation coefficients showed that the trade-off hypothesis on energy allocation between phytochemical defense and plant growth was not supported by the data from the L. olgensis seedlings that were exposed to Pb stress, and elemental defense might replace the dominant role of phytochemical defense in L. olgensis seedlings under Pb stress against the gypsy moth larvae. CONCLUSION These findings emphasize ecotoxicological effects of heavy metal contaminations along the food chains (forest plants and forest defoliators), and provide a new perspective for optimizing forest pest control strategies in the heavy metal polluted regions. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Dun Jiang
- Department of Forest Protection, School of Forestry, Northeast Forestry University, Harbin, P. R. China
- Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin, P. R. China
| | - Ming-Tao Tan
- Department of Forest Protection, School of Forestry, Northeast Forestry University, Harbin, P. R. China
- Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin, P. R. China
| | - Qi Wang
- Department of Forest Protection, School of Forestry, Northeast Forestry University, Harbin, P. R. China
- Forest Conservation Institute, Chinese Academy of Forestry, Harbin, P. R. China
| | - Gui-Rong Wang
- Department of Forest Protection, School of Forestry, Northeast Forestry University, Harbin, P. R. China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Shan-Chun Yan
- Department of Forest Protection, School of Forestry, Northeast Forestry University, Harbin, P. R. China
- Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin, P. R. China
| |
Collapse
|
23
|
Obi VI, Montenegro J, Barriuso JJ, Saidani F, Aubert C, Gogorcena Y. Is the Tolerance of Commercial Peach Cultivars to Brown Rot Caused by Monilinia laxa Modulated by its Antioxidant Content? PLANTS 2020; 9:plants9050589. [PMID: 32380644 PMCID: PMC7285238 DOI: 10.3390/plants9050589] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 04/27/2020] [Accepted: 05/02/2020] [Indexed: 01/26/2023]
Abstract
Brown rot, caused by Monilinia spp., provokes pre- and post-harvest damage in peach (Prunus persica (L.) Batsch), which causes an economic impact in the industry. With a view to breeding for increased tolerance to this disease, a screening test based upon artificial fruit inoculation was validated on several parental lines of a peach breeding program during the two-period harvest. In addition, cultivars with different total phenolic contents were included in the two-year study. All physicochemical fruit traits recorded at harvest showed differences among all cultivars. The antioxidant compound content determined using spectrophotometry (to measure ascorbic acid and antioxidant capacity) and UPLC-MS (to measure and identify phenolic compounds) also revealed important differences among all genotypes. The rate of brown rot lesion following fruit inoculation varied widely among cultivars, and it was possible to discriminate between highly and less susceptible cultivars. Cultivars with minimal development of damage were identified as germplasm with the desirable allele combination to increase brown rot tolerance in peach breeding programs. Finally, Pearson’s correlation coefficients (r) between pairs of variables were calculated, searching for any biochemical candidate conferring tolerance. The correlation of phytopathological traits with the antioxidant composition, concerning contents of ascorbic, neochlorogenic, and chlorogenic acids and total polyphenols in fruit, is discussed.
Collapse
Affiliation(s)
- Vitus I. Obi
- Estación Experimental de Aula Dei-CSIC, Avda de Montañana 1005, 50059 Zaragoza, Spain; (V.I.O.); (J.M.); (F.S.)
| | - Joaquín Montenegro
- Estación Experimental de Aula Dei-CSIC, Avda de Montañana 1005, 50059 Zaragoza, Spain; (V.I.O.); (J.M.); (F.S.)
| | - Juan J. Barriuso
- Instituto Agroalimentario de Aragón IA2, CITA-Universidad de Zaragoza, 50013 Zaragoza, Spain;
| | - Fayza Saidani
- Estación Experimental de Aula Dei-CSIC, Avda de Montañana 1005, 50059 Zaragoza, Spain; (V.I.O.); (J.M.); (F.S.)
| | - Christophe Aubert
- Centre Technique Interprofessionnel des Fruits et Légumes (Ctifl), route de Mollégès, F-13210 Saint-Rémy-de-Provence, France;
| | - Yolanda Gogorcena
- Estación Experimental de Aula Dei-CSIC, Avda de Montañana 1005, 50059 Zaragoza, Spain; (V.I.O.); (J.M.); (F.S.)
- Correspondence: ; Tel.: +34-976-716133
| |
Collapse
|
24
|
Podgórska A, Mazur R, Ostaszewska-Bugajska M, Kryzheuskaya K, Dziewit K, Borysiuk K, Wdowiak A, Burian M, Rasmusson AG, Szal B. Efficient Photosynthetic Functioning of Arabidopsis thaliana Through Electron Dissipation in Chloroplasts and Electron Export to Mitochondria Under Ammonium Nutrition. FRONTIERS IN PLANT SCIENCE 2020; 11:103. [PMID: 32174931 PMCID: PMC7054346 DOI: 10.3389/fpls.2020.00103] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 01/23/2020] [Indexed: 05/20/2023]
Abstract
An improvement in photosynthetic rate promotes the growth of crop plants. The sink-regulation of photosynthesis is crucial in optimizing nitrogen fixation and integrating it with carbon balance. Studies on these processes are essential in understanding growth inhibition in plants with ammonium ( NH 4 + ) syndrome. Hence, we sought to investigate the effects of using nitrogen sources with different states of reduction (during assimilation of NO 3 - versus NH 4 + ) on the photosynthetic performance of Arabidopsis thaliana. Our results demonstrated that photosynthetic functioning during long-term NH 4 + nutrition was not disturbed and that no indication of photoinhibition of PSII was detected, revealing the robustness of the photosynthetic apparatus during stressful conditions. Based on our findings, we propose multiple strategies to sustain photosynthetic activity during limited reductant utilization for NH 4 + assimilation. One mechanism to prevent chloroplast electron transport chain overreduction during NH 4 + nutrition is for cyclic electron flow together with plastid terminal oxidase activity. Moreover, redox state in chloroplasts was optimized by a dedicated type II NAD(P)H dehydrogenase. In order to reduce the amount of energy that reaches the photosynthetic reaction centers and to facilitate photosynthetic protection during NH 4 + nutrition, non-photochemical quenching (NPQ) and ample xanthophyll cycle pigments efficiently dissipate excess excitation. Additionally, high redox load may be dissipated in other metabolic reactions outside of chloroplasts due to the direct export of nucleotides through the malate/oxaloacetate valve. Mitochondrial alternative pathways can downstream support the overreduction of chloroplasts. This mechanism correlated with the improved growth of A. thaliana with the overexpression of the alternative oxidase 1a (AOX1a) during NH 4 + nutrition. Most remarkably, our findings demonstrated the capacity of chloroplasts to tolerate NH 4 + syndrome instead of providing redox poise to the cells.
Collapse
Affiliation(s)
- Anna Podgórska
- Institute of Experimental Plant Biology and Biotechnology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Radosław Mazur
- Institute of Biochemistry, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Monika Ostaszewska-Bugajska
- Institute of Experimental Plant Biology and Biotechnology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Katsiaryna Kryzheuskaya
- Institute of Experimental Plant Biology and Biotechnology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Kacper Dziewit
- Institute of Experimental Plant Biology and Biotechnology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Klaudia Borysiuk
- Institute of Experimental Plant Biology and Biotechnology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Agata Wdowiak
- Institute of Experimental Plant Biology and Biotechnology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Maria Burian
- Institute of Experimental Plant Biology and Biotechnology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | | | - Bożena Szal
- Institute of Experimental Plant Biology and Biotechnology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| |
Collapse
|
25
|
Shang B, Feng Z, Gao F, Calatayud V. The ozone sensitivity of five poplar clones is not related to stomatal conductance, constitutive antioxidant levels and morphology of leaves. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 699:134402. [PMID: 31683210 DOI: 10.1016/j.scitotenv.2019.134402] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 09/05/2019] [Accepted: 09/09/2019] [Indexed: 06/10/2023]
Abstract
Ground-level ozone (O3) is an important phytotoxic air pollutant in China. In order to compare the sensitivity of common poplar clones to O3 in China and explore the possible mechanism, five poplar clones, clone DQ (Populus cathayana), clone 84 K (P. alba × P. glandulosa), clone WQ156 (P. deltoids × P. cathayana), clone 546 (P. deltoides cv. '55/56' × P. deltoides cv. 'Imperial') and clone 107 (P. euramericana cv. '74/76') were exposed to four O3 treatments. According to the date of the initial visible O3 symptom and the slopes of O3 exposure-response relationships with the relative light-saturated rate of CO2 assimilation, we found that clone DQ and clone 546 were the most sensitive to O3, clone 84 K and clone WQ156 were the less sensitive, and clone 107 was the most tolerant, which could provide a basis to select O3 tolerant clones for poplar planting at areas with serious O3 pollution. Elevated O3 significantly reduced photosynthetic parameters, total phenols content, potential antioxidant capacity, leaf mass per area and biomass of five poplar clones, and there were significant interactions between O3 and clones for most photosynthetic parameters. Elevated O3 also significantly increased malondialdehyde content and total ascorbate content. The responses of total antioxidant capacity for poplar clones to elevated O3 were different, as indicated by the increase for clone 107 and reduction for other clones under elevated O3 treatment. Our results on the sensitivity of different poplar clones to O3 are not related to leaf stomatal conductance, leaf constitutive antioxidant levels or leaf morphology of plant grown in clean air. The possible reason is little difference in leaf traits among clones within close species, suggesting that more properties of plants should be considered for exploring the sensitivity mechanism of close species, such as mesophyll conductance, antioxidant enzyme activity and apoplastic antioxidants.
Collapse
Affiliation(s)
- Bo Shang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing Road 18, Haidian District, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - ZhaoZhong Feng
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China; Institute of Ecology, Key Laboratory of Agrometeorology of Jiangsu Province, School of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing 210044, China.
| | - Feng Gao
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing Road 18, Haidian District, Beijing 100085, China; Institute of Agriculture Planning Science, China Agriculture University, Beijing 100193, China
| | - Vicent Calatayud
- Fundación CEAM, c/Charles R. Darwin 14, Parque Tecnológico, Paterna 46980, Valencia, Spain
| |
Collapse
|
26
|
Cocozza C, Perone A, Giordano C, Salvatici MC, Pignattelli S, Raio A, Schaub M, Sever K, Innes JL, Tognetti R, Cherubini P. Silver nanoparticles enter the tree stem faster through leaves than through roots. TREE PHYSIOLOGY 2019; 39:1251-1261. [PMID: 31180506 DOI: 10.1093/treephys/tpz046] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Revised: 12/11/2018] [Accepted: 04/06/2019] [Indexed: 06/09/2023]
Abstract
A major environmental pollution problem is the release into the atmosphere of particulate matter, including nanoparticles (NPs), which causes serious hazards to human and ecosystem health, particularly in urban areas. However, knowledge about the uptake, translocation and accumulation of NPs in plant tissues is almost completely lacking. The uptake of silver nanoparticles (Ag-NPs) and their transport and accumulation in the leaves, stems and roots of three different tree species, downy oak (Quercus pubescens Willd.), Scots pine (Pinus sylvestris L.) and black poplar (Populus nigra L.), were assessed. In the experiment, Ag-NPs were supplied separately to the leaves (via spraying, the foliar treatment) and roots (via watering, the root treatment) of the three species. Uptake, transport and accumulation of Ag were investigated through spectroscopy. The concentration of Ag in the stem was higher in the foliar than in the root treatment, and in poplar more than in oak and pine. Foliar treatment with Ag-NPs reduced aboveground biomass and stem length in poplars, but not in oaks or pines. Species-specific signals of oxidative stress were observed; foliar treatment of oak caused the accumulation of H2O2 in leaves, and both foliar and root treatments of poplar led to increased O2- in leaves. Ag-NPs affected leaf and root bacteria and fungi; in the case of leaves, foliar treatment reduced bacterial populations in oak and poplar and fungi populations in pine, and in the case of roots, root treatment reduced bacteria and increased fungi in poplar. Species-specific mechanisms of interaction, transport, allocation and storage of NPs in trees were found. We demonstrated definitively that NPs enter into the tree stem through leaves faster than through roots in all of the investigated tree species.
Collapse
Affiliation(s)
- C Cocozza
- Dipartimento di Scienze e Tecnologie Agrarie, Alimentari, Ambientali e Forestali, Università di Firenze, via San Bonaventura 13, Florence, Italy
| | - A Perone
- Dipartimento di Bioscienze e Territorio, Università degli Studi del Molise, c.da Fonte Lappone snc, Pesche, Italy
| | - C Giordano
- Istituto Valorizzazione Legno e Specie Arboree, IVALSA-CNR, via Madonna del Piano 10, Firenze, Italy
| | - M C Salvatici
- Istituto di Chimica dei Composti Organo Metallici, ICCOM-CNR, via Madonna del Piano 10, Firenze, Italy
| | - S Pignattelli
- Istituto per la Protezione Sostenibile delle Piante, IPSP-CNR, via Madonna del Piano 10, Sesto Fiorentino, Italy
| | - A Raio
- Istituto per la Protezione Sostenibile delle Piante, IPSP-CNR, via Madonna del Piano 10, Sesto Fiorentino, Italy
| | - M Schaub
- WSL, Swiss Federal Institute for Forest, Snow and Landscape Research, Zürcherstrasse 111, Birmensdorf, Switzerland
| | - K Sever
- Department of Forest Genetics, Dendrology and Botany, Faculty of Forestry, University of Zagreb, Svetošimunska cesta 25, Zagreb, Croatia
| | - J L Innes
- Faculty of Forestry, University of British Columbia, 2424 Main Mall, Vancouver, Canada
| | - R Tognetti
- Dipartimento di Agricoltura, Ambiente e Alimenti, Università degli Studi del Molise, via de Sanctis sns, 86100 Campobasso, Italy; 10
| | - P Cherubini
- WSL, Swiss Federal Institute for Forest, Snow and Landscape Research, Zürcherstrasse 111, Birmensdorf, Switzerland
- Faculty of Forestry, University of British Columbia, 2424 Main Mall, Vancouver, Canada
| |
Collapse
|
27
|
Carvalho LC, Santos ES, Abreu MM. Unraveling the crucial role of the ascorbate-glutathione cycle in the resilience of Cistus monspeliensis L. to withstand high As concentrations. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 171:389-397. [PMID: 30634090 DOI: 10.1016/j.ecoenv.2018.12.098] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 12/26/2018] [Accepted: 12/28/2018] [Indexed: 06/09/2023]
Abstract
Cistus monspeliensis L. is a species that grows spontaneously in contaminated mining areas of the Iberian Pyrite Belt. This species can accumulate high concentrations of As in the shoots without visible signs of phytotoxicity. In order to understand the physiological mechanisms underlying this tolerance, C. monspeliensis was grown in an Arenosol irrigated with aqueous nutrient solutions containing increasing concentrations of As (0, 1500, 5000, 10000, 15000 µM) and the effects of this metalloid on plant development and on the defence mechanisms against oxidative stress were monitored. Independently of the treatment, As was mainly retained in the roots. The plants with the highest concentrations of As in the shoots (> 5000 µM) showed toxicity symptoms such as chlorosis, low leaf size and decrease in biomass production and also nutritional deficiencies. Most of the studied physiological parameters (pigments, glutathione, ascorbate and antioxidative enzymes) showed significant correlation with As concentration in roots and shoots. Pigments, especially anthocyanins, were negatively affected even in the treatments with the lowest As concentrations. Glutathione increased significantly in roots at low As levels while in shoots this increase occurred in all As treatments. Ascorbate decreased in both tissues with As addition. The highest concentrations of As in shoots of C. monspeliensis triggered defence mechanisms against oxidative stress, namely by inducing the expression of genes coding antioxidative enzymes.
Collapse
Affiliation(s)
- Luísa C Carvalho
- Linking Landscape, Environment, Agriculture and Food (LEAF) Research Centre, Instituto Superior de Agronomia, Universidade de Lisboa, Lisboa, Portugal.
| | - Erika S Santos
- Linking Landscape, Environment, Agriculture and Food (LEAF) Research Centre, Instituto Superior de Agronomia, Universidade de Lisboa, Lisboa, Portugal; CICECO-Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Portugal
| | - M Manuela Abreu
- Linking Landscape, Environment, Agriculture and Food (LEAF) Research Centre, Instituto Superior de Agronomia, Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|
28
|
Approaches and Methods to Measure Oxidative Stress in Clinical Samples: Research Applications in the Cancer Field. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:1279250. [PMID: 30992736 PMCID: PMC6434272 DOI: 10.1155/2019/1279250] [Citation(s) in RCA: 213] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 01/31/2019] [Indexed: 12/24/2022]
Abstract
Reactive oxygen species (ROS) are common by-products of normal aerobic cellular metabolism and play important physiological roles in intracellular cell signaling and homeostasis. The human body is equipped with antioxidant systems to regulate the levels of these free radicals and maintain proper physiological function. However, a condition known as oxidative stress (OS) occurs, when ROS overwhelm the body's ability to readily detoxify them. Excessive amounts of free radicals generated under OS conditions cause oxidative damage to proteins, lipids, and nucleic acids, severely compromising cell health and contributing to disease development, including cancer. Biomarkers of OS can therefore be exploited as important tools in the assessment of disease status in humans. In the present review, we discuss different approaches used for the evaluation of OS in clinical samples. The described methods are limited in their ability to reflect on OS only partially, revealing the need of more integrative approaches examining both pro- and antioxidant reactions with higher sensitivity to physiological/pathological alternations. We also provide an overview of recent findings of OS in patients with different types of cancer. Identification of OS biomarkers in clinical samples of cancer patients and defining their roles in carcinogenesis hold great promise in promoting the development of targeted therapeutic approaches and diagnostic strategies assessing disease status. However, considerable data variability across laboratories makes it difficult to draw general conclusions on the significance of these OS biomarkers. To our knowledge, no adequate comparison has yet been performed between different biomarkers and the methodologies used to measure them, making it difficult to conduct a meta-analysis of findings from different groups. A critical evaluation and adaptation of proposed methodologies available in the literature should therefore be undertaken, to enable the investigators to choose the most suitable procedure for each chosen biomarker.
Collapse
|
29
|
Dhuldhaj U, Pandya U, Singh S. Anti-Oxidative Response of Cyanobacterium Anabaena sp. strain PCC 7120 to Arsenite (As(III)). Microbiology (Reading) 2018. [DOI: 10.1134/s0026261718060097] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
30
|
Suppression of External NADPH Dehydrogenase-NDB1 in Arabidopsis thaliana Confers Improved Tolerance to Ammonium Toxicity via Efficient Glutathione/Redox Metabolism. Int J Mol Sci 2018; 19:ijms19051412. [PMID: 29747392 PMCID: PMC5983774 DOI: 10.3390/ijms19051412] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 05/01/2018] [Accepted: 05/02/2018] [Indexed: 01/01/2023] Open
Abstract
Environmental stresses, including ammonium (NH4+) nourishment, can damage key mitochondrial components through the production of surplus reactive oxygen species (ROS) in the mitochondrial electron transport chain. However, alternative electron pathways are significant for efficient reductant dissipation in mitochondria during ammonium nutrition. The aim of this study was to define the role of external NADPH-dehydrogenase (NDB1) during oxidative metabolism of NH4+-fed plants. Most plant species grown with NH4+ as the sole nitrogen source experience a condition known as “ammonium toxicity syndrome”. Surprisingly, transgenic Arabidopsis thaliana plants suppressing NDB1 were more resistant to NH4+ treatment. The NDB1 knock-down line was characterized by milder oxidative stress symptoms in plant tissues when supplied with NH4+. Mitochondrial ROS accumulation, in particular, was attenuated in the NDB1 knock-down plants during NH4+ treatment. Enhanced antioxidant defense, primarily concerning the glutathione pool, may prevent ROS accumulation in NH4+-grown NDB1-suppressing plants. We found that induction of glutathione peroxidase-like enzymes and peroxiredoxins in the NDB1-surpressing line contributed to lower ammonium-toxicity stress. The major conclusion of this study was that NDB1 suppression in plants confers tolerance to changes in redox homeostasis that occur in response to prolonged ammonium nutrition, causing cross tolerance among plants.
Collapse
|
31
|
Swapnil P, Rai AK. Physiological responses to salt stress of salt-adapted and directly salt (NaCl and NaCl+Na 2SO 4 mixture)-stressed cyanobacterium Anabaena fertilissima. PROTOPLASMA 2018; 255:963-976. [PMID: 29352355 DOI: 10.1007/s00709-018-1205-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 01/10/2018] [Indexed: 05/13/2023]
Abstract
Soil salinity in nature is generally mixed type; however, most of the studies on salt toxicity are performed with NaCl and little is known about sulfur type of salinity (Na2SO4). Present study discerns the physiologic mechanisms responsible for salt tolerance in salt-adapted Anabaena fertilissima, and responses of directly stressed parent cells to NaCl and NaCl+Na2SO4 mixture. NaCl at 500 mM was lethal to the cyanobacterium, whereas salt-adapted cells grew luxuriantly. Salinity impaired gross photosynthesis, electron transport activities, and respiration in parent cells, but not in the salt-adapted cells, except a marginal increase in PSI activity. Despite higher Na+ concentration in the salt mixture, equimolar NaCl appeared more inhibitive to growth. Sucrose and trehalose content and antioxidant activities were maximal in 250 mM NaCl-treated cells, followed by salt mixture and was almost identical in salt-adapted (exposed to 500 mm NaCl) and control cells, except a marginal increase in ascorbate peroxidase activity and an additional fourth superoxide dismutase isoform. Catalase isoform of 63 kDa was induced only in salt-stressed cells. Salinity increased the uptake of intracellular Na+ and Ca2+ and leakage of K+ in parent cells, while cation level in salt-adapted cells was comparable to control. Though there was differential increase in intracellular Ca2+ under different salt treatments, ratio of Ca2+/Na+ remained the same. It is inferred that stepwise increment in the salt concentration enabled the cyanobacterium to undergo priming effect and acquire robust and efficient defense system involving the least energy.
Collapse
Affiliation(s)
- Prashant Swapnil
- Department of Botany, Banaras Hindu University, Varanasi, 221005, India
| | - Ashwani K Rai
- Department of Botany, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
32
|
Lou L, Li X, Chen J, Li Y, Tang Y, Lv J. Photosynthetic and ascorbate-glutathione metabolism in the flag leaves as compared to spikes under drought stress of winter wheat (Triticum aestivum L.). PLoS One 2018; 13:e0194625. [PMID: 29566049 PMCID: PMC5864061 DOI: 10.1371/journal.pone.0194625] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 03/06/2018] [Indexed: 11/18/2022] Open
Abstract
Ascorbate-glutathione (ASA-GSH) cycle is a major pathway of H2O2 scavenging and an effective mechanism of detoxification in plants. The differences in photosynthesis, chlorophyll content (Chl), relative water content (RWC), antioxidants and antioxidative enzyme activities involved in ASA-GSH metabolism were measured between the flag leaves and spike bracts (glumes and lemmas) during grain filling under drought stress. The expression of APX1, GRC1, DHAR, MDHAR, GPX1, and GS3 in ASA-GSH cycle was also measured. Compared with the flag leaves, the spike bracts exhibited stable net photosynthetic rate (PN) and chlorophyll content (Chl), a lower accumulation of reactive oxygen species (ROS), and more enhanced percentages of antioxidant enzyme activities and key enzymes gene transcription levels involved in ASA-GSH metabolism during the grain-filling stage under drought conditions. This could be the reasonable explanation for the more stable photosynthetic capacity in spikes, and the glumes and lemmas senesced later than the flag leaves at the late grain-filling stage. Also, the function of ASA-GSH cycle could not be ignored in alleviating oxidative damage by scavenging more excess ROS in spikes under drought stress.
Collapse
Affiliation(s)
- Lili Lou
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Xiaorui Li
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Junxiu Chen
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Yue Li
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Yan Tang
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Jinyin Lv
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
- * E-mail:
| |
Collapse
|
33
|
Carvalho LC, Coito JL, Gonçalves EF, Lopes C, Amâncio S. Physiological and agronomical responses to environmental fluctuations of two Portuguese grapevine varieties during three field seasons. CIÊNCIA E TÉCNICA VITIVINÍCOLA 2018. [DOI: 10.1051/ctv/20183301001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Extensive agricultural losses are attributed to heat, often combined with drought. These abiotic stresses occur in the field simultaneously, namely in areas with Mediterranean climate, where grapevine traditionally grows. The available scenarios for climate change suggest an increase in the frequency of heat waves and severe drought events in summer, also affecting the South of Portugal. In this work we monitored several production-related parameters and evaluated the state of the oxidative stress response apparatus of two grapevine varieties, Touriga Nacional (TN) and Trincadeira (TR), with and without irrigation, during three field seasons (2010 to 2012). Overall, results point to a high correlation of most yield and stress-associated parameters with the specific characteristics of each variety and to each season rather than the irrigation treatments. In the season with the driest winter, 2012, the lack of irrigation significantly affected yield in TR, while in the two other seasons the impact of the irrigation regime was much lower. In 2012, the yield of TN was affected by environmental conditions of the previous season. The irrigation treatments significantly affected berry size rather than quality.
Collapse
|
34
|
Arenas-Lago D, Santos ES, Carvalho LC, Abreu MM, Andrade ML. Cistus monspeliensis L. as a potential species for rehabilitation of soils with multielemental contamination under Mediterranean conditions. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:6443-6455. [PMID: 29249032 PMCID: PMC5846841 DOI: 10.1007/s11356-017-0957-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 12/06/2017] [Indexed: 06/07/2023]
Abstract
The Iberian Pyrite Belt (IPB; SW of the Iberian Peninsula) is one of the most important volcanogenic massive sulphide ore deposits in the world. Cistus monspeliensis L. is a native woody shrub that grows spontaneously in non-contaminated soils as well as in soils with multielemental contamination from the IPB. In this study, different ecophysiological parameters of C. monspeliensis growing in soils with different levels of metal(loid)s were evaluated to assess the potential of this species for revegetation of degraded areas. Composite samples of plants and rhizosphere soils were sampled in São Domingos and Lousal mines and in a reference area without soil contamination (Pomarão, Portugal) (Portuguese sector of IPB). Classical characterisation of the soils and quantification of their total and available metal(loid) concentrations were done. Multielemental concentration was determined in plants (shoots and roots). Ecophysiological parameters were also determined in shoots: concentrations of pigments (chlorophylls, anthocyanins and carotenoids), antioxidants (glutathione and ascorbate) and hydrogen peroxide as well as activities of several antioxidative enzymes. Although mining soils present high total concentrations of potentially hazardous elements, their available fractions were low and similar among studied areas. Soil pH as well as concentrations of extractable P, total concentrations of As, Cd and Ni and concentrations of Cu, Cr, Ni, Pb and Sb in the soil available fraction differentiate the studied areas. Only concentrations of Cd, Pb and Sb in roots and shoots were explained by the concentrations of the same elements in the soil available fraction. Although the majority of elements were translocated from roots to shoots, the shoots concentrations were below the toxic values for domestic animals and only As, Mn and Zn reached phytotoxic concentrations. Ecophysiological parameters were similar independently of the studied area. Due to its adaptability, tolerance and standard plant features, C. monspeliensis is a good choice for rehabilitation of soils with multielemental contamination under similar climatic characteristics.
Collapse
Affiliation(s)
- Daniel Arenas-Lago
- Department of Plant Biology and Soil Sciences, Universidad de Vigo, Lagoas Marcosende, 36310, Vigo, Spain.
- Institute of Environmental Sciences (CML), Leiden University, P. O. Box 9518, 2300 RA, Leiden, The Netherlands.
| | - Erika S Santos
- Instituto Superior de Agronomia, Linking Landscape, Environment, Agriculture and Food Research Center (LEAF), Universidade de Lisboa, Lisbon, Portugal
| | - Luisa C Carvalho
- Instituto Superior de Agronomia, Linking Landscape, Environment, Agriculture and Food Research Center (LEAF), Universidade de Lisboa, Lisbon, Portugal
| | - Maria Manuela Abreu
- Instituto Superior de Agronomia, Linking Landscape, Environment, Agriculture and Food Research Center (LEAF), Universidade de Lisboa, Lisbon, Portugal
| | - Maria Luisa Andrade
- Department of Plant Biology and Soil Sciences, Universidad de Vigo, Lagoas Marcosende, 36310, Vigo, Spain
| |
Collapse
|
35
|
Belgaroui N, Lacombe B, Rouached H, Hanin M. Phytase overexpression in Arabidopsis improves plant growth under osmotic stress and in combination with phosphate deficiency. Sci Rep 2018; 8:1137. [PMID: 29348608 PMCID: PMC5773496 DOI: 10.1038/s41598-018-19493-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 12/07/2017] [Indexed: 12/28/2022] Open
Abstract
Engineering osmotolerant plants is a challenge for modern agriculture. An interaction between osmotic stress response and phosphate homeostasis has been reported in plants, but the identity of molecules involved in this interaction remains unknown. In this study we assessed the role of phytic acid (PA) in response to osmotic stress and/or phosphate deficiency in Arabidopsis thaliana. For this purpose, we used Arabidopsis lines (L7 and L9) expressing a bacterial beta-propeller phytase PHY-US417, and a mutant in inositol polyphosphate kinase 1 gene (ipk1-1), which were characterized by low PA content, 40% (L7 and L9) and 83% (ipk1-1) of the wild-type (WT) plants level. We show that the PHY-overexpressor lines have higher osmotolerance and lower sensitivity to abscisic acid than ipk1-1 and WT. Furthermore, PHY-overexpressors showed an increase by more than 50% in foliar ascorbic acid levels and antioxidant enzyme activities compared to ipk1-1 and WT plants. Finally, PHY-overexpressors are more tolerant to combined mannitol stresses and phosphate deficiency than WT plants. Overall, our results demonstrate that the modulation of PA improves plant growth under osmotic stress, likely via stimulation of enzymatic and non-enzymatic antioxidant systems, and that beside its regulatory role in phosphate homeostasis, PA may be also involved in fine tuning osmotic stress response in plants.
Collapse
Affiliation(s)
- Nibras Belgaroui
- Laboratoire de Biotechnologie et Amélioration des Plantes, Centre de Biotechnologie de Sfax, BP "1177", 3018, Sfax, Tunisia
| | - Benoit Lacombe
- BPMP, CNRS, INRA, Montpellier SupAgro, Univ Montpellier, Montpellier, France
| | - Hatem Rouached
- BPMP, CNRS, INRA, Montpellier SupAgro, Univ Montpellier, Montpellier, France.
| | - Moez Hanin
- Laboratoire de Biotechnologie et Amélioration des Plantes, Centre de Biotechnologie de Sfax, BP "1177", 3018, Sfax, Tunisia. .,Unité de Génomique Fonctionnelle et Physiologie des Plantes, Institut Supérieur de Biotechnologie, Université de Sfax, BP "1175", 3038, Sfax, Tunisia.
| |
Collapse
|
36
|
Lestari R, Rio M, Martin F, Leclercq J, Woraathasin N, Roques S, Dessailly F, Clément‐Vidal A, Sanier C, Fabre D, Melliti S, Suharsono S, Montoro P. Overexpression of Hevea brasiliensis ethylene response factor HbERF-IXc5 enhances growth and tolerance to abiotic stress and affects laticifer differentiation. PLANT BIOTECHNOLOGY JOURNAL 2018; 16:322-336. [PMID: 28626940 PMCID: PMC5785357 DOI: 10.1111/pbi.12774] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 05/03/2017] [Accepted: 05/29/2017] [Indexed: 05/20/2023]
Abstract
Ethylene response factor 1 (ERF1) is an essential integrator of the jasmonate and ethylene signalling pathways coordinating a large number of genes involved in plant defences. Its orthologue in Hevea brasiliensis, HbERF-IXc5, has been assumed to play a major role in laticifer metabolism and tolerance to harvesting stress for better latex production. This study sets out to establish and characterize rubber transgenic lines overexpressing HbERF-IXc5. Overexpression of HbERF-IXc5 dramatically enhanced plant growth and enabled plants to maintain some ecophysiological parameters in response to abiotic stress such as water deficit, cold and salt treatments. This study revealed that HbERF-IXc5 has rubber-specific functions compared to Arabidopsis ERF1 as transgenic plants overexpressing HbERF-IXc5 accumulated more starch and differentiated more latex cells at the histological level. The role of HbERF-IXc5 in driving the expression of some target genes involved in laticifer differentiation is discussed.
Collapse
Affiliation(s)
- Retno Lestari
- CIRADUMR AGAPMontpellierFrance
- Universitas Indonesia (UI)DepokIndonesia
- Bogor Agricultural University (IPB)BogorIndonesia
| | | | | | | | - Natthakorn Woraathasin
- CIRADUMR AGAPMontpellierFrance
- Faculty of Natural ResourcesDepartment of Plant SciencePrince of Songkla University (PSU)Hat YaiSongklaThailand
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Saidani F, Giménez R, Aubert C, Chalot G, Betrán JA, Gogorcena Y. Phenolic, sugar and acid profiles and the antioxidant composition in the peel and pulp of peach fruits. J Food Compost Anal 2017. [DOI: 10.1016/j.jfca.2017.04.015] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
38
|
Rodríguez-Ruiz M, Mateos RM, Codesido V, Corpas FJ, Palma JM. Characterization of the galactono-1,4-lactone dehydrogenase from pepper fruits and its modulation in the ascorbate biosynthesis. Role of nitric oxide. Redox Biol 2017; 12:171-181. [PMID: 28242561 PMCID: PMC5328913 DOI: 10.1016/j.redox.2017.02.009] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 01/15/2017] [Accepted: 02/12/2017] [Indexed: 12/23/2022] Open
Abstract
Pepper fruit is one of the highest vitamin C sources of plant origin for our diet. In plants, ascorbic acid is mainly synthesized through the L-galactose pathway, being the L-galactono-1,4-lactone dehydrogenase (GalLDH) the last step. Using pepper fruits, the full GalLDH gene was cloned and the protein molecular characterization accomplished. GalLDH protein sequence (586 residues) showed a 37 amino acids signal peptide at the N-terminus, characteristic of mitochondria. The hydrophobic analysis of the mature protein displayed one transmembrane helix comprising 20 amino acids at the N-terminus. By using a polyclonal antibody raised against a GalLDH internal sequence and immunoblotting analysis, a 56kDa polypeptide cross-reacted with pepper fruit samples. Using leaves, flowers, stems and fruits, the expression of GalLDH by qRT-PCR and the enzyme activity were analyzed, and results indicate that GalLDH is a key player in the physiology of pepper plants, being possibly involved in the processes which undertake the transport of ascorbate among different organs. We also report that an NO (nitric oxide)-enriched atmosphere enhanced ascorbate content in pepper fruits about 40% parallel to increased GalLDH gene expression and enzyme activity. This is the first report on the stimulating effect of NO treatment on the vitamin C concentration in plants. Accordingly, the modulation by NO of GalLDH was addressed. In vitro enzymatic assays of GalLDH were performed in the presence of SIN-1 (peroxynitrite donor) and S-nitrosoglutahione (NO donor). Combined results of in vivo NO treatment and in vitro assays showed that NO provoked the regulation of GalLDH at transcriptional and post-transcriptional levels, but not post-translational modifications through nitration or S-nitrosylation events promoted by reactive nitrogen species (RNS) took place. These results suggest that this modulation point of the ascorbate biosynthesis could be potentially used for biotechnological purposes to increase the vitamin C levels in pepper fruits.
Collapse
Affiliation(s)
- Marta Rodríguez-Ruiz
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Dept. Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, CSIC, C/ Profesor Albareda, 1, 18008 Granada, Spain.
| | - Rosa M Mateos
- University Hospital Puerta del Mar, Avenida Ana de Viya, 21, Cádiz 11009, Spain.
| | - Verónica Codesido
- Phytoplant Research S.L, Rabanales 21 - The Science and Technology Park of Córdoba, C/ Astrónoma Cecilia Payne, Edificio Centauro, módulo B-1, 14014 Córdoba, Spain.
| | - Francisco J Corpas
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Dept. Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, CSIC, C/ Profesor Albareda, 1, 18008 Granada, Spain.
| | - José M Palma
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Dept. Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, CSIC, C/ Profesor Albareda, 1, 18008 Granada, Spain.
| |
Collapse
|
39
|
Lou L, Kang J, Pang H, Li Q, Du X, Wu W, Chen J, Lv J. Sulfur Protects Pakchoi (Brassica chinensis L.) Seedlings against Cadmium Stress by Regulating Ascorbate-Glutathione Metabolism. Int J Mol Sci 2017; 18:ijms18081628. [PMID: 28933771 PMCID: PMC5578019 DOI: 10.3390/ijms18081628] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 07/18/2017] [Accepted: 07/22/2017] [Indexed: 12/13/2022] Open
Abstract
Cadmium (Cd) pollution in food chains pose a potential health risk for humans. Sulfur (S) is a significant macronutrient that plays a significant role in the regulation of plant responses to diverse biotic and abiotic stresses. However, no information is currently available about the impact of S application on ascorbate-glutathione metabolism (ASA-GSH cycle) of Pakchoi plants under Cd stress. The two previously identified genotypes, namely, Aikangqing (a Cd-tolerant cultivar) and Qibaoqing (a Cd-sensitive cultivar), were utilized to investigate the role of S to mitigate Cd toxicity in Pakchoi plants under different Cd regimes. Results showed that Cd stress inhibited plant growth and induced oxidative stress. Exogenous application of S significantly increased the tolerance of Pakchoi seedlings suffering from Cd stress. This effect was demonstrated by increased growth parameters; stimulated activities of the antioxidant enzymes and upregulated genes involved in the ASA-GSH cycle and S assimilation; and by the enhanced ASA, GSH, phytochelatins, and nonprotein thiol production. This study shows that applying S nutrition can mitigate Cd toxicity in Pakchoi plants which has the potential in assisting the development of breeding strategies aimed at limiting Cd phytoaccumulation and decreasing Cd hazards in the food chain.
Collapse
Affiliation(s)
- Lili Lou
- College of Life Sciences, Northwest A&F University, Yangling 712100, China.
| | - Jingquan Kang
- College of Life Sciences, Northwest A&F University, Yangling 712100, China.
| | - Hongxi Pang
- College of Agronomy, Northwest A&F University, Yangling 712100, China.
| | - Qiuyu Li
- Innovation Experimental College, Northwest A&F University, Yangling 712100, China.
| | - Xiaoping Du
- College of Life Sciences, Northwest A&F University, Yangling 712100, China.
| | - Wei Wu
- College of Life Sciences, Northwest A&F University, Yangling 712100, China.
| | - Junxiu Chen
- College of Life Sciences, Northwest A&F University, Yangling 712100, China.
| | - Jinyin Lv
- College of Life Sciences, Northwest A&F University, Yangling 712100, China.
| |
Collapse
|
40
|
Bopanna S, Nayak B, Prakash S, Shalimar, Mahapatra SJ, Garg PK. Increased oxidative stress and deficient antioxidant levels may be involved in the pathogenesis of idiopathic recurrent acute pancreatitis. Pancreatology 2017; 17:529-533. [PMID: 28687456 DOI: 10.1016/j.pan.2017.06.009] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 04/17/2017] [Accepted: 06/19/2017] [Indexed: 12/11/2022]
Abstract
BACKGROUND Increased Oxidative Stress (OS) is implicated in the pathogenesis of Chronic Pancreatitis (CP). Whether or not OS contributes to disease progression through the stages of Recurrent Acute Pancreatitis(RAP), to CP is not known. Increased OS, if present in RAP could be an important therapeutic target in preventing progression of RAP to CP. OBJECTIVE To assess the oxidative stress and antioxidant status in patients with idiopathic RAP. METHODS 50 consecutive patients with Idiopathic Recurrent Acute Pancreatitis (IRAP) were included. Markers of OS [4-hydroxynonenol (4-HNE), malondialdehyde (MDA) and serum SOD (S-SOD)] and antioxidant status [ferric reducing the ability of plasma (FRAP), Glutathione peroxidase (GPX) and Vitamin C (Vit C)] were measured in quiescent phase and during an episode of pancreatitis. Their levels were compared with those in age and sex matched healthy controls and patients with CP. RESULTS The mean age of patients with IRAP was 22.2 ± 7.7 years and 39 (78%) were males. Levels of 4-HNE were significantly increased in patients with IRAP compared with healthy controls (3.03 ± 2.35 vs. 2.12 ± 1.29 ng/ml; p = 0.03) and were even higher during an episode of acute pancreatitis (5.21 ± 3.51 ng/ml; p = 0.03). Antioxidant levels were reduced in IRAP compared with healthy controls as measured by FRAP (707.0 ± 144.9 vs. 528.8 ± 120.0 μmol/Fe2+liberated; p = 0.0001) and GPX (1472 ± 375.7 vs. 910.0 ± 558.5 pg/ml; p = 0.001). OS and antioxidant profiles were similar in IRAP and CP with no significant difference. CONCLUSION OS is increased in patients with IRAP, more so during an acute episode. Antioxidant levels are also reduced suggesting that OS may play a role in the pathogenesis of IRAP and its progression to CP.
Collapse
Affiliation(s)
- Sawan Bopanna
- Department of Gastroenterology, All India Institute of Medical Sciences, New Delhi, India
| | - Baibaswat Nayak
- Department of Gastroenterology, All India Institute of Medical Sciences, New Delhi, India
| | - Shyam Prakash
- Department of Gastroenterology, All India Institute of Medical Sciences, New Delhi, India
| | - Shalimar
- Department of Gastroenterology, All India Institute of Medical Sciences, New Delhi, India
| | | | - Pramod Kumar Garg
- Department of Gastroenterology, All India Institute of Medical Sciences, New Delhi, India.
| |
Collapse
|
41
|
Podgórska A, Burian M, Rychter AM, Rasmusson AG, Szal B. Short-term ammonium supply induces cellular defence to prevent oxidative stress in Arabidopsis leaves. PHYSIOLOGIA PLANTARUM 2017; 160:65-83. [PMID: 28008622 DOI: 10.1111/ppl.12538] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 12/01/2016] [Accepted: 12/13/2016] [Indexed: 05/21/2023]
Abstract
Plants can assimilate nitrogen from soil pools of both ammonium and nitrate, and the relative levels of these two nitrogen sources are highly variable in soil. Long-term ammonium nutrition is known to cause damage to Arabidopsis that has been linked to mitochondrial oxidative stress. Using hydroponic cultures, we analysed the consequences of rapid shifts between nitrate and ammonium nutrition. This did not induce growth retardation, showing that Arabidopsis can compensate for the changes in redox metabolism associated with the variations in nitrogen redox status. During the first 3 h of ammonium treatment, we observed distinct transient shifts in reactive oxygen species (ROS), low-mass antioxidants, ROS-scavenging enzymes, and mitochondrial alternative electron transport pathways, indicating rapid but temporally separated changes in chloroplastic, mitochondrial and cytosolic ROS metabolism. The fast induction of antioxidant defences significantly lowered intracellular H2 O2 levels, and thus protected Arabidopsis leaves from oxidative stress. On the other hand elevated extracellular ROS production in response to ammonium supply may be involved in signalling. The response pattern displays an intricate plasticity of Arabidopsis redox metabolism to minimise stress in responses to nutrient changes.
Collapse
Affiliation(s)
- Anna Podgórska
- Institute of Experimental Plant Biology and Biotechnology, Faculty of Biology, University of Warsaw, Warsaw, 02-096, Poland
| | - Maria Burian
- Institute of Experimental Plant Biology and Biotechnology, Faculty of Biology, University of Warsaw, Warsaw, 02-096, Poland
| | - Anna M Rychter
- Institute of Experimental Plant Biology and Biotechnology, Faculty of Biology, University of Warsaw, Warsaw, 02-096, Poland
| | | | - Bożena Szal
- Institute of Experimental Plant Biology and Biotechnology, Faculty of Biology, University of Warsaw, Warsaw, 02-096, Poland
| |
Collapse
|
42
|
Yan H, Wang D, Ding TB, Zhou HY, Yan WJ, Wang XC. Comparison of lens oxidative damage induced by vitrectomy and/or hyperoxia in rabbits. Int J Ophthalmol 2017; 10:6-14. [PMID: 28149770 DOI: 10.18240/ijo.2017.01.02] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 10/13/2016] [Indexed: 11/23/2022] Open
Abstract
AIM To compare of lens oxidative damage induced by vitrectomy and/or hyperoxia in rabbit. METHODS Sixteen New Zealand rabbits (2.4-2.5 kg) were randomly divided into two groups (Group A, n=12; Group B, n=4). In Group A, the right eyes were treated with vitrectomy and systemic hyperoxia (oxygen concentration: 80%-85%, 1 ATA, 4h/d) (Group A-right), and the left eyes were treated with hyperoxia without vitrectomy surgery (Group A-left). Four rabbits in group B (eight eyes) were untreated as the controls. Lens transparency was monitored with a slit lamp and recorded before and after vitrectomy. After hyperoxic treatment for 6mo, the eyeballs were removed and the lens cortices (containing the capsules) and nuclei were separated for further morphological and biochemical evaluation. RESULTS Six months after treatments, there were no significant morphological changes in the lenses in any experimental group when observed with a slit lamp. However, the levels of water-soluble proteins and ascorbate, and the activities of catalase and Na+-K+-ATPase were significantly reduced, whereas the levels of malondialdehyde and transforming growth factor β2 (TGF-β2) were significantly elevated, in both the cortices and nuclei of eyes treated with vitrectomy and hyperoxia. The increase in protein-glutathione mixed disulfides and the reduction in water-soluble proteins were more obvious in the lens nuclei. The levels of ascorbate in the vitreous fluid were also reduced after vitrectomy, whereas TGF-β2 increased after vitrectomy and hyperoxia. Systemic hyperoxia exposure increased these effects. CONCLUSION Removal of the intact vitreous gel with vitrectomy and exposing the lens to increased oxygen from the retina induce lens oxidation and aggregation. Thus, an intact vitreous gel structure may protect the lens from oxidative insult and maintain lens transparency.
Collapse
Affiliation(s)
- Hong Yan
- Department of Ophthalmology, Tangdu Hospital, Fourth Military Medical University, Xi'an 710038, Shaanxi Province, China; Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, the First Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China
| | - Dan Wang
- Department of Ophthalmology, Tangdu Hospital, Fourth Military Medical University, Xi'an 710038, Shaanxi Province, China
| | - Tian-Bing Ding
- Department of Microbiology, Fourth Military Medical University, Xi'an 710032, Shaanxi Province, China
| | - Hai-Yan Zhou
- Department of Ophthalmology, Shaanxi Provincial People's Hospital, Xi'an 710068, Shaanxi Province, China
| | - Wei-Jia Yan
- Department of Clinical Medicine, Xi'an Medical University, Xi'an 710021, Shaanxi Province, China
| | - Xin-Chuan Wang
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, Xi'an 710038, Shaanxi Province, China
| |
Collapse
|
43
|
Rakete S, Nagaraj RH. UVA Light-mediated Ascorbate Oxidation in Human Lenses. Photochem Photobiol 2017; 93:1091-1095. [PMID: 28084012 DOI: 10.1111/php.12717] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 12/05/2016] [Indexed: 12/11/2022]
Abstract
Whether ascorbate oxidation is promoted by UVA light in human lenses and whether this process is influenced by age and GSH levels are not known. In this study, we used paired lenses from human donors. One lens of each pair was exposed to UVA light, whereas the other lens was kept in the dark for the same period of time as the control. Using LC-MS/MS analyses, we found that older lenses (41-73 years) were more susceptible to UVA-induced ascorbate oxidation than younger lenses (18-40 years). Approximately 36% of the ascorbate (relative to control) was oxidized in older lenses compared to ~16% in younger lenses. Furthermore, lenses with higher levels of GSH were less susceptible to UVA-induced ascorbate oxidation compared to those with lower levels, and this effect was not dependent on age. The oxidation of ascorbate led to elevated levels of reactive α-dicarbonyl compounds. In summary, our study showed that UVA light exposure leads to ascorbate oxidation in human lenses and that such oxidation is more pronounced in aged lenses and is inversely related to GSH levels. Our findings suggest that UVA light exposure could lead to protein aggregation through ascorbate oxidation in human lenses.
Collapse
Affiliation(s)
- Stefan Rakete
- Department of Ophthalmology, School of Medicine, University of Colorado, Aurora, CO
| | - Ram H Nagaraj
- Department of Ophthalmology, School of Medicine, University of Colorado, Aurora, CO.,Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Aurora, CO
| |
Collapse
|
44
|
Padayatty SJ, Levine M. Vitamin C: the known and the unknown and Goldilocks. Oral Dis 2016; 22:463-93. [PMID: 26808119 PMCID: PMC4959991 DOI: 10.1111/odi.12446] [Citation(s) in RCA: 415] [Impact Index Per Article: 46.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 01/08/2016] [Indexed: 12/11/2022]
Abstract
Vitamin C (Ascorbic Acid), the antiscorbutic vitamin, cannot be synthesized by humans and other primates, and has to be obtained from diet. Ascorbic acid is an electron donor and acts as a cofactor for fifteen mammalian enzymes. Two sodium-dependent transporters are specific for ascorbic acid, and its oxidation product dehydroascorbic acid is transported by glucose transporters. Ascorbic acid is differentially accumulated by most tissues and body fluids. Plasma and tissue vitamin C concentrations are dependent on amount consumed, bioavailability, renal excretion, and utilization. To be biologically meaningful or to be clinically relevant, in vitro and in vivo studies of vitamin C actions have to take into account physiologic concentrations of the vitamin. In this paper, we review vitamin C physiology; the many phenomena involving vitamin C where new knowledge has accrued or where understanding remains limited; raise questions about the vitamin that remain to be answered; and explore lines of investigations that are likely to be fruitful.
Collapse
Affiliation(s)
- S J Padayatty
- Molecular and Clinical Nutrition Section, Digestive Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - M Levine
- Molecular and Clinical Nutrition Section, Digestive Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
45
|
Arenas-Lago D, Carvalho LC, Santos ES, Abreu MM. The physiological mechanisms underlying the ability of Cistus monspeliensis L. from São Domingos mine to withstand high Zn concentrations in soils. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2016; 129:219-227. [PMID: 27054705 DOI: 10.1016/j.ecoenv.2016.03.041] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 02/16/2016] [Accepted: 03/28/2016] [Indexed: 06/05/2023]
Abstract
Cistus monspeliensis L. is a species that grows spontaneously in contaminated mining areas from the Iberian Pyrite Belt. This species can have high concentrations of Zn in the shoots without visible signs of phytotoxicity. In order to understand the physiological mechanisms underlying this tolerance, C. monspeliensis was grown at several concentrations of Zn(2+) (0, 500, 1000, 1500, 2000µM) and the effects of this metal on plant development and on the defence mechanisms against oxidative stress were evaluated. Independently of the treatment, Zn was mainly retained in the roots. The plants with the highest concentrations of Zn showed toxicity symptoms such as chlorosis, low leaf size and decrease in biomass production. At 2000µM of Zn, the dry biomass of the shoots decreased significantly. High concentrations of Zn in shoots did not induce deficiencies of other nutrients, except Cu. Plants with high concentrations of Zn had low amounts of chlorophyll, anthocyanins and glutathione and high contents of H2O2. The highest concentrations of Zn in shoots of C. monspeliensis triggered defence mechanisms against oxidative stress, namely by triggering antioxidative enzyme activity and by direct reactive oxygen species (ROS) scavenging through carotenoids, that are unaffected by stress due to stabilisation by ascorbic acid.
Collapse
Affiliation(s)
- Daniel Arenas-Lago
- Universidad de Vigo, Department of Plant Biology and Soil Science, Vigo, Spain.
| | - Luísa C Carvalho
- Linking Landscape, Environment, Agriculture and Food Research Centre (LEAF), Instituto Superior de Agronomia, Universidade de Lisboa, Lisboa, Portugal
| | - Erika S Santos
- Linking Landscape, Environment, Agriculture and Food Research Centre (LEAF), Instituto Superior de Agronomia, Universidade de Lisboa, Lisboa, Portugal; Centro de Investigação em Ciências do Ambiente e Empresariais, Instituto Superior Dom Afonso III, Loulé, Portugal
| | - M Manuela Abreu
- Linking Landscape, Environment, Agriculture and Food Research Centre (LEAF), Instituto Superior de Agronomia, Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|
46
|
Wang M, Zhao X, Xiao Z, Yin X, Xing T, Xia G. A wheat superoxide dismutase gene TaSOD2 enhances salt resistance through modulating redox homeostasis by promoting NADPH oxidase activity. PLANT MOLECULAR BIOLOGY 2016; 91:115-130. [PMID: 26869262 DOI: 10.1007/s11103-016-0446-y] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2015] [Accepted: 01/30/2016] [Indexed: 06/05/2023]
Abstract
Superoxide dismutase (SOD) is believed to enhance abiotic stress resistance by converting superoxide radical (O2 (-)) to H2O2 to lower ROS level and maintain redox homeostasis. ROS level is controlled via biphasic machinery of ROS production and scavenging. However, whether the role of SOD in abiotic stress resistance is achieved through influencing the biophasic machinery is not well documented. Here, we identified a wheat copper-zinc (Cu/Zn) SOD gene, TaSOD2, who was responsive to NaCl and H2O2. TaSOD2 overexpression in wheat and Arabidopsis elevated SOD activities, and enhanced the resistance to salt and oxidative stress. TaSOD2 overexpression reduced H2O2 level but accelerated O2 (-) accumulation. Further, it improved the activities of H2O2 metabolic enzymes, elevated the activity of O2 (-) producer NADPH oxidase (NOX), and promoted the transcription of NOX encoding genes. The inhibition of NOX activity and the mutation of NOX encoding genes both abolished the salt resistance of TaSOD2 overexpression lines. These data indicate that Cu/Zn SOD enhances salt resistance, which is accomplished through modulating redox homeostasis via promoting NOX activity.
Collapse
Affiliation(s)
- Mengcheng Wang
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Science, Shandong University, 27 Shandanan Road, Jinan, 250100, Shandong, China
| | - Xin Zhao
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Science, Shandong University, 27 Shandanan Road, Jinan, 250100, Shandong, China
| | - Zhen Xiao
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Science, Shandong University, 27 Shandanan Road, Jinan, 250100, Shandong, China
| | - Xunhao Yin
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Science, Shandong University, 27 Shandanan Road, Jinan, 250100, Shandong, China
| | - Tian Xing
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Science, Shandong University, 27 Shandanan Road, Jinan, 250100, Shandong, China
| | - Guangmin Xia
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Science, Shandong University, 27 Shandanan Road, Jinan, 250100, Shandong, China.
| |
Collapse
|
47
|
Itou W, Hagiwara T. Synthesis and polymerization of N-(4-ethynylphenyl)maleimide as a novel monomer with two polymerizable and modifiable groups. REACT FUNCT POLYM 2016. [DOI: 10.1016/j.reactfunctpolym.2016.02.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
48
|
Carvalho LC, Coito JL, Gonçalves EF, Chaves MM, Amâncio S. Differential physiological response of the grapevine varieties Touriga Nacional and Trincadeira to combined heat, drought and light stresses. PLANT BIOLOGY (STUTTGART, GERMANY) 2016; 18 Suppl 1:101-11. [PMID: 26518605 DOI: 10.1111/plb.12410] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 10/19/2015] [Indexed: 05/06/2023]
Abstract
Worldwide, extensive agricultural losses are attributed to drought, often in combination with heat in Mediterranean climate regions, where grapevine traditionally grows. The available scenarios for climate change suggest increases in aridity in these regions. Under natural conditions plants are affected by a combination of stresses, triggering synergistic or antagonistic physiological, metabolic or transcriptomic responses unique to the combination. However the study of such stresses in a controlled environment can elucidate important mechanisms by allowing the separation of the effects of individual stresses. To gather those effects, cuttings of two grapevine varieties, Touriga Nacional (TN) and Trincadeira (TR), were grown under controlled conditions and subjected to three abiotic stresses (drought - WS, heat - HS and high light - LS) individually and in combination two-by-two (WSHS, WSLS, HSLS) or all three (WSHSLS). Photosynthesis, water status, contents of H2 O2 , abscisic acid and metabolites of the ascorbate-glutathione cycle were measured in the leaves. Common and distinct response features were identified in the different stress combinations. Photosynthesis was not hindered in TN by LS, while even individual stresses severely affect photosynthesis in TR. Abscisic acid may be implicated in grapevine osmotic responses since it is correlated with tolerance parameters, especially in combined stresses involving drought. Overall, the responses to drought-including treatments were clearly distinct to those without drought. From the specific behaviours of the varieties, it can be concluded that TN shows a higher capacity for heat dissipation and for withstanding high light intensities, indicating better adjustment to warm conditions, provided that water supply is plentiful.
Collapse
Affiliation(s)
- L C Carvalho
- DRAT, LEAF, ISA, Universidade de Lisboa, Lisboa, Portugal
| | - J L Coito
- DRAT, LEAF, ISA, Universidade de Lisboa, Lisboa, Portugal
| | - E F Gonçalves
- DCEB, LEAF, ISA, Universidade de Lisboa, Lisboa, Portugal
| | - M M Chaves
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Oeiras, Portugal
| | - S Amâncio
- DRAT, LEAF, ISA, Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|
49
|
Gartia MR, Misra SK, Ye M, Schwartz-Duval A, Plucinski L, Zhou X, Kellner D, Labriola LT, Pan D. Point-of-service, quantitative analysis of ascorbic acid in aqueous humor for evaluating anterior globe integrity. Sci Rep 2015; 5:16011. [PMID: 26525715 PMCID: PMC4630616 DOI: 10.1038/srep16011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 10/07/2015] [Indexed: 02/07/2023] Open
Abstract
Limited training, high cost, and low equipment mobility leads to inaccuracies in decision making and is concerning with serious ocular injuries such as suspected ruptured globe or post-operative infections. Here, we present a novel point-of-service (POS) quantitative ascorbic acid (AA) assay with use of the OcuCheck Biosensor. The present work describes the development and clinical testing of the paper-based biosensor that measures the changes in electrical resistance of the enzyme-plated interdigitated electrodes to quantify the level of AA present in ocular fluid. We have demonstrated the proof-of-concept of the biosensor testing 16 clinical samples collected from aqueous humor of patients undergoing therapeutic anterior chamber paracentesis. Comparing with gold standard colorimetric assay for AA concentration, OcuCheck showed accuracy of >80%, sensitivity of >88% and specificity of >71%. At present, there are no FDA-approved POS tests that can directly measures AA concentration levels in ocular fluid. We envisage that the device can be realized as a handheld, battery powered instrument that will have high impact on glaucoma care and point-of-care diagnostics of penetrating ocular globe injuries.
Collapse
Affiliation(s)
- Manas R Gartia
- Department of Bioengineering, University of Illinois at Urbana-Champaign.,Carle Foundation Hospital, 611 West Park Street, Urbana, IL, USA.,Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign
| | - Santosh K Misra
- Department of Bioengineering, University of Illinois at Urbana-Champaign.,Carle Foundation Hospital, 611 West Park Street, Urbana, IL, USA
| | - Mao Ye
- Department of Bioengineering, University of Illinois at Urbana-Champaign.,Carle Foundation Hospital, 611 West Park Street, Urbana, IL, USA
| | - Aaron Schwartz-Duval
- Department of Bioengineering, University of Illinois at Urbana-Champaign.,Carle Foundation Hospital, 611 West Park Street, Urbana, IL, USA
| | - Lisa Plucinski
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign
| | - Xiangfei Zhou
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign
| | - David Kellner
- Research Park, University of Illinois at Urbana Champaign, IL
| | - Leanne T Labriola
- Carle Foundation Hospital, 611 West Park Street, Urbana, IL, USA.,Department of Surgery, University of Illinois College of Medicine, Urbana IL, USA
| | - Dipanjan Pan
- Department of Bioengineering, University of Illinois at Urbana-Champaign.,Beckman Institute of Advanced Science and Technology, University of Illinois at Urbana-Champaign.,Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign.,Carle Foundation Hospital, 611 West Park Street, Urbana, IL, USA
| |
Collapse
|
50
|
Sgherri C, Scattino C, Pinzino C, Tonutti P, Ranieri AM. Ultraviolet-B radiation applied to detached peach fruit: A study of free radical generation by EPR spin trapping. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2015; 96:124-31. [PMID: 26263515 DOI: 10.1016/j.plaphy.2015.07.031] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Revised: 07/21/2015] [Accepted: 07/28/2015] [Indexed: 05/23/2023]
Abstract
In peaches, phenolic compounds are the major sources of antioxidants, and cyanidin-3-O-glucoside is the main anthocyanin present, above all in the skin. Anthocyanin content has been shown to increase after UV-B irradiation, which may be very harmful for all biological organisms due to the induction of the generation of reactive oxygen species (ROS). Peach fruits (cv. 'Suncrest') were exposed during post-harvest to supplemental ultraviolet-B radiation. A spin-trapping technique was used to monitor the generation of free radicals under UV-B, and 5-(diethoxy-phosphoryl)-5-methyl-1-pyrroline-N-oxide (DEPMPO) was used as the spin trap. The flesh of peaches was essentially unaffected by the treatment, whereas the skin was responsive at the end of the treatment, accumulating ascorbate, flavonoids, cyanidin-3-O-glucoside, and showing a higher antioxidant activity. The levels of stable free radicals were also lower at the end of treatment. Carbon-centred radicals contributed the most to the total amounts of free radicals, whereas hydroxyl radicals and oxygen-centred free radicals contributed minimally. The carbon-centred free radical identified was the same as the one obtained after irradiation of authentic cyanidin-3-O-glucoside. During UV-B treatment cyanidin-3-O-glucoside increased and was capable of radicalization protecting the other organic molecules of the cell from oxidation. ROS, among which hydroxyl radicals, were thus maintained to minimal levels. This ability of cyanidin-3-O-glucoside displayed the mechanism underlined the tolerance to UV-B irradiation indicating that shelf life can be prolonged by the presence of anthocyanins. Thus, UV-B technique results a good approach to induce antioxidant production in peach fruits increasing their nutraceutical properties.
Collapse
Affiliation(s)
- C Sgherri
- Department of Agriculture, Food and Environment, University of Pisa, Via Del Borghetto 80, I-56124 Pisa, Italy.
| | - C Scattino
- Department of Agriculture, Food and Environment, University of Pisa, Via Del Borghetto 80, I-56124 Pisa, Italy.
| | - C Pinzino
- Institute of Chemistry of Organometallic Compounds (ICCOM), Italian National Research Council (CNR), Area Della Ricerca Del CNR di Pisa, Via G. Moruzzi 1, I-56124 Pisa, Italy.
| | - P Tonutti
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Piazza Martiri Della Libertà 33, I-56127 Pisa, Italy.
| | - A M Ranieri
- Department of Agriculture, Food and Environment, University of Pisa, Via Del Borghetto 80, I-56124 Pisa, Italy; Interdepartmental Research Center "Nutraceuticals and Food for Health", University of Pisa, Pisa, Italy.
| |
Collapse
|