1
|
Ito M, Liu J, Fukasawa M, Tsutsumi K, Kanegae Y, Setou M, Kohara M, Suzuki T. Induction of phospholipase A2 group 4C by HCV infection regulates lipid droplet formation. JHEP Rep 2025; 7:101225. [PMID: 39802806 PMCID: PMC11719340 DOI: 10.1016/j.jhepr.2024.101225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 09/17/2024] [Accepted: 09/25/2024] [Indexed: 01/16/2025] Open
Abstract
Background & Aims Hepatic steatosis, characterized by lipid accumulation in hepatocytes, is a key diagnostic feature in patients with chronic hepatitis C virus (HCV) infection. This study aimed to clarify the involvement of phospholipid metabolic pathways in the pathogenesis of HCV-induced steatosis. Methods The expression and distribution of lipid species in the livers of human liver chimeric mice were analyzed using imaging mass spectrometry. Triglyceride accumulation and lipid droplet formation were studied in phospholipase A2 group 4C (PLA2G4C) knockout or overexpressing cells. Results Imaging mass spectrometry of the infected mouse model revealed increased lysophosphatidylcholine levels and decreased phosphatidylcholine levels in HCV-positive regions of the liver. Among the transcripts associated with phosphatidylcholine biosynthesis, upregulation of PLA2G4C mRNA was most pronounced following HCV infection. Activation of the transcription factor NF-κB and upregulation of c-Myc were important for activation of PLA2G4C transcription by HCV infection and expression of the viral proteins Core-NS2. The amount and size of lipid droplets were reduced in PLA2G4C-knockout cells. Inhibition of NF-κB or c-Myc activity suppressed lipid droplet formation in HCV-infected cells. HCV infection promoted the stabilization of lipid droplets, but this stability was reduced in PLA2G4C-knockout cells. Overexpression of PLA2G4C decreased the levels of phosphatidylcholine species in the lipid droplet fraction and led to lower levels of key factors involved in lipolysis (breakdown of triglycerides into glycerol and free fatty acids), such as ATGL, PLIN1 and ABHD5 on the lipid droplets. Conclusions HCV infection markedly increases PLA2G4C expression. This may alter the phospholipid composition of the lipid droplet membrane, leading to stabilization and enlargement of the droplets. Impact and implications The involvement of phospholipid metabolism pathways in the pathogenesis of hepatitis C virus (HCV)-related liver diseases remains unclear. We found that PLA2G4C expression is upregulated through NF-κB and c-Myc activation upon HCV infection, and this upregulation is associated with a decrease in phosphatidylcholine species. The increased expression of PLA2G4C resulted in changes in the phospholipid composition of lipid droplets, led to the dissociation of lipolysis-related factors from the lipid droplet surface and the accumulation of lipid content within the droplets. These findings suggest that the disruption of the phospholipid metabolism pathway caused by HCV infection may contribute to the development of HCV-associated fatty liver. It would be interesting to determine whether alcohol- and/or metabolic dysfunction-associated steatohepatitis are also associated with increased PLA2 activity, altered phospholipid composition and decreased levels of ATGL and its cofactors in lipid droplet membranes.
Collapse
Affiliation(s)
- Masahiko Ito
- Department of Microbiology and Immunology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Jie Liu
- Department of Microbiology and Immunology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Masayoshi Fukasawa
- Department of Biochemistry and Cell Biology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Koji Tsutsumi
- Department of Biosciences, Kitasato University, Sagamihara, Japan
| | - Yumi Kanegae
- Core Research Facilities, Research Center for Medical Sciences, The Jikei University School of Medicine, Tokyo, Japan
| | - Mitsutoshi Setou
- Department of Cellular & Molecular Anatomy, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Michinori Kohara
- Department of Microbiology and Cell Biology, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Tetsuro Suzuki
- Department of Microbiology and Immunology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| |
Collapse
|
2
|
Sun YD, Zhang H, Li YM, Han JJ. Abnormal metabolism in hepatic stellate cells: Pandora's box of MAFLD related hepatocellular carcinoma. Biochim Biophys Acta Rev Cancer 2024; 1879:189086. [PMID: 38342420 DOI: 10.1016/j.bbcan.2024.189086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/25/2023] [Accepted: 02/06/2024] [Indexed: 02/13/2024]
Abstract
Metabolic associated fatty liver disease (MAFLD) is a significant risk factor for the development of hepatocellular carcinoma (HCC). Hepatic stellate cells (HSCs), as key mediators in liver injury response, are believed to play a crucial role in the repair process of liver injury. However, in MAFLD patients, the normal metabolic and immunoregulatory mechanisms of HSCs become disrupted, leading to disturbances in the local microenvironment. Abnormally activated HSCs are heavily involved in the initiation and progression of HCC. The metabolic disorders and abnormal activation of HSCs not only initiate liver fibrosis but also contribute to carcinogenesis. In this review, we provide an overview of recent research progress on the relationship between the abnormal metabolism of HSCs and the local immune system in the liver, elucidating the mechanisms of immune imbalance caused by abnormally activated HSCs in MAFLD patients. Based on this understanding, we discuss the potential and challenges of metabolic-based and immunology-based mechanisms in the treatment of MAFLD-related HCC, with a specific focus on the role of HSCs in HCC progression and their potential as targets for anti-cancer therapy. This review aims to enhance researchers' understanding of the importance of HSCs in maintaining normal liver function and highlights the significance of HSCs in the progression of MAFLD-related HCC.
Collapse
Affiliation(s)
- Yuan-Dong Sun
- Department of Interventional Radiology, Shandong Cancer Hospital and Institute Affiliated Shandong First Medical University, Shandong Academy of Medical Sciences, China
| | - Hao Zhang
- Department of Interventional Radiology, Shandong Cancer Hospital and Institute Affiliated Shandong First Medical University, Shandong Academy of Medical Sciences, China
| | - Yuan-Min Li
- NHC Key Laboratory of Transplant Engineering and Immunology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital of Sichuan University, China
| | - Jian-Jun Han
- Department of Interventional Radiology, Shandong Cancer Hospital and Institute Affiliated Shandong First Medical University, Shandong Academy of Medical Sciences, China.
| |
Collapse
|
3
|
Siphepho PY, Liu YT, Shabangu CS, Huang JF, Huang CF, Yeh ML, Yu ML, Wang SC. The Impact of Steatosis on Chronic Hepatitis C Progression and Response to Antiviral Treatments. Biomedicines 2021; 9:1491. [PMID: 34680608 PMCID: PMC8533513 DOI: 10.3390/biomedicines9101491] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/12/2021] [Accepted: 10/13/2021] [Indexed: 02/07/2023] Open
Abstract
Metabolic derangement is characteristic in patients with hepatitis C virus (HCV) infection. Aside from established liver injury, various extrahepatic metabolic disorders impact the natural history of the disease, clinical outcomes, and the efficacy of antiviral therapy. The presence of steatosis, recently redefined as metabolic-associated fatty liver disease (MAFLD), is a common feature in HCV-infected patients, induced by host and/or viral factors. Most chronic HCV-infected (CHC) patients have mild steatosis within the periportal region of the liver with an estimated prevalence of 40% to 86%. Indeed, this is higher than the 19% to 50% prevalence observed in patients with other chronic liver diseases such as chronic hepatitis B (CHB). The histological manifestations of HCV infection are frequently observed in genotype 3 (G-3), where relative to other genotypes, the prevalence and severity of steatosis is also increased. Steatosis may independently influence the treatment efficacy of either interferon-based or interferon-free antiviral regimens. This review aimed to provide updated evidence of the prevalence and risk factors behind HCV-associated steatosis, as well as explore the impact of steatosis on HCV-related outcomes.
Collapse
Affiliation(s)
- Phumelele Yvonne Siphepho
- Program in Tropical Medicine, Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (P.Y.S.); (M.-L.Y.)
- Center for Cancer Research, Center for Liquid Biopsy, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (C.S.S.); (J.-F.H.)
| | - Yi-Ting Liu
- Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
| | - Ciniso Sylvester Shabangu
- Center for Cancer Research, Center for Liquid Biopsy, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (C.S.S.); (J.-F.H.)
- Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Jee-Fu Huang
- Center for Cancer Research, Center for Liquid Biopsy, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (C.S.S.); (J.-F.H.)
- Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (C.-F.H.); (M.-L.Y.)
- Faculty of Internal Medicine, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Hepatitis Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Chung-Feng Huang
- Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (C.-F.H.); (M.-L.Y.)
- Faculty of Internal Medicine, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Hepatitis Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Ming-Lun Yeh
- Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (C.-F.H.); (M.-L.Y.)
- Faculty of Internal Medicine, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Hepatitis Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Ming-Lung Yu
- Program in Tropical Medicine, Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (P.Y.S.); (M.-L.Y.)
- Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (C.-F.H.); (M.-L.Y.)
- Faculty of Internal Medicine, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Hepatitis Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Shu-Chi Wang
- Center for Cancer Research, Center for Liquid Biopsy, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (C.S.S.); (J.-F.H.)
- Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
- Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
| |
Collapse
|
4
|
Huang W, Song L, Zhang J, Yan X, Yan H. Effects of miR-185-5p on replication of hepatitis C virus. Open Life Sci 2021; 16:752-757. [PMID: 34395911 PMCID: PMC8330614 DOI: 10.1515/biol-2021-0067] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 04/02/2021] [Accepted: 04/23/2021] [Indexed: 12/13/2022] Open
Abstract
This article was designed to explore the effects and mechanisms of miR-185-5p on the replication of hepatitis C virus (HCV). Quantitative reverse transcription PCR (qRT-PCR) was performed for detecting the abundance of miR-185-5p and HCV RNA in HCV-infected primary hepatocytes and Huh7.5 cells. Dual-luciferase reporter gene assay was used for exploring the interaction between miR-185-5p and GALNT8. Western blot analyzed protein expression of GALNT8, NS3, and NS5A. miR-185-5p was remarkably downregulated in HCV-infected primary hepatocytes and Huh7.5 cells. miR-185-5p upregulation inhibited HCV RNA expression, while its inhibition promoted HCV replication. miR-185-5p induced accumulation of NS3 and NS5A in the cells. Dual-luciferase reporter gene assay verified the targeted relationship between miR-185-5p and GALNT8. In addition, the effects of overexpressing or knocking down miR-185-5p on HCV replication could be correspondingly eliminated by the overexpression or knockdown of GALNT8. miR-185-5p may target GALNT8 in JFH1-infected Huh7.5 cells and then inhibit HCV replication. miR-185-5p may be a potential target for treating HCV.
Collapse
Affiliation(s)
- Wei Huang
- Department of Laboratory Medicine, Heping Hospital Affiliated to Changzhi Medical College, No. 110 Yan’an Nan Road, Changzhi 046000, China
| | - Lingyan Song
- Department of Laboratory Medicine, Heping Hospital Affiliated to Changzhi Medical College, No. 110 Yan’an Nan Road, Changzhi 046000, China
| | - Jingyan Zhang
- Department of Laboratory Medicine, Heping Hospital Affiliated to Changzhi Medical College, No. 110 Yan’an Nan Road, Changzhi 046000, China
| | - Xueqiang Yan
- Department of Laboratory Medicine, Heping Hospital Affiliated to Changzhi Medical College, No. 110 Yan’an Nan Road, Changzhi 046000, China
| | - Hui Yan
- Department of Laboratory Medicine, Heping Hospital Affiliated to Changzhi Medical College, No. 110 Yan’an Nan Road, Changzhi 046000, China
| |
Collapse
|
5
|
Lipid Metabolism in Development and Progression of Hepatocellular Carcinoma. Cancers (Basel) 2020; 12:cancers12061419. [PMID: 32486341 PMCID: PMC7352397 DOI: 10.3390/cancers12061419] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 05/19/2020] [Accepted: 05/27/2020] [Indexed: 12/11/2022] Open
Abstract
: Metabolic reprogramming is critically involved in the development and progression of cancer. In particular, lipid metabolism has been investigated as a source of energy, micro-environmental adaptation, and cell signalling in neoplastic cells. However, the specific role of lipid metabolism dysregulation in hepatocellular carcinoma (HCC) has not been widely described yet. Alterations in fatty acid synthesis, β-oxidation, and cellular lipidic composition contribute to initiation and progression of HCC. The aim of this review is to elucidate the mechanisms by which lipid metabolism is involved in hepatocarcinogenesis and tumour adaptation to different conditions, focusing on the transcriptional aberrations with new insights in lipidomics and lipid zonation. This will help detect new putative therapeutic approaches in the second most frequent cause of cancer-related death.
Collapse
|
6
|
MTTP polymorphisms and hepatic steatosis in individuals chronically infected with hepatitis C virus. Arch Virol 2019; 164:2559-2563. [PMID: 31321587 DOI: 10.1007/s00705-019-04352-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 06/19/2019] [Indexed: 12/16/2022]
Abstract
Polymorphisms in the microsomal triglyceride transfer protein (MTTP) gene were genotyped in individuals who were chronically infected with hepatitis C virus (HCV). In the 236 patients, the frequencies of risk alleles of the -164T/C (rs1800804), -400A/T (rs1800803) and H297Q (rs2306985) polymorphisms were 0.30, 0.41 and 0.50, respectively. A significant association between the risk alleles of the -164T/C and -400A/T polymorphisms combined with HCV genotype 3 infection and the occurrence of steatosis was detected (p = 0.004 and p = 0.032), suggesting that a combination of host and viral factors can potentially be used to predict hepatic steatosis.
Collapse
|
7
|
Yang X, Han M, Liu S, Yuan X, Liu X, Feng S, Zhou L, Li Y, Lu H, Cheng J, Lin S. HCBP6 upregulates human SREBP1c expression by binding to C/EBPβ-binding site in the SREBP1c promoter. BMB Rep 2018; 51:33-38. [PMID: 29187281 PMCID: PMC5796632 DOI: 10.5483/bmbrep.2018.51.1.184] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Indexed: 01/10/2023] Open
Abstract
Sterol regulatory element-binding protein-1c (SREBP1c) plays an important role in triglyceride (TG) homeostasis. Although our previous study showed that hepatitis C virus core-binding protein 6 (HCBP6) regulates SREBP1c expression to maintain intracellular TG homeostasis, the mechanism underlying this regulation is unclear. In the present study, we found that HCBP6 increased intracellular TG levels by upregulating SREBP1c expression. HCBP6 increased SREBP1c transcription by directly binding to the SREBP1c promoter (at the −139- to +359-bp region). Moreover, we observed that HCBP6 interacted with C/EBPβ-binding site in the SREBP1c promoter both in vitro and in vivo. These results indicate that HCBP6 upregulates human SREBP1c expression by binding to the C/EBPβ-binding site in the SREBP1c promoter.
Collapse
Affiliation(s)
- Xueliang Yang
- Department of Infectious Diseases, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Ming Han
- Peking University Ditan Teaching Hospital, Beijing 100015; Beijing Key Laboratory of Emerging Infectious Diseases, Beijing 100015, China
| | - Shunai Liu
- Beijing Key Laboratory of Emerging Infectious Diseases, Beijing 100015; Insitiute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China
| | - Xiaoxue Yuan
- Beijing Key Laboratory of Emerging Infectious Diseases, Beijing 100015; Insitiute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China
| | - Xiaojing Liu
- Department of Infectious Diseases, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Shenghu Feng
- Peking University Ditan Teaching Hospital, Beijing 100015; Beijing Key Laboratory of Emerging Infectious Diseases, Beijing 100015, China
| | - Li Zhou
- Peking University Ditan Teaching Hospital, Beijing 100015; Beijing Key Laboratory of Emerging Infectious Diseases, Beijing 100015, China
| | - Yaru Li
- Beijing Key Laboratory of Emerging Infectious Diseases, Beijing 100015; Insitiute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China
| | - Hongping Lu
- Beijing Key Laboratory of Emerging Infectious Diseases, Beijing 100015; Insitiute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China
| | - Jun Cheng
- Peking University Ditan Teaching Hospital, Beijing 100015; Beijing Key Laboratory of Emerging Infectious Diseases, Beijing 100015; Insitiute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China
| | - Shumei Lin
- Department of Infectious Diseases, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| |
Collapse
|
8
|
Beilstein F, Lemasson M, Pène V, Rainteau D, Demignot S, Rosenberg AR. Lysophosphatidylcholine acyltransferase 1 is downregulated by hepatitis C virus: impact on production of lipo-viro-particles. Gut 2017; 66:2160-2169. [PMID: 27582510 DOI: 10.1136/gutjnl-2016-311508] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 08/02/2016] [Accepted: 08/08/2016] [Indexed: 12/18/2022]
Abstract
OBJECTIVE HCV is intimately linked with the liver lipid metabolism, devoted to the efflux of triacylglycerols stored in lipid droplets (LDs) in the form of triacylglycerol-rich very-low-density lipoproteins (VLDLs): (i) the most infectious HCV particles are those of lowest density due to association with triacylglycerol-rich lipoproteins and (ii) HCV-infected patients frequently develop hepatic steatosis (increased triacylglycerol storage). The recent identification of lysophosphatidylcholine acyltransferase 1 (LPCAT1) as an LD phospholipid-remodelling enzyme prompted us to investigate its role in liver lipid metabolism and HCV infectious cycle. DESIGN Huh-7.5.1 cells and primary human hepatocytes (PHHs) were infected with JFH1-HCV. LPCAT1 depletion was achieved by RNA interference. Cells were monitored for LPCAT1 expression, lipid metabolism and HCV production and infectivity. The density of viral particles was assessed by isopycnic ultracentrifugation. RESULTS Upon HCV infection, both Huh-7.5.1 cells and PHH had decreased levels of LPCAT1 transcript and protein, consistent with transcriptional downregulation. LPCAT1 depletion in either naive or infected Huh-7.5.1 cells resulted in altered lipid metabolism characterised by LD remodelling, increased triacylglycerol storage and increased secretion of VLDL. In infected Huh-7.5.1 cells or PHH, LPCAT1 depletion increased production of the viral particles of lowest density and highest infectivity. CONCLUSIONS We have identified LPCAT1 as a modulator of liver lipid metabolism downregulated by HCV, which appears as a viral strategy to increase the triacylglycerol content and hence infectivity of viral particles. Targeting this metabolic pathway may represent an attractive therapeutic approach to reduce both the viral titre and hepatic steatosis.
Collapse
Affiliation(s)
- Frauke Beilstein
- Sorbonne Universités, UPMC Univ. Paris 06, Inserm, Université Paris Descartes, Sorbonne Paris Cité, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France.,EPHE, Ecole Pratique des Hautes Etudes, PSL Research University, Laboratoire de Pharmacologie Cellulaire et Moléculaire, Paris, France
| | - Matthieu Lemasson
- Université Paris Descartes, EA 4474 «Hepatitis C Virology», Paris, France
| | - Véronique Pène
- Université Paris Descartes, EA 4474 «Hepatitis C Virology», Paris, France
| | | | - Sylvie Demignot
- Sorbonne Universités, UPMC Univ. Paris 06, Inserm, Université Paris Descartes, Sorbonne Paris Cité, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France.,EPHE, Ecole Pratique des Hautes Etudes, PSL Research University, Laboratoire de Pharmacologie Cellulaire et Moléculaire, Paris, France
| | - Arielle R Rosenberg
- Université Paris Descartes, EA 4474 «Hepatitis C Virology», Paris, France.,AP-HP, Groupe Hospitalier Cochin, Service de Virologie, Paris, France
| |
Collapse
|
9
|
Fierro N, Gonzalez-Aldaco K, Roman S, Panduro A. The Immune System and Viral Hepatitis. LIVER PATHOPHYSIOLOGY 2017:129-139. [DOI: 10.1016/b978-0-12-804274-8.00009-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
10
|
Prabdial-Sing N, Blackard J, Puren A, Mahomed A, Abuelhassan W, Mahlangu J, Vermeulen M, Bowyer S. Naturally occurring resistance mutations within the core and NS5B regions in hepatitis C genotypes, particularly genotype 5a, in South Africa. Antiviral Res 2016; 127:90-8. [DOI: 10.1016/j.antiviral.2015.11.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Revised: 10/05/2015] [Accepted: 11/26/2015] [Indexed: 12/27/2022]
|
11
|
Chang ML. Metabolic alterations and hepatitis C: From bench to bedside. World J Gastroenterol 2016; 22:1461-1476. [PMID: 26819514 PMCID: PMC4721980 DOI: 10.3748/wjg.v22.i4.1461] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 08/14/2015] [Accepted: 10/26/2015] [Indexed: 02/06/2023] Open
Abstract
In addition to causing cirrhosis and hepatocellular carcinoma, hepatitis C virus (HCV) is thought to cause hypolipidemia, hepatic steatosis, insulin resistance, metabolic syndrome, and diabetes. The viral life cycle of HCV depends on cholesterol metabolism in host cells. HCV core protein and nonstructural protein 5A perturb crucial lipid and glucose pathways, such as the sterol regulatory element-binding protein pathway and the protein kinase B/mammalian target of rapamycin/S6 kinase 1 pathway. Although several lines of transgenic mice expressing core or full HCV proteins exhibit hepatic steatosis and/or dyslipidemia, whether they completely reflect the metabolic alterations in humans with HCV infection remains unknown. Many cross-sectional studies have demonstrated increased prevalences of metabolic alterations and cardiovascular events in patients with chronic hepatitis C (CHC); however, conflicting results exist, primarily due to unavoidable individual variations. Utilizing anti-HCV therapy, most longitudinal cohort studies of CHC patients have demonstrated the favorable effects of viral clearance in attenuating metabolic alterations and cardiovascular risks. To determine the risks of HCV-associated metabolic alterations and associated complications in patients with CHC, it is necessary to adjust for crucial confounders, such as HCV genotype and host baseline glucose metabolism, for a long follow-up period after anti-HCV treatment. Adipose tissue is an important endocrine organ due to its release of adipocytokines, which regulate lipid and glucose metabolism. However, most data on HCV infection and adipocytokine alteration are inconclusive. A comprehensive overview of HCV-associated metabolic and adipocytokine alterations, from bench to bedside, is presented in this topic highlight.
Collapse
|
12
|
Liu D, Li S, Li Z. Adiponectin: A biomarker for chronic hepatitis C? Cytokine 2015; 89:27-33. [PMID: 26683021 DOI: 10.1016/j.cyto.2015.10.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Revised: 10/30/2015] [Accepted: 10/30/2015] [Indexed: 12/14/2022]
Abstract
Adiponectin, a hormone primarily synthesized and secreted by adipose tissue, plays a pivotal role in lipid metabolism. Chronic hepatitis C (CHC) infection is characterized by disordered lipid metabolism, which may potentially evolve into steatosis over a period of time. A growing body of evidence appears to link decreased adiponectin plasma levels with severe CHC-related steatosis, which suggests a potential role of this adipokine as a diagnostic and therapeutic target for clinical application. In this review, we have attempted to summarize the current status of adiponectin research in the context of CHC, concentrating predominantly on its roles in CHC, and its potential relevance as a biomarker for CHC.
Collapse
Affiliation(s)
- Ding Liu
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Shengyu Li
- Department of General Surgery, The Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Zhihong Li
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China.
| |
Collapse
|
13
|
Li M, Wang Q, Liu SA, Zhang JQ, Ju W, Quan M, Feng SH, Dong JL, Gao P, Cheng J. MicroRNA-185-5p mediates regulation of SREBP2 expression by hepatitis C virus core protein. World J Gastroenterol 2015; 21:4517-4525. [PMID: 25914460 PMCID: PMC4402298 DOI: 10.3748/wjg.v21.i15.4517] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Revised: 12/29/2014] [Accepted: 02/05/2015] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the molecular mechanism for regulation of cholesterol metabolism by hepatitis C virus (HCV) core protein in HepG2 cells.
METHODS: HCV genotype 1b core protein was cloned and expressed in HepG2 cells. The cholesterol content was determined after transfection. The expression of sterol regulatory element binding protein 2 (SREBP2) and the rate-limiting enzyme in cholesterol synthesis (HMGCR) was measured by quantitative real-time PCR and immunoblotting after transfection. The effects of core protein on the SREBP2 promoter and 3’-untranslated region were analyzed by luciferase assay. We used different target predictive algorithms, microRNA (miRNA) mimics/inhibitors, and site-directed mutation to identify a putative target of a particular miRNA.
RESULTS: HCV core protein expression in HepG2 cells increased the total intracellular cholesterol level (4.05 ± 0.17 vs 6.47 ± 0.68, P = 0.001), and this increase corresponded to an increase in SREBP2 and HMGCR mRNA levels (P = 0.009 and 0.037, respectively) and protein expression. The molecular mechanism study revealed that the HCV core protein increased the expression of SREBP2 by enhancing its promoter activity (P = 0.004). In addition, miR-185-5p expression was tightly regulated by the HCV core protein (P = 0.041). Moreover, overexpression of miR-185-5p repressed the SREBP2 mRNA level (P = 0.022) and protein expression. In contrast, inhibition of miR-185-5p caused upregulation of SREBP2 protein expression. miR-185-5p was involved in the regulation of SREBP2 expression by HCV core protein.
CONCLUSION: HCV core protein disturbs the cholesterol homeostasis in HepG2 cells via the SREBP2 pathway; miR-185-5p is involved in the regulation of SREBP2 by the core protein.
Collapse
|
14
|
Peta V, Torti C, Milic N, Focà A, Abenavoli L. Adiponectin serum level in chronic hepatitis C infection and therapeutic profile. World J Hepatol 2015; 7:44-52. [PMID: 25624996 PMCID: PMC4295193 DOI: 10.4254/wjh.v7.i1.44] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Revised: 07/20/2014] [Accepted: 11/19/2014] [Indexed: 02/06/2023] Open
Abstract
Hepatic steatosis is commonly seen in the patients with chronic hepatitis C virus (HCV) infection. HCV is closely associated with lipid metabolism, and viral steatosis is more common in genotype 3 infection owing to a direct cytopathic effect of HCV core protein. In non-genotype 3 infection, hepatic steatosis is considered largely to be the result of the alterations in host metabolism; metabolic steatosis is primarily linked with HCV genotype 1. Adipose tissue secretes different hormones involved in glucose and lipid metabolisms. It has been demonstrated that adipocytokines are involved in the pathogenesis of non-alcoholic fatty liver disease, as the decreased plasma adiponectin levels, a soluble matrix protein expressed by adipoctyes and hepatocyte, are associated with liver steatosis. Various studies have shown that steatosis is strongly correlated negatively with adiponectin in the patients with HCV infection. The role of adiponectin in hepatitis C virus induced steatosis is still not completely understood, but the relationship between adiponectin low levels and liver steatosis is probably due to the ability of adiponectin to protect hepatocytes from triglyceride accumulation by increasing β-oxidation of free fatty acid and thus decreasing de novo free fatty acid production.
Collapse
|
15
|
Abenavoli L, Masarone M, Peta V, Milic N, Kobyliak N, Rouabhia S, Persico M. Insulin resistance and liver steatosis in chronic hepatitis C infection genotype 3. World J Gastroenterol 2014; 20:15233-15240. [PMID: 25386071 PMCID: PMC4223256 DOI: 10.3748/wjg.v20.i41.15233] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Revised: 04/28/2014] [Accepted: 06/13/2014] [Indexed: 02/06/2023] Open
Abstract
Hepatitis C virus (HCV) infection is a common chronic liver disease worldwide. Non-alcoholic fatty liver disease and insulin resistance (IR) are the major determinants of fibrosis progression and response to antiviral therapy. The pathogenetic link between IR and chronic HCV infection is complex, and is associated with HCV genotype. Liver steatosis is the most common in the patients infected with genotype 3 virus, possibly due to direct effects of genotype 3 viral proteins. To the contrary, hepatic steatosis in the patients infected with other genotypes is thought to be mostly due to the changes in host metabolism, involving IR. In HCV genotype 3, liver steatosis correlates with viral load, reverts after reaching the sustained virologic response and reoccurs in the relapsers. A therapeutic strategy to improve IR and liver steatosis and subsequently the response to antiviral treatment in these patients is warranted.
Collapse
|
16
|
Lendvai G, Jármay K, Karácsony G, Halász T, Kovalszky I, Baghy K, Wittmann T, Schaff Z, Kiss A. Elevated miR-33a and miR-224 in steatotic chronic hepatitis C liver biopsies. World J Gastroenterol 2014; 20:15343-15350. [PMID: 25386083 PMCID: PMC4223268 DOI: 10.3748/wjg.v20.i41.15343] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Revised: 05/07/2014] [Accepted: 06/13/2014] [Indexed: 02/07/2023] Open
Abstract
AIM: To assess the expression of selected microRNAs (miRNA) in hepatitis C, steatotic hepatitis C, noninfected steatotic and normal liver tissues.
METHODS: The relative expression levels of miR-21, miR-33a, miR-96, miR-122, miR-125b, miR-221 and miR-224 were determined in 76 RNA samples isolated from 18 non-steatotic and 28 steatotic chronic hepatitis C (CHC and CHC-Steatosis, respectively) cases, 18 non-infected, steatotic liver biopsies of metabolic origin (Steatosis) and 12 normal formalin-fixed paraffin-embedded liver tissues using TaqMan MicroRNA Assays. All CHC biopsy samples were obtained prior to initiating therapy. Patients’ serum biochemical values, which included glucose, triglyceride, cholesterol, alanine aminotransferase (ALT), aspartate aminotransferase (AST), gamma-glutamyl-transferase (GGT), alkaline phosphatase (AP), were obtained and correlated with relative miRNA expression.
RESULTS: When compared with control non-infected liver samples, miR-122 and miR-221 levels were reduced in CHC-Steatosis (P < 0.03) and in CHC, CHC-Steatosis and Steatosis (P < 0.01). Alternatively, the expression of miR-33a and miR-224 were elevated in CHC-Steatosis and Steatosis in comparison to control tissue (P < 0.01). The levels of miR-33a and miR-224 in CHC-Steatosis (P < 0.02) and miR-224 in Steatosis (P < 0.001) were increased in comparison to CHC samples. By contrast, the expression of miR-21 did not differ statistically between diseased and normal liver samples. Levels of miR-33a correlated negatively with serum AST and AP levels in Steatosis as well as with necroinflammatory grade in CHC, whereas miR-21 correlated positively with AST in Steatosis and displayed negative correlation with triglyceride level in CHC-Steatosis. In contrast, miRNA levels were not correlated with ALT, GGT, cholesterol levels or fibrosis stage.
CONCLUSION: Differences in miRNA expression were observed between CHC and steatotic CHC, CHC and steatotic liver, but not between steatotic CHC and steatotic liver of metabolic origin.
Collapse
|
17
|
Li HC, Ma HC, Yang CH, Lo SY. Production and pathogenicity of hepatitis C virus core gene products. World J Gastroenterol 2014; 20:7104-7122. [PMID: 24966583 PMCID: PMC4064058 DOI: 10.3748/wjg.v20.i23.7104] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2013] [Revised: 12/05/2013] [Accepted: 04/03/2014] [Indexed: 02/06/2023] Open
Abstract
Hepatitis C virus (HCV) is a major cause of chronic liver diseases, including steatosis, cirrhosis and hepatocellular carcinoma, and its infection is also associated with insulin resistance and type 2 diabetes mellitus. HCV, belonging to the Flaviviridae family, is a small enveloped virus whose positive-stranded RNA genome encoding a polyprotein. The HCV core protein is cleaved first at residue 191 by the host signal peptidase and further cleaved by the host signal peptide peptidase at about residue 177 to generate the mature core protein (a.a. 1-177) and the cleaved peptide (a.a. 178-191). Core protein could induce insulin resistance, steatosis and even hepatocellular carcinoma through various mechanisms. The peptide (a.a. 178-191) may play a role in the immune response. The polymorphism of this peptide is associated with the cellular lipid drop accumulation, contributing to steatosis development. In addition to the conventional open reading frame (ORF), in the +1 frame, an ORF overlaps with the core protein-coding sequence and encodes the alternative reading frame proteins (ARFP or core+1). ARFP/core+1/F protein could enhance hepatocyte growth and may regulate iron metabolism. In this review, we briefly summarized the current knowledge regarding the production of different core gene products and their roles in viral pathogenesis.
Collapse
|
18
|
Fierro NA, Gonzalez-Aldaco K, Torres-Valadez R, Martinez-Lopez E, Roman S, Panduro A. Immunologic, metabolic and genetic factors in hepatitis C virus infection. World J Gastroenterol 2014; 20:3443-3456. [PMID: 24707127 PMCID: PMC3974511 DOI: 10.3748/wjg.v20.i13.3443] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Revised: 01/16/2014] [Accepted: 03/06/2014] [Indexed: 02/06/2023] Open
Abstract
The mechanisms that regulate disease progression during hepatitis C virus (HCV) infection and the response to treatment are not clearly identified. Numerous studies have demonstrated that a strong host immune response against HCV favors HCV clearance. In addition, genetic factors and metabolic machinery, particularly cholesterol modulation, are involved in HCV infection. It is likely that the interplay between all of these factors contributes to the outcome of HCV infection. In recent years, the world has experienced its largest epidemic of obesity. Mexico and the United States are the leading sufferers from this epidemic at the global level. Obesity is associated with the development of numerous pathologies including hypercholesterolemia which is one of the eight most important risk factors for mortality in Mexico. This may be related to the course of HCV infection in this population. Here, we focus on the urgent need to study the progression of HCV infection in relation to ethnic characteristics. Discoveries are discussed that hold promise in identifying immune, metabolic and genetic factors that, in conjunction, could be therapeutic targets or predictors of the progression of HCV infection.
Collapse
|
19
|
Irshad M, Mankotia DS, Irshad K. An insight into the diagnosis and pathogenesis of hepatitis C virus infection. World J Gastroenterol 2013; 19:7896-7909. [PMID: 24307784 PMCID: PMC3848138 DOI: 10.3748/wjg.v19.i44.7896] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Revised: 09/11/2013] [Accepted: 10/14/2013] [Indexed: 02/06/2023] Open
Abstract
This review focuses on research findings in the area of diagnosis and pathogenesis of hepatitis C virus (HCV) infection over the last few decades. The information based on published literature provides an update on these two aspects of HCV. HCV infection, previously called blood transmitted non-A, non-B infection, is prevalent globally and poses a serious public health problem worldwide. The diagnosis of HCV infection has evolved from serodetection of non-specific and low avidity anti-HCV antibodies to detection of viral nucleic acid in serum using the polymerase chain reaction (PCR) technique. Current PCR assays detect viral nucleic acid with high accuracy and the exact copy number of viral particles. Moreover, multiplex assays using real-time PCR are available for identification of HCV-genotypes and their isotypes. In contrast to previous methods, the newly developed assays are not only fast and economic, but also resolve the problem of the window period as well as differentiate present from past infection. HCV is a non-cytopathic virus, thus, its pathogenesis is regulated by host immunity and metabolic changes including oxidative stress, insulin resistance and hepatic steatosis. Both innate and adaptive immunity play an important role in HCV pathogenesis. Cytotoxic lymphocytes demonstrate crucial activity during viral eradication or viral persistence and are influenced by viral proteins, HCV-quasispecies and several metabolic factors regulating liver metabolism. HCV pathogenesis is a very complex phenomenon and requires further study to determine the other factors involved.
Collapse
|
20
|
Abstract
Hepatocellular carcinoma (HCC), the most common form of primary liver cancer is the third leading cause of cancer-related cell death in human and the fifth in women worldwide. The incidence of HCC is increasing despite progress in identifying risk factors, understanding disease etiology and developing anti-viral strategies. Therapeutic options are limited and survival after diagnosis is poor. Therefore, better preventive, diagnostic and therapeutic tools are urgently needed, in particular given the increased contribution from systemic metabolic disease to HCC incidence worldwide. In the last three decades, technological advances have facilitated the generation of genetically engineered mouse models (GEMMs) to mimic the alterations frequently observed in human cancers or to conduct intervention studies and assess the relevance of candidate gene networks in tumor establishment, progression and maintenance. Because these studies allow molecular and cellular manipulations impossible to perform in patients, GEMMs have improved our understanding of this complex disease and represent a source of great potential for mechanism-based therapy development. In this review, we provide an overview of the current state of HCC modeling in the mouse, highlighting successes, current challenges and future opportunities.
Collapse
|
21
|
Aizawa Y, Yohizawa K, Aida Y, Ishiguro H, Abe H, Tsubota A. Genotype rs8099917 near the IL28B gene and amino acid substitution at position 70 in the core region of the hepatitis C virus are determinants of serum apolipoprotein B-100 concentration in chronic hepatitis C. Mol Cell Biochem 2012; 360:9-14. [PMID: 21879313 DOI: 10.1007/s11010-011-1037-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2011] [Accepted: 08/13/2011] [Indexed: 02/06/2023]
Abstract
The life cycle of the hepatitis C virus (HCV) is closely related to host lipoprotein metabolism. Serum levels of lipid are associated with the response to pegylated interferon plus ribavirin (PEG-IFN/RBV) therapy, while single nucleotide polymorphisms (SNPs) around the human interleukin 28B (IL28B) gene locus and amino acid substitutions in the core region of the HCV have been reported to affect the efficacy of PEG-IFN/RBV therapy in chronic hepatitis with HCV genotype 1b infection. The aim of this study was to elucidate the relationship between serum lipid and factors that are able to predict the efficacy of PEG-IFN/RB therapy, with specific focus on apolipoprotein B-100 (apoB-100) in 148 subjects with chronic HCV G1b infection. Our results demonstrated that both the aa 70 substitution in the core region of the HCV and the rs8099917 SNP located proximal to the IL28B were independent factors in determining serum apoB-100 and low-density lipoprotein (LDL) cholesterol levels. A significant association was noted between higher levels of apoB-100 (P = 1.1 × 10(-3)) and LDL cholesterol (P = 0.02) and the subjects having Arg70. A significant association was also observed between subjects carrying the rs8099917 TT responder genotype and higher levels of apoB-100 (P = 6.4 × 10(-3)) and LDL cholesterol (P = 4.2 × 10(-3)). Our results suggest that apoB-100 and LDL cholesterol are markers of impaired cellular lipoprotein pathways and/or host endogenous interferon response to HCV in chronic HCV infection. In particular, serum apoB-100 concentration might be an informative marker for judging changes in HCV-associated intracellular lipoprotein metabolism in patients carrying the rs8099917 responder genotype.
Collapse
Affiliation(s)
- Yoshio Aizawa
- Division of Gastroenterology and Hepatology, Jikei University Aoto Hospital, Tokyo, Japan.
| | | | | | | | | | | |
Collapse
|
22
|
Dolganiuc A, Szabo G. Dendritic cells in hepatitis C infection: can they (help) win the battle? J Gastroenterol 2011; 46:432-47. [PMID: 21327958 DOI: 10.1007/s00535-011-0377-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2010] [Accepted: 12/13/2010] [Indexed: 02/04/2023]
Abstract
Infection with hepatitis C virus (HCV) is a public health problem; it establishes a chronic course in ~85% of infected patients and increases their risk for developing liver cirrhosis, hepatocellular carcinoma, and significant extrahepatic manifestations. The mechanisms of HCV persistence remain elusive and are largely related to inefficient clearance of the virus by the host immune system. Dendritic cells (DCs) are the most efficient inducers of immune responses; they are capable of triggering productive immunity and maintaining the state of tolerance to self- and non-self antigens. During the past decade, multiple research groups have focused on DCs, in hopes of unraveling an HCV-specific DC signature or DC-dependent mechanisms of antiviral immunity which would lead to a successful HCV elimination strategy. This review incorporates the latest update in the current status of knowledge on the role of DCs in anti-HCV immunity as it relates to several challenging questions: (a) the phenotype and function of diverse DC subsets in HCV-infected patients; (b) the characteristics of non-human HCV infection models from the DCs' point of view; (c) how can in vitro systems, ranging from HCV protein- or peptide-exposed DC to HCV protein-expressing DCs, and in vivo systems, ranging from HCV protein-expressing transgenic mice to HCV-infected non-human primates, be employed to dissect the role of DCs in triggering/maintaining a robust antiviral response; and (d) the prospect of DC-based strategy for managing and finding a cure for HCV infection.
Collapse
Affiliation(s)
- Angela Dolganiuc
- Department of Medicine, University of Massachusetts Medical School, 364 Plantation Street, LRB-270-H, Worcester, MA 01605, USA.
| | | |
Collapse
|