1
|
Boldinova EO, Khairullin RF, Makarova AV, Zharkov DO. Isoforms of Base Excision Repair Enzymes Produced by Alternative Splicing. Int J Mol Sci 2019; 20:ijms20133279. [PMID: 31277343 PMCID: PMC6651865 DOI: 10.3390/ijms20133279] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/19/2019] [Revised: 06/29/2019] [Accepted: 07/02/2019] [Indexed: 02/07/2023] Open
Abstract
Transcripts of many enzymes involved in base excision repair (BER) undergo extensive alternative splicing, but functions of the corresponding alternative splice variants remain largely unexplored. In this review, we cover the studies describing the common alternatively spliced isoforms and disease-associated variants of DNA glycosylases, AP-endonuclease 1, and DNA polymerase beta. We also discuss the roles of alternative splicing in the regulation of their expression, catalytic activities, and intracellular transport.
Collapse
Affiliation(s)
| | - Rafil F Khairullin
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 9 Parizhskoy Kommuny Str., 420012 Kazan, Russia
| | - Alena V Makarova
- RAS Institute of Molecular Genetics, 2 Kurchatova Sq., 123182 Moscow, Russia.
| | - Dmitry O Zharkov
- Novosibirsk State University, 1 Pirogova St., 630090 Novosibirsk, Russia.
- SB RAS Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Ave., 630090 Novosibirsk, Russia.
| |
Collapse
|
2
|
Khanra K, Chakraborty A, Bhattacharyya N. HeLa Cells Containing a Truncated Form of DNA Polymerase Beta are More Sensitized to Alkylating Agents than to Agents Inducing Oxidative Stress. Asian Pac J Cancer Prev 2016; 16:8177-86. [PMID: 26745057 DOI: 10.7314/apjcp.2015.16.18.8177] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/10/2022] Open
Abstract
The present study was aimed at determining the effects of alkylating and oxidative stress inducing agents on a newly identified variant of DNA polymerase beta (polβ Δ208-304) specific for ovarian cancer. Pol β Δ208-304 has a deletion of exons 11-13 which lie in the catalytic part of enzyme. We compared the effect of these chemicals on HeLa cells and HeLa cells stably transfected with this variant cloned into in pcDNAI/neo vector by MTT, colony forming and apoptosis assays. Polβ Δ208-304 cells exhibited greater sensitivity to an alkylating agent and less sensitivity towards H2O2 and UV when compared with HeLa cells alone. It has been shown that cell death in Pol β Δ208-304 transfected HeLa cells is mediated by the caspase 9 cascade. Exon 11 has nucleotidyl selection activity, while exons 12 and 13 have dNTP selection activity. Hence deletion of this part may affect polymerizing activity although single strand binding and double strand binding activity may remain same. The lack of this part may adversely affect catalytic activity of DNA polymerase beta so that the variant may act as a dominant negative mutant. This would represent clinical significance if translated into a clinical setting because resistance to radiation or chemotherapy during the relapse of the disease could be potentially overcome by this approach.
Collapse
Affiliation(s)
- Kalyani Khanra
- Department of Biotechnology, Panskura Banamali College; Panskura RS, Purba Medinipur, West Bengal, India E-mail :
| | | | | |
Collapse
|
3
|
Yoo KH, Won KY, Lim SJ, Park YK, Chang SG. Deficiency of MSH2 expression is associated with clear cell renal cell carcinoma. Oncol Lett 2014; 8:2135-2139. [PMID: 25295100 PMCID: PMC4186615 DOI: 10.3892/ol.2014.2482] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/07/2014] [Accepted: 07/23/2014] [Indexed: 12/31/2022] Open
Abstract
DNA hypermethylation plays a major role in the regulation of gene expression in differentiation, development and diseases. The DNA mismatch repair system, which includes Mut-S-Homologon-2 (MSH2) protein, is essential to maintain the stability of the genome during repeated duplication. This study aimed to investigate tumoral MSH2 immunohistochemical expression in clear cell renal cell carcinoma (RCC), and the associations between tumoral MSH2 immunohistochemical expression and clinicopathological parameters. Previously, we reported a high-throughput method for analyzing the methylation status of 807 preselected genes; Illumina’s GoldenGate Methylation Cancer Panel I microarray. The MSH2 gene was identified to be hypermethylated in cancer tissue compared with normal tissue. From January 2000 to December 2012, 129 clear cell RCC cases (median age, 61 years) were included in the immunohistochemical analysis of the present study. Patients were divided according to MSH2 expression status (MSH2-negative, n=53; MSH2-positive, n=76). T stage was significantly higher in the MSH2-negative group than in the MSH2 positive-group (P=0.021). There was no significant difference in terms of N stage, M stage and Fuhrman’s nuclear grade between the MSH2-negative and MSH2-positive group (N stage, P=0.072; M stage, P=0.759; Fuhrman’s nuclear grade, P=0118). The MSH2-negative group showed decreased rates of recurrence-free survival, progression-free survival and overall survival, without statistically significant results (P=0.232, P=0.268 and P=0.311, respectively). MSH2 protein expression may be a useful marker for predicting TNM stage and prognosis and, thus, MSH2 may be a prognostic factor in clear cell RCC.
Collapse
Affiliation(s)
- Koo Han Yoo
- Department of Urology, School of Medicine, Kyung Hee University, Seoul 130-702, Republic of Korea
| | - Kyu Yeoun Won
- Department of Pathology, School of Medicine, Kyung Hee University, Seoul 130-702, Republic of Korea
| | - Sung-Jig Lim
- Department of Pathology, School of Medicine, Kyung Hee University, Seoul 130-702, Republic of Korea
| | - Yong-Koo Park
- Department of Pathology, School of Medicine, Kyung Hee University, Seoul 130-702, Republic of Korea
| | - Sung-Goo Chang
- Department of Urology, School of Medicine, Kyung Hee University, Seoul 130-702, Republic of Korea
| |
Collapse
|
4
|
Khanra K, Bhattacharya C, Bhattacharyya N. Association of a newly identified variant of DNA polymerase beta (polβΔ63-123, 208-304) with the risk factor of ovarian carcinoma in India. Asian Pac J Cancer Prev 2013; 13:1999-2002. [PMID: 22901161 DOI: 10.7314/apjcp.2012.13.5.1999] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND DNA polymerase is a single-copy gene that is considered to be part of the DNA repair machinery in mammalian cells. The encoded enzyme is a key to the base excision repair (BER) pathway. It is evident that pol beta has mutations in various cancer samples, but little is known about ovarian cancer. AIM Identification of any variant form of polβ cDNA in ovarian carcinoma and determination of association between the polymorphism and ovarian cancer risk in Indian patients. We used 152 samples to isolate and perform RT-PCR and sequencing. RESULTS A variant of polymerase beta (deletion of exon 4-6 and 11-13, comprising of amino acid 63-123, and 208-304) is detected in heterozygous condition. The product size of this variant is 532 bp while wild type pol beta is 1 kb. Our study of association between the variant and the endometrioid type shows that it is a statistically significant factor for ovarian cancer [OR=31.9 (4.12-246.25) with p<0.001]. The association between variant and stage IV patients further indicated risk (χ2 value of 29.7, and OR value 6.77 with 95% CI values 3.3-13.86). The correlation study also confirms the association data (Pearson correlation values for variant/stage IV and variant/endometrioid of 0.44 and 0.39). CONCLUSION Individuals from this part of India with this type of variant may be at risk of stage IV, endometrioid type ovarian carcinoma.
Collapse
Affiliation(s)
- Kalyani Khanra
- Department of Biotechnology, Haldia Institute of Technology, West Bengal, India
| | | | | |
Collapse
|
5
|
Stoehr C, Burger M, Stoehr R, Bertz S, Ruemmele P, Hofstaedter F, Denzinger S, Wieland WF, Hartmann A, Walter B. Mismatch repair proteins hMLH1 and hMSH2 are differently expressed in the three main subtypes of sporadic renal cell carcinoma. Pathobiology 2012; 79:162-8. [PMID: 22378480 DOI: 10.1159/000335642] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/11/2011] [Accepted: 12/08/2011] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVES We studied the role of minor mismatch repair proteins (MMR) human MutL homologue 1 (hMLH1) and human MutS homologue 2 (hMSH2) in the main subtypes of renal cell carcinoma (RCC). METHODS Expression of MMR proteins hMLH1 and hMSH2 were investigated in 166 RCC tumors, containing the main subtypes by immunohistochemistry. Furthermore, each tumor was screened for microsatellite instability (MSI) using the National Cancer Institute consensus panel for hereditary non-polyposis colon carcinoma as well as for elevated microsatellite alterations at selected tetranucleotide repeats (EMAST) by 10 additional markers. RESULTS MSI was found only in 2.0% of analyzable cases and EMAST was detected only in 1 patient. hMLH1 and hMSH2 expression was reduced in 83.7 (118/141) and 51.2% (65/127) of cases, respectively, in a subtype-specific manner. None of the clear cell RCC tumors retained a high hMLH1 expression and 92.0% lost hMLH1 completely, while papillary and chromophobe RCC preserved the expression in 25.0 and 33.3% of cases (p < 0.001). Subtype specificity was also present in hMSH2 staining, where chromophobe RCC retained a high expression in 41.7% of cases, while clear cell and papillary tumors did not (29.9 and 23.1%; p = 0.01). CONCLUSION MSI and EMAST are rare events in sporadic RCC, whereas diminished MMR protein expression is linked to tumor entity and might contribute to the different biological behavior of the RCC subtypes.
Collapse
Affiliation(s)
- Christine Stoehr
- Institute of Pathology, University of Erlangen, Erlangen, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Rubio-Del-Campo A, Salinas-Sánchez AS, Sánchez-Sánchez F, Giménez-Bachs JM, Donate-Moreno MJ, Pastor-Navarro H, Carrión-López P, Escribano J. Implications of mismatch repair genes hMLH1 and hMSH2 in patients with sporadic renal cell carcinoma. BJU Int 2008; 102:504-9. [PMID: 18325052 DOI: 10.1111/j.1464-410x.2008.07581.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/30/2022]
Abstract
OBJECTIVES To analyse the implications of DNA mismatch repair genes hMLH1 and hMSH2 in sporadic renal cell carcinoma (RCC). MATERIALS AND METHODS Specimens of tumour and healthy renal tissue were collected from 89 patients treated for sporadic RCC. Another 95 blood samples taken from individuals with no history of cancer were also analysed. After DNA extraction and PCR amplification, microsatellite instability (MSI) was determined using the Bethesda microsatellite panel, two exonic microsatellites of the TGFbRII and BAX genes, and the microsatellite D3S1611. The promoter methylation status of hMLH1 was investigated using the HpaII and MspI restriction enzymes. In addition, a sequencing analysis of complete coding region of hMLH1 and hMSH2 genes was performed. RESULTS MSI and promoter hypermethylation of hMLH1 were not detected. Interestingly, loss of heterozygosity (LOH) was common among patients with RCC, particularly in microsatellite D3S1611 (34.9%). Mutations were identified in eight patients: K618A and V716M in gene hMLH1; and I145V, G322D, and the novel mutation P349A, in gene hMSH2. The mutations also appeared in healthy renal tissue and therefore, were considered as germline DNA sequence variations. There were G322D and K618A changes in >1% of the healthy control subjects, suggesting that they are DNA polymorphisms. CONCLUSIONS Our data show that loss of function of both hMLH1 and hMSH2 is not involved in sporadic RCC, either by promoter methylation or mutation in their exons. However, LOH indicated that chromosomal instability affecting large fragments of DNA was the main genetic alteration we detected associated with RCC.
Collapse
Affiliation(s)
- Antonio Rubio-Del-Campo
- Research Department, Hospital and University Complex, University of Castilla-La Mancha, Albacete, Spain
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Wang L, Bhattacharyya N, Rabi T, Wang L, Banerjee S. Mammary carcinogenesis in transgenic mice expressing a dominant-negative mutant of DNA polymerase beta in their mammary glands. Carcinogenesis 2006; 28:1356-63. [PMID: 17166880 DOI: 10.1093/carcin/bgl239] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/13/2022] Open
Abstract
DNA polymerase beta (polbeta) is a major contributor to mammalian DNA damage repair through its gap-filling DNA synthesis and 5'-deoxyribose phosphate lyase activities. In this way, polbeta plays pivotal roles in the repair of oxidative DNA damage, replication, embryonic survival, neuronal development, meiosis, apoptosis and telomere function. A 36 kDa truncated polbetaDelta protein is expressed in human colorectal, breast, lung and renal carcinomas, but not in normal matched tissues. Interestingly, a binary protein-protein complex of polbetaDelta and X-ray cross-complementing group 1 acts as dominant-negative mutant. In this study, the potential tumorigenic activity of polbetaDelta was examined in nude and transgenic mouse models. Mouse embryonic fibroblasts (MEFs) expressing polbetaDelta in the absence of endogenous polbeta exhibited increased susceptibility to N-methyl-N-nitrosourea (MNU)-induced morphological transformation as compared with cells expressing wild-type (WT) polbeta. This was accompanied by reduced gap-filling DNA synthesis activity. Anchorage-independent transformed cells derived from polbetaDelta-expressing MEFs induced 100% tumor occurrence in nude mice. To support these data, we established transgenic mice expressing polbetaDelta specifically in the mammary glands from a whey acidic protein promoter-driven transgene. This is the first report of transgenic mice with tissue-specific expression of polbetaDelta. MNU-induced tumor formation was analyzed in transgenic mice expressing polbetaDelta together with endogenous WT polbeta in their mammary glands and in normal control mice expressing only WT polbeta. The latent period of tumor appearance was markedly shorter and tumor incidence was significantly higher in transgenic animals than in control animals treated under the same conditions. These results indicate that cells expressing the mutant polbetaDelta display an enhanced sensitivity to MNU that probably underlies an increased susceptibility to tumorigenesis.
Collapse
Affiliation(s)
- Liming Wang
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | | | | | | | | |
Collapse
|
8
|
Abstract
Mutation of human mutL homolog 1 (MLH-1) and human mutS homolog 2 (MSH-2) has been linked with the pathogenesis of colorectal carcinoma in hereditary nonpolyposis colorectal cancer syndrome and other carcinomas. Mutations of these genes in renal cell carcinomas were recently described. The aim of this study was to examine the expression of MLH-1 and MSH-2 in renal cortical neoplasms of various histological types by immunohistochemistry. Thirty-eight (n = 38) resected renal tumors were obtained from the surgical pathology files of the UMass Memorial Healthcare, including clear cell carcinomas (CLEARs, n = 20), papillary carcinomas (PAPs, n = 8), chromophobe carcinomas (CHRs, n = 4), and oncocytomas (ONCs, n = 6). Positive immunostaining for MLH-1 and MSH-2 was graded by the number of positive tumor cell nuclei, as follows: 0, negative; 1, up to one third of positive nuclei; 2, one to two thirds positive; and 3, greater than two thirds positive. Loss of MLH-1 or MSH-2 was defined as a tumor with grade 0 or 1, compared with the normal tubules. Normal tubules and intercalated ducts contained cells positive for MLH-1 and MSH-2 in all cases. For both antibodies, positive staining in tumors ranged from grade 1 to 3 in the CLEAR and PAP but was only grade 2 to 3 in the CHR and ONC. Loss of MLH-1 and/or MSH-2 occurred in malignant tumors but not in ONC. Loss of MLH-1 was present in 8 (40%) of 20 CLEARs and 4 (50%) of 8 PAPs, compared with loss of MSH-2 in 4 (20%) of 20 CLEARs and 1 (25%) of 4 CHRs. Our results suggest that loss of mismatch repair genes is involved in the malignant transformation in some renal carcinomas, particularly those derived from the proximal tubules.
Collapse
Affiliation(s)
- Daniel Baiyee
- Department of Pathology, Stanford University School of Medicine, CA 94305-5324, USA.
| | | |
Collapse
|
9
|
Sweasy JB, Lang T, Starcevic D, Sun KW, Lai CC, Dimaio D, Dalal S. Expression of DNA polymerase {beta} cancer-associated variants in mouse cells results in cellular transformation. Proc Natl Acad Sci U S A 2005; 102:14350-5. [PMID: 16179390 PMCID: PMC1242307 DOI: 10.1073/pnas.0505166102] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/22/2023] Open
Abstract
Thirty percent of the 189 tumors studied to date express DNA polymerase beta variants. One of these variants was identified in a prostate carcinoma and is altered from isoleucine to methionine at position 260, within the hydrophobic hinge region of the protein. Another variant was identified in a colon carcinoma and is altered at position 289 from lysine to methionine, within helix N of the protein. We have shown that the types of mutations induced by these cancer-associated variants are different from those induced by the wild-type enzyme. In this study, we show that expression of the I260M and K289M cancer-associated variants in mouse C127 cells results in a transformed phenotype in the great majority of cell clones tested, as assessed by focus formation and anchorage-independent growth. Strikingly, cellular transformation occurs after a variable number of passages in culture but, once established, does not require continuous expression of the polymerase beta variant proteins, implying that it has a mutational basis. Because DNA polymerase beta functions in base excision repair, our results suggest that mutations that arise during this process can lead to the onset or progression of cancer.
Collapse
Affiliation(s)
- Joann B Sweasy
- Departments of Therapeutic Radiology and Genetics, Yale University School of Medicine, New Haven, CT 06520, USA.
| | | | | | | | | | | | | |
Collapse
|
10
|
Abstract
DNA polymerase beta (pol beta) carries out base-excision repair (BER) required for DNA maintenance, replication, and recombination in eukaryotic cells. A variant characterized by a deletion of exon 11, an 87-bp region in the catalytic domain (pol betadelta208-236), was previously described as a possible cause of genomic instability in cancer. The variant form was hypothesized to act in a dominant negative fashion, due to the fact that the variant inhibits the gap filling and DNA binding activities of the wild-type pol beta protein. DNA polymerase beta transcripts were analyzed in 8 breast cancer cell lines, snap-frozen benign breast tissues from 10 women, and lymphocytes from 10 normal controls, using reverse-transcription polymerase chain reaction (RT-PCR) and three separate primer pairs. The exon 10-12 splice site (variant) was identified using a primer designed to span the spliced exons and by sequencing RT-PCR products that included exon 10, exon 11 (if present), and exon 12. In all of the samples tested, we found both the wild-type and exon 11 87-bp deleted variant mRNAs expressed. We conclude that expression of the DNA polymerase beta variant (pol betadelta208-236) is ubiquitous and not breast cancer specific.
Collapse
Affiliation(s)
- Dawei Bu
- Department of Surgery, UT Southwestern Medical Center, Dallas, Texas 75390-9155, USA
| | | | | | | |
Collapse
|
11
|
Wang L, Bhattacharyya N, Chelsea DM, Escobar PF, Banerjee S. A Novel Nuclear Protein, MGC5306 Interacts with DNA Polymerase β and Has a Potential Role in Cellular Phenotype. Cancer Res 2004; 64:7673-7. [PMID: 15520167 DOI: 10.1158/0008-5472.can-04-2801] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/16/2022]
Abstract
A novel protein MGC5306 has been identified in yeast-two-hybrid analysis by screening a HeLa cDNA library with a truncated DNA polymerasebeta (polbetaDelta) as bait. The polbetaDelta is expressed in various types of cancers. Co-immunoprecipitation-Western blot analysis confirms not only its interaction with polbetaDelta but also with wild-type polbeta. Binding to polbeta indicates potential function of MGC5306 in repair pathway. Transfection of cells with MGC5306-GFP and Western blot analysis with anti-MGC5306 antibody reveal its nuclear localization. MGC5306 is expressed in human carcinomas and tumor cell lines but not in normal tissues, suggesting MGC5306 is most likely involved in carcinogenesis. An antigrowth activity and modulations of cell cycle events are identified in cells expressing siRNAMGC5306.
Collapse
Affiliation(s)
- Liming Wang
- Department of Cancer Biology, Lerner Research Institute, Cleveland, Ohio, USA
| | | | | | | | | |
Collapse
|
12
|
Abstract
PURPOSE DNA mismatch repair is one of the correcting mechanisms that preserves genetic stability during replication or chemically induced damage. We hypothesized that genetic instability is due to a defect in mismatch repair genes in renal cell carcinoma. To test this hypothesis mismatch repair genes hMLH1, hMSH2, hMSH3, hMSH6, hPMS1 and hPMS2 were analyzed in renal cell carcinoma cell lines and tissues. We further investigated the mechanisms of inactivation of these genes through CpG methylation pathways. MATERIALS AND METHODS We analyzed 41 fresh normal and renal cell carcinoma samples for gene and protein expression of various mismatch repair genes (hMLH1, hMSH2, hMSH3, hMSH6, hPMS1 and hPMS2) using reverse transcriptase-polymerase chain reaction and immunohistochemistry techniques. To investigate the mechanisms of inactivation of these genes cultured renal cancer cell lines (A498, Caki-1 and Caki-2) were treated with demethylating agent (5-aza-2'-deoxycytidine), and mismatch repair genes and protein expression were analyzed before and after treatment. RESULTS hMLH1 and hMSH3 mRNA expression was significantly lower in renal cell carcinoma tissues than in normal tissues. Similarly nuclear positivity of hMSH3 was significantly lower in renal cell carcinoma tissues than in normal tissues. Moreover, at the mRNA and protein levels hMSH3 expression in high grade renal cell carcinomas was significantly lower than in low grade tumors. However, there was no significant difference in hMSH2, hMSH6, hPMS1 or hPMS2 expression in renal cell carcinoma tissues versus normal kidney tissues. In renal cancer cell lines demethylation with 5-aza-2'-deoxycytidine did not affect the expression of hMLH1 and hMSH3 genes. CONCLUSIONS To our knowledge this is the first comprehensive study demonstrating the down-regulation of mismatch repair genes in renal cell carcinoma. Selective defect in some mismatch repair genes can cause genomic instability and activate the malignant transformation as well as the progression of renal cell carcinoma.
Collapse
Affiliation(s)
- Masao Deguchi
- Departments of Urology, Veterans Affairs Medical Center and University of California at San Francisco, San Francisco, California, USA
| | | | | | | | | | | |
Collapse
|
13
|
Zhang QX, Ding Y, Le XP, Du P. Studies on microsatellite instability in p16 gene and expression of hMSH2 mRNA in human gastric cancer tissues. World J Gastroenterol 2003; 9:437-41. [PMID: 12632492 PMCID: PMC4621556 DOI: 10.3748/wjg.v9.i3.437] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To detect the loss of heterozygosity (LOH) frequency of microsatellite sites D9s171, D9s1604 of p16 gene and expression of hMSH2 mRNA in various differentiated types of gastric cancer, adjacent cancer tissues and normal gastric mucosa.
METHODS: LOH was detected by polymerase chain reaction (PCR)-denaturing polyacrylamide gel electrophoresis-silver staining. The expression of hMSH2 mRNA was examined with in situ hybridization.
RESULTS: The frequency rate of LOH was significantly higher in gastric cancers than that in adjacent cancer tissues (P = 0.032). No significant difference was noted among various differentiated types and various clinical stages of gastric cancers. The significantly reduced expression of hMSH2 mRNA positive signal cells exhibited in gastric cancers, in comparison with that in the adjacent cancer tissues and normal gastric mucosa, respectively (P = 0.001). No significant difference was noted among various clinical stages of gastric cancers (P > 0.05). The difference of positive signal cells in poorly differentiated cancers and those in well and moderately differentiated cancers were significant (P < 0.001).
CONCLUSION: The frequencies of LOH in two microsatellite sites, D9s171 and D9s1604, in p16 genome were associated with development of gastric cancer and no significant correlation was demonstrated between the LOH frequency and the cell differentiated types of tumor cells or clinical stages. There was a positive relationship between the expression of hMSH2 mRNA and the differentiated types of gastric cancer.
Collapse
Affiliation(s)
- Qin-Xian Zhang
- Molecular Cell Biology Research Center, Medical College of Zhengzhou University; 40 Daxue Lu, Zhengzhou 450052, Henan Province, China.
| | | | | | | |
Collapse
|