1
|
Benga L, Rehm A, Gougoula C, Westhoff P, Wachtmeister T, Benten WPM, Engelhardt E, Weber APM, Köhrer K, Sager M, Janssen S. The host genotype actively shapes its microbiome across generations in laboratory mice. MICROBIOME 2024; 12:256. [PMID: 39639355 PMCID: PMC11619136 DOI: 10.1186/s40168-024-01954-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 10/18/2024] [Indexed: 12/07/2024]
Abstract
BACKGROUND The microbiome greatly affects health and wellbeing. Evolutionarily, it is doubtful that a host would rely on chance alone to pass on microbial colonization to its offspring. However, the literature currently offers only limited evidence regarding two alternative hypotheses: active microbial shaping by host genetic factors or transmission of a microbial maternal legacy. RESULTS To further dissect the influence of host genetics and maternal inheritance, we collected two-cell stage embryos from two representative wild types, C57BL6/J and BALB/c, and transferred a mixture of both genotype embryos into hybrid recipient mice to be inoculated by an identical microbiome at birth. CONCLUSIONS Observing the offspring for six generations unequivocally emphasizes the impact of host genetic factors over maternal legacy in constant environments, akin to murine laboratory experiments. Interestingly, maternal legacy solely controlled the microbiome in the first offspring generation. However, current evidence supporting maternal legacy has not extended beyond this initial generation, resolving the aforementioned debate. Video Abstract.
Collapse
Affiliation(s)
- Laurentiu Benga
- Central Unit for Animal Research and Animal Welfare Affairs, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.
| | - Anna Rehm
- Algorithmic Bioinformatics, Justus Liebig University Giessen, Giessen, Germany
| | - Christina Gougoula
- Central Unit for Animal Research and Animal Welfare Affairs, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Philipp Westhoff
- Cluster of Excellence on Plant Science, Institute of Plant Biochemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Thorsten Wachtmeister
- Genomics and Transcriptomics Laboratory, Biological and Medical Research Center, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - W Peter M Benten
- Central Unit for Animal Research and Animal Welfare Affairs, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Eva Engelhardt
- Central Unit for Animal Research and Animal Welfare Affairs, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Andreas P M Weber
- Cluster of Excellence on Plant Science, Institute of Plant Biochemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Karl Köhrer
- Genomics and Transcriptomics Laboratory, Biological and Medical Research Center, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Martin Sager
- Central Unit for Animal Research and Animal Welfare Affairs, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Stefan Janssen
- Algorithmic Bioinformatics, Justus Liebig University Giessen, Giessen, Germany.
| |
Collapse
|
2
|
Solak HM, Kreisinger J, Čížková D, Sezgin E, Schmiedová L, Murtskhvaladze M, Henning Y, Çolak F, Matur F, Yanchukov A. Altitude shapes gut microbiome composition accounting for diet, thyroid hormone levels, and host genetics in a subterranean blind mole rat. Front Microbiol 2024; 15:1476845. [PMID: 39552645 PMCID: PMC11565052 DOI: 10.3389/fmicb.2024.1476845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 10/17/2024] [Indexed: 11/19/2024] Open
Abstract
The animal gut microbiome acts as a crucial link between the host and its environment, playing a vital role in digestion, metabolism, physiology, and fitness. Using 16S rRNA metabarcoding, we investigated the effect of altitude on the microbiome composition of Anatolian Blind Mole Rats (Nannospalax xanthodon) across six locations and three altitudinal groups. We also factored in the host diet, as well as host microsatellite genotypes and thyroid hormone levels. The altitude had a major effect on microbiome composition, with notable differences in the relative abundance of several bacterial taxa across elevations. Contrary to prior research, we found no significant difference in strictly anaerobic bacteria abundance among altitudinal groups, though facultatively anaerobic bacteria were more prevalent at higher altitudes. Microbiome alpha diversity peaked at mid-altitude, comprising elements from both low and high elevations. The beta diversity showed significant association with the altitude. Altitude had a significant effect on the diet composition but not on its alpha diversity. No distinct altitude-related genetic structure was evident among the host populations, and no correlation was revealed between the host genetic relatedness and microbiome composition nor between the host microbiome and the diet. Free thyroxine (FT4) levels increased almost linearly with the altitude but none of the bacterial ASVs were found to be specifically associated with hormone levels. Total thyroxine (TT4) levels correlated positively with microbiome diversity. Although we detected correlation between certain components of the thyroid hormone levels and the microbiome beta diversity, the pattern of their relationship remains inconclusive.
Collapse
Affiliation(s)
- Halil Mert Solak
- Department of Biology, Faculty of Science, Bülent Ecevit University, Zonguldak, Türkiye
- Department of Zoology, Charles University, Prague, Czechia
| | | | - Dagmar Čížková
- Institute of Vertebrate Biology, Academy of Sciences of the Czech Republic, Brno, Czechia
| | - Efe Sezgin
- Department of Food Engineering, Izmir Institute of Technology, Izmir, Türkiye
| | - Lucie Schmiedová
- Department of Zoology, Charles University, Prague, Czechia
- Institute of Vertebrate Biology, Academy of Sciences of the Czech Republic, Brno, Czechia
| | | | - Yoshiyuki Henning
- Institute of Physiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Faruk Çolak
- Department of Biology, Faculty of Science, Bülent Ecevit University, Zonguldak, Türkiye
| | - Ferhat Matur
- Department of Biology, Dokuz Eylül University, İzmir, Türkiye
| | - Alexey Yanchukov
- Department of Biology, Faculty of Science, Bülent Ecevit University, Zonguldak, Türkiye
| |
Collapse
|
3
|
Yang C, Dwan C, Wimmer BC, Wilson R, Johnson L, Caruso V. Fucoidan from Undaria pinnatifida Enhances Exercise Performance and Increases the Abundance of Beneficial Gut Bacteria in Mice. Mar Drugs 2024; 22:485. [PMID: 39590765 PMCID: PMC11595500 DOI: 10.3390/md22110485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/10/2024] [Accepted: 10/24/2024] [Indexed: 11/28/2024] Open
Abstract
Fucoidans, known for their diverse biological properties such as anti-inflammatory, antiviral, antitumor, and immune stimulatory effects, have recently gained attention for their potential benefits in exercise endurance, muscle mass, and anti-fatigue. However, the mechanisms by which fucoidans enhance exercise performance are still unclear. To investigate these effects, we administered 400 mg/kg/day of fucoidan extract derived from Undaria pinnatifida to 64 C57BL/6J mice over 10 weeks. We evaluated changes in running activity, mitochondrial-related gene expression in skeletal muscle, and alterations in the intestinal microbiome. Our results showed that fucoidan supplementation significantly increased daily running distance and muscle mass by 25.5% and 10.4%, respectively, in mice on a standard chow diet, and with more modest effects observed in those on a high-fat diet (HFD). Additionally, fucoidan supplementation led to a significant increase in beneficial gut bacteria, including Bacteroides/Prevotella, Akkermansia muciniphila, and Lactobacillus, along with a notable reduction in the Firmicutes/Bacteroidetes ratio, indicating improved gut microbiome health. Mechanistically, fucoidan supplementation upregulated the mRNA expression of key genes related to mitochondrial biogenesis and oxidative capacity, such as COX4, MYH1, PGC-1α, PPAR-γ, and IGF1, in both standard chow and HFD-fed mice. Our findings suggest that fucoidan supplementation enhances exercise performance, improves muscle function, and positively modulates the gut microbiome in mice, regardless of diet. These effects may be attributed to fucoidans' potential prebiotic role, promoting the abundance of beneficial gut bacteria and contributing to enhanced exercise performance, increased muscle strength, and improved recovery.
Collapse
Affiliation(s)
- Cheng Yang
- School of Pharmacy and Pharmacology, University of Tasmania, Hobart, TAS 7005, Australia;
| | - Corinna Dwan
- Marinova Pty Ltd., 249 Kennedy Drive, Cambridge, TAS 7170, Australia; (C.D.); (B.C.W.)
| | - Barbara C. Wimmer
- Marinova Pty Ltd., 249 Kennedy Drive, Cambridge, TAS 7170, Australia; (C.D.); (B.C.W.)
| | - Richard Wilson
- Central Science Laboratory, College of Science and Engineering, University of Tasmania, Hobart, TAS 7001, Australia;
| | - Luke Johnson
- School of Psychological Sciences, Psychology, University of Tasmania, Launceston, TAS 7248, Australia;
| | - Vanni Caruso
- School of Pharmacy and Pharmacology, University of Tasmania, Hobart, TAS 7005, Australia;
| |
Collapse
|
4
|
Duan X, Nie Y, Xie X, Zhang Q, Zhu C, Zhu H, Chen R, Xu J, Zhang J, Yang C, Yu Q, Cai K, Wang Y, Tian W. Sex differences and testosterone interfere with the structure of the gut microbiota through the bile acid signaling pathway. Front Microbiol 2024; 15:1421608. [PMID: 39493843 PMCID: PMC11527610 DOI: 10.3389/fmicb.2024.1421608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 09/26/2024] [Indexed: 11/05/2024] Open
Abstract
Background The gut microbiome has a significant impact on human wellness, contributing to the emergence and progression of a range of health issues including inflammatory and autoimmune conditions, metabolic disorders, cardiovascular problems, and psychiatric disorders. Notably, clinical observations have revealed that these illnesses can display differences in incidence and presentation between genders. The present study aimed to evaluate whether the composition of gut microbiota is associated with sex-specific differences and to elucidate the mechanism. Methods 16S-rRNA-sequencing technology, hormone analysis, gut microbiota transplantation, gonadectomy, and hormone treatment were employed to investigate the correlation between the gut microbiome and sex or sex hormones. Meanwhile, genes and proteins involved bile acid signaling pathway were analyzed both in the liver and ileum tissues. Results The composition and diversity of the microbiota from the jejunum and feces and the level of sex hormones in the serum differed between the sexes in young and middle-aged Sprague Dawley (SD) rats. However, no similar phenomenon was found in geriatric rats. Interestingly, whether in young, middle-aged, or old rats, the composition of the microbiota and bacterial diversity differed between the jejunum and feces in rats. Gut microbiota transplantation, gonadectomy, and hormone replacement also suggested that hormones, particularly testosterone (T), influenced the composition of the gut microbiota in rats. Meanwhile, the mRNA and protein level of genes involved bile acid signaling pathway (specifically SHP, FXR, CYP7A1, and ASBT) exhibited gender-specific differences, and T may play a significant role in mediating the expression of this pathway. Conclusion Sex-specific differences in the structure of the gut microbiota are mediated by T through the bile acid signaling pathway, pointing to potential targets for disease prevention and management techniques by indicating that sex differences and T levels may alter the composition of the gut microbiota via the bile acid signaling pathway.
Collapse
Affiliation(s)
- Xueqing Duan
- School of Basic Medical Sciences, Guizhou University of Traditional Chinese Medicine, Gui Yang, China
| | - Yinli Nie
- School of Basic Medical Sciences, Guizhou University of Traditional Chinese Medicine, Gui Yang, China
| | - Xin Xie
- School of Basic Medical Sciences, Guizhou University of Traditional Chinese Medicine, Gui Yang, China
| | - Qi Zhang
- School of Basic Medical Sciences, Guizhou University of Traditional Chinese Medicine, Gui Yang, China
| | - Chen Zhu
- School of Basic Medical Sciences, Guizhou University of Traditional Chinese Medicine, Gui Yang, China
| | - Han Zhu
- School of Basic Medical Sciences, Guizhou University of Traditional Chinese Medicine, Gui Yang, China
| | - Rui Chen
- School of Basic Medical Sciences, Guizhou University of Traditional Chinese Medicine, Gui Yang, China
| | - Jun Xu
- School of Basic Medical Sciences, Guizhou University of Traditional Chinese Medicine, Gui Yang, China
| | - Jinqiang Zhang
- School of Basic Medical Sciences, Guizhou University of Traditional Chinese Medicine, Gui Yang, China
| | - Changfu Yang
- School of Basic Medical Sciences, Guizhou University of Traditional Chinese Medicine, Gui Yang, China
| | - Qi Yu
- School of Basic Medical Sciences, Guizhou University of Traditional Chinese Medicine, Gui Yang, China
| | - Kun Cai
- School of Basic Medical Sciences, Guizhou University of Traditional Chinese Medicine, Gui Yang, China
| | - Yong Wang
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Weiyi Tian
- School of Basic Medical Sciences, Guizhou University of Traditional Chinese Medicine, Gui Yang, China
| |
Collapse
|
5
|
Ignatiou A, Pitsouli C. Host-diet-microbiota interplay in intestinal nutrition and health. FEBS Lett 2024; 598:2482-2517. [PMID: 38946050 DOI: 10.1002/1873-3468.14966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 06/11/2024] [Indexed: 07/02/2024]
Abstract
The intestine is populated by a complex and dynamic assortment of microbes, collectively called gut microbiota, that interact with the host and contribute to its metabolism and physiology. Diet is considered a key regulator of intestinal microbiota, as ingested nutrients interact with and shape the resident microbiota composition. Furthermore, recent studies underscore the interplay of dietary and microbiota-derived nutrients, which directly impinge on intestinal stem cells regulating their turnover to ensure a healthy gut barrier. Although advanced sequencing methodologies have allowed the characterization of the human gut microbiome, mechanistic studies assessing diet-microbiota-host interactions depend on the use of genetically tractable models, such as Drosophila melanogaster. In this review, we first discuss the similarities between the human and fly intestines and then we focus on the effects of diet and microbiota on nutrient-sensing signaling cascades controlling intestinal stem cell self-renewal and differentiation, as well as disease. Finally, we underline the use of the Drosophila model in assessing the role of microbiota in gut-related pathologies and in understanding the mechanisms that mediate different whole-body manifestations of gut dysfunction.
Collapse
Affiliation(s)
- Anastasia Ignatiou
- Department of Biological Sciences, University of Cyprus, Nicosia, Cyprus
| | - Chrysoula Pitsouli
- Department of Biological Sciences, University of Cyprus, Nicosia, Cyprus
| |
Collapse
|
6
|
Gopinath D, Pandiar D, Li Z, Panda S. Rodent models for oral microbiome research: considerations and challenges- a mini review. FRONTIERS IN ORAL HEALTH 2024; 5:1439091. [PMID: 39421460 PMCID: PMC11484444 DOI: 10.3389/froh.2024.1439091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 09/16/2024] [Indexed: 10/19/2024] Open
Abstract
Rodent models have been commonly employed in oral microbiota research to investigate the relationship between bacteria and oral disease. Nevertheless, to apply the knowledge acquired from studies conducted on rodents to a human context, it is crucial to consider the significant spatial and temporal parallels and differences between the oral microbiota of mice and humans. Initially, we outline the comparative physiology and microbiology of the oral cavity of rodents and humans. Additionally, we highlight the strong correlation between the oral microbiome of rodents and genetic makeup, which is influenced by factors including vendor, husbandry practices, and environmental conditions. All of these factors potentially impact the replicability of studies on rodent microbiota and the resulting conclusions. Next, we direct our attention toward the diversity in the microbiome within mice models of disease and highlight the diversity that may potentially affect the characteristics of diseases and, in turn, alter the ability to replicate research findings and apply them to real-world situations. Furthermore, we explore the practicality of oral microbial models for complex oral microbial diseases in future investigations by examining the concept of gnotobiotic and germ-free mouse models. Finally, we stress the importance of investigating suitable techniques for characterizing and managing genetically modified organisms. Future research should consider these aspects to improve oral microbiome research's translational potential.
Collapse
Affiliation(s)
- Divya Gopinath
- Basic Medical and Dental Sciences Department, College of Dentistry, Ajman University, Ajman, United Arab Emirates
- Centre of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
| | - Deepak Pandiar
- Department of Oral Pathology and Microbiology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Zhengrui Li
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
- Shanghai Research Institute of Stomatology, Shanghai, China
- Shanghai Center of Head and Neck Oncology Clinical and Translational Science, Shanghai, China
| | - Swagatika Panda
- Department of Oral Pathology and Microbiology, Institute of Dental Sciences, Siksha 'O' Anusandhan University, Bhubaneswar, India
| |
Collapse
|
7
|
Liwinski T, Auer MK, Schröder J, Pieknik I, Casar C, Schwinge D, Henze L, Stalla GK, Lang UE, von Klitzing A, Briken P, Hildebrandt T, Desbuleux JC, Biedermann SV, Holterhus PM, Bang C, Schramm C, Fuss J. Gender-affirming hormonal therapy induces a gender-concordant fecal metagenome transition in transgender individuals. BMC Med 2024; 22:346. [PMID: 39218875 PMCID: PMC11367877 DOI: 10.1186/s12916-024-03548-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 07/29/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Limited data exists regarding gender-specific microbial alterations during gender-affirming hormonal therapy (GAHT) in transgender individuals. This study aimed to investigate the nuanced impact of sex steroids on gut microbiota taxonomy and function, addressing this gap. We prospectively analyzed gut metagenome changes associated with 12 weeks of GAHT in trans women and trans men, examining both taxonomic and functional shifts. METHODS Thirty-six transgender individuals (17 trans women, 19 trans men) provided pre- and post-GAHT stool samples. Shotgun metagenomic sequencing was used to assess the changes in gut microbiota structure and potential function following GAHT. RESULTS While alpha and beta diversity remained unchanged during transition, specific species, including Parabacteroides goldsteinii and Escherichia coli, exhibited significant abundance shifts aligned with affirmed gender. Overall functional metagenome analysis showed a statistically significant effect of gender and transition (R2 = 4.1%, P = 0.0115), emphasizing transitions aligned with affirmed gender, particularly in fatty acid-related metabolism. CONCLUSIONS This study provides compelling evidence of distinct taxonomic and functional profiles in the gut microbiota between trans men and women. GAHT induces androgenization in trans men and feminization in trans women, potentially impacting physiological and health-related outcomes. TRIAL REGISTRATION Clinicaltrials.gov NCT02185274.
Collapse
Affiliation(s)
- Timur Liwinski
- Clinic for Adult Psychiatry, University Psychiatric Clinics, University of Basel, Wilhelm Klein-Strasse 27, Basel, CH-4002, Switzerland
| | - Matthias K Auer
- Medizinische Klinik and Poliklinik IV, Klinikum der Universität München, LMU München, Munich, Germany
- Institute of Forensic Psychiatry and Sex Research, Center for Translational Neuro- and Behavioral Sciences, University of Duisburg-Essen, Alfredstr. 68-72, Essen, 45130, Germany
| | - Johanna Schröder
- Department of Psychology, Institute for Clinical Psychology and Psychotherapy, Medical School Hamburg, Hamburg, Germany
| | - Ina Pieknik
- Institute of Forensic Psychiatry and Sex Research, Center for Translational Neuro- and Behavioral Sciences, University of Duisburg-Essen, Alfredstr. 68-72, Essen, 45130, Germany
| | - Christian Casar
- First Department of Medicine, University Medical Centre Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Dorothee Schwinge
- First Department of Medicine, University Medical Centre Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Lara Henze
- First Department of Medicine, University Medical Centre Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Günter K Stalla
- Medizinische Klinik and Poliklinik IV, Klinikum der Universität München, LMU München, Munich, Germany
- Medicover Neuroendocrinology, Munich, Germany
| | - Undine E Lang
- Clinic for Adult Psychiatry, University Psychiatric Clinics, University of Basel, Wilhelm Klein-Strasse 27, Basel, CH-4002, Switzerland
| | - Alina von Klitzing
- Institute for Sex Research, Sexual Medicine and Forensic Psychiatry, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Peer Briken
- Institute for Sex Research, Sexual Medicine and Forensic Psychiatry, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Thomas Hildebrandt
- Department of Gynecology and Obstetrics, CCC Erlangen EMN, Friedrich Alexander University, Erlangen, Germany
| | - Jeanne C Desbuleux
- Institute of Forensic Psychiatry and Sex Research, Center for Translational Neuro- and Behavioral Sciences, University of Duisburg-Essen, Alfredstr. 68-72, Essen, 45130, Germany
| | - Sarah V Biedermann
- Department of Psychiatry and Psychotherapy, Social and Emotional Neuroscience Group, Center for Psychosocial Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Paul-Martin Holterhus
- Division of Pediatric Endocrinology and Diabetes, Department of Children and Adolescent Medicine I, University Hospital of Schleswig-Holstein, Campus Kiel/Christian-Albrechts University of Kiel, Kiel, D-24105, Germany
| | - Corinna Bang
- Institute of Clinical Molecular Biology, Christian-Albrechts-University Kiel, University Hospital Schleswig-Holstein, Rosalind-Franklin-Str. 12, Kiel, 24105, Germany
| | - Christoph Schramm
- First Department of Medicine, University Medical Centre Hamburg-Eppendorf (UKE), Hamburg, Germany
- Hamburg Centre for Translational Immunology (HCTI), University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
- Martin Zeitz Center for Rare Diseases, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Johannes Fuss
- Institute of Forensic Psychiatry and Sex Research, Center for Translational Neuro- and Behavioral Sciences, University of Duisburg-Essen, Alfredstr. 68-72, Essen, 45130, Germany
| |
Collapse
|
8
|
Lipowska MM, Sadowska ET, Kohl KD, Koteja P. Experimental Evolution of a Mammalian Holobiont? Genetic and Maternal Effects on the Cecal Microbiome in Bank Voles Selectively Bred for Herbivorous Capability. ECOLOGICAL AND EVOLUTIONARY PHYSIOLOGY 2024; 97:274-291. [PMID: 39680902 DOI: 10.1086/732781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
AbstractMammalian herbivory represents a complex adaptation requiring evolutionary changes across all levels of biological organization, from molecules to morphology to behavior. Explaining the evolution of such complex traits represents a major challenge in biology, as it is simultaneously muddled and enlightened by a growing awareness of the crucial role of symbiotic associations in shaping organismal adaptations. The concept of hologenomic evolution includes the partnered unit of the holobiont, the host with its microbiome, as a selection unit that may undergo adaptation. Here, we test some of the assumptions underlying the concept of hologenomic evolution using a unique experimental evolution model: lines of the bank vole (Myodes [=Clethrionomys] glareolus) selected for increased ability to cope with a low-quality herbivorous diet and unselected control lines. Results from a complex nature-nurture design, in which we combined cross-fostering between the selected and control lines with dietary treatment, showed that the herbivorous voles harbored a cecal microbiome with altered membership and structure and changed abundances of several phyla and genera regardless of the origin of their foster mothers. Although the differences were small, they were statistically significant and partially robust to changes in diet and housing conditions. Microbial characteristics also correlated with selection-related traits at the level of individual variation. Thus, the results support the hypothesis that selection on a host performance trait leads to genetic changes in the host that promote the maintenance of a beneficial microbiome. Such a result is consistent with some of the assumptions underlying the concept of hologenomic evolution.
Collapse
|
9
|
Whitney TL, Mallott EK, Diakiw LO, Christie DM, Ting N, Amato KR, Tecot SR, Baden AL. Ecological and genetic variables co-vary with social group identity to shape the gut microbiome of a pair-living primate. Am J Primatol 2024; 86:e23657. [PMID: 38967215 DOI: 10.1002/ajp.23657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 05/17/2024] [Accepted: 06/08/2024] [Indexed: 07/06/2024]
Abstract
Primates exhibit diverse social systems that are intricately linked to their biology, behavior, and evolution, all of which influence the acquisition and maintenance of their gut microbiomes (GMs). However, most studies of wild primate populations focus on taxa with relatively large group sizes, and few consider pair-living species. To address this gap, we investigate how a primate's social system interacts with key environmental, social, and genetic variables to shape the GM in pair-living, red-bellied lemurs (Eulemur rubriventer). Previous research on this species suggests that social interactions within groups influence interindividual microbiome similarity; however, the impacts of other nonsocial variables and their relative contributions to gut microbial variation remain unclear. We sequenced the 16S ribosomal RNA hypervariable V4-V5 region to characterize the GM from 26 genotyped individuals across 11 social groups residing in Ranomafana National Park, Madagascar. We estimated the degree to which sex, social group identity, genetic relatedness, dietary diversity, and home range proximity were associated with variation in the gut microbial communities residing in red-bellied lemurs. All variables except sex played a significant role in predicting GM composition. Our model had high levels of variance inflation, inhibiting our ability to determine which variables were most predictive of gut microbial composition. This inflation is likely due to red-bellied lemurs' pair-living, pair-bonded social system that leads to covariation among environmental, social, and genetic variables. Our findings highlight some of the factors that predict GM composition in a tightly bonded, pair-living species and identify variables that require further study. We propose that future primate microbiome studies should simultaneously consider environmental, social, and genetic factors to improve our understanding of the relationships among sociality, the microbiome, and primate ecology and evolution.
Collapse
Affiliation(s)
- Tabor L Whitney
- Department of Anthropology, Northwestern University, Evanston, Illinois, USA
| | - Elizabeth K Mallott
- Department of Anthropology, Northwestern University, Evanston, Illinois, USA
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Laura O Diakiw
- Department of Ecology, University of Wyoming, Laramie, Wyoming, USA
| | - Diana M Christie
- Department of Anthropology, University of Oregon, Eugene, Oregon, USA
- Institute of Ecology and Evolution, University of Oregon, Eugene, Oregon, USA
| | - Nelson Ting
- Department of Anthropology, University of Oregon, Eugene, Oregon, USA
- Institute of Ecology and Evolution, University of Oregon, Eugene, Oregon, USA
| | - Katherine R Amato
- Department of Anthropology, Northwestern University, Evanston, Illinois, USA
| | - Stacey R Tecot
- School of Anthropology, University of Arizona, Tucson, Arizona, USA
| | - Andrea L Baden
- Department of Anthropology, Hunter College of the City University of New York, New York City, New York, USA
- Department of Anthropology, The Graduate Center of the City University of New York, New York City, New York, USA
- The New York Consortium in Evolutionary Primatology, New York City, New York, USA
| |
Collapse
|
10
|
Lu H, Chen S, Li F, Zhang G, Geng J, Zhang M, Huang X, Wang Y. Comparative Study of Bacterial Microbiota Differences in the Rumen and Feces of Xinjiang Brown and Holstein Cattle. Animals (Basel) 2024; 14:1748. [PMID: 38929367 PMCID: PMC11200985 DOI: 10.3390/ani14121748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 05/27/2024] [Accepted: 06/05/2024] [Indexed: 06/28/2024] Open
Abstract
Xinjiang Brown cattle are a unique and widely distributed breed of dual-purpose cattle in the Xinjiang area of China, whose milk production performance differs from Holstein cattle. It has been known that variations in bacterial species of the gastrointestinal tract influence milk protein, fat, and lactose synthesis. However, the microbiota differences between Xinjiang Brown and Holstein cattle are less known. This study aims to compare the bacterial community composition of the rumen and feces of these two cattle breeds under the same dietary and management conditions. The 16s rRNA sequencing data and milk production of 18 Xinjiang Brown cows and 20 Holstein cows on the same farm were obtained for analysis. The results confirmed differences in milk production between Xinjiang Brown and Holstein cattle. Microbiota with different relative abundance between these two cattle breeds were identified, and their biological functions might be related to milk synthesis. This study increases the understanding of the differences in microbiota between Xinjiang Brown and Holstein cattle and might provide helpful information for microbiota composition optimization of these dairy cattle.
Collapse
Affiliation(s)
- Haibo Lu
- Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture of China, National Engineering Laboratory of Animal Breeding, State Key Laboratory of Animal Biotech Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (H.L.); (G.Z.)
| | - Shaokan Chen
- Beijing Sunlon Livestock Development Company Limited, Beijing 100029, China;
- College of Animal Science, Xinjiang Agricultural University, Urumqi 830052, China; (F.L.); (M.Z.)
| | - Fengjie Li
- College of Animal Science, Xinjiang Agricultural University, Urumqi 830052, China; (F.L.); (M.Z.)
| | - Guoxing Zhang
- Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture of China, National Engineering Laboratory of Animal Breeding, State Key Laboratory of Animal Biotech Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (H.L.); (G.Z.)
| | - Juan Geng
- Xinjiang Uygur Autonomous Region Animal Husbandry Station, Urumqi 830000, China;
| | - Menghua Zhang
- College of Animal Science, Xinjiang Agricultural University, Urumqi 830052, China; (F.L.); (M.Z.)
| | - Xixia Huang
- College of Animal Science, Xinjiang Agricultural University, Urumqi 830052, China; (F.L.); (M.Z.)
| | - Yachun Wang
- Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture of China, National Engineering Laboratory of Animal Breeding, State Key Laboratory of Animal Biotech Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (H.L.); (G.Z.)
| |
Collapse
|
11
|
An R, Venkatraman A, Binns J, Saric C, Rey FE, Thibeault SL. Age and sex-related variations in murine laryngeal microbiota. PLoS One 2024; 19:e0300672. [PMID: 38743725 PMCID: PMC11093383 DOI: 10.1371/journal.pone.0300672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 03/01/2024] [Indexed: 05/16/2024] Open
Abstract
The larynx undergoes significant age and sex-related changes in structure and function across the lifespan. Emerging evidence suggests that laryngeal microbiota influences immunological processes. Thus, there is a critical need to delineate microbial mechanisms that may underlie laryngeal physiological and immunological changes. As a first step, the present study explored potential age and sex-related changes in the laryngeal microbiota across the lifespan in a murine model. We compared laryngeal microbial profiles of mice across the lifespan (adolescents, young adults, older adults and elderly) to determine age and sex-related microbial variation on 16s rRNA gene sequencing. Measures of alpha diversity and beta diversity were obtained, along with differentially abundant taxa across age groups and biological sexes. There was relative stability of the laryngeal microbiota within each age group and no significant bacterial compositional shift in the laryngeal microbiome across the lifespan. There was an abundance of short-chain fatty acid producing bacteria in the adolescent group, unique to the laryngeal microbiota; taxonomic changes in the elderly resembled that of the aged gut microbiome. There were no significant changes in the laryngeal microbiota relating to biological sex. This is the first study to report age and sex-related variation in laryngeal microbiota. This data lays the groundwork for defining how age-related microbial mechanisms may govern laryngeal health and disease. Bacterial compositional changes, as a result of environmental or systemic stimuli, may not only be indicative of laryngeal-specific metabolic and immunoregulatory processes, but may precede structural and functional age-related changes in laryngeal physiology.
Collapse
Affiliation(s)
- Ran An
- Department of Surgery, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States of America
| | - Anumitha Venkatraman
- Department of Surgery, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States of America
| | - John Binns
- Department of Surgery, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States of America
| | - Callie Saric
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States of America
| | - Federico E. Rey
- Department of Bacteriology, College of Agriculture and Life Sciences, University of Wisconsin-Madison, Madison, WI, United States of America
| | - Susan L. Thibeault
- Department of Surgery, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States of America
| |
Collapse
|
12
|
García-Cabrerizo R, Cryan JF. A gut (microbiome) feeling about addiction: Interactions with stress and social systems. Neurobiol Stress 2024; 30:100629. [PMID: 38584880 PMCID: PMC10995916 DOI: 10.1016/j.ynstr.2024.100629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 02/29/2024] [Accepted: 03/17/2024] [Indexed: 04/09/2024] Open
Abstract
In recent years, an increasing attention has given to the intricate and diverse connection of microorganisms residing in our gut and their impact on brain health and central nervous system disease. There has been a shift in mindset to understand that drug addiction is not merely a condition that affects the brain, it is now being recognized as a disorder that also involves external factors such as the intestinal microbiota, which could influence vulnerability and the development of addictive behaviors. Furthermore, stress and social interactions, which are closely linked to the intestinal microbiota, are powerful modulators of addiction. This review delves into the mechanisms through which the microbiota-stress-immune axis may shape drug addiction and social behaviors. This work integrates preclinical and clinical evidence that demonstrate the bidirectional communication between stress, social behaviors, substance use disorders and the gut microbiota, suggesting that gut microbes might modulate social stress having a significance in drug addiction.
Collapse
Affiliation(s)
- Rubén García-Cabrerizo
- IUNICS, University of the Balearic Islands, Palma, Spain
- Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
- Department of Medicine, University of the Balearic Islands, Palma, Spain
| | - John F. Cryan
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| |
Collapse
|
13
|
Giuriato G, Romanelli MG, Bartolini D, Vernillo G, Pedrinolla A, Moro T, Franchi M, Locatelli E, Andani ME, Laginestra FG, Barbi C, Aloisi GF, Cavedon V, Milanese C, Orlandi E, De Simone T, Fochi S, Patuzzo C, Malerba G, Fabene P, Donadelli M, Stabile AM, Pistilli A, Rende M, Galli F, Schena F, Venturelli M. Sex differences in neuromuscular and biological determinants of isometric maximal force. Acta Physiol (Oxf) 2024; 240:e14118. [PMID: 38385696 DOI: 10.1111/apha.14118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/29/2024] [Accepted: 02/09/2024] [Indexed: 02/23/2024]
Abstract
AIM Force expression is characterized by an interplay of biological and molecular determinants that are expected to differentiate males and females in terms of maximal performance. These include muscle characteristics (muscle size, fiber type, contractility), neuromuscular regulation (central and peripheral factors of force expression), and individual genetic factors (miRNAs and gene/protein expression). This research aims to comprehensively assess these physiological variables and their role as determinants of maximal force difference between sexes. METHODS Experimental evaluations include neuromuscular components of isometric contraction, intrinsic muscle characteristics (proteins and fiber type), and some biomarkers associated with muscle function (circulating miRNAs and gut microbiome) in 12 young and healthy males and 12 females. RESULTS Male strength superiority appears to stem primarily from muscle size while muscle fiber-type distribution plays a crucial role in contractile properties. Moderate-to-strong pooled correlations between these muscle parameters were established with specific circulating miRNAs, as well as muscle and plasma proteins. CONCLUSION Muscle size is crucial in explaining the differences in maximal voluntary isometric force generation between males and females with similar fiber type distribution. Potential physiological mechanisms are seen from associations between maximal force, skeletal muscle contractile properties, and biological markers.
Collapse
Affiliation(s)
- Gaia Giuriato
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
- Surgical, Medical and Dental Department of Morphological Sciences Related to Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - Maria Grazia Romanelli
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Desirée Bartolini
- Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| | - Gianluca Vernillo
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Milan, Italy
- Department of Social Sciences, University of Alberta - Augustana Campus, Camrose, Alberta, Canada
| | - Anna Pedrinolla
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Tatiana Moro
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Martino Franchi
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Elena Locatelli
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Mehran Emadi Andani
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Fabio Giuseppe Laginestra
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
- Department of Anesthesiology, University of Utah, Utah, USA
| | - Chiara Barbi
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Gloria Fiorini Aloisi
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Valentina Cavedon
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Chiara Milanese
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Elisa Orlandi
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Tonia De Simone
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Stefania Fochi
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Cristina Patuzzo
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Giovanni Malerba
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Paolo Fabene
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Massimo Donadelli
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Anna Maria Stabile
- Department of Medicine and Surgery, Section of Human Anatomy, Clinical and Forensic, School of Medicine, University of Perugia, Perugia, Italy
| | - Alessandra Pistilli
- Department of Medicine and Surgery, Section of Human Anatomy, Clinical and Forensic, School of Medicine, University of Perugia, Perugia, Italy
| | - Mario Rende
- Department of Medicine and Surgery, Section of Human Anatomy, Clinical and Forensic, School of Medicine, University of Perugia, Perugia, Italy
| | - Francesco Galli
- Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| | - Federico Schena
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Massimo Venturelli
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
- Department of Internal Medicine, University of Utah, Utah, USA
| |
Collapse
|
14
|
Liu S, Imad S, Hussain S, Xiao S, Yu X, Cao H. Sex, health status and habitat alter the community composition and assembly processes of symbiotic bacteria in captive frogs. BMC Microbiol 2024; 24:34. [PMID: 38262927 PMCID: PMC10804495 DOI: 10.1186/s12866-023-03150-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 12/11/2023] [Indexed: 01/25/2024] Open
Abstract
BACKGROUND Frogs are critical economic animals essential to agricultural ecosystem equilibrium. However, Meningitis-like Infectious Disease (MID) often affects them in agricultural settings. While frog-associated microbiota contribute to elemental cycling and immunity, the effects of frog sex and health on gut bacteria remain understudied, and the relationship between frog habitat and soil microbes is unclear. We aimed to determine how frog sex, health status and habitat influence symbiotic bacteria and community assembly mechanism to provide guidance for sustainable frog farming and conservation. RESULTS We employed 16S rRNA sequencing to investigate gut microbiota differences in relation to frog sex and health status. We also compared symbiotic communities in frog-aggregation, native and soybean soil on the farm. Results showed that gut bacterial β-diversity and taxonomy were markedly influenced by frog sex and health. Healthy frogs had more robust gut bacterial metabolism than frogs infected with MID. Cooccurrence network analysis revealed that healthy female frogs had more complex microbial network structure than males; however, diseased males showed the greatest network complexity. The assembly mechanism of gut bacteria in male frogs was dominated by deterministic processes, whereas in female frogs it was dominated by stochastic processes. Among symbiotic bacteria in frog habitat soils, deterministic processes predominantly shaped the community assembly of soybean soil. In particular, soybean soil was enriched in pathogens and nitrogen functions, whereas frog-aggregation soil was markedly increased in sulphur respiration and hydrocarbon degradation. CONCLUSION Our study reveals that sex mainly alters the interaction network and assembly mechanism of frog intestinal bacteria; MID infection significantly inhibits the metabolic functions of intestinal bacteria. Furthermore, diverse frog habitat soils could shape more symbiotic bacteria to benefit frog farming. Our findings provide new horizons for symbiotic bacteria among frogs, which could contribute to sustainable agriculture and ecological balance.
Collapse
Affiliation(s)
- Senlin Liu
- College of Life Sciences/Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affair, Nanjing Agricultural University, 6 Tongwei Road, Nanjing, Jiangsu, 210095, People's Republic of China
- School of Life Sciences, University of Warwick, Gibbet Hill Road, Coventry, UK
| | - Sewar Imad
- College of Life Sciences/Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affair, Nanjing Agricultural University, 6 Tongwei Road, Nanjing, Jiangsu, 210095, People's Republic of China
| | - Sarfraz Hussain
- College of Life Sciences/Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affair, Nanjing Agricultural University, 6 Tongwei Road, Nanjing, Jiangsu, 210095, People's Republic of China
| | | | - Xiaowei Yu
- College of Life Sciences/Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affair, Nanjing Agricultural University, 6 Tongwei Road, Nanjing, Jiangsu, 210095, People's Republic of China
| | - Hui Cao
- College of Life Sciences/Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affair, Nanjing Agricultural University, 6 Tongwei Road, Nanjing, Jiangsu, 210095, People's Republic of China.
| |
Collapse
|
15
|
Bucurica S, Lupanciuc M, Ionita-Radu F, Stefan I, Munteanu AE, Anghel D, Jinga M, Gaman EL. Estrobolome and Hepatocellular Adenomas-Connecting the Dots of the Gut Microbial β-Glucuronidase Pathway as a Metabolic Link. Int J Mol Sci 2023; 24:16034. [PMID: 38003224 PMCID: PMC10671049 DOI: 10.3390/ijms242216034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 11/02/2023] [Accepted: 11/03/2023] [Indexed: 11/26/2023] Open
Abstract
Hepatocellular adenomas are benign endothelial tumors of the liver, mostly associated with female individual users of estrogen-containing medications. However, the precise factors underlying the selective development of hepatic adenomas in certain females remain elusive. Additionally, the conventional profile of individuals prone to hepatic adenoma is changing. Notably, male patients exhibit a higher risk of malignant progression of hepatocellular adenomas, and there are instances where hepatic adenomas have no identifiable cause. In this paper, we theorize the role of the human gastrointestinal microbiota, specifically, of bacterial species producing β-glucuronidase enzymes, in the development of hepatic adenomas through the estrogen recycling pathway. Furthermore, we aim to address some of the existing gaps in our knowledge of pathophysiological pathways which are not yet subject to research or need to be studied further. As microbial β-glucuronidases proteins recycle estrogen and facilitate the conversion of inactive estrogen into its active form, this process results in elevated levels of unbound plasmatic estrogen, leading to extended exposure to estrogen. We suggest that an imbalance in the estrobolome could contribute to sex hormone disease evolution and, consequently, to the advancement of hepatocellular adenomas, which are estrogen related.
Collapse
Affiliation(s)
- Sandica Bucurica
- Department of Gastroenterology, “Carol Davila” University of Medicine and Pharmacy Bucharest, 020021 Bucharest, Romania;
- Department of Gastroenterology, “Dr. Carol Davila” Central Military Emergency University Hospital, 010242 Bucharest, Romania;
| | - Mihaela Lupanciuc
- Department of Gastroenterology, “Dr. Carol Davila” Central Military Emergency University Hospital, 010242 Bucharest, Romania;
| | - Florentina Ionita-Radu
- Department of Gastroenterology, “Carol Davila” University of Medicine and Pharmacy Bucharest, 020021 Bucharest, Romania;
- Department of Gastroenterology, “Dr. Carol Davila” Central Military Emergency University Hospital, 010242 Bucharest, Romania;
| | - Ion Stefan
- Department of Infectious Diseases, “Dr. Carol Davila” Central Military Emergency University Hospital, 010242 Bucharest, Romania;
- Department of Medico-Surgical and Prophylactic Disciplines, Titu Maiorescu University, 031593 Bucharest, Romania; (A.E.M.); (D.A.)
| | - Alice Elena Munteanu
- Department of Medico-Surgical and Prophylactic Disciplines, Titu Maiorescu University, 031593 Bucharest, Romania; (A.E.M.); (D.A.)
- Department of Cardiology, “Dr. Carol Davila” Central Military Emergency University Hospital, 010242 Bucharest, Romania
| | - Daniela Anghel
- Department of Medico-Surgical and Prophylactic Disciplines, Titu Maiorescu University, 031593 Bucharest, Romania; (A.E.M.); (D.A.)
- Department of Internal Medicine, “Dr. Carol Davila” Central Military Emergency University Hospital, 010242 Bucharest, Romania
| | - Mariana Jinga
- Department of Gastroenterology, “Carol Davila” University of Medicine and Pharmacy Bucharest, 020021 Bucharest, Romania;
- Department of Gastroenterology, “Dr. Carol Davila” Central Military Emergency University Hospital, 010242 Bucharest, Romania;
| | - Elena Laura Gaman
- Department of Biochemistry, “Carol Davila” University of Medicine and Pharmacy Bucharest, 020021 Bucharest, Romania;
| |
Collapse
|
16
|
Ichige R, Urabe J. Divergence of the Host-Associated Microbiota with the Genetic Distance of Host Individuals Within a Parthenogenetic Daphnia Species. MICROBIAL ECOLOGY 2023; 86:2097-2108. [PMID: 37093231 DOI: 10.1007/s00248-023-02219-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 04/06/2023] [Indexed: 05/03/2023]
Abstract
The taxonomic composition of the microbiota in the gut and epidermis of animals is known to vary among genetically and physiologically different host individuals within the same species. However, it is not clear whether the taxonomic composition diverges with increasing genetic distance of the host individuals. To unveil this uncertainty, we compared the host-associated microbiota among the genotypes within and between genetically distant lineages of parthenogenetic Daphnia cf. pulex across different physiological states, namely, well-fed, starved, and dead. Metagenomic analysis with 16S rRNA showed that, regardless of the host genotypes, diversity of the host-associated microbiota was high when the host individuals were fed food and gradually decreased when they were starved until they died. However, the difference in the host-associated microbiota, that is, β-diversity, was significant among the genotypes within and between the host lineages when they were fed. Although some bacteria in the microbiota, such as Limnohabitans, Rhodococcus, and Aeromicrobium, were found abundantly and commonly in all host genotypes; others, such as those of Holosoporacea, were found only in the genotypes of a specific lineage. Accordingly, the β-diversity tended to increase with increasing genetic distance of the host individuals. These results support an idea that the host-associated microbiota diverged with genetic divergence in the host species and that at least some bacteria are highly dependent on the genetically specific metabolites produced by the host individuals.
Collapse
Affiliation(s)
- Ryotaro Ichige
- Graduate School of Life Sciences, Tohoku University, 6-3 Aoba, Aramaki, Aoba-Ku, Sendai, 980-8578, Japan.
| | - Jotaro Urabe
- Graduate School of Life Sciences, Tohoku University, 6-3 Aoba, Aramaki, Aoba-Ku, Sendai, 980-8578, Japan
| |
Collapse
|
17
|
Ding L, Liu J, Zhou L, Zhang Q, Yu M, Xiao X. Maternal High-Fat Diet Results in Long-Term Sex-Specific Alterations to Metabolic and Gut Microbial Diurnal Oscillations in Adult Offspring. Mol Nutr Food Res 2023; 67:e2200753. [PMID: 37334884 DOI: 10.1002/mnfr.202200753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 05/09/2023] [Indexed: 06/21/2023]
Abstract
SCOPE Circadian rhythms profoundly impact metabolism and the gut microbiota. A maternal high-fat diet (HFD) exerts effects on the metabolic syndrome of adult offspring in a sex-specific manner, the underlying mechanisms, however, remain unclear. METHODS AND RESULTS Female mice are fed an HFD and raise their offspring on a standard chow diet until 24 weeks. The glucose tolerance, insulin sensitivity, and diurnal rhythms of serum metabolic profiles are assessed in male and female adult offspring. Simultaneously, 16S rRNA is applied to characterize gut microbiota diurnal rhythms. The study finds that maternal HFD tends to deteriorate glucose tolerance and impairs insulin sensitivity in male offspring, but not female offspring, which can be associated with the circadian alterations of serum metabolic profiles in male offspring. As expected, maternal HFD sex-specifically alters diurnal rhythms of the gut microbiota, which exhibits putative associations with metabolic profiles in males. CONCLUSIONS The present study identifies the critical role of gut microbiota diurnal rhythms in triggering sex-biased metabolic diurnal rhythms in response to maternal HFD, at least in part. As early life may be a critical window for preventing metabolic diseases, these findings provide the basis for developing chronobiology applications targeting the gut microbiota to combat early metabolic alterations, especially in males.
Collapse
Affiliation(s)
- Lu Ding
- Key Laboratory of Endocrinology of National Health Commission, Diabetes Research Center of Chinese Academy of Medical Sciences, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Jieying Liu
- Key Laboratory of Endocrinology of National Health Commission, Diabetes Research Center of Chinese Academy of Medical Sciences, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
- Department of Medical Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Liyuan Zhou
- Department of Endocrinology, Beijing Chao-yang Hospital, Capital Medical University, Beijing, China
| | - Qian Zhang
- Key Laboratory of Endocrinology of National Health Commission, Diabetes Research Center of Chinese Academy of Medical Sciences, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Miao Yu
- Key Laboratory of Endocrinology of National Health Commission, Diabetes Research Center of Chinese Academy of Medical Sciences, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Xinhua Xiao
- Key Laboratory of Endocrinology of National Health Commission, Diabetes Research Center of Chinese Academy of Medical Sciences, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
18
|
Chung CJ, Hermes BM, Gupta Y, Ibrahim S, Belheouane M, Baines JF. Genome-wide mapping of gene-microbe interactions in the murine lung microbiota based on quantitative microbial profiling. Anim Microbiome 2023; 5:31. [PMID: 37264412 DOI: 10.1186/s42523-023-00250-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 05/10/2023] [Indexed: 06/03/2023] Open
Abstract
BACKGROUND Mammalian lungs comprise a complex microbial ecosystem that interacts with host physiology. Previous research demonstrates that the environment significantly contributes to bacterial community structure in the upper and lower respiratory tract. However, the influence of host genetics on the makeup of lung microbiota remains ambiguous, largely due to technical difficulties related to sampling, as well as challenges inherent to investigating low biomass communities. Thus, innovative approaches are warranted to clarify host-microbe interactions in the mammalian lung. RESULTS Here, we aimed to characterize host genomic regions associated with lung bacterial traits in an advanced intercross mouse line (AIL). By performing quantitative microbial profiling (QMP) using the highly precise method of droplet digital PCR (ddPCR), we refined 16S rRNA gene amplicon-based traits to identify and map candidate lung-resident taxa using a QTL mapping approach. In addition, the two abundant core taxa Lactobacillus and Pelomonas were chosen for independent microbial phenotyping using genus-specific primers. In total, this revealed seven significant loci involving eight bacterial traits. The narrow confidence intervals afforded by the AIL population allowed us to identify several promising candidate genes related to immune and inflammatory responses, cell apoptosis, DNA repair, and lung functioning and disease susceptibility. Interestingly, one genomic region associated with Lactobacillus abundance contains the well-known anti-inflammatory cytokine Il10, which we confirmed through the analysis of Il10 knockout mice. CONCLUSIONS Our study provides the first evidence for a role of host genetic variation contributing to variation in the lung microbiota. This was in large part made possible through the careful curation of 16S rRNA gene amplicon data and the incorporation of a QMP-based methods. This approach to evaluating the low biomass lung environment opens new avenues for advancing lung microbiome research using animal models.
Collapse
Affiliation(s)
- C J Chung
- Max Planck Institute for Evolutionary Biology, August-Thienemann-Str. 2, 24306, Plön, Germany
- Section of Evolutionary Medicine, Institute for Experimental Medicine, Kiel University, Arnold-Heller-Str. 3, 24105, Kiel, Germany
| | - B M Hermes
- Max Planck Institute for Evolutionary Biology, August-Thienemann-Str. 2, 24306, Plön, Germany
- Section of Evolutionary Medicine, Institute for Experimental Medicine, Kiel University, Arnold-Heller-Str. 3, 24105, Kiel, Germany
| | - Y Gupta
- Division of Nephrology, Department of Medicine, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - S Ibrahim
- College of Medicine and Health Sciences, Khalifa University, Abu Dhabi, UAE
| | - Meriem Belheouane
- Max Planck Institute for Evolutionary Biology, August-Thienemann-Str. 2, 24306, Plön, Germany.
- Section of Evolutionary Medicine, Institute for Experimental Medicine, Kiel University, Arnold-Heller-Str. 3, 24105, Kiel, Germany.
- Research Center Borstel, Evolution of the Resistome, Leibniz Lung Center, Parkallee 1-40, 23845, Borstel, Germany.
| | - John F Baines
- Max Planck Institute for Evolutionary Biology, August-Thienemann-Str. 2, 24306, Plön, Germany.
- Section of Evolutionary Medicine, Institute for Experimental Medicine, Kiel University, Arnold-Heller-Str. 3, 24105, Kiel, Germany.
| |
Collapse
|
19
|
Kasarello K, Cudnoch-Jedrzejewska A, Czarzasta K. Communication of gut microbiota and brain via immune and neuroendocrine signaling. Front Microbiol 2023; 14:1118529. [PMID: 36760508 PMCID: PMC9907780 DOI: 10.3389/fmicb.2023.1118529] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 01/12/2023] [Indexed: 01/27/2023] Open
Abstract
The gastrointestinal tract of the human is inhabited by about 5 × 1013 bacteria (of about 1,000 species) as well as archaea, fungi, and viruses. Gut microbiota is known to influence the host organism, but the host may also affect the functioning of the microbiota. This bidirectional cooperation occurs in three main inter-organ signaling: immune, neural, and endocrine. Immune communication relies mostly on the cytokines released by the immune cells into circulation. Also, pathogen-associated or damage-associated molecular patterns (PAMPs or DAMPs) may enter circulation and affect the functioning of the internal organs and gut microbiota. Neural communication relies mostly on the direct anatomical connections made by the vagus nerve, or indirect connections via the enteric nervous system. The third pathway, endocrine communication, is the broadest one and includes the hypothalamic-pituitary-adrenal axis. This review focuses on presenting the latest data on the role of the gut microbiota in inter-organ communication with particular emphasis on the role of neurotransmitters (catecholamines, serotonin, gamma-aminobutyric acid), intestinal peptides (cholecystokinin, peptide YY, and glucagon-like peptide 1), and bacterial metabolites (short-chain fatty acids).
Collapse
|
20
|
Aburahma A, Stewart EL, Rana S, Larsen R, Ward CS, Sprague JE. Influence of fecal microbial transplant (FMT) between male and female rats on methamphetamine-induced hyperthermia. Int J Hyperthermia 2023; 40:2159072. [PMID: 36581324 DOI: 10.1080/02656736.2022.2159072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
OBJECTIVE To investigate the effect of bidirectional fecal microbial transplant (FMT) between male and female rats on methamphetamine (MA)-induced hyperthermia. METHODS FMT was performed between male and female rats prior to MA (10 mg/kg, sc) treatment. Core body temperature, plasma drug and norepinephrine (NE) levels were measured and compared between treatment groups. 16S rRNA gene sequencing of bacterial communities between male and female rats was performed. RESULTS MA treatment resulted in significantly higher core body temperatures in male groups (control and FMT-treated) compared to MA-treated female groups (control and FMT-treated). Plasma concentrations of MA and amphetamine were higher in females than males. Whereas, plasma norepinephrine (NE) levels were not different between male and female rats 90 minutes after MA treatment. At the phyla level, the microbiome of male and female control rats were dominated by Firmicutes and Bacteroidetes. Males had a higher relative abundance of Firmicutes and lower relative abundances of Bacteroidetes than females. The FMT procedure changed the recipient group towards their donor with males getting closer to their donors than females. In the control groups following MA treatment, Firmicutes increased and Bacteroides decreased in females and males. Conversely, in the FMT treatment groups following MA treatment, Firmicutes decreased while Bacteroidetes increased in females and males. CONCLUSIONS Although definite differences in the structure and diversity of the gut microbiome were observed using 16S rRNA gene sequencing of bacterial communities between male and female rats, these differences do not seem to contribute to the sex-based differences in MA-induced hyperthermia.
Collapse
Affiliation(s)
- Amal Aburahma
- The Ohio Attorney General's Center for the Future of Forensic Science, Bowling Green State University, Bowling Green, OH, USA
| | - Emma L Stewart
- The Ohio Attorney General's Center for the Future of Forensic Science, Bowling Green State University, Bowling Green, OH, USA
| | - Srishti Rana
- The Department of Biological Sciences, Bowling Green State University, Bowling Green, OH, USA
| | - Ray Larsen
- The Department of Biological Sciences, Bowling Green State University, Bowling Green, OH, USA
| | - Christopher S Ward
- The Department of Biological Sciences, Bowling Green State University, Bowling Green, OH, USA
| | - Jon E Sprague
- The Ohio Attorney General's Center for the Future of Forensic Science, Bowling Green State University, Bowling Green, OH, USA
| |
Collapse
|
21
|
Barrett BT, Kubik TD, Golightly PR, Kellner K, Kardish MR, Mueller UG. Ant genotype, but not genotype of cultivated fungi, predicts queen acceptance in the asexual fungus-farming ant Mycocepurus smithii (Hymenoptera: Formicidae). Behav Ecol Sociobiol 2023. [DOI: 10.1007/s00265-022-03276-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
22
|
Elbir H, Alhumam NA. Sex Differences in Fecal Microbiome Composition and Function of Dromedary Camels in Saudi Arabia. Animals (Basel) 2022; 12:3430. [PMID: 36496952 PMCID: PMC9736497 DOI: 10.3390/ani12233430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/17/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
The gastrointestinal microbiome plays a significant role in diet digestion and the energy production of its host. Several factors that affect the gastrointestinal microbiota composition were studied in camels. Yet, the impact of sex on the gastrointestinal bacteriome of camels remains unexplored to date. In this perspective, the fecal microbiome community composition from dromedary camels was determined in 10 male and 10 female samples using the 16S rRNA amplicon, in order to estimate if this was influenced by sex. The core microbiome in females contained 284 bacterial OTUs and one archaeal OUT, whereas in males, it contained 279 bacterial OTUs and one archaeal OTU. In females, Bacteroidetes and Spirochaetes were significantly more abundant than in male camels, whereas Lentisphaerae and Euryarchaeota were significantly abundant in males. According to Principal Coordinate Analysis and UPGMA clustering, grouping with respect to sex was observed. The functional prediction results showed differences such as energy production and conversion, and that the cell wall/membrane/envelope were enriched in female camels. The fecal microbiome of male camels was rich in amino acid, lipid transport and metabolism.
Collapse
Affiliation(s)
- Haitham Elbir
- Camel Research Center, King Faisal University, P.O. Box 400, Al-Hasa 31982, Saudi Arabia
| | - Naser Abdullah Alhumam
- Department of Microbiology, College of Veterinary Medicine, King Faisal University, P.O. Box 400, Al-Hasa 31982, Saudi Arabia
| |
Collapse
|
23
|
Mulberry Leaf Supplements Effecting Anti-Inflammatory Genes and Improving Obesity in Elderly Overweight Dogs. Int J Mol Sci 2022; 23:ijms232315215. [PMID: 36499541 PMCID: PMC9735752 DOI: 10.3390/ijms232315215] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/27/2022] [Accepted: 11/29/2022] [Indexed: 12/07/2022] Open
Abstract
Overweight and obesity, associated with various health complications, refer to abnormal or excessive fat accumulation conditions that harm health. Like humans, obesity is a growing problem in dogs, which may increase the risk of serious diseases such as diabetes and cancer. Mulberry leaf has shown potential anti-obesity and anti-diabetes effects in several studies. Our research studied the impact of mulberry leaf supplements in healthy old overweight dogs for 12 weeks. Blood and fecal samples were collected from the dogs before and after treatment for different analyses, including whole transcriptome and gut microbiome analysis. The Body Condition Score (BCS) and blood glucose levels were significantly decreased in all mulberry treatment groups, which justifies the anti-obesity effect of mulberry leaf in dogs. Throughout the whole transcriptome study, the downregulation of PTX3 and upregulation of PDCD-1, TNFRSF1B, RUNX3, and TICAM1 genes in the high mulberry group were found, which have been associated with anti-inflammatory effects in the literature. It may be an essential gene expression mechanism responsible for the anti-inflammatory and, subsequently, anti-obesity effects associated with mulberry leaf treatment, as confirmed by real-time polymerase chain reaction analysis. In microbiome analysis, Papillibacter cinnamivorans, related to the Mediterranean diet, which may cause anti-inflammatory effects, were abundant in the same treatment group. Further studies may be required to establish the gene expression mechanism and role of abundant bacteria in the anti-obesity effect of mulberry supplements in dogs. Overall, we propose mulberry leaves as a portion of food supplements for improving blood glucose levels and the anti-inflammation of blood in companion dogs.
Collapse
|
24
|
Gu J, Cui S, Tang X, Liu Z, Zhao J, Zhang H, Mao B, Chen W. Fructooligosaccharides (FOS) significantly increased the relative abundance of intestinal B. pseudolongum in mice with different genotypes. Curr Res Food Sci 2022; 5:2178-2189. [PMID: 36387600 PMCID: PMC9661384 DOI: 10.1016/j.crfs.2022.10.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 09/22/2022] [Accepted: 10/30/2022] [Indexed: 11/06/2022] Open
Abstract
Fructooligosaccharides (FOS) promote the proliferation of Bifidobacterium, especially Bifidobacterium pseudolongum in C57BL/6J mice. However, the response of intestinal microbes to FOS is influenced by host genotypes. Therefore, we compared the intestinal microbiota of four commonly used mice before and after FOS intervention, including C57BL/6J, BALB/c, Institute Cancer Research (ICR), and Kunming (KM) mice. The intestinal microbiota of the four genotypes exhibited similarities in composition but differences in relative abundance. Bifidobacterium was significantly increased to different degrees in the four genotypes of mice after FOS intervention, and Akkermansia and Bacteroides were also significantly increased in BALB/c and KM mice. Lactobacillus and Alistipes levels were unchanged or decreased. Within the genus Bifidobacterium, B. pseudolongum was the dominant species in the four genotypes of mice and proliferated significantly after FOS intervention, with dramatic proliferation in C57BL/6J mice (9.49%). Furthermore, eight strains of B. pseudolongum were screened from the feces of mice with four genotypes, and there was a great difference in the ability and manner of utilizing FOS among the strains. The strains from C57BL/6J mice exhibited the strongest utilization of 1-kestose (GF2), whereas other strains could utilize both GF2 and nistose (GF3) weakly. The gut microbial analysis of mice with different genotypes complemented our previous studies. The results provided the background strains of the different mouse genotypes and suggested a correlation between the utilization ability and the response of the strains to FOS. Further studies on the utilization ability of strains and competition in the intestine will contribute to the understanding of the mechanisms of the intestinal microbial response to diet.
The intestinal microbiota is similar in composition for mice of different genotypes. B. pseudolongum predominates in bifidobacteria in mice of different genotypes. The relative abundance of B. pseudolongum increases after FOS intake. B. pseudolongum strains show different abilities in utilizing FOS.
Collapse
|
25
|
Zeng S, Wang S, Ross RP, Stanton C. The road not taken: host genetics in shaping intergenerational microbiomes. Trends Genet 2022; 38:1180-1192. [PMID: 35773025 DOI: 10.1016/j.tig.2022.05.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 05/31/2022] [Accepted: 05/31/2022] [Indexed: 02/09/2023]
Abstract
The early-life gut microbiome is linked to human phenotypes as an imbalanced microbiome of this period is implicated in diseases throughout life. Several determinants of early-life gut microbiome are explored, however, mechanisms of acquisition, colonization, and stability of early-life gut microbiome and their interindividual variability remain elusive. Host genetics play a vital role to shape the gut microbiome and interact with it to modulate individual phenotypes in human studies and animal models. Given the microbial linkage between host generations, we discuss the current state of roles of host genetics in forming intergenerational microbiomes associated with mothers, offspring, and those vertically transmitted, providing a basis for taking into account host genetics in future early-life microbiome research. We further expand our discussion to the bidirectional interactions between host gene expression and microbiome in human health.
Collapse
Affiliation(s)
- Shuqin Zeng
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, 610041, China; APC Microbiome Ireland, University College Cork, Cork, T12 YT20, Ireland; Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, P61 C996, Ireland
| | - Shaopu Wang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, 610041, China; APC Microbiome Ireland, University College Cork, Cork, T12 YT20, Ireland; Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, P61 C996, Ireland.
| | - R Paul Ross
- APC Microbiome Ireland, University College Cork, Cork, T12 YT20, Ireland
| | - Catherine Stanton
- APC Microbiome Ireland, University College Cork, Cork, T12 YT20, Ireland; Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, P61 C996, Ireland
| |
Collapse
|
26
|
Webster SE, Vos D, Rothstein TL, Holodick NE. Modulation of microbiome diversity and cytokine expression is influenced in a sex-dependent manner during aging. FRONTIERS IN MICROBIOMES 2022; 1:994464. [PMID: 37426084 PMCID: PMC10328149 DOI: 10.3389/frmbi.2022.994464] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
The microbiome and immune system have a unique interplay, which influences homeostasis within the organism. Both the microbiome and immune system play important roles in health and diseases of the aged including development of cancer, autoimmune disorders, and susceptibility to infection. Various groups have demonstrated divergent changes in the gut microbiota during aging, yet the compounding factor of biological sex within the context of aging remains incompletely understood, and little is known about the effect of housing location in the composition of gut microbiota in the context of both sex and age. To better understand the roles of sex, aging, and location in influencing the gut microbiome, we obtained normal healthy BALB/cByJ mice from a single source and aged male and female mice in two different geographical locations. The 16S rRNA was analyzed from fecal samples of these mice and cytokine levels were measured from serum.16S rRNA microbiome analysis indicated that both age and sex play a role in microbiome composition, whereas location plays a lesser role in the diversity present. Interestingly, microbiome changes occurred with alterations in serum expression of several different cytokines including IL-10 and IL-6, which were also both differentially regulated in context to sex and aging. We found both IL-10 and IL-6 play a role in the constitutive expression of pSTAT-3 in CD5+ B-1 cells, which are known to regulate the microbiome. Additionally, significant correlations were found between cytokine expression and significantly abundant microbes. Based on these results, we conclude aging mice undergo sex-associated alterations in the gut microbiome and have a distinct cytokine profile. Further, there is significant interplay between B-1 cells and the microbiome which is influenced by aging in a sex-dependent manner. Together, these results illustrate the complex interrelationship among sex, aging, immunity, housing location, and the gut microbiome.
Collapse
Affiliation(s)
- Sarah E. Webster
- Center for Immunobiology, Department of Investigative Medicine, Western Michigan University Homer Stryker M.D. School of Medicine, Kalamazoo, MI, USA
| | - Duncan Vos
- Division of Epidemiology and Biostatics, Department of Biomedical Sciences, Western Michigan University Homer Stryker M.D. School of Medicine, Kalamazoo, MI, USA
| | - Thomas L. Rothstein
- Center for Immunobiology, Department of Investigative Medicine, Western Michigan University Homer Stryker M.D. School of Medicine, Kalamazoo, MI, USA
| | - Nichol E. Holodick
- Center for Immunobiology, Department of Investigative Medicine, Western Michigan University Homer Stryker M.D. School of Medicine, Kalamazoo, MI, USA
| |
Collapse
|
27
|
Rosser EC, de Gruijter NM, Matei DE. Mini-Review: Gut-Microbiota and the Sex-Bias in Autoimmunity - Lessons Learnt From Animal Models. Front Med (Lausanne) 2022; 9:910561. [PMID: 35783625 PMCID: PMC9243537 DOI: 10.3389/fmed.2022.910561] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 05/13/2022] [Indexed: 11/16/2022] Open
Abstract
It is well appreciated that there is a female preponderance in the development of most autoimmune diseases. Thought to be due to a complex interplay between sex chromosome complement and sex-hormones, however, the exact mechanisms underlying this sex-bias remain unknown. In recent years, there has been a focus on understanding the central pathogenic role of the bacteria that live in the gut, or the gut-microbiota, in the development of autoimmunity. In this review, we discuss evidence from animal models demonstrating that the gut-microbiota is sexually dimorphic, that there is a bidirectional relationship between the production of sex-hormones and the gut-microbiota, and that this sexual dimorphism within the gut-microbiota may influence the sex-bias observed in autoimmune disease development. Collectively, these data underline the importance of considering sex as a variable when investigating biological pathways that contribute to autoimmune disease risk.
Collapse
Affiliation(s)
- Elizabeth C. Rosser
- Centre for Adolescent Rheumatology Versus Arthritis at University College London (UCL), University College London Hospital (UCLH) and Great Ormond Street Hospital (GOSH), London, United Kingdom,Centre for Rheumatology Research, Division of Medicine, University College London, London, United Kingdom,*Correspondence: Elizabeth C. Rosser
| | - Nina M. de Gruijter
- Centre for Adolescent Rheumatology Versus Arthritis at University College London (UCL), University College London Hospital (UCLH) and Great Ormond Street Hospital (GOSH), London, United Kingdom,Centre for Rheumatology Research, Division of Medicine, University College London, London, United Kingdom
| | - Diana E. Matei
- Division of Infection and Immunity, Institute of Immunity and Transplantation, University College London, London, United Kingdom
| |
Collapse
|
28
|
Li Y, Bi Y, Yang L, Jin K. Comparative study on intestinal microbiome composition and function in young and adult Hainan gibbons ( Nomascus hainanus). PeerJ 2022; 10:e13527. [PMID: 35698614 PMCID: PMC9188309 DOI: 10.7717/peerj.13527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 05/11/2022] [Indexed: 01/17/2023] Open
Abstract
The Hainan gibbon is one of the most endangered primates in the world, with a small population size, narrow distribution range, and high inbreeding risk, which retains the risk of species extinction. To explore the composition and functional differences of the intestinal microbiome of Hainan gibbons at different ages, the faecal microbiomes of young and adult Hainan gibbons were analysed using metagenome sequencing. The results showed that the dominant phyla in the intestinal tract of young and adult Hainan gibbons were Firmicutes and Bacteroidetes, and the dominant genus was Prevotella. Linear discriminant analysis effect size analysis showed that Firmicutes, Ruminococcus, Clostridium, and Butyrivibrio were significantly more abundant in adults than in young, whereas Bacteroidetes, Proteobacteria, Prevotella, and Bacteroides were significantly more abundant in young than in adults. In terms of gene function, the adult Hainan gibbon intestinal microbiome generally harboured a higher abundance of genes related to metabolic processes, such as carbohydrate, amino acid, and nucleotide metabolism. This may be due to adaptive advantages for adult Hainan gibbons, such as stable and mature intestinal microbiome composition, which allows them to utilise diverse foods efficiently. In summary, this study helps understand the dynamic changes in the intestinal microbiome of young and adult Hainan gibbons and plays a key role in the health monitoring and rejuvenation of their population.
Collapse
Affiliation(s)
- Yimeng Li
- Institute of Forest Ecology-Environment and Nature Conservation, Chinese Academy of Forestry, Beijing, China,Beijing Museum of Natural History, Beijing, China,Hainan Institute of National Park, Haikou, China
| | - Yu Bi
- Institute of Forest Ecology-Environment and Nature Conservation, Chinese Academy of Forestry, Beijing, China,Hainan Institute of National Park, Haikou, China,Research Institute of Natural Protected Area, Chinese Academy of Forestry, Beijing, China,Key Laboratory of Biodiversity Conservation of National Forestry and Grassland Administration, Beijing, China
| | - Liangliang Yang
- Institute of Forest Ecology-Environment and Nature Conservation, Chinese Academy of Forestry, Beijing, China,Key Laboratory of Biodiversity Conservation of National Forestry and Grassland Administration, Beijing, China
| | - Kun Jin
- Institute of Forest Ecology-Environment and Nature Conservation, Chinese Academy of Forestry, Beijing, China,Hainan Institute of National Park, Haikou, China,Research Institute of Natural Protected Area, Chinese Academy of Forestry, Beijing, China,Key Laboratory of Biodiversity Conservation of National Forestry and Grassland Administration, Beijing, China
| |
Collapse
|
29
|
Ren M, Lotfipour S. Dose- and Sex-Dependent Bidirectional Relationship between Intravenous Fentanyl Self-Administration and Gut Microbiota. Microorganisms 2022; 10:microorganisms10061127. [PMID: 35744645 PMCID: PMC9229572 DOI: 10.3390/microorganisms10061127] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 05/26/2022] [Accepted: 05/28/2022] [Indexed: 01/27/2023] Open
Abstract
Gut bacteria influence neural circuits in addiction-related behaviors. Given the association between opioid use, gastrointestinal distress, and microbial dysbiosis in humans and mice, we test the hypothesis that interactions between gut bacteria and the brain mediate the rewarding and reinforcing properties of fentanyl. We implant rats with intravenous catheters in preparation for fentanyl intravenous self-administration (IVSA) on an escalating schedule of reinforcement to determine factors that influence fentanyl intake, including sex, dose, and gut microbiota. Our data show the impact of fentanyl IVSA on gut microbiota diversity, as well as the role of gut microbiota on fentanyl IVSA, in Sprague Dawley rats in a sex- and dose-dependent manner (n = 10–16/group). We found that the diversity of gut microbiota within females dose-dependently predicts progressive but not fixed ratio schedules of fentanyl IVSA. Depending on sex and fentanyl dose, alpha diversity (richness and evenness measured with Shannon index) is either increased or decreased following fentanyl IVSA and predicts progressive ratio breakpoint. Our findings collectively suggest a role of gut bacteria in drug-related behavior, including motivation and reinforcement. This work provides feasibility for an intravenous fentanyl self-administration model and uncovers potential factors mediating drug use, which may lead to the development of effective addiction interventions.
Collapse
Affiliation(s)
- Michelle Ren
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University of California Irvine, Irvine, CA 92697, USA;
- Correspondence:
| | - Shahrdad Lotfipour
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University of California Irvine, Irvine, CA 92697, USA;
- Department of Emergency Medicine, School of Medicine, University of California Irvine, Irvine, CA 92697, USA
- Department of Pathology and Laboratory Medicine, School of Medicine, University of California Irvine, Irvine, CA 92697, USA
| |
Collapse
|
30
|
Eltokhi A, Sommer IE. A Reciprocal Link Between Gut Microbiota, Inflammation and Depression: A Place for Probiotics? Front Neurosci 2022; 16:852506. [PMID: 35546876 PMCID: PMC9081810 DOI: 10.3389/fnins.2022.852506] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 03/18/2022] [Indexed: 12/12/2022] Open
Abstract
Depression is a severe mental disorder that places a significant economic burden on public health. The reciprocal link between the trillions of bacteria in the gut, the microbiota, and depression is a controversial topic in neuroscience research and has drawn the attention of public interest and press coverage in recent years. Mounting pieces of evidence shed light on the role of the gut microbiota in depression, which is suggested to involve immune, endocrine, and neural pathways that are the main components of the microbiota-gut-brain axis. The gut microbiota play major roles in brain development and physiology and ultimately behavior. The bidirectional communication between the gut microbiota and brain function has been extensively explored in animal models of depression and clinical research in humans. Certain gut microbiota strains have been associated with the pathophysiology of depression. Therefore, oral intake of probiotics, the beneficial living bacteria and yeast, may represent a therapeutic approach for depression treatment. In this review, we summarize the findings describing the possible links between the gut microbiota and depression, focusing mainly on the inflammatory markers and sex hormones. By discussing preclinical and clinical studies on probiotics as a supplementary therapy for depression, we suggest that probiotics may be beneficial in alleviating depressive symptoms, possibly through immune modulation. Still, further comprehensive studies are required to draw a more solid conclusion regarding the efficacy of probiotics and their mechanisms of action.
Collapse
Affiliation(s)
- Ahmed Eltokhi
- Department of Pharmacology, University of Washington, Seattle, WA, United States
| | - Iris E Sommer
- Department of Biomedical Sciences of Cells & Systems, University Medical Centre Groningen, University of Groningen, Groningen, Netherlands
| |
Collapse
|
31
|
Sex Difference of Effect of Sophora flavescens on Gut Microbiota in Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:4552904. [PMID: 35341152 PMCID: PMC8941563 DOI: 10.1155/2022/4552904] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 02/03/2022] [Indexed: 12/24/2022]
Abstract
Objective By observing the sex difference of the gut microbiota in rats and the influence of Sophora flavescens (S. flavescens) on the gut microbiota in rats of different genders, it is hoped that it can provide reference materials for the rational use of S. flavescens in clinical practice. Method Taking samples of the jejunum (containing intestinal contents) and feces of 8-week-old rats, and detecting the composition of gut microbiota of females and males by 16S rRNA sequencing technology; At the same time, 8-week-old rats were gavaged with different doses of S. flavescens decoction, and the duodenum, jejunum, ileum, and colon (including the intestinal contents) samples were collected at 1, 2, and 3 weeks, using polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) technology and real-time fluorescent quantitative PCR (qRT-PCR) technology to observe the changes in the structure and the quantitative changes of 4 major intestinal dominant bacteria Enterococcus, Bacteriodes, Lactobacillus, and Clostridium in each intestinal segment, respectively. Result (1) The gut microbiota of normal rats without administration also had obvious gender differences; (2) S. flavescens significantly affects the composition of gut microbiota, and in different intestinal segments, this effect was different between genders under different dosages and different continuous administration times. Conclusion The effect of S. flavescens on the gut microbiota of rats had gender differences.
Collapse
|
32
|
Yeo E, Brubaker PL, Sloboda DM. The intestine and the microbiota in maternal glucose homeostasis during pregnancy. J Endocrinol 2022; 253:R1-R19. [PMID: 35099411 PMCID: PMC8942339 DOI: 10.1530/joe-21-0354] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 01/31/2022] [Indexed: 11/23/2022]
Abstract
It is now well established that, beyond its role in nutrient processing and absorption, the intestine and its accompanying gut microbiome constitute a major site of immunological and endocrine regulation that mediates whole-body metabolism. Despite the growing field of host-microbe research, few studies explore what mechanisms govern this relationship in the context of pregnancy. During pregnancy, significant maternal metabolic adaptations are made to accommodate the additional energy demands of the developing fetus and to prevent adverse pregnancy outcomes. Recent data suggest that the maternal gut microbiota may play a role in these adaptations, but changes to maternal gut physiology and the underlying intestinal mechanisms remain unclear. In this review, we discuss selective aspects of intestinal physiology including the role of the incretin hormone, glucagon-like peptide 1 (GLP-1), and the role of the maternal gut microbiome in the maternal metabolic adaptations to pregnancy. Specifically, we discuss how bacterial components and metabolites could mediate the effects of the microbiota on host physiology, including nutrient absorption and GLP-1 secretion and action, and whether these mechanisms may change maternal insulin sensitivity and secretion during pregnancy. Finally, we discuss how these pathways could be altered in disease states during pregnancy including maternal obesity and diabetes.
Collapse
Affiliation(s)
- Erica Yeo
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON, Canada
| | - Patricia L Brubaker
- Department of Physiology, University of Toronto, Toronto, ON, Canada
- Department of Medicine, University of Toronto, Toronto, ON, Canada
| | - Deborah M Sloboda
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON, Canada
- Department of Obstetrics, Gynecology and Pediatrics, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
33
|
Ryu EP, Davenport ER. Host Genetic Determinants of the Microbiome Across Animals: From Caenorhabditis elegans to Cattle. Annu Rev Anim Biosci 2022; 10:203-226. [PMID: 35167316 PMCID: PMC11000414 DOI: 10.1146/annurev-animal-020420-032054] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Animals harbor diverse communities of microbes within their gastrointestinal tracts. Phylogenetic relationship, diet, gut morphology, host physiology, and ecology all influence microbiome composition within and between animal clades. Emerging evidence points to host genetics as also playing a role in determining gut microbial composition within species. Here, we discuss recent advances in the study of microbiome heritability across a variety of animal species. Candidate gene and discovery-based studies in humans, mice, Drosophila, Caenorhabditis elegans, cattle, swine, poultry, and baboons reveal trends in the types of microbes that are heritable and the host genes and pathways involved in shaping the microbiome. Heritable gut microbes within a host species tend to be phylogenetically restricted. Host genetic variation in immune- and growth-related genes drives the abundances of these heritable bacteria within the gut. With only a small slice of the metazoan branch of the tree of life explored to date, this is an area rife with opportunities to shed light into the mechanisms governing host-microbe relationships.
Collapse
Affiliation(s)
- Erica P Ryu
- Department of Biology, Pennsylvania State University, University Park, Pennsylvania, USA; ,
| | - Emily R Davenport
- Department of Biology, Pennsylvania State University, University Park, Pennsylvania, USA; ,
- Huck Institutes of the Life Sciences and Institute for Computational and Data Sciences, Pennsylvania State University, University Park, Pennsylvania, USA
| |
Collapse
|
34
|
Brickey WJ, Thompson MA, Sheng Z, Li Z, Owzar K, Ting JP. Re-Examination of the Exacerbating Effect of Inflammasome Components during Radiation Injury. Radiat Res 2022; 197:199-204. [PMID: 34855933 PMCID: PMC8982344 DOI: 10.1667/rade-21-00142.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 10/08/2021] [Indexed: 11/03/2022]
Abstract
Radiation can be applied for therapeutic benefit against cancer or may result in devastating harm due to accidental or intentional release of nuclear energy. In all cases, radiation exposure causes molecular and cellular damage, resulting in the production of inflammatory factors and danger signals. Several classes of innate immune receptors sense the released damage associated molecules and activate cellular response pathways, including the induction of inflammasome signaling that impacts IL-1β/IL-18 maturation and cell death. A previous report indicated inflammasomes aggravate acute radiation syndrome. In contrast, here we find that inflammasome components do not exacerbate gamma-radiation-induced injury by examining heterozygous and gene-deletion littermate controls in addition to wild-type mice. Absence of some inflammasome genes, such as caspase-1/11 and Nlrp3, enhance susceptibility of treated mice to acute radiation injury, indicating importance of the inflammasome pathway in radioprotection. Surprisingly, we discover that the survival outcome may be sex-dependent as more inflammasome-deficient male mice are susceptible to radiation-induced injury. We discuss parameters that may influence the role of inflammasomes as radioprotective or radioexacerbating factors in recovery from radiation injury including the use of littermate controls, the sex of the animals, differences in microbiota within the colonies and other experimental conditions. Under the conditions tested, inflammasome components do not exacerbate radiation injury, but rather provide protective benefit.
Collapse
Affiliation(s)
- W. June Brickey
- Department of Microbiology-Immunology, University of North Carolina at Chapel Hill, North Carolina, 27599, USA
| | - Michael A. Thompson
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, North Carolina, 27599, USA
| | - Zhecheng Sheng
- Duke Cancer Institute, Duke University School of Medicine, Durham, North Carolina, 27705, USA
| | - Zhiguo Li
- Duke Cancer Institute, Duke University School of Medicine, Durham, North Carolina, 27705, USA
- Department of Biostatistics & Bioinformatics, Duke University School of Medicine, Durham, North Carolina, 27705, USA
| | - Kouros Owzar
- Duke Cancer Institute, Duke University School of Medicine, Durham, North Carolina, 27705, USA
- Department of Biostatistics & Bioinformatics, Duke University School of Medicine, Durham, North Carolina, 27705, USA
| | - Jenny P.Y. Ting
- Department of Microbiology-Immunology, University of North Carolina at Chapel Hill, North Carolina, 27599, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, North Carolina, 27599, USA
- Department of Genetics, University of North Carolina at Chapel Hill, North Carolina, 27599, USA
| |
Collapse
|
35
|
Comparative analysis of gut microbial composition and potential functions in captive forest and alpine musk deer. Appl Microbiol Biotechnol 2022; 106:1325-1339. [PMID: 35037997 PMCID: PMC8816758 DOI: 10.1007/s00253-022-11775-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 12/28/2021] [Accepted: 01/09/2022] [Indexed: 12/12/2022]
Abstract
Gut microbiota forms a unique microecosystem and performs various irreplaceable metabolic functions for ruminants. The gut microbiota is important for host health and provides new insight into endangered species conservation. Forest musk deer (FMD) and alpine musk deer (AMD) are typical small ruminants, globally endangered due to excessive hunting and habitat loss. Although nearly 60 years of captive musk deer breeding has reduced the hunting pressure in the wild, fatal gastrointestinal diseases restrict the growth of captive populations. In this study, 16S rRNA high-throughput sequencing revealed the differences in gut microbiota between FMD and AMD based on 166 fecal samples. The alpha diversity was higher in FMD than in AMD, probably helping FMD adapt to different and wider habitats. The ß-diversity was higher between adult FMD and AMD than juveniles and in winter than late spring. The phylum Firmicutes and the genera Christensenellaceae R7 group, Ruminococcus, Prevotellaceae UCG-004, and Monoglobus were significantly higher in abundance in FMD than in AMD. However, the phylum Bacteroidetes and genera Bacteroides, UCG-005, Rikenellaceae RC9 gut group, and Alistipes were significantly higher in AMD than FMD. The expression of metabolic functions was higher in AMD than in FMD, a beneficial pattern for AMD to maintain higher energy and substance metabolism. Captive AMD may be at higher risk of intestinal diseases than FMD, with higher relative abundances of most opportunistic pathogens and the expression of disease-related functions. These results provide valuable data for breeding healthy captive musk deer and assessing their adaptability in the wild. KEY POINTS: • Alpha diversity of gut microbiota was higher in FMD than that in AMD • Expression of metabolic and disease-related functions was higher in AMD than in FMD.
Collapse
|
36
|
Abstract
Environmental chemicals can alter gut microbial community composition, known as dysbiosis. However, the gut microbiota is a highly dynamic system and its functions are still largely underexplored. Likewise, it is unclear whether xenobiotic exposure affects host health through impairing host-microbiota interactions. Answers to this question not only can lead to a more precise understanding of the toxic effects of xenobiotics but also can provide new targets for the development of new therapeutic strategies. Here, we aim to identify the major challenges in the field of microbiota-exposure research and highlight the need to exam the health effects of xenobiotic-induced gut microbiota dysbiosis in host bodies. Although the changes of gut microbiota frequently co-occur with the xenobiotic exposure, the causal relationship of xenobiotic-induced microbiota dysbiosis and diseases is rarely established. The high dynamics of the gut microbiota and the complex interactions among exposure, microbiota, and host, are the major challenges to decipher the specific health effects of microbiota dysbiosis. The next stage of study needs to combine various technologies to precisely assess the xenobiotic-induced gut microbiota perturbation and the subsequent health effects in host bodies. The exposure, gut microbiota dysbiosis, and disease outcomes have to be causally linked. Many microbiota-host interactions are established by previous studies, including signaling metabolites and response pathways in the host, which may use as start points for future research to examine the mechanistic interactions of exposure, gut microbiota, and host health. In conclusion, to precisely understand the toxicity of xenobiotics and develop microbiota-based therapies, the causal and mechanistic links of exposure and microbiota dysbiosis have to be established in the next stage study.
Collapse
Affiliation(s)
- Liang Chi
- Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, NC, United States
| | - Pengcheng Tu
- Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, NC, United States
| | - Hongyu Ru
- Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, NC, United States
| | - Kun Lu
- Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, NC, United States,CONTACT Kun Lu Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, NC27599, United States
| |
Collapse
|
37
|
Kandel Gambarte PC, Wolansky MJ. The gut microbiota as a biomarker for realistic exposures to pesticides: A critical consideration. Neurotoxicol Teratol 2022; 91:107074. [DOI: 10.1016/j.ntt.2022.107074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 12/24/2021] [Accepted: 01/10/2022] [Indexed: 10/19/2022]
|
38
|
Huang L, Deng L, Liu C, Huang E, Han X, Xiao C, Liang X, Sun H, Liu C, Chen L. Fecal microbial signatures of healthy Han individuals from three bio-geographical zones in Guangdong. Front Microbiol 2022; 13:920780. [PMID: 36003930 PMCID: PMC9393523 DOI: 10.3389/fmicb.2022.920780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 07/01/2022] [Indexed: 11/25/2022] Open
Abstract
Important forensic evidence traced from crime scenes, such as fecal materials, can help in the forensic investigation of criminal cases. Intestines are the largest microbial pool in the human body whose microbial community is considered to be the human "second fingerprint". The present study explored the potential for community characteristics of gut microbes in forensic medicine. Fecal microbiota profiles of healthy individuals from three representative Han populations (Guangzhou, Shantou and Meizhou) in Guangdong Province, China were evaluated using High-throughput sequencing of V3-V4 hypervariable regions of the 16SrRNA gene. Results of the present study showed that at the genus level, Shantou, Guangzhou, and Meizhou behaved as Enterotype1, Enterotype2, and Enterotype3, which were mainly composed of Bacteroides, Prevotella, and Blautia, respectively. Based on OTU abundance at the genus level, using the random forest prediction model, it was found that there might be potential for distinguishing individuals of Guangzhou, Meizhou, and Shantou according to their fecal microbial community. Moreover, the findings of the microbial community of fecal samples in the present study were significantly different from that of saliva samples reported in our previous study, and thus it is evident that the saliva and feces can be distinguished. In conclusion, this study reported the fecal microbial signature of three Han populations, which may provide basic data for the potential application in forensic practice, containing body fluid identification, and geographical inference.
Collapse
Affiliation(s)
- Litao Huang
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, China
| | - Liting Deng
- The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| | - Changhui Liu
- Guangzhou Forensic Science Institute, Guangzhou, China
| | - Enping Huang
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, China
| | - Xiaolong Han
- Guangzhou Forensic Science Institute, Guangzhou, China
| | - Cheng Xiao
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, China
| | - Xiaomin Liang
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, China
| | - Huilin Sun
- The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
- *Correspondence: Huilin Sun
| | - Chao Liu
- Guangzhou Forensic Science Institute, Guangzhou, China
- Chao Liu
| | - Ling Chen
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, China
- Ling Chen
| |
Collapse
|
39
|
Sun G, Yang X, Wei Q, Xia T, Zhang L, Wang X, Zhang H. Characterization of gut microbiota in captive Himalayan tahr (Hemitragus jemlahicus) and the limited effect of sex on intestinal microorganisms of tahrs. THE EUROPEAN ZOOLOGICAL JOURNAL 2021. [DOI: 10.1080/24750263.2021.1994045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Affiliation(s)
- G. Sun
- College of Life Science, Qufu Normal University, Qufu, China
| | - X. Yang
- College of Life Science, Qufu Normal University, Qufu, China
| | - Q. Wei
- College of Life Science, Qufu Normal University, Qufu, China
| | - T. Xia
- College of Life Science, Qufu Normal University, Qufu, China
| | - L. Zhang
- College of Life Science, Qufu Normal University, Qufu, China
| | - X. Wang
- College of Life Science, Qufu Normal University, Qufu, China
| | - H. Zhang
- College of Life Science, Qufu Normal University, Qufu, China
| |
Collapse
|
40
|
Sarri L, Costa-Roura S, Balcells J, Seradj AR, de la Fuente G. The Impact of Genetics on Gut Microbiota of Growing and Fattening Pigs under Moderate N Restriction. Animals (Basel) 2021; 11:ani11102846. [PMID: 34679867 PMCID: PMC8532768 DOI: 10.3390/ani11102846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/25/2021] [Accepted: 09/26/2021] [Indexed: 11/16/2022] Open
Abstract
Characterization of intestinal microbiota is of great interest due to its relevant impact on growth, feed efficiency and pig carcass quality. Microbial composition shifts along the gut, but it also depends on the host (i.e., age, genetic background), diet composition and environmental conditions. To simultaneously study the effects of producing type (PT), production phase (PP) and dietary crude protein (CP) content on microbial populations, 20 Duroc pigs and 16 crossbred pigs (F2), belonging to growing and fattening phases, were used. Half of the pigs of each PT were fed a moderate CP restriction (2%). After sacrifice, contents of ileum, cecum and distal colon were collected for sequencing procedure. Fattening pigs presented higher microbial richness than growing pigs because of higher maturity and stability of the community. The F2 pigs showed higher bacterial alpha diversity and microbial network complexity (cecum and colon), especially in the fattening phase, while Duroc pigs tended to have higher Firmicutes/Bacteroidetes ratio in cecum segment. Lactobacillus was the predominant genus, and along with Streptococcus and Clostridium, their relative abundance decreased throughout the intestine. Although low CP diet did not alter the microbial diversity, it increased interaction network complexity. These results have revealed that the moderate CP restriction had lower impact on intestinal microbiota than PP and PT of pigs.
Collapse
|
41
|
Hu L, Xing Y, Jiang P, Gan L, Zhao F, Peng W, Li W, Tong Y, Deng S. Predicting the postmortem interval using human intestinal microbiome data and random forest algorithm. Sci Justice 2021; 61:516-527. [PMID: 34482931 DOI: 10.1016/j.scijus.2021.06.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 05/20/2021] [Accepted: 06/22/2021] [Indexed: 01/04/2023]
Abstract
Gradual changes in microbial communities in a human body after death can be used to determine postmortem interval (PMI). In this study, gut microflora samples were collected from the vermiform appendix and the transverse colon of human cadavers with PMIs between 5 and 192 h. The results revealed that the appendix might be an excellent intestinal sampling site and the appendix flora had an inferred succession rule during human body decomposition. Firmicutes, Bacteroidetes, and their respective subclasses showed a predictable successionrule in relative abundance over time. A Random Forest regression model was developed to correlate human gut microbiota with PMI. We believe that our findings have increased the knowledge of the composition and abundance of the gut microbiota in human corpses, and suggest that the use of the human appendix microbial succession may be a potential method for forensic estimation of the time of death.
Collapse
Affiliation(s)
- Lai Hu
- Department of Forensic Medicine, Chongqing Medical University, #1 Yixueyuan Road, Chongqing 400016, China
| | - Yu Xing
- Department of Forensic Medicine, Chongqing Medical University, #1 Yixueyuan Road, Chongqing 400016, China
| | - Pu Jiang
- Department of Forensic Medicine, Chongqing Medical University, #1 Yixueyuan Road, Chongqing 400016, China
| | - Li Gan
- Department of Forensic Medicine, Chongqing Medical University, #1 Yixueyuan Road, Chongqing 400016, China
| | - Fan Zhao
- Department of Forensic Medicine, Chongqing Medical University, #1 Yixueyuan Road, Chongqing 400016, China
| | - Wenli Peng
- Department of Forensic Medicine, Chongqing Medical University, #1 Yixueyuan Road, Chongqing 400016, China
| | - Weihan Li
- Department of Forensic Medicine, Chongqing Medical University, #1 Yixueyuan Road, Chongqing 400016, China
| | - Yanqiu Tong
- Department of Forensic Medicine, Chongqing Medical University, #1 Yixueyuan Road, Chongqing 400016, China; School of Humanities, Chongqing Jiaotong University, #66 Xuefu Road, Chongqing 400016, China
| | - Shixiong Deng
- Department of Forensic Medicine, Chongqing Medical University, #1 Yixueyuan Road, Chongqing 400016, China.
| |
Collapse
|
42
|
Xiong Y, Xiong Y, Zhu P, Wang Y, Yang H, Zhou R, Shu Y, Zhou H, Li Q. The Role of Gut Microbiota in Hypertension Pathogenesis and the Efficacy of Antihypertensive Drugs. Curr Hypertens Rep 2021; 23:40. [PMID: 34487269 DOI: 10.1007/s11906-021-01157-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/13/2021] [Indexed: 02/05/2023]
Abstract
PURPOSE OF HEADING To review the relationship between intestinal microbes and hypertension and its impact on the efficacy of antihypertensive drugs, and help to address some of these knowledge gaps. RECENT FINDINGS Hypertension is associated with cardiovascular diseases and is the most important modifiable risk factor for all-cause morbidity and mortality worldwide. The pathogenesis of hypertension is complex, including factors such as dietary, environmental and genetics. Recently, the studies have shown that the gut microbiota influences the occurrence and development of hypertension through a variety of ways, including affecting the production of short-chain fatty acids, dysfunction of the brain-gut axis, and changes in serotonin content that cause the imbalance of vagus and sympathetic nerve output associated with hypertension. However, patients with hypertension typically take antihypertensive drugs orally on a long-term basis, and most antihypertensive drugs are absorbed by the gastrointestinal tract. Studies have shown that the pharmacokinetics and metabolism of antihypertensive drugs may be influenced by microbiota, or antihypertensive drugs act directly on the intestinal flora to exert efficacy, including regulation of intestinal microbial metabolism, intestinal inflammation, and intestinal sympathetic nervous system disorders. The intestinal flora can affect the pharmacokinetics and metabolism of antihypertensive drugs in the rats, and intestinal microbiota also can be the target "organ" by antihypertensive drugs.
Collapse
Affiliation(s)
- Yanling Xiong
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, China
- Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, 110 Xiangya Road, Changsha, 410078, China
- Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha, 410078, China
- National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha, 410008, China
| | - Yalan Xiong
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, China
- Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, 110 Xiangya Road, Changsha, 410078, China
- Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha, 410078, China
- National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha, 410008, China
| | - Peng Zhu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, China
- Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, 110 Xiangya Road, Changsha, 410078, China
- Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha, 410078, China
- National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha, 410008, China
| | - Yusheng Wang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, China
- Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, 110 Xiangya Road, Changsha, 410078, China
- Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha, 410078, China
- National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha, 410008, China
- Department of Cardiology, First Affiliated Hospital of Shantou University Medical College, ShanTou, Guangdong, China
| | - Haijun Yang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, China
- Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, 110 Xiangya Road, Changsha, 410078, China
- Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha, 410078, China
- National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha, 410008, China
| | - Rong Zhou
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, China
- Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, 110 Xiangya Road, Changsha, 410078, China
- Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha, 410078, China
- National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha, 410008, China
| | - Yan Shu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, China
- Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, 110 Xiangya Road, Changsha, 410078, China
- Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha, 410078, China
- National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha, 410008, China
| | - Honghao Zhou
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, China
- Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, 110 Xiangya Road, Changsha, 410078, China
- Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha, 410078, China
- National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha, 410008, China
| | - Qing Li
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, China.
- Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, 110 Xiangya Road, Changsha, 410078, China.
- Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha, 410078, China.
- National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha, 410008, China.
| |
Collapse
|
43
|
Dalaijamts C, Cichocki JA, Luo YS, Rusyn I, Chiu WA. Quantitative Characterization of Population-Wide Tissue- and Metabolite-Specific Variability in Perchloroethylene Toxicokinetics in Male Mice. Toxicol Sci 2021; 182:168-182. [PMID: 33988684 DOI: 10.1093/toxsci/kfab057] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Quantification of interindividual variability is a continuing challenge in risk assessment, particularly for compounds with complex metabolism and multi-organ toxicity. Toxicokinetic variability for perchloroethylene (perc) was previously characterized across 3 mouse strains and in 1 mouse strain with various degrees of liver steatosis. To further characterize the role of genetic variability in toxicokinetics of perc, we applied Bayesian population physiologically based pharmacokinetic (PBPK) modeling to the data on perc and metabolites in blood/plasma and tissues of male mice from 45 inbred strains from the Collaborative Cross (CC) mouse population. After identifying the most influential PBPK parameters based on global sensitivity analysis, we fit the model with a hierarchical Bayesian population analysis using Markov chain Monte Carlo simulation. We found that the data from 3 commonly used strains were not representative of the full range of variability in perc and metabolite blood/plasma and tissue concentrations across the CC population. Using interstrain variability as a surrogate for human interindividual variability, we calculated dose-dependent, chemical-, and tissue-specific toxicokinetic variability factors (TKVFs) as candidate science-based replacements for the default uncertainty factor for human toxicokinetic variability of 100.5. We found that toxicokinetic variability factors for glutathione conjugation metabolites of perc showed the greatest variability, often exceeding the default, whereas those for oxidative metabolites and perc itself were generally less than the default. Overall, we demonstrate how a combination of a population-based mouse model such as the CC with Bayesian population PBPK modeling can reduce uncertainty in human toxicokinetic variability and increase accuracy and precision in quantitative risk assessment.
Collapse
Affiliation(s)
- Chimeddulam Dalaijamts
- Interdisciplinary Faculty of Toxicology, Texas A&M University, College Station, Texas 77843-4458, USA.,Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas 77843-4458, USA
| | - Joseph A Cichocki
- Interdisciplinary Faculty of Toxicology, Texas A&M University, College Station, Texas 77843-4458, USA.,Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas 77843-4458, USA
| | - Yu-Syuan Luo
- Interdisciplinary Faculty of Toxicology, Texas A&M University, College Station, Texas 77843-4458, USA.,Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas 77843-4458, USA
| | - Ivan Rusyn
- Interdisciplinary Faculty of Toxicology, Texas A&M University, College Station, Texas 77843-4458, USA.,Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas 77843-4458, USA
| | - Weihsueh A Chiu
- Interdisciplinary Faculty of Toxicology, Texas A&M University, College Station, Texas 77843-4458, USA.,Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas 77843-4458, USA
| |
Collapse
|
44
|
Han X, Liu H, Hu L, Zhao N, Xu S, Lin Z, Chen Y. Bacterial Community Characteristics in the Gastrointestinal Tract of Yak ( Bos grunniens) Fully Grazed on Pasture of the Qinghai-Tibetan Plateau of China. Animals (Basel) 2021; 11:ani11082243. [PMID: 34438701 PMCID: PMC8388508 DOI: 10.3390/ani11082243] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 07/16/2021] [Accepted: 07/26/2021] [Indexed: 11/30/2022] Open
Abstract
Simple Summary The Qinghai–Tibetan plateau is considered as the third Pole of the world and is characterized by low oxygen, high altitude, extreme cold weather and strong ultraviolet radiation. Yak, as the main domestic animals raised on the plateau, play various roles in local herdsmen’s lives by supplying necessities such as meat, milk and fuel. Yak are adapted to the harsh environment on the plateau; microbiota in gut equip the hosts with special abilities including adaptability, as illustrated by numerous research projects. Accordingly, the microbes in the gastrointestinal tract of yak must be characteristically profiled as a strategy to adapt to the environment. However, little is known about the microbial community in whole tract of yak; almost all of reported researches focused on rumen. Therefore, in the current study the bacterial community in the gastrointestinal tract of yak was explored using 16S rDNA amplicon sequencing technology, and the community profiling characteristic in each section was clearly elucidated. Abstract In the current research, samples of yak gastrointestinal tracts (GITs) were used to profile the bacterial compositional characteristics using high through-put sequencing technology of 16S RNA amplicon. A total of 6959 OTUs was obtained from 20,799,614 effective tags, among which 751 OTUs were shared by ten sections. A total of 16 known phyla were obtained in all samples—the most abundant phyla were Firmicutes (34.58%), Bacteroidetes (33.96%) and Verrucomicrobia (11.70%). At the genus level, a total of 66 genera were obtained—Rikenellaceae_RC9_gut_group (7.24%), Akkermansia (6.32%) and Ruminococcaceae_UCG-005 (6.14%) were the most abundant. Species of Observed (Sob), Shannon and Chao values of the Stomach were the greatest, followed by the large intestine, while small intestine had the lowest diversity (p < 0.05). Bacteroidete were more abundant in sections from rumen to duodenum; while Firmicutes were the most abundant in sections from jejunum. ABC transporters (7.82%), Aminoacyl-tRNA biosynthesis (4.85%) and Purine metabolism (3.77%) were the most abundant level-3 pathways in all samples. The results of associated correlation analysis indicated that rectum samples might be used as an estimator of rumen bacterial communities and fermentation. The results of this research enrich the current knowledge about the unique animals of the QTP and extend our insight into GITs microecology of various animals.
Collapse
Affiliation(s)
- Xueping Han
- Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China; (H.L.); (L.H.); (N.Z.)
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Chinese Academy of Sciences, Xining 810008, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Technology Extension Service of Animal Husbandry of Qinghai, Xining 810001, China; (Z.L.); (Y.C.)
- Correspondence: (X.H.); (S.X.)
| | - Hongjin Liu
- Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China; (H.L.); (L.H.); (N.Z.)
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Chinese Academy of Sciences, Xining 810008, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Linyong Hu
- Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China; (H.L.); (L.H.); (N.Z.)
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Chinese Academy of Sciences, Xining 810008, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Na Zhao
- Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China; (H.L.); (L.H.); (N.Z.)
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Chinese Academy of Sciences, Xining 810008, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shixiao Xu
- Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China; (H.L.); (L.H.); (N.Z.)
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Chinese Academy of Sciences, Xining 810008, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Correspondence: (X.H.); (S.X.)
| | - Zhijia Lin
- Technology Extension Service of Animal Husbandry of Qinghai, Xining 810001, China; (Z.L.); (Y.C.)
| | - Yongwei Chen
- Technology Extension Service of Animal Husbandry of Qinghai, Xining 810001, China; (Z.L.); (Y.C.)
| |
Collapse
|
45
|
Probiotics Improve Eating Disorders in Mandarin Fish ( Siniperca chuatsi) Induced by a Pellet Feed Diet via Stimulating Immunity and Regulating Gut Microbiota. Microorganisms 2021; 9:microorganisms9061288. [PMID: 34204793 PMCID: PMC8231599 DOI: 10.3390/microorganisms9061288] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/09/2021] [Accepted: 06/09/2021] [Indexed: 12/12/2022] Open
Abstract
Eating disorders are directly or indirectly influenced by gut microbiota and innate immunity. Probiotics have been shown to regulate gut microbiota and stimulate immunity in a variety of species. In this study, three kinds of probiotics, namely, Lactobacillus plantarum, Lactobacillus rhamnosus and Clostridium butyricum, were selected for the experiment. The results showed that the addition of three probiotics at a concentration of 108 colony forming unit/mL to the culture water significantly increased the ratio of the pellet feed recipients and survival rate of mandarin fish (Siniperca chuatsi) under pellet-feed feeding. In addition, the three kinds of probiotics reversed the decrease in serum lysozyme and immunoglobulin M content, the decrease in the activity of antioxidant enzymes glutathione and catalase and the decrease in the expression of the appetite-stimulating regulator agouti gene-related protein of mandarin fish caused by pellet-feed feeding. In terms of intestinal health, the three probiotics reduced the abundance of pathogenic bacteria Aeromonas in the gut microbiota and increased the height of intestinal villi and the thickness of foregut basement membrane of mandarin fish under pellet-feed feeding. In general, the addition of the three probiotics can significantly improve eating disorders of mandarin fish caused by pellet feeding.
Collapse
|
46
|
Ni J, Fu C, Huang R, Li Z, Li S, Cao P, Zhong K, Ge M, Gao Y. Metabolic syndrome cannot mask the changes of faecal microbiota compositions caused by primary hepatocellular carcinoma. Lett Appl Microbiol 2021; 73:73-80. [PMID: 33768575 DOI: 10.1111/lam.13477] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 03/16/2021] [Accepted: 03/22/2021] [Indexed: 12/19/2022]
Abstract
Both hepatocellular carcinoma (HCC) and metabolic syndrome are closely associated with the composition of the gut microbiota (GM). Although it has been proposed that elements of the GM can be used as biomarkers for the early diagnosis of HCC, whether metabolic syndrome results in a misrepresentation of the results of the early diagnosis of HCC using GM remains unclear. We compared the differences in the faecal microbiota of 10 patients with primary HCC, six patients with type 2 diabetes mellitus (T2DM), seven patients with arterial hypertension, six patients with both HCC and T2DM, and 10 patients with both HCC and arterial hypertension, as well as 10 healthy subjects, using high-throughput sequencing of 16S rRNA gene amplicons. Our results revealed a significant difference in the GM between subjects with and without HCC. The 49 bacterial genera out of the 494 detected genera were significantly different between the groups. These results show that changes in the GM can be used to distinguish between subjects with and without HCC, and can resist interference of T2DM and arterial hypertension with the GM. The results of the present study provide an important basis for the clinical auxiliary diagnosis of HCC by detecting the GM.
Collapse
Affiliation(s)
- J Ni
- Research and Development Center, Guangdong Meilikang Bio-Sciences Ltd., Dongguan, China.,Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center of Artificial Organ and Tissue Engineering, Zhujiang Hospital of Southern Medical University, Guangzhou, China.,Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Medical University, Dongguan, China
| | - C Fu
- Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center of Artificial Organ and Tissue Engineering, Zhujiang Hospital of Southern Medical University, Guangzhou, China
| | - R Huang
- Department of Neonatal Surgery, Guangdong Women and Children Hospital, Guangzhou, China
| | - Z Li
- Research and Development Center, Guangdong Meilikang Bio-Sciences Ltd., Dongguan, China
| | - S Li
- Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center of Artificial Organ and Tissue Engineering, Zhujiang Hospital of Southern Medical University, Guangzhou, China
| | - P Cao
- Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center of Artificial Organ and Tissue Engineering, Zhujiang Hospital of Southern Medical University, Guangzhou, China
| | - K Zhong
- Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center of Artificial Organ and Tissue Engineering, Zhujiang Hospital of Southern Medical University, Guangzhou, China
| | - M Ge
- Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center of Artificial Organ and Tissue Engineering, Zhujiang Hospital of Southern Medical University, Guangzhou, China
| | - Y Gao
- Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center of Artificial Organ and Tissue Engineering, Zhujiang Hospital of Southern Medical University, Guangzhou, China.,State Key Laboratory of Organ Failure Research, Southern Medical University, Guangzhou, China
| |
Collapse
|
47
|
Makris AP, Karianaki M, Tsamis KI, Paschou SA. The role of the gut-brain axis in depression: endocrine, neural, and immune pathways. Hormones (Athens) 2021; 20:1-12. [PMID: 32827123 DOI: 10.1007/s42000-020-00236-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Accepted: 07/30/2020] [Indexed: 12/12/2022]
Abstract
The aim of this article is to summarize the pathways connecting the gut and the brain and to highlight their role in the development of depression as well as their potential use as therapeutic targets. A literature search was conducted in PubMed using relevant keywords and their combinations up to the end of March 2020. Previously seen as a disease pertaining solely to the central nervous system, depression is now perceived as a multifactorial condition that extends beyond neurotransmitter depletion. Central to our understanding of the disease is our current knowledge of the communication between the gut and the brain, which is bidirectional and involves neural, endocrine, and immune pathways. This communication is facilitated via stress-mediated activation of the HPA axis, which stimulates the immune system and causes a decrease in microbial diversity, also known as dysbiosis. This change in the intestinal flora leads, in turn, to bacterial production of various substances which stimulate both the enteric nervous system and the vagal afferents and contribute to additional activation of the HPA axis. Concomitantly, these substances are associated with an increase in intestinal permeability, namely, the leaky gut phenomenon. The bidirectional link between the gut and the brain is of great importance for a more inclusive approach to the management of depression. It can thus be deployed for the development of novel therapeutic strategies against depression, offering promising alternatives to limited efficacy antidepressants, while combination therapy also remains a potential treatment option.
Collapse
Affiliation(s)
| | | | - Konstantinos I Tsamis
- School of Medicine, European University Cyprus, Nicosia, Cyprus
- School of Medicine, University of Ioannina, Ioannina, Greece
| | - Stavroula A Paschou
- School of Medicine, European University Cyprus, Nicosia, Cyprus.
- School of Medicine, National and Kapodistrian University of Athens, Athens, Greece.
| |
Collapse
|
48
|
Abstract
Health and lifespan disparities between sexes are dependent on the immune responses. Men and women have different life styles which determine the environment, nutritional requirements and their interactions with the sex hormones. Sexual dimorphism in innate and adaptive immunity determines responses to infections and other environmental factors regulating health and diseases. Sex hormones regulate immune responses through the expression of receptors which differ for female and male hormones. Estrogen receptors are expressed in brain, lymphoid tissue cells and many immune cells while androgen receptors are limited in expression. Genetic, epigenetic factors and X chromosome linked immune function genes are important in enhanced adaptive immunity in females, leading to production of higher levels of antibodies compared to males. Different nutritional requirements and hormonal control of the mucosal microbiome and its function regulate mucosal immunity. Hormonal changes during various aspects of life and during aging control immune senescence. Evolutionarily, females have an advantage during young age when they are protected from infections by heightened immune reactivity though during aging that can lead to pathologies. Considering the sexual dimorphism in immunity, guidelines need to be established for sex-based treatments for optimal response.
Collapse
Affiliation(s)
- Veena Taneja
- Department of Immunology and Rheumatology, Mayo Clinic, Rochester, MN, United States.
| |
Collapse
|
49
|
Bulteel L, Houwenhuyse S, Declerck SAJ, Decaestecker E. The Role of Microbiome and Genotype in Daphnia magna upon Parasite Re-Exposure. Genes (Basel) 2021; 12:70. [PMID: 33430247 PMCID: PMC7825712 DOI: 10.3390/genes12010070] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/31/2020] [Accepted: 01/05/2021] [Indexed: 02/07/2023] Open
Abstract
Recently, it has been shown that the community of gut microorganisms plays a crucial role in host performance with respect to parasite tolerance. Knowledge, however, is lacking on the role of the gut microbiome in mediating host tolerance after parasite re-exposure, especially considering multiple parasite infections. We here aimed to fill this knowledge gap by studying the role of the gut microbiome on tolerance in Daphnia magna upon multiple parasite species re-exposure. Additionally, we investigated the role of the host genotype in the interaction between the gut microbiome and the host phenotypic performance. A microbiome transplant experiment was performed in which three germ-free D. magna genotypes were exposed to a gut microbial inoculum and a parasite community treatment. The gut microbiome inocula were pre-exposed to the same parasite communities or a control treatment. Daphnia performance was monitored, and amplicon sequencing was performed to characterize the gut microbial community. Our experimental results showed that the gut microbiome plays no role in Daphnia tolerance upon parasite re-exposure. We did, however, find a main effect of the gut microbiome on Daphnia body size reflecting parasite specific responses. Our results also showed that it is rather the Daphnia genotype, and not the gut microbiome, that affected parasite-induced host mortality. Additionally, we found a role of the genotype in structuring the gut microbial community, both in alpha diversity as in the microbial composition.
Collapse
Affiliation(s)
- Lore Bulteel
- Laboratory of Aquatic Biology, Department of Biology, University of Leuven-Campus Kulak, E. Sabbelaan 53, 8500 Kortrijk, Belgium; (S.H.); (E.D.)
| | - Shira Houwenhuyse
- Laboratory of Aquatic Biology, Department of Biology, University of Leuven-Campus Kulak, E. Sabbelaan 53, 8500 Kortrijk, Belgium; (S.H.); (E.D.)
| | - Steven A. J. Declerck
- Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6700 AB Wageningen, The Netherlands;
- Laboratory of Aquatic Ecology, Evolution and Conservation, Department of Biology, KULeuven, 3000 Leuven, Belgium
| | - Ellen Decaestecker
- Laboratory of Aquatic Biology, Department of Biology, University of Leuven-Campus Kulak, E. Sabbelaan 53, 8500 Kortrijk, Belgium; (S.H.); (E.D.)
| |
Collapse
|
50
|
Yao G, Zhang H, Luo G, Wang Z, Zhao H, Zhang J, Dong Y, Gao Y, Wu S. Effect of Senecio scandens ethanol extract on gut microbiota composition in mice. Arch Microbiol 2021; 203:1477-1488. [PMID: 33394080 DOI: 10.1007/s00203-020-02144-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 11/20/2020] [Accepted: 12/03/2020] [Indexed: 01/07/2023]
Abstract
The gut microbiota inhabits the animal intestinal tract, and dysbiosis of the gut microbiota may result in disease. Senecio scandens has pharmaceutical antibacterial activities and is regarded as a broad-spectrum antibiotic in traditional Chinese medicine. Extracts of S. scandens are reported to show strong antimicrobial activity, and quercetin significantly decreases some species in the caecal microflora. However, the bactericidal effects of the extracts on the gut microbiota remain obscure. Here, we supplied ethanol extract of S. scandens, which might possibly be used as an alternative for chemical antibiotics, to mice to investigate the state of the intestinal microbiota. Our studies included a control group, low-, moderate-, and high-dose ethanol extract groups, and cefixime capsule group. The ethanol extract groups did not present reduced diversity or differences in the gut microbiota balance. There were significant differences between the ethanol extract and cefixime capsule groups in terms of the gut microbiota. The control and ethanol extract groups contained similar bacteria, which suggested that the ethanol extract has no inhibitory effect on the gut microbiota in vivo. Bifidobacteriales and Lactobacillus acidophilus were significantly increased in the high-dose group. Both secretory immunoglobulin A and mucin 2 concentrations increased as the dose of ethanol extract increased. The functional prediction differences between the control and ethanol extract groups decreased with increasing extract doses, which indicated that the low-dose and high-dose extract treatments might regulate different pathways and functions of the gut microbiota. The results also highlighted the prevention of bacterial drug resistance in the ethanol extract groups.
Collapse
Affiliation(s)
- Gang Yao
- Institute of Laboratory Animal Science, Guizhou University of Traditional Chinese Medicine, Huaxi University Town, Dongqing South Road, Guiyang, 550025, China.
| | - Hui Zhang
- Institute of Laboratory Animal Science, Guizhou University of Traditional Chinese Medicine, Huaxi University Town, Dongqing South Road, Guiyang, 550025, China
| | - Guoyong Luo
- College of Pharmaceutical Sciences, Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China
| | - Zuhua Wang
- College of Pharmaceutical Sciences, Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China
| | - Hai Zhao
- Institute of Laboratory Animal Science, Guizhou University of Traditional Chinese Medicine, Huaxi University Town, Dongqing South Road, Guiyang, 550025, China
| | - Jian Zhang
- Institute of Laboratory Animal Science, Guizhou University of Traditional Chinese Medicine, Huaxi University Town, Dongqing South Road, Guiyang, 550025, China
| | - Yuanqiu Dong
- Institute of Laboratory Animal Science, Guizhou University of Traditional Chinese Medicine, Huaxi University Town, Dongqing South Road, Guiyang, 550025, China
| | - Yuan Gao
- College of Pharmaceutical Sciences, Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China
| | - Shuguang Wu
- Institute of Laboratory Animal Science, Guizhou University of Traditional Chinese Medicine, Huaxi University Town, Dongqing South Road, Guiyang, 550025, China
| |
Collapse
|