1
|
Radeva-Ilieva M, Stoeva S, Hvarchanova N, Georgiev KD. Green Tea: Current Knowledge and Issues. Foods 2025; 14:745. [PMID: 40077449 PMCID: PMC11899301 DOI: 10.3390/foods14050745] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 02/11/2025] [Accepted: 02/19/2025] [Indexed: 03/14/2025] Open
Abstract
Green tea possesses antioxidant, anti-inflammatory, anticancer, and antimicrobial activities, reduces body weight, and slows down aging. These effects are primarily attributed to catechins contained in green tea leaves, particularly epigallocatechin-3-gallate. However, in humans, the realization of green tea's beneficial effects is limited. In order to summarize and critically analyze the available scientific information about green tea's health benefits and issues related to its use, we conducted an in-depth literature review in scientific databases. A number of in vitro studies reported that green tea catechins modulate various signaling pathways in cells, which is thought to underlie their beneficial effects. However, data on the effects of catechins in humans are scarce, which is partly due to their low stability and oral bioavailability. Furthermore, catechins may also participate in pharmacokinetic interactions when co-administered with certain drugs such as anticancer agents, drugs for cardiovascular diseases, immunosuppressors, etc. As a result, adverse drug reactions or therapy failure may occur. In conclusion, over the years, various approaches have been investigated to optimize catechin intake and to achieve beneficial effects in humans, but to date, the use of catechins for prophylaxis or disease treatment remains limited. Therefore, future studies regarding the possibilities of catechins administration are needed.
Collapse
Affiliation(s)
- Maya Radeva-Ilieva
- Department of Pharmacology, Toxicology and Pharmacotherapy, Faculty of Pharmacy, Medical University—Varna, 9002 Varna, Bulgaria; (S.S.); (N.H.); (K.D.G.)
| | | | | | | |
Collapse
|
2
|
Capasso L, De Masi L, Sirignano C, Maresca V, Basile A, Nebbioso A, Rigano D, Bontempo P. Epigallocatechin Gallate (EGCG): Pharmacological Properties, Biological Activities and Therapeutic Potential. Molecules 2025; 30:654. [PMID: 39942757 PMCID: PMC11821029 DOI: 10.3390/molecules30030654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 01/26/2025] [Accepted: 01/29/2025] [Indexed: 02/16/2025] Open
Abstract
Epigallocatechin gallate (EGCG), the predominant catechin in green tea, comprises approximately 50% of its total polyphenol content and has garnered widespread recognition for its significant therapeutic potential. As the principal bioactive component of Camellia sinensis, EGCG is celebrated for its potent antioxidant, anti-inflammatory, cardioprotective, and antitumor properties. The bioavailability and metabolism of EGCG within the gut microbiota underscore its systemic effects, as it is absorbed in the intestine, metabolized into bioactive compounds, and transported to target organs. This compound has been shown to influence key physiological pathways, particularly those related to lipid metabolism and inflammation, offering protective effects against a variety of diseases. EGCG's ability to modulate cell signaling pathways associated with oxidative stress, apoptosis, and immune regulation highlights its multifaceted role in health promotion. Emerging evidence underscores EGCG's therapeutic potential in preventing and managing a range of chronic conditions, including cancer, cardiovascular diseases, neurodegenerative disorders, and metabolic syndromes. Given the growing prevalence of lifestyle-related diseases and the increasing interest in natural compounds, EGCG presents a promising avenue for novel therapeutic strategies. This review aims to summarize current knowledge on EGCG, emphasizing its critical role as a versatile natural bioactive agent with diverse clinical applications. Further exploration in both experimental and clinical settings is essential to fully unlock its therapeutic potential.
Collapse
Affiliation(s)
- Lucia Capasso
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, Via L. De Crecchio 7, 80138 Naples, Italy; (L.C.); (A.N.)
| | - Luigi De Masi
- National Research Council (CNR), Institute of Biosciences and BioResources (IBBR), Via Università 133, 80055 Portici, Italy;
| | - Carmina Sirignano
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy;
| | - Viviana Maresca
- Department of Life Science, Health, and Health Professions, Link Campus University, 00165 Rome, Italy;
| | - Adriana Basile
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy;
| | - Angela Nebbioso
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, Via L. De Crecchio 7, 80138 Naples, Italy; (L.C.); (A.N.)
| | - Daniela Rigano
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy;
| | - Paola Bontempo
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, Via L. De Crecchio 7, 80138 Naples, Italy; (L.C.); (A.N.)
| |
Collapse
|
3
|
Gupta RC, Doss RB. Toxicity Potential of Nutraceuticals. Methods Mol Biol 2025; 2834:197-230. [PMID: 39312167 DOI: 10.1007/978-1-0716-4003-6_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
During the past few decades and especially during and after the COVID-19 pandemic, the use of nutraceuticals has become increasingly popular in both humans and animals due to their easy access, cost-effectiveness, and tolerability with a wide margin of safety. While some nutraceuticals are safe, others have an inherent toxic potential. For a large number of nutraceuticals, no toxicity/safety data are available due to a lack of pharmacological/toxicological studies. The safety of some nutraceuticals can be compromised via contamination with toxic plants, metals, mycotoxins, pesticides, fertilizers, drugs of abuse, etc. Knowledge of pharmacokinetic/toxicokinetic studies and biomarkers of exposure, effect, and susceptibility appears to play a pivotal role in the safety and toxicity assessment of nutraceuticals. Interaction studies are essential to determine efficacy, safety, and toxicity when nutraceuticals and therapeutic drugs are used concomitantly or when polypharmacy is involved. This chapter describes various aspects of nutraceuticals, particularly their toxic potential, and the factors that influence their safety.
Collapse
Affiliation(s)
- Ramesh C Gupta
- Department of Toxicology, Murray State University, Breathitt Veterinary Center, Hopkinsville, KY, USA.
| | - Robin B Doss
- Department of Toxicology, Murray State University, Breathitt Veterinary Center, Hopkinsville, KY, USA
| |
Collapse
|
4
|
Teramoto M, Eshak ES, Iso H. Green tea and health outcomes including cardiovascular disease, cancer, and dementia. TEA IN HEALTH AND DISEASE PREVENTION 2025:783-790. [DOI: 10.1016/b978-0-443-14158-4.00057-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
5
|
Sethi N, Khokhar M, Mathur M, Batra Y, Mohandas A, Tomo S, Rao M, Banerjee M. Therapeutic Potential of Nutraceuticals against Drug-Induced Liver Injury. Semin Liver Dis 2024; 44:430-456. [PMID: 39393795 DOI: 10.1055/s-0044-1791559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/13/2024]
Abstract
Drug-induced liver injury (DILI) continues to be a major concern in clinical practice, thus necessitating a need for novel therapeutic approaches to alleviate its impact on hepatic function. This review investigates the therapeutic potential of nutraceuticals against DILI, focusing on examining the underlying molecular mechanisms and cellular pathways. In preclinical and clinical studies, nutraceuticals, such as silymarin, curcumin, and N-acetylcysteine, have demonstrated remarkable efficacy in attenuating liver injury induced by diverse pharmaceutical agents. The molecular mechanisms underlying these hepatoprotective effects involve modulation of oxidative stress, inflammation, and apoptotic pathways. Furthermore, this review examines cellular routes affected by these nutritional components focusing on their influence on hepatocytes, Kupffer cells, and stellate cells. Key evidence highlights that autophagy modulation as well as unfolded protein response are essential cellular processes through which nutraceuticals exert their cytoprotective functions. In conclusion, nutraceuticals are emerging as promising therapeutic agents for mitigating DILI, by targeting different molecular pathways along with cell processes involved in it concurrently.
Collapse
Affiliation(s)
- Namya Sethi
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, Rajasthan, India
| | - Manoj Khokhar
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, Rajasthan, India
| | - Mitali Mathur
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, Rajasthan, India
| | - Yashi Batra
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, Rajasthan, India
| | - Amal Mohandas
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, Rajasthan, India
| | - Sojit Tomo
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, Rajasthan, India
| | - Mahadev Rao
- Department of Pharmacy Practice, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Karnataka, India
| | - Mithu Banerjee
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, Rajasthan, India
| |
Collapse
|
6
|
Wang Q, Huang H, Yang Y, Yang X, Li X, Zhong W, Wen B, He F, Li J. Reinventing gut health: leveraging dietary bioactive compounds for the prevention and treatment of diseases. Front Nutr 2024; 11:1491821. [PMID: 39502877 PMCID: PMC11534667 DOI: 10.3389/fnut.2024.1491821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 10/07/2024] [Indexed: 11/08/2024] Open
Abstract
The human gut harbors a complex and diverse microbiota essential for maintaining health. Diet is the most significant modifiable factor influencing gut microbiota composition and function, particularly through bioactive compounds like polyphenols, dietary fibers, and carotenoids found in vegetables, fruits, seafood, coffee, and green tea. These compounds regulate the gut microbiota by promoting beneficial bacteria and suppressing harmful ones, leading to the production of key microbiota-derived metabolites such as short-chain fatty acids, bile acid derivatives, and tryptophan metabolites. These metabolites are crucial for gut homeostasis, influencing gut barrier function, immune responses, energy metabolism, anti-inflammatory processes, lipid digestion, and modulation of gut inflammation. This review outlines the regulatory impact of typical bioactive compounds on the gut microbiota and explores the connection between specific microbiota-derived metabolites and overall health. We discuss how dietary interventions can affect disease development and progression through mechanisms involving these metabolites. We examine the roles of bioactive compounds and their metabolites in the prevention and treatment of diseases including inflammatory bowel disease, colorectal cancer, cardiovascular diseases, obesity, and type 2 diabetes mellitus. This study provides new insights into disease prevention and underscores the potential of dietary modulation of the gut microbiota as a strategy for improving health.
Collapse
Affiliation(s)
- Qiurong Wang
- Chengdu Medical College, Chengdu, China
- Department of Gastroenterology, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Hui Huang
- Chengdu Medical College, Chengdu, China
- Department of Gastroenterology, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Ying Yang
- Chengdu Medical College, Chengdu, China
| | - Xianglan Yang
- Pengzhou Branch of the First Affiliated Hospital of Chengdu Medical College, Pengzhou Second People’s Hospital, Chengdu, China
| | - Xuemei Li
- Department of Gastroenterology, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Wei Zhong
- Department of Gastroenterology, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Biao Wen
- Department of Gastroenterology, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Feng He
- Chengdu Medical College, Chengdu, China
- Department of Gastroenterology, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Jun Li
- Chengdu Medical College, Chengdu, China
- Department of Gastroenterology, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| |
Collapse
|
7
|
Maćków M, Dziubyna T, Jamer T, Slivinskyi D, Pytrus T, Neubauer K, Zwolińska-Wcisło M, Stawarski A, Piotrowska E, Nowacki D. The Role of Dietary Ingredients and Herbs in the Prevention of Non-Communicable Chronic Liver Disease. Nutrients 2024; 16:3505. [PMID: 39458499 PMCID: PMC11510335 DOI: 10.3390/nu16203505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 10/07/2024] [Accepted: 10/13/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND Liver diseases are among the most commonly diagnosed conditions, with the main risk factors being inappropriate lifestyles, including poor diet, excessive alcohol consumption, low physical activity and smoking, including electronic cigarettes. Non-communicable chronic liver diseases also often develop as a result of accompanying overweight and obesity, as well as type 2 diabetes. METHODS The literature on risk factors for non-communicable chronic liver diseases, which show a high strong influence on their occurrence, was analysed. RESULTS Measures to prevent non-communicable chronic liver disease include the selection of suitable food ingredients that have proven protective effects on the liver. Such ingredients include dietary fibre, probiotics, herbs, various types of polyphenols and fatty acids (omega-3). CONCLUSIONS Because of their liver-protective effects, nutritionists recommend consuming vegetables, fruits, herbs and spices that provide valuable ingredients with anti-inflammatory and anti-cancer effects. These components should be provided with food and, in the case of probiotics, supplementation appears to be important. As a preventive measure, a diet rich in these nutrients is therefore recommended, as well as one that prevents overweight and other diseases that can result in liver disease.
Collapse
Affiliation(s)
- Monika Maćków
- Department of Human Nutrition, Faculty of Biotechnology and Food Science, Wrocław University of Environmental and Life Sciences, Chełmońskiego 37, 51-630 Wrocław, Poland; (M.M.); (E.P.); (D.N.)
- Regional Specialist Hospital in Wrocław, Research and Development Center, Kamieńskiego 73A, 51-124 Wroclaw, Poland
| | - Tomasz Dziubyna
- Unit of Clinical Dietetics, Department of Gastroenterology and Hepatology, Faculty of Medicine, Jagiellonian University Medical College, M. Jakubowskiego 2, 30-688 Kraków, Poland;
| | - Tatiana Jamer
- 2nd Department and Clinic of Paediatrics, Gastroenterology and Nutrition, Wrocław Medical University, M. Curie-Skłodowskiej 50/52, 50-367 Wrocław, Poland; (T.J.); (T.P.); (A.S.)
| | - Dmytro Slivinskyi
- Department of Fruit, Vegetable and Plant Nutraceutical Technology, Faculty of Biotechnology and Food Science, Wrocław University of Environmental and Life Sciences, Chełmońskiego 37, 51-630 Wrocław, Poland;
| | - Tomasz Pytrus
- 2nd Department and Clinic of Paediatrics, Gastroenterology and Nutrition, Wrocław Medical University, M. Curie-Skłodowskiej 50/52, 50-367 Wrocław, Poland; (T.J.); (T.P.); (A.S.)
| | - Katarzyna Neubauer
- Department and Clinic of Gastroenterology and Hepatology, Wrocław Medical University, Borowska 213, 50-556 Wrocław, Poland;
| | - Małgorzata Zwolińska-Wcisło
- Unit of Clinical Dietetics, Department of Gastroenterology and Hepatology, Faculty of Medicine, Jagiellonian University Medical College, M. Jakubowskiego 2, 30-688 Kraków, Poland;
- Department of Gastroenterology and Hepatology, Faculty of Medicine, Jagiellonian University Medical College, M. Jakubowskiego 2, 30-688 Kraków, Poland
| | - Andrzej Stawarski
- 2nd Department and Clinic of Paediatrics, Gastroenterology and Nutrition, Wrocław Medical University, M. Curie-Skłodowskiej 50/52, 50-367 Wrocław, Poland; (T.J.); (T.P.); (A.S.)
| | - Ewa Piotrowska
- Department of Human Nutrition, Faculty of Biotechnology and Food Science, Wrocław University of Environmental and Life Sciences, Chełmońskiego 37, 51-630 Wrocław, Poland; (M.M.); (E.P.); (D.N.)
| | - Dorian Nowacki
- Department of Human Nutrition, Faculty of Biotechnology and Food Science, Wrocław University of Environmental and Life Sciences, Chełmońskiego 37, 51-630 Wrocław, Poland; (M.M.); (E.P.); (D.N.)
| |
Collapse
|
8
|
Giraud JS, Virginie KS, Germain P, Anne J, Brigitte S, Rui B, Matthieu R, Sixtine DP, Clémentine V, Margaux V, Benoit B, Francois G, Albane DT, Audrey TS. Clinical and economic impact of pharmacist interventions to identify drug-related problems in multidisciplinary cancer care: a prospective trial. Oncologist 2024:oyae213. [PMID: 39403043 DOI: 10.1093/oncolo/oyae213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 06/22/2024] [Indexed: 01/24/2025] Open
Abstract
BACKGROUND The prescription of antitumor drugs has often been associated with drug-related problems. Pretherapeutic multidisciplinary risk assessment programs including pharmaceutical care have been established to secure the initiation of injectable and oral antitumor therapies. This prospective cross-sectional double-center study evaluated the clinical and economic impact of the pharmacist in detecting drug-related problems in patients initiating antitumor therapies. MATERIALS AND METHODS Following pharmaceutical consultations, pharmaceutical interventions were validated by a multidisciplinary team. A committee of independent clinical experts assessed the potential clinical impact of drug-drug interactions. The association of clinical variables with pharmaceutical interventions was tested using a multivariate logistic regression model. Pharmacist cost of the program was assessed by valuing pharmacists' time at their salaries and compared with potentially avoided costs. RESULTS Four hundred thirty-eight patients with solid tumors were included: 62% males, mean age of 65 ± 13 years, and average of 6 medications. Half of the patients required at least one pharmaceutical intervention and independent factors associated with pharmaceutical interventions were the number of medications (5-9 vs <5: OR = 2.91 [95% CI 1.82-4.65], P < .001) and the type of antitumor treatment (immunotherapy vs intravenous chemotherapy: OR = 0.35 [95% CI 0.18-0.68], P = .002). One hundred seventy-four out of 266 pharmaceutical interventions (130 patients) involved clinically significant drug-drug interactions. Pharmacist costs were estimated to range between €4899 and €6125. Average costs were estimated at €11.4-14.3 per patient. Avoided hospitalization costs were estimated to be €180 633. CONCLUSION Clinical pharmacists contribute to the cost-effective reduction of drug-related problems in pre-therapeutic assessment programs for patients with cancer.
Collapse
Affiliation(s)
- Jean-Stéphane Giraud
- Service Pharmacie, Assistance Publique - Hôpitaux Paris, Hôpital Cochin, F-75014 Paris, France
| | - Korb-Savoldelli Virginie
- Service Pharmacie, Assistance Publique - Hôpitaux Paris, Hôpital européen Georges-Pompidou, F-75015 Paris, France
- Université Paris Saclay, Faculté de Pharmacie, Département de Pharmacie Clinique, Université Paris Saclay, 91400 Orsay, France
| | - Perrin Germain
- Service Pharmacie, Assistance Publique - Hôpitaux Paris, Hôpital européen Georges-Pompidou, F-75015 Paris, France
- HeKA, Inria Paris, Paris, France
- Centre de Recherche des Cordeliers, Université Paris Cité, Sorbonne Université, INSERM, Paris, France
| | - Jouinot Anne
- Institut Cochin, Inserm, CNRS, Université Paris Cité, F-75014 Paris, France
| | - Sabatier Brigitte
- Service Pharmacie, Assistance Publique - Hôpitaux Paris, Hôpital européen Georges-Pompidou, F-75015 Paris, France
- HeKA, Inria Paris, Paris, France
- Centre de Recherche des Cordeliers, Université Paris Cité, Sorbonne Université, INSERM, Paris, France
| | - Batista Rui
- Service Pharmacie, Assistance Publique - Hôpitaux Paris, Hôpital Cochin, F-75014 Paris, France
| | - Ribault Matthieu
- Service Evaluations pharmaceutiques et bon usage, agence générale des équipements et produits de santé, AP-HP, 75005 Paris, France
| | - De Percin Sixtine
- Service d'oncologie, Assistance Publique - Hôpitaux Paris, Hôpital Cochin, F-75014, Paris, France
| | - Villeminey Clémentine
- Service d'oncologie, Assistance Publique - Hôpitaux Paris, Hôpital Cochin, F-75014, Paris, France
| | - Videau Margaux
- Service Pharmacie, Assistance Publique - Hôpitaux Paris, Hôpital Cochin, F-75014 Paris, France
| | - Blanchet Benoit
- Biologie du médicament-toxicologie, CARPEM, Assistance Publique - Hôpitaux Paris, Hôpital Cochin, F-75014, Paris, France
- CNRS, INSERM, CiTCoM, Université Paris Cité, F-75006 Paris, France
| | - Goldwasser Francois
- Service d'oncologie, Assistance Publique - Hôpitaux Paris, Hôpital Cochin, F-75014, Paris, France
| | - Degrassat-Theas Albane
- Service Evaluations pharmaceutiques et bon usage, agence générale des équipements et produits de santé, AP-HP, 75005 Paris, France
- Institut Droit et Santé (INSERM UMR_S 1145), Université Paris Cité, 75006 Paris, France
| | - Thomas-Schoemann Audrey
- Service Pharmacie, Assistance Publique - Hôpitaux Paris, Hôpital Cochin, F-75014 Paris, France
- CNRS, INSERM, CiTCoM, Université Paris Cité, F-75006 Paris, France
| |
Collapse
|
9
|
Carty J, Navarro VJ. Dietary Supplement-Induced Hepatotoxicity: A Clinical Perspective. J Diet Suppl 2024; 22:58-77. [PMID: 38528750 DOI: 10.1080/19390211.2024.2327546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
The consumption of dietary supplements (DS) has resulted in a significant and escalating number of cases involving liver injury. It is crucial for clinicians and consumers to be well informed about the adverse effects of such products, leading to their discontinuation and timely reporting of any harmful cases. This article delves into the clinical perspective of DS-related hepatotoxicity, highlighting key concepts such as a systematic diagnostic approach. The discussion extends to notable examples of both currently popular and potential future dietary supplements, such as garcinia cambogia, turmeric, and ashwagandha, accompanied by an overview of recent findings. Causality assessment tools play a crucial role in establishing a connection between these products and instances of liver injury, with consideration of the advantages and disadvantages associated with their use. Fostering a comprehensive understanding of regulatory standards, coupled with a solid foundation of knowledge of DS, will prove instrumental in preventing DS-related hepatotoxicity. Achieving this goal requires collaborative efforts from both consumers and clinicians.
Collapse
Affiliation(s)
- Jordan Carty
- Department of Medicine, Jefferson Einstein Medical Center, Philadelphia, PA, USA
| | - Victor J Navarro
- Department of Medicine, Jefferson Einstein Medical Center, Philadelphia, PA, USA
| |
Collapse
|
10
|
Kumar S, Malviya R, Sundram S. Nutritional neurology: Unraveling cellular mechanisms of natural supplements in brain health. HUMAN NUTRITION & METABOLISM 2024; 35:200232. [DOI: 10.1016/j.hnm.2023.200232] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
11
|
Ou K, Zhang Q, Xi F, Ni H, Lu J, Lyu X, Wang C, Li Q, Wang Q. Prenatal EGCG consumption impacts hepatic glycogen synthesis and lipid metabolism in adult mice. Int J Biol Macromol 2024; 260:129491. [PMID: 38228202 DOI: 10.1016/j.ijbiomac.2024.129491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/27/2023] [Accepted: 01/12/2024] [Indexed: 01/18/2024]
Abstract
In this study, the impact of prenatal exposure to Epigallocatechin gallate (EGCG) on the liver of adult offspring mice was investigated. While EGCG is known for its health benefits, its effects of prenatal exposure on the liver remain unclear. Pregnant C57BL/6 J mice were exposed to 1 mg/kg of EGCG for 16 days to assess hepatotoxicity effects of adult offspring. Transcriptomics and metabolomics were employed to elucidate the hepatotoxicity mechanisms. The findings revealed that prenatal EGCG exposure led to a decrease in liver somatic index, enhanced inflammatory responses and disrupted liver function through increased glycogen accumulation in adult mice. The integrated omics analysis revealed significant alterations in key pathways involved in liver glucose lipid metabolism, such as gluconeogenesis, dysregulation of insulin signaling, and induction of liver inflammation. Furthermore, the study found a negative correlation between the promoter methylation levels of Ppara and their mRNA levels, suggesting that EGCG could reduce hepatic lipid content through epigenetic modifications. The findings suggest that prenatal EGCG exposure can have detrimental impacts on the liver among adult individuals and emphasize the need for a comprehensive evaluation of the potential risks associated with EGCG consumption during pregnancy.
Collapse
Affiliation(s)
- Kunlin Ou
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian 361005, PR China
| | - Quan Zhang
- School of Medicine, Xiamen University, Xiamen, Fujian 361005, PR China; National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen, Fujian 361102, China
| | - Feifei Xi
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian 361005, PR China
| | - Huizhen Ni
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian 361005, PR China
| | - Jiebo Lu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian 361005, PR China
| | - Xuejing Lyu
- School of Medicine, Xiamen University, Xiamen, Fujian 361005, PR China
| | - Chonggang Wang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian 361005, PR China
| | - Qiyuan Li
- School of Medicine, Xiamen University, Xiamen, Fujian 361005, PR China; National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen, Fujian 361102, China; Department of Pediatrics, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian 361003, China.
| | - Qin Wang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian 361005, PR China.
| |
Collapse
|
12
|
Fu Y, Li L, Gao J, Wang F, Zhou Z, Zhang Y. J-shaped association of dietary catechins intake with the prevalence of osteoarthritis and moderating effect of physical activity: an American population-based cohort study. Front Immunol 2024; 14:1287856. [PMID: 38259454 PMCID: PMC10801035 DOI: 10.3389/fimmu.2023.1287856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 12/15/2023] [Indexed: 01/24/2024] Open
Abstract
Background Catechins are a class of natural compounds with a variety of health benefits, The relationship between catechins and the prevalence of osteoarthritis (OA) is unknown. This study investigated the associations between daily intake of catechins and the prevalence of OA among American adults and assessed the moderating effect of physical activity (PA). Methods This study included 10,039 participants from the National Health and Nutrition Examination Survey (2007-2010,2017-2018). The logistic regression, weighted quantile sum (WQS) regression, and restricted cubic spline (RCS) regression models were conducted to explore the associations between daily intake of catechins and the prevalence of OA. Moreover, interaction tests were performed to assess the moderating effect of PA. Results After multivariable adjustment, the weighted multivariable logistic regression and RCS regression analyses revealed significant J-shaped non-linear correlations between intakes of epigallocatechin and epigallocatechin 3-gallate had significant associations with the prevalence of OA among in U.S. adults. WQS regression analysis showed that excessive epigallocatechin intake was the most significant risk factor for OA among all subtypes of catechins. In the interaction assay, PA showed a significant moderating effect in the relationship between epigallocatechin intake and OA prevalence. Conclusions The intake of gallocatechin and gallocatechin 3-gallate had a significant negative correlation with the prevalence of OA and the dose-response relationship was J-shaped.PA below 150 MET-min/week and the threshold intakes of 32.70mg/d for epigallocatechin and 76.24mg/d for epigallocatechin 3-gallate might be the targets for interventions to reduce the risk of developing OA.
Collapse
Affiliation(s)
- Yuesong Fu
- Department of Orthopedics, The First People’s Hospital of Kashi Prefecture, Kashi, Xinjiang, China
| | - Lu Li
- Department of Orthopedics, The First People’s Hospital of Kashi Prefecture, Kashi, Xinjiang, China
| | - Jing Gao
- Department of Orthopedics, The First People’s Hospital of Kashi Prefecture, Kashi, Xinjiang, China
| | - Fazheng Wang
- Department of Orthopedics, The First People’s Hospital of Kashi Prefecture, Kashi, Xinjiang, China
| | - Zihan Zhou
- Department of Hand Surgery and Peripheral Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yiwei Zhang
- Department of Orthopedics, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
13
|
Sidhu D, Vasundhara M, Dey P. The intestinal-level metabolic benefits of green tea catechins: Mechanistic insights from pre-clinical and clinical studies. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 123:155207. [PMID: 38000106 DOI: 10.1016/j.phymed.2023.155207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/11/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023]
Abstract
BACKGROUND The intestinal-level host-microbiota interaction has been implicated in the pathogenesis of chronic diseases. The current review is intended to provide a comprehensive insight into deciphering whether intestinal-level bioactivities mediate the overall metabolic health benefits of green tea catechins. PURPOSE We have comprehensively discussed pre-clinical and clinical evidences of intestinal-level changes in metabolism, microbiota, and metabolome due to catechin-rich green tea treatments, ultimately limiting metabolic diseases. Exclusive emphasis has been given to purified catechins and green tea, and discussions on extraintestinal mechanisms of metabolic health benefits were avoided. METHODS A literature search for relevant pre-clinical and clinical studies was performed in various online databases (e.g., PubMed) using specific keywords (e.g., catechin, intestine, microbiota). Out of all the referred literature, ∼15% belonged to 2021-2023, ∼51% were from 2011-2020, and ∼32% from 2000-2010. RESULT The metabolic health benefits of green tea catechins are indeed influenced by the intestinal-level bioactivities, including reduction of mucosal inflammation and oxidative stress, attenuation of gut barrier dysfunction, decrease in intestinal lipid absorption and metabolism, favorable modulation of mucosal nuclear receptor signaling, alterations of the luminal global metabolome, and mitigation of the gut dysbiosis. The results from the recent clinical studies support the pre-clinical evidences. The challenges and pitfalls of the currently available knowledge on catechin bioactivities have been discussed, and constructive directions to harness the translational benefits of green tea through future interventions have been provided. CONCLUSION The metabolism, metabolome, and microbiota at the intestinal epithelia play critical roles in catechin metabolism, pharmacokinetics, bioavailability, and bioactivities. Especially the reciprocal interaction between the catechins and the gut microbiota dictates the metabolic benefits of catechins.
Collapse
Affiliation(s)
- Dwinder Sidhu
- Department of Biotechnology, Thapar Institute of Engineering & Technology, Patiala 147004, India
| | - M Vasundhara
- Department of Biotechnology, Thapar Institute of Engineering & Technology, Patiala 147004, India.
| | - Priyankar Dey
- Department of Biotechnology, Thapar Institute of Engineering & Technology, Patiala 147004, India.
| |
Collapse
|
14
|
Line J, Ali SE, Grice S, Rao T, Naisbitt DJ. Investigating the Immune Basis of Green Tea Extract Induced Liver Injury in Healthy Donors Expressing HLA-B*35:01. Chem Res Toxicol 2023; 36:1872-1875. [PMID: 38055372 PMCID: PMC10731652 DOI: 10.1021/acs.chemrestox.3c00253] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/27/2023] [Accepted: 12/01/2023] [Indexed: 12/08/2023]
Abstract
Epigallocatechin-3-O-gallate (EGCG) is the major component of green tea extract, commonly found in dietary supplements, and has been associated with immune-mediated liver injury. The purpose of this study was to investigate the immunogenicity of EGCG in healthy donors expressing HLA-B*35:01, and characterize EGCG responsive T-cell clones. We have shown that EGCG can prime peripheral blood mononuclear cells and T-cells from donors with and without the HLA-B*35:01 allele. T-cell clones were CD4+ve and capable of secreting Th1, Th2, and cytolytic molecules. These data demonstrate that EGCG can activate T-cells in vitro, suggesting a significant role in the pathogenesis of green tea extract induced liver injury.
Collapse
Affiliation(s)
- James Line
- Department
of Pharmacology and Therapeutics, University
of Liverpool, Sherrington Building, Ashton Street, Liverpool L69 3GE, United
Kingdom
| | - Serat-E Ali
- Department
of Pharmacology and Therapeutics, University
of Liverpool, Sherrington Building, Ashton Street, Liverpool L69 3GE, United
Kingdom
| | - Sophie Grice
- Department
of Pharmacology and Therapeutics, University
of Liverpool, Sherrington Building, Ashton Street, Liverpool L69 3GE, United
Kingdom
| | - Tai Rao
- Department
of Pharmacology and Therapeutics, University
of Liverpool, Sherrington Building, Ashton Street, Liverpool L69 3GE, United
Kingdom
- Department
of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, China
- Hunan
Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha 410008, China
| | - Dean J. Naisbitt
- Department
of Pharmacology and Therapeutics, University
of Liverpool, Sherrington Building, Ashton Street, Liverpool L69 3GE, United
Kingdom
| |
Collapse
|
15
|
Wong MSc CK, MacMath D, Mercedes R, Beer SS, Cerminara DN, Harpavat S. The DILI's in the Details: A 13-Year-Old With Abdominal Pain and Jaundice. Clin Pediatr (Phila) 2023; 62:1290-1294. [PMID: 36798011 DOI: 10.1177/00099228231154426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Affiliation(s)
| | - Derek MacMath
- Baylor College of Medicine, Houston, TX, USA
- Section of Gastroenterology, Hepatology and Nutrition, Texas Children's Hospital, Houston, TX, USA
| | - Rebecca Mercedes
- Baylor College of Medicine, Houston, TX, USA
- Section of Gastroenterology, Hepatology and Nutrition, Texas Children's Hospital, Houston, TX, USA
| | - Stacey S Beer
- Baylor College of Medicine, Houston, TX, USA
- Section of Gastroenterology, Hepatology and Nutrition, Texas Children's Hospital, Houston, TX, USA
| | - Dana N Cerminara
- Section of Gastroenterology, Hepatology and Nutrition, Texas Children's Hospital, Houston, TX, USA
| | - Sanjiv Harpavat
- Baylor College of Medicine, Houston, TX, USA
- Section of Gastroenterology, Hepatology and Nutrition, Texas Children's Hospital, Houston, TX, USA
| |
Collapse
|
16
|
Pratelli G, Tamburini B, Carlisi D, De Blasio A, D’Anneo A, Emanuele S, Notaro A, Affranchi F, Giuliano M, Seidita A, Lauricella M, Di Liberto D. Foodomics-Based Approaches Shed Light on the Potential Protective Effects of Polyphenols in Inflammatory Bowel Disease. Int J Mol Sci 2023; 24:14619. [PMID: 37834065 PMCID: PMC10572570 DOI: 10.3390/ijms241914619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/19/2023] [Accepted: 09/25/2023] [Indexed: 10/15/2023] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic and progressive inflammatory disorder affecting the gastrointestinal tract (GT) caused by a wide range of genetic, microbial, and environmental factors. IBD is characterized by chronic inflammation and decreased gut microbial diversity, dysbiosis, with a lower number of beneficial bacteria and a concomitant increase in pathogenic species. It is well known that dysbiosis is closely related to the induction of inflammation and oxidative stress, the latter caused by an imbalance between reactive oxygen species (ROS) production and cellular antioxidant capacity, leading to cellular ROS accumulation. ROS are responsible for intestinal epithelium oxidative damage and the increased intestinal permeability found in IBD patients, and their reduction could represent a potential therapeutic strategy to limit IBD progression and alleviate its symptoms. Recent evidence has highlighted that dietary polyphenols, the natural antioxidants, can maintain redox equilibrium in the GT, preventing gut dysbiosis, intestinal epithelium damage, and radical inflammatory responses. Here, we suggest that the relatively new foodomics approaches, together with new technologies for promoting the antioxidative properties of dietary polyphenols, including novel delivery systems, chemical modifications, and combination strategies, may provide critical insights to determine the clinical value of polyphenols for IBD therapy and a comprehensive perspective for implementing natural antioxidants as potential IBD candidate treatment.
Collapse
Affiliation(s)
- Giovanni Pratelli
- Department of Physics and Chemistry (DiFC) Emilio Segrè, University of Palermo, 90128 Palermo, Italy;
| | - Bartolo Tamburini
- Section of Biochemistry, Department of Biomedicine, Neurosciences and Advanced Diagnostics (BIND), University of Palermo, 90127 Palermo, Italy; (B.T.); (D.C.); (S.E.)
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (ProMISE), University of Palermo, 90127 Palermo, Italy;
| | - Daniela Carlisi
- Section of Biochemistry, Department of Biomedicine, Neurosciences and Advanced Diagnostics (BIND), University of Palermo, 90127 Palermo, Italy; (B.T.); (D.C.); (S.E.)
| | - Anna De Blasio
- Laboratory of Biochemistry, Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90127 Palermo, Italy; (A.D.B.); (A.D.); (A.N.); (F.A.); (M.G.)
| | - Antonella D’Anneo
- Laboratory of Biochemistry, Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90127 Palermo, Italy; (A.D.B.); (A.D.); (A.N.); (F.A.); (M.G.)
| | - Sonia Emanuele
- Section of Biochemistry, Department of Biomedicine, Neurosciences and Advanced Diagnostics (BIND), University of Palermo, 90127 Palermo, Italy; (B.T.); (D.C.); (S.E.)
| | - Antonietta Notaro
- Laboratory of Biochemistry, Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90127 Palermo, Italy; (A.D.B.); (A.D.); (A.N.); (F.A.); (M.G.)
| | - Federica Affranchi
- Laboratory of Biochemistry, Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90127 Palermo, Italy; (A.D.B.); (A.D.); (A.N.); (F.A.); (M.G.)
| | - Michela Giuliano
- Laboratory of Biochemistry, Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90127 Palermo, Italy; (A.D.B.); (A.D.); (A.N.); (F.A.); (M.G.)
| | - Aurelio Seidita
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (ProMISE), University of Palermo, 90127 Palermo, Italy;
| | - Marianna Lauricella
- Section of Biochemistry, Department of Biomedicine, Neurosciences and Advanced Diagnostics (BIND), University of Palermo, 90127 Palermo, Italy; (B.T.); (D.C.); (S.E.)
| | - Diana Di Liberto
- Section of Biochemistry, Department of Biomedicine, Neurosciences and Advanced Diagnostics (BIND), University of Palermo, 90127 Palermo, Italy; (B.T.); (D.C.); (S.E.)
| |
Collapse
|
17
|
Rivadeneyra-Domínguez E, Zamora-Bello I, Castañeda-Morales JM, Díaz-Vallejo JJ, Rosales-Sánchez Ó, Rodríguez-Landa JF. The standardized extract of Centella asiatica L. Urb attenuates the convulsant effect induced by lithium/pilocarpine without affecting biochemical and haematological parameters in rats. BMC Complement Med Ther 2023; 23:343. [PMID: 37759286 PMCID: PMC10523769 DOI: 10.1186/s12906-023-04179-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 09/20/2023] [Indexed: 09/29/2023] Open
Abstract
BACKGROUND Status epilepticus (SE) is a type of epileptic activity characterized by a failure of the inhibitory mechanisms that limit seizures, which are mainly regulated by the GABAergic system. This imbalance increases glutamatergic neurotransmission and consequently produces epileptic activity. It is also associated with oxidative stress due to an imbalance between reactive oxygen species (ROS) and antioxidant defences. Unfortunately, long-term treatment with anti-epileptic drugs (AEDs) may produce hepatotoxicity, nephrotoxicity, and haematological alterations. In this way, some secondary metabolites of plants have been used to ameliorate the deterioration of nervous system disorders through their antioxidant properties, in addition to their anticonvulsant effects. An example is Centella asiatica, a plant noted to have a reputed neuroprotective effect related to its antioxidant activity. However, similar to conventional drugs, natural molecules may produce side effects when consumed in high doses, which could occur with Centella asiatica. Therefore, we aimed to evaluate the effect of a standardized extract of Centella asiatica L. Urb with tested anticonvulsant activity on biochemical and haematological parameters in rats subjected to lithium/pilocarpine-induced seizures. METHODS Twenty-eight adult male Wistar rats were randomly divided into four groups (n = 7 each): vehicle (purified water), Centella asiatica (200 and 400 mg/kg), and carbamazepine (CBZ) (300 mg/kg) as a pharmacological control of anticonvulsant activity. Treatments were administered orally every 24 h for 35 consecutive days. On Day 36, SE was induced using the lithium/pilocarpine model (3 mEq/kg, i.p. and 30 mg/kg s.c., respectively), and the behavioural and biochemical effects were evaluated. RESULTS Centella asiatica 400 mg/kg increased the latency to the first generalized seizure and SE onset and significantly reduced the time to the first generalized seizure compared to values in the vehicle group. Biochemical parameters, i.e., haematic cytometry, blood chemistry, and liver function tests, showed no significant differences among the different treatments. CONCLUSION The dose of Centella asiatica that produces anticonvulsant activity in the lithium/pilocarpine model devoid of hepatotoxicity, nephrotoxicity, and alterations in haematological parameters suggests that the standardized extract of this plant could be of utility in the development of new safe therapies for the treatment of convulsions associated with epilepsy.
Collapse
Affiliation(s)
| | - Isaac Zamora-Bello
- Facultad de Química Farmacéutica Biológica, Universidad Veracruzana, Xalapa, Veracruz, México
| | | | | | - Óscar Rosales-Sánchez
- Facultad de Química Farmacéutica Biológica, Universidad Veracruzana, Xalapa, Veracruz, México
| | - Juan Francisco Rodríguez-Landa
- Facultad de Química Farmacéutica Biológica, Universidad Veracruzana, Xalapa, Veracruz, México
- Instituto de Neuroetología, Universidad Veracruzana, Xalapa, Veracruz, México
- Laboratorio de Neurofarmacología, Instituto de Neuroetología, Universidad Veracruzana, Xalapa, Veracruz, México
| |
Collapse
|
18
|
Ng TK, Chu KO, Wang CC, Pang CP. Green Tea Catechins as Therapeutic Antioxidants for Glaucoma Treatment. Antioxidants (Basel) 2023; 12:1320. [PMID: 37507860 PMCID: PMC10376590 DOI: 10.3390/antiox12071320] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/02/2023] [Accepted: 06/09/2023] [Indexed: 07/30/2023] Open
Abstract
Glaucoma is the leading cause of irreversible blindness and visual impairment, affecting more than 80 million individuals worldwide. Oxidative stress and inflammation-induced neurodegenerative insults to retinal ganglion cells are the main pathogenesis of glaucoma. Retinal ganglion cells, the retinal neurons transmitting the visual signals to the visual cortex in the brain, have very limited regeneration or recovery capacity after damages. Apart from intraocular pressure-lowering treatments, there is still no clinically effective treatment to rescue the degeneration of retinal ganglion cells in glaucoma. Dietary antioxidants are easily accessible and can be applied as supplements assisting in the clinical treatments. Catechins, a chemical family of flavonoids, are the phenolic compounds found in many plants, especially in green tea. The anti-oxidative and anti-inflammatory properties of green tea catechins in vitro and in vivo have been well proven. They could be a potential treatment ameliorating retinal ganglion cell degeneration in glaucoma. In this review, the chemistry, pharmacokinetics, and therapeutic properties of green tea catechins were summarized. Research updates on the biological effects of green tea catechins in cellular and animal experimental glaucoma models were reviewed. In addition, clinical potentials of green tea catechins for glaucoma treatment were also highlighted.
Collapse
Affiliation(s)
- Tsz Kin Ng
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou 515041, China
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong
| | - Kai On Chu
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong
- Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Hong Kong
| | - Chi Chiu Wang
- Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Hong Kong
| | - Chi Pui Pang
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou 515041, China
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong
| |
Collapse
|
19
|
Rizzo M, Colletti A, Penson PE, Katsiki N, Mikhailidis DP, Toth PP, Gouni-Berthold I, Mancini J, Marais D, Moriarty P, Ruscica M, Sahebkar A, Vinereanu D, Cicero AFG, Banach M, Al-Khnifsawi M, Alnouri F, Amar F, Atanasov AG, Bajraktari G, Banach M, Gouni-Berthold I, Bhaskar S, Bielecka-Dąbrowa A, Bjelakovic B, Bruckert E, Bytyçi I, Cafferata A, Ceska R, Cicero AF, Chlebus K, Collet X, Daccord M, Descamps O, Djuric D, Durst R, Ezhov MV, Fras Z, Gaita D, Gouni-Berthold I, Hernandez AV, Jones SR, Jozwiak J, Kakauridze N, Kallel A, Katsiki N, Khera A, Kostner K, Kubilius R, Latkovskis G, John Mancini G, David Marais A, Martin SS, Martinez JA, Mazidi M, Mikhailidis DP, Mirrakhimov E, Miserez AR, Mitchenko O, Mitkovskaya NP, Moriarty PM, Mohammad Nabavi S, Nair D, Panagiotakos DB, Paragh G, Pella D, Penson PE, Petrulioniene Z, Pirro M, Postadzhiyan A, Puri R, Reda A, Reiner Ž, Radenkovic D, Rakowski M, Riadh J, Richter D, Rizzo M, Ruscica M, Sahebkar A, Serban MC, Shehab AM, Shek AB, Sirtori CR, Stefanutti C, Tomasik T, Toth PP, Viigimaa M, Valdivielso P, Vinereanu D, Vohnout B, von Haehling S, Vrablik M, Wong ND, Yeh HI, Zhisheng J, Zirlik A. Nutraceutical approaches to non-alcoholic fatty liver disease (NAFLD): A position paper from the International Lipid Expert Panel (ILEP). Pharmacol Res 2023; 189:106679. [PMID: 36764041 DOI: 10.1016/j.phrs.2023.106679] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 01/25/2023] [Accepted: 01/26/2023] [Indexed: 02/11/2023]
Abstract
Non-Alcoholic Fatty Liver Disease (NAFLD) is a common condition affecting around 10-25% of the general adult population, 15% of children, and even > 50% of individuals who have type 2 diabetes mellitus. It is a major cause of liver-related morbidity, and cardiovascular (CV) mortality is a common cause of death. In addition to being the initial step of irreversible alterations of the liver parenchyma causing cirrhosis, about 1/6 of those who develop NASH are at risk also developing CV disease (CVD). More recently the acronym MAFLD (Metabolic Associated Fatty Liver Disease) has been preferred by many European and US specialists, providing a clearer message on the metabolic etiology of the disease. The suggestions for the management of NAFLD are like those recommended by guidelines for CVD prevention. In this context, the general approach is to prescribe physical activity and dietary changes the effect weight loss. Lifestyle change in the NAFLD patient has been supplemented in some by the use of nutraceuticals, but the evidence based for these remains uncertain. The aim of this Position Paper was to summarize the clinical evidence relating to the effect of nutraceuticals on NAFLD-related parameters. Our reading of the data is that whilst many nutraceuticals have been studied in relation to NAFLD, none have sufficient evidence to recommend their routine use; robust trials are required to appropriately address efficacy and safety.
Collapse
Affiliation(s)
- Manfredi Rizzo
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (Promise), University of Palermo, Via del Vespro 141, 90127 Palermo, Italy.
| | - Alessandro Colletti
- Department of Science and Drug Technology, University of Turin, Turin, Italy
| | - Peter E Penson
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, UK; Liverpool Centre for Cardiovascular Science, Liverpool, UK
| | - Niki Katsiki
- Department of Nutritional Sciences and Dietetics, International Hellenic University, Thessaloniki, Greece; School of Medicine, European University Cyprus, Nicosia, Cyprus
| | - Dimitri P Mikhailidis
- Department of Clinical Biochemistry, Royal Free Campus, Medical School, University College London (UCL), London, UK
| | - Peter P Toth
- The Johns Hopkins Ciccarone Center for the Prevention of Heart Disease, Baltimore, MD, USA; Preventive Cardiology, CGH Medical Center, Sterling, IL, USA
| | - Ioanna Gouni-Berthold
- Department of Endocrinology, Diabetes and Preventive Medicine, University of Cologne, Germany
| | - John Mancini
- Department of Medicine, Division of Cardiology, University of British Columbia, Vancouver, British Columbia, Canada
| | - David Marais
- Chemical Pathology Division of the Department of Pathology, University of Cape Town Health Science Faculty, Cape Town, South Africa
| | - Patrick Moriarty
- Division of Clinical Pharmacology, Division of Internal Medicine, University of Kansas Medical Center, Kansas City, KS, USA
| | - Massimiliano Ruscica
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Dragos Vinereanu
- Cardiology Department, University and Emergency Hospital, Bucharest, Romania, University of Medicine and Pharmacy Carol Davila, Bucharest, Romania
| | - Arrigo Francesco Giuseppe Cicero
- Hypertension and Cardiovascular disease risk research center, Medical and Surgical Sciences Department, University of Bologna, Bologna, Italy; IRCCS Policlinico S. Orsola-Malpighi, Bologna, Italy
| | - Maciej Banach
- Department of Preventive Cardiology and Lipidology, Medical University of Lodz (MUL), Poland; Polish Mother's Memorial Hospital Research Institute (PMMHRI), Lodz, Poland; Cardiovascular Research Centre, University of Zielona Gora, Zielona Gora, Poland.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Komala MG, Ong SG, Qadri MU, Elshafie LM, Pollock CA, Saad S. Investigating the Regulatory Process, Safety, Efficacy and Product Transparency for Nutraceuticals in the USA, Europe and Australia. Foods 2023; 12:foods12020427. [PMID: 36673519 PMCID: PMC9857896 DOI: 10.3390/foods12020427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 01/06/2023] [Accepted: 01/11/2023] [Indexed: 01/18/2023] Open
Abstract
Increased numbers of patients with chronic conditions use nutraceuticals or food-based therapeutics. However, to date, there is no global consensus on the regulatory processes for nutraceuticals. With the increased use, issues of quality and safety have also arisen. This review summarises the current regulations held for nutraceuticals in the USA, European and Australian jurisdictions using regulatory authority sites and databases. The efficacy and safety concerns, product development, gaps in regulation and challenges in ensuring product authenticity are also summarised. The data highlight the complexity that the globalisation of nutraceuticals brings with respect to challenges in regulation and associated claims regarding efficacy and safety. The development of an effective system with integrity is needed to increase vertical collaboration between consumers, healthcare practitioners, and government agencies and the development of international risk assessment criteria and botanical compendia. This will help in greater transparency and improved trust in the process and products. Emerging technologies could play a role in improving systems engineering by information sharing and leveraging the strengths of different countries. In conclusion, nutraceuticals have been poorly regulated leading to spurious claims based on little or no real evidence. This makes it difficult to separate meaningful results from poor data. More stringent regulation and an effective system of integrity are required to ensure efficacy and safety and enable the adequate monitoring and increase consumer and healthcare professionals' confidence.
Collapse
|
21
|
Siblini H, Al-Hendy A, Segars J, González F, Taylor HS, Singh B, Flaminia A, Flores VA, Christman GM, Huang H, Johnson JJ, Zhang H. Assessing the Hepatic Safety of Epigallocatechin Gallate (EGCG) in Reproductive-Aged Women. Nutrients 2023; 15:320. [PMID: 36678191 PMCID: PMC9861948 DOI: 10.3390/nu15020320] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/01/2023] [Accepted: 01/02/2023] [Indexed: 01/11/2023] Open
Abstract
A similar abstract of the interim analysis was previously published in Fertility and Sterility. EPIGALLOCATECHIN GALLATE (EGCG) FOR TREATMENT OF UNEXPLAINED INFERTILITY ASSOCIATED WITH UTERINE FIBROIDS (PRE-FRIEND TRIAL): EARLY SAFETY ASSESSMENT. Uterine fibroids are the most common cause of unexplained infertility in reproductive-aged women. Epigallocatechin gallate (EGCG), a green tea catechin, has demonstrated its ability to shrink uterine fibroids in prior preclinical and clinical studies. Hence, we developed an NICHD Confirm-funded trial to evaluate the use of EGCG for treating women with fibroids and unexplained infertility (FRIEND trial). Prior to embarking on that trial, we here conducted the pre-FRIEND study (NCT04177693) to evaluate the safety of EGCG in premenopausal women. Specifically, our aim was to assess any adverse effects of EGCG alone or in combination with an ovarian stimulator on serum liver function tests (LFTs) and folate level. In this randomized, open-label prospective cohort, participants were recruited from the FRIEND-collaborative clinical sites: Johns Hopkins University, University of Chicago, University of Illinois at Chicago, and Yale University. Thirty-nine women, ages ≥18 to ≤40 years, with/without uterine fibroids, were enrolled and randomized to one of three treatment arms: 800 mg of EGCG daily alone, 800 mg of EGCG daily with clomiphene citrate 100 mg for 5 days, or 800 mg of EGCG daily with Letrozole 5 mg for 5 days. No subject demonstrated signs of drug induced liver injury and no subject showed serum folate level outside the normal range. Hence, our data suggests that a daily dose of 800 mg of EGCG alone or in combination with clomiphene citrate or letrozole (for 5 days) is well-tolerated and is not associated with liver toxicity or folate deficiency in reproductive-aged women.
Collapse
Affiliation(s)
- Hiba Siblini
- Department of Obstetrics and Gynecology, University of Chicago, Chicago, IL 60637, USA
| | - Ayman Al-Hendy
- Department of Obstetrics and Gynecology, University of Chicago, Chicago, IL 60637, USA
| | - James Segars
- Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Frank González
- Department of Obstetrics and Gynecology, University of Illinois Chicago, Chicago, IL 60607, USA
| | - Hugh S. Taylor
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University, New Haven, CT 06520, USA
| | - Bhuchitra Singh
- Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Ainna Flaminia
- Department of Obstetrics and Gynecology, University of Illinois Chicago, Chicago, IL 60607, USA
| | - Valerie A. Flores
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University, New Haven, CT 06520, USA
| | - Gregory M. Christman
- Department of Obstetrics and Gynecology, University of Florida College of Medicine, Gainesville, FL 32610, USA
| | - Hao Huang
- Department of Biostatistics, Yale University School of Public Health, New Haven, CT 06510, USA
| | - Jeremy J. Johnson
- Department of Pharmacy Practice, University of Illinois Chicago, Chicago, IL 60607, USA
| | - Heping Zhang
- Department of Biostatistics, Yale University School of Public Health, New Haven, CT 06510, USA
| |
Collapse
|
22
|
Eckhardt S, Franke H, Schwarz S, Lachenmeier DW. Risk Assessment of Coffee Cherry (Cascara) Fruit Products for Flour Replacement and Other Alternative Food Uses. Molecules 2022; 27:8435. [PMID: 36500526 PMCID: PMC9740254 DOI: 10.3390/molecules27238435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/15/2022] [Accepted: 11/26/2022] [Indexed: 12/05/2022] Open
Abstract
Coffee bean harvesting incurs various by-products known for their long traditional use. However, they often still end up being a waste instead of being used to their full potential. On the European market, coffee cherry (cascara) products are not yet common, and a novel food approval for beverages made from coffee cherry pulp was issued only recently. In this article, exposure and risk assessment of various products such as juice, jam, jelly, puree, and flour made from coffee cherry pulp and husk are reviewed. Since caffeine in particular, as a bioactive ingredient, is considered a limiting factor, safe intake will be derived for different age groups, showing that even adolescents could consume limited quantities without adverse health effects. Moreover, the composition can be influenced by harvesting methods and processing steps. Most interestingly, dried and powdered coffee cherry can substitute the flour in bakery products by up to 15% without losing baking properties and sensory qualities. In particular, this use as a partial flour substitute is a possible approach to counteract rising grain prices, transport costs, and disrupted supply chains, which are caused by the Russia-Ukraine war and changing climatic conditions. Thus, the supply of affordable staple foods could be partially ensured for the inhabitants of countries that depend on imported wheat and cultivate coffee locally by harvesting both beans and by-products.
Collapse
Affiliation(s)
- Sara Eckhardt
- Postgraduate Study of Toxicology and Environmental Protection, Rudolf-Boehm-Institut für Pharmakologie und Toxikologie, Universität Leipzig, Härtelstraße 16-18, 04107 Leipzig, Germany
- Chemisches und Veterinäruntersuchungsamt (CVUA) Karlsruhe, Weissenburger Strasse 3, 76187 Karlsruhe, Germany
| | - Heike Franke
- Postgraduate Study of Toxicology and Environmental Protection, Rudolf-Boehm-Institut für Pharmakologie und Toxikologie, Universität Leipzig, Härtelstraße 16-18, 04107 Leipzig, Germany
| | - Steffen Schwarz
- Coffee Consulate, Hans-Thoma-Strasse 20, 68163 Mannheim, Germany
| | - Dirk W. Lachenmeier
- Chemisches und Veterinäruntersuchungsamt (CVUA) Karlsruhe, Weissenburger Strasse 3, 76187 Karlsruhe, Germany
| |
Collapse
|
23
|
Grajecki D, Ogica A, Boenisch O, Hübener P, Kluge S. Green tea extract-associated acute liver injury: Case report and review. Clin Liver Dis (Hoboken) 2022; 20:181-187. [PMID: 36523867 PMCID: PMC9745259 DOI: 10.1002/cld.1254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 07/07/2022] [Accepted: 07/16/2022] [Indexed: 12/14/2022] Open
Abstract
Content available: Audio Recording.
Collapse
Affiliation(s)
- Donata Grajecki
- Klinik für IntensivmedizinUniversitätsklinikum Hamburg‐EppendorfHamburgGermany
| | - Alexandru Ogica
- Klinik für IntensivmedizinUniversitätsklinikum Hamburg‐EppendorfHamburgGermany
| | - Olaf Boenisch
- Klinik für IntensivmedizinUniversitätsklinikum Hamburg‐EppendorfHamburgGermany
| | - Peter Hübener
- Medizinische Klinik und PoliklinikUniversitätsklinikum Hamburg‐EppendorfHamburgGermany
| | - Stefan Kluge
- Klinik für IntensivmedizinUniversitätsklinikum Hamburg‐EppendorfHamburgGermany
| |
Collapse
|
24
|
Wang D, Wang T, Zhang Z, Li Z, Guo Y, Zhao G, Wu L. Recent advances in the effects of dietary polyphenols on inflammation in vivo: potential molecular mechanisms, receptor targets, safety issues, and uses of nanodelivery system and polyphenol polymers. Curr Opin Food Sci 2022. [DOI: 10.1016/j.cofs.2022.100921] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
25
|
Man Z, Feng Y, Xiao J, Yang H, Wu X. Structural changes and molecular mechanism study on the inhibitory activity of epigallocatechin against α-glucosidase and α-amylase. Front Nutr 2022; 9:948027. [PMID: 36438757 PMCID: PMC9682078 DOI: 10.3389/fnut.2022.948027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 10/20/2022] [Indexed: 09/29/2023] Open
Abstract
In this study, the inhibition and mechanism of epigallocatechin (EGC) on two key glycoside hydrolases (α-glucosidase, α-amylase) were explored from the molecular structure level. The chemical structure of EGC was characterized by X-ray diffraction, Fourier transform infrared (FTIR) spectroscopy, and proton nuclear magnetic resonance spectroscopy. EGC's inhibition on these enzymes was colorimetrically determined. The effects of EGC on the chemical structure and spatial configuration of the enzymes were explored via FTIR spectroscopy, fluorescence spectroscopy, and molecular docking techniques. The results showed that EGC exhibited the inhibition of α-glucosidase and α-amylase in a non-competitive manner, showing a continuous upward trend as EGC's concentration increased. There was a fluorescence quenching effect of EGC on α-glucosidase and α-amylase. Molecular docking confirmed that EGC can bind to amino acid residues in the enzyme through intermolecular hydrogen bonds and hydrophobic interactions, resulting in the changed chemical structure and spatial conformation of the enzymes. This decreased enzyme activity. This result suggested that EGC has the potential to inhibit two key glycoside hydrolases, and it would be beneficial to incorporate EGC into functional foods for diabetics.
Collapse
Affiliation(s)
| | | | | | | | - Xiangting Wu
- College of Life and Environmental Sciences, Wenzhou University, Wenzhou, China
| |
Collapse
|
26
|
Liu C, van Mil J, Noorlander A, Rietjens IMCM. Use of Physiologically Based Kinetic Modeling-Based Reverse Dosimetry to Predict In Vivo Nrf2 Activation by EGCG and Its Colonic Metabolites in Humans. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:14015-14031. [PMID: 36262111 DOI: 10.1021/acs.jafc.2c04811] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
(-)-Epigallocatechin gallate (EGCG) is prone to microbial metabolism when reaching the colon. This study aimed to develop a human physiologically based kinetic (PBK) model for EGCG, with sub-models for its colonic metabolites gallic acid and pyrogallol. Results show that the developed PBK model could adequately predict in vivo time-dependent blood concentrations of EGCG after either the single or repeated oral administration of EGCG under both fasting and non-fasting conditions. The predicted in vivo blood Cmax of EGCG indicates that the Nrf2 activation is limited, while concentrations of its metabolites in the intestinal tract may reach levels that are higher than that of EGCG and also high enough to activate Nrf2 gene transcription. Taken together, combining in vitro data with a human PBK model allowed the prediction of a dose-response curve for EGCG-induced Nrf2-mediated gene expression in humans and provided insights into the contribution of gut microbial metabolites to this effect.
Collapse
Affiliation(s)
- Chen Liu
- Tea Refining and Innovation Key Laboratory of Sichuan Province, College of Horticulture, Sichuan Agricultural University, Chengdu611130, Sichuan, China
- Division of Toxicology, Wageningen University and Research, WageningenNL 6703 HE, the Netherlands
| | - Jolijn van Mil
- Division of Toxicology, Wageningen University and Research, WageningenNL 6703 HE, the Netherlands
| | - Annelies Noorlander
- Division of Toxicology, Wageningen University and Research, WageningenNL 6703 HE, the Netherlands
| | - Ivonne M C M Rietjens
- Division of Toxicology, Wageningen University and Research, WageningenNL 6703 HE, the Netherlands
| |
Collapse
|
27
|
Sergi CM. Epigallocatechin gallate for Parkinson's disease. Clin Exp Pharmacol Physiol 2022; 49:1029-1041. [PMID: 35748799 DOI: 10.1111/1440-1681.13691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 01/03/2022] [Accepted: 06/19/2022] [Indexed: 11/28/2022]
Abstract
In the last couple of decades, we have experienced increased use of nutraceuticals worldwide with a demand for organic foods, which has been elevated to an extent probably unmatched with other periods of our civilization. One of the nutraceuticals that gained attention is epigallocatechin gallate (EGCG), a polyphenol in green tea. It has been suggested that diseases of the central nervous system can benefit from consuming some antioxidants, despite current results showing little evidence for their use in preventing and treating these diseases. ECGC may be beneficial in delaying the neurodegeneration of the substantia nigra regardless of the origin of Parkinson's disease (PD). This review covers the effect of EGCG on vitro and animal models of PD, the potential mechanisms of neuroprotection involved and summaries recent clinical trials in human PD. This review also aims to provide an investigative analysis of the current knowledge in this field and to identify putative crucial issues. Environmental factors such as dietary habits, drug use and social interaction are all factors that influence the evolution of neurodegenerative diseases. Therefore, the use of nutraceuticals requires further investigation.
Collapse
Affiliation(s)
- Consolato M Sergi
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan, China
- Anatomic Pathology, Children's Hospital of Eastern Ontario, University of Ottawa, Ottawa, Ontario, Canada
- Department of Orthopedics, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, China
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
28
|
Li M, Duan Y, Wang Y, Chen L, Abdelrahim MEA, Yan J. The effect of Green green tea consumption on body mass index, lipoprotein, liver enzymes, and liver cancer: An updated systemic review incorporating a meta-analysis. Crit Rev Food Sci Nutr 2022; 64:1043-1051. [PMID: 36036958 DOI: 10.1080/10408398.2022.2113360] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
INTRODUCTION Green tea is related to the reduction of liver enzymes, lipoprotein, and body mass index. However, some reports related green tea to the risk of developing liver cancer, but their outcomes were conflicting. Hence, the present study aimed to determine the relationship between green tea intake and lipoprotein, liver enzymes, body mass index, and liver cancer. METHODS A systematic literature search up to January 2022 was performed and 22 studies with a total of 169599 subjects participated in the studies with 97316 subjects of them used green tea intake. Odds ratio (OR) or standardized mean difference (MD) with 95% confidence intervals (CIs) was calculated to evaluate the relationship between green tea intake and lipoprotein, liver enzymes, body mass index, and liver cancer using the dichotomous or the contentious method with a random effect model. RESULTS Green tea intake significantly lowered the risk of developing liver cancer (OR, 0.85; 95% CI, 0.74 to 0.97, p = 0.02), and body mass index (MD, -0.69; 95% CI, -0.95to -0.42, p < 0.001) compared to no green tea intake. Also, there was a significant lowering effect of green tea intake on liver enzymes including alanine aminotransferase (MD, -0.65; 95% CI, -0.92 to -0.38, p < 0.001), and aspartate aminotransferase (MD, -0.77; 95% CI, -1.40 to -0.14, p = 0.02) compared to no green tea intake. There was also a significant lowering effect of green tea intake on lipoprotein including triglycerides (MD, -0.70; 95% CI, -1.35 to -0.04, p = 0.04), total cholesterol (MD, -0.39; 95% CI, -0.74 to -0.04, p = 0.03) and law-density lipoprotein (MD, -0.44; 95% CI, -0.69- -0.19, p < 0.001) compared to no green tea intake. However, no significant different was found between green tea intake and no green tea intake on high-density lipoprotein (MD, 0.16; 95% CI, -0.11 to 0.44, p = 0.24). CONCLUSIONS Based on this meta-analysis, green tea intake had a significant lowering effect on the risk of developing liver cancer and had a significantly improving effect on body mass index, liver enzymes, and lipoprotein compared to no green tea intake. These results suggest that green tea may be added to the daily dietary program to improve cardiovascular status with no possible risk of liver cancer. It even may have a protecting effect against liver cancer in the usual daily number of cups.
Collapse
Affiliation(s)
- Mingzhen Li
- Department of Health Management Center, Xiang'an Hospital of Xiamen University, Xiamen, China
| | - Yunjie Duan
- Department of Hepatobiliary Surgery, Shandong Provincial Hospital affiliated to Shandong University, Jinan, China
| | - Ying Wang
- Department of General Surgery, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Lei Chen
- Department of Emergency Medicine, Xiang'an Hospital of Xiamen University, Xiamen, Fujian, China
| | - Mohamed E A Abdelrahim
- Clinical Pharmacy Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Jun Yan
- Department of hepatological surgery, Three Gorges Hospital affiliated to Chongqing University, Chongqing, China
| |
Collapse
|
29
|
Kirdeeva Y, Fedorova O, Daks A, Barlev N, Shuvalov O. How Should the Worldwide Knowledge of Traditional Cancer Healing Be Integrated with Herbs and Mushrooms into Modern Molecular Pharmacology? Pharmaceuticals (Basel) 2022; 15:868. [PMID: 35890166 PMCID: PMC9320176 DOI: 10.3390/ph15070868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 07/04/2022] [Accepted: 07/11/2022] [Indexed: 12/04/2022] Open
Abstract
Traditional herbal medicine (THM) is a "core" from which modern medicine has evolved over time. Besides this, one third of people worldwide have no access to modern medicine and rely only on traditional medicine. To date, drugs of plant origin, or their derivates (paclitaxel, vinblastine, vincristine, vinorelbine, etoposide, camptothecin, topotecan, irinotecan, and omacetaxine), are very important in the therapy of malignancies and they are included in most chemotherapeutic regimes. To date, 391,000 plant and 14,000 mushroom species exist. Their medical and biochemical capabilities have not been studied in detail. In this review, we systematized the information about plants and mushrooms, as well as their active compounds with antitumor properties. Plants and mushrooms are divided based on the regions where they are used in ethnomedicine to treat malignancies. The majority of their active compounds with antineoplastic properties and mechanisms of action are described. Furthermore, on the basis of the available information, we divided them into two priority groups for research and for their potential of use in antitumor therapy. As there are many prerequisites and some examples how THM helps and strengthens modern medicine, finally, we discuss the positive points of THM and the management required to transform and integrate THM into the modern medicine practice.
Collapse
Affiliation(s)
- Yulia Kirdeeva
- Institute of Cytology, Russian Academy of Sciences, 194064 St. Petersburg, Russia; (Y.K.); (O.F.); (A.D.)
| | - Olga Fedorova
- Institute of Cytology, Russian Academy of Sciences, 194064 St. Petersburg, Russia; (Y.K.); (O.F.); (A.D.)
| | - Alexandra Daks
- Institute of Cytology, Russian Academy of Sciences, 194064 St. Petersburg, Russia; (Y.K.); (O.F.); (A.D.)
| | - Nikolai Barlev
- Institute of Cytology, Russian Academy of Sciences, 194064 St. Petersburg, Russia; (Y.K.); (O.F.); (A.D.)
- Orekhovich Institute of Biomedical Chemistry, 119435 Moscow, Russia
| | - Oleg Shuvalov
- Institute of Cytology, Russian Academy of Sciences, 194064 St. Petersburg, Russia; (Y.K.); (O.F.); (A.D.)
- Orekhovich Institute of Biomedical Chemistry, 119435 Moscow, Russia
| |
Collapse
|
30
|
Green Tea ( Camellia sinensis): A Review of Its Phytochemistry, Pharmacology, and Toxicology. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27123909. [PMID: 35745040 PMCID: PMC9231383 DOI: 10.3390/molecules27123909] [Citation(s) in RCA: 94] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/11/2022] [Accepted: 06/13/2022] [Indexed: 12/21/2022]
Abstract
Objectives Green tea (Camellia sinensis) is a kind of unfermented tea that retains the natural substance in fresh leaves to a great extent. It is regarded as the second most popular drink in the world besides water. In this paper, the phytochemistry, pharmacology, and toxicology of green tea are reviewed systematically and comprehensively. Key findings Green tea has been demonstrated to be good for human health. Nowadays, multiple pharmacologically active components have been isolated and identified from green tea, including tea polyphenols, alkaloids, amino acids, polysaccharides, and volatile components. Recent studies have demonstrated that green tea shows versatile pharmacological activities, such as antioxidant, anticancer, hypoglycemic, antibacterial, antiviral, and neuroprotective. Studies on the toxic effects of green tea extract and its main ingredients have also raised concerns including hepatotoxicity and DNA damage. Summary Green tea can be used to assist the treatment of diabetes, Alzheimer’s disease, oral cancer, and dermatitis. Consequently, green tea has shown promising practical prospects in health care and disease prevention.
Collapse
|
31
|
Lange KW. Tea in cardiovascular health and disease: a critical appraisal of the evidence. FOOD SCIENCE AND HUMAN WELLNESS 2022. [DOI: 10.1016/j.fshw.2021.12.034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
32
|
Li Y, Karim MR, Wang B, Peng J. Effects of Green Tea (-)-Epigallocatechin-3-Gallate (EGCG) on Cardiac Function - A Review of the Therapeutic Mechanism and Potentials. Mini Rev Med Chem 2022; 22:2371-2382. [PMID: 35345998 DOI: 10.2174/1389557522666220328161826] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/10/2022] [Accepted: 02/09/2022] [Indexed: 11/22/2022]
Abstract
Heart disease, the leading cause of death globally, refers to various illnesses that affect heart structure and function. Specific abnormalities affecting cardiac muscle contractility and remodeling and common factors including oxidative stress, inflammation, and apoptosis underlie the pathogenesis of heart diseases. Epidemiology studies have associated green tea consumption with lower morbidity and mortality of cardiovascular diseases, including heart and blood vessel dysfunction. Among the various compounds found in green tea, catechins are believed to play a significant role in producing benefits to cardiovascular health. Comprehensive literature reviews have been published to summarize the tea catechins' antioxidative, anti-inflammatory, and anti-apoptosis effects in the context of various diseases, such as cardiovascular diseases, cancers, and metabolic diseases. However, recent studies on tea catechins, especially the most abundant (-)-Epigallocatechin-3-Gallate (EGCG), revealed their capabilities in regulating cardiac muscle contraction by directly altering myofilament Ca2+ sensitivity on force development and Ca2+ ion handling in cardiomyocytes under both physiological and pathological conditions. In vitro and in vivo data also demonstrated that green tea extract or EGCG protected or rescued cardiac function, independent of their well-known effects against oxidative stress and inflammation. This minireview will focus on the specific effects of tea catechins on heart muscle contractility at the molecular and cellular level, revisit their effects on oxidative stress and inflammation in a variety of heart diseases, and discuss EGCG's potential as one of the lead compounds for new drug discovery for heart diseases.
Collapse
Affiliation(s)
- Yuejin Li
- Department of Biology, Morgan State University, Baltimore
| | | | - Buheng Wang
- Department of Biology, Morgan State University, Baltimore
| | - Jiangnan Peng
- Department of Biology, Morgan State University, Baltimore
- Department of Chemistry, Morgan State University, Baltimore
| |
Collapse
|
33
|
Murakami A. Novel mechanisms underlying bioactivities of polyphenols via hormesis. CURRENT OPINION IN TOXICOLOGY 2022. [DOI: 10.1016/j.cotox.2022.02.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
34
|
Li J, Du L, He JN, Chu KO, Guo CL, Wong MOM, Pang CP, Chu WK. Anti-inflammatory Effects of GTE in Eye Diseases. Front Nutr 2021; 8:753955. [PMID: 34966770 PMCID: PMC8711650 DOI: 10.3389/fnut.2021.753955] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 11/22/2021] [Indexed: 12/14/2022] Open
Abstract
Ocular inflammation is a common complication of various eye diseases with wide consequences from irritations to potentially sight-threatening complications. Green tea is a popular beverage throughout the world. One of the proven health benefits of consuming green tea extract (GTE) is anti-inflammation. Catechins are the biologically active constituents of GTE. In in vitro and in vivo studies, GTE and catechins present inhibition of inflammatory responses in the development of ocular inflammation including infectious, non-infectious or autoimmune, and oxidative-induced complications. Research on the ocular inflammation in animal models has made significant progress in the past decades and several key disease mechanisms have been identified. Here we review the experimental investigations on the effects of GTE and catechins on various ocular inflammation related diseases including glaucoma, age-related macular degeneration, uveitis and ocular surface inflammation. We also review the pharmacokinetics of GTE constituents and safety of green tea consumption. We discuss the insights and perspectives of these experimental results, which would be useful for future development of novel therapeutics in human.
Collapse
Affiliation(s)
- Jian Li
- Department of Ophthalmology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Lin Du
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Jing Na He
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Kai On Chu
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Cosmos Liutao Guo
- Bachelor of Medicine and Bachelor of Surgery Programme, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Mandy Oi Man Wong
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China.,Hong Kong Eye Hospital, Hong Kong, Hong Kong SAR, China
| | - Chi Pui Pang
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Wai Kit Chu
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| |
Collapse
|
35
|
Pandeya PR, Lamichhane R, Lamichhane G, Lee KH, Lee HK, Rhee SJ, Jung HJ. 18KHT01, a Potent Anti-Obesity Polyherbal Formulation. Front Pharmacol 2021; 12:807081. [PMID: 34975503 PMCID: PMC8719591 DOI: 10.3389/fphar.2021.807081] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 12/02/2021] [Indexed: 01/11/2023] Open
Abstract
Obesity is a life-threatening metabolic disorder necessitating urgent development of safe and effective therapy. Currently, limited such therapeutic measures are available for obesity. The present study was designed to develop a novel, safe and effective herbal therapy for the management of obesity. A polyherbal formulation (18KHT01) was developed by homogeneously mixing a specific proportion of crude Quercus acutissima (acorn jelly powder), Camellia sinensis (dry leaf buds), and Geranium thunbergii (dry aerial part) along with Citrus limon (fruit juice). Synergistic antioxidant, antiadipogenic, and anti-obesity activities were evaluated by in vitro as well as in vivo studies. In vitro experiments revealed strong synergistic antioxidant and anti-adipogenic activities of 18KHT01. Molecular assessment of 18KHT01 showed significant down-regulation of vital adipogenic factors such as PPARγ, C/EBPα, aP2, SREBP-1c, FAS, and LPL. Based on the results of the preliminary toxicity study, 75 and 150 mg/kg, twice daily doses of 18KHT01 were administered to evaluate anti-obesity activity in diet-induced obese (DIO) C57BL/6J mice model. The major obesity-related parameters such as body weight, weight gain, food efficiency ratio, as well as serum lipid profile were significantly reduced by 18KHT01 with potential synergism. Also, the high-fat diet-induced insulin resistance was suggestively alleviated by the formulation, and thus ameliorated fasting blood glucose. Histological evaluation of liver and white adipose tissue revealed that the significant reduction of fat depositions and thus reduction of these tissue weights. Synergy evaluation experiments exhibited that the 18KHT01 offered strong synergism by improving efficacy and reducing the toxicity of its ingredients. Overall results evidenced the 18KHT01 as a safe and potent anti-obesity herbal therapy.
Collapse
Affiliation(s)
- Prakash Raj Pandeya
- Department of Oriental Pharmacy and Wonkwang-Oriental Medicines Research Institute, Wonkwang University, Iksan, South Korea
- Bio-Safety Research Institute, Jeonbuk National University, Iksan, South Korea
| | - Ramakanta Lamichhane
- Department of Oriental Pharmacy and Wonkwang-Oriental Medicines Research Institute, Wonkwang University, Iksan, South Korea
| | - Gopal Lamichhane
- Department of Oriental Pharmacy and Wonkwang-Oriental Medicines Research Institute, Wonkwang University, Iksan, South Korea
| | - Kyung-Hee Lee
- Department of Oriental Pharmacy and Wonkwang-Oriental Medicines Research Institute, Wonkwang University, Iksan, South Korea
| | - Hyeong Kyu Lee
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, South Korea
| | - Su-jin Rhee
- Department of Pharmacy, Wonkwang University, Iksan, South Korea
| | - Hyun-Ju Jung
- Department of Oriental Pharmacy and Wonkwang-Oriental Medicines Research Institute, Wonkwang University, Iksan, South Korea
| |
Collapse
|
36
|
Fallah S, Musa-Veloso K, Cao J, Venditti C, Lee HY, Hamamji S, Hu J, Appelhans K, Frankos V. Liver biomarkers in adults: Evaluation of associations with reported green tea consumption and use of green tea supplements in U.S. NHANES. Regul Toxicol Pharmacol 2021; 129:105087. [PMID: 34826597 DOI: 10.1016/j.yrtph.2021.105087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 11/16/2021] [Accepted: 11/18/2021] [Indexed: 11/19/2022]
Abstract
Some events of hepatotoxicity have been linked to consumption of green tea supplements. The association between consumption of green tea or green tea supplements and abnormal liver biomarkers in adults was investigated using cross-sectional data from the 2009-2014 United States National Health and Nutrition Examination Survey (U.S. NHANES). Individuals with levels of either bilirubin or GGT, ALT, AST, and/or ALP in excess of the age- and gender-specific upper limits of normal ranges were classified as having abnormal liver biomarkers. Associations between green tea or green tea supplement use (consumption vs. not) and liver function were determined using multiple logistic regression modelling. 12,289 persons were included in the green tea analyses and 12,274 in the green tea supplement analyses. The odds of having one or more abnormal liver biomarkers were significantly reduced (p = 0.01) with consumption of green tea (OR: 0.49; 95% CI: 0.28, 0.85), while no significant association (p = 0.78) was determined for consumption of green tea supplements (OR: 0.92; 95% CI: 0.52, 1.64). Based on data from the 2009-2014 U.S. NHANES, green tea consumption was associated with reduced odds of having one or more abnormal liver biomarkers; whereas, no significant association was determined with consumption of green tea supplements.
Collapse
Affiliation(s)
- Shafagh Fallah
- Intertek Health Sciences Inc., Mississauga, Ontario, Canada
| | | | - Joyce Cao
- Herbalife Nutrition, Torrance, CA, USA
| | | | - Han Youl Lee
- Intertek Health Sciences Inc., Mississauga, Ontario, Canada
| | - Samer Hamamji
- Intertek Health Sciences Inc., Mississauga, Ontario, Canada
| | - Jiang Hu
- Herbalife Nutrition, Torrance, CA, USA
| | | | | |
Collapse
|
37
|
Cladis DP, Weaver CM, Ferruzzi MG. (Poly)phenol toxicity in vivo following oral administration: A targeted narrative review of (poly)phenols from green tea, grape, and anthocyanin-rich extracts. Phytother Res 2021; 36:323-335. [PMID: 34725890 DOI: 10.1002/ptr.7323] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 10/17/2021] [Accepted: 10/18/2021] [Indexed: 12/20/2022]
Abstract
Fruit- and vegetable-derived (poly)phenols are secondary plant metabolites that may have beneficial effects on human health when consumed regularly. Recent years have seen rapid growth in both consumer demand for and research interest in (poly)phenol-rich dietary supplements, natural colorants, and functional foods. As these products continue to enter the marketplace and (poly)phenol intake patterns change from traditional food products to these sources, attention must be paid to the potential for toxicity from consuming elevated doses of (poly)phenols. To date, much remains unknown regarding the safety of high doses of (poly)phenols, especially in vivo. In this targeted narrative review, we summarize evidence from in vivo investigations of (poly)phenol toxicity after oral administration of green tea extracts, grape-derived phenolics, and anthocyanin-rich extracts. There is limited evidence of overt toxicity from oral ingestion of these (poly)phenol-rich sources, though more research on the safety of high doses-as well as defining what constitutes a "high" dose of both individual and complex mixtures of (poly)phenols-is needed before these observations can be used to create dietary guidance for consumers.
Collapse
Affiliation(s)
- Dennis P Cladis
- Department of Food Science and Nutrition, University of Minnesota, St. Paul, Minnesota, USA
| | - Connie M Weaver
- Department of Food Science, Purdue University, Lafayette, Indiana, USA
| | - Mario G Ferruzzi
- Plants for Human Health Institute, North Carolina State University, Kannapolis, North Carolina, USA
| |
Collapse
|
38
|
Mao XY, Yin XX, Guan QW, Xia QX, Yang N, Zhou HH, Liu ZQ, Jin WL. Dietary nutrition for neurological disease therapy: Current status and future directions. Pharmacol Ther 2021; 226:107861. [PMID: 33901506 DOI: 10.1016/j.pharmthera.2021.107861] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 04/02/2021] [Accepted: 04/06/2021] [Indexed: 02/06/2023]
Abstract
Adequate food intake and relative abundance of dietary nutrients have undisputed effects on the brain function. There is now substantial evidence that dietary nutrition aids in the prevention and remediation of neurologic symptoms in diverse pathological conditions. The newly described influences of dietary factors on the alterations of mitochondrial dysfunction, epigenetic modification and neuroinflammation are important mechanisms that are responsible for the action of nutrients on the brain health. In this review, we discuss the state of evidence supporting that distinct dietary interventions including dietary supplement and dietary restriction have the ability to tackle neurological disorders using Alzheimer's disease, Parkinson's disease, stroke, epilepsy, traumatic brain injury, amyotrophic lateral sclerosis, Huntington's disease and multiple sclerosis as examples. Additionally, it is also highlighting that diverse potential mechanisms such as metabolic control, epigenetic modification, neuroinflammation and gut-brain axis are of utmost importance for nutrient supply to the risk of neurologic condition and therapeutic response. Finally, we also highlight the novel concept that dietary nutrient intervention reshapes metabolism-epigenetics-immunity cycle to remediate brain dysfunction. Targeting metabolism-epigenetics-immunity network will delineate a new blueprint for combating neurological weaknesses.
Collapse
Affiliation(s)
- Xiao-Yuan Mao
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha 410008, PR China; Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, 110 Xiangya Road, Changsha 410078, PR China; Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha 410078, PR China; National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha 410008, Hunan, PR China.
| | - Xi-Xi Yin
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China
| | - Qi-Wen Guan
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha 410008, PR China; Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, 110 Xiangya Road, Changsha 410078, PR China; Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha 410078, PR China; National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha 410008, Hunan, PR China
| | - Qin-Xuan Xia
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha 410008, PR China; Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, 110 Xiangya Road, Changsha 410078, PR China; Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha 410078, PR China; National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha 410008, Hunan, PR China
| | - Nan Yang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha 410008, PR China; Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, 110 Xiangya Road, Changsha 410078, PR China; Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha 410078, PR China; National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha 410008, Hunan, PR China
| | - Hong-Hao Zhou
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha 410008, PR China; Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, 110 Xiangya Road, Changsha 410078, PR China; Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha 410078, PR China; National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha 410008, Hunan, PR China
| | - Zhao-Qian Liu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha 410008, PR China; Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, 110 Xiangya Road, Changsha 410078, PR China; Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha 410078, PR China; National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha 410008, Hunan, PR China.
| | - Wei-Lin Jin
- Institute of Cancer Neuroscience, Medical Frontier Innovation Research Center, The First Hospital of Lanzhou University, The First Clinical Medical College of Lanzhou University, Lanzhou 730000, PR China.
| |
Collapse
|
39
|
Wigner P, Bijak M, Saluk-Bijak J. The Green Anti-Cancer Weapon. The Role of Natural Compounds in Bladder Cancer Treatment. Int J Mol Sci 2021; 22:7787. [PMID: 34360552 PMCID: PMC8346071 DOI: 10.3390/ijms22157787] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/19/2021] [Accepted: 07/20/2021] [Indexed: 12/20/2022] Open
Abstract
Bladder cancer (BC) is the second most common genitourinary cancer. In 2018, 550,000 people in the world were diagnosed with BC, and the number of new cases continues to rise. BC is also characterized by high recurrence risk, despite therapies. Although in the last few years, the range of BC therapy has considerably widened, it is associated with severe side effects and the development of drug resistance, which is hampering treatment success. Thus, patients are increasingly choosing products of natural origin as an alternative or complementary therapeutic options. Therefore, in this article, we aim to elucidate, using the available literature, the role of natural substances such as curcumin, sulforaphane, resveratrol, quercetin, 6-gingerol, delphinidin, epigallocatechin-3-gallate and gossypol in the BC treatment. Numerous clinical and preclinical studies point to their role in the modulation of the signaling pathways, such as cell proliferation, cell survival, apoptosis and cell death.
Collapse
Affiliation(s)
- Paulina Wigner
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-136 Lodz, Poland;
| | - Michal Bijak
- Biohazard Prevention Centre, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-136 Lodz, Poland;
| | - Joanna Saluk-Bijak
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-136 Lodz, Poland;
| |
Collapse
|
40
|
Ballotin VR, Bigarella LG, Brandão ABDM, Balbinot RA, Balbinot SS, Soldera J. Herb-induced liver injury: Systematic review and meta-analysis. World J Clin Cases 2021; 9:5490-5513. [PMID: 34307603 PMCID: PMC8281430 DOI: 10.12998/wjcc.v9.i20.5490] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 04/03/2021] [Accepted: 05/25/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The use of herbal supplements and alternative medicines has been increasing in the last decades. Despite popular belief that the consumption of natural products is harmless, herbs might cause injury to various organs, particularly to the liver, which is responsible for their metabolism in the form of herb-induced liver injury (HILI). AIM To identify herbal products associated with HILI and describe the type of lesion associated with each product. METHODS Studies were retrieved using Medical Subject Headings Descriptors combined with Boolean operators. Searches were run on the electronic databases Scopus, Web of Science, MEDLINE, BIREME, LILACS, Cochrane Library for Systematic Reviews, SciELO, Embase, and Opengray.eu. Languages were restricted to English, Spanish, and Portuguese. There was no date of publication restrictions. The reference lists of the studies retrieved were searched manually. To access causality, the Maria and Victorino System of Causality Assessment in Drug Induced Liver Injury was used. Simple descriptive analysis were used to summarize the results. RESULTS The search strategy retrieved 5918 references. In the final analysis, 446 references were included, with a total of 936 cases reported. We found 79 types of herbs or herbal compounds related to HILI. He-Shou-Wu, Green tea extract, Herbalife, kava kava, Greater celandine, multiple herbs, germander, hydroxycut, skullcap, kratom, Gynura segetum, garcinia cambogia, ma huang, chaparral, senna, and aloe vera were the most common supplements with HILI reported. Most of these patients had complete clinical recovery (82.8%). However, liver transplantation was necessary for 6.6% of these cases. Also, chronic liver disease and death were observed in 1.5% and 10.4% of the cases, respectively. CONCLUSION HILI is normally associated with a good prognosis, once the implied product is withdrawn. Nevertheless, it is paramount to raise awareness in the medical and non-medical community of the risks of the indiscriminate use of herbal products.
Collapse
Affiliation(s)
| | | | - Ajacio Bandeira de Mello Brandão
- Post-Graduate Program in Medicine, Division of Hepatology, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre 90050-110, RS, Brazil
| | - Raul Angelo Balbinot
- Department of Clinical Gastroenterology, Universidade de Caxias do Sul, Caxias do Sul 95070-560, RS, Brazil
| | - Silvana Sartori Balbinot
- Department of Clinical Gastroenterology, Universidade de Caxias do Sul, Caxias do Sul 95070-560, RS, Brazil
| | - Jonathan Soldera
- Department of Clinical Gastroenterology, Universidade de Caxias do Sul, Caxias do Sul 95070-560, RS, Brazil
| |
Collapse
|
41
|
Munasinghe M, Almotayri A, Thomas J, Heydarian D, Jois M. Early Exposure is Necessary for the Lifespan Extension Effects of Cocoa in C. elegans. Nutr Metab Insights 2021; 14:11786388211029443. [PMID: 34290507 PMCID: PMC8278456 DOI: 10.1177/11786388211029443] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 06/11/2021] [Indexed: 11/15/2022] Open
Abstract
Background We previously showed that cocoa, a rich source of polyphenols improved the age-associated health and extended the lifespan in C. elegans when supplemented starting from L1 stage. Aim In this study, we aimed to find out the effects of timing of cocoa exposure on longevity improving effects and the mechanisms and pathways involved in lifespan extension in C. elegans. Methods The standard E. coli OP50 diet of wild type C. elegans was supplemented with cocoa powder starting from different larval stages (L1, L2, L3, and L4) till the death, from L1 to adult day 1 and from adult day 1 till the death. For mechanistic studies, different mutant strains of C. elegans were supplemented with cocoa starting from L1 stage till the death. Survival curves were plotted, and mean lifespan was reported. Results Cocoa exposure starting from L1 stage till the death and till adult day 1 significantly extended the lifespan of worms. However, cocoa supplementation at other larval stages as well as at adulthood could not extend the lifespan, instead the lifespan was significantly reduced. Cocoa could not extend the lifespan of daf-16, daf-2, sir-2.1, and clk-1 mutants. Conclusion Early-start supplementation is essential for cocoa-mediated lifespan extension which is dependent on insulin/IGF-1 signaling pathway and mitochondrial respiration.
Collapse
Affiliation(s)
- Mihiri Munasinghe
- Department of Physiology, Anatomy and Microbiology, School of Life Sciences, La Trobe University, Bundoora, VIC, Australia
| | - Abdullah Almotayri
- Department of Physiology, Anatomy and Microbiology, School of Life Sciences, La Trobe University, Bundoora, VIC, Australia
| | - Jency Thomas
- Department of Physiology, Anatomy and Microbiology, School of Life Sciences, La Trobe University, Bundoora, VIC, Australia
| | - Deniz Heydarian
- Department of Physiology, Anatomy and Microbiology, School of Life Sciences, La Trobe University, Bundoora, VIC, Australia
| | - Markandeya Jois
- Department of Physiology, Anatomy and Microbiology, School of Life Sciences, La Trobe University, Bundoora, VIC, Australia
| |
Collapse
|
42
|
Wolf CPJG, Rachow T, Ernst T, Hochhaus A, Zomorodbakhsch B, Foller S, Rengsberger M, Hartmann M, Huebner J. Complementary and alternative medicine (CAM) supplements in cancer outpatients: analyses of usage and of interaction risks with cancer treatment. J Cancer Res Clin Oncol 2021; 148:1123-1135. [PMID: 34228225 PMCID: PMC9016053 DOI: 10.1007/s00432-021-03675-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 05/27/2021] [Indexed: 11/25/2022]
Abstract
Purpose The aim of our study was to analyze the use of complementary and alternative medicine (CAM) supplements, identify possible predictors, and analyze and compile potential interactions of CAM supplements with conventional cancer therapy. Methods We included outpatient cancer patients treated at a German university hospital in March or April 2020. Information was obtained from questionnaires and patient records. CAM–drug interactions were identified based on literature research for each active ingredient of the supplements consumed by the patients. Results 37.4% of a total of 115 patients consumed CAM supplements. Potential interactions with conventional cancer treatment were identified in 51.2% of these patients. All types of CAM supplements were revealed to be a potential source for interactions: vitamins, minerals, food and plant extracts, and other processed CAM substances. Younger age (< 62 years) (p = 0.020, φc = 0.229) and duration of individual cancer history of more than 1 year (p = 0.006, φc = 0.264) were associated with increased likelihood of CAM supplement use. A wide range of different CAM supplement interactions were reviewed: effects of antioxidants, cytochrome (CYP) interactions, and specific agonistic or antagonistic effects with cancer treatment. Conclusion The interaction risks of conventional cancer therapy with over-the-counter CAM supplements seem to be underestimated. Supplements without medical indication, as well as overdoses, should be avoided, especially in cancer patients. To increase patient safety, physicians should address the risks of interactions in physician–patient communication, document the use of CAM supplements in patient records, and check for interactions.
Collapse
Affiliation(s)
- Clemens P J G Wolf
- Klinik für Innere Medizin II, Hämatologie und Internistische Onkologie, Universitätsklinikum Jena, Am Klinikum 1, 07747, Jena, Germany.
| | - Tobias Rachow
- Klinik für Innere Medizin II, Hämatologie und Internistische Onkologie, Pneumologie, Universitätsklinikum Jena, Am Klinikum 1, 07747, Jena, Germany
| | - Thomas Ernst
- Klinik für Innere Medizin II, Hämatologie und Internistische Onkologie, Konservative Tagesklinik des UniversitätsTumorCentrums (UTC), Universitätsklinikum Jena, Am Klinikum 1, 07747, Jena, Germany
| | - Andreas Hochhaus
- Klinik für Innere Medizin II, Hämatologie und Internistische Onkologie, Universitätsklinikum Jena, Am Klinikum 1, 07747, Jena, Germany
| | | | - Susan Foller
- Klinik für Urologie, Universitätsklinikum Jena, Am Klinikum 1, 07747, Jena, Germany
| | - Matthias Rengsberger
- Klinik und Poliklinik für Frauenheilkunde und Fortpflanzungsmedizin, Universitätsklinikum Jena, Am Klinikum 1, 07747, Jena, Germany
| | - Michael Hartmann
- Apotheke des Universitätsklinikums, Universitätsklinikum Jena, Am Klinikum 1, 07747, Jena, Germany
| | - Jutta Huebner
- Klinik für Innere Medizin II, Hämatologie und Internistische Onkologie, Integrative Onkologie, Universitätsklinikum Jena, Am Klinikum 1, 07747, Jena, Germany
| |
Collapse
|
43
|
Chowaniak M, Niemiec M, Zhu Z, Rashidov N, Gródek-Szostak Z, Szeląg-Sikora A, Sikora J, Kuboń M, Fayzullo SA, Mahmadyorzoda UM, Józefowska A, Lepiarczyk A, Gambuś F. Quality Assessment of Wild and Cultivated Green Tea from Different Regions of China. Molecules 2021; 26:3620. [PMID: 34199199 PMCID: PMC8231865 DOI: 10.3390/molecules26123620] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/09/2021] [Accepted: 06/11/2021] [Indexed: 11/16/2022] Open
Abstract
Natural products have always enjoyed great popularity among consumers. Wild tea is an interesting alternative to tea from intensive plantations. The term "wild tea" is applied to many different varieties of tea, the most desirable and valued of which are native or indigenous tea plants. Special pro-health properties of wild tea are attributed to the natural conditions in which it grows. However, there are no complex studies that describe quality and health indicators of wild tea. The aim of this research was to evaluate the quality of wild and cultivated green tea from different regions of China: Wuzhishan, Baisha, Kunlushan, and Pu'Er. The assessment was carried out by verifying the concentration of selected chemical components in tea and relating it to the health risks they may pose, as well as to the nutritional requirements of adults. Wild tea was characterized by higher micronutrient concentration. The analyzed teas can constitute a valuable source of Mn in the diet. A higher concentration of nitrates and oxalates in cultivated tea can be associated with fertilizer use. The analyzed cultivated tea was a better source of antioxidants with a higher concentration of caffeine. There were no indications of health risks for wild or cultivated teas.
Collapse
Affiliation(s)
- Maciej Chowaniak
- Department of Agroecology and Crop Production, Faculty of Agriculture and Economics, University of Agriculture in Krakow, Al. Mickiewicza 21, 31-120 Krakow, Poland;
| | - Marcin Niemiec
- Department of Agricultural and Environmental Chemistry, Faculty of Agriculture and Economics, University of Agriculture in Krakow, Al. Mickiewicza 21, 31-120 Krakow, Poland; (M.N.); (F.G.)
| | - Zhiqiang Zhu
- Department of Agricultural Resources and Environment, College of Tropical Crops, Hainan University, Renmin Avenue, Haikou, Hainan Province 570228, China;
| | - Naim Rashidov
- Department of Food Products and Agrotechnology, Polytechnical Institute of Tajik Technical University by Academician M.S. Osimi in Khujand, Lenin St. 226, Khujand 735700, Tajikistan;
| | - Zofia Gródek-Szostak
- Department of Economics and Enterprise Organization, Cracow University of Economics, 31-510 Krakow, Poland;
| | - Anna Szeląg-Sikora
- Faculty of Production and Power Engineering, University of Agriculture in Krakow, 30-149 Kraków, Poland; (A.S.-S.); (J.S.); (M.K.)
| | - Jakub Sikora
- Faculty of Production and Power Engineering, University of Agriculture in Krakow, 30-149 Kraków, Poland; (A.S.-S.); (J.S.); (M.K.)
| | - Maciej Kuboń
- Faculty of Production and Power Engineering, University of Agriculture in Krakow, 30-149 Kraków, Poland; (A.S.-S.); (J.S.); (M.K.)
- Eastern European State College of Higher Education in Przemyśl, Książąt Lubomirskich 6, 37-700 Przemyśl, Poland
| | | | - Usmon Mamur Mahmadyorzoda
- Tajik Agrarian University Named After Shirinsho Shotemur, Rudaki Avenue 146, Dushanbe 734003, Tajikistan;
| | - Agnieszka Józefowska
- Department of Soil Science and Agrophysics, Faculty of Agriculture and Economics, University of Agriculture in Krakow, Al. Mickiewicza 21, 31-120 Krakow, Poland;
| | - Andrzej Lepiarczyk
- Department of Agroecology and Crop Production, Faculty of Agriculture and Economics, University of Agriculture in Krakow, Al. Mickiewicza 21, 31-120 Krakow, Poland;
| | - Florian Gambuś
- Department of Agricultural and Environmental Chemistry, Faculty of Agriculture and Economics, University of Agriculture in Krakow, Al. Mickiewicza 21, 31-120 Krakow, Poland; (M.N.); (F.G.)
| |
Collapse
|
44
|
El-Sayed A, Aleya L, Kamel M. The link among microbiota, epigenetics, and disease development. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:28926-28964. [PMID: 33860421 DOI: 10.1007/s11356-021-13862-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 04/06/2021] [Indexed: 06/12/2023]
Abstract
The microbiome is a community of various microorganisms that inhabit or live on the skin of humans/animals, sharing the body space with their hosts. It is a sort of complex ecosystem of trillions of commensals, symbiotic, and pathogenic microorganisms, including trillions of bacteria, archaea, protozoa, fungi, and viruses. The microbiota plays a role in the health and disease status of the host. Their number, species dominance, and viability are dynamic. Their long-term disturbance is usually accompanied by serious diseases such as metabolic disorders, cardiovascular diseases, or even cancer. While epigenetics is a term that refers to different stimuli that induce modifications in gene expression patterns without structural changes in the inherited DNA sequence, these changes can be reversible or even persist for several generations. Epigenetics can be described as cell memory that stores experience against internal and external factors. Results from multiple institutions have contributed to the role and close interaction of both microbiota and epigenetics in disease induction. Understanding the mechanisms of both players enables a better understanding of disease induction and development and also opens the horizon to revolutionary therapeutic approaches. The present review illustrates the roles of diet, microbiome, and epigenetics in the induction of several chronic diseases. In addition, it discusses the application of epigenetic data to develop diagnostic biomarkers and therapeutics and evaluate their safety for patients. Understanding the interaction among all these elements enables the development of innovative preventive/therapeutic approaches for disease control.
Collapse
Affiliation(s)
- Amr El-Sayed
- Department of Medicine and Infectious Diseases, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Lotfi Aleya
- Chrono-Environnement Laboratory, UMR CNRS 6249, Bourgogne Franche-Comté University, F-25030, Besançon Cedex, France
| | - Mohamed Kamel
- Department of Medicine and Infectious Diseases, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt.
| |
Collapse
|
45
|
Hoofnagle JH, Bonkovsky HL, Phillips EJ, Li YJ, Ahmad J, Barnhart H, Durazo F, Fontana RJ, Gu J, Khan I, Kleiner DE, Koh C, Rockey DC, Seeff LB, Serrano J, Stolz A, Tillmann HL, Vuppalanchi R, Navarro VJ. HLA-B*35:01 and Green Tea-Induced Liver Injury. Hepatology 2021; 73:2484-2493. [PMID: 32892374 PMCID: PMC8052949 DOI: 10.1002/hep.31538] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 07/25/2020] [Accepted: 08/16/2020] [Indexed: 12/18/2022]
Abstract
BACKGROUND AND AIMS Herbal supplements, and particularly multi-ingredient products, have become increasingly common causes of acute liver injury. Green tea is a frequent component in implicated products, but its role in liver injury is controversial. The aim of this study was to better characterize the clinical features, outcomes, and pathogenesis of green tea-associated liver injury. APPROACH AND RESULTS Among 1,414 patients enrolled in the U.S. Drug-Induced Liver Injury Network who underwent formal causality assessment, 40 cases (3%) were attributed to green tea, 202 to dietary supplements without green tea, and 1,142 to conventional drugs. The clinical features of green tea cases and representation of human leukocyte antigen (HLA) class I and II alleles in cases and control were analyzed in detail. Patients with green tea-associated liver injury ranged in age from 17 to 69 years (median = 40) and developed symptoms 15-448 days (median = 72) after starting the implicated agent. The liver injury was typically hepatocellular (95%) with marked serum aminotransferase elevations and only modest increases in alkaline phosphatase. Most patients were jaundiced (83%) and symptomatic (88%). The course was judged as severe in 14 patients (35%), necessitating liver transplantation in 3 (8%), but rarely resulting in chronic injury (3%). In three instances, injury recurred upon re-exposure to green tea with similar clinical features, but shorter time to onset. HLA typing revealed a high prevalence of HLA-B*35:01, found in 72% (95% confidence interval [CI], 58-87) of green tea cases, but only 15% (95% CI, 10-20) caused by other supplements and 12% (95% CI, 10-14) attributed to drugs, the latter rate being similar to population controls (11%; 95% CI, 10.5-11.5). CONCLUSIONS Green tea-related liver injury has distinctive clinical features and close association with HLA-B*35:01, suggesting that it is idiosyncratic and immune mediated.
Collapse
Affiliation(s)
- Jay H Hoofnagle
- Liver Disease Research Branch, Division of Digestive Diseases and Nutrition, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health (NIH), Bethesda, MD
| | - Herbert L Bonkovsky
- National Cancer Institute, National Institutes of Health (NIH), Bethesda, MD
- Department of Medicine, Wake Forest University School of Medicine, Winston-Salem, NC
| | | | - Yi-Ju Li
- Duke Clinical Research Institute, Duke University, Durham, NC
| | - Jawad Ahmad
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Huiman Barnhart
- Duke Clinical Research Institute, Duke University, Durham, NC
| | - Francisco Durazo
- University of California Los Angeles, David Geffen School of Medicine, Los Angeles, CA
| | - Robert J Fontana
- Department of Medicine, University of Michigan School of Medicine, Ann Arbor, MI
| | - Jiezhun Gu
- Duke Clinical Research Institute, Duke University, Durham, NC
| | - Ikhlas Khan
- National Center for Natural Products Research, University of Mississippi, University, MI
| | - David E Kleiner
- The Laboratory of Pathology, National Cancer Institute, NIH, Bethesda, MD
| | - Christopher Koh
- Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), Bethesda, MD
| | - Don C Rockey
- Digestive Disease Research Center, Medical University of South Carolina, Charleston, SC
| | - Leonard B Seeff
- Department of Medicine, Einstein Healthcare Network, Philadelphia, PA
| | - Jose Serrano
- Liver Disease Research Branch, Division of Digestive Diseases and Nutrition, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health (NIH), Bethesda, MD
| | - Andrew Stolz
- Department of Medicine, University of Southern California School of Medicine, Los Angeles, CA
| | - Hans L Tillmann
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, East Carolina University, Greenville, NC
| | - Raj Vuppalanchi
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN
| | - Victor J Navarro
- Department of Medicine, Einstein Healthcare Network, Philadelphia, PA
| |
Collapse
|
46
|
Vo Van Regnault G, Costa MC, Adanić Pajić A, Bico AP, Bischofova S, Blaznik U, Menniti-Ippolito F, Pilegaard K, Rodrigues C, Margaritis I. The need for European harmonization of Nutrivigilance in a public health perspective: a comprehensive review. Crit Rev Food Sci Nutr 2021; 62:8230-8246. [PMID: 34036844 DOI: 10.1080/10408398.2021.1926904] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
According to the European Union regulation, some countries have established a pre-market notification system for food supplements while others have not. As this regulation is unfulfilled, a notified and marketed food supplement ingredient in one country may be forbidden in another. Even though food supplements shall not be placed on the market if unsafe, some products may still expose the consumers to risks. The risk is increased by easier access due to worldwide dissemination fostered by the internet and free movement of goods in the European Union. The Rapid Alert System for Food and Feed and the Emerging Risks Exchange Network are described. To date, the European Union legislation does not include a provision to establish a dedicated vigilance system for food supplements (Nutrivigilance). Six European Union countries have nevertheless set up national systems, which are presented. The present lack of European Union data collection harmonization, does not allow easy cooperation between countries. This article advocates for creating a coordinated European Nutrivigilance System to detect and scrutinize adverse effects of food supplements. This, to help in directing science-based risk assessments and reinforce the science-based decision of policy makers to improve public health safety.
Collapse
Affiliation(s)
- G Vo Van Regnault
- French Agency for Food, Environmental and Occupational Health and Safety (ANSES), Maisons-Alfort, France
| | - M C Costa
- Economy and Food Safety Standards Authority (ASAE), Lisboa, Portugal.,CBIOS - Universidade Lusófona's Research Center for Biosciences & Health Technologies, Lisboa, Portugal.,NICiTeS, Polytechnic Institute of Lusophony, Lisboa, Portugal
| | - A Adanić Pajić
- Croatian National Institute of Public Health (CIPH), Zagreb, Croatia
| | - A P Bico
- Directorate of Nutrition and Food Services, Directorate-General for Food and Veterinary (DGAV), Lisboa, Portugal
| | - S Bischofova
- Center for Health, Nutrition and Food - National Institute of Public Health in Prague, Czech Republic
| | - U Blaznik
- National Institute of Public Health Slovenia (NIJZ), Ljubljana, Slovenia
| | | | - K Pilegaard
- National Food Institute, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - C Rodrigues
- CBIOS - Universidade Lusófona's Research Center for Biosciences & Health Technologies, Lisboa, Portugal.,Directorate of Nutrition and Food Services, Directorate-General for Food and Veterinary (DGAV), Lisboa, Portugal
| | - I Margaritis
- French Agency for Food, Environmental and Occupational Health and Safety (ANSES), Maisons-Alfort, France
| |
Collapse
|
47
|
Cotoraci C, Ciceu A, Sasu A, Miutescu E, Hermenean A. Bioactive Compounds from Herbal Medicine Targeting Multiple Myeloma. APPLIED SCIENCES 2021; 11:4451. [DOI: 10.3390/app11104451] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Multiple myeloma (MM) is one of the most widespread hematological cancers. It is characterized by a clonal proliferation of malignant plasma cells in the bone marrow and by the overproduction of monoclonal proteins. In recent years, the survival rate of patients with multiple myeloma has increased significantly due to the use of transplanted stem cells and of the new therapeutic agents that have significantly increased the survival rate, but it still cannot be completely cured and therefore the development of new therapeutic products is needed. Moreover, many patients have various side effects and face the development of drug resistance to current therapies. The purpose of this review is to highlight the bioactive active compounds (flavonoids) and herbal extracts which target dysregulated signaling pathway in MM, assessed by in vitro and in vivo experiments or clinical studies, in order to explore their healing potential targeting multiple myeloma. Mechanistically, they demonstrated the ability to promote cell cycle blockage and apoptosis or autophagy in cancer cells, as well as inhibition of proliferation/migration/tumor progression, inhibition of angiogenesis in the tumor vascular network. Current research provides valuable new information about the ability of flavonoids to enhance the apoptotic effects of antineoplastic drugs, thus providing viable therapeutic options based on combining conventional and non-conventional therapies in MM therapeutic protocols.
Collapse
Affiliation(s)
- Coralia Cotoraci
- Department of Hematology, Faculty of Medicine, Vasile Goldis Western University of Arad, Rebreanu 86, 310414 Arad, Romania
| | - Alina Ciceu
- “Aurel Ardelean” Institute of Life Sciences, Vasile Godis Western University of Arad, Rebreanu 86, 310414 Arad, Romania
| | - Alciona Sasu
- Department of Hematology, Faculty of Medicine, Vasile Goldis Western University of Arad, Rebreanu 86, 310414 Arad, Romania
| | - Eftimie Miutescu
- Department of Gastroenterology, Faculty of Medicine, Vasile Goldis Western University of Arad, Rebreanu 86, 310414 Arad, Romania
| | - Anca Hermenean
- “Aurel Ardelean” Institute of Life Sciences, Vasile Godis Western University of Arad, Rebreanu 86, 310414 Arad, Romania
- Department of Histology, Faculty of Medicine, Vasile Goldis Western University of Arad, Rebreanu 86, 310414 Arad, Romania
| |
Collapse
|
48
|
Interactions in cancer treatment considering cancer therapy, concomitant medications, food, herbal medicine and other supplements. J Cancer Res Clin Oncol 2021; 148:461-473. [PMID: 33864520 PMCID: PMC8800918 DOI: 10.1007/s00432-021-03625-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 03/29/2021] [Indexed: 02/06/2023]
Abstract
Purpose The aim of our study was to analyse the frequency and severity of different types of potential interactions in oncological outpatients’ therapy. Therefore, medications, food and substances in terms of complementary and alternative medicine (CAM) like dietary supplements, herbs and other processed ingredients were considered. Methods We obtained data from questionnaires and from analysing the patient records of 115 cancer outpatients treated at a German university hospital. Drug–drug interactions were identified using a drug interaction checking software. Potential CAM-drug interactions and food–drug interactions were identified based on literature research. Results 92.2% of all patients were at risk of one or more interaction of any kind and 61.7% of at least one major drug–drug interaction. On average, physicians prescribed 10.4 drugs to each patient and 6.9 interactions were found, 2.5 of which were classified as major. The most prevalent types of drug–drug interactions were a combination of QT prolonging drugs (32.3%) and drugs with a potential for myelotoxicity (13.4%) or hepatotoxicity (10.1%). In 37.2% of all patients using CAM supplements the likelihood of interactions with medications was rated as likely. Food-drug interactions were likely in 28.7% of all patients. Conclusion The high amount of interactions could not be found in literature so far. We recommend running interaction checks when prescribing any new drug and capturing CAM supplements in medication lists too. If not advised explicitly in another way drugs should be taken separately from meals and by using nonmineralized water to minimize the risk for food–drug interactions.
Collapse
|
49
|
Zwolak I. Epigallocatechin Gallate for Management of Heavy Metal-Induced Oxidative Stress: Mechanisms of Action, Efficacy, and Concerns. Int J Mol Sci 2021; 22:4027. [PMID: 33919748 PMCID: PMC8070748 DOI: 10.3390/ijms22084027] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/10/2021] [Accepted: 04/12/2021] [Indexed: 02/07/2023] Open
Abstract
In this review, we highlight the effects of epigallocatechin gallate (EGCG) against toxicities induced by heavy metals (HMs). This most active green tea polyphenol was demonstrated to reduce HM toxicity in such cells and tissues as testis, liver, kidney, and neural cells. Several protective mechanisms that seem to play a pivotal role in EGCG-induced effects, including reactive oxygen species scavenging, HM chelation, activation of nuclear factor erythroid 2-related factor 2 (Nrf2), anti-inflammatory effects, and protection of mitochondria, are described. However, some studies, especially in vitro experiments, reported potentiation of harmful HM actions in the presence of EGCG. The adverse impact of EGCG on HM toxicity may be explained by such events as autooxidation of EGCG, EGCG-mediated iron (Fe3+) reduction, depletion of intracellular glutathione (GSH) levels, and disruption of mitochondrial functions. Furthermore, challenges hampering the potential EGCG application related to its low bioavailability and proper dosing are also discussed. Overall, in this review, we point out insights into mechanisms that might account for both the beneficial and adverse effects of EGCG in HM poisoning, which may have a bearing on the design of new therapeutics for HM intoxication therapy.
Collapse
Affiliation(s)
- Iwona Zwolak
- Centre for Interdisciplinary Research, Laboratory of Oxidative Stress, The John Paul II Catholic University of Lublin, Konstantynów Ave. 1J, 20-708 Lublin, Poland
| |
Collapse
|
50
|
Gebelik Süresince Yeşil Çay Tüketiminin Anne ve Yenidoğan Karaciğer Hepatositlerinde CK-18 Molekülüne Etkisinin Karşılaştırmalı Değerlendirilmesi. ANADOLU KLINIĞI TIP BILIMLERI DERGISI 2021. [DOI: 10.21673/anadoluklin.881516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|