1
|
Lim S, Chung HJ, Oh YJ, Hinterdorfer P, Myung SC, Seo Y, Ko K. Modification of Fc-fusion protein structures to enhance efficacy of cancer vaccine in plant expression system. PLANT BIOTECHNOLOGY JOURNAL 2025; 23:960-982. [PMID: 39724301 PMCID: PMC11869200 DOI: 10.1111/pbi.14552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 12/03/2024] [Indexed: 12/28/2024]
Abstract
Epithelial cell adhesion molecule (EpCAM) fused to IgG, IgA and IgM Fc domains was expressed to create IgG, IgA and IgM-like structures as anti-cancer vaccines in Nicotiana tabacum. High-mannose glycan structures were generated by adding a C-terminal endoplasmic reticulum (ER) retention motif (KDEL) to the Fc domain (FcK) to produce EpCAM-Fc and EpCAM-FcK proteins in transgenic plants via Agrobacterium-mediated transformation. Cross-fertilization of EpCAM-Fc (FcK) transgenic plants with Joining chain (J-chain, J and JK) transgenic plants led to stable expression of large quaternary EpCAM-IgA Fc (EpCAM-A) and IgM-like (EpCAM-M) proteins. Immunoblotting, SDS-PAGE and ELISA analyses demonstrated that proteins with KDEL had higher expression levels and binding activity to anti-EpCAM IgGs. IgM showed the strongest binding among the fusion proteins, followed by IgA and IgG. Sera from BALB/c mice immunized with these vaccines produced anti-EpCAM IgGs. Flow cytometry indicated that the EpCAM-Fc fusion proteins significantly activated CD8+ cytotoxic T cells, CD4+ helper T cells and B cells, particularly with EpCAM-FcKP and EpCAM-FcP (FcKP) × JP (JKP). The induced anti-EpCAM IgGs captured human prostate cancer PC-3 and colorectal cancer SW620 cells. Sera from immunized mice inhibited cancer cell proliferation, migration and invasion; down-regulated proliferation markers (PCNA, Ki-67) and epithelial-mesenchymal transition markers (Vimentin); and up-regulated E-cadherin. These findings suggest that N. tabacum can produce effective vaccine candidates to induce anti-cancer immune responses.
Collapse
Affiliation(s)
- Sohee Lim
- BioSystems Design Lab, Department of Medicine, College of MedicineChung‐Ang UniversitySeoulKorea
| | - Hyun Joo Chung
- Department of Urology, College of MedicineChung‐Ang UniversitySeoulKorea
| | - Yoo Jin Oh
- Department of Applied Experimental BiophysicsJohannes Kepler UniversityLinzAustria
| | - Peter Hinterdorfer
- Department of Applied Experimental BiophysicsJohannes Kepler UniversityLinzAustria
| | - Soon Chul Myung
- Department of Urology, College of MedicineChung‐Ang UniversitySeoulKorea
| | - Young‐Jin Seo
- Department of Life ScienceChung‐Ang UniversitySeoulKorea
| | - Kisung Ko
- BioSystems Design Lab, Department of Medicine, College of MedicineChung‐Ang UniversitySeoulKorea
| |
Collapse
|
2
|
Li Z, Liu Y, Liu F, Sun G, Zhang X, Jing J. Bioorthogonal click chemistry and aptamer-targeting enables highly selective fluorescence labeling of exosomal glycosylated EpCAM for super resolved imaging. Anal Chim Acta 2025; 1339:343623. [PMID: 39832878 DOI: 10.1016/j.aca.2025.343623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Accepted: 01/05/2025] [Indexed: 01/22/2025]
Abstract
BACKGROUND Exosomes, which are known to transport diverse proteins from parent cells to recipient cells, consequently influence the biological activities of the recipient cells. Among those proteins, the epithelial cell adhesion molecule (EpCAM), plays a crucial role as it is implicated in cell adhesion and signaling processes. As exosomal EpCAM potentially affects the migration of recipient cells, direct visualization with high spatial resolution is essential to better understand this impact and the role of exosomal EpCAM in recipient cells. Such understanding may provide valuable insights into the mechanisms underlying various diseases and potential treatment strategies. (94) RESULTS: This work focus on the selective labeling and fluorescent imaging of glycosylated EpCAM on tumor-derived exosomes using bioorthogonal click chemistry and aptamer-targeting strategies. To commence, exosomes with EpCAM overexpression, EpCAM N-glycosylation mutation, EpCAM silencing, or wildtype, were obtained by genetic manipulation. Subsequently, the glycosylation of exosomal EpCAM was directly visualized by capitalizing on the intramolecular fluorescence resonance energy transfer (FRET) that takes place between fluorescent EpCAM aptamers and fluorescent tags bound to glycans. As a result, this approach demonstrated its efficacy in investigating both the existence and the glycosylation state of exosomal EpCAM. Importantly, we proceeded to observe the uptake of tumor-derived exosomes by their recipient cells. It was then remarkably found that the expression and glycosylation levels of EpCAM in the co-cultured exosomes have a significant and substantial impact on the migratory ability of the recipient immune cells. (139) SIGNIFICANCE: We set up a novel labeling strategy for exosomal glycosylated EpCAM. This approach enabled us to realize the direct observation of exosomal EpCAM and its glycosylation with high spatial resolution. Based on this method, we find a significant role that the expression and the glycosylation of exosomal EpCAM in recipient cell adhesion. (52).
Collapse
Affiliation(s)
- Zichun Li
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, PR China
| | - Yifan Liu
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, PR China
| | - Feiran Liu
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, PR China
| | - Guochen Sun
- Department of Neurosurgery, The First Medical Center, PLA General Hospital, Beijing, 100853, PR China.
| | - Xiaoling Zhang
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, PR China.
| | - Jing Jing
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, PR China.
| |
Collapse
|
3
|
Deng J, Geng Z, Luan L, Jiang D, Lu J, Zhang H, Chen B, Liu X, Xing D. Novel Anti-Trop2 Nanobodies Disrupt Receptor Dimerization and Inhibit Tumor Cell Growth. Pharmaceutics 2024; 16:1255. [PMID: 39458590 PMCID: PMC11510716 DOI: 10.3390/pharmaceutics16101255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 07/20/2024] [Accepted: 09/24/2024] [Indexed: 10/28/2024] Open
Abstract
Background: Trop2 (trophoblast cell-surface antigen 2) is overexpressed in multiple malignancies and is closely associated with poor prognosis, thus positioning it as a promising target for pan-cancer therapies. Despite the approval of Trop2-targeted antibody-drug conjugates (ADCs), challenges such as side effects, drug resistance, and limited efficacy persist. Recent studies have shown that the dimeric forms of Trop2 are crucial for its oncogenic functions, and the binding epitopes of existing Trop2-targeted drugs lie distant from the dimerization interface, potentially limiting their antitumor efficacy. Method: A well-established synthetic nanobody library was screened against Trop2-ECD. The identified nanobodies were extensively characterized, including their binding specificity and affinity, as well as their bioactivities in antigen-antibody endocytosis, cell proliferation, and the inhibition of Trop2 dimer assembly. Finally, ELISA based epitope analysis and AlphaFold 3 were employed to elucidate the binding modes of the nanobodies. Results: We identified two nanobodies, N14 and N152, which demonstrated high affinity and specificity for Trop2. Cell-based assays confirmed that N14 and N152 can facilitate receptor internalization and inhibit growth in Trop2-positive tumor cells. Epitope analysis uncovered that N14 and N152 are capable of binding with all three subdomains of Trop2-ECD and effectively disrupt Trop2 dimerization. Predictive modeling suggests that N14 and N152 likely target the epitopes at the interface of Trop2 cis-dimerization. The binding modality and mechanism of action demonstrated by N14 and N152 are unique among Trop2-targeted antibodies. Conclusions: we identified two novel nanobodies, N14 and N152, that specifically bind to Trop2. Importantly, these nanobodies exhibit significant anti-tumor efficacy and distinctive binding patterns, underscoring their potential as innovative Trop2-targeted therapeutics.
Collapse
Affiliation(s)
- Junwen Deng
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China; (J.D.); (Z.G.); (H.Z.)
- Qingdao Cancer Institute, Qingdao 266071, China
| | - Zhongmin Geng
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China; (J.D.); (Z.G.); (H.Z.)
- Qingdao Cancer Institute, Qingdao 266071, China
| | - Linli Luan
- Noventi Biopharmaceuticals Co., Ltd., Shanghai 201203, China; (L.L.); (D.J.); (J.L.); (B.C.)
| | - Dingwen Jiang
- Noventi Biopharmaceuticals Co., Ltd., Shanghai 201203, China; (L.L.); (D.J.); (J.L.); (B.C.)
| | - Jian Lu
- Noventi Biopharmaceuticals Co., Ltd., Shanghai 201203, China; (L.L.); (D.J.); (J.L.); (B.C.)
| | - Hanzhong Zhang
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China; (J.D.); (Z.G.); (H.Z.)
- Qingdao Cancer Institute, Qingdao 266071, China
| | - Bingguan Chen
- Noventi Biopharmaceuticals Co., Ltd., Shanghai 201203, China; (L.L.); (D.J.); (J.L.); (B.C.)
| | - Xinlin Liu
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China; (J.D.); (Z.G.); (H.Z.)
- Qingdao Cancer Institute, Qingdao 266071, China
| | - Dongming Xing
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China; (J.D.); (Z.G.); (H.Z.)
- Qingdao Cancer Institute, Qingdao 266071, China
- School of Life Sciences, Tsinghua University, Beijing 100084, China
| |
Collapse
|
4
|
Fang JM, Assarzadegan N, Cheng J, Lamps L. Utility of SATB2 and MOC-31 Immunostains to Distinguish Between Poorly Differentiated Rectal Adenocarcinoma and Anal Squamous Cell Carcinoma. Appl Immunohistochem Mol Morphol 2024; 32:357-361. [PMID: 39146227 DOI: 10.1097/pai.0000000000001218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 07/16/2024] [Indexed: 08/17/2024]
Abstract
OBJECTIVES Colorectal adenocarcinoma and squamous cell carcinoma (SCC) can arise in the anorectum and present a significant diagnostic challenge when poorly differentiated. Accurate diagnosis can significantly influence management, as the treatments for these conditions involve distinct neoadjuvant chemoradiotherapy regimens. MOC-31 and SATB2 have been utilized as specific markers of glandular differentiation and colorectal origin, respectively, but studies have shown that they may be positive in squamous cell carcinoma of other sites. This raises the concern that MOC-31 and SATB2 may be positive in squamous cell carcinoma of the anorectum, and overreliance on these stains may be a potential diagnostic pitfall in differentiating rectal poorly differentiated adenocarcinoma (PDA) from anal nonkeratinizing SCC. METHODS We identified biopsies from 10 rectal PDA and 17 anorectal nonkeratinizing SCC cases and stained them for MOC-31 and SATB2. RESULTS We found that MOC-31 was highly sensitive, being positive in 10/10 cases of rectal PDA, but not specific, as it was also positive in 11/17 SCC cases. In contrast, SATB2 was both sensitive, with positive staining in 10/10 rectal PDA cases, and specific, with negative staining in 17/17 SCC cases. This includes equivocal staining in 4 of these negative SCC cases. MOC-31 had a sensitivity of 100% and specificity of 35.3%, while SATB2 had a sensitivity of 100% and specificity of 100%. CONCLUSIONS Unlike squamous mucosa of the head and neck, and esophagus, SCC of the anus does not frequently stain positively for SATB2. These data suggest that SATB2 is a reliable marker in distinguishing rectal PDA from anorectal nonkeratinizing SCC, whereas MOC-31 is commonly positive in SCC of the anus. It is also important to note that equivocal SATB2 staining may be seen in SCC.
Collapse
Affiliation(s)
- Jiayun M Fang
- Department of Pathology, University of Michigan, Ann Arbor, MI
- Department of Pathology, Veteran Affairs, Ann Arbor, MI
| | | | - Jerome Cheng
- Department of Pathology, University of Michigan, Ann Arbor, MI
| | - Laura Lamps
- Department of Pathology, University of Michigan, Ann Arbor, MI
| |
Collapse
|
5
|
Ouahed JD, Griffith A, Collen LV, Snapper SB. Breaking Down Barriers: Epithelial Contributors to Monogenic IBD Pathogenesis. Inflamm Bowel Dis 2024; 30:1189-1206. [PMID: 38280053 PMCID: PMC11519031 DOI: 10.1093/ibd/izad319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Indexed: 01/29/2024]
Abstract
Monogenic causes of inflammatory bowel diseases (IBD) are increasingly being discovered. To date, much attention has been placed in those resulting from inborn errors of immunity. Therapeutic efforts have been largely focused on offering personalized immune modulation or curative bone marrow transplant for patients with IBD and underlying immune disorders. To date, less emphasis has been placed on monogenic causes of IBD that pertain to impairment of the intestinal epithelial barrier. Here, we provide a comprehensive review of monogenic causes of IBD that result in impaired intestinal epithelial barrier that are categorized into 6 important functions: (1) epithelial cell organization, (2) epithelial cell intrinsic functions, (3) epithelial cell apoptosis and necroptosis, (4) complement activation, (5) epithelial cell signaling, and (6) control of RNA degradation products. We illustrate how impairment of any of these categories can result in IBD. This work reviews the current understanding of the genes involved in maintaining the intestinal barrier, the inheritance patterns that result in dysfunction, features of IBD resulting from these disorders, and pertinent translational work in this field.
Collapse
Affiliation(s)
- Jodie D Ouahed
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Boston Children’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Alexandra Griffith
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Boston Children’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Lauren V Collen
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Boston Children’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Scott B Snapper
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Boston Children’s Hospital and Harvard Medical School, Boston, MA, USA
- Division of Gastroenterology, Department of Medicine, Brigham & Women’s Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
6
|
Wu Z, Huang C. Unveiling the Impact of MRC1 on Immune Infiltration and Patient's Prognosis: A Pan-Cancer Analysis Based on Single-Cell and Bulk Sequencing. Int J Gen Med 2024; 17:2575-2592. [PMID: 38855425 PMCID: PMC11162242 DOI: 10.2147/ijgm.s461144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 05/20/2024] [Indexed: 06/11/2024] Open
Abstract
Purpose Mannose receptor C-type 1 (MRC1) is an endocytic lectin receptor primarily expressed in macrophages, dendritic cells, and some endothelial cells. However, the role of MRC1 in cancers remains unclear. Methods We analyzed MRC1 expression using The Cancer Genome Atlas (TCGA), Genotype-Tissue Expression (GTEx), Cancer Cell Line Encyclopedia (CCLE), and single-cell datasets. We systematically explored the prognostic implications and diagnostic value of MRC1. Immune-related indicators, including immune cells, immune scores, and immune checkpoint molecules, were used to estimate their correlation with MRC1 expression. Finally, we explored its potential ties to immunotherapy success markers such as tumor mutation burden and DNA repair genes. Results MRC1 showed both pro- and anti-tumor leanings depending on the cancer types. High levels correlated with poorer outcomes in six cancers but improved prognosis in some cancers like glioblastoma multiforme. This trend extended to the immune arena, where MRC1 intertwined with diverse immune parameters, suggesting its influence on affecting the tumor's immunological landscape. Intriguingly, its expression positively associated with factors favoring immunotherapy efficacy while negatively correlating with some potential barriers. Single-cell analysis pinpointed a specific link between MRC1 and DNA damage/repair pathways in breast cancer. Conclusion Our study provides a comprehensive landscape of MRC1 levels and diverse regulatory patterns in different cancers, deepening the understanding of MRC1's roles in tumorigenesis and immunity.
Collapse
Affiliation(s)
- Zhiwei Wu
- Department of Organ Transplantation, XiangYa Hospital of Central South University, Changsha, People’s Republic of China
| | - Changhao Huang
- Department of Organ Transplantation, XiangYa Hospital of Central South University, Changsha, People’s Republic of China
| |
Collapse
|
7
|
Faccioli LA, Dias ML, Martins-Santos R, Paredes BD, Takiya CM, dos Santos Goldenberg RC. Resident Liver Stem Cells. RESIDENT STEM CELLS AND REGENERATIVE THERAPY 2024:23-51. [DOI: 10.1016/b978-0-443-15289-4.00015-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
8
|
Li D, Jiang L, Zhou W, Huang Y, Yang Y, Li J, Yang J, Wang F, Li J, Zhang Y, Yan F, Gao H, Guo X, Xu Q, Tan S, Wei YQ, Wang W. Chimeric Antigen Receptor-T Cell Therapy Decreases Distant Metastasis and Inhibits Local Recurrence Post-surgery in Mice. Hum Gene Ther 2023; 34:1248-1256. [PMID: 37917093 DOI: 10.1089/hum.2023.144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023] Open
Abstract
Distant metastasis and primary tumor relapse are the two main hurdles to the success of surgical treatment for cancer patients. Circulating tumor cells (CTCs) and incomplete surgical resection are the primary cause of distant metastasis and local recurrence of tumors, respectively. Chimeric antigen receptor (CAR)-modified T cells target residual carcinomas and CTCs hold the potential to inhibit primary recurrence and reduce tumor metastasis, but the experimental evidence is lacking. Here, we developed a surgery-induced tumor metastasis model in immunocompetent mice to investigate the efficacy of CAR-T cells therapy in preventing metastasis and local recurrence. We observed that subcutaneous tumor resection has induced a large number of CTCs intravasated into circulation. EpCAM-specific CAR-T was effective in clearing CTCs following surgical removal of the tumor. This resulted in less pulmonary metastasis and longer survival in mice when compared to mice treated with surgery followed by Mock-T cells infusion. In addition, the local relapse was obviously inhibited at the surgical site followed by EpCAM-CAR-T cell treatment. This study demonstrated that CAR-T cell therapy can be an adjuvant treatment following surgery to prevent tumor metastasis and inhibit primary tumor relapse for cancer patients.
Collapse
Affiliation(s)
- Dan Li
- Department of Biotherapy, The State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Lin Jiang
- Department of Biotherapy, The State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Weilin Zhou
- Department of Biotherapy, The State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yong Huang
- Department of Biotherapy, The State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yuening Yang
- Department of Biotherapy, The State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Jing Li
- Department of Biotherapy, The State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Jinrong Yang
- Department of Hematology, Hematology Research Laboratory, West China Hospital, Sichuan University, Chengdu, China
| | - Fengling Wang
- Department of Biotherapy, The State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Jiaqian Li
- Department of Biotherapy, The State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yalan Zhang
- Department of Biotherapy, The State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Feiyang Yan
- Department of Biotherapy, The State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Haozhan Gao
- Department of Biotherapy, The State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Xianling Guo
- Department of Oncology, Shanghai Tenth Peoples' Hospital, Shanghai, China
| | - Qing Xu
- Department of Oncology, Shanghai Tenth Peoples' Hospital, Shanghai, China
| | - Shisheng Tan
- Department of Oncology, Guizhou Provincial People's Hospital, Guiyang, China
| | - Yu-Quan Wei
- Department of Biotherapy, The State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Wei Wang
- Department of Biotherapy, The State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
9
|
Treitschke S, Weidele K, Varadarajan AR, Feliciello G, Warfsmann J, Vorbeck S, Polzer B, Botteron C, Hoffmann M, Dechand V, Mederer T, Weber F, Werner-Klein M, Robold T, Hofmann HS, Werno C, Klein CA. Ex vivo expansion of lung cancer-derived disseminated cancer cells from lymph nodes identifies cells associated with metastatic progression. Int J Cancer 2023; 153:1854-1867. [PMID: 37555668 DOI: 10.1002/ijc.34658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 05/24/2023] [Accepted: 06/19/2023] [Indexed: 08/10/2023]
Abstract
The cellular basis of the apparent aggressiveness in lung cancer is poorly understood but likely associated with functional or molecular features of disseminated cancer cells (DCCs). DCCs from epithelial cancers are mostly detected by antibodies directed against histogenetic markers such as cytokeratin or EpCAM. It has been argued that marker-negative metastatic founder cells might escape detection. We therefore used ex vivo sphere formation for functional detection of candidate metastasis founders. We generated cell suspensions from 199 LN samples of 131 lung cancer patients and placed them into non-adherent cell culture. Sphere formation was associated with detection of DCCs using EpCAM immunocytology and with significantly poorer prognosis. The prognostic impact of sphere formation was strongly associated with high numbers of EpCAM-positive DCCs and aberrant genotypes of expanded spheres. We also noted sphere formation in patients with no evidence of lymphatic spread, however such spheres showed infrequent expression of signature genes associated with spheres from EpCAM-positive samples and displayed neither typical lung cancer mutations (KRAS, TP53, ERBB1) nor copy number variations, but might be linked to disease progression >5 years post curative surgery. We conclude that EpCAM identifies relevant disease-driving DCCs, that such cells can be expanded for model generation and that further research is needed to clarify the functional and prognostic role of rare EpCAM-negative sphere forming cells.
Collapse
Affiliation(s)
- Steffi Treitschke
- Fraunhofer Institute for Toxicology and Experimental Medicine, Division of Personalized Tumor Therapy, Regensburg, Germany
| | - Kathrin Weidele
- Fraunhofer Institute for Toxicology and Experimental Medicine, Division of Personalized Tumor Therapy, Regensburg, Germany
| | - Adithi Ravikumar Varadarajan
- Fraunhofer Institute for Toxicology and Experimental Medicine, Division of Personalized Tumor Therapy, Regensburg, Germany
| | - Giancarlo Feliciello
- Fraunhofer Institute for Toxicology and Experimental Medicine, Division of Personalized Tumor Therapy, Regensburg, Germany
| | - Jens Warfsmann
- Fraunhofer Institute for Toxicology and Experimental Medicine, Division of Personalized Tumor Therapy, Regensburg, Germany
| | - Sybille Vorbeck
- Fraunhofer Institute for Toxicology and Experimental Medicine, Division of Personalized Tumor Therapy, Regensburg, Germany
| | - Bernhard Polzer
- Fraunhofer Institute for Toxicology and Experimental Medicine, Division of Personalized Tumor Therapy, Regensburg, Germany
| | - Catherine Botteron
- Fraunhofer Institute for Toxicology and Experimental Medicine, Division of Personalized Tumor Therapy, Regensburg, Germany
| | - Martin Hoffmann
- Fraunhofer Institute for Toxicology and Experimental Medicine, Division of Personalized Tumor Therapy, Regensburg, Germany
| | - Vadim Dechand
- Fraunhofer Institute for Toxicology and Experimental Medicine, Division of Personalized Tumor Therapy, Regensburg, Germany
| | - Tobias Mederer
- Experimental Medicine and Therapy Research, University of Regensburg, Regensburg, Germany
| | - Florian Weber
- Fraunhofer Institute for Toxicology and Experimental Medicine, Division of Personalized Tumor Therapy, Regensburg, Germany
- Institute for Pathology, University of Regensburg, Regensburg, Germany
| | - Melanie Werner-Klein
- Experimental Medicine and Therapy Research, University of Regensburg, Regensburg, Germany
| | - Tobias Robold
- Department of Thoracic Surgery, University Hospital Regensburg, Regensburg, Germany
| | - Hans-Stefan Hofmann
- Department of Thoracic Surgery, University Hospital Regensburg, Regensburg, Germany
| | - Christian Werno
- Fraunhofer Institute for Toxicology and Experimental Medicine, Division of Personalized Tumor Therapy, Regensburg, Germany
| | - Christoph A Klein
- Fraunhofer Institute for Toxicology and Experimental Medicine, Division of Personalized Tumor Therapy, Regensburg, Germany
- Experimental Medicine and Therapy Research, University of Regensburg, Regensburg, Germany
| |
Collapse
|
10
|
Lee CC, Yu CJ, Panda SS, Chen KC, Liang KH, Huang WC, Wang YS, Ho PC, Wu HC. Epithelial cell adhesion molecule (EpCAM) regulates HGFR signaling to promote colon cancer progression and metastasis. J Transl Med 2023; 21:530. [PMID: 37543570 PMCID: PMC10404369 DOI: 10.1186/s12967-023-04390-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 07/25/2023] [Indexed: 08/07/2023] Open
Abstract
BACKGROUND Epithelial cell adhesion molecule (EpCAM) is known to highly expression and promotes cancer progression in many cancer types, including colorectal cancer. While metastasis is one of the main causes of cancer treatment failure, the involvement of EpCAM signaling in metastatic processes is unclear. We propose the potential crosstalk of EpCAM signaling with the HGFR signaling in order to govern metastatic activity in colorectal cancer. METHODS Immunoprecipitation (IP), enzyme-linked immunosorbent assay (ELISA), and fluorescence resonance energy transfer (FRET) was conducted to explore the extracellular domain of EpCAM (EpEX) and HGFR interaction. Western blotting was taken to determine the expression of proteins in colorectal cancer (CRC) cell lines. The functions of EpEX in CRC were investigated by proliferation, migration, and invasion analysis. The combined therapy was validated via a tail vein injection method for the metastasis and orthotopic colon cancer models. RESULTS This study demonstrates that the EpEX binds to HGFR and induces downstream signaling in colon cancer cells. Moreover, EpEX and HGF cooperatively mediate HGFR signaling. Furthermore, EpEX enhances the epithelial-to-mesenchymal transition and metastatic potential of colon cancer cells by activating ERK and FAK-AKT signaling pathways, and it further stabilizes active β-catenin and Snail proteins by decreasing GSK3β activity. Finally, we show that the combined treatment of an anti-EpCAM neutralizing antibody (EpAb2-6) and an HGFR inhibitor (crizotinib) significantly inhibits tumor progression and prolongs survival in metastatic and orthotopic animal models of colon cancer. CONCLUSION Our findings illuminate the molecular mechanisms underlying EpCAM signaling promotion of colon cancer metastasis, further suggesting that the combination of EpAb2-6 and crizotinib may be an effective strategy for treating cancer patients with high EpCAM expression.
Collapse
Affiliation(s)
- Chi-Chiu Lee
- Institute of Cellular and Organismic Biology, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei, 11529, Taiwan
| | - Chia-Jui Yu
- Institute of Cellular and Organismic Biology, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei, 11529, Taiwan
| | - Sushree Shankar Panda
- Institute of Cellular and Organismic Biology, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei, 11529, Taiwan
| | - Kai-Chi Chen
- Institute of Cellular and Organismic Biology, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei, 11529, Taiwan
| | - Kang-Hao Liang
- Institute of Cellular and Organismic Biology, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei, 11529, Taiwan
- Biomedical Translation Research Center (BioTReC), Academia Sinica, Taipei, 11529, Taiwan
| | - Wan-Chen Huang
- Institute of Cellular and Organismic Biology, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei, 11529, Taiwan
| | - Yu-Shiuan Wang
- Institute of Cellular and Organismic Biology, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei, 11529, Taiwan
| | - Pei-Chin Ho
- Biomedical Translation Research Center (BioTReC), Academia Sinica, Taipei, 11529, Taiwan
| | - Han-Chung Wu
- Institute of Cellular and Organismic Biology, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei, 11529, Taiwan.
- Biomedical Translation Research Center (BioTReC), Academia Sinica, Taipei, 11529, Taiwan.
| |
Collapse
|
11
|
Razi S, Haghparast A, Chodari Khameneh S, Ebrahimi Sadrabadi A, Aziziyan F, Bakhtiyari M, Nabi-Afjadi M, Tarhriz V, Jalili A, Zalpoor H. The role of tumor microenvironment on cancer stem cell fate in solid tumors. Cell Commun Signal 2023; 21:143. [PMID: 37328876 PMCID: PMC10273768 DOI: 10.1186/s12964-023-01129-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 04/15/2023] [Indexed: 06/18/2023] Open
Abstract
In the last few decades, the role of cancer stem cells in initiating tumors, metastasis, invasion, and resistance to therapies has been recognized as a potential target for tumor therapy. Understanding the mechanisms by which CSCs contribute to cancer progression can help to provide novel therapeutic approaches against solid tumors. In this line, the effects of mechanical forces on CSCs such as epithelial-mesenchymal transition, cellular plasticity, etc., the metabolism pathways of CSCs, players of the tumor microenvironment, and their influence on the regulating of CSCs can lead to cancer progression. This review focused on some of these mechanisms of CSCs, paving the way for a better understanding of their regulatory mechanisms and developing platforms for targeted therapies. While progress has been made in research, more studies will be required in the future to explore more aspects of how CSCs contribute to cancer progression. Video Abstract.
Collapse
Affiliation(s)
- Sara Razi
- Vira Pioneers of Modern Science (VIPOMS), Tehran, Iran
| | | | | | - Amin Ebrahimi Sadrabadi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACER, Tehran, Iran
- Cytotech and Bioinformatics Research Group, Tehran, Iran
| | - Fatemeh Aziziyan
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
- Network of Immunity in Infection, Malignancy & Autoimmunity (NIIMA), Universal Scientific Education & Research Network (USERN), Tehran, Iran
| | - Maryam Bakhtiyari
- Network of Immunity in Infection, Malignancy & Autoimmunity (NIIMA), Universal Scientific Education & Research Network (USERN), Tehran, Iran
- Department of Medical Laboratory Sciences, Faculty of Allied Medicine, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Mohsen Nabi-Afjadi
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Vahideh Tarhriz
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, P.O. Box 5163639888, Tabriz, Iran.
| | - Arsalan Jalili
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACER, Tehran, Iran.
- Parvaz Research Ideas Supporter Institute, Tehran, Iran.
| | - Hamidreza Zalpoor
- Network of Immunity in Infection, Malignancy & Autoimmunity (NIIMA), Universal Scientific Education & Research Network (USERN), Tehran, Iran.
- Shiraz Neuroscience Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
12
|
Giacomelli M, Monti M, Pezzola DC, Lonardi S, Bugatti M, Missale F, Cioncada R, Melocchi L, Giustini V, Villanacci V, Baronchelli C, Manenti S, Imberti L, Giurisato E, Vermi W. Immuno-Contexture and Immune Checkpoint Molecule Expression in Mismatch Repair Proficient Colorectal Carcinoma. Cancers (Basel) 2023; 15:3097. [PMID: 37370706 DOI: 10.3390/cancers15123097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/01/2023] [Accepted: 06/01/2023] [Indexed: 06/29/2023] Open
Abstract
Colorectal carcinoma (CRC) represents a lethal disease with heterogeneous outcomes. Only patients with mismatch repair (MMR) deficient CRC showing microsatellite instability and hyper-mutated tumors can obtain clinical benefits from current immune checkpoint blockades; on the other hand, immune- or target-based therapeutic strategies are very limited for subjects with mismatch repair proficient CRC (CRCpMMR). Here, we report a comprehensive typing of immune infiltrating cells in CRCpMMR. We also tested the expression and interferon-γ-modulation of PD-L1/CD274. Relevant findings were subsequently validated by immunohistochemistry on fixed materials. CRCpMMR contain a significantly increased fraction of CD163+ macrophages (TAMs) expressing TREM2 and CD66+ neutrophils (TANs) together with decrease in CD4-CD8-CD3+ double negative T lymphocytes (DNTs); no differences were revealed by the analysis of conventional and plasmacytoid dendritic cell populations. A fraction of tumor-infiltrating T-cells displays an exhausted phenotype, co-expressing PD-1 and TIM-3. Remarkably, expression of PD-L1 on fresh tumor cells and TAMs was undetectable even after in vitro stimulation with interferon-γ. These findings confirm the immune suppressive microenvironment of CRCpMMR characterized by dense infiltration of TAMs, occurrence of TANs, lack of DNTs, T-cell exhaustion, and interferon-γ unresponsiveness by host and tumor cells. Appropriate bypass strategies should consider these combinations of immune escape mechanisms in CRCpMMR.
Collapse
Affiliation(s)
- Mauro Giacomelli
- Department of Pathology, ASST Spedali Civili di Brescia, 25123 Brescia, Italy
| | - Matilde Monti
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | - Diego Cesare Pezzola
- Department of Surgery, Surgery Division II, ASST Spedali Civili di Brescia, 25123 Brescia, Italy
| | - Silvia Lonardi
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | - Mattia Bugatti
- Department of Pathology, ASST Spedali Civili di Brescia, 25123 Brescia, Italy
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | - Francesco Missale
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
- Department of Head & Neck Oncology & Surgery Otorhinolaryngology, Antoni Van Leeuwenhoek-Nederlands Kanker Instituut, 1066 CX Amsterdam, The Netherlands
| | - Rossella Cioncada
- Department of Pathology, ASST Spedali Civili di Brescia, 25123 Brescia, Italy
| | - Laura Melocchi
- Department of Pathology, Fondazione Poliambulanza, 25124 Brescia, Italy
| | - Viviana Giustini
- CREA Laboratory, AIL Center for Hemato-Oncologic Research, Diagnostic Department, ASST Spedali Civili di Brescia, 25123 Brescia, Italy
| | - Vincenzo Villanacci
- Department of Pathology, ASST Spedali Civili di Brescia, 25123 Brescia, Italy
| | - Carla Baronchelli
- Department of Pathology, ASST Spedali Civili di Brescia, 25123 Brescia, Italy
| | - Stefania Manenti
- Department of Pathology, ASST Spedali Civili di Brescia, 25123 Brescia, Italy
| | - Luisa Imberti
- Section of Microbiology, University of Brescia, 25123 Brescia, Italy
| | - Emanuele Giurisato
- Department of Biotechnology Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PL, UK
| | - William Vermi
- Department of Pathology, ASST Spedali Civili di Brescia, 25123 Brescia, Italy
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
- Department of Pathology and Immunology, School of Medicine, Washington University, Saint Louis, MO 63130, USA
| |
Collapse
|
13
|
Liu Z, Zhang C, Cui B, Wang Y, Lim K, Li K, Thiery JP, Chen J, Ho CL. Targeted EpCAM-binding for the development of potent and effective anticancer proteins. Biomed Pharmacother 2023; 161:114443. [PMID: 36863098 DOI: 10.1016/j.biopha.2023.114443] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/13/2023] [Accepted: 02/22/2023] [Indexed: 03/04/2023] Open
Abstract
Protein-based cancer therapies are considered an alternative to conventional anticancer regimens, providing multifunctional properties while showing low toxicity. However, its widespread use is limited by absorption and instability issues, resulting in higher dosage requirements and a prolonged onset of bioactivity to elicit the desired response. Here, we developed a non-invasive antitumor treatment using designed ankyrin repeat protein (DARPin)-anticancer protein-conjugate that specifically targets the cancer biomarker, epithelial cell adhesion molecule (EpCAM). The DARPin-anticancer proteins bind to EpCAM-positive cancer cells and improve the in vitro anticancer efficacy by over 100-folds within 24 h, where the DARPin-tagged human lactoferrin fragment (drtHLF4) IC50 value is within the nanomolar range. Orally administered drtHLF4 was readily absorbed into the systemic flow of the HT-29 cancer murine model, exerting its anticancer effect on other tumors in the host body. Orally administered drtHFL4 cleared HT29-colorectal tumors using a single dose, whereas intratumoral injection cleared HT29-subcutaneous tumors within three doses. This approach addresses the limitations of other protein-based anticancer treatments by providing a non-invasive anticancer therapy with improved potency and tumor-specificity.
Collapse
Affiliation(s)
- Zhao Liu
- Department of Biomedical Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, China.
| | - Chen Zhang
- Department of Biomedical Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, China.
| | - Beiming Cui
- Department of Biomedical Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, China; Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen 518055, China.
| | - Yijie Wang
- Department of Biomedical Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, China.
| | - Kaisheng Lim
- Department of Biomedical Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, China; Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen 518055, China.
| | - Kai Li
- Department of Biomedical Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, China.
| | - Jean Paul Thiery
- Guangzhou Laboratory, No. 9 XingDaoHuanBei Road, Guangzhou International Bio Island, Guangzhou 510005, Guangdong Province, China.
| | - Jun Chen
- Department of Biomedical Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, China; Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen 518055, China.
| | - Chun Loong Ho
- Department of Biomedical Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, China; Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen 518055, China.
| |
Collapse
|
14
|
Mueller JPJ, Dobosz M, O’Brien N, Abdoush N, Giusti AM, Lechmann M, Osl F, Wolf AK, Arellano-Viera E, Shaikh H, Sauer M, Rosenwald A, Herting F, Umaña P, Colombetti S, Pöschinger T, Beilhack A. ROCKETS - a novel one-for-all toolbox for light sheet microscopy in drug discovery. Front Immunol 2023; 14:1034032. [PMID: 36845124 PMCID: PMC9945347 DOI: 10.3389/fimmu.2023.1034032] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 01/06/2023] [Indexed: 02/10/2023] Open
Abstract
Advancing novel immunotherapy strategies requires refined tools in preclinical research to thoroughly assess drug targets, biodistribution, safety, and efficacy. Light sheet fluorescence microscopy (LSFM) offers unprecedented fast volumetric ex vivo imaging of large tissue samples in high resolution. Yet, to date laborious and unstandardized tissue processing procedures have limited throughput and broader applications in immunological research. Therefore, we developed a simple and harmonized protocol for processing, clearing and imaging of all mouse organs and even entire mouse bodies. Applying this Rapid Optical Clearing Kit for Enhanced Tissue Scanning (ROCKETS) in combination with LSFM allowed us to comprehensively study the in vivo biodistribution of an antibody targeting Epithelial Cell Adhesion Molecule (EpCAM) in 3D. Quantitative high-resolution scans of whole organs did not only reveal known EpCAM expression patterns but, importantly, uncovered several new EpCAM-binding sites. We identified gustatory papillae of the tongue, choroid plexi in the brain and duodenal papillae as previously unanticipated locations of high EpCAM expression. Subsequently, we confirmed high EpCAM expression also in human tongue and duodenal specimens. Choroid plexi and duodenal papillae may be considered as particularly sensitive sites due to their importance for liquor production or as critical junctions draining bile and digestive pancreatic enzymes into the small bowel, respectively. These newly gained insights appear highly relevant for clinical translation of EpCAM-addressing immunotherapies. Thus, ROCKETS in combination with LSFM may help to set new standards for preclinical evaluation of immunotherapeutic strategies. In conclusion, we propose ROCKETS as an ideal platform for a broader application of LSFM in immunological research optimally suited for quantitative co-localization studies of immunotherapeutic drugs and defined cell populations in the microanatomical context of organs or even whole mice.
Collapse
Affiliation(s)
- Joerg P. J. Mueller
- Interdisciplinary Center for Clinical Research Laboratory (IZKF) Würzburg, Department of Internal Medicine II, Center for Experimental Molecular Medicine, Würzburg University Hospital, Würzburg, Germany
- Pharmaceutical Research and Early Development, Roche Diagnostics GmbH, Penzberg, Germany
| | - Michael Dobosz
- Pharmaceutical Research and Early Development, Roche Diagnostics GmbH, Penzberg, Germany
| | - Nils O’Brien
- Pharmaceutical Research and Early Development, Roche Diagnostics GmbH, Penzberg, Germany
| | - Nassri Abdoush
- Pharmaceutical Research and Early Development, Roche Diagnostics GmbH, Penzberg, Germany
| | - Anna Maria Giusti
- Roche Pharmaceutical Research and Early Development, Roche Glycart AG, Schlieren, Switzerland
| | - Martin Lechmann
- Pharmaceutical Research and Early Development, Roche Diagnostics GmbH, Penzberg, Germany
| | - Franz Osl
- Pharmaceutical Research and Early Development, Roche Diagnostics GmbH, Penzberg, Germany
| | - Ann-Katrin Wolf
- Interdisciplinary Center for Clinical Research Laboratory (IZKF) Würzburg, Department of Internal Medicine II, Center for Experimental Molecular Medicine, Würzburg University Hospital, Würzburg, Germany
- Pharmaceutical Research and Early Development, Roche Diagnostics GmbH, Penzberg, Germany
| | - Estibaliz Arellano-Viera
- Interdisciplinary Center for Clinical Research Laboratory (IZKF) Würzburg, Department of Internal Medicine II, Center for Experimental Molecular Medicine, Würzburg University Hospital, Würzburg, Germany
| | - Haroon Shaikh
- Interdisciplinary Center for Clinical Research Laboratory (IZKF) Würzburg, Department of Internal Medicine II, Center for Experimental Molecular Medicine, Würzburg University Hospital, Würzburg, Germany
| | - Markus Sauer
- Department of Biotechnology and Biophysics, Biocenter, University of Würzburg, Würzburg, Germany
| | | | - Frank Herting
- Pharmaceutical Research and Early Development, Roche Diagnostics GmbH, Penzberg, Germany
| | - Pablo Umaña
- Roche Pharmaceutical Research and Early Development, Roche Glycart AG, Schlieren, Switzerland
| | - Sara Colombetti
- Roche Pharmaceutical Research and Early Development, Roche Glycart AG, Schlieren, Switzerland
| | - Thomas Pöschinger
- Pharmaceutical Research and Early Development, Roche Diagnostics GmbH, Penzberg, Germany
| | - Andreas Beilhack
- Interdisciplinary Center for Clinical Research Laboratory (IZKF) Würzburg, Department of Internal Medicine II, Center for Experimental Molecular Medicine, Würzburg University Hospital, Würzburg, Germany
| |
Collapse
|
15
|
Xu T, Schulga A, Konovalova E, Rinne SS, Zhang H, Vorontsova O, Orlova A, Deyev SM, Tolmachev V, Vorobyeva A. Feasibility of Co-Targeting HER3 and EpCAM Using Seribantumab and DARPin-Toxin Fusion in a Pancreatic Cancer Xenograft Model. Int J Mol Sci 2023; 24:ijms24032838. [PMID: 36769161 PMCID: PMC9917732 DOI: 10.3390/ijms24032838] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 01/25/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
Pancreatic cancer (PC) is one of the most aggressive malignancies. A combination of targeted therapies could increase the therapeutic efficacy in tumors with heterogeneous target expression. Overexpression of the human epidermal growth factor receptor type 3 (HER3) and the epithelial cell adhesion molecule (EpCAM) in up to 40% and 30% of PCs, respectively, is associated with poor prognosis and highlights the relevance of these targets. Designed ankyrin repeat protein (DARPin) Ec1 fused with the low immunogenic bacterial toxin LoPE provides specific and potent cytotoxicity against EpCAM-expressing cancer cells. Here, we investigated whether the co-targeting of HER3 using the monoclonal antibody seribantumab (MM-121) and of EpCAM using Ec1-LoPE would improve the therapeutic efficacy in comparison to the individual agents. Radiolabeled 99mTc(CO)3-Ec1-LoPE showed specific binding with rapid internalization in EpCAM-expressing PC cells. MM-121 did not interfere with the binding of Ec1-LoPE to EpCAM. Evaluation of cytotoxicity indicated synergism between Ec1-LoPE and MM-121 in vitro. An experimental therapy study using Ec1-LoPE and MM-121 in mice bearing EpCAM- and HER3-expressing BxPC3 xenografts demonstrated the feasibility of the therapy. Further development of the co-targeting approach using HER3 and EpCAM could therefore be justified.
Collapse
Affiliation(s)
- Tianqi Xu
- Department of Immunology, Genetics and Pathology, Uppsala University, 751 85 Uppsala, Sweden
| | - Alexey Schulga
- Research Centrum for Oncotheranostics, Research School of Chemistry and Applied Biomedical Sciences, National Research Tomsk Polytechnic University, Tomsk 634050, Russia
- Molecular Immunology Laboratory, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia
| | - Elena Konovalova
- Molecular Immunology Laboratory, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia
| | - Sara S. Rinne
- Department of Medicinal Chemistry, Uppsala University, 751 23 Uppsala, Sweden
| | - Hongchao Zhang
- Department of Immunology, Genetics and Pathology, Uppsala University, 751 85 Uppsala, Sweden
| | - Olga Vorontsova
- Department of Immunology, Genetics and Pathology, Uppsala University, 751 85 Uppsala, Sweden
| | - Anna Orlova
- Research Centrum for Oncotheranostics, Research School of Chemistry and Applied Biomedical Sciences, National Research Tomsk Polytechnic University, Tomsk 634050, Russia
- Department of Medicinal Chemistry, Uppsala University, 751 23 Uppsala, Sweden
- Science for Life Laboratory, Uppsala University, 751 23 Uppsala, Sweden
| | - Sergey M. Deyev
- Research Centrum for Oncotheranostics, Research School of Chemistry and Applied Biomedical Sciences, National Research Tomsk Polytechnic University, Tomsk 634050, Russia
- Molecular Immunology Laboratory, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia
- Bio-Nanophotonic Laboratory, Institute of Engineering Physics for Biomedicine (PhysBio), National Research Nuclear University ‘MEPhI’, Moscow 115409, Russia
- Center of Biomedical Engineering, Sechenov University, Moscow 119991, Russia
| | - Vladimir Tolmachev
- Department of Immunology, Genetics and Pathology, Uppsala University, 751 85 Uppsala, Sweden
- Research Centrum for Oncotheranostics, Research School of Chemistry and Applied Biomedical Sciences, National Research Tomsk Polytechnic University, Tomsk 634050, Russia
| | - Anzhelika Vorobyeva
- Department of Immunology, Genetics and Pathology, Uppsala University, 751 85 Uppsala, Sweden
- Correspondence:
| |
Collapse
|
16
|
Du Q, Liu S, Dong K, Cui X, Luo J, Geller DA. Downregulation of iNOS/NO Promotes Epithelial-Mesenchymal Transition and Metastasis in Colorectal Cancer. Mol Cancer Res 2023; 21:102-114. [PMID: 36306210 PMCID: PMC9890133 DOI: 10.1158/1541-7786.mcr-22-0509] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 09/28/2022] [Accepted: 10/26/2022] [Indexed: 02/06/2023]
Abstract
Metastasis is the major cause of cancer-related death in patients with colorectal cancer. Although inducible nitric oxide synthase (iNOS) is a crucial regulator of cancer development and progression, its roles in epithelial-mesenchymal transition (EMT) and the pathogenesis of metastatic colorectal cancer have not been fully investigated. Primary colorectal cancer and liver metastatic tissue specimens were analyzed showing 90% of liver metastatic colorectal cancer with reduced expressions of iNOS compared with 6% of primary colorectal cancer. The Cancer Genome Atlas database analyses via cBioPortal reveal that mRNA expression of iNOS negatively correlated with selected EMT markers in colorectal cancer in a cancer type-dependent manner. The transcriptomic profiling (RNA sequencing data) indicates that iNOS knockdown in SW480 colorectal cancer cells induced an EMT program with upregulated expression of selected stem-cell markers. iNOS knockdown did not alter E-cadherin mRNA expression but re-localized it from membrane to cytoplasm through iNOS-GATA4-Crb2-E-cadherin pathway. iNOS knockdown induced a change in cell morphology, and promoted cell invasion and migration in vitro, and metastasis in vivo. IMPLICATIONS iNOS downregulation-induced pathway networks mediate the EMT program and metastasis. As an EMT inducer, the reduced-iNOS may serve as a potential therapeutic target for patients with colorectal cancer.
Collapse
Affiliation(s)
- Qiang Du
- Department of Surgery, Thomas E. Starzl Transplant Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Silvia Liu
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Kun Dong
- Department of Surgery, Thomas E. Starzl Transplant Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
- Department of Pediatric Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Xiao Cui
- Department of Surgery, Thomas E. Starzl Transplant Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
- Department of Surgery, The Second Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Jing Luo
- Department of Surgery, Thomas E. Starzl Transplant Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
- Department of Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - David A. Geller
- Department of Surgery, Thomas E. Starzl Transplant Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| |
Collapse
|
17
|
Mäurer M, Schott D, Pizon M, Drozdz S, Wendt T, Wittig A, Pachmann K. Increased Circulating Epithelial Tumor Cells (CETC/CTC) over the Course of Adjuvant Radiotherapy Is a Predictor of Less Favorable Outcome in Patients with Early-Stage Breast Cancer. Curr Oncol 2022; 30:261-273. [PMID: 36661670 PMCID: PMC9857667 DOI: 10.3390/curroncol30010021] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/16/2022] [Accepted: 12/19/2022] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Adjuvant radiotherapy (RT) is an integral component of a multidisciplinary treatment strategy for early-stage breast cancer. It significantly reduces the incidence of loco-regional recurrence but also of distant events. Distant events are due to tumor cells disseminated from the primary tumor into lymphatic fluid or blood, circulating epithelial tumor cells (CETC/CTC), which can reach distant tissues and regrow into metastases. The purpose of this study is to determine changes in the number of CETC/CTC in the course of adjuvant RT, and to evaluate whether they are correlated to local recurrence and distant metastases in breast cancer patients. METHODS Blood from 165 patients irradiated between 2002 and 2012 was analyzed 0-6 weeks prior to and 0-6 weeks after RT using the maintrac® method, and patients were followed over a median period of 8.97 (1.16-19.09) years. RESULTS Patients with an increase in CETC/CTC numbers over the course of adjuvant RT had a significantly worse disease-free survival (p = 0.004) than patients with stable or decreasing CETC/CTC numbers. CETC/CTC behavior was the most important factor in predicting subsequent relapse-free survival. In particular, patients who had received neoadjuvant chemotherapy were disproportionately more likely to develop metastases when cell counts increased over the course of RT (p = 0.003; hazard ratio 4.886). CONCLUSIONS Using the maintrac® method, CETC/CTC were detected in almost all breast cancer patients after surgery. The increase in CETC/CTC numbers over the course of RT represents a potential predictive biomarker to judge relative risk/benefit in patients with early breast cancer. The results of this study highlight the need for prospective clinical trials on CETC/CTC status as a predictive criterion and for individualization of treatment. CLINICAL TRIAL REGISTRATION The trial is registered (2 May 2019) at trials.gov under NCT03935802.
Collapse
Affiliation(s)
- Matthias Mäurer
- Department of Radiotherapy and Radiation Oncology, University Hospital Jena, Bachstraße 18, 07743 Jena, Germany
- Clinician Scientist Program OrganAge, Interdisciplinary Center for Clinical Research (IZKF), Jena University Hospital, 07747 Jena, Germany
| | - Dorothea Schott
- Transfusionsmedizinisches Zentrum Bayreuth, Kurpromenade 2, 95448 Bayreuth, Germany
| | - Monika Pizon
- Transfusionsmedizinisches Zentrum Bayreuth, Kurpromenade 2, 95448 Bayreuth, Germany
| | - Sonia Drozdz
- Department of Radiotherapy and Radiation Oncology, University Hospital Jena, Bachstraße 18, 07743 Jena, Germany
| | - Thomas Wendt
- Department of Radiotherapy and Radiation Oncology, University Hospital Jena, Bachstraße 18, 07743 Jena, Germany
| | - Andrea Wittig
- Department of Radiotherapy and Radiation Oncology, University Hospital Jena, Bachstraße 18, 07743 Jena, Germany
| | - Katharina Pachmann
- Transfusionsmedizinisches Zentrum Bayreuth, Kurpromenade 2, 95448 Bayreuth, Germany
| |
Collapse
|
18
|
Pihlström S, Määttä K, Öhman T, Mäkitie RE, Aronen M, Varjosalo M, Mäkitie O, Pekkinen M. A multi-omics study to characterize the transdifferentiation of human dermal fibroblasts to osteoblast-like cells. Front Mol Biosci 2022; 9:1032026. [PMID: 36465561 PMCID: PMC9714459 DOI: 10.3389/fmolb.2022.1032026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 10/26/2022] [Indexed: 09/19/2023] Open
Abstract
Background: Various skeletal disorders display defects in osteoblast development and function. An in vitro model can help to understand underlying disease mechanisms. Currently, access to appropriate starting material for in vitro osteoblastic studies is limited. Native osteoblasts and their progenitors, the bone marrow mesenchymal stem cells, (MSCs) are problematic to isolate from affected patients and challenging to expand in vitro. Human dermal fibroblasts in vitro are a promising substitute source of cells. Method: We developed an in vitro culturing technique to transdifferentiate fibroblasts into osteoblast-like cells. We obtained human fibroblasts from forearm skin biopsy and differentiated them into osteoblast-like cells with ß-glycerophosphate, ascorbic acid, and dexamethasone treatment. Osteoblastic phenotype was confirmed by staining for alkaline phosphatase (ALP), calcium and phosphate deposits (Alizarin Red, Von Kossa) and by a multi-omics approach (transcriptomic, proteomic, and phosphoproteomic analyses). Result: After 14 days of treatment, both fibroblasts and MSCs (reference cells) stained positive for ALP together with a significant increase in bone specific ALP (p = 0.04 and 0.004, respectively) compared to untreated cells. At a later time point, both cell types deposited minerals, indicating mineralization. In addition, fibroblasts and MSCs showed elevated expression of several osteogenic genes (e.g. ALPL, RUNX2, BMPs and SMADs), and decreased expression of SOX9. Ingenuity Pathways Analysis of RNA sequencing data from fibroblasts and MSCs showed that the osteoarthritis pathway was activated in both cell types (p_adj. = 0.003 and 0.004, respectively). Discussion: These data indicate that our in vitro treatment induces osteoblast-like differentiation in fibroblasts and MSCs, producing an in vitro osteoblastic cell system. This culturing system provides an alternative tool for bone biology research and skeletal tissue engineering.
Collapse
Affiliation(s)
- Sandra Pihlström
- Institute of Genetics, Folkhälsan Research Center, Helsinki, Finland
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Kirsi Määttä
- Institute of Genetics, Folkhälsan Research Center, Helsinki, Finland
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Tiina Öhman
- Institute of Biotechnology and Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Riikka E. Mäkitie
- Institute of Genetics, Folkhälsan Research Center, Helsinki, Finland
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Department of Otorhinolaryngology—Head and Neck Surgery, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Mira Aronen
- Institute of Genetics, Folkhälsan Research Center, Helsinki, Finland
| | - Markku Varjosalo
- Institute of Biotechnology and Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Outi Mäkitie
- Institute of Genetics, Folkhälsan Research Center, Helsinki, Finland
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Children’s Hospital, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
- Department of Molecular Medicine and Surgery and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Minna Pekkinen
- Institute of Genetics, Folkhälsan Research Center, Helsinki, Finland
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Children’s Hospital, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| |
Collapse
|
19
|
Liu Y, Wang Y, Sun S, Chen Z, Xiang S, Ding Z, Huang Z, Zhang B. Understanding the versatile roles and applications of EpCAM in cancers: from bench to bedside. Exp Hematol Oncol 2022; 11:97. [PMID: 36369033 PMCID: PMC9650829 DOI: 10.1186/s40164-022-00352-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 10/26/2022] [Indexed: 11/13/2022] Open
Abstract
Epithelial cell adhesion molecule (EpCAM) functions not only in physiological processes but also participates in the development and progression of cancer. In recent decades, extensive efforts have been made to decipher the role of EpCAM in cancers. Great advances have been achieved in elucidating its structure, molecular functions, pathophysiological mechanisms, and clinical applications. Beyond its well-recognized role as a biomarker of cancer stem cells (CSCs) or circulating tumor cells (CTCs), EpCAM exhibits novel and promising value in targeted therapy. At the same time, the roles of EpCAM in cancer progression are found to be highly context-dependent and even contradictory in some cases. The versatile functional modules of EpCAM and its communication with other signaling pathways complicate the study of this molecule. In this review, we start from the structure of EpCAM and focus on communication with other signaling pathways. The impacts on the biology of cancers and the up-to-date clinical applications of EpCAM are also introduced and summarized, aiming to shed light on the translational prospects of EpCAM.
Collapse
Affiliation(s)
- Yiyang Liu
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan, China
- Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yufei Wang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan, China
- Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Sheng Sun
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan, China
- Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zeyu Chen
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan, China
- Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shuai Xiang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan, China
- Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zeyang Ding
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan, China.
- Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Zhao Huang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan, China.
- Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Bixiang Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan, China.
- Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Key Laboratory of Organ Transplantation, Ministry of Education, National Health Commission, Chinese Academy of Medical Sciences, Wuhan, China.
| |
Collapse
|
20
|
Liu J, Enloe C, Li-Oakey KD, Oakey J. Optimizing Immunofunctionalization and Cell Capture on Micromolded Hydrogels via Controlled Oxygen-Inhibited Photopolymerization. ACS APPLIED BIO MATERIALS 2022; 5:5004-5013. [PMID: 36174120 DOI: 10.1021/acsabm.2c00776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
With circulating tumor cells (CTCs) playing a critical role in cancer metastasis, the quantitation and characterization of CTCs promise to provide precise diagnostic and prognostic information in service of personalized therapies. However, as CTCs are extremely rare, high yield, high purity strategies are required to target and isolate CTCs from patient samples. Recently, we demonstrated the selective capture of CTCs upon antibody-functionalized polyethylene glycol diacrylate (PEGDA) hydrogels photopolymerized within polydimethylsiloxane (PDMS) microfluidic molds. Isolated CTC purity was subsequently enriched by selectively releasing desired cells from photodegradable hydrogel capture surfaces. However, the fabrication of these acrylate-based hydrogels by photopolymerization is subject to oxygen inhibition, which dramatically affects the physical and chemical properties of hydrogel interfaces formed in proximity to PDMS boundaries. To evaluate how antibody conjugation density and cell capture is impacted by fabrication parameters affected by oxygen inhibition, PEGDA hydrogel features were polymerized within PDMS micromolds under different UV exposure conditions and linker (acrylate-PEG-biotin) concentrations. Predictions of acrylate conversion throughout the hydrogel feature were performed using a 1D reaction-diffusion model that describes oxygen-inhibited photopolymerization. The functional consequences of photopolymerization parameters and solution stoichiometry on CTC capture were experimentally quantified and evaluated. Results show that hydrogel surfaces polymerized under shorter exposure times and with higher linker concentrations display superior functionalization and higher CTC capture efficiency. Conversely, highly cross-linked hydrogel surfaces polymerized under longer exposure times are insensitive to functionalization and display poor capture, regardless of linker concentration. By highlighting the importance of oxygen-inhibited photopolymerization, these findings provide guidelines to design micromolded hydrogels with controlled ligand expression. In addition to enhancing the selective cell capture capacity of immunofunctional hydrogels, the ability to quantifiably design hydrogel interfaces described here will improve the sensitivity of hydrogel biosensors, provide a platform to finely screen cell-matrix interactions, and generally enhance the fidelity of micromolded hydrogel features.
Collapse
Affiliation(s)
- Jing Liu
- Department of Chemical Engineering, University of Wyoming, Laramie, Wyoming 82071, United States
| | - Cassidy Enloe
- Department of Chemical Engineering, University of Wyoming, Laramie, Wyoming 82071, United States
| | - Katie D Li-Oakey
- Department of Chemical Engineering, University of Wyoming, Laramie, Wyoming 82071, United States
| | - John Oakey
- Department of Chemical Engineering, University of Wyoming, Laramie, Wyoming 82071, United States
| |
Collapse
|
21
|
Chhetri D, Vengadassalapathy S, Venkadassalapathy S, Balachandran V, Umapathy VR, Veeraraghavan VP, Jayaraman S, Patil S, Iyaswamy A, Palaniyandi K, Gnanasampanthapandian D. Pleiotropic effects of DCLK1 in cancer and cancer stem cells. Front Mol Biosci 2022; 9:965730. [PMID: 36250024 PMCID: PMC9560780 DOI: 10.3389/fmolb.2022.965730] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 08/12/2022] [Indexed: 12/02/2022] Open
Abstract
Doublecortin-like kinase 1 (DCLK1), a protein molecule, has been identified as a tumor stem cell marker in the cancer cells of gastrointestinal, pancreas, and human colon. DCLK1 expression in cancers, such as breast carcinoma, lung carcinoma, hepatic cell carcinoma, tuft cells, and human cholangiocarcinoma, has shown a way to target the DCLK1 gene and downregulate its expression. Several studies have discussed the inhibition of tumor cell proliferation along with neoplastic cell arrest when the DCLK1 gene, which is expressed in both cancer and normal cells, was targeted successfully. In addition, previous studies have shown that DCLK1 plays a vital role in various cancer metastases. The correlation of DCLK1 with numerous stem cell receptors, signaling pathways, and genes suggests its direct or an indirect role in promoting tumorigenesis. Moreover, the impact of DCLK1 was found to be related to the functioning of an oncogene. The downregulation of DCLK1 expression by using targeted strategies, such as embracing the use of siRNA, miRNA, CRISPR/Cas9 technology, nanomolecules, specific monoclonal antibodies, and silencing the pathways regulated by DCLK1, has shown promising results in both in vitro and in vivo studies on gastrointestinal (GI) cancers. In this review, we will discuss about the present understanding of DCLK1 and its role in the progression of GI cancer and metastasis.
Collapse
Affiliation(s)
- Dibyashree Chhetri
- Cancer Science Laboratory, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Chennai, India
| | - Srinivasan Vengadassalapathy
- Department of Pharmacology, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai, India
| | | | - Varadharaju Balachandran
- Department of Physiology, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Vidhya Rekha Umapathy
- Department of Public Health Dentistry, Sree Balaji Dental College and Hospital, Chennai, India
| | - Vishnu Priya Veeraraghavan
- Department of Biochemistry, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Selvaraj Jayaraman
- Department of Biochemistry, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Shankargouda Patil
- College of Dental Medicine, Roseman University of Health Sciences, South Jordan, UT, United States
| | - Ashok Iyaswamy
- Centre for Parkinsons Disease Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong SAR, China
| | - Kanagaraj Palaniyandi
- Cancer Science Laboratory, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Chennai, India
- *Correspondence: Kanagaraj Palaniyandi, ; Dhanavathy Gnanasampanthapandian,
| | - Dhanavathy Gnanasampanthapandian
- Cancer Science Laboratory, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Chennai, India
- *Correspondence: Kanagaraj Palaniyandi, ; Dhanavathy Gnanasampanthapandian,
| |
Collapse
|
22
|
Fu X, Zhang W, Li S, Ling N, Yang Y, Dazhi Z. Identification of alanine aminotransferase 1 interaction network via iTRAQ-based proteomics in alternating migration, invasion, proliferation and apoptosis of HepG2 cells. Aging (Albany NY) 2022; 14:7137-7155. [PMID: 36107005 PMCID: PMC9512495 DOI: 10.18632/aging.204286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 08/31/2022] [Indexed: 12/24/2022]
Abstract
OBJECTIVE To investigate the mechanism of alanine aminotransferase 1 (ALT1) in the progression of HCC, the differentially expressed proteins (DEPs) in the ALT1 interaction network were identified by targeted proteomic analysis. METHODS Wound healing and transwell assays were conducted to assess the effect of ALT1 on cellular migration and invasion. Cell Counting Kit-8 (CCK-8), colony formation, and flow cytometry assays were performed to identify alterations in proliferation and apoptosis. After coimmunoprecipitation processing, mass spectrometry with iso-baric tags for relative and absolute quantitation was utilized to explore the protein interactions in ALT1 knockdown HepG2 cells. RESULTS The results showed that ALT1 knockdown inhibits the migration, invasion, proliferation of HepG2 cells, and promotes apoptosis. A total of 116 DEPs were identified and the bioinformatics analysis suggested that the ALT1-interacting proteins were primarily associated with cellular and metabolic processes. Knockdown of ALT1 in HepG2 cells reduced the expression of Ki67 and epithelial cell adhesion molecule (EP-CAM), while the expression of apoptosis-stimulating protein 2 of p53 (ASPP2) was increased significantly. Suppression of the ALT1 and EP-CAM expression contributed to alterations in epithelial-mesenchymal transition (EMT) -associated markers and matrix metalloproteinases (MMPs). Additionally, inhibition of ALT1 and Ki67 also decreased the expression of apoptosis and proliferation factors. Furthermore, inhibition of ALT1 and ASPP2 also changed the expression of P53, which may be the signaling pathway by which ALT regulates these biological behaviors. CONCLUSIONS This study indicated that the ALT1 protein interaction network is associated with the biological behaviors of HepG2 cells via the p53 signaling pathway.
Collapse
Affiliation(s)
- Xiao Fu
- Department of Infectious Diseases, Institute for Viral Hepatitis, Key Laboratory of Molecular Biology for Infectious Diseases, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P.R. China
| | - Wenyue Zhang
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong 999077, P.R. China
| | - Shiying Li
- Department of Infectious Diseases, Institute for Viral Hepatitis, Key Laboratory of Molecular Biology for Infectious Diseases, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P.R. China
| | - Ning Ling
- Department of Infectious Diseases, Institute for Viral Hepatitis, Key Laboratory of Molecular Biology for Infectious Diseases, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P.R. China
| | - Yixuan Yang
- Department of Infectious Diseases, Institute for Viral Hepatitis, Key Laboratory of Molecular Biology for Infectious Diseases, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P.R. China
| | - Zhang Dazhi
- Department of Infectious Diseases, Institute for Viral Hepatitis, Key Laboratory of Molecular Biology for Infectious Diseases, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P.R. China
| |
Collapse
|
23
|
Szabo R, Ward JM, Artunc F, Bugge TH. EPCAM and TROP2 share role in claudin stabilization and development of intestinal and extraintestinal epithelia in mice. Biol Open 2022; 11:275770. [PMID: 35730316 PMCID: PMC9294608 DOI: 10.1242/bio.059403] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 06/10/2022] [Indexed: 11/20/2022] Open
Abstract
EPCAM (Epithelial Cell Adhesion Molecule) is a transmembrane glycoprotein expressed on the surface of most epithelial and epithelium-derived tumor cells and reported to regulate stability of epithelial tight junction proteins, claudins. Despite its widespread expression, loss of EPCAM function has so far only been reported to prominently affect intestinal development, resulting in severe early onset enteropathy associated with impaired growth and decreased survival in both humans and mice. In this study, we show that the critical role of EPCAM is not limited to intestinal tissues and that it shares its essential function with its only known homolog, TROP2 (Trophoblast cell surface antigen 2). EPCAM-deficient mice show significant growth retardation and die within four weeks after birth. In addition to changes in small and large intestines, loss of EPCAM results in hyperkeratosis in skin and forestomach, hair follicle atrophy leading to alopecia, nephron hypoplasia in kidney, proteinuria, and altered production of digestive enzymes by pancreas. Expression of TROP2 partially, but not completely, overlaps with EPCAM in a number developing epithelia. Although loss of TROP2 had no gross impact on mouse development and survival, TROP2 deficiency generally compounded developmental defects observed in EPCAM-deficient mice, led to about 60% decrease in embryonic viability, and further shortened postnatal lifespan of born pups. Importantly, TROP2 was able to compensate for the loss of EPCAM in stabilizing claudin-7 expression and cell membrane localization in tissues that co-express both proteins. These findings identify overlapping functions of EPCAM and TROP2 as regulators of epithelial development in both intestinal and extraintestinal tissues.
Collapse
Affiliation(s)
- Roman Szabo
- Proteases and Tissue Remodeling Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | | | - Ferruh Artunc
- Department of Internal Medicine, Division of Endocrinology, Diabetology and Nephrology, University Hospital Tübingen, Tübingen, Germany.,Institute of Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Center Munich at the University Tübingen, Germany.,German Center for Diabetes Research (DZD) at the University Tübingen, Germany
| | - Thomas H Bugge
- Proteases and Tissue Remodeling Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
24
|
Xu L, Wang S, Wu Z, Xu C, Hu X, Ding H, Zhang Y, Shen B, Liu Y, Wu K. Development of a Colloidal Gold Immunochromatographic Strip for Rapid Detection of Cyfra 21-1 in Lymph Node Metastasis of Thyroid Cancer. Front Bioeng Biotechnol 2022; 10:871285. [PMID: 35497346 PMCID: PMC9039041 DOI: 10.3389/fbioe.2022.871285] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 03/14/2022] [Indexed: 12/08/2022] Open
Abstract
Thyroid cancer is the most common endocrine tumor, and the rate of early lymph node metastasis may be as high as 60%. Currently, detection of lymph node metastasis of thyroid cancer during surgery is limited and time-consuming. Elevated levels of Cyfra 21-1, the proteolytic portion of cytokeratin, are associated with the metastasis and progression of thyroid cancer and are an effective biomarker for the prognosis and diagnosis of thyroid cancer. In this study, an immunochromatographic strip test based on colloidal gold nanoparticles was developed to semi-quantitatively detect the levels of Cyfra 21-1 in lymph nodes within 15 min. The standard (calibration) curve equation was Y = 0.003708 × X + 0.1101, and the detection limit was 0.55–1.14 ng mL−1. The strip did not detect other protein markers of epithelial cells at a concentration of 500 ng mL−1, including cytokeratin 8, cytokeratin 18, epithelial membrane antigen, and epidermal surface antigen. The ability of the strip to differentiate positive from negative metastasis in 40 lymph node specimens was 100% concordant with that of immunohistochemical staining for Cyfra 21-1. In an assessment of 20 lymph node specimens that had been determined by postoperative histopathology to be positive for lymph node metastasis and 20 specimens that were negative, the sensitivity and specificity of the strip were 100% and 95%, respectively. The sensitivity of the strip remained stable when stored at room temperature for 6 months. Together, these results indicated that although further testing using a larger sample size will be required, this immunochromatographic strip test may be useful for rapid intraoperative detection of thyroid cancer metastasis to lymph nodes.
Collapse
Affiliation(s)
- Lijie Xu
- Department of Otorhinolaryngology, Head and Neck Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Shuhao Wang
- Department of Otorhinolaryngology, Head and Neck Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Zhechen Wu
- Department of Otorhinolaryngology, Head and Neck Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Chengcheng Xu
- Department of Otorhinolaryngology, Head and Neck Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Xinwei Hu
- School of Basic Medicine, Anhui Medical University, Hefei, China
| | - Haitian Ding
- School of Basic Medicine, Anhui Medical University, Hefei, China
| | - Yanqiang Zhang
- The First Clinical Medical College, Anhui Medical University, Hefei, China
| | - Bing Shen
- School of Basic Medicine, Anhui Medical University, Hefei, China
| | - Yehai Liu
- Department of Otorhinolaryngology, Head and Neck Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Kaile Wu
- Department of Otorhinolaryngology, Head and Neck Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- *Correspondence: Kaile Wu,
| |
Collapse
|
25
|
Teoh JYC, Kamat AM, Black PC, Grivas P, Shariat SF, Babjuk M. Recurrence mechanisms of non-muscle-invasive bladder cancer - a clinical perspective. Nat Rev Urol 2022; 19:280-294. [PMID: 35361927 DOI: 10.1038/s41585-022-00578-1] [Citation(s) in RCA: 84] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/17/2022] [Indexed: 12/24/2022]
Abstract
Non-muscle-invasive bladder cancer (NMIBC) is an early-stage cancer without invasion into the detrusor muscle layer. Transurethral resection of bladder tumour (TURBT) is a diagnostic and potentially curative procedure for NMIBC, but has some limitations, including difficulties in ascertaining complete tumour removal upon piecemeal resection and the possibility of tumour re-implantation after the procedure. The oncological control of NMIBC is far from satisfactory, with a 1-year recurrence rate of 15-61%, and a 5-year recurrence rate of 31-78%. Various recurrence mechanisms have been described for NMIBC, such as undetected tumours upon cystoscopy, incomplete resection during TURBT, tumour re-implantation after TURBT, drop metastasis from upper tract urothelial carcinoma and field change cancerization. Understanding the recurrence mechanisms from a clinical perspective has strong implications for the optimization of NMIBC oncological outcomes, as a cure for patients with NMIBC can only be achieved by tackling all possible recurrence mechanisms in a comprehensive manner.
Collapse
Affiliation(s)
- Jeremy Yuen-Chun Teoh
- S.H. Ho Urology Centre, Department of Surgery, The Chinese University of Hong Kong, Hong Kong, China. .,European Association of Urology-Young Academic Urologists (EAU-YAU) Urothelial Cancer Working Group, Amsterdam, Netherlands.
| | - Ashish M Kamat
- The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Peter C Black
- Department of Urologic Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Petros Grivas
- Division of Oncology, Department of Medicine, University of Washington, Washington, USA.,Fred Hutchinson Cancer Research Center, Seattle Cancer Care Alliance, Seattle, WA, USA
| | - Shahrokh F Shariat
- Department of Urology, Medical University of Vienna, Vienna, Austria.,Department of Urology, Weill Cornell Medical College, New York, NY, USA.,Department of Urology, University of Texas Southwestern, Dallas, TX, USA.,Institute for Urology and Reproductive Health, Sechenov University, Moscow, Russia.,Hourani Center for Applied Scientific Research, Al-Ahliyya Amman University, Amman, Jordan.,Department of Urology, 2nd Faculty of Medicine, Hospital Motol, Charles University, Prague, Czech Republic
| | - Marek Babjuk
- Department of Urology, Medical University of Vienna, Vienna, Austria.,Department of Urology, 2nd Faculty of Medicine, Hospital Motol, Charles University, Prague, Czech Republic
| |
Collapse
|
26
|
Kan S, Grainge C, Nichol K, Reid A, Knight D, Sun Y, Bartlett N, Liang M. TLR7 agonist loaded airway epithelial targeting nanoparticles stimulate innate immunity and suppress viral replication in human bronchial epithelial cells. Int J Pharm 2022; 617:121586. [PMID: 35181464 DOI: 10.1016/j.ijpharm.2022.121586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 02/06/2022] [Accepted: 02/11/2022] [Indexed: 11/29/2022]
Abstract
Nanoparticle-based delivery is a strategy for increasing the therapeutic window of inhaled immunomodulatory drugs that have inflammatory activity. TLR7 agonists are a class of immunomodulators that have been considered for the treatment of virus-induced respiratory diseases. However, due to high immune-stimulatory activity, TLR7 agonists, delivered via direct exposure, generally have a narrow therapeutic window. To address this, we have developed lipid/polymer hybrid nanoparticles (NPs) conjugated with anti-EpCAM monoclonal antibody for targeted delivery of TLR7 agonist (CL264) to airway epithelial cells (AECs)2 - the primary site of respiratory virus infection. These airway epithelial targeting nanoparticles (AEC-NPs)3 showed safety and biocompatibility, and approximately two-fold increased cellular uptake compared to non-targeting NPs. Upon cell entry, AEC-NPs were able to deliver CL264 to cytoplasm and endosomes where TLR7 is located. CL264 delivered by AEC-NPs significantly increased innate immune response through expression of IFN-β, IFN-λ 2/3 and IFN-stimulated genes and suppressed more than 92% of viral load at 48 hours post-infection compared to the drug alone and non-targeting NPs. In conclusion, AEC-NPs exhibited increased cellular uptake leading to enhanced innate immune activation and suppression of viral replication. These findings support the use of AEC-targeting approach for delivering drugs with a narrow therapeutic window.
Collapse
Affiliation(s)
- Stanislav Kan
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, New South Wales, Australia; Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, The University of Newcastle, New South Wales, Australia
| | - Christopher Grainge
- School of Medicine and Public Health, The University of Newcastle, Callaghan, New South Wales, Australia; Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, The University of Newcastle, New South Wales, Australia
| | - Kristy Nichol
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, The University of Newcastle, New South Wales, Australia
| | - Andrew Reid
- School of Medicine and Public Health, The University of Newcastle, Callaghan, New South Wales, Australia; Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, The University of Newcastle, New South Wales, Australia
| | - Darryl Knight
- Department of Anaesthesiology, Pharmacology and Therapeutics, Faculty of Medicine, University of British Columbia, Vancouver, Canada
| | - Yong Sun
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao, P. R. China
| | - Nathan Bartlett
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, New South Wales, Australia; Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, The University of Newcastle, New South Wales, Australia
| | - Mingtao Liang
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, New South Wales, Australia.
| |
Collapse
|
27
|
Shi L, Cao J, Lei X, Shi Y, Wu L. Multi-omics data identified TP53 and LRP1B as key regulatory gene related to immune phenotypes via EPCAM in HCC. Cancer Med 2022; 11:2145-2158. [PMID: 35150083 PMCID: PMC9119357 DOI: 10.1002/cam4.4594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 12/18/2021] [Accepted: 12/21/2021] [Indexed: 12/16/2022] Open
Abstract
Background Many studies showed that the prognosis of hepatocellular carcinoma (HCC) was significantly associated with the expressions of TP53 and LRP1B. However, the potential influence of the two genes on the malignant progression of HCC is still to be expounded. Methods According to the correlation analysis between immune cells and expression levels of TP53 and LRP1B, we filtered the immune cells to perform unsupervised clustering analysis. Integration of multi‐omic data analysis identified genetic alteration and epigenetic alteration. In addition, pathway analysis was used to explore the potential function of the differentially expressed mRNAs. According to the differentially expressed genes, we established an interaction network to seek the hub gene. Least absolute shrinkage and selection operator (LASSO) regression analysis was used to build a prognosis model. Results The unsupervised clustering analysis showed that the cluster A1 showed the highest immune cell levels and the cluster B2 showed the lowest immune cell levels. Multi‐omics data analysis identified that somatic mutations, copy number variations, and DNA methylation levels had significant differences between cluster A1 and cluster B2. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis found that the upregulated mRNAs in the cluster A1 were mainly concentrated in T cell activation, external side of plasma membrane, receptor ligand activity, and cytokine−cytokine receptor interaction. Importantly, the EPCAM was identified as a critical node in the lncRNAs–miRNAs–mRNAs regulatory network correlated with the immune phenotypes. In addition, based on differentially expressed genes between cluster A1 and cluster B2, the prognostic model established by LASSO could predict the overall survival (OS) of HCC accurately. Conclusions The results indicated that the TP53 and LRP1B acted as the key genes in regulating the immune phenotypes of HCC via EPCAM.
Collapse
Affiliation(s)
- Liang Shi
- Department of Clinical Laboratory Medicine, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China.,Translational Medicine Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jie Cao
- Translational Medicine Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xin Lei
- Translational Medicine Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yifen Shi
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Lili Wu
- Department of Clinical Blood Transfusion, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China.,Department of Clinical Laboratory, The Central Hospital of Wenzhou, Wenzhou, China
| |
Collapse
|
28
|
Ben Rejeb S, Beltaifa D, Ghozzi A, Bellil K, Turki S. EpCAM (MOC-31) - immunohistochemical expression in papillary thyroid carcinoma and non invasive follicular thyroid neoplasm with papillary-like nuclear features (NIFTP). LA TUNISIE MEDICALE 2021; 99:1066-1071. [PMID: 35288910 PMCID: PMC8974436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
INTRODUCTION Ep-CAM, is a cell adhesion glycoprotein located on the basolateral cell membrane surface and in the cytoplasm of most normal epithelial cells. It has also been described to be expressed in several malignancies such as lung, digestive, prostate and renal carcinomas suggesting it has a potential role in carcinogenesis. In thyroid carcinoma, Ep-CAM expression has rarely been studied especially in papillary thyroid carcinoma. OBJECTIVE We sought to describe and compare the immunohistochemical expression of MOC31 in papillary thyroid carcinoma and in non invasive follicular thyroid neoplasm with papillary-like nuclear features (NIFTP). METHODS We have retrospectively collected 33 cases of PTC diagnosed in the pathology department of the Security forces hospital during a period of 13 years (2008-2021). We have microscopically reviewed all cases and reclassified 9 of 33 cases as NIFTP. An immunohistochemical automated study have been performed with MOC-31 antibody. The immunostaining was considered positive when it was membranous and/or cytoplasmic. The intensity of staining was scored as weak (score 1), moderate (score 2), and strong (score 3). We have used an immunoscore for assessing level of expression of MOC31 as follows: 0 for <5% of positive cells, 1 for 5-30%, 2 for 31-50%, 3 for 51-70%.The total score resulted by summing the percentage score with the intensity score; the final score was varying from 0 to 7, considered low between 1-4 and high 5-7. RESULTS The mean age of patients was 45,2 years-old for PTC cases and 48,1 years-old for NIFTP cases. A net female predominance was found in both groups (male to female ratio of respectively 0,4 and 0,3). MOC31 expression was found in 19 cases of PTC with a percentage of positive cells varying from 5 to 90%. Percentage of positive cells was variable from 5 to 90%. The immunoscore for positive cells was: 0 in 5/24cases, 1 in 4/24cases, 3 in 9/24cases and 4 in 6/24cases. The intensity of staining was assessed score2 (moderate) in 8 cases and score 3 (high) in 7cases (Figure1-2). Final MOC31 staining score was low in 37,5% (9/24) and high in 62.5% (15/24). Patients with advanced pt2-pt3 stages mostly showed high score of MOC31 staining (61,5%).One case was associated with lymph node involvement and was of a high score. 6 cases showed vascular invasion and was of high MOC31 score. MOC31 was expressed in all NIFTP cases with variable proportion of positive cells (5%-80%). The immunoscore for positive cells was: 0 in 1/9cases, 1 in 2/9cases, 2 in 3/9cases, 3 in 1/9cases and 4 in 2/9cases. The intensity of staining was assessed score 1 (weak) in one case, score 2 (moderate) in 6 cases and score 3 (high) in one case (Figure3-4). The final combined score was low in 66,7 (6/9) and high in 33,3% (3/9). CONCLUSION Our study revealed different immunohistochemical profile of MOC31 in benign and malignant tumors. It has somewhat a diffuse and marked staining in the first group. The changes of MOC31 location as well as its score of staining in PTC and NIFTP could hence be helpful in the differential diagnosis. Our findings also support the potential prognostic value of this molecule that deserves further investigations.
Collapse
Affiliation(s)
- Sarra Ben Rejeb
- Hôpital des Forces de Sécurité Intérieure, Faculté de médecine de Tunis
| | - Dorsaf Beltaifa
- Hôpital des Forces de Sécurité Intérieure, Faculté de médecine de Tunis
| | - Amen Ghozzi
- Hôpital des Forces de Sécurité Intérieure, Faculté de médecine de Tunis
| | - Khadija Bellil
- Hôpital des Forces de Sécurité Intérieure, Faculté de médecine de Tunis
| | - Senda Turki
- Hôpital des Forces de Sécurité Intérieure, Faculté de médecine de Tunis
| |
Collapse
|
29
|
Winter A, Zacharowski K, Meybohm P, Schnitzbauer A, Ruf P, Kellermann C, Lindhofer H. Removal of EpCAM-positive tumor cells from blood collected during major oncological surgery using the Catuvab device- a pilot study. BMC Anesthesiol 2021; 21:261. [PMID: 34715784 PMCID: PMC8555247 DOI: 10.1186/s12871-021-01479-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 10/13/2021] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Intraoperative blood salvage (IBS) is regarded as an alternative to allogeneic blood transfusion excluding the risks associated with allogeneic blood. Currently, IBS is generally avoided in tumor surgeries due to concern for potential metastasis caused by residual tumor cells in the erythrocyte concentrate. METHODS The feasibility, efficacy and safety aspects of the new developed Catuvab procedure using the bispecific trifunctional antibody Catumaxomab was investigated in an ex-vivo pilot study in order to remove residual EpCAM positive tumor cells from the autologous erythrocyte concentrates (EC) from various cancer patients, generated by a IBS device. RESULTS Tumor cells in intraoperative blood were detected in 10 of 16 patient samples in the range of 69-2.6 × 105 but no residual malignant cells in the final erythrocyte concentrates after Catuvab procedure. IL-6 and IL-8 as pro-inflammatory cytokines released during surgery, were lowered in mean 28-fold and 52-fold during the Catuvab procedure, respectively, whereas Catumaxomab antibody was detected in 8 of 16 of the final EC products at a considerable decreased and uncritical residual amount (37 ng in mean). CONCLUSION The preliminary study results indicate efficacy and feasibility of the new medical device Catuvab allowing potentially the reinfusion of autologous erythrocyte concentrates (EC) produced by IBS device during oncological high blood loss surgery. An open-label, multicenter clinical study on the removal of EpCAM-positive tumor cells from blood collected during tumor surgery using the Catuvab device is initiated to validate these encouraging results.
Collapse
Affiliation(s)
- Andreas Winter
- Department of Anaesthesiology, Intensive Care Medicine and Pain Therapy, University Hospital Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany.
| | - Kai Zacharowski
- Department of Anaesthesiology, Intensive Care Medicine and Pain Therapy, University Hospital Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
| | - Patrick Meybohm
- Department of Anaesthesiology, Intensive Care Medicine and Pain Therapy, University Hospital Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
- Department of Anaesthesiology, University Hospital Wuerzburg, Oberdürrbacher Straße 6, 97080, Wuerzburg, Germany
| | - Andreas Schnitzbauer
- Department of General and Visceral Surgery, University Hospital Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
| | - Peter Ruf
- Trion Research GmbH, Am Klopferspitz 19, 82152, Martinsried, Germany
| | | | - Horst Lindhofer
- Trion Research GmbH, Am Klopferspitz 19, 82152, Martinsried, Germany
| |
Collapse
|
30
|
You Y, Bai C, Liu X, Lu Y, Jia T, Xia M, Yin Y, Wang W, Chen Y, Zhang C, Liu Y, Wang L, Pu T, Ma T, Liu Y, Zhou J, Niu L, Xu S, Ni Y, Hu X, Zhang Z. RNA-Seq analysis in giant pandas reveals the differential expression of multiple genes involved in cataract formation. BMC Genom Data 2021; 22:44. [PMID: 34706646 PMCID: PMC8555103 DOI: 10.1186/s12863-021-00996-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 09/09/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The giant panda (Ailuropoda melanoleuca) is an endangered mammalian species native to China. Fewer than 2500 giant pandas are known to exist, many of which are bred in captivity as a means to preserve and repopulate the species. Like other captive mammals, giant pandas acquire age-related cataracts, reducing their quality of life. Recent comparative genome-wide methylation analysis revealed 110 differentially methylated genes associated with cataract formation including six also associated with the formation of age-related cataracts in humans. RESULTS To investigate the pathological pathway in greater detail, here we used RNA-Seq analysis to investigate the differential expression profiles of genes in three giant pandas with cataracts and three healthy controls. We identified more than 700 differentially expressed genes, 29 of which were selected for further analysis based on their low q-value. We found that many of the genes encoded regulatory and signaling proteins associated with the control of cell growth, migration, differentiation and apoptosis, supporting previous research indicating a key role for apoptosis in cataract formation. CONCLUSION The identification of genes involved in the formation of age-related cataracts could facilitate the development of predictive markers, preventative measures and even new therapies to improve the life of captive animals.
Collapse
Affiliation(s)
- Yuyan You
- Beijing Key Laboratory of Captive Wildlife Technologies, Beijing Zoo, Beijing, China.
| | - Chao Bai
- Beijing Key Laboratory of Captive Wildlife Technologies, Beijing Zoo, Beijing, China
| | | | - Yan Lu
- Beijing Key Laboratory of Captive Wildlife Technologies, Beijing Zoo, Beijing, China
| | | | | | | | - Wei Wang
- Beijing Key Laboratory of Captive Wildlife Technologies, Beijing Zoo, Beijing, China
| | - Yucun Chen
- Strait (Fuzhou) Giant Panda Research and Exchange Centers, Fuzhou, China
| | - Chenglin Zhang
- Beijing Key Laboratory of Captive Wildlife Technologies, Beijing Zoo, Beijing, China
| | - Yan Liu
- Beijing Key Laboratory of Captive Wildlife Technologies, Beijing Zoo, Beijing, China
| | | | | | - Tao Ma
- Beijing Zoo, Beijing, China
| | | | | | | | - Suhui Xu
- Strait (Fuzhou) Giant Panda Research and Exchange Centers, Fuzhou, China
| | | | - Xin Hu
- Beijing Key Laboratory of Captive Wildlife Technologies, Beijing Zoo, Beijing, China
| | | |
Collapse
|
31
|
Pan M, Kohlbauer V, Blancke Soares A, Schinke H, Huang Y, Kranz G, Quadt T, Hachmeister M, Gires O. Interactome analysis reveals endocytosis and membrane recycling of EpCAM during differentiation of embryonic stem cells and carcinoma cells. iScience 2021; 24:103179. [PMID: 34693227 PMCID: PMC8517208 DOI: 10.1016/j.isci.2021.103179] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 08/16/2021] [Accepted: 09/23/2021] [Indexed: 12/16/2022] Open
Abstract
Transmembrane epithelial cell adhesion molecule (EpCAM) is expressed in epithelia, carcinoma, teratoma, and embryonic stem cells (ESCs). EpCAM displays spatiotemporal patterning during embryogenesis, tissue morphogenesis, cell differentiation, and epithelial-to-mesenchymal transition (EMT) in carcinomas. Potential interactors of EpCAM were identified in murine F9 teratoma cells using a stable isotope labeling with amino acids in cell culture-based proteomic approach (n = 77, enrichment factor >3, p value ≤ 0.05). Kyoto Encyclopedia of Genes and Genomes and gene ontology terms revealed interactions with regulators of endosomal trafficking and membrane recycling, which were further validated for Rab5, Rab7, and Rab11. Endocytosis and membrane recycling of EpCAM were confirmed in mF9 cells, E14TG2α ESC, and Kyse30 carcinoma cells. Reduction of EpCAM during mesodermal differentiation and TGFβ-induced EMT correlated with enhanced endocytosis and block or reduction of recycling in ESCs and esophageal carcinoma cells. Hence, endocytosis and membrane recycling are means of regulation of EpCAM protein levels during differentiation of ESC and EMT induction in carcinoma cells.
Collapse
Affiliation(s)
- Min Pan
- Department of Otorhinolaryngology, The First Affiliated Hospital of Chongqing Medical University, Yuzhong District, Chongqing, China
| | - Vera Kohlbauer
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital, LMU Munich, Munich, Germany
| | - Alexandra Blancke Soares
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital, LMU Munich, Munich, Germany
| | - Henrik Schinke
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital, LMU Munich, Munich, Germany
| | - Yuanchi Huang
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital, LMU Munich, Munich, Germany
| | - Gisela Kranz
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital, LMU Munich, Munich, Germany
| | - Tanja Quadt
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital, LMU Munich, Munich, Germany
| | - Matthias Hachmeister
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital, LMU Munich, Munich, Germany
| | - Olivier Gires
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital, LMU Munich, Munich, Germany.,Clinical Cooperation Group "Personalized Radiotherapy in Head and Neck Cancer", Helmholtz Zentrum München, Neuherberg, Germany
| |
Collapse
|
32
|
Mäurer M, Pachmann K, Wendt T, Schott D, Wittig A. Prospective Monitoring of Circulating Epithelial Tumor Cells (CETC) Reveals Changes in Gene Expression during Adjuvant Radiotherapy of Breast Cancer Patients. ACTA ACUST UNITED AC 2021; 28:3507-3524. [PMID: 34590615 PMCID: PMC8482075 DOI: 10.3390/curroncol28050302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/22/2021] [Accepted: 09/03/2021] [Indexed: 11/27/2022]
Abstract
Circulating epithelial tumor cells (CETC) are considered to be responsible for the formation of metastases. Therefore, their importance as prognostic and/or predictive markers in breast cancer is being intensively investigated. Here, the reliability of single cell expression analyses in isolated and collected CETC from whole blood samples of patients with early-stage breast cancer before and after radiotherapy (RT) using the maintrac® method was investigated. Single-cell expression analyses were performed with qRT-PCR on a panel of selected genes: GAPDH, EpCAM, NANOG, Bcl-2, TLR 4, COX-2, PIK3CA, Her-2/neu, Vimentin, c-Met, Ki-67. In all patients, viable CETC were detected prior to and at the end of radiotherapy. In 7 of the 9 (77.8%) subjects examined, the CETC number at the end of the radiotherapy series was higher than before. The majority of genes analyzed showed increased expression after completion of radiotherapy compared to baseline. Procedures and methods used in this pilot study proved to be feasible. The method is suitable for further investigation of the underlying molecular biological mechanisms occurring in cells surviving radiotherapy and possibly the development of radiation resistance.
Collapse
Affiliation(s)
- Matthias Mäurer
- Department of Radiotherapy and Radiation Oncology, University Hospital Jena, Bachstraße 18, 07743 Jena, Germany; (T.W.); (A.W.)
- Correspondence:
| | - Katharina Pachmann
- Transfusion Center Bayreuth, Kurpromenade 2, 95448 Bayreuth, Germany; (K.P.); (D.S.)
| | - Thomas Wendt
- Department of Radiotherapy and Radiation Oncology, University Hospital Jena, Bachstraße 18, 07743 Jena, Germany; (T.W.); (A.W.)
| | - Dorothea Schott
- Transfusion Center Bayreuth, Kurpromenade 2, 95448 Bayreuth, Germany; (K.P.); (D.S.)
| | - Andrea Wittig
- Department of Radiotherapy and Radiation Oncology, University Hospital Jena, Bachstraße 18, 07743 Jena, Germany; (T.W.); (A.W.)
| |
Collapse
|
33
|
Pogorzelska-Dyrbus J, Szepietowski JC. Adhesion Molecules in Non-melanoma Skin Cancers: A Comprehensive Review. In Vivo 2021; 35:1327-1336. [PMID: 33910810 DOI: 10.21873/invivo.12385] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 03/05/2021] [Accepted: 03/19/2021] [Indexed: 12/18/2022]
Abstract
Basal cell carcinoma (BCC) and squamous cell carcinoma (SCC) are the most frequently diagnosed cancers, generating significant medical and financial problems. Cutaneous carcinogenesis is a very complex process characterized by genetic and molecular alterations, and mediated by various proteins and pathways. Cell adhesion molecules (CAMs) are transmembrane proteins responsible for cell-to-cell and cell-to-extracellular matrix adhesion, engaged in all steps of tumor progression. Based on their structures they are divided into five major groups: cadherins, integrins, selectins, immunoglobulins and CD44 family. Cadherins, integrins and CD44 are the most studied in the context of non-melanoma skin cancers. The differences in expression of adhesion molecules may be related to the invasiveness of these tumors, through the loss of tissue integrity, neovascularization and alterations in intercellular signaling processes. In this article, each group of CAMs is briefly described and the present knowledge on their role in the development of non-melanoma skin cancers is summarized.
Collapse
Affiliation(s)
| | - Jacek C Szepietowski
- Department of Dermatology, Venereology and Allergology, Wroclaw Medical University, Wroclaw, Poland
| |
Collapse
|
34
|
Sugumaran A, Mathialagan V. Colloidal Nanocarriers as Versatile Targeted Delivery Systems for Cervical Cancer. Curr Pharm Des 2021; 26:5174-5187. [PMID: 32586249 DOI: 10.2174/1381612826666200625110950] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Accepted: 04/01/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND The second most common malignant cancer of the uterus is cervical cancer, which is present worldwide, has a rising death rate and is predominant in developing countries. Different classes of anticancer agents are used to treat cervical carcinoma. The use of these agents results in severe untoward side-effects, toxicity, and multidrug resistance (MDR) with higher chances of recurrence and spread beyond the pelvic region. Moreover, the resulting clinical outcome remains very poor even after surgical procedures and treatment with conventional chemotherapy. Because of the nonspecificity of their use, the agents wipe out both cancerous and normal tissues. Colloidal nano dispersions have now been focusing on site-specific delivery for cervical cancer, and there has been much advancement. METHODS This review aims to highlight the problems in the current treatment of cervical cancer and explore the potential of colloidal nanocarriers for selective delivery of anticancer drugs using available literature. RESULTS In this study, we surveyed the role and potential of different colloidal nanocarriers in cervical cancer, such as nanoemulsion, nanodispersions, polymeric nanoparticles, and metallic nanoparticles and photothermal and photodynamic therapy. We found significant advancement in colloidal nanocarrier-based cervical cancer treatment. CONCLUSION Cervical cancer-targeted treatment with colloidal nanocarriers would hopefully result in minimal toxic side effects, reduced dosage frequency, and lower MDR incidence and enhance the patient survival rates. The future direction of the study should be focused more on the regulatory barrier of nanocarriers based on clinical outcomes for cervical cancer targeting with cost-effective analysis.
Collapse
Affiliation(s)
- Abimanyu Sugumaran
- Department of Pharmaceutics, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur 603203, India
| | - Vishali Mathialagan
- Department of Pharmaceutics, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur 603203, India
| |
Collapse
|
35
|
Jechorek D, Haeusler-Pliske I, Meyer F, Roessner A. Diagnostic value of syndecan-4 protein expression in colorectal cancer. Pathol Res Pract 2021; 222:153431. [PMID: 34029877 DOI: 10.1016/j.prp.2021.153431] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 03/30/2021] [Accepted: 03/30/2021] [Indexed: 10/21/2022]
Abstract
The prognosis of patients with colorectal cancer (CRC) is highly dependent on the disease stage at diagnosis. Therefore, it is crucial to study molecules involved in the progression of colorectal cancer tumorigenesis and to shed light on their potential use as targetable proteins in diagnostics and therapy. As syndecan-4 (SDC4) is a transmembrane proteoglycan with important functions in cell adhesion, migration, cytoskeleton organization, and gene expression through the binding of extracellular matrix molecules, it might play a role in local tumor cell invasion. To clarify its impact on the progression of CRC, we analyzed 177 patients for SDC4 expression in colon carcinoma tissue, lymph node and liver metastasis under consideration of specific morphological features and cellular elements of CRC. Highly upregulated SDC4 was particularly expressed at the tumor invasion front. Expression was strongest in tumor cell buds appearing as membranous expression polarized to peritumoral stromal cells. Increased SDC4 expression directed to the tumor-stromal- or tumor-endothelial-interface was also confirmed for metastasis and angioinvasive tumor cell clusters. Furthermore, strong immunoreactivity of SDC4 in fibroblasts and macrophages being in contact with invasive tumor cells suggests a cooperation between the different types of cells in tumor progression at the cell-matrix interface and a role for SDC4 in tumor cells attached to the extracellular matrix. Overexpression of SDC4 in tumor cells at the invasion front was significantly associated with progressive pathological features and inversely related to disease-free and overall survival. Therefore, overexpression of SDC4 may be a predictor for poor prognosis in patients with CRC and might prove useful in clinical practice, thus identifying patients with potential disease progression. Further investigations will have to reveal the functional role of SDC4 in tumor cell buds, fibroblasts and macrophages at the tumor stromal interface to confirm that SDC4 might also be a possible therapeutic target for the treatment of patients with advanced CRC.
Collapse
Affiliation(s)
| | - Inken Haeusler-Pliske
- Department of General-, Visceral-, Vascular- and Transplantation Surgery, Otto-von-Guericke University Magdeburg, Leipziger Strasse 44, 39120, Magdeburg, Germany.
| | - Frank Meyer
- Department of General-, Visceral-, Vascular- and Transplantation Surgery, Otto-von-Guericke University Magdeburg, Leipziger Strasse 44, 39120, Magdeburg, Germany.
| | | |
Collapse
|
36
|
First time intravesically administered trifunctional antibody catumaxomab in patients with recurrent non-muscle invasive bladder cancer indicates high tolerability and local immunological activity. Cancer Immunol Immunother 2021; 70:2727-2735. [PMID: 33837852 PMCID: PMC8360869 DOI: 10.1007/s00262-021-02930-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 03/26/2021] [Indexed: 11/30/2022]
Abstract
Transurethral resection of the tumor (TUR-B) followed by adjuvant intravesical treatment with cytostatic drugs or Bacillus Calmette–Guérin (BCG) as standard therapy of non-muscle-invasive bladder cancer (NMIBC) is associated with a high recurrence rate of about 60–70%, considerable side effects and requires close monitoring. Alternative treatment options are warranted. Two patients with epithelial cell adhesion molecule (EpCAM)-positive recurrent non-muscle invasive bladder cancer were treated the first time by an intravesical administration of the trifunctional bispecific EpCAM targeting antibody catumaxomab (total dosage of 470 and 1120 µg, respectively). The binding and killing activity of catumaxomab in urine milieu was evaluated in vitro. In contrast to its previous systemic application catumaxomab was well tolerated without any obvious signs of toxicity. Relevant cytokine plasma levels were not detected and no significant systemic drug release was observed. The induction of a human anti-mouse-antibody (HAMA) reaction was either absent or untypically weak contrary to the high immunogenicity of intraperitoneal applied catumaxomab. Tumor cells that were detectable in urine patient samples disappeared after catumaxomab therapy. Endoscopically confirmed recurrence-free intervals were 32 and 25 months. Our data suggest that intravesical administration of catumaxomab in NMIBC is feasible, safe and efficacious, thus arguing for further clinical development of catumaxomab in this indication.
Collapse
|
37
|
Abstract
Aim of the study CD326 has been used as a single marker to enrich for hepatic stem cell populations in the liver. However, bile duct epithelium is also positive for CD326, which impedes the selection of pure hepatic stem cell populations. Some markers have been proposed to be co-expressed by hepatic stem cells but these have not been systematically compared. Therefore, we determined the percentages and compared the characteristics of human liver cells expressing potential stem cell surface markers. Material and methods We analyzed CD326 expression in human liver tissues from fetal, neonatal, pediatric, and adult stages using immunohistochemistry. In flow cytometry, we quantified fetal liver cells for their co-expression of CD326 with CD56, CD117, CD44, CD90, CD49f, LGR5 and SSEA4. We analyzed the various fractions for their quantitative expression of genes typically associated with progenitors and hepatic lineages. Results 12.5% of cells were positive for CD326; of these, 63.5% co-expressed CD44. The lowest co-expression percentages were for SSEA4 (2.1%) and LGR5 (0.7%). Fractions revealed distinct gene expression patterns. Of all combinations, cells that co-expressed surface CD326 and SSEA4 demonstrated the highest gene expression for the proliferation marker MKi67 and hepatic markers DLK1, AFP and ALB, and were the only fraction negative for the biliary epithelial marker KRT19. Histology of adult and fetal liver showed cells positive for CD326 and SSEA4 but negative for CK19. Conclusions CD326-positive cells represent a heterogeneous population, which in combination with SSEA4 potentially distinguishes bile duct epithelium from hepatic stem cells. These findings can help to further classify human hepatic progenitor stages.
Collapse
|
38
|
Novel Concepts: Langerhans Cells in the Tumour Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1273:147-158. [PMID: 33119880 DOI: 10.1007/978-3-030-49270-0_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
Langerhans cells (LCs) are immune cells that reside in the stratified epithelium of the skin and mucosal membranes. They play a range of roles in the skin, including antigen presentation and maintenance of peripheral tolerance. Reports of LC numbers have been variable in different cancer types, with the majority of studies indicating a reduction in their number. Changes in the cytokine profile and other secreted molecules, downregulation of surface molecules on cells and hypoxia all contribute to the regulation of LCs in the tumour microenvironment. Functionally, LCs have been reported to regulate immunity and carcinogenesis in different cancer types. An improved understanding of the function and biology of LCs in tumours is essential knowledge that underpins the development of new cancer immunotherapies.
Collapse
|
39
|
Chen G, Yang Y, Liu W, Huang L, Yang L, Lei Y, Wu H, Lei Z, Guo J. EpCAM is essential for maintenance of the small intestinal epithelium architecture via regulation of the expression and localization of proteins that compose adherens junctions. Int J Mol Med 2020; 47:621-632. [PMID: 33416101 PMCID: PMC7797445 DOI: 10.3892/ijmm.2020.4815] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 11/20/2020] [Indexed: 12/15/2022] Open
Abstract
Epithelial cell adhesion molecule (EpCAM) is highly expressed in mammalian intestines, and is essential for maintaining the homeostasis of the intestinal epithelium. EpCAM protein is localized at tight junctions and the basolateral membrane of the intestinal epithelium, where it interacts with many cell adhesion molecules. To explore the molecular functions of EpCAM in regulating adherens junctions in the intestinal epithelium, EpCAM knockout embryos and newborn pups were analyzed. Hematoxylin and eosin staining was used to assess the histology of the duodenum, jejunum, ileum and colon from wild-type and EpCAM−/− mice at E18.5, P0 and P3. The expression and localization of adherens junction-associated genes and genes that encode the proteins that participate in the assembly of adherens junctions were measured at the mRNA and protein levels using qPCR, western blot analysis and immunofluorescence staining. The results showed that although there was no significant damage to the intestines of EpCAM−/− mice at E18.5 and P0, they were significantly damaged at P3 in mutant mice. The expression of adherens junction-associated genes in EpCAM mutant mice was normal at the mRNA level from E18.5 to P3, but their protein levels were gradually reduced and mislocalized from E18.5 to P3. The expression of nectin 1, which can regulate the assembly and adhesion activity of E-cadherin, was also gradually reduced at both the mRNA and protein levels in the intestinal epithelium of EpCAM mutant mice from E18.5 to P3. In summary, the loss of EpCAM may cause the reduction and mislocalization of proteins that compose adherens junctions partly via the downregulation of nectin 1 in the intestines.
Collapse
Affiliation(s)
- Guibin Chen
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine and Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China and Institute of Chinese Medicine, Guangdong Pharmaceutical University and Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou, Guangdong 510006, P.R. China
| | - Yanhong Yang
- The First Affiliated Hospital (School of Clinical Medicine), Guangdong Pharmaceutical University, Guangzhou, Guangdong 510080, P.R. China
| | - Wanwan Liu
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine and Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China and Institute of Chinese Medicine, Guangdong Pharmaceutical University and Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou, Guangdong 510006, P.R. China
| | - Li Huang
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine and Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China and Institute of Chinese Medicine, Guangdong Pharmaceutical University and Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou, Guangdong 510006, P.R. China
| | - Lanxiang Yang
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine and Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China and Institute of Chinese Medicine, Guangdong Pharmaceutical University and Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou, Guangdong 510006, P.R. China
| | - Yuting Lei
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine and Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China and Institute of Chinese Medicine, Guangdong Pharmaceutical University and Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou, Guangdong 510006, P.R. China
| | - Huijuan Wu
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine and Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China and Institute of Chinese Medicine, Guangdong Pharmaceutical University and Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou, Guangdong 510006, P.R. China
| | - Zili Lei
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine and Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China and Institute of Chinese Medicine, Guangdong Pharmaceutical University and Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou, Guangdong 510006, P.R. China
| | - Jiao Guo
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine and Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China and Institute of Chinese Medicine, Guangdong Pharmaceutical University and Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou, Guangdong 510006, P.R. China
| |
Collapse
|
40
|
Harris EJ, Huang J, Carroll E, Lowe AC, Chau NG, Rabinowits G, Haddad R, Hanna GJ, Haddad T, Sanborn M, Kacew A, Lorch J. Circulating tumor cell analysis in locally advanced and metastatic squamous cell carcinoma of the head and neck. Laryngoscope Investig Otolaryngol 2020; 5:1063-1069. [PMID: 33364395 PMCID: PMC7752061 DOI: 10.1002/lio2.448] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 08/03/2020] [Accepted: 08/08/2020] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Circulating tumors cells (CTCs) are considered an early step towards metastasis and have been linked to poor prognosis in several types of cancer. CTCs in squamous cell carcinoma of the head and neck (SCCHN) have an unclear role. METHODS In this prospective study, patients with locally advanced or metastatic SCCHN had CTC counts assessed before starting systemic treatment using the CellSearch System. Select cases also had sequential CTC evaluation. Presence of CTCs was correlated with patient characteristics and outcomes. RESULTS Forty-eight patients enrolled, and 36 had evaluable clinical data and baseline CTC counts. Twenty-five patients had locally advanced disease (LAD) and 11 had metastatic disease. ≥1 CTCs were detected in six patients with LAD (24%) and four with metastatic disease (36%). On univariate analysis, smoking was associated with CTCs. CONCLUSION CTCs are not associated with prognosis in patients with LAD and metastatic disease; however, they are present in this patient population, and ≥1 CTCs is associated with a history of smoking. LEVEL OF EVIDENCE 1b; individual prospective cohort study.
Collapse
Affiliation(s)
- Ethan J. Harris
- Department of Medical OncologyDana‐Farber Cancer InstituteBostonMassachusettsUSA
| | - Julian Huang
- Department of Medical OncologyDana‐Farber Cancer InstituteBostonMassachusettsUSA
- Yale School of MedicineNew HavenConnecticutUSA
| | - Erin Carroll
- Department of Medical OncologyDana‐Farber Cancer InstituteBostonMassachusettsUSA
| | - Alarice C. Lowe
- Department of PathologyStanford UniversityStanfordCaliforniaUSA
| | | | - Guilherme Rabinowits
- Department of Medical OncologyDana‐Farber Cancer InstituteBostonMassachusettsUSA
- Miami Cancer Institute/Baptist Health South FloridaMiamiFloridaUSA
| | - Robert Haddad
- Department of Medical OncologyDana‐Farber Cancer InstituteBostonMassachusettsUSA
| | - Glenn J. Hanna
- Department of Medical OncologyDana‐Farber Cancer InstituteBostonMassachusettsUSA
| | - Tyler Haddad
- Department of Medical OncologyDana‐Farber Cancer InstituteBostonMassachusettsUSA
- Ohio State UniversityColumbusOhioUSA
| | - Matthew Sanborn
- Department of Medical OncologyDana‐Farber Cancer InstituteBostonMassachusettsUSA
| | - Alec Kacew
- Department of Medical OncologyDana‐Farber Cancer InstituteBostonMassachusettsUSA
| | - Jochen Lorch
- Department of Medical OncologyDana‐Farber Cancer InstituteBostonMassachusettsUSA
| |
Collapse
|
41
|
Lenárt S, Lenárt P, Šmarda J, Remšík J, Souček K, Beneš P. Trop2: Jack of All Trades, Master of None. Cancers (Basel) 2020; 12:E3328. [PMID: 33187148 PMCID: PMC7696911 DOI: 10.3390/cancers12113328] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/04/2020] [Accepted: 11/09/2020] [Indexed: 12/20/2022] Open
Abstract
Trophoblast cell surface antigen 2 (Trop2) is a widely expressed glycoprotein and an epithelial cell adhesion molecule (EpCAM) family member. Although initially identified as a transmembrane protein, other subcellular localizations and processed forms were described. Its congenital mutations cause a gelatinous drop-like corneal dystrophy, a disease characterized by loss of barrier function in corneal epithelial cells. Trop2 is considered a stem cell marker and its expression associates with regenerative capacity in various tissues. Trop2 overexpression was described in tumors of different origins; however, functional studies revealed both oncogenic and tumor suppressor roles. Nevertheless, therapeutic potential of Trop2 was recognized and clinical studies with drug-antibody conjugates have been initiated in various cancer types. One of these agents, sacituzumab govitecan, has been recently granted an accelerated approval for therapy of metastatic triple-negative breast cancer. In this article, we review the current knowledge about the yet controversial function of Trop2 in homeostasis and pathology.
Collapse
Affiliation(s)
- Sára Lenárt
- Department of Experimental Biology, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic; (S.L.); (P.L.); (J.Š.); (K.S.)
| | - Peter Lenárt
- Department of Experimental Biology, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic; (S.L.); (P.L.); (J.Š.); (K.S.)
- Research Centre for Toxic Compounds in the Environment, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic
| | - Jan Šmarda
- Department of Experimental Biology, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic; (S.L.); (P.L.); (J.Š.); (K.S.)
| | - Ján Remšík
- Human Oncology & Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA;
| | - Karel Souček
- Department of Experimental Biology, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic; (S.L.); (P.L.); (J.Š.); (K.S.)
- Department of Cytokinetics, Institute of Biophysics of the Czech Academy of Sciences, 612 65 Brno, Czech Republic
- Center of Biomolecular and Cellular Engineering, International Clinical Research Center, St. Anne’s University Hospital, 656 91 Brno, Czech Republic
| | - Petr Beneš
- Department of Experimental Biology, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic; (S.L.); (P.L.); (J.Š.); (K.S.)
- Center of Biomolecular and Cellular Engineering, International Clinical Research Center, St. Anne’s University Hospital, 656 91 Brno, Czech Republic
| |
Collapse
|
42
|
Roshan R, Naderi S, Behdani M, Cohan RA, Ghaderi H, Shokrgozar MA, Golkar M, Kazemi-Lomedasht F. Isolation and characterization of nanobodies against epithelial cell adhesion molecule as novel theranostic agents for cancer therapy. Mol Immunol 2020; 129:70-77. [PMID: 33183767 DOI: 10.1016/j.molimm.2020.10.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 10/12/2020] [Accepted: 10/22/2020] [Indexed: 12/14/2022]
Abstract
Epithelial cell adhesion molecule (EpCAM) plays an important role in tumorigenesis. Camelids produce functional antibodies composed of heavy chains only that bind to their antigens via a single domain variable fragment known as nanobody. Nanobodies show multiple advantages over traditional monoclonal antibodies. Isolation of functional anti-EpCAM nanobodies (Nbs) was the main aim of this study. An immune nanobody library containing 108 members was constructed previously. Anti -EpCAM nanobodies were isolated from camel immune library using phage display. Four consecutive rounds of biopanning were performed on immobilized EpCAM. Four nanobodies (Nb4, Nb5, Nb22, and Nb23) with highest signal intensity in monoclonal phage ELISA were selected. Affinity of these selected nanobodies for EpCAM was in the nanomolar range. Selected nanobodies significantly inhibited proliferation of MCF-7 cells. The in vivo study revealed that a significant reduction in tumor size occurred when treated with nanobodies Nb4 and Nb5, after 14 days monitoring. Our data revealed that nanobodies Nb4 and Nb5 could be considered as attractive theranostic agents for EpCAM overexpressing cancers.
Collapse
Affiliation(s)
- Reyhaneh Roshan
- Biotechnology Research Center, Biotechnology Department, Venom & Biotherapeutics Molecules Lab., Pasteur Institute of Iran, Tehran, Iran
| | - Shamsi Naderi
- Biotechnology Research Center, Biotechnology Department, Venom & Biotherapeutics Molecules Lab., Pasteur Institute of Iran, Tehran, Iran
| | - Mahdi Behdani
- Biotechnology Research Center, Biotechnology Department, Venom & Biotherapeutics Molecules Lab., Pasteur Institute of Iran, Tehran, Iran
| | - Reza Ahangari Cohan
- Department of Nanobiotechnology, New Technologies Research Group, Pasteur Institute of Iran, Tehran, Iran.
| | - Hajarsadat Ghaderi
- Biotechnology Research Center, Biotechnology Department, Venom & Biotherapeutics Molecules Lab., Pasteur Institute of Iran, Tehran, Iran
| | | | - Majid Golkar
- Molecular Parasitology Laboratory, Parasitology Department, Pasteur Institute of Iran, Tehran, Iran
| | - Fatemeh Kazemi-Lomedasht
- Biotechnology Research Center, Biotechnology Department, Venom & Biotherapeutics Molecules Lab., Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
43
|
Kedarisetti P, Bouvet VR, Shi W, Bergman CN, Dufour J, Kashani Ilkhechi A, Bell KL, Paproski RJ, Lewis JD, Wuest FR, Zemp RJ. Enrichment and ratiometric detection of circulating tumor cells using PSMA- and folate receptor-targeted magnetic and surface-enhanced Raman scattering nanoparticles. BIOMEDICAL OPTICS EXPRESS 2020; 11:6211-6230. [PMID: 33282485 PMCID: PMC7687927 DOI: 10.1364/boe.410527] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 09/27/2020] [Indexed: 06/12/2023]
Abstract
The presence of circulating tumor cells (CTCs) in a patient's bloodstream is a hallmark of metastatic cancer. The detection and analysis of CTCs is a promising diagnostic and prognostic strategy as they may carry useful genetic information from their derived primary tumor, and the enumeration of CTCs in the bloodstream has been known to scale with disease progression. However, the detection of CTCs is a highly challenging task owing to their sparse numbers in a background of billions of background blood cells. To effectively utilize CTCs, there is a need for an assay that can detect CTCs with high specificity and can locally enrich CTCs from a liquid biopsy. We demonstrate a versatile methodology that addresses these needs by utilizing a combination of nanoparticles. Enrichment is achieved using targeted magnetic nanoparticles and high specificity detection is achieved using a ratiometric detection approach utilizing multiplexed targeted and non-targeted surface-enhanced Raman Scattering Nanoparticles (SERS-NPs). We demonstrate this approach with model prostate and cervical circulating tumor cells and show the ex vivo utility of our methodology for the detection of PSMA or folate receptor over-expressing CTCs. Our approach allows for the mitigation of interference caused by the non-specific uptake of nanoparticles by other cells present in the bloodstream and our results from magnetically trapped CTCs reveal over a 2000% increase in targeted SERS-NP signal over non-specifically bound SERS-NPs.
Collapse
Affiliation(s)
- Pradyumna Kedarisetti
- Department of Electrical and Computer Engineering, University of Alberta, Edmonton, AB, T6G 1H9, Canada
| | - Vincent R. Bouvet
- Department of Oncology, University of Alberta, Edmonton, AB, T6G 1Z2, Canada
| | - Wei Shi
- Department of Electrical and Computer Engineering, University of Alberta, Edmonton, AB, T6G 1H9, Canada
| | - Cody N. Bergman
- Department of Oncology, University of Alberta, Edmonton, AB, T6G 1Z2, Canada
| | - Jennifer Dufour
- Department of Oncology, University of Alberta, Edmonton, AB, T6G 1Z2, Canada
| | - Afshin Kashani Ilkhechi
- Department of Electrical and Computer Engineering, University of Alberta, Edmonton, AB, T6G 1H9, Canada
| | - Kevan L. Bell
- Department of Electrical and Computer Engineering, University of Alberta, Edmonton, AB, T6G 1H9, Canada
| | - Robert J. Paproski
- Department of Oncology, University of Alberta, Edmonton, AB, T6G 1Z2, Canada
| | - John D. Lewis
- Department of Oncology, University of Alberta, Edmonton, AB, T6G 1Z2, Canada
| | - Frank R. Wuest
- Department of Oncology, University of Alberta, Edmonton, AB, T6G 1Z2, Canada
| | - Roger J. Zemp
- Department of Electrical and Computer Engineering, University of Alberta, Edmonton, AB, T6G 1H9, Canada
| |
Collapse
|
44
|
El Maghraby GM, Arafa MF. Liposomes for Enhanced Cellular Uptake of Anticancer Agents. Curr Drug Deliv 2020; 17:861-873. [PMID: 32640957 DOI: 10.2174/1567201817666200708113131] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 01/08/2020] [Accepted: 04/01/2020] [Indexed: 12/12/2022]
Abstract
Cancers are life threatening diseases and their traditional treatment strategies have numerous limitations which include poor pharmacokinetic profiles, non-specific drug distribution in the body tissues and organs and deprived tumor cells penetration. This attracted the attention of researchers to tailor efficient drug delivery system for anticancer agents to overcome these limitations. Liposomes are one of the newly developed delivery systems for anticancer agents. They are vesicular structures, which were fabricated to enhance drug targeting to tumor tissues either via active or passive targeting. They can be tailored to penetrate tumor cells membrane which is considered the main rate limiting step in antineoplastic therapy. This resulted in enhancing drug cellular uptake and internalization and increasing drug cytotoxic effect. These modifications were achieved via various approaches which included the use of cell-penetrating peptides, the use of lipid substances that can increase liposome fusogenic properties or increase the cell membrane permeability toward amphiphilic drugs, surface modification or ligand targeted liposomes and immuno-liposomes. The modified liposomes were able to enhance anticancer agent's cellular uptake and this was reflected in their ability to destroy tumor tissues. This review outlines different approaches employed for liposomes modification for enhancing anticancer agent's cellular uptake.
Collapse
Affiliation(s)
- Gamal M El Maghraby
- Department of Pharmaceutical Technology, College of Pharmacy, University of Tanta, Tanta, Egypt
| | - Mona F Arafa
- Department of Pharmaceutical Technology, College of Pharmacy, University of Tanta, Tanta, Egypt
| |
Collapse
|
45
|
Shramova E, Proshkina G, Shipunova V, Ryabova A, Kamyshinsky R, Konevega A, Schulga A, Konovalova E, Telegin G, Deyev S. Dual Targeting of Cancer Cells with DARPin-Based Toxins for Overcoming Tumor Escape. Cancers (Basel) 2020; 12:cancers12103014. [PMID: 33081407 PMCID: PMC7602955 DOI: 10.3390/cancers12103014] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/06/2020] [Accepted: 10/13/2020] [Indexed: 12/13/2022] Open
Abstract
Simple Summary Targeted therapy of solid tumors represents a great challenge because of heterogeneity of tumor-associated antigen expression. To overcome this obstacle we propose a dual targeting therapy based on protein preparations capable of recognizing different of tumor-associated antigens on a tumor cell producing a directed cytotoxic effect. The dual specific therapy of breast carcinoma-bearing mice using the designed preparations eliminates both the primary tumor and distant metastases. The mono-targeting therapy aimed at single tumor-associated antigen did not suppress metastases at all. The proposed approach can serve as a potential therapeutic strategy that surpasses mono-specific targeting strategies in the anti-cancer efficacy. Abstract We report here a combined anti-cancer therapy directed toward HER2 and EpCAM, common tumor-associated antigens of breast cancer cells. The combined therapeutic effect is achieved owing to two highly toxic proteins—a low immunogenic variant of Pseudomonas aeruginosa exotoxin A and ribonuclease Barnase from Bacillus amyloliquefaciens. The delivery of toxins to cancer cells was carried out by targeting designed ankyrin repeat proteins (DARPins). We have shown that both target agents efficiently accumulate in the tumor. Simultaneous treatment of breast carcinoma-bearing mice with anti-EpCAM fusion toxin based on LoPE and HER2-specific liposomes loaded with Barnase leads to concurrent elimination of primary tumor and metastases. Monotherapy with anti-HER2- or anti-EpCAM-toxins did not produce a comparable effect on metastases. The proposed approach can be considered as a promising strategy for significant improvement of cancer therapy.
Collapse
Affiliation(s)
- Elena Shramova
- Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho–Maklaya Street 16/10, 117997 Moscow, Russia; (V.S.); (A.S.); (E.K.); (G.T.); (S.D.)
- Correspondence: (E.S.); (G.P.); Tel.: +7-9169503549 (E.S.); +7-9167997089 (G.P.)
| | - Galina Proshkina
- Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho–Maklaya Street 16/10, 117997 Moscow, Russia; (V.S.); (A.S.); (E.K.); (G.T.); (S.D.)
- Correspondence: (E.S.); (G.P.); Tel.: +7-9169503549 (E.S.); +7-9167997089 (G.P.)
| | - Victoria Shipunova
- Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho–Maklaya Street 16/10, 117997 Moscow, Russia; (V.S.); (A.S.); (E.K.); (G.T.); (S.D.)
| | - Anastasia Ryabova
- Prokhorov General Physics Institute, Russian Academy of Sciences, Vavilova Street 38, 119991 Moscow, Russia;
| | - Roman Kamyshinsky
- National Research Center “Kurchatov Institute”, Akademika Kurchatova pl. 1, 123182 Moscow, Russia; (R.K.); (A.K.)
- Shubnikov Institute of Crystallography of Federal Scientific Research Centre ‘Crystallography and Photonics’ of Russian Academy of Sciences, Leninskiy Prospect, 59, 119333 Moscow, Russia
- Moscow Institute of Physics and Technology, Institutsky Lane 9, Dolgoprudny, 141701 Moscow, Russia
| | - Andrey Konevega
- National Research Center “Kurchatov Institute”, Akademika Kurchatova pl. 1, 123182 Moscow, Russia; (R.K.); (A.K.)
- Petersburg Nuclear Physics Institute Named by B.P. Konstantinov of National Research Centre “Kurchatov Institute”, Orlova Roscha 1, 188300 Gatchina, Russia
- Peter the Great St. Petersburg Polytechnic University, Politehnicheskaya 29, 195251 St. Petersburg, Russia
| | - Aleksey Schulga
- Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho–Maklaya Street 16/10, 117997 Moscow, Russia; (V.S.); (A.S.); (E.K.); (G.T.); (S.D.)
| | - Elena Konovalova
- Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho–Maklaya Street 16/10, 117997 Moscow, Russia; (V.S.); (A.S.); (E.K.); (G.T.); (S.D.)
| | - Georgij Telegin
- Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho–Maklaya Street 16/10, 117997 Moscow, Russia; (V.S.); (A.S.); (E.K.); (G.T.); (S.D.)
| | - Sergey Deyev
- Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho–Maklaya Street 16/10, 117997 Moscow, Russia; (V.S.); (A.S.); (E.K.); (G.T.); (S.D.)
- The Institute of Molecular Medicine, I.M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia
- Research Centrum for Oncotheranostics, Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, 634050 Tomsk, Russia
| |
Collapse
|
46
|
Fagotto F. EpCAM as Modulator of Tissue Plasticity. Cells 2020; 9:E2128. [PMID: 32961790 PMCID: PMC7563481 DOI: 10.3390/cells9092128] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 08/24/2020] [Accepted: 09/14/2020] [Indexed: 01/01/2023] Open
Abstract
The Epithelial Cell Adhesion Molecule or EpCAM is a well-known marker highly expressed in carcinomas and showing a strong correlation with poor cancer prognosis. While its name relates to its proposed function as a cell adhesion molecule, EpCAM has been shown to have various signalling functions. In particular, it has been identified as an important positive regulator of cell adhesion and migration, playing an essential role in embryonic morphogenesis as well as intestinal homeostasis. This activity is not due to its putative adhesive function, but rather to its ability to repress myosin contractility by impinging on a PKC signalling cascade. This mechanism confers EpCAM the unique property of favouring tissue plasticity. I review here the currently available data, comment on possible connections with other properties of EpCAM, and discuss the potential significance in the context of cancer invasion.
Collapse
Affiliation(s)
- François Fagotto
- CRBM, University of Montpellier and CNRS, 34293 Montpellier, France
| |
Collapse
|
47
|
Walcher L, Kistenmacher AK, Suo H, Kitte R, Dluczek S, Strauß A, Blaudszun AR, Yevsa T, Fricke S, Kossatz-Boehlert U. Cancer Stem Cells-Origins and Biomarkers: Perspectives for Targeted Personalized Therapies. Front Immunol 2020; 11:1280. [PMID: 32849491 PMCID: PMC7426526 DOI: 10.3389/fimmu.2020.01280] [Citation(s) in RCA: 532] [Impact Index Per Article: 106.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Accepted: 05/20/2020] [Indexed: 02/06/2023] Open
Abstract
The use of biomarkers in diagnosis, therapy and prognosis has gained increasing interest over the last decades. In particular, the analysis of biomarkers in cancer patients within the pre- and post-therapeutic period is required to identify several types of cells, which carry a risk for a disease progression and subsequent post-therapeutic relapse. Cancer stem cells (CSCs) are a subpopulation of tumor cells that can drive tumor initiation and can cause relapses. At the time point of tumor initiation, CSCs originate from either differentiated cells or adult tissue resident stem cells. Due to their importance, several biomarkers that characterize CSCs have been identified and correlated to diagnosis, therapy and prognosis. However, CSCs have been shown to display a high plasticity, which changes their phenotypic and functional appearance. Such changes are induced by chemo- and radiotherapeutics as well as senescent tumor cells, which cause alterations in the tumor microenvironment. Induction of senescence causes tumor shrinkage by modulating an anti-tumorigenic environment in which tumor cells undergo growth arrest and immune cells are attracted. Besides these positive effects after therapy, senescence can also have negative effects displayed post-therapeutically. These unfavorable effects can directly promote cancer stemness by increasing CSC plasticity phenotypes, by activating stemness pathways in non-CSCs, as well as by promoting senescence escape and subsequent activation of stemness pathways. At the end, all these effects can lead to tumor relapse and metastasis. This review provides an overview of the most frequently used CSC markers and their implementation as biomarkers by focussing on deadliest solid (lung, stomach, liver, breast and colorectal cancers) and hematological (acute myeloid leukemia, chronic myeloid leukemia) cancers. Furthermore, it gives examples on how the CSC markers might be influenced by therapeutics, such as chemo- and radiotherapy, and the tumor microenvironment. It points out, that it is crucial to identify and monitor residual CSCs, senescent tumor cells, and the pro-tumorigenic senescence-associated secretory phenotype in a therapy follow-up using specific biomarkers. As a future perspective, a targeted immune-mediated strategy using chimeric antigen receptor based approaches for the removal of remaining chemotherapy-resistant cells as well as CSCs in a personalized therapeutic approach are discussed.
Collapse
Affiliation(s)
- Lia Walcher
- Department of Immunology, Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
| | - Ann-Kathrin Kistenmacher
- Department of Immunology, Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
| | - Huizhen Suo
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Reni Kitte
- Department of Immunology, Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
| | - Sarah Dluczek
- Department of Immunology, Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
| | - Alexander Strauß
- Department of Immunology, Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
| | - André-René Blaudszun
- Department of Immunology, Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
| | - Tetyana Yevsa
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Stephan Fricke
- Department of Immunology, Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
| | - Uta Kossatz-Boehlert
- Department of Immunology, Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
| |
Collapse
|
48
|
Das B, Okamoto K, Rabalais J, Marchelletta RR, Barrett KE, Das S, Niwa M, Sivagnanam M. Congenital Tufting Enteropathy-Associated Mutant of Epithelial Cell Adhesion Molecule Activates the Unfolded Protein Response in a Murine Model of the Disease. Cells 2020; 9:cells9040946. [PMID: 32290509 PMCID: PMC7226999 DOI: 10.3390/cells9040946] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 03/31/2020] [Accepted: 04/09/2020] [Indexed: 12/18/2022] Open
Abstract
Congenital tufting enteropathy (CTE) is a rare chronic diarrheal disease of infancy caused by mutations in epithelial cell adhesion molecule (EpCAM). Previously, a murine CTE model showed mis-localization of EpCAM away from the basolateral cell surface in the intestine. Here we demonstrate that mutant EpCAM accumulated in the endoplasmic reticulum (ER) where it co-localized with ER chaperone, GRP78/BiP, revealing potential involvement of ER stress-induced unfolded protein response (UPR) pathway in CTE. To investigate the significance of ER-localized mutant EpCAM in CTE, activation of the three UPR signaling branches initiated by the ER transmembrane protein components IRE1, PERK, and ATF6 was tested. A significant reduction in BLOS1 and SCARA3 mRNA levels in EpCAM mutant intestinal cells demonstrated that regulated IRE1-dependent decay (RIDD) was activated. However, IRE1 dependent XBP1 mRNA splicing was not induced. Furthermore, an increase in nuclear-localized ATF6 in mutant intestinal tissues revealed activation of the ATF6-signaling arm. Finally, an increase in both the phosphorylated form of the translation initiation factor, eIF2α, and ATF4 expression in the mutant intestine provided support for activation of the PERK-mediated pathway. Our results are consistent with a significant role for UPR in gastrointestinal homeostasis and provide a working model for CTE pathophysiology.
Collapse
Affiliation(s)
- Barun Das
- Department of Pediatrics, University of California, San Diego, CA 92093, USA; (B.D.); (K.O.); (J.R.)
| | - Kevin Okamoto
- Department of Pediatrics, University of California, San Diego, CA 92093, USA; (B.D.); (K.O.); (J.R.)
| | - John Rabalais
- Department of Pediatrics, University of California, San Diego, CA 92093, USA; (B.D.); (K.O.); (J.R.)
| | - Ronald R. Marchelletta
- Department of Medicine, University of California, San Diego, CA 92093, USA; (R.R.M.); (K.E.B.)
| | - Kim E. Barrett
- Department of Medicine, University of California, San Diego, CA 92093, USA; (R.R.M.); (K.E.B.)
| | - Soumita Das
- Department of Pathology, University of California, San Diego, CA 92093, USA;
| | - Maho Niwa
- Division of Biological Sciences, University of California, San Diego, CA 92093, USA;
| | - Mamata Sivagnanam
- Department of Pediatrics, University of California, San Diego, CA 92093, USA; (B.D.); (K.O.); (J.R.)
- Rady Children’s Hospital, San Diego, CA 92123, USA
- Correspondence: ; Tel.: +1-858-966-8907
| |
Collapse
|
49
|
Tang D, Chen Y, Fu GB, Yuan TJ, Huang WJ, Wang ZY, Li WJ, Jiao YF, Yu WF, Yan HX. EpCAM inhibits differentiation of human liver progenitor cells into hepatocytes in vitro by activating Notch1 signaling. Biochem Biophys Res Commun 2020; 525:S0006-291X(20)30309-0. [PMID: 32087972 DOI: 10.1016/j.bbrc.2020.02.041] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 02/08/2020] [Indexed: 12/26/2022]
Abstract
In both normal turnover of the hepatic tissue and acute hepatic injury, the liver predominantly activates terminally differentiated hepatocytes to proliferate and repair. However, in chronic and severe chronic injury, this capacity fails, and liver progenitor cells (LPCs) can give rise to hepatocytes to restore both hepatic architecture and liver metabolic function. Although the promotion of LPC-to-hepatocyte differentiation to acquire a considerable number of functional hepatocytes could serve as a potentially new therapeutic option for patients with end-stage liver disease, its development first requires the identification of the molecular mechanisms driving this process. Here, we found that the epithelial cell adhesion molecule (EpCAM), a progenitor cell marker, regulates the differentiation of LPCs into hepatocytes through Notch1 signaling pathway. Western blotting (WB) revealed a consistent expression pattern of EpCAM and Notch1 during LPC-to-hepatocyte differentiation in vitro. Additionally, overexpression of EpCAM blocked LPC-to-hepatocyte differentiation, which was in consistent with the repressive role of Notch signaling during hepatic differentiation. WB and immunofluorescence data also showed that the upregulation of EpCAM expression increased the generation of Notch intracellular domain (N1ICD), indicating the promotion of Notch1 activity. Our results established the EpCAM-Notch1 signaling axis as an inhibitory mechanism preventing LPC-to-hepatocyte differentiation in vitro.
Collapse
Affiliation(s)
- Dan Tang
- Department of Anesthesiology and Critical Care Medicine, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yi Chen
- Department of Anesthesiology and Critical Care Medicine, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Gong-Bo Fu
- International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Tian-Jie Yuan
- Department of Anesthesiology and Critical Care Medicine, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Wei-Jian Huang
- International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Zhen-Yu Wang
- Department of Interventional Oncology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Wei-Jian Li
- Department of Interventional Oncology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Ying-Fu Jiao
- Department of Anesthesiology and Critical Care Medicine, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.
| | - Wei-Feng Yu
- Department of Anesthesiology and Critical Care Medicine, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.
| | - He-Xin Yan
- Department of Anesthesiology and Critical Care Medicine, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China; Department of Interventional Oncology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.
| |
Collapse
|
50
|
Sharaf K, Kleinsasser A, Schwenk-Zieger S, Gires O, Schinke H, Kohlbauer V, Jakob M, Canis M, Haubner F. Molecular Characterization of Lipoaspirates Used in Regenerative Head and Neck Surgery. JAMA FACIAL PLAST SU 2020; 21:526-534. [PMID: 31556908 DOI: 10.1001/jamafacial.2019.0851] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Importance Adipose-derived mesenchymal stem cells (ASCs) have been used commonly in regenerative medicine and increasingly for head and neck surgical procedures. Lipoaspiration with centrifugation is purported to be a mild method for the extraction of ASCs used for autologous transplants to restore tissue defects or induce wound healing. The content of ASCs, their paracrine potential, and cellular potential in wound healing have not been explored for this method to our knowledge. Objective To evaluate the characteristics of lipoaspirates used in reconstructive head and neck surgical procedures with respect to wound healing. Design, Setting, and Participants This case series study included 15 patients who received autologous fat injections in the head and neck during surgical procedures at a tertiary referral center. The study was performed from October 2017 to November 2018, and data were analyzed from October 2017 to February 2019. Main Outcomes and Measures Excessive material of lipoaspirates from subcutaneous abdominal fatty tissue was examined. Cellular composition was analyzed using immunohistochemistry (IHC) and flow cytometry, and functionality was assessed through adipose, osteous, and chondral differentiation in vitro. Supernatants were tested for paracrine ASC functions in fibroblast wound-healing assays. Enzyme-linked immunosorbent assay measurement of tumor necrosis factor (TNF), vascular endothelial growth factor (VEGF), stromal-derived factor 1α (SDF-1α), and transforming growth factor β3 (TGF-β3) was performed. Results Among the 15 study patients (8 [53.3%] male; mean [SD] age at the time of surgery, 63.0 [2.8] years), the stromal vascular fraction (mean [SE], 53.3% [4.2%]) represented the largest fraction within the native lipoaspirates. The cultivated cells were positive for CD73 (mean [SE], 99.90% [0.07%]), CD90 (99.40% [0.32%]), and CD105 (88.54% [2.74%]); negative for CD34 (2.70% [0.45%]) and CD45 (1.74% [0.28%]) in flow cytometry; and negative for CD14 (10.56 [2.81] per 300 IHC score) and HLA-DR (6.89 [2.97] per 300 IHC score) in IHC staining; they differentiated into osteoblasts, adipocytes, and chondrocytes. The cultivated cells showed high expression of CD44 (mean [SE], 99.78% [0.08%]) and CD273 (82.56% [5.83%]). The supernatants were negative for TNF (not detectable) and SDF-1α (not detectable) and were positive for VEGF (mean [SE], 526.74 [149.84] pg/mL for explant supernatants; 528.26 [131.79] pg/106 per day for cell culture supernatants) and TGF-β3 (mean [SE], 22.79 [3.49] pg/mL for explant supernatants; 7.97 [3.15] pg/106 per day for cell culture supernatants). Compared with control (25% or 50% mesenchymal stem cell medium), fibroblasts treated with ASC supernatant healed the scratch-induced wound faster (mean [SE]: control, 1.000 [0.160]; explant supernatant, 1.369 [0.070]; and passage 6 supernatant, 1.492 [0.094]). Conclusions and Relevance The cells fulfilled the international accepted criteria for mesenchymal stem cells. The lipoaspirates contained ASCs that had the potential to multidifferentiate with proliferative and immune-modulating properties. The cytokine profile of the isolated ASCs had wound healing-promoting features. Lipoaspirates may have a regenerative potential and an application in head and neck surgery. Level of Evidence NA.
Collapse
Affiliation(s)
- Kariem Sharaf
- Department of Otolaryngology, University Hospital, Ludwig Maximilian University of Munich, Munich, Germany
| | - Antonia Kleinsasser
- Department of Otolaryngology, University Hospital, Ludwig Maximilian University of Munich, Munich, Germany
| | - Sabina Schwenk-Zieger
- Department of Otolaryngology, University Hospital, Ludwig Maximilian University of Munich, Munich, Germany
| | - Olivier Gires
- Department of Otolaryngology, University Hospital, Ludwig Maximilian University of Munich, Munich, Germany
| | - Henrik Schinke
- Department of Otolaryngology, University Hospital, Ludwig Maximilian University of Munich, Munich, Germany
| | - Vera Kohlbauer
- Department of Otolaryngology, University Hospital, Ludwig Maximilian University of Munich, Munich, Germany
| | - Mark Jakob
- Department of Otolaryngology, University Hospital, Ludwig Maximilian University of Munich, Munich, Germany
| | - Martin Canis
- Department of Otolaryngology, University Hospital, Ludwig Maximilian University of Munich, Munich, Germany
| | - Frank Haubner
- Department of Otolaryngology, University Hospital, Ludwig Maximilian University of Munich, Munich, Germany
| |
Collapse
|