1
|
Lee J, Oh B, Park J, Kim JY, Son J, Kim HS, Choi YE. On-site microfluidic aptasensor for rapid and highly selective detection of microcystin-LR. Talanta 2025; 293:128147. [PMID: 40253964 DOI: 10.1016/j.talanta.2025.128147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 03/21/2025] [Accepted: 04/13/2025] [Indexed: 04/22/2025]
Abstract
To detect microcystin-LR (MC-LR), a potent cyanotoxin harmful to human health, fast and precise monitoring tools are essential, particularly for on-site applications. In this study, we developed a novel on-site microfluidic aptasensor system that utilizes a fluorescence-tagged aptamer for the rapid and selective detection of MC-LR. By employing a target non-immobilized aptamer selection technique, high-affinity DNA aptamers for MC-LR were identified, and then further optimized through sequence truncation to enhance detection efficiency. The developed aptamer was designed such that its fluorescence is quenched in the absence of MC-LR, but recovered in its presence, enabling a clear signal detection that correlates with a toxin concentration. The developed system achieved a detection limit of 1.9 ppb, significantly lower than the safety threshold suggested by world health organization (WHO) for recreational waters, demonstrating sufficient sensitivity for reliable on-site monitoring. In addition, the microfluidic aptasensor system demonstrated high specificity, exhibiting the strongest response to MC-LR compared to other cyanotoxins. This system is the first portable MC-LR detection tool that allows for on-site environmental monitoring with the advantages of its fast response time and ease of operation. Combining a low detection limit with high accuracy, the microfluidic aptasensor system presents a promising alternative to conventional laboratory-based methods, providing a practical and reliable solution for water quality assessment.
Collapse
Affiliation(s)
- Jihye Lee
- Division of Environmental Science & Ecological Engineering, Korea University, Seoul, 02841, South Korea
| | - Byeolnim Oh
- Department of Electronic Engineering, Kwangwoon University, Seoul, 01897, South Korea
| | - Jaewon Park
- Department of Electro-Mechanical Systems Engineering, Korea University, Sejong, 30019, South Korea
| | - Jee Young Kim
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul, 04763, South Korea
| | - Jino Son
- National Institute of Biological Resources, Incheon, 22689, South Korea
| | - Hyun Soo Kim
- Department of Electronic Engineering, Kwangwoon University, Seoul, 01897, South Korea.
| | - Yoon-E Choi
- Division of Environmental Science & Ecological Engineering, Korea University, Seoul, 02841, South Korea.
| |
Collapse
|
2
|
Opazo R, Dos Santos GRC, Parente TE. RNAseq analysis of whole zebrafish (Danio rerio) larvae revealed the main cellular biological effects of geosmin and microcystin exposure at environmentally relevant concentrations. Toxicon 2024; 250:108074. [PMID: 39154758 DOI: 10.1016/j.toxicon.2024.108074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 08/06/2024] [Accepted: 08/14/2024] [Indexed: 08/20/2024]
Abstract
Cyanobacterial blooms are common events that releases secondary metabolites into water posing considerable threats to the environment, wildlife, and public health. Some of these metabolites, such as microcystin, have been extensively studied and associated with harmful effects in mammals and aquatic organisms, while the biological effects of others, like geosmin, remain much less investigated. Enhancing our understanding of cyanotoxins effects on organisms is especially relevant facing the complex scenarios projected due to global warming. The aim of this study was to assess the transcriptional modulation in whole zebrafish (Danio rerio) larvae (n = 9) in response to a 7-days immersion exposure to 3 μg L-1 MCLR or 5 μg L-1 geosmin. No mortality or differences in length gain were observed in zebrafish larvae exposed to environmentally realistic doses of both cyanotoxins. The exposure to MCLR and to geosmin caused the differential expression of 164 and 172 genes respectively, being 23 upregulated by MCLR and 98 upregulated by geosmin. Among the upregulated genes, 16 were shared, while 42 were shared among the downregulated genes. Over-representation analysis identified three enriched GO terms only among the genes upregulated by geosmin: organic hydroxy compound metabolic process (1901615), small molecule biosynthetic process (0044283), and lipid metabolic process (0006629). In fact, the expression of 12 of the 13 genes directly involved in the synthesis of cholesterol from acetyl-CoA was upregulated by geosmin. A chronic upregulation of cholesterol biosynthetic pathway is linked to several diseases and metabolic disorders, including alterations in sex-related hormones. Moreover, our results indicate that geosmin and MCLR acts through different mechanisms. Geosmin does not appear to provoke short-term adverse effects as MCLR but could disrupt the endocrine system by altering the lipid and steroid metabolism.
Collapse
Affiliation(s)
- Rafael Opazo
- Laboratory of Biotechnology, INTA University of Chile, Chile; Laboratory of Applied Genomics and Bioinnovations, IOC, Fiocruz, Brazil
| | | | | |
Collapse
|
3
|
Shah BA, Malhotra H, Papade SE, Dhamale T, Ingale OP, Kasarlawar ST, Phale PS. Microbial degradation of contaminants of emerging concern: metabolic, genetic and omics insights for enhanced bioremediation. Front Bioeng Biotechnol 2024; 12:1470522. [PMID: 39364263 PMCID: PMC11446756 DOI: 10.3389/fbioe.2024.1470522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 09/05/2024] [Indexed: 10/05/2024] Open
Abstract
The perpetual release of natural/synthetic pollutants into the environment poses major risks to ecological balance and human health. Amongst these, contaminants of emerging concern (CECs) are characterized by their recent introduction/detection in various niches, thereby causing significant hazards and necessitating their removal. Pharmaceuticals, plasticizers, cyanotoxins and emerging pesticides are major groups of CECs that are highly toxic and found to occur in various compartments of the biosphere. The sources of these compounds can be multipartite including industrial discharge, improper disposal, excretion of unmetabolized residues, eutrophication etc., while their fate and persistence are determined by factors such as physico-chemical properties, environmental conditions, biodegradability and hydrological factors. The resultant exposure of these compounds to microbiota has imposed a selection pressure and resulted in evolution of metabolic pathways for their biotransformation and/or utilization as sole source of carbon and energy. Such microbial degradation phenotype can be exploited to clean-up CECs from the environment, offering a cost-effective and eco-friendly alternative to abiotic methods of removal, thereby mitigating their toxicity. However, efficient bioprocess development for bioremediation strategies requires extensive understanding of individual components such as pathway gene clusters, proteins/enzymes, metabolites and associated regulatory mechanisms. "Omics" and "Meta-omics" techniques aid in providing crucial insights into the complex interactions and functions of these components as well as microbial community, enabling more effective and targeted bioremediation. Aside from natural isolates, metabolic engineering approaches employ the application of genetic engineering to enhance metabolic diversity and degradation rates. The integration of omics data will further aid in developing systemic-level bioremediation and metabolic engineering strategies, thereby optimising the clean-up process. This review describes bacterial catabolic pathways, genetics, and application of omics and metabolic engineering for bioremediation of four major groups of CECs: pharmaceuticals, plasticizers, cyanotoxins, and emerging pesticides.
Collapse
Affiliation(s)
- Bhavik A Shah
- Department of Biosciences and Bioengineering, Indian Institute of Technology-Bombay, Mumbai, India
| | - Harshit Malhotra
- Department of Biosciences and Bioengineering, Indian Institute of Technology-Bombay, Mumbai, India
| | - Sandesh E Papade
- Department of Biosciences and Bioengineering, Indian Institute of Technology-Bombay, Mumbai, India
| | - Tushar Dhamale
- Department of Biosciences and Bioengineering, Indian Institute of Technology-Bombay, Mumbai, India
| | - Omkar P Ingale
- Department of Biosciences and Bioengineering, Indian Institute of Technology-Bombay, Mumbai, India
| | - Sravanti T Kasarlawar
- Department of Biosciences and Bioengineering, Indian Institute of Technology-Bombay, Mumbai, India
| | - Prashant S Phale
- Department of Biosciences and Bioengineering, Indian Institute of Technology-Bombay, Mumbai, India
| |
Collapse
|
4
|
Bubik A, Frangež R, Žužek MC, Gutiérrez-Aguirre I, Lah TT, Sedmak B. Cyanobacterial Cyclic Peptides Can Disrupt Cytoskeleton Organization in Human Astrocytes-A Contribution to the Understanding of the Systemic Toxicity of Cyanotoxins. Toxins (Basel) 2024; 16:374. [PMID: 39330832 PMCID: PMC11436104 DOI: 10.3390/toxins16090374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 08/13/2024] [Accepted: 08/21/2024] [Indexed: 09/28/2024] Open
Abstract
The systemic toxicity of cyclic peptides produced by cyanobacteria (CCPs) is not yet completely understood. Apart from the most known damages to the liver and kidneys, symptoms of their neurotoxicity have also been reported. Hepatotoxic CCPs, like microcystins, as well as non-hepatotoxic anabaenopeptins and planktopeptins, all exhibit cytotoxic and cytostatic effects on mammalian cells. However, responses of different cell types to CCPs depend on their specific modes of interaction with cell membranes. This study demonstrates that non-hepatotoxic planktopeptin BL1125 and anabaenopeptins B and F, at concentrations up to 10 µM, affect normal and tumor human astrocytes (NHA and U87-GM) in vitro by their almost immediate insertion into the lipid monolayer. Like microcystin-LR (up to 1 µM), they inhibit Ser/Thr phosphatases and reorganize cytoskeletal elements, with modest effects on their gene expression. Based on the observed effects on intermediate filaments and intermediate filament linkage elements, their direct or indirect influence on tubulin cytoskeletons via post-translational modifications, we conclude that the basic mechanism of CCP toxicities is the induction of inter- and intracellular communication failure. The assessed inhibitory activity on Ser/Thr phosphatases is also crucial since the signal transduction cascades are modulated by phosphorylation/dephosphorylation processes.
Collapse
Affiliation(s)
- Anja Bubik
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Večna pot 121, SI-1000 Ljubljana, Slovenia; (T.T.L.); (B.S.)
- Faculty of Environmental Protection, Trg mladosti 7, SI-3320 Velenje, Slovenia
| | - Robert Frangež
- Institute of Preclinical Sciences, Veterinary Faculty, University of Ljubljana, Gerbičeva 60, SI-1000 Ljubljana, Slovenia; (R.F.); (M.C.Ž.)
| | - Monika C. Žužek
- Institute of Preclinical Sciences, Veterinary Faculty, University of Ljubljana, Gerbičeva 60, SI-1000 Ljubljana, Slovenia; (R.F.); (M.C.Ž.)
| | - Ion Gutiérrez-Aguirre
- Department of Biotechnology and Systems Biology, National Institute of Biology, Večna pot 121, SI-1000 Ljubljana, Slovenia
| | - Tamara T. Lah
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Večna pot 121, SI-1000 Ljubljana, Slovenia; (T.T.L.); (B.S.)
| | - Bojan Sedmak
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Večna pot 121, SI-1000 Ljubljana, Slovenia; (T.T.L.); (B.S.)
- Faculty of Environmental Protection, Trg mladosti 7, SI-3320 Velenje, Slovenia
| |
Collapse
|
5
|
Wang Z, Hao Y, Shen J, Li B, Chuan H, Xie P, Liu Y. Visualization of microcystin-LR and sulfides in plateau lakes. JOURNAL OF HAZARDOUS MATERIALS 2024; 462:132771. [PMID: 37839378 DOI: 10.1016/j.jhazmat.2023.132771] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 10/10/2023] [Accepted: 10/10/2023] [Indexed: 10/17/2023]
Abstract
In eutrophic water bodies, sulfides are closely related to the growth of cyanobacteria and the production of microcystin-LR (MC-LR). To date, the underlying interaction mechanism between a sulfides and MC-LR remains controversial. Thus, visually presenting the distribution characteristics of sulfides and MC-LR in contaminated water is crucial. Here, we propose a novel and expeditious practical approach, utilizing fluorescence probe technology, to assess the distribution characteristics of MC-LR and sulfur in natural lakes. We have developed novel probes, pib2, to detect HSO3- and HS-, and pib18, to simultaneously identify MC-LR and sulfides. Through correlation analysis of fluorescence data and physicochemical indicators at sampling points, it is found that fluorescence data has good correlation with sulfides and MC-LR, and speculated that pib2 and pib18 may be able to detect sulfides and MC-LR in lakes. Using this method, we rapidly obtained the distribution of MC-LR and sulfur in Qilu and Erhai Lakes. Notably, for the first time, we rapidly displayed the distributions of sulfides and MC-LR across lakes by the fluorescent probe technology.
Collapse
Affiliation(s)
- Zhaomin Wang
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Sciences, Yunnan University, Kunming 650500, PR China; Institute of International Rivers and Eco-Security, Yunnan University, Kunming 650500, PR China
| | - Yu Hao
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Sciences, Yunnan University, Kunming 650500, PR China; Institute of International Rivers and Eco-Security, Yunnan University, Kunming 650500, PR China
| | - Jianping Shen
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Sciences, Yunnan University, Kunming 650500, PR China
| | - Bingyan Li
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Sciences, Yunnan University, Kunming 650500, PR China
| | - Huiyan Chuan
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Sciences, Yunnan University, Kunming 650500, PR China
| | - Ping Xie
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Sciences, Yunnan University, Kunming 650500, PR China; Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China.
| | - Yong Liu
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Sciences, Yunnan University, Kunming 650500, PR China.
| |
Collapse
|
6
|
Réveillon D, Georges des Aulnois M, Savar V, Robert E, Caruana AMN, Briand E, Bormans M. Extraction and analysis by liquid chromatography - tandem mass spectrometry of intra- and extracellular microcystins and nodularin to study the fate of cyanobacteria and cyanotoxins across the freshwater-marine continuum. Toxicon 2024; 237:107551. [PMID: 38070753 DOI: 10.1016/j.toxicon.2023.107551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 11/27/2023] [Accepted: 12/02/2023] [Indexed: 12/24/2023]
Abstract
The presence of microcystins (MCs) is increasingly being reported in coastal areas worldwide. To provide reliable data regarding this emerging concern, reproducible and accurate methods are required to quantify MCs in salt-containing samples. Herein, we characterized methods of extraction and analysis by liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) for nine MCs and one nodularin (NOD) variants in both cyanobacteria (intracellular) and dissolved forms (extracellular). Different approaches have been used to cope with salinity for the extraction of dissolved MCs but none assessed solid phase extraction (SPE) so far. It was found that salt had negligible effect on the SPE recovery of dissolved MCs using the C18 cartridge while an overestimation up to 67% was noted for some variants with a polymeric sorbent. The limits of detection (LOD) and quantification (LOQ) were 1.0-22 and 5.5-124 pg on column for the intracellular toxins, while 0.05-0.81 and 0.13-2.4 ng/mL were obtained for dissolved toxins. Extraction recoveries were excellent for intracellular (89-121%) and good to excellent for extracellular cyanotoxins (73-102%) while matrix effects were considered neglectable (<12% for 16/20 toxin-matrix combinations), except for the two MC-RR variants. The strategy based on the application of a corrective factor to compensate for losses proved useful as the accuracy was satisfactory (73-117% for intra- and 81-139% for extracellular cyanotoxins, bias <10% for 46/60 conditions, with a few exceptions), with acceptable precisions (intra- and inter-days variabilities <11%). We then applied this method on natural colonies of Microcystis spp. subjected to a salt shock, mimicking their estuarine transfer, in order to assess their survival and to quantify their toxins. The colonies of Microcystis spp. had both their growth and photosynthetic activity impaired at salinities from 10, while toxins remained mainly intracellular (>76%) even at salinity 20, suggesting a potential health risk and contamination of estuarine organisms.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Myriam Bormans
- University of Rennes, CNRS, Ecobio UMR, 6553, Rennes, France
| |
Collapse
|
7
|
Ricciardelli A, Pollio A, Costantini M, Zupo V. Harmful and beneficial properties of cyanotoxins: Two sides of the same coin. Biotechnol Adv 2023; 68:108235. [PMID: 37567398 DOI: 10.1016/j.biotechadv.2023.108235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 07/25/2023] [Accepted: 08/08/2023] [Indexed: 08/13/2023]
Abstract
Cyanotoxins are by definition "harmful agents" produced by cyanobacteria. Their toxicity has been extensively studied and reviewed over the years. Cyanotoxins have been commonly classified, based on their poisonous effects on mammals, into three main classes, neurotoxins, hepatotoxins and dermatotoxins, and, considering their chemical features, mainly identified as peptides, alkaloids and lipopolysaccharides. Here we propose a broader subdivision of cyanotoxins into eight distinct classes, taking into account their molecular structures, biosynthesis and modes of action: alkaloids, non-ribosomal peptides, polyketides, non-protein amino acids, indole alkaloids, organophosphates, lipopeptides and lipoglycans. For each class, the structures and primary mechanisms of toxicity of the main representative cyanotoxins are reported. Despite their powerful biological activities, only recently scientists have considered the biotechnological potential of cyanotoxins, and their applications both in medical and in industrial settings, even if only a few of these have reached the biotech market. In this perspective, we discuss the potential uses of cyanotoxins as anticancer, antimicrobial, and biocidal agents, as common applications for cytotoxic compounds. Furthermore, taking into account their mechanisms of action, we describe peculiar potential bioactivities for several cyanotoxin classes, such as local anaesthetics, antithrombotics, neuroplasticity promoters, immunomodulating and antifouling agents. In this review, we aim to stimulate research on the potential beneficial roles of cyanotoxins, which require interdisciplinary cooperation to facilitate the discovery of innovative biotechnologies.
Collapse
Affiliation(s)
- Annarita Ricciardelli
- Department of Biology, University of Naples Federico II, Complesso Universitario Monte S. Angelo, via Cinthìa, 80125 Naples, Italy.
| | - Antonino Pollio
- Department of Biology, University of Naples Federico II, Complesso Universitario Monte S. Angelo, via Cinthìa, 80125 Naples, Italy.
| | - Maria Costantini
- Ecosustainable Marine Biotechnology Department, Stazione Zoologica Anton Dohrn, Via Ammiraglio Ferdinando Acton, 80133 Naples, Italy.
| | - Valerio Zupo
- Ecosustainable Marine Biotechnology Department, Stazione Zoologica Anton Dohrn, Ischia Marine Centre, Punta San Pietro, 80077 Naples, Italy.
| |
Collapse
|
8
|
Li Z, Zhu X, Wu Z, Sun T, Tong Y. Recent Advances in Cyanotoxin Synthesis and Applications: A Comprehensive Review. Microorganisms 2023; 11:2636. [PMID: 38004647 PMCID: PMC10673588 DOI: 10.3390/microorganisms11112636] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 10/23/2023] [Accepted: 10/24/2023] [Indexed: 11/26/2023] Open
Abstract
Over the past few decades, nearly 300 known cyanotoxins and more than 2000 cyanobacterial secondary metabolites have been reported from the environment. Traditional studies have focused on the toxic cyanotoxins produced by harmful cyanobacteria, which pose a risk to both human beings and wildlife, causing acute and chronic poisoning, resulting in diarrhea, nerve paralysis, and proliferation of cancer cells. Actually, the biotechnological potential of cyanotoxins is underestimated, as increasing studies have demonstrated their roles as valuable products, including allelopathic agents, insecticides and biomedicines. To promote a comprehensive understanding of cyanotoxins, a critical review is in demand. This review aims to discuss the classifications; biosynthetic pathways, especially heterogenous production; and potential applications of cyanotoxins. In detail, we first discuss the representative cyanotoxins and their toxic effects, followed by an exploration of three representative biosynthetic pathways (non-ribosomal peptide synthetases, polyketide synthetases, and their combinations). In particular, advances toward the heterologous biosynthesis of cyanotoxins in vitro and in vivo are summarized and compared. Finally, we indicate the potential applications and solutions to bottlenecks for cyanotoxins. We believe that this review will promote a comprehensive understanding, synthetic biology studies, and potential applications of cyanotoxins in the future.
Collapse
Affiliation(s)
- Zipeng Li
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China; (Z.L.); (Z.W.)
| | - Xiaofei Zhu
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin 300072, China;
| | - Zhengyu Wu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China; (Z.L.); (Z.W.)
| | - Tao Sun
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin 300072, China;
- Center for Biosafety Research and Strategy, Tianjin University, Tianjin 300072, China
| | - Yindong Tong
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China; (Z.L.); (Z.W.)
- College of Ecology and Environment, Tibet University, Lhasa 850000, China
| |
Collapse
|
9
|
Zheng Y, Xue C, Chen H, Jia A, Zhao L, Zhang J, Zhang L, Wang Q. Reconstitution and expression of mcy gene cluster in the model cyanobacterium Synechococcus 7942 reveals a role of MC-LR in cell division. THE NEW PHYTOLOGIST 2023; 238:1101-1114. [PMID: 36683448 DOI: 10.1111/nph.18766] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 01/12/2023] [Indexed: 06/17/2023]
Abstract
Cyanobacterial blooms pose a serious threat to public health due to the presence of cyanotoxins. Microcystin-LR (MC-LR) produced by Microcystis aeruginosa is the most common cyanotoxins. Due to the limitation of isolation, purification, and genetic manipulation techniques, it is difficult to study and verify in situ the biosynthetic pathways and molecular mechanisms of MC-LR. We reassembled the biosynthetic gene cluster (mcy cluster) of MC-LR in vitro by synthetic biology, designed and constructed the strong bidirectional promoter biPpsbA2 , transformed it into Synechococcus 7942, and successfully expressed MC-LR at a level of 0.006-0.018 fg cell-1 d-1 . We found the expression of MC-LR led to abnormal cell division and cellular filamentation, further using various methods proved that by irreversibly competing its GTP-binding site, MC-LR inhibits assembly of the cell division protein FtsZ. The study represents the first reconstitution and expression of the mcy cluster and the autotrophic production of MC-LR in model cyanobacterium, which lays the foundation for resolving the microcystins biosynthesis pathway. The discovered role of MC-LR in cell division reveals a mechanism of how blooming cyanobacteria gain a competitive edge over their nonblooming counterparts.
Collapse
Affiliation(s)
- Yanli Zheng
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Chunling Xue
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Hui Chen
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Anqi Jia
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Liang Zhao
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Junli Zhang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Lixin Zhang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China
- Academy for Advanced Interdisciplinary Studies, Henan University, Kaifeng, 475004, China
| | - Qiang Wang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China
- Academy for Advanced Interdisciplinary Studies, Henan University, Kaifeng, 475004, China
| |
Collapse
|
10
|
Lepri A, Longo C, Messore A, Kazmi H, Madia VN, Di Santo R, Costi R, Vittorioso P. Plants and Small Molecules: An Up-and-Coming Synergy. PLANTS (BASEL, SWITZERLAND) 2023; 12:1729. [PMID: 37111951 PMCID: PMC10145415 DOI: 10.3390/plants12081729] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 04/16/2023] [Accepted: 04/18/2023] [Indexed: 06/19/2023]
Abstract
The emergence of Arabidopsis thaliana as a model system has led to a rapid and wide improvement in molecular genetics techniques for studying gene function and regulation. However, there are still several drawbacks that cannot be easily solved with molecular genetic approaches, such as the study of unfriendly species, which are of increasing agronomic interest but are not easily transformed, thus are not prone to many molecular techniques. Chemical genetics represents a methodology able to fill this gap. Chemical genetics lies between chemistry and biology and relies on small molecules to phenocopy genetic mutations addressing specific targets. Advances in recent decades have greatly improved both target specificity and activity, expanding the application of this approach to any biological process. As for classical genetics, chemical genetics also proceeds with a forward or reverse approach depending on the nature of the study. In this review, we addressed this topic in the study of plant photomorphogenesis, stress responses and epigenetic processes. We have dealt with some cases of repurposing compounds whose activity has been previously proven in human cells and, conversely, studies where plants have been a tool for the characterization of small molecules. In addition, we delved into the chemical synthesis and improvement of some of the compounds described.
Collapse
Affiliation(s)
- A. Lepri
- Department of Biology and Biotechnology “Charles Darwin”, Sapienza University of Rome, 00185 Rome, Italy; (A.L.); (C.L.); (H.K.)
| | - C. Longo
- Department of Biology and Biotechnology “Charles Darwin”, Sapienza University of Rome, 00185 Rome, Italy; (A.L.); (C.L.); (H.K.)
| | - A. Messore
- Department of Chemistry and Technology of Drug, Istituto Pasteur Italia—Fondazione Cenci Bolognetti, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (A.M.); (V.N.M.); (R.D.S.); (R.C.)
| | - H. Kazmi
- Department of Biology and Biotechnology “Charles Darwin”, Sapienza University of Rome, 00185 Rome, Italy; (A.L.); (C.L.); (H.K.)
| | - V. N. Madia
- Department of Chemistry and Technology of Drug, Istituto Pasteur Italia—Fondazione Cenci Bolognetti, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (A.M.); (V.N.M.); (R.D.S.); (R.C.)
| | - R. Di Santo
- Department of Chemistry and Technology of Drug, Istituto Pasteur Italia—Fondazione Cenci Bolognetti, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (A.M.); (V.N.M.); (R.D.S.); (R.C.)
| | - R. Costi
- Department of Chemistry and Technology of Drug, Istituto Pasteur Italia—Fondazione Cenci Bolognetti, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (A.M.); (V.N.M.); (R.D.S.); (R.C.)
| | - P. Vittorioso
- Department of Biology and Biotechnology “Charles Darwin”, Sapienza University of Rome, 00185 Rome, Italy; (A.L.); (C.L.); (H.K.)
| |
Collapse
|
11
|
Ecological Dynamics of Broad- and Narrow-Host-Range Viruses Infecting the Bloom-Forming Toxic Cyanobacterium Microcystis aeruginosa. Appl Environ Microbiol 2023; 89:e0211122. [PMID: 36688685 PMCID: PMC9972985 DOI: 10.1128/aem.02111-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Microcystis aeruginosa is predicted to interact and coexist with diverse broad- and narrow-host-range viruses within a bloom; however, little is known about their affects on Microcystis population dynamics. Here, we developed a real-time PCR assay for the quantification of these viruses that have different host ranges. During the sampling period, total Microcystis abundance showed two peaks in May and August with a temporary decrease in June. The Microcystis population is largely divided into three phylotypes based on internal transcribed sequences (ITS; ITS types I to III). ITS I was the dominant phylotype (66% to 88%) except in June. Although the ITS II and III phylotypes were mostly less abundant, these phylotypes temporarily increased to approximately equivalent abundances of the ITS I population in June. During the same sampling period, the abundances of the broad-host-range virus MVGF_NODE331 increased from April to May and from July to October with a temporary decrease in June, in which its dynamics were in proportion to the increase of total Microcystis abundances regardless of changes in host ITS population composition. In contrast, the narrow-host-range viruses MVG_NODE620 and Ma-LMM01 were considerably less abundant than the broad-host-range virus and generally did not fluctuate in the environment. Considering that M. aeruginosa could increase the abundance and sustain the bloom under the prevalence of the broad-host-range virus, host abundant and diverse antiviral mechanisms might contribute to coexistence with its viruses. IMPORTANCE The bloom-forming toxic cyanobacterium Microcystis aeruginosa interacts with diverse broad- and narrow-host-range viruses. However, the dynamics of the Microcystis population (at the intraspecies level) and viruses with different host ranges remain unknown. Our real-time PCR assays unveiled that the broad-host-range virus gradually increased in abundance over the sampling period, in proportion to the increase in total Microcystis abundance regardless of changes in genotypic composition. The narrow-host-range viruses were considerably less abundant than the broad-host-range virus and did not generally fluctuate in the environment. The expansion and maintenance of the Microcystis bloom even under the increased infection by the broad-host-range virus suggested that highly abundant and diverse antiviral mechanisms allowed them to coexist with viruses under selective pressure. This paper expands our knowledge about the ecological dynamics of Microcystis viruses and provides potential insights into their coexistence with their host.
Collapse
|
12
|
Badagian N, Pírez Schirmer M, Pérez Parada A, Gonzalez-Sapienza G, Brena BM. Determination of Microcystins in Fish Tissue by ELISA and MALDI-TOF MS Using a Highly Specific Single Domain Antibody. Toxins (Basel) 2023; 15:toxins15020084. [PMID: 36828400 PMCID: PMC9966346 DOI: 10.3390/toxins15020084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/05/2023] [Accepted: 01/12/2023] [Indexed: 01/20/2023] Open
Abstract
The development of simple, reliable, and cost-effective methods is critically important to study the spatial and temporal variation of microcystins (MCs) in the food chain. Nanobodies (Nbs), antigen binding fragments from camelid antibodies, present valuable features for analytical applications. Their small antigen binding site offers a focused recognition of small analytes, reducing spurious cross-reactivity and matrix effects. A high affinity and broad cross-reactivity anti-MCs-Nb, from a llama antibody library, was validated in enzyme linked immunosorbent assay (ELISA), and bound to magnetic particles with an internal standard for pre-concentration in quantitative-matrix-assisted laser desorption ionization-time of flight mass spectrometry (Nb-QMALDI MS). Both methods are easy and fast; ELISA provides a global result, while Nb-QMALDI MS allows for the quantification of individual congeners and showed excellent performance in the fish muscle extracts. The ELISA assay range was 1.8-29 ng/g and for Nb-QMALDI, it was 0.29-29 ng/g fish ww. Fifty-five fish from a MC-containing dam were analyzed by both methods. The correlation ELISA/sum of the MC congeners by Nb-QMALDI-MS was very high (r Spearman = 0.9645, p < 0.0001). Using ROC curves, ELISA cut-off limits were defined to accurately predict the sum of MCs by Nb-QMALDI-MS (100% sensitivity; ≥89% specificity). Both methods were shown to be simple and efficient for screening MCs in fish muscle to prioritize samples for confirmatory methods.
Collapse
Affiliation(s)
- Natalia Badagian
- Biochemistry Area, Department of Biosciences, Faculty of Chemistry, Universidad de la República, Av. Gral. Flores 2124, Montevideo 11800, Uruguay
| | - Macarena Pírez Schirmer
- Immunology Area, Department of Biosciences, Faculty of Chemistry, Universidad de la República, Av A. Navarro 3051, Montevideo 11600, Uruguay
| | - Andrés Pérez Parada
- Technological Development Department, Centro Universitario Regional del Este, Universidad de la República, Ruta 9, Rocha 27000, Uruguay
| | - Gualberto Gonzalez-Sapienza
- Immunology Area, Department of Biosciences, Faculty of Chemistry, Universidad de la República, Av A. Navarro 3051, Montevideo 11600, Uruguay
| | - Beatriz M. Brena
- Biochemistry Area, Department of Biosciences, Faculty of Chemistry, Universidad de la República, Av. Gral. Flores 2124, Montevideo 11800, Uruguay
- Correspondence:
| |
Collapse
|
13
|
Mankiewicz-Boczek J, Morón-López J, Serwecińska L, Font-Nájera A, Gałęzowska G, Jurczak T, Kokociński M, Wolska L. Algicidal activity of Morganella morganii against axenic and environmental strains of Microcystis aeruginosa: Compound combination effects. CHEMOSPHERE 2022; 309:136609. [PMID: 36195129 DOI: 10.1016/j.chemosphere.2022.136609] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 09/23/2022] [Accepted: 09/24/2022] [Indexed: 06/16/2023]
Abstract
Cyanobacterial harmful algal blooms (cyanoHABs) are a global problem with serious consequences for public health and many sectors of the economy. The use of algicidal bacteria as natural antagonists to control bloom-forming cyanobacteria is a topic of growing interest. However, there are still unresolved questions that need to be addressed to better understand their mode of action and to implement effective mitigation strategies. In this study, thirteen bacterial strains isolated from both scums and concentrated bloom samples exhibited algicidal activity on three Microcystis aeruginosa strains with different characteristics: the axenic microcystin (MC)-producing strain M. aeruginosa PCC7820 (MaPCC7820), and two environmental (non-axenic) M. aeruginosa strains isolated from two different water bodies in Poland, one MC-producer (MaSU) and another non-MC-producer (MaPN). The bacterial strain SU7S0818 exerted the highest average algicidal effect on the three cyanobacterial strains. This strain was identified as Morganella morganii (99.51% similarity) by the 16S rRNA gene analyses; hence, this is the first study that demonstrates the algicidal properties of these ubiquitous bacteria. Microscopic cell counting and qPCR analyses showed that M. morganii SU7S0818 removed 91%, 96%, and 98.5% of MaPCC7820, MaSU and MaPN cells after 6 days of co-culture, respectively. Interestingly, the ultra-high-performance liquid chromatography-tandem mass spectrometer (UHPLC-MS/MS) analyses showed that this bacterium was involved on the release of several substances with algicidal potential. It was remarkable how the profile of some compounds evolved over time, as in the case of cadaverine, tyramine, cyclo[Pro-Gly] and cyclo[Pro-Val]. These dynamic changes could be attributed to the action of M. morganii SU7S0818 and the presence of associated bacteria with environmental cyanobacterial strains. Therefore, this study sheds light on how algicidal bacteria may adapt their action on cyanobacterial cells by releasing a combination of compounds, which is a crucial insight to exploit them as effective biological tools in the control of cyanoHABs.
Collapse
Affiliation(s)
- J Mankiewicz-Boczek
- European Regional Centre for Ecohydrology of the Polish Academy of Sciences, 3 Tylna, 90-364, Łódź, Poland.
| | - J Morón-López
- European Regional Centre for Ecohydrology of the Polish Academy of Sciences, 3 Tylna, 90-364, Łódź, Poland.
| | - L Serwecińska
- European Regional Centre for Ecohydrology of the Polish Academy of Sciences, 3 Tylna, 90-364, Łódź, Poland.
| | - A Font-Nájera
- European Regional Centre for Ecohydrology of the Polish Academy of Sciences, 3 Tylna, 90-364, Łódź, Poland.
| | - G Gałęzowska
- Department of Environmental Toxicology, Faculty of Health Sciences, Medical University of Gdansk, Debowa Str. 23A, 80-204, Gdańsk, Poland.
| | - T Jurczak
- UNESCO Chair on Ecohydrology and Applied Ecology, University of Lodz, 12/16 Banacha, 90-237, Łódź, Poland.
| | - M Kokociński
- Department of Hydrobiology, Adam Mickiewicz University, 6 Uniwersytetu Poznańskiego, 61-614, Poznań, Poland.
| | - L Wolska
- Department of Environmental Toxicology, Faculty of Health Sciences, Medical University of Gdansk, Debowa Str. 23A, 80-204, Gdańsk, Poland.
| |
Collapse
|
14
|
Lad A, Hunyadi J, Connolly J, Breidenbach JD, Khalaf FK, Dube P, Zhang S, Kleinhenz AL, Baliu-Rodriguez D, Isailovic D, Hinds TD, Gatto-Weis C, Stanoszek LM, Blomquist TM, Malhotra D, Haller ST, Kennedy DJ. Antioxidant Therapy Significantly Attenuates Hepatotoxicity following Low Dose Exposure to Microcystin-LR in a Murine Model of Diet-Induced Non-Alcoholic Fatty Liver Disease. Antioxidants (Basel) 2022; 11:1625. [PMID: 36009344 PMCID: PMC9404967 DOI: 10.3390/antiox11081625] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/13/2022] [Accepted: 08/17/2022] [Indexed: 12/15/2022] Open
Abstract
We have previously shown in a murine model of Non-alcoholic Fatty Liver Disease (NAFLD) that chronic, low-dose exposure to the Harmful Algal Bloom cyanotoxin microcystin-LR (MC-LR), resulted in significant hepatotoxicity including micro-vesicular lipid accumulation, impaired toxin metabolism as well as dysregulation of the key signaling pathways involved in inflammation, immune response and oxidative stress. On this background we hypothesized that augmentation of hepatic drug metabolism pathways with targeted antioxidant therapies would improve MC-LR metabolism and reduce hepatic injury in NAFLD mice exposed to MC-LR. We chose N-acetylcysteine (NAC, 40 mM), a known antioxidant that augments the glutathione detoxification pathway and a novel peptide (pNaKtide, 25 mg/kg) which is targeted to interrupting a specific Src-kinase mediated pro-oxidant amplification mechanism. Histological analysis showed significant increase in hepatic inflammation in NAFLD mice exposed to MC-LR which was attenuated on treatment with both NAC and pNaKtide (both p ≤ 0.05). Oxidative stress, as measured by 8-OHDG levels in urine and protein carbonylation in liver sections, was also significantly downregulated upon treatment with both antioxidants after MC-LR exposure. Genetic analysis of key drug transporters including Abcb1a, Phase I enzyme-Cyp3a11 and Phase II metabolic enzymes-Pkm (Pyruvate kinase, muscle), Pklr (Pyruvate kinase, liver, and red blood cell) and Gad1 (Glutamic acid decarboxylase) was significantly altered by MC-LR exposure as compared to the non-exposed control group (all p ≤ 0.05). These changes were significantly attenuated with both pNaKtide and NAC treatment. These results suggest that MC-LR metabolism and detoxification is significantly impaired in the setting of NAFLD, and that these pathways can potentially be reversed with targeted antioxidant treatment.
Collapse
Affiliation(s)
- Apurva Lad
- College of Medicine and Life Sciences, University of Toledo, Toledo, OH 43614, USA
| | - Jonathan Hunyadi
- College of Medicine and Life Sciences, University of Toledo, Toledo, OH 43614, USA
| | - Jacob Connolly
- College of Medicine and Life Sciences, University of Toledo, Toledo, OH 43614, USA
| | | | - Fatimah K. Khalaf
- College of Medicine and Life Sciences, University of Toledo, Toledo, OH 43614, USA
- Department of Clinical Pharmacy, University of Alkafeel, Najaf 54001, Iraq
| | - Prabhatchandra Dube
- College of Medicine and Life Sciences, University of Toledo, Toledo, OH 43614, USA
| | - Shungang Zhang
- College of Medicine and Life Sciences, University of Toledo, Toledo, OH 43614, USA
| | - Andrew L. Kleinhenz
- College of Medicine and Life Sciences, University of Toledo, Toledo, OH 43614, USA
| | - David Baliu-Rodriguez
- Department of Chemistry and Biochemistry, University of Toledo, Toledo, OH 43606, USA
| | - Dragan Isailovic
- Department of Chemistry and Biochemistry, University of Toledo, Toledo, OH 43606, USA
| | - Terry D. Hinds
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY 40506, USA
| | - Cara Gatto-Weis
- College of Medicine and Life Sciences, University of Toledo, Toledo, OH 43614, USA
| | - Lauren M. Stanoszek
- College of Medicine and Life Sciences, University of Toledo, Toledo, OH 43614, USA
| | - Thomas M. Blomquist
- College of Medicine and Life Sciences, University of Toledo, Toledo, OH 43614, USA
| | - Deepak Malhotra
- College of Medicine and Life Sciences, University of Toledo, Toledo, OH 43614, USA
| | - Steven T. Haller
- College of Medicine and Life Sciences, University of Toledo, Toledo, OH 43614, USA
| | - David J. Kennedy
- College of Medicine and Life Sciences, University of Toledo, Toledo, OH 43614, USA
| |
Collapse
|
15
|
Cai D, Wei J, Huang F, Feng H, Peng T, Luo J, Yang F. The detoxification activities and mechanisms of microcystinase towards MC-LR. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 236:113436. [PMID: 35367885 DOI: 10.1016/j.ecoenv.2022.113436] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 03/13/2022] [Accepted: 03/16/2022] [Indexed: 06/14/2023]
Abstract
Microcystins (MCs) are the most common and toxic cyanotoxins that are hazardous to human health and ecosystems. Microcystinase is the enzyme in charge of the initial step in the biodegradation of MCs. The characterization, application conditions, and detoxification mechanisms of microcystinase from an indigenous bacterium Sphingopyxis sp. YF1 towards MC-LR were investigated in the current study. The microcystinase gene of strain YF1 was most similar to Sphingomonas sp. USTB-05 and contained a CAAX-family conversed abortive Infection (ABI) domain. The microcystinase was successful obtained and purified by overexpression in Escherichia coli. The highest degradation rate of MC-LR was 1.0 μg/mL/min under the optimal condition of 30 ℃, pH 7, 20 μg/mL MC-LR, and 400 μg/mL microcystinase. The MC-degrading product was identified as linearized MC-LR, which possessed a much lower inhibitory activity against protein phosphatase 2A than MC-LR. Microcystinase interacted with MC-LR via amino acid residues involved in through the formation of conventional Hydrogen Bond, Pi-Pi T-shapes, Van der Waals force, and so on. The optimal MC-degrading condition of pure microcystinase and its detoxification mechanisms against MC-LR were revealed. The toxicity of purified linearized MC-LR was explored for the first time. These findings suggest that pure microcystinase may efficiently detoxify MCs and it is promising in the bioremediation of MC-polluted environments.
Collapse
Affiliation(s)
- Danping Cai
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, University of South China, Hengyang, China.
| | - Jia Wei
- Xiangya School of Public Health, Central South University, Changsha, China.
| | - Feiyu Huang
- The First People's Hospital of Jingzhou, Jingzhou, China.
| | - Hai Feng
- Xiangya School of Public Health, Central South University, Changsha, China.
| | - Tangjian Peng
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, University of South China, Hengyang, China.
| | - Jiayou Luo
- Xiangya School of Public Health, Central South University, Changsha, China.
| | - Fei Yang
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, University of South China, Hengyang, China; Xiangya School of Public Health, Central South University, Changsha, China.
| |
Collapse
|
16
|
Lin W, Hung TC, Kurobe T, Wang Y, Yang P. Microcystin-Induced Immunotoxicity in Fishes: A Scoping Review. Toxins (Basel) 2021; 13:765. [PMID: 34822549 PMCID: PMC8623247 DOI: 10.3390/toxins13110765] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 10/26/2021] [Accepted: 10/27/2021] [Indexed: 12/26/2022] Open
Abstract
Cyanobacteria (blue-green algae) have been present on Earth for over 2 billion years, and can produce a variety of bioactive molecules, such as cyanotoxins. Microcystins (MCs), the most frequently detected cyanotoxins, pose a threat to the aquatic environment and to human health. The classic toxic mechanism of MCs is the inhibition of the protein phosphatases 1 and 2A (PP1 and PP2A). Immunity is known as one of the most important physiological functions in the neuroendocrine-immune network to prevent infections and maintain internal homoeostasis in fish. The present review aimed to summarize existing papers, elaborate on the MC-induced immunotoxicity in fish, and put forward some suggestions for future research. The immunomodulatory effects of MCs in fish depend on the exposure concentrations, doses, time, and routes of exposure. Previous field and laboratory studies provided strong evidence of the associations between MC-induced immunotoxicity and fish death. In our review, we summarized that the immunotoxicity of MCs is primarily characterized by the inhibition of PP1 and PP2A, oxidative stress, immune cell damage, and inflammation, as well as apoptosis. The advances in fish immunoreaction upon encountering MCs will benefit the monitoring and prediction of fish health, helping to achieve an ecotoxicological goal and to ensure the sustainability of species. Future studies concerning MC-induced immunotoxicity should focus on adaptive immunity, the hormesis phenomenon and the synergistic effects of aquatic microbial pathogens.
Collapse
Affiliation(s)
- Wang Lin
- Hunan Provincial Collaborative Innovation Center for Efficient and Health Production of Fisheries, Hunan Provincial Key Laboratory for Health Aquaculture and Product Processing in Dongting Lake Area, Hunan Provincial Key Laboratory for Molecular Immunity Technology of Aquatic Animal Diseases, Hunan Engineering Research Center of Aquatic Organism Resources and Environmental Ecology, Zoology Key Laboratory of Hunan Higher Education, College of Life and Environmental Sciences, Hunan University of Arts and Science, Changde 415000, China;
- Department of Biological and Agricultural Engineering, University of California, Davis, CA 95616, USA; (T.-C.H.); (Y.W.)
- Department of Fisheries Resources and Environment, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Tien-Chieh Hung
- Department of Biological and Agricultural Engineering, University of California, Davis, CA 95616, USA; (T.-C.H.); (Y.W.)
| | - Tomofumi Kurobe
- Department of Anatomy, Physiology, and Cell Biology, University of California, Davis, CA 95616, USA;
| | - Yi Wang
- Department of Biological and Agricultural Engineering, University of California, Davis, CA 95616, USA; (T.-C.H.); (Y.W.)
| | - Pinhong Yang
- Hunan Provincial Collaborative Innovation Center for Efficient and Health Production of Fisheries, Hunan Provincial Key Laboratory for Health Aquaculture and Product Processing in Dongting Lake Area, Hunan Provincial Key Laboratory for Molecular Immunity Technology of Aquatic Animal Diseases, Hunan Engineering Research Center of Aquatic Organism Resources and Environmental Ecology, Zoology Key Laboratory of Hunan Higher Education, College of Life and Environmental Sciences, Hunan University of Arts and Science, Changde 415000, China;
| |
Collapse
|
17
|
Marmen S, Fadeev E, Al Ashhab A, Benet-Perelberg A, Naor A, Patil HJ, Cytryn E, Viner-Mozzini Y, Sukenik A, Lalzar M, Sher D. Seasonal Dynamics Are the Major Driver of Microbial Diversity and Composition in Intensive Freshwater Aquaculture. Front Microbiol 2021; 12:679743. [PMID: 34248892 PMCID: PMC8264503 DOI: 10.3389/fmicb.2021.679743] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 05/31/2021] [Indexed: 01/04/2023] Open
Abstract
Aquaculture facilities such as fishponds are one of the most anthropogenically impacted freshwater ecosystems. The high fish biomass reared in aquaculture is associated with an intensive input into the water of fish-feed and fish excrements. This nutrients load may affect the microbial community in the water, which in turn can impact the fish health. To determine to what extent aquaculture practices and natural seasonal cycles affect the microbial populations, we characterized the microbiome of an inter-connected aquaculture system at monthly resolution, over 3 years. The system comprised two fishponds, where fish are grown, and an operational water reservoir in which fish are not actively stocked. Clear natural seasonal cycles of temperature and inorganic nutrients concentration, as well as recurring cyanobacterial blooms during summer, were observed in both the fishponds and the reservoir. The structure of the aquatic bacterial communities in the system, characterized using 16S rRNA sequencing, was explained primarily by the natural seasonality, whereas aquaculture-related parameters had only a minor explanatory power. However, the cyanobacterial blooms were characterized by different cyanobacterial clades dominating at each fishpond, possibly in response to distinct nitrogen and phosphate ratios. In turn, nutrient ratios may have been affected by the magnitude of fish feed input. Taken together, our results show that, even in strongly anthropogenically impacted aquatic ecosystems, the structure of bacterial communities is mainly driven by the natural seasonality, with more subtle effects of aquaculture-related factors.
Collapse
Affiliation(s)
- Sophi Marmen
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel
| | - Eduard Fadeev
- Department of Functional and Evolutionary Ecology, University of Vienna, Vienna, Austria
| | - Ashraf Al Ashhab
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel
- Microbial Metagenomics Division, The Dead Sea and Arava Science Center, Masada, Israel
| | - Ayana Benet-Perelberg
- Dor Aquaculture Research Station, Fisheries Department, Israel Ministry of Agriculture and Rural Development, Dor, Israel
| | - Alon Naor
- Dor Aquaculture Research Station, Fisheries Department, Israel Ministry of Agriculture and Rural Development, Dor, Israel
| | - Hemant J. Patil
- Institute of Soil, Water and Environmental Sciences, Volcani Center, Agricultural Research Organization, Rishon Lezion, Israel
| | - Eddie Cytryn
- Institute of Soil, Water and Environmental Sciences, Volcani Center, Agricultural Research Organization, Rishon Lezion, Israel
| | - Yehudit Viner-Mozzini
- The Yigal Allon Kinneret Limnological Laboratory, Israel Oceanographic and Limnological Research, Migdal, Israel
| | - Assaf Sukenik
- The Yigal Allon Kinneret Limnological Laboratory, Israel Oceanographic and Limnological Research, Migdal, Israel
| | - Maya Lalzar
- Bioinformatics Service Unit, University of Haifa, Haifa, Israel
| | - Daniel Sher
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel
| |
Collapse
|
18
|
Díaz-Torres O, de Anda J, Lugo-Melchor OY, Pacheco A, Orozco-Nunnelly DA, Shear H, Senés-Guerrero C, Gradilla-Hernández MS. Rapid Changes in the Phytoplankton Community of a Subtropical, Shallow, Hypereutrophic Lake During the Rainy Season. Front Microbiol 2021; 12:617151. [PMID: 33767675 PMCID: PMC7986568 DOI: 10.3389/fmicb.2021.617151] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 02/11/2021] [Indexed: 11/21/2022] Open
Abstract
Lake Cajititlán is a small, shallow, subtropical lake located in an endorheic basin in western Mexico. It is characterized by a strong seasonality of climate with pronounced wet and dry seasons and has been classified as a hypereutrophic lake. This eutrophication was driven by improperly treated sewage discharges from four municipal wastewater treatment plants (WWTPs) and by excessive agricultural activities, including the overuse of fertilizers that reach the lake through surface runoff during the rainy season. This nutrient rich runoff has caused algal blooms, which have led to anoxic or hypoxic conditions, resulting in large-scale fish deaths that have occurred during or immediately after the rainy season. This study investigated the changes in the phytoplankton community in Lake Cajititlán during the rainy season and the association between these changes and the physicochemical water quality and environmental parameters measured in the lake’s basin. Planktothrix and Cylindrospermopsis were the dominant genera of the cyanobacterial community, while the Chlorophyceae, Chrysophyceae, and Trebouxiophyceae classes dominated the microalgae community. However, the results showed a significant temporal shift in the phytoplankton communities in Lake Cajititlán induced by the rainy season. The findings of this study suggest that significant climatic variations cause high seasonal surface runoff and rapid changes in the water quality (Chlorophyll-a, DO, NH4+, and NO3–) and in variations in the composition of the phytoplankton community. Finally, an alternation between phosphorus and nitrogen limitation was observed in Lake Cajititlán during the rainy season, clearly correlating to the presence of Planktothrix when the lake was limited by phosphorus and to the presence of Cylindrospermopsis when the lake was limited by nitrogen. The evidence presented in this study supports the idea that the death of fish in Lake Cajititlán could be mainly caused by anoxia, caused by rapid changes in water quality during the rainy season. Based on our review of the literature, this is the first study on the phytoplankton community in a subtropical lake during the rainy season using high throughput 16S rRNA and 18S rRNA amplicon sequencing.
Collapse
Affiliation(s)
- Osiris Díaz-Torres
- Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, A.C., Unidad de Servicios Analiticos y Metrologicos, Guadalajara, Mexico
| | - José de Anda
- Departamento de Tecnologia Ambiental, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, A.C., Zapopan, Mexico
| | - Ofelia Yadira Lugo-Melchor
- Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, A.C., Unidad de Servicios Analiticos y Metrologicos, Guadalajara, Mexico
| | - Adriana Pacheco
- Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, Monterrey, Mexico
| | | | - Harvey Shear
- Department of Geography, Geomatics and Environment, University of Toronto-Mississauga, Mississauga, ON, Canada
| | | | | |
Collapse
|
19
|
Henri J, Lanceleur R, Delmas JM, Fessard V, Huguet A. Permeability of the Cyanotoxin Microcystin-RR across a Caco-2 Cells Monolayer. Toxins (Basel) 2021; 13:toxins13030178. [PMID: 33673481 PMCID: PMC7997155 DOI: 10.3390/toxins13030178] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/19/2021] [Accepted: 02/24/2021] [Indexed: 12/27/2022] Open
Abstract
Microcystins (MCs) are toxins produced by several cyanobacterial species found worldwide. While MCs have a common structure, the variation of two amino acids in their structure affects their toxicity. As toxicodynamics are very similar between the MC variants, their differential toxicity could rather be explained by toxicokinetic parameters. Microcystin-RR (MC-RR) is the second most abundant congener and induces toxicity through oral exposure. As intestinal permeability is a key parameter of oral toxicokinetics, the apparent permeability of MC-RR across a differentiated intestinal Caco-2 cell monolayer was investigated. We observed a rapid and large decrease of MC-RR levels in the donor compartment. However, irrespective of the loaded concentration and exposure time, the permeabilities were very low from apical to basolateral compartments (from 4 to 15 × 10−8 cm·s−1) and from basolateral to apical compartments (from 2 to 37 × 10−8 cm·s−1). Our results suggested that MC-RR would be poorly absorbed orally. As similar low permeability was reported for the most abundant congener microcystin-LR, and this variant presented a greater acute oral toxicity than MC-RR, we concluded that the intestinal permeability was probably not involved in the differential toxicity between them, in contrast to the hepatic uptake and metabolism.
Collapse
|
20
|
Dexter J, McCormick AJ, Fu P, Dziga D. Microcystinase - a review of the natural occurrence, heterologous expression, and biotechnological application of MlrA. WATER RESEARCH 2021; 189:116646. [PMID: 33246218 DOI: 10.1016/j.watres.2020.116646] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 11/01/2020] [Accepted: 11/14/2020] [Indexed: 06/11/2023]
Abstract
Microcystinase (MlrA) was first described in 1996. Since then MlrA peptidase activity has proven to be both the most efficient enzymatic process and the most specific catalyst of all known microcystins detoxification pathways. Furthermore, MlrA and the MlrABC degradation pathway are presently the only enzymatic processes with clear genetic and biochemical descriptions available for microcystins degradation, greatly facilitating modern applied genetics for any relevant technological development. Recently, there has been increasing interest in the potential of sustainable, biologically inspired alternatives to current industrial practice, with note that biological microcystins degradation is the primary detoxification process found in nature. While previous reviews have broadly discussed microbial biodegradation processes, here we present a review focused specifically on MlrA. Following a general overview, we briefly highlight the initial discovery and present understanding of the MlrABC degradation pathway, before discussing the genetic and biochemical aspects of MlrA. We then review the potential biotechnology applications of MlrA in the context of available literature with emphasis on the optimization of MlrA for in situ applications including (i) direct modulation of Mlr activity within naturally existing populations, (ii) bioaugmentation of systems with introduced biodegradative capacity via whole cell biocatalysts, and (iii) bioremediation via direct MlrA application.
Collapse
Affiliation(s)
- Jason Dexter
- Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 31-007 Kraków, Poland; Cyanoworks, LLC, 1771 Haskell Rd., Olean, NY 14760, USA.
| | - Alistair J McCormick
- SynthSys & Institute of Molecular Plant Sciences, School of Biological Sciences, King's Buildings, University of Edinburgh, EH9 3BF, UK.
| | - Pengcheng Fu
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, 58 Renmin Avenue, Meilan District, Haikou, Hainan Province, 570228 China.
| | - Dariusz Dziga
- Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 31-007 Kraków, Poland.
| |
Collapse
|
21
|
De Novo Profiling of Long Non-Coding RNAs Involved in MC-LR-Induced Liver Injury in Whitefish: Discovery and Perspectives. Int J Mol Sci 2021; 22:ijms22020941. [PMID: 33477898 PMCID: PMC7833382 DOI: 10.3390/ijms22020941] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 01/08/2021] [Accepted: 01/15/2021] [Indexed: 12/18/2022] Open
Abstract
Microcystin-LR (MC-LR) is a potent hepatotoxin for which a substantial gap in knowledge persists regarding the underlying molecular mechanisms of liver toxicity and injury. Although long non-coding RNAs (lncRNAs) have been extensively studied in model organisms, our knowledge concerning the role of lncRNAs in liver injury is limited. Given that lncRNAs show low levels of sequence conservation, their role becomes even more unclear in non-model organisms without an annotated genome, like whitefish (Coregonus lavaretus). The objective of this study was to discover and profile aberrantly expressed polyadenylated lncRNAs that are involved in MC-LR-induced liver injury in whitefish. Using RNA sequencing (RNA-Seq) data, we de novo assembled a high-quality whitefish liver transcriptome. This enabled us to find 94 differentially expressed (DE) putative evolutionary conserved lncRNAs, such as MALAT1, HOTTIP, HOTAIR or HULC, and 4429 DE putative novel whitefish lncRNAs, which differed from annotated protein-coding transcripts (PCTs) in terms of minimum free energy, guanine-cytosine (GC) base-pair content and length. Additionally, we identified DE non-coding transcripts that might be 3′ autonomous untranslated regions (3′UTRs) of mRNAs. We found both evolutionary conserved lncRNAs as well as novel whitefish lncRNAs that could serve as biomarkers of liver injury.
Collapse
|
22
|
Mallia V, Verhaegen S, Styrishave B, Eriksen GS, Johannsen ML, Ropstad E, Uhlig S. Microcystins and Microcystis aeruginosa PCC7806 extracts modulate steroidogenesis differentially in the human H295R adrenal model. PLoS One 2020; 15:e0244000. [PMID: 33320886 PMCID: PMC7737990 DOI: 10.1371/journal.pone.0244000] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Accepted: 12/02/2020] [Indexed: 11/30/2022] Open
Abstract
The aim of this study was to investigate the potential interference of cyanobacterial metabolites, in particular microcystins (MCs), with steroid hormone biosynthesis. Steroid hormones control many fundamental processes in an organism, thus alteration of their tissue concentrations may affect normal homeostasis. We used liquid chromatography–tandem mass spectrometry (LC–MS/MS) to investigate the modulation of 14 hormones involved in the adrenal steroid biosynthesis pathway using forskolin-treated H295R cells, following exposure with either microcystin-LR (MC-LR) alone, a mixture made up of MC-LR together with eight other MCs and nodularin-R (NOD-R), or extracts from the MC-LR-producing Microcystis aeruginosa PCC7806 strain or its MC-deficient mutant PCC7806mcyB−. Production of 17-hydroxypregnenolone and dehydroepiandrosterone (DHEA) was increased in the presence of MC-LR in a dose-dependent manner, indicating an inhibitory effect on 3β-hydroxysteroid dehydrogenase (3β-HSD). This effect was not observed following exposure with a MCs/NOD-R mixture, and thus the effect of MC-LR on 3β-HSD appears to be stronger than for other congeners. Exposure to extracts from both M. aeruginosa PCC7806 and M. aeruginosa PCC7806mcyB− had an opposite effect on 3β-HSD, i.e. concentrations of pregnenolone, 17-hydroxypregnenolone and DHEA were significantly decreased, showing that there are other cyanobacterial metabolites that outcompete the effect of MC-LR, and possibly result instead in net-induction. Another finding was a possible concentration-dependent inhibition of CYP21A2 or CYP11β1, which catalyse oxidation reactions leading to cortisol and cortisone, by MC-LR and the MCs/NOD-R mixture. However, both M. aeruginosa PCC7806 and M. aeruginosa PCC7806mcyB− extracts had an opposite effect resulting in a substantial increase in cortisol levels. Our results suggest that MCs can modulate steroidogenesis, but the net effect of the M. aeruginosa metabolome on steroidogenesis is different from that of pure MC-LR and independent of MC production.
Collapse
Affiliation(s)
- Vittoria Mallia
- Toxinology Research Group, Norwegian Veterinary Institute, Oslo, Norway
- Department of Chemistry, University of Oslo, Oslo, Norway
| | - Steven Verhaegen
- Faculty of Veterinary Medicine, Department of Production Animal Clinical Sciences, Norwegian University of Life Sciences, Oslo, Norway
| | - Bjarne Styrishave
- Faculty of Health and Medical Sciences, Toxicology and Drug Metabolism Group, Department of Pharmacy, University of Copenhagen, Copenhagen, Denmark
| | | | - Malene Louise Johannsen
- Faculty of Health and Medical Sciences, Toxicology and Drug Metabolism Group, Department of Pharmacy, University of Copenhagen, Copenhagen, Denmark
| | - Erik Ropstad
- Faculty of Veterinary Medicine, Department of Production Animal Clinical Sciences, Norwegian University of Life Sciences, Oslo, Norway
| | - Silvio Uhlig
- Toxinology Research Group, Norwegian Veterinary Institute, Oslo, Norway
- * E-mail:
| |
Collapse
|
23
|
Sarkar S, Saha P, Seth RK, Mondal A, Bose D, Kimono D, Albadrani M, Mukherjee A, Porter DE, Scott GI, Xiao S, Brooks B, Ferry J, Nagarkatti M, Nagarkatti P, Chatterjee S. Higher intestinal and circulatory lactate associated NOX2 activation leads to an ectopic fibrotic pathology following microcystin co-exposure in murine fatty liver disease. Comp Biochem Physiol C Toxicol Pharmacol 2020; 238:108854. [PMID: 32781293 PMCID: PMC7541568 DOI: 10.1016/j.cbpc.2020.108854] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 06/14/2020] [Accepted: 07/03/2020] [Indexed: 12/11/2022]
Abstract
Clinical studies implicated an increased risk of intestinal fibrosis in patients with nonalcoholic fatty liver disease (NAFLD). Our previous studies have shown that microcystin-LR (MC-LR) exposure led to altered gut microbiome and increased abundance of lactate producing bacteria and intestinal inflammation in underlying NAFLD. This led us to further investigate the effects of the MC-LR, a PP2A inhibitor in activating the TGF-β fibrotic pathway in the intestines that might be mediated by increased lactate induced redox enzyme NOX2. Exposure to MC-LR led to higher lactate levels in circulation and in the intestinal content. The higher lactate levels were associated with NOX2 activation in vivo that led to increased Smad2/3-Smad4 co-localization and high alpha-smooth muscle actin (α-SMA) immunoreactivity in the intestines. Mechanistically, primary mouse intestinal epithelial cells treated with lactate and MC-LR separately led to higher NOX2 activation, phosphorylation of TGFβR1 receptor and subsequent Smad 2/3-Smad4 co-localization inhibitable by apocynin (NOX2 inhibitor), FBA (a peroxynitrite scavenger) and DMPO (a nitrone spin trap), catalase and superoxide dismutase. Inhibition of NOX2-induced redox signaling also showed a significant decrease in collagen protein thus suggesting a strong redox signaling induced activation of an ectopic fibrotic manifestation in the intestines. In conclusion, the present study provides mechanistic insight into the role of microcystin in dysbiosis-linked lactate production and subsequently advances our knowledge in lactate-induced NOX2 exacerbation of the cell differentiation and fibrosis in the NAFLD intestines.
Collapse
Affiliation(s)
- Sutapa Sarkar
- Environmental Health and Disease Laboratory, Department of Environmental Health Sciences, University of South Carolina, USA
| | - Punnag Saha
- Environmental Health and Disease Laboratory, Department of Environmental Health Sciences, University of South Carolina, USA
| | - Ratanesh K Seth
- Environmental Health and Disease Laboratory, Department of Environmental Health Sciences, University of South Carolina, USA
| | - Ayan Mondal
- Environmental Health and Disease Laboratory, Department of Environmental Health Sciences, University of South Carolina, USA
| | - Dipro Bose
- Environmental Health and Disease Laboratory, Department of Environmental Health Sciences, University of South Carolina, USA
| | - Diana Kimono
- Environmental Health and Disease Laboratory, Department of Environmental Health Sciences, University of South Carolina, USA
| | - Muayad Albadrani
- Environmental Health and Disease Laboratory, Department of Environmental Health Sciences, University of South Carolina, USA
| | | | - Dwayne E Porter
- NIEHS Center for Oceans and Human Health on Climate Change Interactions, Department of Environmental Health Sciences, University of South Carolina, USA
| | - Geoff I Scott
- NIEHS Center for Oceans and Human Health on Climate Change Interactions, Department of Environmental Health Sciences, University of South Carolina, USA
| | - Shuo Xiao
- NIEHS Center for Oceans and Human Health on Climate Change Interactions, Department of Environmental Health Sciences, University of South Carolina, USA
| | - Bryan Brooks
- Department of Environmental Science, Baylor University, USA
| | - John Ferry
- Department of Chemistry and Biochemistry, University of South Carolina, USA
| | - Mitzi Nagarkatti
- Pathology, Microbiology and Immunology(,) University of South Carolina School of Medicine, USA
| | - Prakash Nagarkatti
- Pathology, Microbiology and Immunology(,) University of South Carolina School of Medicine, USA
| | - Saurabh Chatterjee
- Environmental Health and Disease Laboratory, Department of Environmental Health Sciences, University of South Carolina, USA.
| |
Collapse
|
24
|
Biales AD, Bencic DC, Flick RW, Delacruz A, Gordon DA, Huang W. Global transcriptomic profiling of microcystin-LR or -RR treated hepatocytes (HepaRG). Toxicon X 2020; 8:100060. [PMID: 33235993 PMCID: PMC7670210 DOI: 10.1016/j.toxcx.2020.100060] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 09/24/2020] [Accepted: 09/27/2020] [Indexed: 12/20/2022] Open
Abstract
The canonical mode of action (MOA) of microcystins (MC) is the inhibition of protein phosphatases, but complete characterization of toxicity pathways is lacking. The existence of over 200 MC congeners complicates risk estimates worldwide. This work employed RNA-seq to provide an unbiased and comprehensive characterization of cellular targets and impacted cellular processes of hepatocytes exposed to either MC-LR or MC-RR congeners. The human hepatocyte cell line, HepaRG, was treated with three concentrations of MC-LR or -RR for 2 h. Significant reduction in cell survival was observed in LR1000 and LR100 treatments whereas no acute toxicity was observed in any MR-RR treatment. RNA-seq was performed on all treatments of MC-LR and -RR. Differentially expressed genes and pathways associated with oxidative and endoplasmic reticulum (ER) stress, and the unfolded protein response (UPR) were highly enriched by both congeners as were inflammatory pathways. Genes associated with both apoptotic and inflammatory pathways were enriched in LR1000. We present a model of MC toxicity that immediately causes oxidative stress and leads to ER stress and the activation of the UPR. Differential activation of the three arms of the UPR and the kinetics of JNK activation ultimately determine whether cell survival or apoptosis is favored. Extracellular exosomes were enrichment of by both congeners, suggesting a previously unidentified mechanism for MC-dependent extracellular signaling. The complement system was enriched only in MC-RR treatments, suggesting congener-specific differences in cellular effects. This study provided an unbiased snapshot of the early systemic hepatocyte response to MC-LR and MC-RR congeners and may explain differences in toxicity among MC congeners.
Microcystin-LR and microcystin-RR have similar transcriptional responses. Genes associated with oxidative stress and the unfolded protein response were enriched by congeners. Genes associated with extracellular exosomes were enriched, suggesting a potential new mechanism for cell signaling. Complement associated genes were strongly enriched only by microcystin-RR. Identified a potential molecular mechanism underlying the cellular fate of hepatocyte.
Collapse
Affiliation(s)
- Adam D Biales
- U.S. Environmental Protection Agency, Office of Research and Development, Cincinnati, OH, 45268, USA
| | - David C Bencic
- U.S. Environmental Protection Agency, Office of Research and Development, Cincinnati, OH, 45268, USA
| | - Robert W Flick
- U.S. Environmental Protection Agency, Office of Research and Development, Cincinnati, OH, 45268, USA
| | - Armah Delacruz
- U.S. Environmental Protection Agency, Office of Research and Development, Cincinnati, OH, 45268, USA
| | - Denise A Gordon
- U.S. Environmental Protection Agency, Office of Research and Development, Cincinnati, OH, 45268, USA
| | - Weichun Huang
- U.S. Environmental Protection Agency, Office of Research and Development, Research Triangle Park, NC, 27709, USA
| |
Collapse
|
25
|
Liu C, Ersan MS, Wagner E, Plewa MJ, Amy G, Karanfil T. Toxicity of chlorinated algal-impacted waters: Formation of disinfection byproducts vs. reduction of cyanotoxins. WATER RESEARCH 2020; 184:116145. [PMID: 32771689 DOI: 10.1016/j.watres.2020.116145] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 06/02/2020] [Accepted: 07/02/2020] [Indexed: 05/26/2023]
Abstract
Seasonal algal blooms in surface waters can impact water quality through an input of algal organic matter (AOM) to the pool of dissolved organic matter as well as the release of cyanotoxins. The formation and speciation of disinfection byproducts (DBPs) during chlorination of algal-impacted waters, collected from growth of Microcystis aeruginosa were studied. Second-order rate constants for the reactions of microcystins (MCs) with chlorine and bromine were determined. Finally, the toxicity of chlorinated algal-impacted waters was evaluated by Chinese hamster ovary (CHO) cytotoxicity and genotoxicity assays. Under practical water treatment conditions, algal-impacted waters produced less regulated trihalomethanes (THMs) and haloacetic acids (HAAs), haloacetonitriles (HANs), and total organic halogen (TOX) than natural organic matter (NOM). For example, the weight ratios of DBP formation from AOM to NOM (median levels) were approximately 1:5, 1:3, 1:2 and 1:3 for THMs, HAAs, HANs, and TOX, respectively. Increasing initial bromide level significantly enhanced THM and HAN concentrations, and therefore unknown TOX decreased. The second-order rate constant for the reactions of MC-LR (the most common MC species) with chlorine was 60 M-1 s-1 at pH 7.5 and 21 °C, and the rate constants for MC congeners follow the order: MC-WR > MC-LW > MC-YR > MC-LY > MC-LR ≈ MC-RR. The reaction rate constant of bromine with MC-LR is two orders of magnitude higher than that of chlorine. Unchlorinated algal-impacted waters were toxic owning to the presence of MCs, and chlorination enhanced their cytotoxicity and genotoxicity due to the formation of toxic halogenated DBPs. However, the toxicity of treated waters depended on the evolution of cyanotoxins and formation of DBPs (particularly unknown or emerging DBPs).
Collapse
Affiliation(s)
- Chao Liu
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; Department of Environmental Engineering and Earth Sciences, Clemson University, Anderson, SC, 29625, USA
| | - Mahmut S Ersan
- Department of Environmental Engineering and Earth Sciences, Clemson University, Anderson, SC, 29625, USA
| | - Elizabeth Wagner
- Department of Crop Sciences, and the Safe Global Water Institute, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Michael J Plewa
- Department of Crop Sciences, and the Safe Global Water Institute, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Gary Amy
- Department of Environmental Engineering and Earth Sciences, Clemson University, Anderson, SC, 29625, USA
| | - Tanju Karanfil
- Department of Environmental Engineering and Earth Sciences, Clemson University, Anderson, SC, 29625, USA.
| |
Collapse
|
26
|
Kumar P, Rautela A, Kesari V, Szlag D, Westrick J, Kumar S. Recent developments in the methods of quantitative analysis of microcystins. J Biochem Mol Toxicol 2020; 34:e22582. [PMID: 32662914 DOI: 10.1002/jbt.22582] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 05/21/2020] [Accepted: 06/30/2020] [Indexed: 12/15/2022]
Abstract
Cyanotoxins are produced by the toxic cyanobacterial species present in algal blooms formed in water bodies due to nutrient over-enrichment by human influences and natural environmental conditions. Extensive studies are available on the most widely encountered cyanotoxins, microcystins (MCs) in fresh and brackish water bodies. MC contaminated water poses severe risks to human health, environmental sustainability, and aquatic life. Therefore, commonly occurring MCs should be monitored. Occasionally, detection and quantification of these toxins are difficult due to the unavailability of pure standards. Enzymatic, immunological assays, and analytical techniques like protein phosphatase inhibition assay, enzyme-linked immunosorbent assay, high-performance liquid chromatography, liquid chromatography-mass spectrometry, and biosensors are used for their detection and quantification. There is no single method for the detection of all the different types of MCs; therefore, various techniques are often combined to yield reliable results. Biosensor development offered a problem-solving approach in the detection of MCs due to their high accuracy, sensitivity, rapid response, and portability. In this review, an endeavor has been made to uncover emerging techniques used for the detection and quantification of the MCs.
Collapse
Affiliation(s)
- Piyush Kumar
- School of Biochemical Engineering, Indian Institute of Technology (Banaras Hindu University) Varanasi, Varanasi, Uttar Pradesh, India
| | - Akhil Rautela
- School of Biochemical Engineering, Indian Institute of Technology (Banaras Hindu University) Varanasi, Varanasi, Uttar Pradesh, India
| | - Vigya Kesari
- Department of Botany, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - David Szlag
- Department of Chemistry, Lumigen Instrument Center, Wayne State University, Detroit, Michigan
| | - Judy Westrick
- Department of Chemistry, Lumigen Instrument Center, Wayne State University, Detroit, Michigan
| | - Sanjay Kumar
- School of Biochemical Engineering, Indian Institute of Technology (Banaras Hindu University) Varanasi, Varanasi, Uttar Pradesh, India
| |
Collapse
|
27
|
Huang P, Chen K, Ma T, Cao N, Weng D, Xu C, Xu L. The effects of short-term treatment of microcystin-LR on the insulin pathway in both the HL7702 cell line and livers of mice. ENVIRONMENTAL TOXICOLOGY 2020; 35:727-737. [PMID: 32073747 DOI: 10.1002/tox.22907] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 12/07/2019] [Accepted: 01/17/2020] [Indexed: 06/10/2023]
Abstract
Our previous work indicated exposure of Human liver cell 7702 (HL7702) cells to Microcystin-leucine-arginine (MC-LR) for 24 hours can disrupt insulin (INS) signaling by the hyperphosphorylation of specific proteins. For further exploring the time-dependent effect posed by MC-LR on this pathway, in the current study, HL7702 cells together with mice were exposed to the MC-LR with different concentrations under short-term treatment, and then, protein phosphatase 2A (PP2A) activity and expression of proteins related to INS signaling, as well as the characteristics of their action in the liver, were investigated. The results indicated, in HL7702 cells with 0.5, 1, and 6 hours of treatment by MC-LR, PP2A activity showed an obvious decrease in a time and concentration-dependent manner. While the total protein level of Akt, glycogen synthase kinase 3 (GSK-3), and glycogen synthase remained unchanged, GSK-3 and Akt phosphorylation increased significantly. In livers of mice with 1 hour of intraperitoneal injection with MC-LR, a similar change in these proteins was observed. In addition, the levels of total IRS1 and p-IRS1 at serine sites showed decreasing and increasing trends,respectively, and the hematoxylin and eosin staining showed that liver tissues of mice in the maximum-dose group exhibited obvious hepatocyte degeneration and hemorrhage. Our results further proved that short-term treatment with MC-LR can inhibit PP2A activity and disrupt INS signaling proteins' phosphorylation level, thereby interfering with the INS pathway. Our findings provide a helpful understanding of the toxic effects posed by MC-LR on the glucose metabolism of liver via interference with the INS signaling pathway.
Collapse
Affiliation(s)
- Pu Huang
- Department of Biochemistry, School of Medicine, Zhejiang University, Hangzhou, China
| | - Kele Chen
- Department of Biochemistry, School of Medicine, Zhejiang University, Hangzhou, China
| | - Tianfeng Ma
- Department I of Clinical Medicine, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Naifang Cao
- Department I of Clinical Medicine, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Dengpo Weng
- Department of Biochemistry, School of Medicine, Zhejiang University, Hangzhou, China
| | - Chun Xu
- Department of Endocrinology, The Third Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Lihong Xu
- Department of Biochemistry, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
28
|
Di Gioia D, Bozzi Cionci N, Baffoni L, Amoruso A, Pane M, Mogna L, Gaggìa F, Lucenti MA, Bersano E, Cantello R, De Marchi F, Mazzini L. A prospective longitudinal study on the microbiota composition in amyotrophic lateral sclerosis. BMC Med 2020; 18:153. [PMID: 32546239 PMCID: PMC7298784 DOI: 10.1186/s12916-020-01607-9] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 04/27/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND A connection between amyotrophic lateral sclerosis (ALS) and altered gut microbiota composition has previously been reported in animal models. This work is the first prospective longitudinal study addressing the microbiota composition in ALS patients and the impact of a probiotic supplementation on the gut microbiota and disease progression. METHODS Fifty patients and 50 matched controls were enrolled. The microbial profile of stool samples from patients and controls was analyzed via PCR-Denaturing Gradient Gel Electrophoresis, and the main microbial groups quantified via qPCR. The whole microbiota was then analyzed via next generation sequencing after amplification of the V3-V4 region of 16S rDNA. Patients were then randomized to receive probiotic treatment or placebo and followed up for 6 months with ALSFRS-R, BMI, and FVC%. RESULTS The results demonstrate that the gut microbiota of ALS patients is characterized by some differences with respect to controls, regardless of the disability degree. Moreover, the gut microbiota composition changes during the course of the disease as demonstrated by the significant decrease in the number of observed operational taxonomic unit during the follow-up. Interestingly, an unbalance between potentially protective microbial groups, such as Bacteroidetes, and other with potential neurotoxic or pro-inflammatory activity, such as Cyanobacteria, has been shown. The 6-month probiotic treatment influenced the gut microbial composition; however, it did not bring the biodiversity of intestinal microbiota of patients closer to that of control subjects and no influence on the progression of the disease measured by ALSFRS-R was demonstrated. CONCLUSIONS Our study poses the bases for larger clinical studies to characterize the microbiota changes as a novel ALS biomarker and to test new microbial strategy to ameliorate the health status of the gut. TRIAL REGISTRATION CE 107/14, approved by the Ethics Committee of the "Maggiore della Carità" University Hospital, Italy.
Collapse
Affiliation(s)
- Diana Di Gioia
- Department of Agricultural and Food Sciences, University of Bologna, Viale Fanin 42, Bologna, Italy
| | - Nicole Bozzi Cionci
- Department of Agricultural and Food Sciences, University of Bologna, Viale Fanin 42, Bologna, Italy
| | - Loredana Baffoni
- Department of Agricultural and Food Sciences, University of Bologna, Viale Fanin 42, Bologna, Italy
| | - Angela Amoruso
- BIOLAB RESEARCH srl, via E. Mattei 3, 28100, Novara, Italy
| | - Marco Pane
- BIOLAB RESEARCH srl, via E. Mattei 3, 28100, Novara, Italy
| | - Luca Mogna
- BIOLAB RESEARCH srl, via E. Mattei 3, 28100, Novara, Italy
| | - Francesca Gaggìa
- Department of Agricultural and Food Sciences, University of Bologna, Viale Fanin 42, Bologna, Italy
| | - Maria Ausiliatrice Lucenti
- Department of Neurology and ALS Centre, University of Piemonte Orientale, Maggiore della Carità Hospital, Corso Mazzini 18, 28100, Novara, Italy
| | - Enrica Bersano
- Department of Neurology and ALS Centre, University of Piemonte Orientale, Maggiore della Carità Hospital, Corso Mazzini 18, 28100, Novara, Italy
| | - Roberto Cantello
- Department of Neurology and ALS Centre, University of Piemonte Orientale, Maggiore della Carità Hospital, Corso Mazzini 18, 28100, Novara, Italy
| | - Fabiola De Marchi
- Department of Neurology and ALS Centre, University of Piemonte Orientale, Maggiore della Carità Hospital, Corso Mazzini 18, 28100, Novara, Italy
| | - Letizia Mazzini
- Department of Neurology and ALS Centre, University of Piemonte Orientale, Maggiore della Carità Hospital, Corso Mazzini 18, 28100, Novara, Italy.
| |
Collapse
|
29
|
Baliu-Rodriguez D, Kucheriavaia D, Palagama DSW, Lad A, O’Neill GM, Birbeck JA, Kennedy DJ, Haller ST, Westrick JA, Isailovic D. Development and Application of Extraction Methods for LC-MS Quantification of Microcystins in Liver Tissue. Toxins (Basel) 2020; 12:toxins12040263. [PMID: 32325806 PMCID: PMC7232250 DOI: 10.3390/toxins12040263] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 04/11/2020] [Accepted: 04/13/2020] [Indexed: 11/25/2022] Open
Abstract
A method was developed to extract and quantify microcystins (MCs) from mouse liver with limits of quantification (LOQs) lower than previously reported. MCs were extracted from 40-mg liver samples using 85:15 (v:v) CH3CN:H2O containing 200 mM ZnSO4 and 1% formic acid. Solid-phase extraction with a C18 cartridge was used for sample cleanup. MCs were detected and quantified using HPLC-orbitrap-MS with simultaneous MS/MS detection of the 135.08 m/z fragment from the conserved Adda amino acid for structural confirmation. The method was used to extract six MCs (MC-LR, MC-RR, MC-YR, MC-LA, MC-LF, and MC-LW) from spiked liver tissue and the MC-LR cysteine adduct (MC-LR-Cys) created by the glutathione detoxification pathway. Matrix-matched internal standard calibration curves were constructed for each MC (R2 ≥ 0.993), with LOQs between 0.25 ng per g of liver tissue (ng/g) and 0.75 ng/g for MC-LR, MC-RR, MC-YR, MC-LA, and MC-LR-Cys, and 2.5 ng/g for MC-LF and MC-LW. The protocol was applied to extract and quantify MC-LR and MC-LR-Cys from the liver of mice that had been gavaged with 50 µg or 100 µg of MC-LR per kg bodyweight and were euthanized 2 h, 4 h, or 48 h after final gavage. C57Bl/6J (wild type, control) and Leprdb/J (experiment) mice were used as a model to study non-alcoholic fatty liver disease. The Leprdb/J mice were relatively inefficient in metabolizing MC-LR into MC-LR-Cys, which is an important defense mechanism against MC-LR exposure. Trends were also observed as a function of MC-LR gavage amount and time between final MC-LR gavage and euthanasia/organ harvest.
Collapse
Affiliation(s)
- David Baliu-Rodriguez
- Department of Chemistry and Biochemistry, University of Toledo, Toledo, OH 43606, USA; (D.B.-R.); (D.K.); (D.S.W.P.)
| | - Daria Kucheriavaia
- Department of Chemistry and Biochemistry, University of Toledo, Toledo, OH 43606, USA; (D.B.-R.); (D.K.); (D.S.W.P.)
| | - Dilrukshika S. W. Palagama
- Department of Chemistry and Biochemistry, University of Toledo, Toledo, OH 43606, USA; (D.B.-R.); (D.K.); (D.S.W.P.)
| | - Apurva Lad
- Department of Medicine, University of Toledo Medical Center, Toledo, OH 43614, USA; (A.L.); (D.J.K.); (S.T.H.)
| | - Grace M. O’Neill
- Department of Chemistry, Wayne State University, Detroit, MI 48202, USA; (G.M.O.); (J.A.B.); (J.A.W.)
| | - Johnna A. Birbeck
- Department of Chemistry, Wayne State University, Detroit, MI 48202, USA; (G.M.O.); (J.A.B.); (J.A.W.)
| | - David J. Kennedy
- Department of Medicine, University of Toledo Medical Center, Toledo, OH 43614, USA; (A.L.); (D.J.K.); (S.T.H.)
| | - Steven T. Haller
- Department of Medicine, University of Toledo Medical Center, Toledo, OH 43614, USA; (A.L.); (D.J.K.); (S.T.H.)
| | - Judy A. Westrick
- Department of Chemistry, Wayne State University, Detroit, MI 48202, USA; (G.M.O.); (J.A.B.); (J.A.W.)
| | - Dragan Isailovic
- Department of Chemistry and Biochemistry, University of Toledo, Toledo, OH 43606, USA; (D.B.-R.); (D.K.); (D.S.W.P.)
- Correspondence:
| |
Collapse
|
30
|
Mallia V, Ivanova L, Eriksen GS, Harper E, Connolly L, Uhlig S. Investigation of In Vitro Endocrine Activities of Microcystis and Planktothrix Cyanobacterial Strains. Toxins (Basel) 2020; 12:toxins12040228. [PMID: 32260386 PMCID: PMC7232361 DOI: 10.3390/toxins12040228] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 03/29/2020] [Accepted: 04/01/2020] [Indexed: 12/29/2022] Open
Abstract
Cyanobacteria are cosmopolitan photosynthetic prokaryotes that can form dense accumulations in aquatic environments. They are able to produce many bioactive metabolites, some of which are potentially endocrine disrupting compounds, i.e., compounds that interfere with the hormonal systems of animals and humans. Endocrine disruptors represent potential risks to both environmental and human health, making them a global challenge. The aim of this study was to investigate the potential endocrine disrupting activities with emphasis on estrogenic effects of extracts from cultures of Microcystis or Planktothrix species. We also assessed the possible role of microcystins, some of the most studied cyanobacterial toxins, and thus included both microcystin-producing and non-producing strains. Extracts from 26 cyanobacterial cultures were initially screened in estrogen-, androgen-, and glucocorticoid-responsive reporter-gene assays (RGAs) in order to identify endocrine disruption at the level of nuclear receptor transcriptional activity. Extracts from selected strains were tested repeatedly in the estrogen-responsive RGAs, but the observed estrogen agonist and antagonist activity was minor and similar to that of the cyanobacteria growth medium control. We thus focused on another, non-receptor mediated mechanism of action, and studied the 17β-estradiol (natural estrogen hormone) biotransformation in human liver microsomes in the presence or absence of microcystin-LR (MC-LR), or an extract from the MC-LR producing M. aeruginosa PCC7806 strain. Our results show a modulating effect on the estradiol biotransformation. Thus, while 2-hydroxylation was significantly decreased following co-incubation of 17β-estradiol with MC-LR or M. aeruginosa PCC7806 extract, the relative concentration of estrone was increased.
Collapse
MESH Headings
- Bacterial Toxins/metabolism
- Bacterial Toxins/toxicity
- Biotransformation
- Cell Line, Transformed
- Endocrine Disruptors/metabolism
- Endocrine Disruptors/toxicity
- Estradiol/metabolism
- Estrogens/metabolism
- Estrogens/pharmacology
- Genes, Reporter
- Humans
- Kinetics
- Microcystis/metabolism
- Microsomes, Liver/drug effects
- Microsomes, Liver/enzymology
- Planktothrix/metabolism
- Receptors, Androgen/drug effects
- Receptors, Androgen/genetics
- Receptors, Androgen/metabolism
- Receptors, Estrogen/drug effects
- Receptors, Estrogen/genetics
- Receptors, Estrogen/metabolism
- Receptors, Glucocorticoid/drug effects
- Receptors, Glucocorticoid/genetics
- Receptors, Glucocorticoid/metabolism
- Risk Assessment
Collapse
Affiliation(s)
- Vittoria Mallia
- Toxinology Research Group, Norwegian Veterinary Institute, Ullevålsveien 68, N-0454 Oslo, Norway; (L.I.); (G.S.E.); (S.U.)
- Department of Chemistry, University of Oslo, P.O. Box 1033, N-0315 Oslo, Norway
- Correspondence: or
| | - Lada Ivanova
- Toxinology Research Group, Norwegian Veterinary Institute, Ullevålsveien 68, N-0454 Oslo, Norway; (L.I.); (G.S.E.); (S.U.)
| | - Gunnar S. Eriksen
- Toxinology Research Group, Norwegian Veterinary Institute, Ullevålsveien 68, N-0454 Oslo, Norway; (L.I.); (G.S.E.); (S.U.)
| | - Emma Harper
- Institute for Global Food Security, School of Biological Sciences, Queen’s University Belfast, Belfast BT9 5DL, UK; (E.H.); (L.C.)
| | - Lisa Connolly
- Institute for Global Food Security, School of Biological Sciences, Queen’s University Belfast, Belfast BT9 5DL, UK; (E.H.); (L.C.)
| | - Silvio Uhlig
- Toxinology Research Group, Norwegian Veterinary Institute, Ullevålsveien 68, N-0454 Oslo, Norway; (L.I.); (G.S.E.); (S.U.)
| |
Collapse
|
31
|
Chen M, Xu CY, Wang X, Ren CY, Ding J, Li L. Comparative genomics analysis of c-di-GMP metabolism and regulation in Microcystis aeruginosa. BMC Genomics 2020; 21:217. [PMID: 32151246 PMCID: PMC7063779 DOI: 10.1186/s12864-020-6591-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 02/19/2020] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Cyanobacteria are of special concern because they proliferate in eutrophic water bodies worldwide and affect water quality. As an ancient photosynthetic microorganism, cyanobacteria can survive in ecologically diverse habitats because of their capacity to rapidly respond to environmental changes through a web of complex signaling networks, including using second messengers to regulate physiology or metabolism. A ubiquitous second messenger, bis-(3',5')-cyclic-dimeric-guanosine monophosphate (c-di-GMP), has been found to regulate essential behaviors in a few cyanobacteria but not Microcystis, which are the most dominant species in cyanobacterial blooms. In this study, comparative genomics analysis was performed to explore the genomic basis of c-di-GMP signaling in Microcystis aeruginosa. RESULTS Proteins involved in c-di-GMP metabolism and regulation, such as diguanylate cyclases, phosphodiesterases, and PilZ-containing proteins, were encoded in M. aeruginosa genomes. However, the number of identified protein domains involved in c-di-GMP signaling was not proportional to the size of M. aeruginosa genomes (4.97 Mb in average). Pan-genome analysis showed that genes involved in c-di-GMP metabolism and regulation are conservative in M. aeruginosa strains. Phylogenetic analysis showed good congruence between the two types of phylogenetic trees based on 31 highly conserved protein-coding genes and sensor domain-coding genes. Propensity for gene loss analysis revealed that most of genes involved in c-di-GMP signaling are stable in M. aeruginosa strains. Moreover, bioinformatics and structure analysis of c-di-GMP signal-related GGDEF and EAL domains revealed that they all possess essential conserved amino acid residues that bind the substrate. In addition, it was also found that all selected M. aeruginosa genomes encode PilZ domain containing proteins. CONCLUSIONS Comparative genomics analysis of c-di-GMP metabolism and regulation in M. aeruginosa strains helped elucidating the genetic basis of c-di-GMP signaling pathways in M. aeruginosa. Knowledge of c-di-GMP metabolism and relevant signal regulatory processes in cyanobacteria can enhance our understanding of their adaptability to various environments and bloom-forming mechanism.
Collapse
Affiliation(s)
- Meng Chen
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, China
| | - Chun-Yang Xu
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, China
| | - Xu Wang
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, China
| | - Chong-Yang Ren
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, China
| | - Jiao Ding
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, China
| | - Li Li
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, China
- Shandong Provincial Engineering Center on Environmental Science and Technology, Jinan, China
| |
Collapse
|
32
|
Popin RV, Delbaje E, de Abreu VAC, Rigonato J, Dörr FA, Pinto E, Sivonen K, Fiore MF. Genomic and Metabolomic Analyses of Natural Products in Nodularia spumigena Isolated from a Shrimp Culture Pond. Toxins (Basel) 2020; 12:toxins12030141. [PMID: 32106513 PMCID: PMC7150779 DOI: 10.3390/toxins12030141] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 02/13/2020] [Accepted: 02/21/2020] [Indexed: 11/16/2022] Open
Abstract
The bloom-forming cyanobacterium Nodularia spumigena CENA596 encodes the biosynthetic gene clusters (BGCs) of the known natural products nodularins, spumigins, anabaenopeptins/namalides, aeruginosins, mycosporin-like amino acids, and scytonemin, along with the terpenoid geosmin. Targeted metabolomics confirmed the production of these metabolic compounds, except for the alkaloid scytonemin. Genome mining of N. spumigena CENA596 and its three closely related Nodularia strains—two planktonic strains from the Baltic Sea and one benthic strain from Japanese marine sediment—revealed that the number of BGCs in planktonic strains was higher than in benthic one. Geosmin—a volatile compound with unpleasant taste and odor—was unique to the Brazilian strain CENA596. Automatic annotation of the genomes using subsystems technology revealed a related number of coding sequences and functional roles. Orthologs from the Nodularia genomes are involved in the primary and secondary metabolisms. Phylogenomic analysis of N. spumigena CENA596 based on 120 conserved protein sequences positioned this strain close to the Baltic Nodularia. Phylogeny of the 16S rRNA genes separated the Brazilian CENA596 strain from those of the Baltic Sea, despite their high sequence identities (99% identity, 100% coverage). The comparative analysis among planktic Nodularia strains showed that their genomes were considerably similar despite their geographically distant origin.
Collapse
Affiliation(s)
- Rafael Vicentini Popin
- Center for Nuclear Energy in Agriculture, University of São Paulo, Avenida Centenário 303, Piracicaba 13400-970, São Paulo, Brazil; (R.V.P.); (E.D.); (V.A.C.d.A.); (J.R.); (E.P.)
- Department of Microbiology, University of Helsinki, Viikinkaari 9, FI-00014 Helsinki, Finland;
| | - Endrews Delbaje
- Center for Nuclear Energy in Agriculture, University of São Paulo, Avenida Centenário 303, Piracicaba 13400-970, São Paulo, Brazil; (R.V.P.); (E.D.); (V.A.C.d.A.); (J.R.); (E.P.)
| | - Vinicius Augusto Carvalho de Abreu
- Center for Nuclear Energy in Agriculture, University of São Paulo, Avenida Centenário 303, Piracicaba 13400-970, São Paulo, Brazil; (R.V.P.); (E.D.); (V.A.C.d.A.); (J.R.); (E.P.)
- Institute of Exact and Natural Sciences, Federal University of Pará, Rua Augusto Corrêa 1, Belém 66075-10, Pará, Brazil
| | - Janaina Rigonato
- Center for Nuclear Energy in Agriculture, University of São Paulo, Avenida Centenário 303, Piracicaba 13400-970, São Paulo, Brazil; (R.V.P.); (E.D.); (V.A.C.d.A.); (J.R.); (E.P.)
| | - Felipe Augusto Dörr
- Faculty of Pharmaceutical Sciences, University of São Paulo, Avenida Professor Lineu Prestes, São Paulo 05508-000, São Paulo, Brazil;
| | - Ernani Pinto
- Center for Nuclear Energy in Agriculture, University of São Paulo, Avenida Centenário 303, Piracicaba 13400-970, São Paulo, Brazil; (R.V.P.); (E.D.); (V.A.C.d.A.); (J.R.); (E.P.)
- Faculty of Pharmaceutical Sciences, University of São Paulo, Avenida Professor Lineu Prestes, São Paulo 05508-000, São Paulo, Brazil;
| | - Kaarina Sivonen
- Department of Microbiology, University of Helsinki, Viikinkaari 9, FI-00014 Helsinki, Finland;
| | - Marli Fatima Fiore
- Center for Nuclear Energy in Agriculture, University of São Paulo, Avenida Centenário 303, Piracicaba 13400-970, São Paulo, Brazil; (R.V.P.); (E.D.); (V.A.C.d.A.); (J.R.); (E.P.)
- Correspondence:
| |
Collapse
|
33
|
Bouaïcha N, Miles CO, Beach DG, Labidi Z, Djabri A, Benayache NY, Nguyen-Quang T. Structural Diversity, Characterization and Toxicology of Microcystins. Toxins (Basel) 2019; 11:E714. [PMID: 31817927 PMCID: PMC6950048 DOI: 10.3390/toxins11120714] [Citation(s) in RCA: 251] [Impact Index Per Article: 41.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 12/02/2019] [Accepted: 12/04/2019] [Indexed: 11/22/2022] Open
Abstract
Hepatotoxic microcystins (MCs) are the most widespread class of cyanotoxins and the one that has most often been implicated in cyanobacterial toxicosis. One of the main challenges in studying and monitoring MCs is the great structural diversity within the class. The full chemical structure of the first MC was elucidated in the early 1980s and since then, the number of reported structural analogues has grown steadily and continues to do so, thanks largely to advances in analytical methodology. The structures of some of these analogues have been definitively elucidated after chemical isolation using a combination of techniques including nuclear magnetic resonance, amino acid analysis, and tandem mass spectrometry (MS/MS). Others have only been tentatively identified using liquid chromatography-MS/MS without chemical isolation. An understanding of the structural diversity of MCs, the genetic and environmental controls for this diversity and the impact of structure on toxicity are all essential to the ongoing study of MCs across several scientific disciplines. However, because of the diversity of MCs and the range of approaches that have been taken for characterizing them, comprehensive information on the state of knowledge in each of these areas can be challenging to gather. We have conducted an in-depth review of the literature surrounding the identification and toxicity of known MCs and present here a concise review of these topics. At present, at least 279 MCs have been reported and are tabulated here. Among these, about 20% (55 of 279) appear to be the result of chemical or biochemical transformations of MCs that can occur in the environment or during sample handling and extraction of cyanobacteria, including oxidation products, methyl esters, or post-biosynthetic metabolites. The toxicity of many MCs has also been studied using a range of different approaches and a great deal of variability can be observed between reported toxicities, even for the same congener. This review will help clarify the current state of knowledge on the structural diversity of MCs as a class and the impacts of structure on toxicity, as well as to identify gaps in knowledge that should be addressed in future research.
Collapse
Affiliation(s)
- Noureddine Bouaïcha
- Écologie, Systématique et Évolution, Univ. Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, 91405 Orsay, France; (A.D.); (N.Y.B.)
| | - Christopher O. Miles
- Biotoxin Metrology, National Research Council Canada, 1411 Oxford St, Halifax, NS B3H 3Z1, Canada; (C.O.M.); (D.G.B.)
| | - Daniel G. Beach
- Biotoxin Metrology, National Research Council Canada, 1411 Oxford St, Halifax, NS B3H 3Z1, Canada; (C.O.M.); (D.G.B.)
| | - Zineb Labidi
- Laboratoire Biodiversité et Pollution des Écosystèmes, Faculté des Sciences de la Nature et de la Vie, Université Chadli Bendjedid d’El Taref, 36000 El Taref, Algeria;
| | - Amina Djabri
- Écologie, Systématique et Évolution, Univ. Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, 91405 Orsay, France; (A.D.); (N.Y.B.)
- Laboratoire Biodiversité et Pollution des Écosystèmes, Faculté des Sciences de la Nature et de la Vie, Université Chadli Bendjedid d’El Taref, 36000 El Taref, Algeria;
| | - Naila Yasmine Benayache
- Écologie, Systématique et Évolution, Univ. Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, 91405 Orsay, France; (A.D.); (N.Y.B.)
| | - Tri Nguyen-Quang
- Biofluids and Biosystems Modeling (BBML), Faculty of Agriculture, Dalhousie University, 39 Cox Road, Truro, B2N 5E3 Nova Scotia, Canada;
| |
Collapse
|
34
|
Novel Microcystins from Planktothrix prolifica NIVA-CYA 544 Identified by LC-MS/MS, Functional Group Derivatization and 15N-labeling. Mar Drugs 2019; 17:md17110643. [PMID: 31731697 PMCID: PMC6891653 DOI: 10.3390/md17110643] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 11/08/2019] [Accepted: 11/09/2019] [Indexed: 12/31/2022] Open
Abstract
Microcystins are cyclic heptapeptides from cyanobacteria that are potent inhibitors of protein phosphatases and are toxic to animals and humans. At present, more than 250 microcystin variants are known, with variants reported for all seven peptide moieties. While d-glutamic acid (d-Glu) is highly-conserved at position-6 of microcystins, there has been only one report of a cyanobacterium (Anabaena) producing microcystins containing l-Glu at the variable 2- and 4-positions. Liquid chromatography–mass spectrometry analyses of extracts from Planktothrix prolifica NIVA-CYA 544 led to the tentative identification of two new Glu-containing microcystins, [d-Asp3]MC-ER (12) and [d-Asp3]MC-EE (13). Structure determination was aided by thiol derivatization of the Mdha7-moiety and esterification of the carboxylic acid groups, while 15N-labeling of the culture and isotopic profile analysis assisted the determination of the number of nitrogen atoms present and the elemental composition of molecular and product-ions. The major microcystin analog in the extracts was [d-Asp3]MC-RR (1). A microcystin with an unprecedented high-molecular-mass (2116 Da) was also detected and tentatively identified as a sulfide-linked conjugate of [d-Asp3]MC-RR (15) by LC–HRMS/MS and sulfide oxidation, together with its sulfoxide (16) produced via autoxidation. Low levels of [d-Asp3]MC-RW (14), [d-Asp3]MC-LR (4), [d-Asp3,Mser7]MC-RR (11), [d-Asp3]MC-RY (17), [d-Asp3]MC-RF (18), [d-Asp3]MC-RR–glutathione conjugate (19), and [d-Asp3]MC-RCit (20), the first reported microcystin containing citrulline, were also identified in the extract, and an oxidized derivative of [d-Asp3]MC-RR and the cysteine conjugate of 1 were partially characterized.
Collapse
|
35
|
Morimoto D, Tominaga K, Nishimura Y, Yoshida N, Kimura S, Sako Y, Yoshida T. Cooccurrence of Broad- and Narrow-Host-Range Viruses Infecting the Bloom-Forming Toxic Cyanobacterium Microcystis aeruginosa. Appl Environ Microbiol 2019; 85:e01170-19. [PMID: 31324627 PMCID: PMC6715842 DOI: 10.1128/aem.01170-19] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 07/11/2019] [Indexed: 12/20/2022] Open
Abstract
Viruses play important roles in regulating the abundance and composition of bacterial populations in aquatic ecosystems. The bloom-forming toxic cyanobacterium Microcystis aeruginosa is predicted to interact with diverse cyanoviruses, resulting in Microcystis population diversification. However, current knowledge of the genomes from these viruses and their infection programs is limited to those of Microcystis virus Ma-LMM01. Here, we performed a time series sampling at a small pond in Japan during a Microcystis bloom and then investigated the genomic information and transcriptional dynamics of Microcystis-interacting viruses using metagenomic and metatranscriptomic approaches. We identified 15 viral genomic fragments classified into three groups, groups I (including Ma-LMM01), II (high abundance and transcriptional activity), and III (new lineages). According to the phylogenetic distribution of Microcystis strains possessing spacers against each viral group, the group II-original viruses interacted with all three phylogenetically distinct Microcystis population types (phylotypes), whereas the groups I and III-original viruses interacted with only one or two phylotypes, indicating the cooccurrence of broad- (group II) and narrow (groups I and III)-host-range viruses in the bloom. These viral fragments showed the highest transcriptional levels during daytime regardless of their genomic differences. Interestingly, M. aeruginosa expressed antiviral defense genes in the environment, unlike what was seen with an Ma-LMM01 infection in a previous culture experiment. Given that broad-host-range viruses often induce antiviral responses within alternative hosts, our findings suggest that such antiviral responses might inhibit viral multiplication, mainly that of broad-host-range viruses like those in group II.IMPORTANCE The bloom-forming toxic cyanobacterium Microcystis aeruginosa is thought to have diversified its population through the interactions between host and viruses in antiviral defense systems. However, current knowledge of viral genomes and infection programs is limited to those of Microcystis virus Ma-LMM01, which was a narrow host range in which it can escape from the highly abundant host defense systems. Our metagenomic approaches unveiled the cooccurrence of narrow- and broad-host-range Microcystis viruses, which included fifteen viral genomic fragments from Microcystis blooms that were classified into three groups. Interestingly, Microcystis antiviral defense genes were expressed against viral infection in the environment, unlike what was seen in a culture experiment with Ma-LMM01. Given that viruses with a broad host range often induce antiviral responses within alternative hosts, our findings suggest that antiviral responses inhibit viral reproduction, especially that of broad-range viruses like those in group II. This paper augments our understanding of the interactions between M. aeruginosa and its viruses and fills an important knowledge gap.
Collapse
Affiliation(s)
- Daichi Morimoto
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Kento Tominaga
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Yosuke Nishimura
- Atmosphere and Ocean Research Institute, The University of Tokyo, Chiba, Japan
| | - Naohiro Yoshida
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Shigeko Kimura
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan
- School of Environmental Science, University of Shiga Prefecture, Shiga, Japan
| | - Yoshihiko Sako
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Takashi Yoshida
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| |
Collapse
|
36
|
Dos-Santos ALA, Dick CF, Lopes LR, Rocco-Machado N, Muzi-Filho H, Freitas-Mesquita AL, Paes-Vieira L, Vieyra A, Meyer-Fernandes JR. Tartrate-resistant phosphatase type 5 in Trypanosoma cruzi is important for resistance to oxidative stress promoted by hydrogen peroxide. Exp Parasitol 2019; 205:107748. [PMID: 31442453 DOI: 10.1016/j.exppara.2019.107748] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 08/01/2019] [Accepted: 08/19/2019] [Indexed: 11/28/2022]
Abstract
Trypanosoma cruzi (the causative agent of Chagas disease) presents a complex life cycle that involves adaptations in vertebrate and invertebrate hosts. As a protozoan parasite of hematophagous insects and mammalian hosts, T. cruzi is exposed to reactive oxygen species (ROS). To investigate the functionality of T. cruzi tartrate-resistant acid phosphatase type 5 (TcACP5), we cloned, superexpressed and purified the enzyme. Purified TcACP5 exhibited a Vmax and apparent Km for pNPP hydrolysis of 7.7 ± 0.2 nmol pNP × μg-1 × h-1 and 169.3 ± 22.6 μM, respectively. The pH dependence was characterized by sharp maximal activity at pH 5.0, and inhibition assays demonstrated its sensitivity to acid phosphatase inhibitors. Similar activities were obtained with saturating concentrations of P-Ser and P-Thr as substrates. The enzyme metabolizes hydrogen peroxide (H2O2) in vitro, and parasites superexpressing this enzyme were more resistant to oxidative stress promoted by H2O2. Taken together, these results suggest that TcACP5 plays a central role in phosphoryl transfer and redox reactions.
Collapse
Affiliation(s)
- André L A Dos-Santos
- Leopoldo De Meis Medical Biochemistry Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; National Institute of Science and Technology for Structural Biology and Bioimaging (INBEB), Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Claudia F Dick
- Leopoldo De Meis Medical Biochemistry Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; National Institute of Science and Technology for Structural Biology and Bioimaging (INBEB), Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Leandro R Lopes
- Leopoldo De Meis Medical Biochemistry Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; Paulo de Góes Microbiology Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; National Institute of Science and Technology for Structural Biology and Bioimaging (INBEB), Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Nathália Rocco-Machado
- Leopoldo De Meis Medical Biochemistry Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; National Institute of Science and Technology for Structural Biology and Bioimaging (INBEB), Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Humberto Muzi-Filho
- Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; National Center for Structural Biology and Bioimaging (CENABIO), Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Anita L Freitas-Mesquita
- Leopoldo De Meis Medical Biochemistry Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; National Institute of Science and Technology for Structural Biology and Bioimaging (INBEB), Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Lisvane Paes-Vieira
- Leopoldo De Meis Medical Biochemistry Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; National Institute of Science and Technology for Structural Biology and Bioimaging (INBEB), Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Adalberto Vieyra
- Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; National Center for Structural Biology and Bioimaging (CENABIO), Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; Graduate Program in Translational Biomedicine, Grande Rio University, Duque de Caxias, Brazil
| | - José Roberto Meyer-Fernandes
- Leopoldo De Meis Medical Biochemistry Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; National Institute of Science and Technology for Structural Biology and Bioimaging (INBEB), Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
37
|
Chronic Low Dose Oral Exposure to Microcystin-LR Exacerbates Hepatic Injury in a Murine Model of Non-Alcoholic Fatty Liver Disease. Toxins (Basel) 2019; 11:toxins11090486. [PMID: 31450746 PMCID: PMC6783870 DOI: 10.3390/toxins11090486] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 08/15/2019] [Accepted: 08/19/2019] [Indexed: 12/17/2022] Open
Abstract
Microcystins are potent hepatotoxins that have become a global health concern in recent years. Their actions in at-risk populations with pre-existing liver disease is unknown. We tested the hypothesis that the No Observed Adverse Effect Level (NOAEL) of Microcystin-LR (MC-LR) established in healthy mice would cause exacerbation of hepatic injury in a murine model (Leprdb/J) of Non-alcoholic Fatty Liver Disease (NAFLD). Ten-week-old male Leprdb/J mice were gavaged with 50 μg/kg, 100 μg/kg MC-LR or vehicle every 48 h for 4 weeks (n = 15–17 mice/group). Early mortality was observed in both the 50 μg/kg (1/17, 6%), and 100 μg/kg (3/17, 18%) MC-LR exposed mice. MC-LR exposure resulted in significant increases in circulating alkaline phosphatase levels, and histopathological markers of hepatic injury as well as significant upregulation of genes associated with hepatotoxicity, necrosis, nongenotoxic hepatocarcinogenicity and oxidative stress response. In addition, we observed exposure dependent changes in protein phosphorylation sites in pathways involved in inflammation, immune function, and response to oxidative stress. These results demonstrate that exposure to MC-LR at levels that are below the NOAEL established in healthy animals results in significant exacerbation of hepatic injury that is accompanied by genetic and phosphoproteomic dysregulation in key signaling pathways in the livers of NAFLD mice.
Collapse
|
38
|
Svirčev Z, Lalić D, Bojadžija Savić G, Tokodi N, Drobac Backović D, Chen L, Meriluoto J, Codd GA. Global geographical and historical overview of cyanotoxin distribution and cyanobacterial poisonings. Arch Toxicol 2019; 93:2429-2481. [DOI: 10.1007/s00204-019-02524-4] [Citation(s) in RCA: 220] [Impact Index Per Article: 36.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 07/18/2019] [Indexed: 10/26/2022]
|
39
|
An aptamer based fluorometric microcystin-LR assay using DNA strand-based competitive displacement. Mikrochim Acta 2019; 186:435. [PMID: 31197617 DOI: 10.1007/s00604-019-3504-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 05/12/2019] [Indexed: 01/31/2023]
Abstract
The high-affinity region of a truncated aptamer was applied to the development of a sensitive method for the determination of microcystin-LR (MC-LR) using competitive displacement and molecular beacons. In this assay, the fluorophore and quencher labelled complementary sequences of the aptamer are hybridized with the truncated aptamer to form a fluorophore-quencher pair. In the presence of MC-LR, the aptamer duplex dissociates, and the fluorophore-quencher pair is separated. This turn leads to an increase in the yellow fluorescence which is best measured at excitation/emission wavelengths of 555/580 nm. One of the truncated aptamers showed a 50-fold increase in the affinity (0.93 nM) compared to the wild type aptamer (50 nM). The truncated sequence shows considerable cross-reactivity with L congeners but none with other congeners. The assay works in 0.5 to 200 nM MC-LR concentration range. It was applied to spiked tap water samples and gave recoveries around 95 ± 5%. Graphical abstract Schematic representation of a method for determination of microcystin-LR via fluorescence that is induced by competitive displacement of complementary DNA strands in a truncated dsDNA aptamer.
Collapse
|
40
|
Abstract
Cyanobacteria, formerly called ”blue-green algae“, are simple, primitive photosynthetic microorganism wide occurrence in fresh, brackish and salt waters. Forty different genera ofCyanobacteriaare known and many of them are producers of potent toxins responsible for a wide array of human illnesses, aquatic mammal and bird morbidity and mortality, and extensive fish kills. These cyanotoxins act as neurotoxins or hepatotoxins and are structurally and functionally diverse, and many are derived from unique biosynthetic pathways. All known cyanotoxins and their chemical and toxicological characteristics are presented in this article.
Collapse
|
41
|
Hinojosa MG, Gutiérrez-Praena D, Prieto AI, Guzmán-Guillén R, Jos A, Cameán AM. Neurotoxicity induced by microcystins and cylindrospermopsin: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 668:547-565. [PMID: 30856566 DOI: 10.1016/j.scitotenv.2019.02.426] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 02/25/2019] [Accepted: 02/27/2019] [Indexed: 05/26/2023]
Abstract
Microcystins (MCs) and cylindrospermopsin (CYN) are among the most frequent toxins produced by cyanobacteria. These toxic secondary metabolites are classified as hepatotoxins and cytotoxin, respectively. Furthermore, both may present the ability to induce damage to the nervous system. In this sense, there are many studies manifesting the potential of MCs to cause neurotoxicity both in vitro and in vivo, due to their probable capacity to cross the blood-brain-barrier through organic anion transporting polypeptides. Moreover, the presence of MCs has been detected in brain of several experimental models. Among the neurological effects, histopathological brain changes, deregulation of biochemical parameters in brain (production of oxidative stress and inhibition of protein phosphatases) and behavioral alterations have been described. It is noteworthy that minority variants such as MC-LF and -LW have demonstrated to exert higher neurotoxic effects compared to the most studied congener, MC-LR. By contrast, the available studies concerning CYN-neurotoxic effects are very scarce, mostly showing inflammation and apoptosis in neural murine cell lines, oxidative stress, and alteration of the acetylcholinesterase activity in vivo. However, more studies are required in order to clarify the neurotoxic potential of both toxins, as well as their possible contribution to neurodegenerative diseases.
Collapse
Affiliation(s)
- M G Hinojosa
- Area of Toxicology, Faculty of Pharmacy, Universidad de Sevilla, C/Profesor García González 2, 41012 Seville, Spain
| | - D Gutiérrez-Praena
- Area of Toxicology, Faculty of Pharmacy, Universidad de Sevilla, C/Profesor García González 2, 41012 Seville, Spain
| | - A I Prieto
- Area of Toxicology, Faculty of Pharmacy, Universidad de Sevilla, C/Profesor García González 2, 41012 Seville, Spain.
| | - R Guzmán-Guillén
- Area of Toxicology, Faculty of Pharmacy, Universidad de Sevilla, C/Profesor García González 2, 41012 Seville, Spain
| | - A Jos
- Area of Toxicology, Faculty of Pharmacy, Universidad de Sevilla, C/Profesor García González 2, 41012 Seville, Spain
| | - A M Cameán
- Area of Toxicology, Faculty of Pharmacy, Universidad de Sevilla, C/Profesor García González 2, 41012 Seville, Spain
| |
Collapse
|
42
|
Moreira DA, Soares RM, Valente RH, Bebianno MJ, Rebelo MF. Molecular effects of Microcystin-LA in tilapia (Oreochromis niloticus). Toxicon 2019; 166:76-82. [PMID: 31121173 DOI: 10.1016/j.toxicon.2019.05.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 04/25/2019] [Accepted: 05/11/2019] [Indexed: 10/26/2022]
Abstract
Nile tilapia (Oreochromis niloticus) is a freshwater phytoplanktivorous fish species reported to accumulate and tolerate large amounts of cyanotoxins such as microcystins (MCs). The present study aimed to investigate molecular responses to the acute exposure of Nile tilapia to the Microcystin-LA analogue (MC-LA). Thus, the specimens were sublethally exposed to 1000 μg kg-1 of MC-LA for 12, 24, 48, and 96 h. Gene expression of PP1, PP2A, GST, GPX and actin was analyzed by quantitative PCR. The protein abundance profile of PP2A was determined by immunoblotting, while the integrity of its biological function was assessed by a phosphatase enzymatic assay. PP2A activity was significantly and strongly reduced by MC-LA. A resulting feedback mechanism significantly increased PP2A gene expression and protein abundance in all assessed times. However, a recovery of that phosphatase activity was not observed. In this study, the observed increase in GPX gene expression was the only response that could be directly related to the unknown factors associated to the fish survival to such high dose exposure.
Collapse
Affiliation(s)
- Daniel A Moreira
- Laboratory of Environmental Molecular Biology, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil; Graduate Program in Computational and Systems Biology, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Raquel M Soares
- Multidisciplinary Center of Research in Biology - NUMPEX-BIO - Campus Duque de Caxias, Universidade Federal do Rio de Janeiro, Duque de Caxias, RJ, Brazil.
| | - Richard H Valente
- Laboratory of Toxinology, Instituto Oswaldo Cruz. Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Maria J Bebianno
- Laboratory of Environmental Molecular Biology, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil; CIMA, University of Algarve, Campus de Gambelas, 8000-397, Faro, Portugal
| | - Mauro F Rebelo
- Laboratory of Environmental Molecular Biology, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
43
|
Miller TR, Bartlett SL, Weirich CA, Hernandez J. Automated Subdaily Sampling of Cyanobacterial Toxins on a Buoy Reveals New Temporal Patterns in Toxin Dynamics. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:5661-5670. [PMID: 31038305 DOI: 10.1021/acs.est.9b00257] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Temporal variability of toxins produced by cyanobacteria in lakes is relatively unknown at time scales relevant to public health (i.e., hourly). In this study, a water quality monitoring buoy was outfitted with an automated water sampler taking preserved samples every 6 h for 68.75 days over a drinking water intake. A total of 251 samples were analyzed by tandem mass spectrometry for 21 cyanotoxin congeners in 5 classes producing 5020 data points. Microcystins (MCs) were the most abundant toxins measured (mean ± sd = 3.9 ± 3.3 μg/L) followed by cyanopeptolins (CPs) (1.1 ± 1.5 μg/L), anabaenopeptins (APs) (1.0 ± 0.6 μg/L), anatoxin-a (AT-A) (0.03 ± 0.06 μg/L), and microginin-690 (MG-690) (0.002 ± 0.01 μg/L). Advanced time series analyses uncovered patterns in cyanotoxin production. The velocity of cyanotoxin concentration varied from -0.7 to 0.9 μg/L/h with a maximum positive velocity just prior to peak toxin concentration during nonbloom periods. A backward-looking moving window of variance analysis detected major increases in cyanotoxin concentration and predicted the two greatest increases in MC. A wavelet analysis identified a significant ( p < 0.01) 2.8-4.2 day periodicity in toxin concentration over a ∼25 day period during peak toxin production, which is partially explained by easterly wind velocity ( R = -0.2, p < 0.05). Diversity in congener profiles was explored with principle component analysis showing that cyanotoxin dynamics followed a seasonal trajectory where toxin profiles were significantly clustered (ANOSIM R = 0.7, p < 0.05) on a daily basis. Variability in toxin profiles was strongly correlated with time ( R = -0.8, p < 0.001) as well as the C:N ratio of the toxin pool ( R = 0.17, p < 0.05). The methods employed here should be useful for uncovering patterns in cyanotoxin dynamics in other systems.
Collapse
Affiliation(s)
- Todd R Miller
- Joseph J. Zilber School of Public Health , University of Wisconsin-Milwaukee , Milwaukee , Wisconsin 53211 , United States
| | - Sarah L Bartlett
- Joseph J. Zilber School of Public Health , University of Wisconsin-Milwaukee , Milwaukee , Wisconsin 53211 , United States
- School of Freshwater Sciences , University of Wisconsin-Milwaukee , Milwaukee , Wisconsin 53204 , United States
| | - Chelsea A Weirich
- Joseph J. Zilber School of Public Health , University of Wisconsin-Milwaukee , Milwaukee , Wisconsin 53211 , United States
| | - John Hernandez
- Joseph J. Zilber School of Public Health , University of Wisconsin-Milwaukee , Milwaukee , Wisconsin 53211 , United States
| |
Collapse
|
44
|
Gutiérrez-Praena D, Guzmán-Guillén R, Pichardo S, Moreno FJ, Vasconcelos V, Jos Á, Cameán AM. Cytotoxic and morphological effects of microcystin-LR, cylindrospermopsin, and their combinations on the human hepatic cell line HepG2. ENVIRONMENTAL TOXICOLOGY 2019; 34:240-251. [PMID: 30461177 DOI: 10.1002/tox.22679] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 10/31/2018] [Accepted: 11/04/2018] [Indexed: 06/09/2023]
Abstract
Cylindrospermopsin (CYN) and Microcystin-LR (MC-LR) are toxins produced by different cyanobacterial species, which are found mainly in freshwater reservoirs. Both of them can induce, separately, toxic effects in humans and wildlife. However, little is known about the toxic effects of the combined exposure, which could likely happen, taking into account the concomitant occurrence of the producers. As both cyanotoxins are well known to induce hepatic damage, the human hepatocellular HepG2 cell line was selected for the present study. Thus, the cytotoxicity of both pure cyanotoxins alone (0-5 μg/mL CYN and 0-120 μg/mL MC-LR) and in combination for 24 and 48 h was assayed, as long as the cytotoxicity of extracts from CYN-producing and nonproducing cyanobacterial species. The potential interaction of the combination was evaluated by the isobologram or Chou-Talalay's method, which provides a combination index as a quantitative measure of the two cyanotoxins interaction's degree. Moreover, a morphological study of the individual pure toxins and their combinations was also performed. Results showed that CYN was the most toxic pure cyanotoxin, being the mean effective concentrations obtained ≈4 and 90 μg/mL for CYN and MC-LR, respectively after 24 h. However, the simultaneous exposure showed an antagonistic effect. Morphologically, autophagy, at low concentrations, and apoptosis, at high concentrations were observed, with affectation of the rough endoplasmic reticulum and mitochondria. These effects were more pronounced with the combination. Therefore, it is important to assess the toxicological profile of cyanotoxins combinations in order to perform more realistic risk evaluations.
Collapse
Affiliation(s)
| | | | - Silvia Pichardo
- Área de Toxicología, Facultad de Farmacia, Universidad de Sevilla, Sevilla, Spain
| | | | - Vitor Vasconcelos
- CIIMAR/CIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Matosinhos, Portugal
- Department of Biology, Faculty of Sciences, University of Porto, Porto, Portugal
| | - Ángeles Jos
- Área de Toxicología, Facultad de Farmacia, Universidad de Sevilla, Sevilla, Spain
| | - Ana María Cameán
- Área de Toxicología, Facultad de Farmacia, Universidad de Sevilla, Sevilla, Spain
| |
Collapse
|
45
|
Costa M, Sampaio-Dias IE, Castelo-Branco R, Scharfenstein H, Rezende de Castro R, Silva A, Schneider MPC, Araújo MJ, Martins R, Domingues VF, Nogueira F, Camões V, Vasconcelos VM, Leão PN. Structure of Hierridin C, Synthesis of Hierridins B and C, and Evidence for Prevalent Alkylresorcinol Biosynthesis in Picocyanobacteria. JOURNAL OF NATURAL PRODUCTS 2019; 82:393-402. [PMID: 30715888 DOI: 10.1021/acs.jnatprod.8b01038] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Small, single-celled planktonic cyanobacteria are ubiquitous in the world's oceans yet tend not to be perceived as secondary metabolite-rich organisms. Here we report the isolation and structure elucidation of hierridin C, a minor metabolite obtained from the cultured picocyanobacterium Cyanobium sp. LEGE 06113. We describe a simple, straightforward synthetic route to the scarcely produced hierridins that relies on a key regioselective halogenation step. In addition, we show that these compounds originate from a type III PKS pathway and that similar biosynthetic gene clusters are found in a variety of bacterial genomes, most notably those of the globally distributed picocyanobacteria genera Prochlorococcus, Cyanobium and Synechococcus.
Collapse
Affiliation(s)
- Margarida Costa
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR) , University of Porto , Avenida General Norton de Matos, s/n , 4450-208 Matosinhos , Portugal
| | - Ivo E Sampaio-Dias
- LAQV-REQUIMTE, Department of Chemistry and Biochemistry, Faculty of Sciences , University of Porto , Rua do Campo Alegre 687 , 4169-007 Porto , Portugal
| | - Raquel Castelo-Branco
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR) , University of Porto , Avenida General Norton de Matos, s/n , 4450-208 Matosinhos , Portugal
| | - Hugo Scharfenstein
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR) , University of Porto , Avenida General Norton de Matos, s/n , 4450-208 Matosinhos , Portugal
| | - Roberta Rezende de Castro
- Institute of Biological Sciences, Center of Genomic and System Biology , Federal University of Pará (UFPA) , Beleḿ , PA66075-110, Brazil
| | - Artur Silva
- Institute of Biological Sciences, Center of Genomic and System Biology , Federal University of Pará (UFPA) , Beleḿ , PA66075-110, Brazil
| | - Maria Paula C Schneider
- Institute of Biological Sciences, Center of Genomic and System Biology , Federal University of Pará (UFPA) , Beleḿ , PA66075-110, Brazil
| | - Maria João Araújo
- Institute of Biological Sciences, Center of Genomic and System Biology , Federal University of Pará (UFPA) , Beleḿ , PA66075-110, Brazil
| | - Rosário Martins
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR) , University of Porto , Avenida General Norton de Matos, s/n , 4450-208 Matosinhos , Portugal
- Health and Environment Research Centre (CISA), School of Health , Polytechnic Institute of Porto , Rua Dr. António Bernardino de Almeida, 400 , 4200-072 , Porto , Portugal
| | - Valentina F Domingues
- REQUIMTE/LAQV, Instituto Superior de Engenharia , Instituto Politécnico do Porto , Rua Dr. António Bernardino de Almeida, 431 , 4200-072 Porto , Portugal
| | - Fátima Nogueira
- Global Health and Tropical Medicine, GHTM, Unidade de Ensino e Investigação de Parasitologia Médica , Instituto de Higiene e Medicina Tropical, IHMT, Universidade Nova de Lisboa , UNL, Rua da Junqueira no. 100 , 1349-008 Lisboa , Portugal
| | - Vera Camões
- Global Health and Tropical Medicine, GHTM, Unidade de Ensino e Investigação de Parasitologia Médica , Instituto de Higiene e Medicina Tropical, IHMT, Universidade Nova de Lisboa , UNL, Rua da Junqueira no. 100 , 1349-008 Lisboa , Portugal
| | - Vitor M Vasconcelos
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR) , University of Porto , Avenida General Norton de Matos, s/n , 4450-208 Matosinhos , Portugal
- Department of Biology, Sciences Faculty , University of Porto , Rua do Campo Alegre , 4169-007 Porto , Portugal
| | - Pedro N Leão
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR) , University of Porto , Avenida General Norton de Matos, s/n , 4450-208 Matosinhos , Portugal
| |
Collapse
|
46
|
Štern A, Rotter A, Novak M, Filipič M, Žegura B. Genotoxic effects of the cyanobacterial pentapeptide nodularin in HepG2 cells. Food Chem Toxicol 2019; 124:349-358. [DOI: 10.1016/j.fct.2018.12.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 12/09/2018] [Accepted: 12/14/2018] [Indexed: 12/30/2022]
|
47
|
Walker D, Fathabad SG, Tabatabai B, Jafar S, Sitther V. Microcystin Levels in Selected Cyanobacteria Exposed to Varying Salinity. ACTA ACUST UNITED AC 2019; 11:395-403. [PMID: 32042367 PMCID: PMC7010315 DOI: 10.4236/jwarp.2019.114023] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Microcystins produced by cyanobacteria pose a great threat to human health by releasing toxins upon cell death. In the present study, we studied microcystin production in the cyanobacterial strains Anabaena cylindrica (B629 and 2949) and Fremyella diplosiphon (SF33) exposed to 1, 2 and 4 g/L sodium chloride (NaCl). Cultures grown for 7 days in BG11/HEPES medium were pelleted, re-grown in the corresponding NaCl levels, and enzyme linked immunosorbent assay (ELISA) performed. ELISA assays revealed enhanced microcystin production in A. cylindrica B629 exposed to 4 g/L NaCl and A. cylindrica 29414 exposed to 2 and 4 g/L NaCl, after growth in the corresponding NaCl levels for 14 days. We observed a significant decrease (p >0.05) in microcystin levels in the control strains after exposure to NaCl for 5 days. After exposure to 1, 2, or 4 g/L NaCl for 10 days, no microcystin release was observed in A. cylindrica B629, A. cylindrica 29414 or F. diplosiphon SF33. Sodium dodecyl sulfate polyacrylamide gel electrophoresis identified the presence of an additional band at 120 – 130 kDa in A. cylindrica B629 exposed to 2 and 4 g/L NaCl, and at 14 kDa in cultures amended with 1 and 2 g/L NaCl as well as the untreated control, indicating that exposure to salinity induces alterations in protein expression.
Collapse
Affiliation(s)
- Dy'mon Walker
- Department of Biology, Morgan State University, Baltimore, MD, USA
| | | | - Behnam Tabatabai
- Department of Biology, Morgan State University, Baltimore, MD, USA
| | - Sanjeeda Jafar
- Medical Technology Program, Morgan State University, Baltimore, MD, USA
| | - Viji Sitther
- Department of Biology, Morgan State University, Baltimore, MD, USA
| |
Collapse
|
48
|
Li J, Chen C, Zhang T, Liu W, Wang L, Chen Y, Wu L, Hegazy AM, El-Sayed AF, Zhang X. μEvaluation of microcystin-LR absorption using an in vivo intestine model and its effect on zebrafish intestine. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2019; 206:186-194. [PMID: 30496952 DOI: 10.1016/j.aquatox.2018.11.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 11/13/2018] [Accepted: 11/14/2018] [Indexed: 06/09/2023]
Abstract
Microcystin-LR (MC-LR) is regarded as one of the most toxic microcystins (MCs) isoforms. Microcystins could cause multiple organs dysfunction, and more attention has been drawn to the toxic effects on the gastrointestinal disorder. By using ex vivo everted gut sac model in 6 fish (Carassius auratus, Megalobrama amblycephala, Hypophthalmichthys molitrix, Aristichthys nobilis, Ctenopharyngodon idellus and Cyprinus carpio) and determining the accumulation of MC-LR in zebrafish intestine, we found a dose-dependent manner in the absorption and accumulation of MC-LR. Until now, little studies have been reported concerning the gut microbiota composition caused by different MC-LR exposure. The present study is the first time characterized the phylogenetic composition and taxonomic of the bacterial communities growth in the intestines of zebrafish treated with MC-LR using 16S rRNA pyrosequencing. After 30 days of treatment with 0, 1, 5 or 20 μg/L MC-LR, the alpha and beta diversity did not generate significant differences, indicating the existence of a core microbiota. However, db-RDA analysis showed that treatment with 20 μg/L MC-LR changed the characteristics of high abundances microbiota. The expression of Oatp2b1, stress related enzyme activities in gut and their associations with gut microbiota were also determined. The identified phylotypes including Actinobacteria, Lactobacillus and some opportunistic pathogens highlight the increasing risks of pathogen invasion and recovery tendency via potential probiotics resistance in zebrafish exposed to MC-LR.
Collapse
Affiliation(s)
- Jian Li
- College of Fisheries, Huazhong Agricultural University, Hubei Provincial Engineering Laboratory for Pond Aquaculture, Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan, 430070, China
| | - Chuanyue Chen
- College of Fisheries, Huazhong Agricultural University, Hubei Provincial Engineering Laboratory for Pond Aquaculture, Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan, 430070, China
| | - Tongzhou Zhang
- College of Fisheries, Huazhong Agricultural University, Hubei Provincial Engineering Laboratory for Pond Aquaculture, Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan, 430070, China
| | - Wanjing Liu
- College of Fisheries, Huazhong Agricultural University, Hubei Provincial Engineering Laboratory for Pond Aquaculture, Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan, 430070, China
| | - Li Wang
- College of Fisheries, Huazhong Agricultural University, Hubei Provincial Engineering Laboratory for Pond Aquaculture, Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan, 430070, China
| | - Yuanyuan Chen
- College of Fisheries, Huazhong Agricultural University, Hubei Provincial Engineering Laboratory for Pond Aquaculture, Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan, 430070, China
| | - Lei Wu
- College of Fisheries, Huazhong Agricultural University, Hubei Provincial Engineering Laboratory for Pond Aquaculture, Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan, 430070, China
| | - Abeer M Hegazy
- College of Fisheries, Huazhong Agricultural University, Hubei Provincial Engineering Laboratory for Pond Aquaculture, Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan, 430070, China; Central Laboratory for Environmental Quality Monitoring "CLEQM" National Water Research Center "NWRC" Cairo, Egypt
| | - A F El-Sayed
- Oceanography Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Xuezhen Zhang
- College of Fisheries, Huazhong Agricultural University, Hubei Provincial Engineering Laboratory for Pond Aquaculture, Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan, 430070, China.
| |
Collapse
|
49
|
Cullen A, Pearson LA, Mazmouz R, Liu T, Soeriyadi AH, Ongley SE, Neilan BA. Heterologous expression and biochemical characterisation of cyanotoxin biosynthesis pathways. Nat Prod Rep 2019; 36:1117-1136. [DOI: 10.1039/c8np00063h] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This review discusses cyanotoxin biosynthetic pathways and highlights the heterologous expression and biochemical studies used to characterise them.
Collapse
Affiliation(s)
- Alescia Cullen
- School of Environmental and Life Sciences
- University of Newcastle
- Callaghan 2308
- Australia
| | - Leanne A. Pearson
- School of Environmental and Life Sciences
- University of Newcastle
- Callaghan 2308
- Australia
| | - Rabia Mazmouz
- School of Environmental and Life Sciences
- University of Newcastle
- Callaghan 2308
- Australia
| | - Tianzhe Liu
- School of Biotechnology and Biomolecular Sciences
- The University of New South Wales
- Sydney 2052
- Australia
| | - Angela H. Soeriyadi
- School of Biotechnology and Biomolecular Sciences
- The University of New South Wales
- Sydney 2052
- Australia
| | - Sarah E. Ongley
- School of Environmental and Life Sciences
- University of Newcastle
- Callaghan 2308
- Australia
| | - Brett A. Neilan
- School of Environmental and Life Sciences
- University of Newcastle
- Callaghan 2308
- Australia
| |
Collapse
|
50
|
El-Mas MM, Abdel-Rahman AA. Role of Alcohol Oxidative Metabolism in Its Cardiovascular and Autonomic Effects. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1193:1-33. [PMID: 31368095 PMCID: PMC8034813 DOI: 10.1007/978-981-13-6260-6_1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Several review articles have been published on the neurobehavioral actions of acetaldehyde and other ethanol metabolites as well as in major alcohol-related disorders such as cancer and liver and lung disease. However, very few reviews dealt with the role of alcohol metabolism in the adverse cardiac and autonomic effects of alcohol and their potential underlying mechanisms, particularly in vulnerable populations. In this chapter, following a brief overview of the dose-related favorable and adverse cardiovascular effects of alcohol, we discuss the role of ethanol metabolism in its adverse effects in the brainstem and heart. Notably, current knowledge dismisses a major role for acetaldehyde in the adverse autonomic and cardiac effects of alcohol because of its low tissue level in vivo. Contrary to these findings in men and male rodents, women and hypertensive individuals are more sensitive to the adverse cardiac effects of similar amounts of alcohol. To understand this discrepancy, we discuss the autonomic and cardiac effects of alcohol and its metabolite acetaldehyde in a model of hypertension, the spontaneously hypertensive rat (SHR) and female rats. We present evidence that enhanced catalase activity, which contributes to cardioprotection in hypertension (compensatory) and in the presence of estrogen (inherent), becomes detrimental due to catalase catalysis of alcohol metabolism to acetaldehyde. Noteworthy, studies in SHRs and in estrogen deprived or replete normotensive rats implicate acetaldehyde in triggering oxidative stress in autonomic nuclei and the heart via (i) the Akt/extracellular signal-regulated kinases (ERK)/nitric oxide synthase (NOS) cascade and (ii) estrogen receptor-alpha (ERα) mediation of the higher catalase activity, which generates higher ethanol-derived acetaldehyde in female heart. The latter is supported by the ability of ERα blockade or catalase inhibition to attenuate alcohol-evoked myocardial oxidative stress and dysfunction. More mechanistic studies are needed to further understand the mechanisms of this public health problem.
Collapse
Affiliation(s)
- Mahmoud M El-Mas
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Abdel A Abdel-Rahman
- Department of Pharmacology and Toxicology, The Brody School of Medicine, East Carolina University, Greenville, NC, USA.
| |
Collapse
|