1
|
Luzón‐Toro B, Villalba‐Benito L, Torroglosa A, Fernández RM, Antiñolo G, Borrego S. What is new about the genetic background of Hirschsprung disease? Clin Genet 2019; 97:114-124. [DOI: 10.1111/cge.13615] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 07/23/2019] [Accepted: 07/25/2019] [Indexed: 01/01/2023]
Affiliation(s)
- Berta Luzón‐Toro
- Department of Maternofetal Medicine, Genetics and Reproduction, Institute of Biomedicine of Seville (IBIS)University Hospital Virgen del Rocío/CSIC/University of Seville Seville Spain
- Centre for Biomedical Network Research on Rare Diseases (CIBERER) Seville Spain
| | - Leticia Villalba‐Benito
- Department of Maternofetal Medicine, Genetics and Reproduction, Institute of Biomedicine of Seville (IBIS)University Hospital Virgen del Rocío/CSIC/University of Seville Seville Spain
- Centre for Biomedical Network Research on Rare Diseases (CIBERER) Seville Spain
| | - Ana Torroglosa
- Department of Maternofetal Medicine, Genetics and Reproduction, Institute of Biomedicine of Seville (IBIS)University Hospital Virgen del Rocío/CSIC/University of Seville Seville Spain
- Centre for Biomedical Network Research on Rare Diseases (CIBERER) Seville Spain
| | - Raquel M. Fernández
- Department of Maternofetal Medicine, Genetics and Reproduction, Institute of Biomedicine of Seville (IBIS)University Hospital Virgen del Rocío/CSIC/University of Seville Seville Spain
- Centre for Biomedical Network Research on Rare Diseases (CIBERER) Seville Spain
| | - Guillermo Antiñolo
- Department of Maternofetal Medicine, Genetics and Reproduction, Institute of Biomedicine of Seville (IBIS)University Hospital Virgen del Rocío/CSIC/University of Seville Seville Spain
- Centre for Biomedical Network Research on Rare Diseases (CIBERER) Seville Spain
| | - Salud Borrego
- Department of Maternofetal Medicine, Genetics and Reproduction, Institute of Biomedicine of Seville (IBIS)University Hospital Virgen del Rocío/CSIC/University of Seville Seville Spain
- Centre for Biomedical Network Research on Rare Diseases (CIBERER) Seville Spain
| |
Collapse
|
2
|
Villalba-Benito L, Torroglosa A, Fernández RM, Ruíz-Ferrer M, Moya-Jiménez MJ, Antiñolo G, Borrego S. Overexpression of DNMT3b target genes during Enteric Nervous System development contribute to the onset of Hirschsprung disease. Sci Rep 2017; 7:6221. [PMID: 28740121 PMCID: PMC5524929 DOI: 10.1038/s41598-017-06539-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 06/09/2017] [Indexed: 12/27/2022] Open
Abstract
Hirschsprung disease (HSCR) is attributed to a failure of neural crest cells (NCCs) to migrate, proliferate, differentiate and/or survive in the bowel wall during embryonic Enteric Nervous System (ENS) development. ENS formation is the result from a specific gene expression pattern regulated by epigenetic events, such DNA methylation by the DNA methyltransferases (DNMTs), among other mechanisms. Specifically, DNMT3b de novo methyltransferase is associated with NCCs development and has been shown to be implicated in ENS formation and in HSCR. Aiming to elucidate the specific mechanism underlying the DNMT3b role in such processes, we have performed a chromatin immunoprecipitation coupled with massively parallel sequencing analysis to identify the DNMT3B target genes in enteric precursor cells (EPCs) from mice. Moreover, the expression patterns of those target genes have been analyzed in human EPCs from HSCR patients in comparison with controls. Additionally, we have carried out a search of rare variants in those genes in a HSCR series. Through this approach we found 9 genes showing a significantly different expression level in both groups. Therefore, those genes may have a role in the proper human ENS formation and a failure in their expression pattern might contribute to this pathology.
Collapse
Affiliation(s)
- Leticia Villalba-Benito
- Department of Genetics, Reproduction and Fetal Medicine, Institute of Biomedicine of Seville (IBIS), University Hospital Virgen del Rocío/CSIC/University of Seville, Seville, 41013, Spain
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), Seville, 41013, Spain
| | - Ana Torroglosa
- Department of Genetics, Reproduction and Fetal Medicine, Institute of Biomedicine of Seville (IBIS), University Hospital Virgen del Rocío/CSIC/University of Seville, Seville, 41013, Spain
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), Seville, 41013, Spain
| | - Raquel María Fernández
- Department of Genetics, Reproduction and Fetal Medicine, Institute of Biomedicine of Seville (IBIS), University Hospital Virgen del Rocío/CSIC/University of Seville, Seville, 41013, Spain
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), Seville, 41013, Spain
| | - Macarena Ruíz-Ferrer
- Department of Genetics, Reproduction and Fetal Medicine, Institute of Biomedicine of Seville (IBIS), University Hospital Virgen del Rocío/CSIC/University of Seville, Seville, 41013, Spain
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), Seville, 41013, Spain
| | - María José Moya-Jiménez
- Department of Pediatric Surgery, University Hospital Virgen del Rocío, Seville, 41013, Spain
| | - Guillermo Antiñolo
- Department of Genetics, Reproduction and Fetal Medicine, Institute of Biomedicine of Seville (IBIS), University Hospital Virgen del Rocío/CSIC/University of Seville, Seville, 41013, Spain
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), Seville, 41013, Spain
| | - Salud Borrego
- Department of Genetics, Reproduction and Fetal Medicine, Institute of Biomedicine of Seville (IBIS), University Hospital Virgen del Rocío/CSIC/University of Seville, Seville, 41013, Spain.
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), Seville, 41013, Spain.
| |
Collapse
|
3
|
Wang HH, Chen HS, Li HB, Zhang H, Mei LY, He CF, Wang XW, Men MC, Jiang L, Liao XB, Wu H, Feng Y. Identification and functional analysis of a novel mutation in the SOX10 gene associated with Waardenburg syndrome type IV. Gene 2014; 538:36-41. [PMID: 24440785 DOI: 10.1016/j.gene.2014.01.026] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Revised: 12/27/2013] [Accepted: 01/09/2014] [Indexed: 11/24/2022]
Abstract
Waardenburg syndrome type IV (WS4) is a rare genetic disorder, characterized by auditory-pigmentary abnormalities and Hirschsprung disease. Mutations of the EDNRB gene, EDN3 gene, or SOX10 gene are responsible for WS4. In the present study, we reported a case of a Chinese patient with clinical features of WS4. In addition, the three genes mentioned above were sequenced in order to identify whether mutations are responsible for the case. We revealed a novel nonsense mutation, c.1063C>T (p.Q355*), in the last coding exon of SOX10. The same mutation was not found in three unaffected family members or 100 unrelated controls. Then, the function and mechanism of the mutation were investigated in vitro. We found both wild-type (WT) and mutant SOX10 p.Q355* were detected at the expected size and their expression levels are equivalent. The mutant protein also localized in the nucleus and retained the DNA-binding activity as WT counterpart; however, it lost its transactivation capability on the MITF promoter and acted as a dominant-negative repressor impairing function of the WT SOX10.
Collapse
Affiliation(s)
- Hong-Han Wang
- Department of Otolaryngology, Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China; Department of Head and Neck Surgery, Hunan Provincial Tumor Hospital and the Affiliated Tumor Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, Hunan, China; Province Key Laboratory of Otolaryngology Critical Diseases, Changsha 410008, Hunan, China
| | - Hong-Sheng Chen
- Department of Otolaryngology, Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China; Province Key Laboratory of Otolaryngology Critical Diseases, Changsha 410008, Hunan, China
| | - Hai-Bo Li
- State Key Laboratory of Medical Genetics of China, Changsha 410078, Hunan, China
| | - Hua Zhang
- Department of Otolaryngology, Head and Neck Surgery, First Affiliated Hospital, Xinjiang Medical University, Urumqi 830054, Xinjiang, China
| | - Ling-Yun Mei
- Department of Otolaryngology, Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China; Province Key Laboratory of Otolaryngology Critical Diseases, Changsha 410008, Hunan, China
| | - Chu-Feng He
- Department of Otolaryngology, Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China; Province Key Laboratory of Otolaryngology Critical Diseases, Changsha 410008, Hunan, China
| | - Xing-Wei Wang
- Department of Otolaryngology, Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China; Province Key Laboratory of Otolaryngology Critical Diseases, Changsha 410008, Hunan, China
| | - Mei-Chao Men
- Department of Otolaryngology, Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Lu Jiang
- Department of Otolaryngology, Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China; Province Key Laboratory of Otolaryngology Critical Diseases, Changsha 410008, Hunan, China
| | - Xin-Bin Liao
- Department of Otolaryngology, Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Hong Wu
- Department of Otolaryngology, Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Yong Feng
- Department of Otolaryngology, Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China; State Key Laboratory of Medical Genetics of China, Changsha 410078, Hunan, China; Province Key Laboratory of Otolaryngology Critical Diseases, Changsha 410008, Hunan, China.
| |
Collapse
|
4
|
Bondurand N, Sham MH. The role of SOX10 during enteric nervous system development. Dev Biol 2013; 382:330-43. [DOI: 10.1016/j.ydbio.2013.04.024] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Accepted: 04/24/2013] [Indexed: 12/30/2022]
|
5
|
Moore SW. Chromosomal and related Mendelian syndromes associated with Hirschsprung's disease. Pediatr Surg Int 2012; 28:1045-58. [PMID: 23001136 DOI: 10.1007/s00383-012-3175-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/28/2012] [Indexed: 12/12/2022]
Abstract
Hirschsprung's disease (HSCR) is a fairly frequent cause of intestinal obstruction in children. It is characterized as a sex-linked heterogonous disorder with variable severity and incomplete penetrance giving rise to a variable pattern of inheritance. Although Hirschsprung's disease occurs as an isolated phenotype in at least 70% of cases, it is not infrequently associated with a number of congenital abnormalities and associated syndromes, demonstrating a spectrum of congenital anomalies. Certain of these syndromic phenotypes have been linked to distinct genetic sites, indicating underlying genetic associations of the disease and probable gene-gene interaction, in its pathogenesis. These associations with HSCR include Down's syndrome and other chromosomal anomalies, Waardenburg syndrome and other Dominant sensorineural deafness, the Congenital Central Hypoventilation and Mowat-Wilson and other brain-related syndromes, as well as the MEN2 and other tumour associations. A number of other autosomal recessive syndromes include the Shah-Waardenburg, the Bardet-Biedl and Cartilage-hair hypoplasia, Goldberg-Shprintzen syndromes and other syndromes related to cholesterol and fat metabolism among others. The genetics of Hirschsprung's disease are highly complex with the majority of known genetic sites relating to the main susceptibility pathways (RET an EDNRB). Non-syndromic non-familial, short-segment HSCR appears to represent a non-Mendelian condition with variable expression and sex-dependent penetrance. Syndromic and familial forms, on the other hand, have complex patterns of inheritance and being reported as autosomal dominant, recessive and polygenic patterns of inheritance. The phenotypic variability and incomplete penetrance observed in Hirschsprung's disease could also be explained by the involvement of modifier genes, especially in its syndromic forms. In this review, we look at the chromosomal and Mendelian associations and their underlying signalling pathways, to obtain a better understanding of the pathogenetic mechanisms involved in developing aganglionosis of the distal bowel.
Collapse
Affiliation(s)
- S W Moore
- Division of Pediatric Surgery, Department of Surgical Sciences, Faculty of Health Sciences, University of Stellenbosch, P.O. Box 19063, Tygerberg, South Africa.
| |
Collapse
|
6
|
Wallace AS, Anderson RB. Genetic interactions and modifier genes in Hirschsprung's disease. World J Gastroenterol 2011; 17:4937-44. [PMID: 22174542 PMCID: PMC3236992 DOI: 10.3748/wjg.v17.i45.4937] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2011] [Revised: 06/09/2011] [Accepted: 06/16/2011] [Indexed: 02/06/2023] Open
Abstract
Hirschsprung’s disease is a congenital disorder that occurs in 1:5000 live births. It is characterised by an absence of enteric neurons along a variable region of the gastrointestinal tract. Hirschsprung’s disease is classified as a multigenic disorder, because the same phenotype is associated with mutations in multiple distinct genes. Furthermore, the genetics of Hirschsprung’s disease are highly complex and not strictly Mendelian. The phenotypic variability and incomplete penetrance observed in Hirschsprung’s disease also suggests the involvement of modifier genes. Here, we summarise the current knowledge of the genetics underlying Hirschsprung’s disease based on human and animal studies, focusing on the principal causative genes, their interactions, and the role of modifier genes.
Collapse
|
7
|
Wallace AS, Tan MX, Schachner M, Anderson RB. L1cam acts as a modifier gene for members of the endothelin signalling pathway during enteric nervous system development. Neurogastroenterol Motil 2011; 23:e510-22. [PMID: 21395909 DOI: 10.1111/j.1365-2982.2011.01692.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND The enteric nervous system originates from neural crest cells that migrate into the embryonic foregut and then sequentially colonize the midgut and hindgut. Defects in neural crest migration result in regions of the gut that lack enteric ganglia, a condition in humans called Hirschsprung's disease. The high degree of phenotypic variability reported in Hirschsprung's disease suggests the involvement of modifier genes. METHODS We used a two-locus complementation approach to screen for genetic interactions between L1cam and members of the endothelin signalling pathway. Immunohistochemistry was used to label PGP9.5(+) enteric neurons and Sox10(+) neural crest-derived cells in wholemount preparations of embryonic gut. Key Results Loss or haploinsufficiency of L1cam significantly increased the severity of aganglionosis in Et-3 and Ednrb null mutant embryos. Furthermore, the colonization of the developing gut by neural crest-derived cells was significantly delayed in L1cam(-/y) ; Et-3(-/-) and L1cam(-/y) ;Ednrb(sl/sl) embryos. CONCLUSIONS & INFERENCES We have identified the X-linked gene, L1cam, as the first modifier gene for members of the endothelin signalling pathway during development of the enteric nervous system. Mutations in L1CAM may act to modulate the severity of aganglionosis in some cases of Hirschsprung's disease.
Collapse
Affiliation(s)
- A S Wallace
- Department of Anatomy and Cell Biology, University of Melbourne, Parkville, Melbourne, Victoria, Australia
| | | | | | | |
Collapse
|
8
|
Abstract
Hirschsprung's disease (HSCR) is a developmental disorder characterized by the absence of ganglion cells in the lower digestive tract. Aganglionosis is attributed to a disorder of the enteric nervous system (ENS) whereby ganglion cells fail to innervate the lower gastrointestinal tract during embryonic development. HSCR is a complex disease that results from the interaction of several genes and manifests with low, sex-dependent penetrance and variability in the length of the aganglionic segment. The genetic complexity observed in HSCR can be conceptually understood in light of the molecular and cellular events that take place during the ENS development. DNA alterations in any of the genes involved in the ENS development may interfere with the colonization process, and represent a primary etiology for HSCR. This review will focus on the genes known to be involved in HSCR pathology, how they interact, and on how technology advances are being employed to uncover the pathological processes underlying this disease.
Collapse
|
9
|
Moore SW. The contribution of associated congenital anomalies in understanding Hirschsprung's disease. Pediatr Surg Int 2006; 22:305-15. [PMID: 16518596 DOI: 10.1007/s00383-006-1655-2] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/26/2006] [Indexed: 12/14/2022]
Abstract
Hirschsprung's disease (HSCR) is a complex congenital disorder which, from a molecular perspective, appears to result due to disruption of normal signalling during development of enteric nerve cells, resulting in aganglionosis of the distal bowel. Associated congenital anomalies occur in at least 5-32% (mean 21%) of patients and certain syndromic phenotypes have been linked to distinct genetic sites, indicating underlying genetic associations of the disease and probable gene-gene interaction in its pathogenesis. Clear-cut associations with HSCR include Down's syndrome, dominant sensorineural deafness, Waardenburg syndrome, neurofibromatosis, neuroblastoma, phaeochromocytoma, the MEN type IIB syndrome and other abnormalities. Individual anomalies vary from 2.97% to 8%, the most frequent being the gastrointestinal tract (GIT) (8.05%), the central nervous system (CNS) and sensorineural anomalies (6.79%) and the genito-urinary tract (6.05%). Other associated systems include the musculoskeletal (5.12%), cardiovascular systems (4.99%), craniofacial and eye abnormalities (3%) and less frequently the skin and integumentary system (ectodermal dysplasia) and syndromes related to cholesterol and fat metabolism. In addition to associations with neuroblastoma and tumours related to MEN2B, HSCR may also be associated with tumours of neural origin such as ganglioneuroma, ganglioneuroblastoma, retinoblastoma and tumours associated with neurofibromatosis and other autonomic nervous system disturbances. The contribution of the major susceptibility genes on chromosome 10 (RET) and chromosome 13 (EDNRB) is well established in the phenotypic expression of HSCR. Whereas major RET mutations may result in HSCR by haploinsufficiency in 20-25% of cases, the etiology of the majority of sporadic HSCR is not as clear, appearing to arise from the combined cumulative effects of susceptibility loci at critical genes controlling the mechanisms of cell proliferation, differentiation and maturation. In addition, potential "modifying" associations exist with chromosome 2, 9, 20, 21 and 22, and we explore the importance of certain flanking genes of critical areas in the final phenotypic expression of HSCR.
Collapse
Affiliation(s)
- S W Moore
- Division of Pediatric Surgery, Department of Surgical Sciences, Faculty of Health Sciences, University of Stellenbosch, P.O. Box 19063, 7505, Tygerberg, South Africa.
| |
Collapse
|
10
|
Affiliation(s)
- Paul K H Tam
- Department of Surgery and Genome Research Centre, The University of Hong Kong, Queen Mary Hospital K15, Pokfulam, Hong Kong, P.R. China.
| | | |
Collapse
|
11
|
Brizzolara A, Torre M, Favre A, Pini Prato A, Bocciardi R, Martucciello G. Histochemical study of Dom mouse: A model for Waardenburg-Hirschsprung's phenotype. J Pediatr Surg 2004; 39:1098-103. [PMID: 15213907 DOI: 10.1016/j.jpedsurg.2004.03.046] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
BACKGROUND/PURPOSE The spontaneous mouse mutant Dominant megacolon (Dom) represents the model of the Waardenburg-Hirschsprung's disease, a syndromic pathology, characterized by the association of pigmentation defects (PD), deafness, and Hirschsprung's disease (HD). The defect in Dom mouse is caused by a spontaneous mutation of the gene encoding the Sry-related transcription factor Sox10. This mutation affects several aspects of neural crest development leading to combined enteric innervation and pigmentation defects, both in mouse and human. The purpose of this report is to define, by enzymo-histochemical techniques routinely used for the diagnosis of human Hirschsprung's disease (AChE, LDH, NADPH-diaphorase), the innervative patterns of the affected gut. METHODS Fifty-four siblings of Heterozygous Dom/+ mice underwent autopsy and were genotyped by direct sequencing of polymerase chain reaction (PCR) products for Sox10 mutations. The enteric nervous system of all the mice was studied by histochemical techniques indicated above. RESULTS Genotyping showed that 43 mice were Dom/+ and 11 were Wild type +/+. Wild-type +/+ mice were used as control. The correspondence between genotype and at least 1 phenotypic aspect (PD or dysganglionosis) was present in 93% of cases (41 of 43). Among the Dom/+ mice, dysganglionosis was present in 79% of cases and PD in 90% of cases. Moreover, among Dom/+ mice, excluding those whose mantle was not evaluated as dead just after birth, PD and dysganglionosis (complete phenotype) were present in 68% of cases. CONCLUSIONS The histochemical methods that we used proved to be useful for identification of different aganglionic (AG), hypoganglionic (HG), and normoganglionic segments of Dom/+ mouse gut studied in longitudinal sections. Unlike humans, control mice (Wild type +/+) presented a rich component of AChE nerve fibers, whereas Dom/+ mice with dysganglionosis presented a decrease in AChE-positive nerve fibers. These data confirm the variable phenotypic penetrance in heterozygous mice. Because dysganglionosis in this animal model (Dom/+) was evident in 79% of cases (AG or HG), we concluded that Dom mice could represent important models for further experimental studies.
Collapse
Affiliation(s)
- Antonella Brizzolara
- Department of Pediatric Surgery, G. Gaslini Children's Hospital, University of Genova, Genoa, Italy
| | | | | | | | | | | |
Collapse
|
12
|
Abstract
Understanding the genetics of Hirschsprung disease will naturally expand our understanding of other neurocristopathies, the enteric nervous system, and autonomic system biology. As other disorders of gastrointestinal motility are investigated, genetics may resolve certain clinical questions. For example, isolated hypoganglionosis without aganglionosis has been reported as a primary cause of intestinal pseudo-obstruction. Is such hypoganglionosis merely a forme-fruste of Hirschsprung disease, or a result from an entirely different pathogenetic mechanism? Can irritable bowel syndrome or severe constipation be related to specific mutations, polymorphisms, or haplotypes? How might an understanding of derangements of the ENS be translated to understanding derangements of the CNS? Clearly, we should anticipate improved prognostication, counseling, and hopefully, therapies with future genetic insights.
Collapse
Affiliation(s)
- Douglas R Stewart
- Children's Hospital of Philadelphia, 34th & Civic Center Boulevard, Philadelphia, PA 19104, USA
| | | |
Collapse
|
13
|
Julies MG, Moore SW, Kotze MJ, du Plessis L. Novel RET mutations in Hirschsprung's disease patients from the diverse South African population. Eur J Hum Genet 2001; 9:419-23. [PMID: 11436122 DOI: 10.1038/sj.ejhg.5200650] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2000] [Revised: 02/05/2001] [Accepted: 03/06/2001] [Indexed: 12/14/2022] Open
Abstract
Hirschsprung's disease (HSCR) is a common cause of intestinal obstruction in neonates with an incidence of one in 5000 live births. The disease occurs due to the absence of parasympathetic neuronal ganglia in the hindgut, resulting in irregular or sustained contraction of the affected segment. DNA samples of 40 unrelated subjects with HSCR were subjected to mutation screening of the RET (REarranged during Transfection) proto-oncogene, the major susceptibility gene for HSCR. Five novel (V202M, E480K, IVS10-2A/G, D771N, IVS19-9C/T) and one previously described mutation (P973L) were identified. Only two of the mutation-positive patients (from different ethnic groups) displayed total colonic aganglionosis, and both were heterozygous for mutation D771N. The potential disease-causing mutations occurred in 20% of individuals, with more males (22.5% representing seven of 31 males) affected than females (12.5% representing one of eight females). This study represents the first comprehensive genetic analysis of this disease in the diverse South African population.
Collapse
Affiliation(s)
- M G Julies
- Division of Human Genetics, Faculty of Medicine, University of Stellenbosch, Tygerberg, South Africa
| | | | | | | |
Collapse
|
14
|
Laundy GJ, Bidwell JL. Mouse cytokine gene nucleotide sequence alignments, 2000. Part I. EUROPEAN JOURNAL OF IMMUNOGENETICS : OFFICIAL JOURNAL OF THE BRITISH SOCIETY FOR HISTOCOMPATIBILITY AND IMMUNOGENETICS 2000; 27:165-223. [PMID: 10998086 DOI: 10.1046/j.1365-2370.2000.00217.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- G J Laundy
- University of Bristol, Southmead Hospital, Bristol, UK
| | | |
Collapse
|
15
|
Kudo H, Senju S, Mitsuya H, Nishimura Y. Mouse and human GTPBP2, newly identified members of the GP-1 family of GTPase. Biochem Biophys Res Commun 2000; 272:456-65. [PMID: 10833435 DOI: 10.1006/bbrc.2000.2763] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We earlier identified the GTPBP1 gene which encodes a putative GTPase structurally related to peptidyl elongation factors. This finding was the result of a search for genes, the expression of which is induced by interferon-gamma in a macrophage cell line, THP-1. In the current study, we probed the expressed sequence tag database with the deduced amino acid sequence of GTPBP1 to search for partial cDNA clones homologous to GTPBP1. We used one of the partial cDNA clones to screen a mouse brain cDNA library and identified a novel gene, mouse GTPBP2, encoding a protein consisting of 582 amino acids and carrying GTP-binding motifs. The deduced amino acid sequence of mouse GTPBP2 revealed 44.2% similarity to mouse GTPBP1. We also cloned a human homologue of this gene from a cDNA library of the human T cell line, Jurkat. GTPBP2 protein was found highly conserved between human and mouse (over 99% identical), thereby suggesting a fundamental role of this molecule across species. On Northern blot analysis of various mouse tissues, GTPBP2 mRNA was detected in brain, thymus, kidney and skeletal muscle, but was scarce in liver. Level of expression of GTPBP2 mRNA was enhanced by interferon-gamma in THP-1 cells, HeLa cells, and thioglycollate-elicited mouse peritoneal macrophages. In addition, we determined the chromosomal localization of GTPBP1 and GTPBP2 genes in human and mouse. The GTPBP1 gene was mapped to mouse chromosome 15, region E3, and human chromosome 22q12-13.1, while the GTPBP2 gene is located in mouse chromosome 17, region C-D, and human chromosome 6p21-12.
Collapse
Affiliation(s)
- H Kudo
- Division of Immunogenetics, Kumamoto University Graduate School of Medical Sciences, Kumamoto, Japan
| | | | | | | |
Collapse
|
16
|
Moore SW, Johnson AG. Hirschsprung's disease: genetic and functional associations of Down's and Waardenburg syndromes. Semin Pediatr Surg 1998; 7:156-61. [PMID: 9718653 DOI: 10.1016/s1055-8586(98)70011-3] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Despite significant advances in understanding the genetic background in Hirschsprung's disease (HD), the majority of cases are believed to be multigenic and multifactorial. Conditions associated with an increased risk of HD suggest some common inherited factor and include Down's syndrome, Waardenburg syndrome (WS), dominant sensorineural deafness, neurofibromatosis, neuroblastoma, phaechromocytoma, the MEN type 2B syndrome, and other abnormalities. The reported incidence of Down's syndrome in HD is approximately 2%, but the range varies from 2% to 15%. WS, on the other hand, is one of a number of uncommon human conditions in which pigmentary disturbances are associated with sensorineural deafness. HD mutations have been mapped to a number of genes, i.e., RET proto-oncogene, at 10q11.2; the recessive EDNRB gene, located at 13q22; its ligand endothelin 3 (EDN3); and the glial cell line-derived neurotrophic factor (GDNF) in humans. Mutations of known genes appear to account for only a relatively small number of HD cases (20% in the case of RET). GDNF may modulate the disease phenotype by interacting with other susceptibility loci (e.g., RET). The genetic aspects of HD occurring in association with trisomy 21 and WS are reviewed. Clinical presentation, diagnosis, treatment and long-term outcome in this patient group are evaluated. Additional data are presented on 12 children with Down's syndrome out of 408 surgically treated HD patients. The role of associated anomalies is evaluated, and an increased susceptibility to severe enterocolitis associated with a high mortality rate is reported. Surgical correction can be achieved, but patients may require some form of ongoing help to facilitate acceptable bowel function. The decision as to the nature and timing of the surgical correction must be individualized.
Collapse
Affiliation(s)
- S W Moore
- Department of Paediatric Surgery, Faculty of Medicine, University of Stellenbosch, Tygerberg, South Africa
| | | |
Collapse
|
17
|
Abstract
Hirschsprung's disease (HD) is a relatively common cause of intestinal obstruction in the newborn, characterized by the absence of autonomic ganglion cells in the terminal bowel. Existence of familial cases indicates that genetic factors may be involved in the etiology of some cases of HD. Different inheritance patterns observed in subsets of HD families or kindreds, and the detection of different chromosome aberrations in some HD patients, suggest genetic heterogeneity of HD. Recent expansion of molecular genetics has identified multiple susceptibility genes of HD. These include the RET gene, the glial cell-derived neurotrophic factor gene, the endothelin-B receptor gene, and endothelin-3 gene. Furthermore, some other genes or genetic factors are speculated to be implicated in the development of HD, and it is believed that multiple factors play a role in disease development in some cases. Taken together, these data suggest and may explain the complexity of the etiology of HD. This review focuses on recent advances in our understanding of the genetic aspects of HD.
Collapse
Affiliation(s)
- T Kusafuka
- Department of Pediatric Surgery, Osaka University Medical School, Japan
| | | |
Collapse
|
18
|
Li GC, Ouyang H, Li X, Nagasawa H, Little JB, Chen DJ, Ling CC, Fuks Z, Cordon-Cardo C. Ku70: a candidate tumor suppressor gene for murine T cell lymphoma. Mol Cell 1998; 2:1-8. [PMID: 9702186 DOI: 10.1016/s1097-2765(00)80108-2] [Citation(s) in RCA: 163] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
We present evidence that inactivation of the Ku70 gene leads to a propensity for malignant transformation both in vitro and in vivo. In vitro, Ku70-/- mouse fibroblasts displayed an increased rate of sister chromatid exchange and a high frequency of spontaneous neoplastic transformation. In vivo, Ku70-/- mice, known to be defective in B but not T lymphocyte maturation, developed thymic and disseminated T cell lymphomas at a mean age of 6 months with CD4+CD8+ tumor cells. These findings directly demonstrate that Ku70 deficiency facilitates neoplastic growth and suggest a novel role of the Ku70 locus in tumor suppression.
Collapse
Affiliation(s)
- G C Li
- Department of Radiation Oncology, Memorial Sloan-Kettering Cancer Center, New York, New York 10021, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Tanaka H, Moroi K, Iwai J, Takahashi H, Ohnuma N, Hori S, Takimoto M, Nishiyama M, Masaki T, Yanagisawa M, Sekiya S, Kimura S. Novel mutations of the endothelin B receptor gene in patients with Hirschsprung's disease and their characterization. J Biol Chem 1998; 273:11378-83. [PMID: 9556633 DOI: 10.1074/jbc.273.18.11378] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Hirschsprung's disease (HSCR) is a congenital intestinal disease, characterized by the absence of ganglion cells in the distal portion of the intestinal tract. Recently, three susceptibility genes have been identified in HSCR, namely the RET protooncogene, the endothelin B (ETB) receptor gene (EDNRB), and the endothelin-3 (ET-3) gene (EDN3). To investigate whether mutations in EDNRB could be related with HSCR in non-inbred populations in Japan, we examined alterations of the gene in 31 isolated patients. Three novel mutations were detected as follows: two transversions, A to T and C to A at nucleotides 311 (N104I) and 1170 (S390R), respectively, and a transition, T to C at nucleotide 325 (C109R). To analyze functions of these mutant receptors, they were expressed in Chinese hamster ovary cells. S390R mutation did not change the binding affinities but caused the decreases in the ligand-induced increment of intracellular calcium and in the inhibition of adenylyl cyclase activity, showing the impairment of the intracellular signaling. C109R receptors were proved to be localized near the nuclei as an unusual 44-kDa protein with the extremely low affinity to endothelin-1 (ET-1) and not to be translocated into the plasma membrane. On the other hand, N104I receptors showed almost the same binding affinities and functional properties as those of the wild type. Therefore, we conclude that S390R and C109R mutations could cause HSCR but that N104I mutation might be polymorphous.
Collapse
Affiliation(s)
- H Tanaka
- Department of Obstetrics and Gynecology, Chiba University School of Medicine, Chiba, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Herbarth B, Pingault V, Bondurand N, Kuhlbrodt K, Hermans-Borgmeyer I, Puliti A, Lemort N, Goossens M, Wegner M. Mutation of the Sry-related Sox10 gene in Dominant megacolon, a mouse model for human Hirschsprung disease. Proc Natl Acad Sci U S A 1998; 95:5161-5. [PMID: 9560246 PMCID: PMC20231 DOI: 10.1073/pnas.95.9.5161] [Citation(s) in RCA: 270] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The spontaneous mouse mutant Dominant megacolon (Dom) is a valuable model for the study of human congenital megacolon (Hirschsprung disease). Here we report that the defect in the Dom mouse is caused by mutation of the gene encoding the Sry-related transcription factor Sox10. This assignment is based on (i) colocalization of the Sox10 gene with the Dom mutation on chromosome 15; (ii) altered Sox10 expression in the gut and in neural-crest derived structures of cranial ganglia of Dom mice; (iii) presence of a frameshift in the Sox10 coding region, and (iv) functional inactivation of the resulting truncated protein. These results identify the transcriptional regulator Sox10 as an essential factor in mouse neural crest development and as a further candidate gene for human Hirschsprung disease, especially in cases where it is associated with features of Waardenburg syndrome.
Collapse
Affiliation(s)
- B Herbarth
- Zentrum für Molekulare Neurobiologie, Universität Hamburg, 20246 Hamburg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Abstract
Hirschsprung's disease or aganglionic megacolon causes chronic, congenital obstipation at an incidence of 1 per 5000 live births. Two approaches have been vital to the present understanding of the pathogenesis and genetic background of the disease: disease linkage analyses and mouse models of aganglionic megacolon. Because the increasing number of transgenic or natural mouse strains with congenital megacolon has led to mutation screening in Hirschsprung's disease patients, almost every second patient could now receive a genetic explanation for his/her disease. The known disease genes include tyrosine kinase receptor Ret, endothelin receptor B and its ligand endothelin 3. In addition, mutations have been found in the gene encoding the glial cell line-derived neurotrophic factor, the ligand for Ret, but these may only have a modifier effect. The mouse models have also provided insight into the developmental mechanisms of the normal intestinal innervation. We combine here the present clinical data on the gene mutations in Hirschsprung's disease with the experimental molecular biology data, and formulate a hypothesis on the pathogenesis of this multigenic-multifactorial disease.
Collapse
Affiliation(s)
- K Wartiovaara
- Institute of Biotechnology, Developmental Biology Research Programme, University of Helsinki, Hospital for Children and Adolescents, Finland.
| | | | | |
Collapse
|
22
|
Pingault V, Bondurand N, Kuhlbrodt K, Goerich DE, Préhu MO, Puliti A, Herbarth B, Hermans-Borgmeyer I, Legius E, Matthijs G, Amiel J, Lyonnet S, Ceccherini I, Romeo G, Smith JC, Read AP, Wegner M, Goossens M. SOX10 mutations in patients with Waardenburg-Hirschsprung disease. Nat Genet 1998; 18:171-3. [PMID: 9462749 DOI: 10.1038/ng0298-171] [Citation(s) in RCA: 556] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Waardenburg syndrome (WS; deafness with pigmentary abnormalities) and Hirschsprung's disease (HSCR; aganglionic megacolon) are congenital disorders caused by defective function of the embryonic neural crest. WS and HSCR are associated in patients with Waardenburg-Shah syndrome (WS4), whose symptoms are reminiscent of the white coat-spotting and aganglionic megacolon displayed by the mouse mutants Dom (Dominant megacolon), piebald-lethal (sl) and lethal spotting (ls). The sl and ls phenotypes are caused by mutations in the genes encoding the Endothelin-B receptor (Ednrb) and Endothelin 3 (Edn3), respectively. The identification of Sox10 as the gene mutated in Dom mice (B.H. et al., manuscript submitted) prompted us to analyse the role of its human homologue SOX10 in neural crest defects. Here we show that patients from four families with WS4 have mutations in SOX10, whereas no mutation could be detected in patients with HSCR alone. These mutations are likely to result in haploinsufficiency of the SOX10 product. Our findings further define the locus heterogeneity of Waardenburg-Hirschsprung syndromes, and point to an essential role of SOX10 in the development of two neural crest-derived human cell lineages.
Collapse
Affiliation(s)
- V Pingault
- INSERM U468, Hôpital Henri Mondor, Creteil, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Southard-Smith EM, Kos L, Pavan WJ. Sox10 mutation disrupts neural crest development in Dom Hirschsprung mouse model. Nat Genet 1998; 18:60-4. [PMID: 9425902 DOI: 10.1038/ng0198-60] [Citation(s) in RCA: 549] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Hirschsprung disease (HSCR, MIM #142623) is a multigenic neurocristopathy (neural crest disorder) characterized by absence of enteric ganglia in a variable portion of the distal colon. Subsets of HSCR individuals also present with neural crest-derived melanocyte deficiencies (Hirschsprung-Waardenburg, HSCR-WS, MIM #277580). Murine models have been instrumental in the identification and analysis of HSCR disease genes. These include mice with deficiencies of endothelin B receptor (Ednrb(s-l); refs 1,2) endothelin 3 (Edn3(ls): refs 1,3) the tyrosine kinase receptor cRet and glial-derived neurotrophic factor. Another mouse model of HSCR disease, Dom, arose spontaneously at the Jackson Laboratory. While Dom/+ heterozygous mice display regional deficiencies of neural crest-derived enteric ganglia in the distal colon, Dom/Dom homozygous animals are embryonic lethal. We have determined that premature termination of Sox10, a member of the SRY-like HMG box family of transcription factors, is responsible for absence of the neural crest derivatives in Dom mice. We demonstrate expression of Sox10 in normal neural crest cells, disrupted expression of both Sox10 and the HSCR disease gene Ednrb in Dom mutant embryos, and loss of neural crest derivatives due to apoptosis. Our studies suggest that Sox10 is essential for proper peripheral nervous system development. We propose SOX10 as a candidate disease gene for individuals with HSCR whose disease does not have an identified genetic origin.
Collapse
Affiliation(s)
- E M Southard-Smith
- Mouse Embryology Section, Laboratory of Genetic Disease Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892-4472, USA
| | | | | |
Collapse
|