1
|
Herrera JM, Weng Y, Lieberthal TJ, Paoletti M, Chang TT. Hepatocyte Rho-associated kinase signaling is required for mice to survive experimental porphyria-associated liver injury. Hepatol Commun 2025; 9:e0636. [PMID: 39878679 PMCID: PMC11781774 DOI: 10.1097/hc9.0000000000000636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 12/12/2024] [Indexed: 01/31/2025] Open
Abstract
BACKGROUND Rho-associated kinases 1 and 2 (ROCK1 and ROCK2) regulate critical cell functions, including actomyosin contractility, apoptosis, and proliferation. Some studies suggest that ROCK inhibition may serve as a treatment for liver fibrosis. More investigation is needed to understand the role of hepatocyte ROCK signaling in vivo, especially in the context of profibrotic liver injury. METHODS Rock1fl/fl, Rock2fl/fl, and Rock1fl/fl; Rock2fl/fl mice were given adeno-associated virus serotype 8 (AAV8)-thyroid hormone-binding globulin (TBG)-Cre to produce targeted gene deletion in hepatocytes, or given AAV8-TBG-Null to generate littermate controls (WT). Mice were then placed on a 0.1% 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC) diet to induce liver injury. RESULTS Upon DDC-induced liver injury, mice with hepatocyte-specific deletion of ROCK1 alone (R1 KO) or ROCK2 alone (R2 KO) demonstrated minimal differences compared to WT. In contrast, mice with hepatocyte-specific deletion of both ROCK1 and ROCK2 (DKO) showed pervasive early mortality, increased hepatocellular injury, and decreased hepatic function. DDC-injured DKO mice demonstrated markedly distorted liver histology characterized by large cavities in the parenchyma. RNA-seq analysis showed upregulation of cell death, inflammatory, and profibrotic pathways in DDC-injured DKO liver as compared to DDC-injured WT liver. Cdkn1a (gene encoding p21) was one of the most highly upregulated genes in the DKO liver in response to DDC-induced injury. Correspondingly, there was increased hepatocyte nuclear localization of p21 and expression of cleaved caspase-3 in DDC-injured DKO liver, consistent with the activation of p21-mediated caspase-3-dependent apoptotic cell death pathways. ROCK1/ROCK2-deficient primary hepatocytes demonstrated increased susceptibility to both caspase-3-mediated apoptosis and caspase-3-independent forms of cell death in a cell intrinsic manner. CONCLUSIONS ROCK signaling plays a critical role in mediating hepatocyte cell survival pathways in response to liver injury.
Collapse
Affiliation(s)
- Jessica M. Herrera
- Department of Surgery, University of California, San Francisco, San Francisco, California, USA
- UCSF/UC Berkeley Joint Graduate Program in Bioengineering, University of California, San Francisco, San Francisco, California, USA
| | - Yun Weng
- Department of Surgery, University of California, San Francisco, San Francisco, California, USA
| | - Tyler J. Lieberthal
- Department of Surgery, University of California, San Francisco, San Francisco, California, USA
| | - Marcus Paoletti
- Department of Surgery, University of California, San Francisco, San Francisco, California, USA
| | - Tammy T. Chang
- Department of Surgery, University of California, San Francisco, San Francisco, California, USA
- Liver Center, University of California, San Francisco, San Francisco, California, USA
| |
Collapse
|
2
|
Duarte-Olivenza C, Moran G, Hurle JM, Lorda-Diez CI, Montero JA. Lysosomes, caspase-mediated apoptosis, and cytoplasmic activation of P21, but not cell senescence, participate in a redundant fashion in embryonic morphogenetic cell death. Cell Death Dis 2023; 14:813. [PMID: 38071330 PMCID: PMC10710412 DOI: 10.1038/s41419-023-06326-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 11/02/2023] [Accepted: 11/22/2023] [Indexed: 12/18/2023]
Abstract
Micromass cultures of embryonic limb skeletal progenitors replicate the tissue remodelling processes observed during digit morphogenesis. Here, we have employed micromass cultures in an in vitro assay to study the nature of cell degeneration events associated with skeletogenesis. In the assay, "naive" progenitors obtained from the autopod aggregate to form chondrogenic nodules and those occupying the internodular spaces exhibit intense apoptosis and progressive accumulation of larger cells, showing intense SA-β-Gal histochemical labelling that strictly overlaps with the distribution of neutral red vital staining. qPCR analysis detected intense upregulation of the p21 gene, but P21 immunolabelling showed cytoplasmic rather than the nuclear distribution expected in senescent cells. Semithin sections and transmission electron microscopy confirmed the presence of canonical apoptotic cells, degenerated cell fragments in the process of phagocytic internalization by the neighbouring cells, and large vacuolated cells containing phagosomes. The immunohistochemical distribution of active caspase 3, cathepsin D, and β-galactosidase together with the reduction in cell death by chemical inhibition of caspases (Q-VAD) and lysosomal cathepsin D (Pepstatin A) supported a redundant implication of both pathways in the dying process. Chemical inhibition of P21 (UC2288) revealed a complementary role of this factor in the dying process. In contrast, treatment with the senolytic drug Navitoclax increased cell death without changing the number of cells positive for SA-β-Gal. We propose that this model of tissue remodelling involves the cooperative activation of multiple degradation routes and, most importantly, that positivity for SA-β-Gal reflects the occurrence of phagocytosis, supporting the rejection of cell senescence as a defining component of developmental tissue remodelling.
Collapse
Affiliation(s)
- Cristina Duarte-Olivenza
- Departamento de Anatomía y Biología Celular and IDIVAL, Universidad de Cantabria, 39011, Santander, Spain
| | - Goretti Moran
- Departamento de Anatomía y Biología Celular and IDIVAL, Universidad de Cantabria, 39011, Santander, Spain
| | - Juan M Hurle
- Departamento de Anatomía y Biología Celular and IDIVAL, Universidad de Cantabria, 39011, Santander, Spain
| | - Carlos I Lorda-Diez
- Departamento de Anatomía y Biología Celular and IDIVAL, Universidad de Cantabria, 39011, Santander, Spain
| | - Juan A Montero
- Departamento de Anatomía y Biología Celular and IDIVAL, Universidad de Cantabria, 39011, Santander, Spain.
| |
Collapse
|
3
|
Liang R, Lin M, Menon V, Qiu J, Menon A, Breda L, Arif T, Rivella S, Ghaffari S. Elevated CDKN1A (P21) mediates β-thalassemia erythroid apoptosis, but its loss does not improve β-thalassemic erythropoiesis. Blood Adv 2023; 7:6873-6885. [PMID: 37672319 PMCID: PMC10685172 DOI: 10.1182/bloodadvances.2022007655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 08/01/2023] [Accepted: 08/24/2023] [Indexed: 09/07/2023] Open
Abstract
β-thalassemias are common hemoglobinopathies due to mutations in the β-globin gene that lead to hemolytic anemias. Premature death of β-thalassemic erythroid precursors results in ineffective erythroid maturation, increased production of erythropoietin (EPO), expansion of erythroid progenitor compartment, extramedullary erythropoiesis, and splenomegaly. However, the molecular mechanism of erythroid apoptosis in β-thalassemia is not well understood. Using a mouse model of β-thalassemia (Hbbth3/+), we show that dysregulated expression of the FOXO3 transcription factor is implicated in β-thalassemia erythroid apoptosis. In Foxo3-/-/Hbbth3/+ mice, erythroid apoptosis is significantly reduced, whereas erythroid cell maturation, and red blood cell and hemoglobin production are substantially improved even with elevated reactive oxygen species in double-mutant erythroblasts. However, persistence of elevated reticulocytes and splenomegaly suggests that ineffective erythropoiesis is not resolved in Foxo3-/-/Hbbth3/+. We found the cell cycle inhibitor Cdkn1a (cyclin-dependent kinase inhibitor p21), a FOXO3 target gene, is markedly upregulated in both mouse and patient-derived β-thalassemic erythroid precursors. Double-mutant p21/Hbbth3/+ mice exhibited embryonic lethality with only a fraction of mice surviving to weaning. Notably, studies in adult mice displayed greatly reduced apoptosis and circulating Epo in erythroid compartments of surviving p21-/-/Hbbth3/+ mice relative to Hbbth3/+ mice, whereas ineffective erythroid cell maturation, extramedullary erythropoiesis, and splenomegaly were not modified. These combined results suggest that mechanisms that control β-thalassemic erythroid cell survival and differentiation are uncoupled from ineffective erythropoiesis and involve a molecular network including FOXO3 and P21. Overall, these studies provide a new framework for investigating ineffective erythropoiesis in β-thalassemia.
Collapse
Affiliation(s)
- Raymond Liang
- Department of Cell, Developmental & Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY
- Developmental and Stem Cell Biology Multidisciplinary Training, Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Miao Lin
- Department of Cell, Developmental & Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Vijay Menon
- Department of Cell, Developmental & Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Jiajing Qiu
- Department of Cell, Developmental & Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Anagha Menon
- Department of Cell, Developmental & Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY
- Developmental and Stem Cell Biology Multidisciplinary Training, Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Laura Breda
- Division of Hematology, Children’s Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA
| | - Tasleem Arif
- Department of Cell, Developmental & Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Stefano Rivella
- Division of Hematology, Children’s Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA
| | - Saghi Ghaffari
- Department of Cell, Developmental & Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY
- Developmental and Stem Cell Biology Multidisciplinary Training, Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| |
Collapse
|
4
|
Mohammadlou H, Hamzeloo-Moghadam M, Moeinifard M, Gharehbaghian A. The Cytotoxic Effects of Britannin on Acute and Chronic Myeloid Leukemia Cells Through Inducing p21-mediated Apoptotic Cell Death. Turk J Pharm Sci 2021; 19:314-321. [DOI: 10.4274/tjps.galenos.2021.88655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
5
|
Kumar S, Kumar P, Nair MS. Exploring the binding of resveratrol to a promoter DNA sequence d(CCAATTGG) 2 through multispectroscopic, nuclear magnetic resonance and molecular dynamics studies. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 252:119488. [PMID: 33545510 DOI: 10.1016/j.saa.2021.119488] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 01/09/2021] [Accepted: 01/11/2021] [Indexed: 06/12/2023]
Abstract
We report the interaction of resveratrol with an octamer DNA sequence d(CCAATTGG)2, present in the promoter region of many oncogenes, using a combination of absorption, fluorescence, calorimetric and nuclear magnetic resonance techniques to probe the binding. Resveratrol binds to the duplex sequence with a binding constant 2.20 × 106 M-1 in absorption studies. A ligand-duplex stoichiometry of 2.2:1 was obtained with binding constant varying from 103 to 104 M-1 in fluorescence titration measurements. Spectral changes indicated external binding of resveratrol to duplex DNA. Circular dichroism data displayed minimal variation suggesting external binding. Melting temperatures of DNA and its 1:1 complex showed a difference of approximately 2.25 °C, supporting the external binding. Nuclear magnetic resonance data showed resveratrol binds to the minor groove region near the AT base pair from the nuclear Overhauser effect spectroscopic cross peaks. Distance restrained molecular dynamics was employed in explicit solvent condition to obtain the lowest energy structure. The complex was stable and retained the B DNA conformation. Findings in this study identify resveratrol as a minor groove binder to the AT region of DNA and pave the way for exploring resveratrol and its analogues as promising anticancer/antibacterial drug.
Collapse
Affiliation(s)
- Shailendra Kumar
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India
| | - Peeyush Kumar
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India
| | - Maya S Nair
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India.
| |
Collapse
|
6
|
Transcriptome analysis of signaling pathways targeted by Ellagic acid in hepatocellular carcinoma cells. Biochim Biophys Acta Gen Subj 2021; 1865:129911. [PMID: 33862123 DOI: 10.1016/j.bbagen.2021.129911] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 04/06/2021] [Accepted: 04/08/2021] [Indexed: 12/16/2022]
Abstract
BACKGROUND Ellagic acid (EA) possesses prominent inhibitory activities against various cancers, including hepatocellular carcinoma (HCC). Our recent study demonstrated EA's activities in reducing HCC cell proliferation and tumor formation. However, the mechanisms of EA to exert its anticancer activities and its primary targets in cancer cells have not been systematically explored. METHODS Cell proliferation assay and flow cytometric analysis were used to examine the effects of EA treatment on viability and apoptosis, respectively, of HepG2 cells. RNA-seq studies and associated pathway analyses by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) were employed to determine EA's primary targets. Differentially expressed genes (DEG) in EA-treated HepG2 cells were verified by RT-qPCR and Western blot. Integrative analyses of the RNA-seq dataset with a TCGA dataset derived from HCC patients were conducted to verify EA-targeted genes and signaling pathways. Interaction network analysis of the DEGs, shRNA-mediated knockdown, cell viability assay, and colony formation assay were used to validate EA's primary targets. RESULTS EA reduced cell viability, caused DNA damage, and induced cell cycle arrest at G1 phase of HepG2 cells. We identified 5765 DEGs encoding proteins with over 2.0-fold changes in EA-treated HepG2 cells by DESeq2. These DEGs showed significant enrichment in the pathways regulating DNA replication and cell cycle progression. As primary targets, p21 was significantly upregulated, while MCM2-7 were uniformly downregulated in response to EA treatment. Consistently, p21 knockdown desensitized liver cells to EA in cell viability and colony formation assays. CONCLUSION EA induced G1 phase arrest and promoted apoptosis of HCC cells through activating the p21 gene and downregulating the MCM2-7 genes, respectively. GENERAL SIGNIFICANCE The discoveries in this study provide helpful insights into developing novel strategies in the therapeutic treatment of HCC patients.
Collapse
|
7
|
Huang G, Boesze-Battaglia K, Walker LP, Zekavat A, Schaefer ZP, Blanke SR, Shenker BJ. The Active Subunit of the Cytolethal Distending Toxin, CdtB, Derived From Both Haemophilus ducreyi and Campylobacter jejuni Exhibits Potent Phosphatidylinositol-3,4,5-Triphosphate Phosphatase Activity. Front Cell Infect Microbiol 2021; 11:664221. [PMID: 33854985 PMCID: PMC8039388 DOI: 10.3389/fcimb.2021.664221] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 03/09/2021] [Indexed: 12/17/2022] Open
Abstract
Human lymphocytes exposed to Aggregatibacter actinomycetemcomitans (Aa) cytolethal distending toxin (Cdt) undergo cell cycle arrest and apoptosis. In previous studies, we demonstrated that the active Cdt subunit, CdtB, is a potent phosphatidylinositol (PI) 3,4,5-triphosphate phosphatase. Moreover, AaCdt-treated cells exhibit evidence of PI-3-kinase (PI-3K) signaling blockade characterized by reduced levels of PIP3, pAkt, and pGSK3β. We have also demonstrated that PI-3K blockade is a requisite of AaCdt-induced toxicity in lymphocytes. In this study, we extended our observations to include assessment of Cdts from Haemophilus ducreyi (HdCdt) and Campylobacter jejuni (CjCdt). We now report that the CdtB subunit from HdCdt and CjCdt, similar to that of AaCdt, exhibit potent PIP3 phosphatase activity and that Jurkat cells treated with these Cdts exhibit PI-3K signaling blockade: reduced levels of pAkt and pGSK3β. Since non-phosphorylated GSK3β is the active form of this kinase, we compared Cdts for dependence on GSK3β activity. Two GSK3β inhibitors were employed, LY2090314 and CHIR99021; both inhibitors blocked the ability of Cdts to induce cell cycle arrest. We have previously demonstrated that AaCdt induces increases in the CDK inhibitor, p21CIP1/WAF1, and, further, that this was a requisite for toxin-induced cell death via apoptosis. We now demonstrate that HdCdt and CjCdt also share this requirement. It is also noteworthy that p21CIP1/WAF1 was not involved in the ability of the three Cdts to induce cell cycle arrest. Finally, we demonstrate that, like AaCdt, HdCdt is dependent upon the host cell protein, cellugyrin, for its toxicity (and presumably internalization of CdtB); CjCdt was not dependent upon this protein. The implications of these findings as they relate to Cdt’s molecular mode of action are discussed.
Collapse
Affiliation(s)
- Grace Huang
- Department of Basic and Translational Sciences, University of Pennsylvania School of Dental Medicine, Philadelphia, PA, United States
| | - Kathleen Boesze-Battaglia
- Department of Basic and Translational Sciences, University of Pennsylvania School of Dental Medicine, Philadelphia, PA, United States
| | - Lisa P Walker
- Department of Basic and Translational Sciences, University of Pennsylvania School of Dental Medicine, Philadelphia, PA, United States
| | - Ali Zekavat
- Department of Basic and Translational Sciences, University of Pennsylvania School of Dental Medicine, Philadelphia, PA, United States
| | - Zachary P Schaefer
- Department of Microbiology, University of Illinois, Urbana, IL, United States
| | - Steven R Blanke
- Department of Microbiology, University of Illinois, Urbana, IL, United States.,Pathobiology Department, University of Illinois, Urbana, IL, United States.,Biomedical and Translational Sciences Department, University of Illinois, Urbana, IL, United States
| | - Bruce J Shenker
- Department of Basic and Translational Sciences, University of Pennsylvania School of Dental Medicine, Philadelphia, PA, United States
| |
Collapse
|
8
|
Kuang Y, Kang J, Li H, Liu B, Zhao X, Li L, Jin X, Li Q. Multiple functions of p21 in cancer radiotherapy. J Cancer Res Clin Oncol 2021; 147:987-1006. [PMID: 33547489 DOI: 10.1007/s00432-021-03529-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 01/10/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND Greater than half of cancer patients experience radiation therapy, for both radical and palliative objectives. It is well known that researches on radiation response mechanisms are conducive to improve the efficacy of cancer radiotherapy. p21 was initially identified as a widespread inhibitor of cyclin-dependent kinases, transcriptionally modulated by p53 and a marker of cellular senescence. It was once considered that p21 acts as a tumour suppressor mainly to restrain cell cycle progression, thereby resulting in growth suppression. With the deepening researches on p21, p21 has been found to regulate radiation responses via participating in multiple cellular processes, including cell cycle arrest, apoptosis, DNA repair, senescence and autophagy. Hence, a comprehensive summary of the p21's functions in radiation response will provide a new perspective for radiotherapy against cancer. METHODS We summarize the recent pertinent literature from various electronic databases, including PubMed and analyzed several datasets from Gene Expression Omnibus database. This review discusses how p21 influences the effect of cancer radiotherapy via involving in multiple signaling pathways and expounds the feasibility, barrier and risks of using p21 as a biomarker as well as a therapeutic target of radiotherapy. CONCLUSION p21's complicated and important functions in cancer radiotherapy make it a promising therapeutic target. Besides, more thorough insights of p21 are needed to make it a safe therapeutic target.
Collapse
Affiliation(s)
- Yanbei Kuang
- Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Road, Lanzhou, 730000, Gansu, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine, Chinese Academy of Sciences, Lanzhou, 730000, China
- Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Lanzhou, 730000, Gansu, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jian Kang
- College of Energy and Power Engineering, Lanzhou University of Technology, Lanzhou, 730050, China
| | - Hongbin Li
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, 730050, China
| | - Bingtao Liu
- Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Road, Lanzhou, 730000, Gansu, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine, Chinese Academy of Sciences, Lanzhou, 730000, China
- Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Lanzhou, 730000, Gansu, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xueshan Zhao
- The First Hospital of Lanzhou University, Lanzhou, 730000, China
| | - Linying Li
- Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Road, Lanzhou, 730000, Gansu, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine, Chinese Academy of Sciences, Lanzhou, 730000, China
- Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Lanzhou, 730000, Gansu, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaodong Jin
- Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Road, Lanzhou, 730000, Gansu, China.
- Key Laboratory of Heavy Ion Radiation Biology and Medicine, Chinese Academy of Sciences, Lanzhou, 730000, China.
- Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Lanzhou, 730000, Gansu, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Qiang Li
- Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Road, Lanzhou, 730000, Gansu, China.
- Key Laboratory of Heavy Ion Radiation Biology and Medicine, Chinese Academy of Sciences, Lanzhou, 730000, China.
- Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Lanzhou, 730000, Gansu, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
9
|
Reedich EJ, Kalski M, Armijo N, Cox GA, DiDonato CJ. Spinal motor neuron loss occurs through a p53-and-p21-independent mechanism in the Smn 2B/- mouse model of spinal muscular atrophy. Exp Neurol 2020; 337:113587. [PMID: 33382987 DOI: 10.1016/j.expneurol.2020.113587] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 12/12/2020] [Accepted: 12/23/2020] [Indexed: 12/22/2022]
Abstract
Spinal muscular atrophy (SMA) is a pediatric neuromuscular disease caused by genetic deficiency of the survival motor neuron (SMN) protein. Pathological hallmarks of SMA are spinal motor neuron loss and skeletal muscle atrophy. The molecular mechanisms that elicit and drive preferential motor neuron degeneration and death in SMA remain unclear. Transcriptomic studies consistently report p53 pathway activation in motor neurons and spinal cord tissue of SMA mice. Recent work has identified p53 as an inducer of spinal motor neuron loss in severe Δ7 SMA mice. Additionally, the cyclin-dependent kinase inhibitor P21 (Cdkn1a), an inducer of cell cycle arrest and mediator of skeletal muscle atrophy, is consistently increased in motor neurons, spinal cords, and other tissues of various SMA models. p21 is a p53 transcriptional target but can be independently induced by cellular stressors. To ascertain whether p53 and p21 signaling pathways mediate spinal motor neuron death in milder SMA mice, and how they affect the overall SMA phenotype, we introduced Trp53 and P21 null alleles onto the Smn2B/- background. We found that p53 and p21 depletion did not modulate the timing or degree of Smn2B/- motor neuron loss as evaluated using electrophysiological and immunohistochemical methods. Moreover, we determined that Trp53 and P21 knockout differentially affected Smn2B/- mouse lifespan: p53 ablation impaired survival while p21 ablation extended survival through Smn-independent mechanisms. These results demonstrate that p53 and p21 are not primary drivers of spinal motor neuron death in Smn2B/- mice, a milder SMA mouse model, as motor neuron loss is not alleviated by their ablation.
Collapse
Affiliation(s)
- Emily J Reedich
- Human Molecular Genetics and Physiology Program, Stanley Manne Children's Research Institute at Ann & Robert H. Lurie Children's Hospital, Chicago, IL, USA; Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Martin Kalski
- Human Molecular Genetics and Physiology Program, Stanley Manne Children's Research Institute at Ann & Robert H. Lurie Children's Hospital, Chicago, IL, USA
| | - Nicholas Armijo
- Human Molecular Genetics and Physiology Program, Stanley Manne Children's Research Institute at Ann & Robert H. Lurie Children's Hospital, Chicago, IL, USA
| | - Gregory A Cox
- The Jackson Laboratory, Bar Harbor, ME, USA; Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, ME, USA
| | - Christine J DiDonato
- Human Molecular Genetics and Physiology Program, Stanley Manne Children's Research Institute at Ann & Robert H. Lurie Children's Hospital, Chicago, IL, USA; Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
| |
Collapse
|
10
|
Dongoran RA, Wang KH, Lin TJ, Yuan TC, Liu CH. Anti-Proliferative Effect of Statins Is Mediated by DNMT1 Inhibition and p21 Expression in OSCC Cells. Cancers (Basel) 2020; 12:E2084. [PMID: 32731382 PMCID: PMC7463937 DOI: 10.3390/cancers12082084] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 07/23/2020] [Accepted: 07/27/2020] [Indexed: 12/13/2022] Open
Abstract
Statins, also known as HMG-CoA reductase inhibitors, are a class of cholesterol-lowering drugs and their anti-cancer effects have been studied in different types of malignant diseases. In the present study, we investigated the anti-proliferative effects of statins, including cerivastatin and simvastatin, on oral squamous cell carcinoma (OSCC) cells. Our data showed that statins inhibited the proliferation of three OSCC cell lines in a dose-dependent manner and this growth inhibition was confirmed through G0/G1 cell cycle arrest. Accordingly, we found the upregulation of p21 and downregulation of cyclin-dependent kinases, including CDK2, CDK4, and CDK6, in the statin-treated cells. Importantly, we clearly showed that statins were able to inhibit the expression of DNA methyltransferase 1 (DNMT1) and further promote the expression of p21. Taken together, our data demonstrated that the anti-proliferative effect of statins is mediated by suppressing DNMT1 expression, thus promoting p21 expression and leading to G0/G1 cell cycle arrest in OSCC cells.
Collapse
Affiliation(s)
- Rachmad Anres Dongoran
- Ph.D. Program in Pharmacology and Toxicology, School of Medicine, Tzu Chi University, Hualien 97004, Taiwan; (R.A.D.); (T.-J.L.)
- Indonesian Food and Drug Authority (Indonesian FDA), Jakarta 10560, Indonesia
| | - Kai-Hung Wang
- Department of Medical Research, Tzu Chi Hospital, Hualien 97004, Taiwan;
| | - Tsung-Jen Lin
- Ph.D. Program in Pharmacology and Toxicology, School of Medicine, Tzu Chi University, Hualien 97004, Taiwan; (R.A.D.); (T.-J.L.)
| | - Ta-Chun Yuan
- Department of Life Science, College of Science and Engineering, National Dong Hwa University, Hualien 97401, Taiwan
| | - Chin-Hung Liu
- Ph.D. Program in Pharmacology and Toxicology, School of Medicine, Tzu Chi University, Hualien 97004, Taiwan; (R.A.D.); (T.-J.L.)
- Department of Pharmacology, School of Medicine, Tzu Chi University, Hualien 97004, Taiwan
| |
Collapse
|
11
|
Lv M, Zhuang X, Zhang Q, Cheng Y, Wu D, Wang X, Qiao T. Acetyl-11-keto-β-boswellic acid enhances the cisplatin sensitivity of non-small cell lung cancer cells through cell cycle arrest, apoptosis induction, and autophagy suppression via p21-dependent signaling pathway. Cell Biol Toxicol 2020; 37:209-228. [PMID: 32562082 PMCID: PMC8012341 DOI: 10.1007/s10565-020-09541-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 06/09/2020] [Indexed: 02/06/2023]
Abstract
Cisplatin-based therapy is a widely used chemotherapeutic regimen for non-small cell lung cancer (NSCLC); however, drug resistance limits its efficacy. Acetyl-11-keto-β-boswellic acid (AKBA), a bioactive compound from frankincense, has been shown to exert anti-cancer effects. The aim of this study is to explore the potential of AKBA in combination with cisplatin as a new regimen for NSCLC. CCK8 assay and clone formation assay were used to determine the effects of AKBA in combination with cisplatin on cell viability of NSCLC cell lines. A three-dimensional spherification assay was used to simulate in vivo tumor formation. Flow cytometry was performed to examine cell cycle distribution and the percentages of apoptotic cells. The associated proteins and mRNA of cell cycle, apoptosis, and autophagy were measured by western blotting and real-time fluorescence quantitative PCR. Immunofluorescence assay was used to test apoptotic nuclei and autolysosome. Small interfering RNA experiments were used to silence the expression of p21. Combination treatment of AKBA and cisplatin inhibited cell viability, clone formation, and three-dimensional spherification, enhanced G0/G1 phase arrest, increased the percentages of apoptotic cells, and decreased the ratio of positive autolysosomes, compared with cisplatin alone. AKBA in combination with cisplatin suppressed the protein expressions of cyclin A2, cyclin E1, p-cdc2, CDK4, Bcl-xl, Atg5, and LC3A/B, and upregulated p27 and p21 mRNA levels in A549 cells. Downregulation of p21 decreased G0/G1 phase arrest and the percentages of apoptotic cells, and promoted autophagy in NSCLC A549 cells. Our study demonstrates that AKBA enhances the cisplatin sensitivity of NSCLC cells and that the mechanisms involve G0/G1 phase arrest, apoptosis induction, and autophagy suppression via targeting p21-dependent signaling pathway.
Collapse
Affiliation(s)
- Minghe Lv
- Center for Tumor Diagnosis and Therapy, Jinshan Hospital, Fudan University, Jinshan District, Shanghai, 201508, China
| | - Xibing Zhuang
- Center for Tumor Diagnosis and Therapy, Jinshan Hospital, Fudan University, Jinshan District, Shanghai, 201508, China
| | - Qi Zhang
- Center for Tumor Diagnosis and Therapy, Jinshan Hospital, Fudan University, Jinshan District, Shanghai, 201508, China
| | - Yunfeng Cheng
- Center for Tumor Diagnosis and Therapy, Jinshan Hospital, Fudan University, Jinshan District, Shanghai, 201508, China
| | - Duojiao Wu
- Center for Tumor Diagnosis and Therapy, Jinshan Hospital, Fudan University, Jinshan District, Shanghai, 201508, China
| | - Xiangdong Wang
- Center for Tumor Diagnosis and Therapy, Jinshan Hospital, Fudan University, Jinshan District, Shanghai, 201508, China
| | - Tiankui Qiao
- Center for Tumor Diagnosis and Therapy, Jinshan Hospital, Fudan University, Jinshan District, Shanghai, 201508, China.
| |
Collapse
|
12
|
The Cell-Cycle Regulatory Protein p21 CIP1/WAF1 Is Required for Cytolethal Distending Toxin (Cdt)-Induced Apoptosis. Pathogens 2020; 9:pathogens9010038. [PMID: 31906446 PMCID: PMC7168616 DOI: 10.3390/pathogens9010038] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 12/22/2019] [Accepted: 12/28/2019] [Indexed: 12/27/2022] Open
Abstract
The Aggregatibacter actinomycetemcomitans cytolethal distending toxin (Cdt) induces lymphocytes to undergo cell-cycle arrest and apoptosis; toxicity is dependent upon the active Cdt subunit, CdtB. We now demonstrate that p21CIP1/WAF1 is critical to Cdt-induced apoptosis. Cdt induces increases in the levels of p21CIP1/WAF1 in lymphoid cell lines, Jurkat and MyLa, and in primary human lymphocytes. These increases were dependent upon CdtB’s ability to function as a phosphatidylinositol (PI) 3,4,5-triphosphate (PIP3) phosphatase. It is noteworthy that Cdt-induced increases in the levels of p21CIP1/WAF1 were accompanied by a significant decline in the levels of phosphorylated p21CIP1/WAF1. The significance of Cdt-induced p21CIP1/WAF1 increase was assessed by preventing these changes with a two-pronged approach; pre-incubation with the novel p21CIP1/WAF1 inhibitor, UC2288, and development of a p21CIP1/WAF1-deficient cell line (Jurkatp21−) using clustered regularly interspaced short palindromic repeats (CRISPR)/cas9 gene editing. UC2288 blocked toxin-induced increases in p21CIP1/WAF1, and JurkatWT cells treated with this inhibitor exhibited reduced susceptibility to Cdt-induced apoptosis. Likewise, Jurkatp21− cells failed to undergo toxin-induced apoptosis. The linkage between Cdt, p21CIP1/WAF1, and apoptosis was further established by demonstrating that Cdt-induced increases in levels of the pro-apoptotic proteins Bid, Bax, and Bak were dependent upon p21CIP1/WAF1 as these changes were not observed in Jurkatp21− cells. Finally, we determined that the p21CIP1/WAF1 increases were dependent upon toxin-induced increases in the level and activity of the chaperone heat shock protein (HSP) 90. We propose that p21CIP1/WAF1 plays a key pro-apoptotic role in mediating Cdt-induced toxicity.
Collapse
|
13
|
Tay VSY, Devaraj S, Koh T, Ke G, Crasta KC, Ali Y. Increased double strand breaks in diabetic β-cells with a p21 response that limits apoptosis. Sci Rep 2019; 9:19341. [PMID: 31852915 PMCID: PMC6920453 DOI: 10.1038/s41598-019-54554-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 11/11/2019] [Indexed: 12/28/2022] Open
Abstract
DNA damage and DNA damage response (DDR) pathways in β-cells have received little attention especially in the context of type-2 diabetes. We postulate that p21 plays a key role in DDR by preventing apoptosis, associated through its overexpression triggered by DNA stand breaks (DSBs). Our results show that β-cells from chronic diabetic mice had a greater extent of DSBs as compared to their non-diabetic counterparts. Comet assays and nuclear presence of γH2AX and 53bp1 revealed increased DNA DSBs in 16 weeks old (wo) db/db β-cells as compared to age matched non-diabetic β-cells. Our study of gene expression changes in MIN6 cell line with doxorubicin (Dox) induced DNA damage, showed that the DDR was similar to primary β-cells from diabetic mice. There was significant overexpression of DDR genes, gadd45a and p21 after a 24-hr treatment. Western blot analysis revealed increased cleaved caspase3 over time, suggesting higher frequency of apoptosis due to Dox-induced DNA strand breaks. Inhibition of p21 by pharmacological inhibitor UC2288 under DNA damage conditions (both in Dox-induced MIN6 cells and older db/db islets) significantly increased the incidence of β-cell apoptosis. Our studies confirmed that while DNA damage, specifically DSBs, induced p21 overexpression in β-cells and triggered the p53/p21 cellular response, p21 inhibition exacerbated the frequency of apoptosis.
Collapse
Affiliation(s)
- Vanessa S Y Tay
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Surabhi Devaraj
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Tracy Koh
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Guo Ke
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Karen C Crasta
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore.,School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Yusuf Ali
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore.
| |
Collapse
|
14
|
Weis KE, Raetzman LT. Genistein inhibits proliferation and induces senescence in neonatal mouse pituitary gland explant cultures. Toxicology 2019; 427:152306. [PMID: 31593742 DOI: 10.1016/j.tox.2019.152306] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 09/26/2019] [Accepted: 10/02/2019] [Indexed: 12/27/2022]
Abstract
Genistein is an isoflavone abundant in soybean and infants are exposed to high levels of genistein in soy-based formula. It is known that genistein mediates estrogen receptor (ER) signaling, and exposure during neonatal development could cause acute and long term endocrine effects. We assayed genistein's impact on the neonatal mouse pituitary gland because it is an endocrine signaling hub and is sensitive to endocrine disruption during critical periods. Pituitary explant cultures, which actively proliferate and differentiate, were exposed to 0.06 μM-36 μM genistein and assayed for mRNA and protein changes. Genistein induced mRNA expression of the ERα regulated gene, Cckar, to the same magnitude as estradiol (E2) but with less potency. Interestingly, 36 μM genistein strongly inhibited pituitary proliferation, measured by a reduction in mKi67 mRNA and phospho-Histone H3 immunostaining. Examining cell cycle dynamics, we found that 36 μM genistein decreased Ccnb1 (Cyclin B1) mRNA; while mRNA for the cyclin dependent kinase inhibitor Cdkn1a (p21) was upregulated, correlated with an apparent increase in p21 immunostained cells. Strikingly, we observed a robust onset of cellular senescence, permanent cell cycle exit, in 36 μM genistein treated pituitaries by increased senescence activated β-galactosidase staining. We also found that 36 μM genistein decreased Bcl2 mRNA levels, a gene protective against apoptosis. Taken together these data suggest that genistein exposure during the neonatal period could initiate senescence and halt proliferation during a time when the proper numbers of endocrine cells are being established for mature gland function.
Collapse
Affiliation(s)
- Karen E Weis
- Department of Molecular and Integrative Physiology, University of Illinois Urbana-Champaign, 524 Burrill Hall, 407 South Goodwin Avenue, Urbana, Illinois, 61801, USA
| | - Lori T Raetzman
- Department of Molecular and Integrative Physiology, University of Illinois Urbana-Champaign, 524 Burrill Hall, 407 South Goodwin Avenue, Urbana, Illinois, 61801, USA.
| |
Collapse
|
15
|
Al Bitar S, Gali-Muhtasib H. The Role of the Cyclin Dependent Kinase Inhibitor p21 cip1/waf1 in Targeting Cancer: Molecular Mechanisms and Novel Therapeutics. Cancers (Basel) 2019; 11:cancers11101475. [PMID: 31575057 PMCID: PMC6826572 DOI: 10.3390/cancers11101475] [Citation(s) in RCA: 134] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 07/26/2019] [Accepted: 07/30/2019] [Indexed: 12/15/2022] Open
Abstract
p21cip1/waf1 mediates various biological activities by sensing and responding to multiple stimuli, via p53-dependent and independent pathways. p21 is known to act as a tumor suppressor mainly by inhibiting cell cycle progression and allowing DNA repair. Significant advances have been made in elucidating the potential role of p21 in promoting tumorigenesis. Here, we discuss the involvement of p21 in multiple signaling pathways, its dual role in cancer, and the importance of understanding its paradoxical functions for effectively designing therapeutic strategies that could selectively inhibit its oncogenic activities, override resistance to therapy and yet preserve its tumor suppressive functions.
Collapse
Affiliation(s)
- Samar Al Bitar
- Department of Biology, and Center for Drug Discovery, American University of Beirut, Beirut 1103, Lebanon.
| | - Hala Gali-Muhtasib
- Department of Biology, and Center for Drug Discovery, American University of Beirut, Beirut 1103, Lebanon.
| |
Collapse
|
16
|
Yang Y, Huang W, Qiu R, Liu R, Zeng Y, Gao J, Zheng Y, Hou Y, Wang S, Yu W, Leng S, Feng D, Wang Y. LSD1 coordinates with the SIN3A/HDAC complex and maintains sensitivity to chemotherapy in breast cancer. J Mol Cell Biol 2019; 10:285-301. [PMID: 29741645 DOI: 10.1093/jmcb/mjy021] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2017] [Accepted: 01/21/2018] [Indexed: 01/26/2023] Open
Abstract
Lysine-specific demethylase 1 (LSD1) was the first histone demethylase identified as catalysing the removal of mono- and di-methylation marks on histone H3-K4. Despite the potential broad action of LSD1 in transcription regulation, recent studies indicate that LSD1 may coordinate with multiple epigenetic regulatory complexes including CoREST/HDAC complex, NuRD complex, SIRT1, and PRC2, implying complicated mechanistic actions of this seemingly simple enzyme. Here, we report that LSD1 is also an integral component of the SIN3A/HDAC complex. Transcriptional target analysis using ChIP-on-chip technology revealed that the LSD1/SIN3A/HDAC complex targets several cellular signalling pathways that are critically involved in cell proliferation, survival, metastasis, and apoptosis, especially the p53 signalling pathway. We have demonstrated that LSD1 coordinates with the SIN3A/HDAC complex in inhibiting a series of genes such as CASP7, TGFB2, CDKN1A(p21), HIF1A, TERT, and MDM2, some of which are oncogenic. Our experiments also found that LSD1 and SIN3A are required for optimal survival and growth of breast cancer cells while also essential for the maintenance of epithelial homoeostasis and chemosensitivity. Our data indicate that LSD1 is a functional alternative subunit of the SIN3A/HDAC complex, providing a molecular basis for the interplay of histone demethylation and deacetylation in chromatin remodelling, and suggest that the LSD1/SIN3A/HDAC complex could be a target for breast cancer therapeutic strategies.
Collapse
Affiliation(s)
- Yang Yang
- 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Cellular and Molecular Immunology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Wei Huang
- 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Cellular and Molecular Immunology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Rongfang Qiu
- 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Cellular and Molecular Immunology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Ruiqiong Liu
- 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Cellular and Molecular Immunology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Yi Zeng
- 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Cellular and Molecular Immunology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Jie Gao
- 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Cellular and Molecular Immunology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Yu Zheng
- 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Cellular and Molecular Immunology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China.,Department of Biotherapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin Clinical Research Center for Cancer, Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China
| | - Yongqiang Hou
- 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Cellular and Molecular Immunology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Shuang Wang
- 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Cellular and Molecular Immunology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Wenqian Yu
- 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Cellular and Molecular Immunology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Shuai Leng
- 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Cellular and Molecular Immunology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Dandan Feng
- 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Cellular and Molecular Immunology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Yan Wang
- 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Cellular and Molecular Immunology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China.,Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| |
Collapse
|
17
|
The selective HDAC6 inhibitor Nexturastat A induces apoptosis, overcomes drug resistance and inhibits tumor growth in multiple myeloma. Biosci Rep 2019; 39:BSR20181916. [PMID: 30782785 PMCID: PMC6430725 DOI: 10.1042/bsr20181916] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 02/12/2019] [Accepted: 02/18/2019] [Indexed: 01/25/2023] Open
Abstract
Multiple myeloma (MM) is a hematological malignancy of plasma cells that produce a monoclonal immunoglobulin protein. Despite significant advances in the treatment of MM, challenges such as resistance to therapy remain. Currently, inhibition of histone deacetylases (HDACs) is emerging as a potential method for treating cancers. Numerous HDAC inhibitors are being studied for the use in monotherapy or in conjunction with other agents for MM. In the present study, we investigated the anti-myeloma effect of Nexturastat A (NexA), a novel selective HDAC6 inhibitor. We found that NexA impaired MM cells viability in a dose- and time-dependent manner. NexA also provoked a cell cycle arrest at the G1 phase in MM cells. Furthermore, NexA promoted apoptosis of MM cells via transcriptional activation of the p21 promoter, which may through its ability to up-regulate the H3Ac and H4Ac levels. Additionally, NexA could overcome bortezomib (BTZ) resistance in MM cells, and NexA in combination with BTZ had stronger efficacy. We also confirmed that NexA inhibited tumor growth in murine xenograft models of MM. These interesting findings provided the rationale for the future advancement of this novel HDAC6 inhibitor as a potential therapeutic anti-myeloma agent.
Collapse
|
18
|
Bergapten induces G1 arrest of non‑small cell lung cancer cells, associated with the p53‑mediated cascade. Mol Med Rep 2019; 19:1972-1978. [PMID: 30628674 DOI: 10.3892/mmr.2019.9810] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Accepted: 11/28/2018] [Indexed: 11/05/2022] Open
Abstract
The principal subtype of lung cancer, non‑small cell lung cancer (NSCLC) is a life‑threatening malignancy that causes high mortality rates. Bergapten (5‑methoxypsoralen) has been identified to possess anticancer activity against a number of carcinomas. In the present study, the effects of bergapten on NSCLC cells were investigated. The cell viability was determined by MTT assay. Cell cycle distribution was analyzed using flow cytometry. Protein expression and kinase cascade were demonstrated using western blot analysis. The results demonstrated that treatment with bergapten (50 µM for 48 h) inhibited the viability of A549 and NCI‑H460 NSCLC cells to 79.1±2.8% and 74.5±3.1%, respectively, compared with the controls. It was identified that bergapten induced G1 phase accumulation in A549 and NCI‑H460 cells between ~58 and 75% (P<0.01). In addition, bergapten significantly increased the sub‑G1 phase ratio to ~9% (P<0.05) in the two cell types. Further investigation demonstrated that bergapten upregulated the expression of cellular tumor antigen p53 (p53) and its downstream proteins cyclin‑dependent kinase inhibitor 1 and cyclin‑dependent kinase inhibitor 1B, whereas, it downregulated the expression of cyclin D1 and CDK4. Overall, these results suggested that bergapten may inhibit cell viability and trigger G1 arrest and apoptosis in A549 and NCI‑H460 cells, which may be attributed to the activation of p53‑mediated cascades. Therefore, bergapten may be beneficial for NSCLC treatment.
Collapse
|
19
|
Gallic acid induces G1 phase arrest and apoptosis of triple-negative breast cancer cell MDA-MB-231 via p38 mitogen-activated protein kinase/p21/p27 axis. Anticancer Drugs 2018; 28:1150-1156. [PMID: 28938245 DOI: 10.1097/cad.0000000000000565] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Gallic acid (GA) possesses potential antitumoral activity on different types of malignancies. In this study, we aimed to explore the antitumoral effects of GA on triple-negative breast cancer (TNBC) cells, the breast cancer cells showing resistance to hormonal therapy or HER2 receptor targeting therapy. We observed that GA treatment significantly decreased the cell viability of human TNBC cell line MDA-MB-231 and HS578T in a dose-dependent manner. In addition, GA exerted a relative lower cytotoxicity on noncancer breast fibroblast MCF-10F. Next, we analyzed the changes of cell-cycle distribution in response to GA treatment and found that GA led to an increase of G0/G1 and sub-G1 phase ratio in MDA-MB-231 cells. We further explored the crucial mediators controlling cell cycle and inducing apoptotic signaling, and the findings showed that GA downregulated cyclin D1/CDK4 and cyclin E/CDK2, upregulated p21and p27, and induced activation of caspase-9 and caspase-3. In addition, we demonstrated that p38 mitogen-activated protein kinase was involved in the GA-mediated cell-cycle arrest and apoptosis. Collectively, our findings indicate that GA inhibits the cell viability of TNBC cells, which may attribute to the G1 phase arrest and cellular apoptosis via p38 mitogen-activated protein kinase/p21/p27 axis. Thus, we suggest that GA could be beneficial to TNBC treatment.
Collapse
|
20
|
Genomic alterations during p53-dependent apoptosis induced by γ-irradiation of Molt-4 leukemia cells. PLoS One 2017; 12:e0190221. [PMID: 29272311 PMCID: PMC5741252 DOI: 10.1371/journal.pone.0190221] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 12/11/2017] [Indexed: 12/31/2022] Open
Abstract
Molt-4 leukemia cells undergo p53-dependent apoptosis accompanied by accumulation of de novo ceramide after 14 hours of γ-irradiation. In order to identify the potential mediators involved in ceramide accumulation and the cell death response, differentially expressed genes were identified by Affymetrix Microarray Analysis. Molt-4-LXSN cells, expressing wild type p53, and p53-deficient Molt-4-E6 cells were irradiated and harvested at 3 and 8 hours post-irradiation. Human genome U133 plus 2.0 array containing >47,000 transcripts was used for gene expression profiling. From over 10,000 probes, 281 and 12 probes were differentially expressed in Molt-4-LXSN and Molt-4-E6 cells, respectively. Data analysis revealed 63 (upregulated) and 20 (downregulated) genes (>2 fold) in Molt-4-LXSN at 3 hours and 140 (upregulated) and 21 (downregulated) at 8 hours post-irradiation. In Molt-4-E6 cells, 5 (upregulated) genes each were found at 3 hours and 8 hours, respectively. In Molt-4-LXSN cells, a significant fraction of the genes with altered expression at 3 hours were found to be involved in apoptosis signaling pathway (BCL2L11), p53 pathway (PMAIP1, CDKN1A and FAS) and oxidative stress response (FDXR, CROT and JUN). Similarly, at 8 hours the genes with altered expression were involved in the apoptosis signaling pathway (BAX, BIK and JUN), p53 pathway (BAX, CDKN1A and FAS), oxidative stress response (FDXR and CROT) and p53 pathway feedback loops 2 (MDM2 and CDKN1A). A global molecular and biological interaction map analysis showed an association of these altered genes with apoptosis, senescence, DNA damage, oxidative stress, cell cycle arrest and caspase activation. In a targeted study, activation of apoptosis correlated with changes in gene expression of some of the above genes and revealed sequential activation of both intrinsic and extrinsic apoptotic pathways that precede ceramide accumulation and subsequent execution of apoptosis. One or more of these altered genes may be involved in p53-dependent ceramide accumulation.
Collapse
|
21
|
Olive compounds attenuate oxidative damage induced in HEK-293 cells via MAPK signaling pathway. J Funct Foods 2017. [DOI: 10.1016/j.jff.2017.10.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
|
22
|
Chang YL, Huang LC, Chen YC, Wang YW, Hueng DY, Huang SM. The synergistic effects of valproic acid and fluvastatin on apoptosis induction in glioblastoma multiforme cell lines. Int J Biochem Cell Biol 2017; 92:155-163. [DOI: 10.1016/j.biocel.2017.10.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 10/03/2017] [Accepted: 10/06/2017] [Indexed: 01/03/2023]
|
23
|
Singh SK, Banerjee S, Acosta EP, Lillard JW, Singh R. Resveratrol induces cell cycle arrest and apoptosis with docetaxel in prostate cancer cells via a p53/ p21WAF1/CIP1 and p27KIP1 pathway. Oncotarget 2017; 8:17216-17228. [PMID: 28212547 PMCID: PMC5370034 DOI: 10.18632/oncotarget.15303] [Citation(s) in RCA: 159] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2016] [Accepted: 01/24/2017] [Indexed: 01/14/2023] Open
Abstract
Resveratrol (RES) is the most effective natural products used for the treatment of a variety of cancers. In this study, we tested the effect of RES in enhancing the efficacy of docetaxel (DTX) treatment in prostate cancer (PCa) cells. The C4-2B and DU-145 cell lines were treated with RES, DTX and combination followed by evaluating the apoptosis and cell cycle progression. The combined drug treatment up-regulates the pro-apoptotic genes (BAX, BID, and BAK), cleaved PARP and down regulates the anti-apoptotic genes (MCL-1, BCL-2, BCL-XL) promoting apoptosis. In C4-2B cells the combination up regulated the expression of p53, and cell cycle inhibitors (p21WAF1/CIP1, p27KIP), which, in turn, inhibited the expression of CDK4, cyclin D1, cyclin E1 and induced hypo-phosphorylation of Rb thus blocking the transition of cells in the G0/G1 to S phase. In contrast, the synergistic effect was not profound in DU145 due to its lesser sensitivity to DTX. The suppression of cyclin B1 and CDK1 expression in both cell lines inhibits the further progression of cells in G2/M phase. The current study demonstrates that combination treatment blocks the cell cycle arrest by modulation of key regulators and promotes apoptosis via p53 dependent and independent mechanism in PCa.
Collapse
Affiliation(s)
- Santosh Kumar Singh
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, GA, USA
| | - Saswati Banerjee
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, GA, USA
| | - Edward P Acosta
- Department of Pharmacology & Toxicology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - James W Lillard
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, GA, USA
| | - Rajesh Singh
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, GA, USA
| |
Collapse
|
24
|
Giordano C, Rovito D, Barone I, Mancuso R, Bonofiglio D, Giordano F, Catalano S, Gabriele B, Andò S. Benzofuran-2-acetic ester derivatives induce apoptosis in breast cancer cells by upregulating p21 Cip/WAF1 gene expression in p53-independent manner. DNA Repair (Amst) 2017; 51:20-30. [PMID: 28108275 DOI: 10.1016/j.dnarep.2017.01.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 01/04/2017] [Accepted: 01/11/2017] [Indexed: 01/13/2023]
Abstract
Breast cancer is the most common malignancy and the leading cause of cancer-related death in women worldwide. High toxicity of used chemotherapeutics and resistance of cancer cells to treatments are a driving force for searching the new drug candidates for breast cancer therapy. In this study, we tested the antiproliferative effects of a series of benzofuran-2-acetic methyl ester derivatives, synthesized by a palladium-catalyzed carbonylative heterocyclization approach, on breast cancer cells. We observed that benzofuran compounds bearing a phenyl or tert-butyl substituent α to the methoxycarbonyl group significantly inhibited anchorage-dependent and -independent cell growth, and induced G0/G1 cell cycle arrest in human estrogen receptor alpha positive (MCF-7 and T47D) and in triple negative MDA-MB-231 breast cancer cells, without affecting growth of MCF-10A normal breast epithelial cells. Mechanistically, benzofuran derivatives enhanced the cyclin-dependent kinase inhibitor p21Cip/WAF1 expression at both mRNA and protein levels and this occurs transcriptionally in an Sp1-dependent manner. Moreover, benzofuran derivatives induced apoptosis, increased poly (ADP-ribose) polymerase cleavage and Bax/Bcl-2 ratio along with a marked DNA fragmentation along with a marked DNA fragmentation and a strong increase in TUNEL-positive breast cancer cells. Overall, we provide evidence that the newly tested benzofuran derivatives showed antiproliferative and pro-apoptotic activities against breast cancer cells regardless estrogen receptor status, suggesting their possible clinical development as anticancer agents.
Collapse
Affiliation(s)
- Cinzia Giordano
- Centro Sanitario,University of Calabria, Arcavacata di Rende, CS, Italy
| | - Daniela Rovito
- Centro Sanitario,University of Calabria, Arcavacata di Rende, CS, Italy
| | - Ines Barone
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata di Rende, CS, Italy
| | - Raffaella Mancuso
- Laboratory of Industrial and Synthetic Organic Chemistry (LISOC), Department of Chemistry and Chemical Technologies, University of Calabria, Arcavacata di Rende, CS, Italy
| | - Daniela Bonofiglio
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata di Rende, CS, Italy
| | - Francesca Giordano
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata di Rende, CS, Italy
| | - Stefania Catalano
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata di Rende, CS, Italy.
| | - Bartolo Gabriele
- Laboratory of Industrial and Synthetic Organic Chemistry (LISOC), Department of Chemistry and Chemical Technologies, University of Calabria, Arcavacata di Rende, CS, Italy
| | - Sebastiano Andò
- Centro Sanitario,University of Calabria, Arcavacata di Rende, CS, Italy; Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata di Rende, CS, Italy.
| |
Collapse
|
25
|
Basu T, Panja S, Ghate NB, Chaudhuri D, Mandal N. Antioxidant and antiproliferative effects of different solvent fractions from Terminalia belerica Roxb. fruit on various cancer cells. Cytotechnology 2016; 69:201-216. [PMID: 28004224 DOI: 10.1007/s10616-016-0051-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 11/25/2016] [Indexed: 11/26/2022] Open
Abstract
Terminalia belerica Roxb. fruits have been previously reported against diabetes, ulcer, microbial problems and hepatotoxicity. The present study was aimed to investigate antioxidant and anticancer potential of sequentially fractionated hexane (TBHE), chloroform (TBCE), ethyl acetate (TBEE), butanol (TBBE) and water (TBWE) extracts from the 70% methanolic extract of T. belerica fruits. TBCE, TBEE, TBBE and TBWE showed excellent ROS (reactive oxygen species) and RNS (reactive nitrogen species) scavenging activities which was investigated using 11 different assays for various free radicals. Among 5 fractions, TBHE and TBCE remained nontoxic to any of the malignant cell lines including normal cells (WI-38). TBBE and TBWE inhibited the proliferation of breast (MCF-7), cervical (HeLa) and brain (U87) cancer cells by inducing G2/M arrest while TBEE caused apoptosis. However, these fractions did not inhibit the proliferation of lung (A549) and liver (HepG2) cancer cells. BrdU incorporation study also suggested the efficient anticancer potential of TBEE, TBBE and TBWE. Moreover, TBBE and TBWE treated MCF-7, HeLa and U87 cells showed upregulation of p53 and p21 proteins. Phytochemical analysis reflected the presence of adequate quantities of different phytochemicals. Moreover, HPLC analysis show peaks of purpurin, catechin, tannic acid, reserpine, ellagic acid, methyl gallate, aconitine and rutin in TBBE, TBWE and TBEE. Hence these polar extracts of T. belerica can be used to develop drug against different types of cancer.
Collapse
Affiliation(s)
- Tapasree Basu
- Division of Molecular Medicine, Bose Institute, P 1/12, C. I. T. Road, Scheme - VIIM, Kolkata, West Bengal, 700054, India
| | - Sourav Panja
- Division of Molecular Medicine, Bose Institute, P 1/12, C. I. T. Road, Scheme - VIIM, Kolkata, West Bengal, 700054, India
| | - Nikhil Baban Ghate
- Division of Molecular Medicine, Bose Institute, P 1/12, C. I. T. Road, Scheme - VIIM, Kolkata, West Bengal, 700054, India
| | - Dipankar Chaudhuri
- Division of Molecular Medicine, Bose Institute, P 1/12, C. I. T. Road, Scheme - VIIM, Kolkata, West Bengal, 700054, India
| | - Nripendranath Mandal
- Division of Molecular Medicine, Bose Institute, P 1/12, C. I. T. Road, Scheme - VIIM, Kolkata, West Bengal, 700054, India.
| |
Collapse
|
26
|
Liberio MS, Sadowski MC, Davis RA, Rockstroh A, Vasireddy R, Lehman ML, Nelson CC. The ascidian natural product eusynstyelamide B is a novel topoisomerase II poison that induces DNA damage and growth arrest in prostate and breast cancer cells. Oncotarget 2016; 6:43944-63. [PMID: 26733491 PMCID: PMC4791278 DOI: 10.18632/oncotarget.6267] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2015] [Accepted: 10/08/2015] [Indexed: 12/25/2022] Open
Abstract
As part of an anti-cancer natural product drug discovery program, we recently identified eusynstyelamide B (EB), which displayed cytotoxicity against MDA-MB-231 breast cancer cells (IC50 = 5 μM) and induced apoptosis. Here, we investigated the mechanism of action of EB in cancer cell lines of the prostate (LNCaP) and breast (MDA-MB-231). EB inhibited cell growth (IC50 = 5 μM) and induced a G2 cell cycle arrest, as shown by a significant increase in the G2/M cell population in the absence of elevated levels of the mitotic marker phospho-histone H3. In contrast to MDA-MB-231 cells, EB did not induce cell death in LNCaP cells when treated for up to 10 days. Transcript profiling and Ingenuity Pathway Analysis suggested that EB activated DNA damage pathways in LNCaP cells. Consistent with this, CHK2 phosphorylation was increased, p21CIP1/WAF1 was up-regulated and CDC2 expression strongly reduced by EB. Importantly, EB caused DNA double-strand breaks, yet did not directly interact with DNA. Analysis of topoisomerase II-mediated decatenation discovered that EB is a novel topoisomerase II poison.
Collapse
Affiliation(s)
- Michelle S Liberio
- Australian Prostate Cancer Research Centre - Queensland, Institute of Health and Biomedical Innovation, Queensland University of Technology, Princess Alexandra Hospital, Translational Research Institute, Brisbane, Queensland, Australia.,Eskitis Institute for Drug Discovery, Griffith University, Nathan, Queensland, Australia
| | - Martin C Sadowski
- Australian Prostate Cancer Research Centre - Queensland, Institute of Health and Biomedical Innovation, Queensland University of Technology, Princess Alexandra Hospital, Translational Research Institute, Brisbane, Queensland, Australia
| | - Rohan A Davis
- Eskitis Institute for Drug Discovery, Griffith University, Nathan, Queensland, Australia
| | - Anja Rockstroh
- Australian Prostate Cancer Research Centre - Queensland, Institute of Health and Biomedical Innovation, Queensland University of Technology, Princess Alexandra Hospital, Translational Research Institute, Brisbane, Queensland, Australia
| | - Raj Vasireddy
- Australian Prostate Cancer Research Centre - Queensland, Institute of Health and Biomedical Innovation, Queensland University of Technology, Princess Alexandra Hospital, Translational Research Institute, Brisbane, Queensland, Australia
| | - Melanie L Lehman
- Vancouver Prostate Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | - Colleen C Nelson
- Australian Prostate Cancer Research Centre - Queensland, Institute of Health and Biomedical Innovation, Queensland University of Technology, Princess Alexandra Hospital, Translational Research Institute, Brisbane, Queensland, Australia
| |
Collapse
|
27
|
Senkiv J, Finiuk N, Kaminskyy D, Havrylyuk D, Wojtyra M, Kril I, Gzella A, Stoika R, Lesyk R. 5-Ene-4-thiazolidinones induce apoptosis in mammalian leukemia cells. Eur J Med Chem 2016; 117:33-46. [DOI: 10.1016/j.ejmech.2016.03.089] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 03/28/2016] [Accepted: 03/31/2016] [Indexed: 12/13/2022]
|
28
|
Lemieszek MK, Ribeiro M, Guichard Alves H, Marques G, Nunes FM, Rzeski W. Boletus edulis ribonucleic acid – a potent apoptosis inducer in human colon adenocarcinoma cells. Food Funct 2016; 7:3163-75. [DOI: 10.1039/c6fo00132g] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Despite the large popularity of the Boletus edulis mushroom, little is known about its influence on human health and the possibilities of its therapeutic use.
Collapse
Affiliation(s)
| | - Miguel Ribeiro
- CQ-Vila Real
- Chemistry Research Centre
- Chemistry Department
- University of Trás-os-Montes e Alto Douro
- 5001-801 Vila Real
| | - Helena Guichard Alves
- CQ-Vila Real
- Chemistry Research Centre
- Chemistry Department
- University of Trás-os-Montes e Alto Douro
- 5001-801 Vila Real
| | - Guilhermina Marques
- CITAB – Centre for the Research and Technology of Agro-Environment and Biological Sciences
- Department of Agronomy
- University of Trás-os-Montes e Alto Douro
- 5001-801 Vila Real
- Portugal
| | - Fernando Milheiro Nunes
- CQ-Vila Real
- Chemistry Research Centre
- Chemistry Department
- University of Trás-os-Montes e Alto Douro
- 5001-801 Vila Real
| | - Wojciech Rzeski
- Department of Medical Biology
- Institute of Agricultural Medicine
- 20-090 Lublin
- Poland
- Department of Virology and Immunology
| |
Collapse
|
29
|
Metformin Attenuates Testosterone-Induced Prostatic Hyperplasia in Rats: A Pharmacological Perspective. Sci Rep 2015; 5:15639. [PMID: 26492952 PMCID: PMC4616049 DOI: 10.1038/srep15639] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 10/01/2015] [Indexed: 12/15/2022] Open
Abstract
Benign prostatic hyperplasia (BPH) is uncontrolled proliferation of prostate tissue. Metformin, a widely prescribed anti-diabetic agent, possesses anticancer activity through induction of apoptotic signaling and cell cycle arrest. This study aimed to investigate the protective effect of metformin against experimentally-induced BPH in rats. Treatment with 500 and 1000 mg/kg metformin orally for 14 days significantly inhibited testosterone-mediated increase in the prostate weight & prostate index (prostate weight/body weight [mg/g]) and attenuated the pathological alterations induced by testosterone. Mechanistically, metformin significantly protected against testosterone-induced elevation of estrogen receptor-α (ER-α) and decrease of estrogen receptor-β (ER-β) expression, with no significant effect of androgen receptor (AR) and 5α-reductase expression. It decreased mRNA expression of IGF-1 and IGF-1R and protein expression ratio of pAkt/total Akt induced by testosterone. Furthermore, it significantly ameliorated testosterone–induced reduction of mRNA expression Bax/Bcl-2 ratio, P21 and phosphatase and tensin homolog (PTEN) and AMPK [PT-172] activity. In conclusion, these findings elucidate the effectiveness of metformin in preventing testosterone-induced BPH in rats. These results could be attributed, at least partly, to its ability to enhance expression ratio of ER-β/ER-α, decrease IGF-1, IGF-1R and pAkt expressions, increase P21, PTEN, Bax/Bcl-2 expressions and activate AMPK with a subsequent inhibition of prostate proliferation.
Collapse
|
30
|
Zhou R, Lu Z, Liu K, Guo J, Liu J, Zhou Y, Yang J, Mi M, Xu H. Platycodin D induces tumor growth arrest by activating FOXO3a expression in prostate cancer in vitro and in vivo. Curr Cancer Drug Targets 2015; 14:860-71. [PMID: 25431082 PMCID: PMC4997962 DOI: 10.2174/1568009614666141128104642] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2014] [Revised: 11/14/2014] [Accepted: 11/27/2014] [Indexed: 12/18/2022]
Abstract
Platycodin D (PD), a major saponin derived from Platycodin grandiflorum, exerted cytotoxicity against prostate cancer cell lines (PC3, DU145 and LNCaP cells) with IC50 values in the range of 11.17 to 26.13μmol/L, whereas RWPE-1cells (a non-malignant human prostate epithelial cell line) were not significantly affected. A further study in these cell lines showed that PD could potently affect cell proliferation (indicated by the bromodeoxyuridine assay), induce cell apoptosis (determined by Annexin V-FITC flow cytometry) and cause cell cycle arrest (indicated by PI staining). After being treated with PD for 48 hours, DU145 and LNCaP cells were arrested in the G0 /G1 phase, and PC3 cells were arrested in the G2/M phase. A Western blotting analysis indicated that PD increased the expression of the FOXO3a transcription factor, decreased the expression of p-FOXO3a and MDM2 and increased the expression of FOXO-responsive genes, p21 and p27. MDM2 silencing (transiently by siRNA-MDM2) increased the PD-induced FOXO3a protein expression, while MDM2 overexpression (in cells transiently transfected with a pcDNA3-MDM2 plasmid) decreased the PD-induced expression of the FOXO3a protein. Moreover, PD dose-dependently inhibited the growth of PC3 xenograft tumors in BALB/c nude mice. A Western blotting analysis of the excised xenograft tumors indicated that similar changes in protein expression also occurred in vivo. These results suggest that PD exhibits significant activity against prostate cancer in vitro and in vivo. The FOXO3a transcription factor appears to be involved in the activity of PD. Together, all of these findings provide a basis for the future development of this agent for human prostate cancer therapy.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Hongxia Xu
- Department of Nutrition, Daping Hospital and Research Institute of Surgery, Third Military Medical University, Chongqing 400042, China.
| |
Collapse
|
31
|
Zhang Y, Talmon G, Wang J. MicroRNA-587 antagonizes 5-FU-induced apoptosis and confers drug resistance by regulating PPP2R1B expression in colorectal cancer. Cell Death Dis 2015; 6:e1845. [PMID: 26247730 PMCID: PMC4558495 DOI: 10.1038/cddis.2015.200] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Revised: 06/21/2015] [Accepted: 06/23/2015] [Indexed: 12/14/2022]
Abstract
Drug resistance is one of the major hurdles for cancer treatment. However, the underlying mechanisms are still largely unknown and therapeutic options remain limited. In this study, we show that microRNA (miR)-587 confers resistance to 5-fluorouracil (5-FU)-induced apoptosis in vitro and reduces the potency of 5-FU in the inhibition of tumor growth in a mouse xenograft model in vivo. Further studies indicate that miR-587 modulates drug resistance through downregulation of expression of PPP2R1B, a regulatory subunit of the PP2A complex, which negatively regulates AKT activation. Knockdown of PPP2R1B expression increases AKT phosphorylation, which leads to elevated XIAP expression and enhanced 5-FU resistance; whereas rescue of PPP2R1B expression in miR-587-expressing cells decreases AKT phosphorylation/XIAP expression, re-sensitizing colon cancer cells to 5-FU-induced apoptosis. Moreover, a specific and potent AKT inhibitor, MK2206, reverses miR-587-conferred 5-FU resistance. Importantly, studies of colorectal cancer specimens indicate that the expression of miR-587 and PPP2R1B positively and inversely correlates with chemoresistance, respectively, in colorectal cancer. These findings indicate that the miR-587/PPP2R1B/pAKT/XIAP signaling axis has an important role in mediating response to chemotherapy in colorectal cancer. A major implication of our study is that inhibition of miR-587 or restoration of PPP2R1B expression may have significant therapeutic potential to overcome drug resistance in colorectal cancer patients and that the combined use of an AKT inhibitor with 5-FU may increase efficacy in colorectal cancer treatment.
Collapse
Affiliation(s)
- Yang Zhang
- 1] Eppley Institute for Research in Cancer and Allied Diseases, 985950 Nebraska Medical Center, Omaha, NE 68198, USA [2] Department of Genetics, Cell Biology and Anatomy, 985950 Nebraska Medical Center, Omaha, NE 68198, USA
| | - G Talmon
- Department of Pathology and Microbiology, University of Nebraska Medical Center, 985950 Nebraska Medical Center, Omaha, NE 68198, USA
| | - J Wang
- 1] Eppley Institute for Research in Cancer and Allied Diseases, 985950 Nebraska Medical Center, Omaha, NE 68198, USA [2] Department of Genetics, Cell Biology and Anatomy, 985950 Nebraska Medical Center, Omaha, NE 68198, USA [3] Department of Biochemistry and Molecular Biology, Fred & Pamela Buffett Cancer Center, 985950 Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
32
|
Kaija H, Pakanen L, Kortelainen ML, Porvari K. Hypothermia and rewarming induce gene expression and multiplication of cells in healthy rat prostate tissue. PLoS One 2015; 10:e0127854. [PMID: 25996932 PMCID: PMC4440734 DOI: 10.1371/journal.pone.0127854] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 04/20/2015] [Indexed: 11/18/2022] Open
Abstract
Prostate cancer has been extensively studied, but cellular stress responses in healthy prostate tissue are rarely investigated. Hypothermia is known to cause alterations in mRNA and protein expressions and stability. The aim of this study was to use normal rat prostate as a model in order to find out consequences of cold exposure and rewarming on the expressions of genes which are either members or functionally/structurally related to erythroblastic leukemia viral oncogene B (ErbB) signaling pathway. Relative mRNA expressions of amphiregulin (AMR), cyclin D1 (CyD1), cyclin-dependent kinase inhibitor 1A (p21), transmembrane form of the prostatic acid phosphatase (PAcP), thrombomodulin (TM) and heat shock transcription factor 1 (HSF1) in rat ventral prostate were quantified in mild (2 or 4.5 h at room temperature) and severe (2 or 4.5 h at +10°C) hypothermia and in rewarming after cold exposure (2 h at +10°C followed by 2 h at room temperature or 3 h at +28°C). AMR protein level, apoptotic Bcl-2 associated X protein to B-cell CLL/lymphoma 2 (Bax/Bcl-2) mRNA ratio and proliferative index Ki-67 were determined. 4.5-h mild hypothermia, 2-h severe hypothermia and rewarming increased expression of all these genes. Elevated proliferation index Ki-67 could be seen in 2-h severe hypothermia, and the proliferation index had its highest value in longer rewarming with totally recovered normal body temperature. Pro-apoptotic tendency could be seen in 2-h mild hypothermia while anti-apoptosis was predominant in 4.5-h mild hypothermia and in shorter rewarming with only partly recovered body temperature. Hypothermia and following rewarming promote the proliferation of cells in healthy rat prostate tissue possibly via ErbB signaling pathway.
Collapse
Affiliation(s)
- Helena Kaija
- Department of Forensic Medicine, Faculty of Medicine, University of Oulu, Oulu, Finland
- Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland
| | - Lasse Pakanen
- Department of Forensic Medicine, Faculty of Medicine, University of Oulu, Oulu, Finland
- Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland
| | | | - Katja Porvari
- Department of Forensic Medicine, Faculty of Medicine, University of Oulu, Oulu, Finland
- Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland
- * E-mail:
| |
Collapse
|
33
|
Humbert L, Ghozlan M, Canaff L, Tian J, Lebrun JJ. The leukemia inhibitory factor (LIF) and p21 mediate the TGFβ tumor suppressive effects in human cutaneous melanoma. BMC Cancer 2015; 15:200. [PMID: 25885043 PMCID: PMC4389797 DOI: 10.1186/s12885-015-1177-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 03/06/2015] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Cutaneous melanoma is the most lethal skin cancer and its incidence in developed countries has dramatically increased over the past decades. Localized tumors are easily treated by surgery, but advanced melanomas lack efficient treatment and are associated with very poor outcomes. Thus, understanding the processes underlying melanoma development and progression is critical. The Transforming Growth Factor beta (TGFβ) acts as a potent tumor suppressor in human melanoma, by inhibiting cell growth and preventing cellular migration and invasion. METHODS In this study, we aimed at elucidating the molecular mechanisms underlying TGFβ-mediated tumor suppression. Human cutaneous melanoma cell lines, derived from different patients, were used to assess for cell cycle analysis, apoptosis/caspase activity and cell migration. Techniques involved immunoblotting, immunohistochemistry, real time PCR and luciferase reporter assays. RESULTS We found the leukemia inhibitory factor (LIF) to be strongly up-regulated by TGFβ in melanoma cells, defining LIF as a novel TGFβ downstream target gene in cutaneous melanoma. Interestingly, we also showed that TGFβ-mediated LIF expression is required for TGFβ-induced cell cycle arrest and caspase-mediated apoptosis, as well as for TGFβ-mediated inhibition of cell migration. Moreover, we found that TGFβ-mediated LIF expression leads to activation of transcription of the cell cycle inhibitor p21 in a STAT3-dependent manner, and further showed that p21 is required for TGFβ/LIF-mediated cell cycle arrest and TGFβ-induced gene activation of several pro-apoptotic genes. CONCLUSIONS Together, our results define the LIF/p21 signaling cascade as a novel tumor suppressive-like pathway in melanoma, acting downstream of TGFβ to regulate cell cycle arrest and cell death, further highlight new potential therapeutic strategies for the treatment of cutaneous melanoma.
Collapse
Affiliation(s)
- Laure Humbert
- Division of Medical Oncology, Department of Medicine, McGill University Health Centre, Montreal, QC, Canada.
| | - Mostafa Ghozlan
- Division of Medical Oncology, Department of Medicine, McGill University Health Centre, Montreal, QC, Canada.
| | - Lucie Canaff
- Division of Medical Oncology, Department of Medicine, McGill University Health Centre, Montreal, QC, Canada.
| | - Jun Tian
- Division of Medical Oncology, Department of Medicine, McGill University Health Centre, Montreal, QC, Canada.
| | - Jean-Jacques Lebrun
- Division of Medical Oncology, Department of Medicine, McGill University Health Centre, Montreal, QC, Canada.
- Department of Medicine, Royal Victoria Hospital, Suite H7.66, 687 Pine Avenue West, H3A 1A1, Montreal, QC, Canada.
| |
Collapse
|
34
|
Zhang Y, Geng L, Talmon G, Wang J. MicroRNA-520g confers drug resistance by regulating p21 expression in colorectal cancer. J Biol Chem 2015; 290:6215-25. [PMID: 25616665 DOI: 10.1074/jbc.m114.620252] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Development of drug resistance is one of the major causes of colorectal cancer recurrence, yet mechanistic understanding and therapeutic options remain limited. Here, we show that expression of microRNA (miR)-520g is correlated with drug resistance of colon cancer cells. Ectopic expression of miR-520g conferred resistance to 5-fluorouracil (5-FU)- or oxaliplatin-induced apoptosis in vitro and reduced the effectiveness of 5-FU in the inhibition of tumor growth in a mouse xenograft model in vivo. Further studies indicated that miR-520g mediated drug resistance through down-regulation of p21 expression. Moreover, p53 suppressed miR-520g expression, and deletion of p53 up-regulated miR-520g expression. Inhibition of miR-520g in p53(-/-) cells increased their sensitivity to 5-FU treatment. Importantly, studies of patient samples indicated that expression of miR-520g correlated with chemoresistance in colorectal cancer. These findings indicate that the p53/miR-520g/p21 signaling axis plays an important role in the response of colorectal cancer to chemotherapy. A major implication of our studies is that inhibition of miR-520g or restoration of p21 expression may have considerable therapeutic potential to overcome drug resistance in colorectal cancer patients, especially in those with mutant p53.
Collapse
Affiliation(s)
- Yang Zhang
- From the Eppley Institute for Research in Cancer and Allied Diseases, Department of Genetics, Cell Biology, and Anatomy
| | - Liying Geng
- From the Eppley Institute for Research in Cancer and Allied Diseases
| | - Geoffrey Talmon
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska 68198
| | - Jing Wang
- From the Eppley Institute for Research in Cancer and Allied Diseases, Department of Genetics, Cell Biology, and Anatomy, Department of Biochemistry and Molecular Biology and Fred & Pamela Buffett Cancer Center, and
| |
Collapse
|
35
|
Chin YR, Yuan X, Balk SP, Toker A. PTEN-deficient tumors depend on AKT2 for maintenance and survival. Cancer Discov 2014; 4:942-55. [PMID: 24838891 DOI: 10.1158/2159-8290.cd-13-0873] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
UNLABELLED Loss of PTEN is a common event in many cancers and leads to hyperactivation of the PI3K-AKT signaling pathway. The mechanisms by which AKT isoforms mediate signaling to phenotypes associated with PTEN inactivation in cancer have not been defined. Here, we show that AKT2 is exclusively required for PTEN-deficient prostate tumor spheroid maintenance, whereas AKT1 is dispensable. shRNA silencing of AKT2 but not AKT1 promotes regression of prostate cancer xenografts. Mechanistically, we show that AKT2 silencing upregulates p21 and the proapoptotic protein BAX and downregulates the insulin-like growth factor receptor-1. We also show that p21 is an effector of AKT2 in mediating prostate tumor maintenance. Moreover, AKT2 is also exclusively required for the maintenance and survival of other PTEN-deficient solid tumors, including breast cancer and glioblastoma. These findings identify a specific function for AKT2 in mediating survival of PTEN-deficient tumors and provide a rationale for developing therapeutics targeting AKT2. SIGNIFICANCE Depletion of AKT2, but not AKT1, induces potent tumor regression in PTEN-deficient prostate cancer xenografts, concomitant with upregulation of p21, which may serve as a potential biomarker for screening AKT2 activity in clinical samples. The specific role of AKT2 in tumor maintenance provides a rationale for the development of isoform-specific inhibitors for patients with PTEN-deficient cancers.
Collapse
Affiliation(s)
| | - Xin Yuan
- Hematology-Oncology Division, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Steven P Balk
- Hematology-Oncology Division, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | | |
Collapse
|
36
|
Shen T, Li W, Wang YY, Zhong QQ, Wang SQ, Wang XN, Ren DM, Lou HX. Antiproliferative activities of Garcinia bracteata extract and its active ingredient, isobractatin, against human tumor cell lines. Arch Pharm Res 2013; 37:412-20. [DOI: 10.1007/s12272-013-0196-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2013] [Accepted: 06/18/2013] [Indexed: 12/28/2022]
|
37
|
Mujtaba SF, Dwivedi A, Yadav N, Ray RS, Singh G. Singlet oxygen mediated apoptosis by anthrone involving lysosomes and mitochondria at ambient UV exposure. JOURNAL OF HAZARDOUS MATERIALS 2013; 252-253:258-271. [PMID: 23542321 DOI: 10.1016/j.jhazmat.2013.02.055] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Revised: 02/15/2013] [Accepted: 02/20/2013] [Indexed: 06/02/2023]
Abstract
Anthrone a tricyclic aromatic hydrocarbon which is toxic environmental pollutant comes in the environment through photooxidation of anthracene. We have studied the photomodification of anthrone under environmental conditions. Anthrone generates reactive oxygen species (ROS) like (1)O2 through Type-II photodynamic reaction. Significant intracellular ROS generation was measured through dichlorohydrofluorescein fluorescence intensity. The generation of (1)O2 was further substantiated by using specific quencher like sodium azide. UV induced photodegradation of 2-deoxyguanosine and photoperoxidation of linoleic acid accorded the involvement of (1)O2 in the manifestation of anthrone phototoxicity. Phototoxicity of anthrone was done on human keratinocytes (HaCaT) through 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide and neutral red uptake assays. Anthrone induced cell cycle arrest (G2/M-phase) and DNA damage in a concentration dependent manner. We found apoptosis as a pattern of cell death which was confirmed through sub-G1 fraction, morphological changes, caspase-3 activation, acridine orange/ethidium bromide staining and phosphatidylserine translocation. Mitochondrial depolarization and lysosomal destabilization was parallel to apoptotic process. Our RT-PCR results strongly supports our view point of apoptotic cell death through up-regulation of pro-apoptotic genes p21 and Bax, and down regulation of anti-apoptotic gene Bcl2. Therefore, much attention should be paid to concomitant exposure of anthrone and UV-R for its total environmental impact.
Collapse
Affiliation(s)
- Syed Faiz Mujtaba
- Photobiology Division, CSIR, Indian Institute of Toxicology Research, Post Box No 80, MG Marg, Lucknow 226001, Uttar Pradesh, India
| | | | | | | | | |
Collapse
|
38
|
Kang S, Kim JB, Heo TH, Kim SJ. Cell cycle arrest in Batten disease lymphoblast cells. Gene 2013; 519:245-50. [PMID: 23458879 DOI: 10.1016/j.gene.2013.02.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Revised: 02/02/2013] [Accepted: 02/18/2013] [Indexed: 10/27/2022]
Abstract
Batten disease is an inherited neurodegenerative disorder caused by a CLN3 gene mutation. Batten disease is characterized by blindness, seizures, cognitive decline, and early death. Although apoptotic cell death is one of the pathological hallmarks of Batten disease, little is known about the regulatory mechanism of apoptosis in this disease. Since the CLN3 gene is suggested to be involved in the cell cycle in a yeast model, we investigated the cell cycle profile and its regulatory factors in lymphoblast cells from Batten disease patients. We found G1/G0 cell cycle arrest in Batten disease cells, with overexpression of p21, sphingosine, glucosylceramide, and sulfatide as possible cell cycle regulators.
Collapse
Affiliation(s)
- Sunyang Kang
- Department of Biotechnology, Hoseo University, 165 Baebang, Asan, Chungnam, Republic of Korea
| | | | | | | |
Collapse
|
39
|
Diaz-Moralli S, Tarrado-Castellarnau M, Miranda A, Cascante M. Targeting cell cycle regulation in cancer therapy. Pharmacol Ther 2013; 138:255-71. [PMID: 23356980 DOI: 10.1016/j.pharmthera.2013.01.011] [Citation(s) in RCA: 263] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2012] [Accepted: 12/26/2012] [Indexed: 01/10/2023]
Abstract
Cell proliferation is an essential mechanism for growth, development and regeneration of eukaryotic organisms; however, it is also the cause of one of the most devastating diseases of our era: cancer. Given the relevance of the processes in which cell proliferation is involved, its regulation is of paramount importance for multicellular organisms. Cell division is orchestrated by a complex network of interactions between proteins, metabolism and microenvironment including several signaling pathways and mechanisms of control aiming to enable cell proliferation only in response to specific stimuli and under adequate conditions. Three main players have been identified in the coordinated variation of the many molecules that play a role in cell cycle: i) The cell cycle protein machinery including cyclin-dependent kinases (CDK)-cyclin complexes and related kinases, ii) The metabolic enzymes and related metabolites and iii) The reactive-oxygen species (ROS) and cellular redox status. The role of these key players and the interaction between oscillatory and non-oscillatory species have proved essential for driving the cell cycle. Moreover, cancer development has been associated to defects in all of them. Here, we provide an overview on the role of CDK-cyclin complexes, metabolic adaptations and oxidative stress in regulating progression through each cell cycle phase and transitions between them. Thus, new approaches for the design of innovative cancer therapies targeting crosstalk between cell cycle simultaneous events are proposed.
Collapse
Affiliation(s)
- Santiago Diaz-Moralli
- Faculty of Biology, Department of Biochemistry and Molecular Biology, Universitat de Barcelona, Barcelona, Spain
| | | | | | | |
Collapse
|
40
|
Hoeferlin LA, Oleinik NV, Krupenko NI, Krupenko SA. Activation of p21-Dependent G1/G2 Arrest in the Absence of DNA Damage as an Antiapoptotic Response to Metabolic Stress. Genes Cancer 2012; 2:889-99. [PMID: 22593801 DOI: 10.1177/1947601911432495] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Accepted: 11/17/2011] [Indexed: 12/26/2022] Open
Abstract
The folate enzyme, FDH (10-formyltetrahydrofolate dehydrogenase, ALDH1L1), a metabolic regulator of proliferation, activates p53-dependent G1 arrest and apoptosis in A549 cells. In the present study, we have demonstrated that FDH-induced apoptosis is abrogated upon siRNA knockdown of the p53 downstream target PUMA. Conversely, siRNA knockdown of p21 eliminated FDH-dependent G1 arrest and resulted in an early apoptosis onset. The acceleration of FDH-dependent apoptosis was even more profound in another cell line, HCT116, in which the p21 gene was silenced through homologous recombination (p21(-/-) cells). In contrast to A549 cells, FDH caused G2 instead of G1 arrest in HCT116 p21(+/+) cells; such an arrest was not seen in p21-deficient (HCT116 p21(-/-)) cells. In agreement with the cell cycle regulatory function of p21, its strong accumulation in nuclei was seen upon FDH expression. Interestingly, our study did not reveal DNA damage upon FDH elevation in either cell line, as judged by comet assay and the evaluation of histone H2AX phosphorylation. In both A549 and HCT116 cell lines, FDH induced a strong decrease in the intracellular ATP pool (2-fold and 30-fold, respectively), an indication of a decrease in de novo purine biosynthesis as we previously reported. The underlying mechanism for the drop in ATP was the strong decrease in intracellular 10-formyltetrahydrofolate, a substrate in two reactions of the de novo purine pathway. Overall, we have demonstrated that p21 can activate G1 or G2 arrest in the absence of DNA damage as a response to metabolite deprivation. In the case of FDH-related metabolic alterations, this response delays apoptosis but is not sufficient to prevent cell death.
Collapse
|
41
|
Kosaka M, Kang MR, Yang G, Li LC. Targeted p21WAF1/CIP1 activation by RNAa inhibits hepatocellular carcinoma cells. Nucleic Acid Ther 2012; 22:335-43. [PMID: 22909100 DOI: 10.1089/nat.2012.0354] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
RNA activation (RNAa) is a mechanism of gene activation triggered by promoter-targeted small double-stranded RNA (dsRNA), also known as small activating RNA (saRNA). p21(WAF1/CIP1) (p21) is a putative tumor suppressor gene due to its role as a key negative regulator of the cell cycle and cell proliferation. It is frequently downregulated in cancer including hepatocellular carcinoma (HCC), but is rarely mutated or deleted, making it an ideal target for RNAa-based overexpression to restore its tumor suppressor function. In the present study, we investigated the antigrowth effects of p21 RNAa in HCC cells. Transfection of a p21 saRNA (dsP21-322) into HepG2 and Hep3B cells significantly induced the expression of p21 at both the mRNA and protein levels, and inhibited cell proliferation and survival. Further analysis of dsP21-322 transfected cells revealed that dsP21-322 arrested the cell cycle at the G(0)/G(1) phase in HepG2 cells but at G(2)/M phase in Hep3B cells which lack functional p53 and Rb genes, and induced both early and late stage apoptosis by activating caspase 3 in both cell lines. These results demonstrated that RNAa of p21 has in vitro antigrowth effects on HCC cells via impeding cell cycle progression and inducing apoptotic cell death. This study suggests that targeted activation of p21 by RNAa may be explored as a novel therapy for the treatment of HCC.
Collapse
Affiliation(s)
- Mika Kosaka
- Department of Urology and Helen-Diller Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
| | | | | | | |
Collapse
|
42
|
Yang X, Wang W, Qin JJ, Wang MH, Sharma H, Buolamwini JK, Wang H, Zhang R. JKA97, a novel benzylidene analog of harmine, exerts anti-cancer effects by inducing G1 arrest, apoptosis, and p53-independent up-regulation of p21. PLoS One 2012; 7:e34303. [PMID: 22558087 PMCID: PMC3338851 DOI: 10.1371/journal.pone.0034303] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2012] [Accepted: 02/28/2012] [Indexed: 01/04/2023] Open
Abstract
JKA97, a benzylidene analog of harmine, has been found to be a promising drug candidate for human cancer therapy, although the underlying molecular mechanisms have not been fully demonstrated. In this study, we evaluated the effects of JKA97 on human breast cancer cells in vitro and in vivo. JKA97 inhibited the growth and proliferation of MCF7 (p53 wild-type), MCF7 (p53 knockdown), and MDA-MB-468 (p53 mutant) cells in a dose-dependent manner. Treatment with JKA97 arrested breast cancer cells in G1 phase and induced apoptosis. JKA97 also significantly suppressed the growth of MCF7 and MDA-MB-468 xenograft tumors. It regulated the expression levels of G1 phase regulators, such as p21, p27, cyclinE, and cylinD1. JKA97 activated p21 transcription, independent of p53, but had little effect on p21 protein stability/degradation. In summary, our results suggest that JKA97 inhibits human breast cancer cell growth through activating p21, independent of p53, which provides a basis for developing this compound as a novel drug for human breast cancer therapy.
Collapse
Affiliation(s)
- Xinyi Yang
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas, United States of America
| | - Wei Wang
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas, United States of America
- Cancer Biology Center, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas, United States of America
| | - Jiang-Jiang Qin
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas, United States of America
| | - Ming-Hai Wang
- Cancer Biology Center, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas, United States of America
- Department of Biomedical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas, United States of America
| | - Horrick Sharma
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
| | - John K. Buolamwini
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
| | - Hui Wang
- Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Ruiwen Zhang
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas, United States of America
- Cancer Biology Center, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas, United States of America
- * E-mail:
| |
Collapse
|
43
|
Bashash D, Ghaffari SH, Zaker F, Hezave K, Kazerani M, Ghavamzadeh A, Alimoghaddam K, Mosavi SA, Gharehbaghian A, Vossough P. Direct short-term cytotoxic effects of BIBR 1532 on acute promyelocytic leukemia cells through induction of p21 coupled with downregulation of c-Myc and hTERT transcription. Cancer Invest 2012; 30:57-64. [PMID: 22236190 DOI: 10.3109/07357907.2011.629378] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Acute promyelocytic leukemia (APL) is characterized by specific t(15;17), distinct morphologic picture, and clinical coagulopathy that contribute to the morbidity and mortality of the disease. This study aims to investigate the effects of antitelomerase compound BIBR1532 on APL cells (NB4). BIBR 1532 exerts a direct short-term growth suppressive effect in a concentration-dependent manner probably through downregulation of c-Myc and hTERT expression. Our results also suggest that induction of p21 and subsequent disturbance of Bax/Bcl-2 balanced ratio as well as decreased telomerase activity may be rational mechanisms for the potent/direct short-term cytotoxicity of high doses of BIBR1532 against NB4 cells.
Collapse
Affiliation(s)
- D Bashash
- Hematology, Oncology and Stem Cell Transplantation Research Center, Tehran University of Medical Sciences
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Monahan P, Himes AD, Parfieniuk A, Raetzman LT. p21, an important mediator of quiescence during pituitary tumor formation, is dispensable for normal pituitary development during embryogenesis. Mech Dev 2011; 128:640-52. [PMID: 22154697 DOI: 10.1016/j.mod.2011.11.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2011] [Revised: 11/14/2011] [Accepted: 11/23/2011] [Indexed: 12/25/2022]
Abstract
A delicate balance between proliferation and differentiation must be maintained in the developing pituitary to ensure the formation of the appropriate number of hormone producing cells. In the adult, proliferation is actively restrained to prevent tumor formation. The cyclin dependent kinase inhibitors (CDKIs) of the CIP/KIP family, p21, p27 and p57, mediate cell cycle inhibition. Although p21 is induced in the pituitary upon loss of Notch signaling or initiation of tumor formation to halt cell cycle progression, its role in normal pituitary organogenesis has not been explored. In wildtype pituitaries, expression of p21 is limited to a subset of cells embryonically as well as during the postnatal proliferative phase. Mice lacking p21 do not have altered cell proliferation during early embryogenesis, but do show a slight delay in separation of proliferating progenitors from the oral ectoderm. By embryonic day 16.5, p21 mutants have an alteration in the spatial distribution of proliferating pituitary progenitors, however there is no overall change in proliferation. At postnatal day 21, there appears to be no change in proliferation, as assessed by cells expressing Ki67 protein. However, p21 mutant pituitaries have significantly less mRNA of Myc and the cyclins Ccnb1, Ccnd1, Ccnd2 and Ccne1 than wildtype pituitaries. Interestingly, unlike the redundant role in cell cycle inhibition uncovered in p27/p57 double mutants, the pituitary of p21/p27 double mutants has a similar proliferation profile to p27 single mutants at the time points examined. Taken together, these studies demonstrate that unlike p27 or p57, p21 does not play a major role in control of progenitor proliferation in the developing pituitary. However, p21 may be required to maintain normal levels of cell cycle components.
Collapse
Affiliation(s)
- Pamela Monahan
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | | | | | | |
Collapse
|
45
|
Huang WY, Yang PM, Chang YF, Marquez VE, Chen CC. Methotrexate induces apoptosis through p53/p21-dependent pathway and increases E-cadherin expression through downregulation of HDAC/EZH2. Biochem Pharmacol 2010; 81:510-7. [PMID: 21114963 DOI: 10.1016/j.bcp.2010.11.014] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2010] [Revised: 11/19/2010] [Accepted: 11/22/2010] [Indexed: 01/22/2023]
Abstract
Methotrexate (MTX) is a dihydrofolate reductase (DHFR) inhibitor widely used as an anticancer drug in different kinds of human cancers. Here we investigated the anti-tumor mechanism of MTX against non-small cell lung cancer (NSCLC) A549 cells. MTX not only inhibited in vitro cell growth via induction of apoptosis, but also inhibited tumor formation in animal xenograft model. RNase protection assay (RPA) and RT-PCR demonstrated its induction of p53 target genes including DR5, p21, Puma and Noxa. Moreover, MTX promoted p53 phosphorylation at Ser15 and acetylaion at Lys373/382, which increase its stability and expression. The apoptosis and inhibition of cell viability induced by MTX were dependent on p53 and, partially, on p21. In addition, MTX also increased E-cadherin expression through inhibition of histone deacetylase (HDAC) activity and downregulation of polycomb group protein enhancer of zeste homologue 2 (EZH2). Therefore, the anticancer mechanism of MTX acts through initiation of p53-dependent apoptosis and restoration of E-cadherin expression by downregulation of HDAC/EZH2.
Collapse
Affiliation(s)
- Wen-Yu Huang
- Department of Pharmacology, College of Medicine, National Taiwan University, Taipei 10018, Taiwan
| | | | | | | | | |
Collapse
|
46
|
Patwardhan GA, Liu YY. Sphingolipids and expression regulation of genes in cancer. Prog Lipid Res 2010; 50:104-14. [PMID: 20970453 DOI: 10.1016/j.plipres.2010.10.003] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2010] [Revised: 10/05/2010] [Accepted: 10/11/2010] [Indexed: 12/29/2022]
Abstract
Sphingolipids including glycosphingolipids have myriad effects on cell functions and affect cancer in aspects of tumorigenesis, metastasis and tumor response to treatments. Bioactive ones like ceramide, sphingosine 1-phosphate and globotriaosylceramide initiate and process cellular signaling to alter cell behaviors immediately responding to oncogenic stress or treatment challenges. Recent studies pinpoint that sphingolipid-mediated gene expression has long and profound impacts on cancer cells, and these play crucial roles in tumor progression and in treatment outcome. More than 10 sphingolipids and glycosphingolipids selectively mediate expressions of approximately 50 genes including c-myc, p21, c-fos, telomerase reverse transcriptase, caspase-9, Bcl-x, cyclooxygenase-2, matrix metalloproteinases, integrins, Oct-4, glucosylceramide synthase and multidrug-resistant gene 1. By diverse functions of these genes, sphingolipids enduringly affect cellular processes of mitosis, apoptosis, migration, stemness of cancer stem cells and cellular resistance to therapies. Mechanistic studies indicate that sphingolipids regulate particular gene expression by modulating phosphorylation and acetylation of proteins that serve as transcription factors (β-catenin, Sp1), repressor of transcription (histone H3), and regulators (SRp30a) in RNA splicing. Disclosing molecular mechanisms by which sphingolipids selectively regulate particular gene expression, instead of other relevant ones, requires understanding of the exact roles of individual lipid instead of a group, the signaling pathways that are implicated in and interaction with proteins or other lipids in details. These studies not only expand our knowledge of sphingolipids, but can also suggest novel targets for cancer treatments.
Collapse
Affiliation(s)
- Gauri A Patwardhan
- Department of Basic Pharmaceutical Sciences, University of Louisiana at Monroe, 700 University Avenue, Monroe, LA 71209, USA
| | | |
Collapse
|
47
|
Ma E, Li Y, Zhang W, Wang X, Tai W, Li T, Zhang L, Ikejima T. 2(+/-)-7,8,3',4',5'-Pentamethoxyflavan induces G2/M phase arrest and apoptosis in HL60 cells. Toxicol In Vitro 2009; 23:874-9. [PMID: 19450678 DOI: 10.1016/j.tiv.2009.05.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2008] [Revised: 04/05/2009] [Accepted: 05/11/2009] [Indexed: 10/20/2022]
Abstract
2(+/-)-7,8,3',4',5'-pentamethoxyflavan (PMF), a synthetic flavan racemate, showed growth inhibitory effect on various kinds of tumor cells. The present study is to investigate the molecular mechanisms of action of PMF in human leukemia HL60 cells. Anti-proliferative effect of PMF on HL60 cells was associated with G2/M cell cycle arrest, which was mediated by regulating the expression of Cdc25C, cyclin A and p21 proteins and inhibiting the phosphorylation of Cdc2 at Thr161. PMF also induced apoptosis of HL60 cells via death receptor and mitochondria apoptotic pathways, which was characterized by DNA fragmentation, cleavage of poly (ADP-ribose) polymerase, caspase-3, caspase-8 and caspase-9, changes of Bcl-2 and Bax expression, cytochrome c release from mitochondria and a decrease in the mitochondrial membrane potential (MMP). These data suggest that PMF produces anti-tumor effect via induction of G2/M cell cycle arrest and apoptosis.
Collapse
Affiliation(s)
- Enlong Ma
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang 110016, PR China.
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Udayakumar TS, Hachem P, Ahmed MM, Agrawal S, Pollack A. Antisense MDM2 enhances E2F1-induced apoptosis and the combination sensitizes androgen-sensitive [corrected] and androgen-insensitive [corrected] prostate cancer cells to radiation. Mol Cancer Res 2009; 6:1742-54. [PMID: 19010821 DOI: 10.1158/1541-7786.mcr-08-0102] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We have previously shown in separate studies that MDM2 knockdown via antisense MDM2 (AS-MDM2) and E2F1 overexpression via adenoviral-mediated E2F1 (Ad-E2F1) sensitized prostate cancer cells to radiation. Because E2F1 and MDM2 affect apoptosis through both common and independent pathways, we hypothesized that coupling these two treatments would result in increased killing of prostate cancer cells. In this study, the effect of Ad-E2F1 and AS-MDM2 in combination with radiation was investigated in three prostate cancer cell lines: LNCaP cells, LNCaP-Res cells [androgen insensitive with functional p53 and androgen receptor (AR)], and PC3 cells (androgen insensitive, p53(null), and AR(null)). A supra-additive radiosensitizing effect was observed in terms of clonogenic inhibition and induction of apoptosis (caspase-3 + caspase-7 activity) in response to Ad-E2F1 plus AS-MDM2 treatments in all three cell lines. In LNCaP and LNCaP-Res, these combination treatments elevated the levels of phospho-Ser(15) p53 with significant induction of p21(waf1/cip1), phospho-gammaH2AX, PUMA, and Bax levels and reduction of AR and bcl-2 expression. Similarly, AR(null) and p53(null) PC-3 cells showed elevated levels of Bax and phospho-gammaH2AX expression. These findings show that the combination of Ad-E2F1 and AS-MDM2 significantly increases cell death in prostate cancer cells exposed to radiation and that this effect occurs in the presence or absence of AR and p53.
Collapse
|
49
|
George RJ, Sturmoski MA, May R, Sureban SM, Dieckgraefe BK, Anant S, Houchen CW. Loss of p21Waf1/Cip1/Sdi1 enhances intestinal stem cell survival following radiation injury. Am J Physiol Gastrointest Liver Physiol 2009; 296:G245-54. [PMID: 19056768 PMCID: PMC2643902 DOI: 10.1152/ajpgi.00021.2008] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The microcolony assay following gamma irradiation (IR) is a functional assay of intestinal stem cell fate. The cyclin-dependent kinase (CDK) inhibitor p21(Waf1/Cip1/Sdi1) (p21) regulates cell cycle arrest following DNA damage. To explore the role of p21 on stem cell fate, we examined the effects of p21 deletion on intestinal crypt survival following IR and expression of the stem/progenitor cell marker Musashi-1 (Msi-1) and the antiapoptotic gene survivin. Intestinal stem cell survival in adult wild-type (WT) and p21(-/-) mice was measured using the microcolony assay. Msi-1, p21, and survivin mRNA were measured using real-time PCR and immunohistochemical analysis. Laser capture microdissection (LCM) was used to isolate mRNA from the crypt stem cell zone. No differences in radiation-induced apoptosis were observed between WT and p21(-/-) mice. However, increased crypt survival (3.0-fold) was observed in p21(-/-) compared with WT mice 3.5 days after 13 Gy. Msi-1 and survivin mRNA were elevated 12- and 7.5-fold, respectively, in LCM-dissected crypts of p21(-/-) compared with WT mice. In conclusion, deletion of p21 results in protection of crypt stem/progenitor cells from IR-induced cell death. Furthermore, the increase in crypt survival is associated with increased numbers of Msi-1- and survivin-expressing cells in regenerative crypts.
Collapse
Affiliation(s)
- Robert J. George
- Department of Medicine, Division of Digestive Diseases and Nutrition, and Department of Cell Biology, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma; Department of Internal Medicine, Division of Gastroenterology, and Department of Surgery, Washington University School of Medicine, St. Louis, Missouri; OU Cancer Institute, Oklahoma City; and Department of Veteran Affairs Medical Center, Oklahoma City, Oklahoma
| | - Mark A. Sturmoski
- Department of Medicine, Division of Digestive Diseases and Nutrition, and Department of Cell Biology, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma; Department of Internal Medicine, Division of Gastroenterology, and Department of Surgery, Washington University School of Medicine, St. Louis, Missouri; OU Cancer Institute, Oklahoma City; and Department of Veteran Affairs Medical Center, Oklahoma City, Oklahoma
| | - Randal May
- Department of Medicine, Division of Digestive Diseases and Nutrition, and Department of Cell Biology, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma; Department of Internal Medicine, Division of Gastroenterology, and Department of Surgery, Washington University School of Medicine, St. Louis, Missouri; OU Cancer Institute, Oklahoma City; and Department of Veteran Affairs Medical Center, Oklahoma City, Oklahoma
| | - Sripathi M. Sureban
- Department of Medicine, Division of Digestive Diseases and Nutrition, and Department of Cell Biology, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma; Department of Internal Medicine, Division of Gastroenterology, and Department of Surgery, Washington University School of Medicine, St. Louis, Missouri; OU Cancer Institute, Oklahoma City; and Department of Veteran Affairs Medical Center, Oklahoma City, Oklahoma
| | - Brian K. Dieckgraefe
- Department of Medicine, Division of Digestive Diseases and Nutrition, and Department of Cell Biology, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma; Department of Internal Medicine, Division of Gastroenterology, and Department of Surgery, Washington University School of Medicine, St. Louis, Missouri; OU Cancer Institute, Oklahoma City; and Department of Veteran Affairs Medical Center, Oklahoma City, Oklahoma
| | - Shrikant Anant
- Department of Medicine, Division of Digestive Diseases and Nutrition, and Department of Cell Biology, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma; Department of Internal Medicine, Division of Gastroenterology, and Department of Surgery, Washington University School of Medicine, St. Louis, Missouri; OU Cancer Institute, Oklahoma City; and Department of Veteran Affairs Medical Center, Oklahoma City, Oklahoma
| | - Courtney W. Houchen
- Department of Medicine, Division of Digestive Diseases and Nutrition, and Department of Cell Biology, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma; Department of Internal Medicine, Division of Gastroenterology, and Department of Surgery, Washington University School of Medicine, St. Louis, Missouri; OU Cancer Institute, Oklahoma City; and Department of Veteran Affairs Medical Center, Oklahoma City, Oklahoma
| |
Collapse
|
50
|
Kalia S, Bansal M. p53 is involved in inducing testicular apoptosis in mice by the altered redox status following tertiary butyl hydroperoxide treatment. Chem Biol Interact 2008; 174:193-200. [DOI: 10.1016/j.cbi.2008.06.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2008] [Revised: 06/04/2008] [Accepted: 06/10/2008] [Indexed: 11/27/2022]
|