1
|
Iaquinto G, Aufiero VR, Mazzarella G, Lucariello A, Panico L, Melina R, Iaquinto S, De Luca A, Sellitto C. Pathogens in Crohn's Disease: The Role of Adherent Invasive Escherichia coli. Crit Rev Eukaryot Gene Expr 2024; 34:83-99. [PMID: 38305291 DOI: 10.1615/critreveukaryotgeneexpr.2023050088] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
In Crohn's disease (CD), gut dysbiosis is marked by the prevalence of pathogenic bacterial species. Although several microbes have been reported as risk factors or causative agents of CD, it is not yet clear which is the real trigger of the disease. Thirty years ago, a new pathovar of Escherichia coli strain was isolated in the ileal mucosa of CD patients. This strain, called adherent invasive E. coli (AIEC), for its ability to invade the intestinal mucosa, could represent the causative agent of the disease. Several authors studied the mechanisms by which the AIEC penetrate and replicate within macrophages, and release inflammatory cytokines sustaining inflammation. In this review we will discuss about the role of AIEC in the pathogenesis of CD, the virulence factors mediating adhesion and invasion of AIEC in mucosal tissue, the environmental conditions improving AIEC survival and replication within macrophages. Finally, we will also give an overview of the new strategies developed to limit AIEC overgrowth.
Collapse
Affiliation(s)
- Gaetano Iaquinto
- Gastroenterology Division, S. Rita Hospital, Atripalda, Avellino, Italy
| | - Vera Rotondi Aufiero
- Institute of Food Sciences, CNR, Avellino, Italy and Department of Translational Medical Science and E.L.F.I.D, University "Federico II" Napoli, Italy
| | - Giuseppe Mazzarella
- Institute of Food Sciences, CNR, Avellino, Italy and Department of Translational Medical Science and E.L.F.I.D, University "Federico II" Napoli, Italy
| | - Angela Lucariello
- Department of Sport Sciences and Wellness, University of Naples "Parthenope," 80100, Naples, Italy
| | - Luigi Panico
- Pathological Anatomy and Histology Unit, Monaldi Hospital, Napoli, Italy
| | - Raffaele Melina
- Department of Gastroenterology, San G. Moscati Hospital, Avellino, Italy
| | | | - Antonio De Luca
- Department of Mental Health and Physics, Preventive Medicine, University of Campania "Luigi Vanvitelli," Naples, Italy
| | | |
Collapse
|
2
|
Feilstrecker Balani G, dos Santos Cortez M, Picasky da Silveira Freitas JE, Freire de Melo F, Zarpelon-Schutz AC, Teixeira KN. Immune response modulation in inflammatory bowel diseases by Helicobacter pylori infection. World J Gastroenterol 2023; 29:4604-4615. [PMID: 37662864 PMCID: PMC10472898 DOI: 10.3748/wjg.v29.i30.4604] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 07/01/2023] [Accepted: 07/24/2023] [Indexed: 08/10/2023] Open
Abstract
Many studies point to an association between Helicobacter pylori (H. pylori) infection and inflammatory bowel diseases (IBD). Although controversial, this association indicates that the presence of the bacterium somehow affects the course of IBD. It appears that H. pylori infection influences IBD through changes in the diversity of the gut microbiota, and hence in local chemical characteristics, and alteration in the pattern of gut immune response. The gut immune response appears to be modulated by H. pylori infection towards a less aggressive inflammatory response and the establishment of a targeted response to tissue repair. Therefore, a T helper 2 (Th2)/macrophage M2 response is stimulated, while the Th1/macrophage M1 response is suppressed. The immunomodulation appears to be associated with intrinsic factors of the bacteria, such as virulence factors - such oncogenic protein cytotoxin-associated antigen A, proteins such H. pylori neutrophil-activating protein, but also with microenvironmental changes that favor permanence of H. pylori in the stomach. These changes include the increase of gastric mucosal pH by urease activity, and suppression of the stomach immune response promoted by evasion mechanisms of the bacterium. Furthermore, there is a causal relationship between H. pylori infection and components of the innate immunity such as the NLR family pyrin domain containing 3 inflammasome that directs IBD toward a better prognosis.
Collapse
Affiliation(s)
| | | | | | - Fabrício Freire de Melo
- Campus Anísio Teixeira, Universidade Federal da Bahia, Instituto Multidisciplinar em Saúde, Vitória da Conquista 45.029-094, Bahia, Brazil
| | - Ana Carla Zarpelon-Schutz
- Campus Toledo, Universidade Federal do Paraná, Toledo 85.919-899, Paraná, Brazil
- Programa de Pós-graduação em Biotecnologia - Setor Palotina, Universidade Federal do Paraná, Palotina 85.950-000, Paraná, Brazil
| | - Kádima Nayara Teixeira
- Campus Toledo, Universidade Federal do Paraná, Toledo 85.919-899, Paraná, Brazil
- Programa Multicêntrico de Pós-graduação em Bioquímica e Biologia Molecular - Setor Palotina, Universidade Federal do Paraná, Palotina 85.950-000, Paraná, Brazil
| |
Collapse
|
3
|
Barker KH, Higham JP, Pattison LA, Chessell IP, Welsh F, Smith ESJ, Bulmer DC. Sensitization of colonic nociceptors by IL-13 is dependent on JAK and p38 MAPK activity. Am J Physiol Gastrointest Liver Physiol 2023; 324:G250-G261. [PMID: 36749569 PMCID: PMC10010921 DOI: 10.1152/ajpgi.00280.2022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The effective management of visceral pain is a significant unmet clinical need for those affected by gastrointestinal diseases, such as inflammatory bowel disease (IBD). The rational design of novel analgesics requires a greater understanding of the mediators and mechanisms underpinning visceral pain. Interleukin-13 (IL-13) production by immune cells residing in the gut is elevated in IBD, and IL-13 appears to be important in the development of experimental colitis. Furthermore, receptors for IL-13 are expressed by neurons innervating the colon, though it is not known whether IL-13 plays any role in visceral nociception per se. To resolve this, we used Ca2+ imaging of cultured sensory neurons and ex vivo electrophysiological recording from the lumbar splanchnic nerve innervating the distal colon. Ca2+ imaging revealed the stimulation of small-diameter, capsaicin-sensitive sensory neurons by IL-13, indicating that IL-13 likely stimulates nociceptors. IL-13-evoked Ca2+ signals were attenuated by inhibition of Janus (JAK) and p38 kinases. In the lumbar splanchnic nerve, IL-13 did not elevate baseline firing, nor sensitize the response to capsaicin application, but did enhance the response to distention of the colon. In line with Ca2+ imaging experiments, IL-13-mediated sensitization of the afferent response to colon distention was blocked by inhibition of either JAK or p38 kinase signaling. Together, these data highlight a potential role for IL-13 in visceral nociception and implicate JAK and p38 kinases in pronociceptive signaling downstream of IL-13.
Collapse
Affiliation(s)
- Katie H Barker
- Department of Pharmacology, University of Cambridge, Cambridge, United Kingdom
| | - James P Higham
- Department of Pharmacology, University of Cambridge, Cambridge, United Kingdom
| | - Luke A Pattison
- Department of Pharmacology, University of Cambridge, Cambridge, United Kingdom
| | - Iain P Chessell
- Department of Neuroscience, BioPharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom
| | - Fraser Welsh
- Department of Neuroscience, BioPharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom
| | - Ewan St J Smith
- Department of Pharmacology, University of Cambridge, Cambridge, United Kingdom
| | - David C Bulmer
- Department of Pharmacology, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
4
|
Kinoshita N, Kakimoto K, Shimizu H, Nishida K, Numa K, Kawasaki Y, Tawa H, Nakazawa K, Koshiba R, Hirata Y, Sakiyama N, Koubayashi E, Takeuchi T, Miyazaki T, Higuchi K, Nakamura S, Nishikawa H. Serum IL-13 Predicts Response to Golimumab in Bio-Naïve Ulcerative Colitis. J Clin Med 2022; 11:jcm11174952. [PMID: 36078882 PMCID: PMC9456517 DOI: 10.3390/jcm11174952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/17/2022] [Accepted: 08/20/2022] [Indexed: 11/28/2022] Open
Abstract
A certain number of patients with ulcerative colitis (UC) are refractory to anti-TNF-α antibodies; biomarkers are thus needed to predict treatment efficacy. This study aimed to evaluate whether serum biomarkers that were reported to be associated with UC or anti-TNF-α antibody could predict the response to golimumab, a human anti-TNF-α monoclonal antibody, in bio-naïve patients with UC. We prospectively enrolled 23 consecutive patients with UC who were treated with golimumab. Serum samples were collected before the first golimumab dose. Eleven molecules were measured by electrochemiluminescence (ECL) or enzyme-linked immunosorbent assay (ELISA) and their association with efficacy after 10 weeks of golimumab treatment. Among the serum biomarkers, IL-13 levels were significantly higher in the non-remission group than in the remission group (p = 0.014). IL-15 levels were significantly lower in the non-response group than in the response group (p = 0.04). For clinical remission at week 10, the IL-13 0.20 concentration of pg/mL was associated with a sensitivity and specificity of 82.4% and 83.3%, respectively. Serum IL-13 may be a biomarker to predict golimumab efficacy in biologic-naïve patients with UC, and thus may help to tailor personalized treatment strategies.
Collapse
Affiliation(s)
| | - Kazuki Kakimoto
- Correspondence: ; Tel.: +81-726-83-1221; Fax: +81-726-84-6532
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
An SY, Petrescu AD, DeMorrow S. Targeting Certain Interleukins as Novel Treatment Options for Liver Fibrosis. Front Pharmacol 2021; 12:645703. [PMID: 33841164 PMCID: PMC8024568 DOI: 10.3389/fphar.2021.645703] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 02/16/2021] [Indexed: 12/14/2022] Open
Abstract
The liver is a major metabolic organ and an immunologically complex organ. It produces and uses many substances such as acute phase proteins, cytokines, chemokines, and complementary components to maintain the balance between immunity and tolerance. Interleukins are important immune control cytokines, that are produced by many body cells. In liver injury, interleukins are produced in large amount by various cell types, and act as pro-inflammatory (e.g. interleukin (IL)-6, IL-13, IL-17, and IL-33) as well as anti-inflammatory (e.g. IL-10) functions in hepatic cells. Recently, interleukins are regarded as interesting therapeutic targets for the treatment of liver fibrosis patients. Hepatic cells such as hepatocytes, hepatic stellate cells, and hepatic macrophages are involved to the initiation, perpetuation, and resolution of fibrosis. The understanding of the role of interleukins in such cells provides opportunity for the development of therapeutic target drugs. This paper aims to understand the functional roles of interleukins in hepatic and immune cells when the liver is damaged, and suggests the possibility of interleukins as a new treatment target in liver fibrosis.
Collapse
Affiliation(s)
- Su Yeon An
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, TX, United States
| | - Anca D Petrescu
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, TX, United States
| | - Sharon DeMorrow
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, TX, United States.,Department of Internal Medicine, Dell Medical School, The University of Texas at Austin, Austin, TX, United States.,Research Division, Central Texas Veterans Healthcare System, Temple, TX, United States
| |
Collapse
|
6
|
Laurent C, Deblois G, Clénet ML, Carmena Moratalla A, Farzam-Kia N, Girard M, Duquette P, Prat A, Larochelle C, Arbour N. Interleukin-15 enhances proinflammatory T-cell responses in patients with MS and EAE. NEUROLOGY-NEUROIMMUNOLOGY & NEUROINFLAMMATION 2020; 8:8/1/e931. [PMID: 33323466 PMCID: PMC7745728 DOI: 10.1212/nxi.0000000000000931] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 10/26/2020] [Indexed: 01/25/2023]
Abstract
Objective We posit that interleukin-15 (IL-15) is a relevant contributor to MS pathobiology as this cytokine is elevated in the CNS and periphery of patients with MS. We aim to investigate (1) the impact of IL-15 on T lymphocytes from patients with MS and (2) the in vivo role of IL-15 using the experimental autoimmune encephalomyelitis (EAE) mouse model. Methods We compared the impact of IL-15 on T lymphocytes obtained from untreated patients with MS (relapsing-remitting, secondary progressive, and primary progressive) to cells from age/sex-matched healthy controls (HCs) using multiparametric flow cytometry and in vitro assays. We tested the effects of peripheral IL-15 administration after EAE disease onset in C57BL/6 mice. Results IL-15 triggered STAT5 signaling in an elevated proportion of T cells from patients with MS compared with HCs. This cytokine also enhanced the production of key proinflammatory cytokines (interferon γ, granulocyte-macrophage colony-stimulating factor [GM-CSF], IL-17, and tumor necrosis factor) by T cells from both MS and controls, but these effects were more robust for the production of IL-17 and GM-CSF in T-cell subsets from patients with MS. At the peak of EAE disease, the proportion of CD4+ and CD8+ T cells expressing CD122+, the key signaling IL-15 receptor chain, was enriched in the CNS compared with the spleen. Finally, peripheral administration of IL-15 into EAE mice after disease onset significantly aggravated clinical scores and increased the number of inflammatory CNS-infiltrating T cells long term after stopping IL-15 administration. Conclusions Our results underscore that IL-15 contributes to the amplification of T-cell inflammatory properties after disease onset in both MS and EAE.
Collapse
Affiliation(s)
- Cyril Laurent
- From the Department of Neurosciences (C. Laurent, G.D., M.-L.C., A.C.M., N.F.-k., M.G., P.D., A.P., C. Larochelle, N.A.), Université de Montréal and CRCHUM; and MS-CHUM Clinic (M.G., P.D., A.P., C. Larochelle), Québec, Canada
| | - Gabrielle Deblois
- From the Department of Neurosciences (C. Laurent, G.D., M.-L.C., A.C.M., N.F.-k., M.G., P.D., A.P., C. Larochelle, N.A.), Université de Montréal and CRCHUM; and MS-CHUM Clinic (M.G., P.D., A.P., C. Larochelle), Québec, Canada
| | - Marie-Laure Clénet
- From the Department of Neurosciences (C. Laurent, G.D., M.-L.C., A.C.M., N.F.-k., M.G., P.D., A.P., C. Larochelle, N.A.), Université de Montréal and CRCHUM; and MS-CHUM Clinic (M.G., P.D., A.P., C. Larochelle), Québec, Canada
| | - Ana Carmena Moratalla
- From the Department of Neurosciences (C. Laurent, G.D., M.-L.C., A.C.M., N.F.-k., M.G., P.D., A.P., C. Larochelle, N.A.), Université de Montréal and CRCHUM; and MS-CHUM Clinic (M.G., P.D., A.P., C. Larochelle), Québec, Canada
| | - Negar Farzam-Kia
- From the Department of Neurosciences (C. Laurent, G.D., M.-L.C., A.C.M., N.F.-k., M.G., P.D., A.P., C. Larochelle, N.A.), Université de Montréal and CRCHUM; and MS-CHUM Clinic (M.G., P.D., A.P., C. Larochelle), Québec, Canada
| | - Marc Girard
- From the Department of Neurosciences (C. Laurent, G.D., M.-L.C., A.C.M., N.F.-k., M.G., P.D., A.P., C. Larochelle, N.A.), Université de Montréal and CRCHUM; and MS-CHUM Clinic (M.G., P.D., A.P., C. Larochelle), Québec, Canada
| | - Pierre Duquette
- From the Department of Neurosciences (C. Laurent, G.D., M.-L.C., A.C.M., N.F.-k., M.G., P.D., A.P., C. Larochelle, N.A.), Université de Montréal and CRCHUM; and MS-CHUM Clinic (M.G., P.D., A.P., C. Larochelle), Québec, Canada
| | - Alexandre Prat
- From the Department of Neurosciences (C. Laurent, G.D., M.-L.C., A.C.M., N.F.-k., M.G., P.D., A.P., C. Larochelle, N.A.), Université de Montréal and CRCHUM; and MS-CHUM Clinic (M.G., P.D., A.P., C. Larochelle), Québec, Canada
| | - Catherine Larochelle
- From the Department of Neurosciences (C. Laurent, G.D., M.-L.C., A.C.M., N.F.-k., M.G., P.D., A.P., C. Larochelle, N.A.), Université de Montréal and CRCHUM; and MS-CHUM Clinic (M.G., P.D., A.P., C. Larochelle), Québec, Canada
| | - Nathalie Arbour
- From the Department of Neurosciences (C. Laurent, G.D., M.-L.C., A.C.M., N.F.-k., M.G., P.D., A.P., C. Larochelle, N.A.), Université de Montréal and CRCHUM; and MS-CHUM Clinic (M.G., P.D., A.P., C. Larochelle), Québec, Canada.
| |
Collapse
|
7
|
Vitamin D regulates claudin-2 and claudin-4 expression in active ulcerative colitis by p-Stat-6 and Smad-7 signaling. Int J Colorectal Dis 2020; 35:1231-1242. [PMID: 32314188 DOI: 10.1007/s00384-020-03576-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/04/2020] [Indexed: 02/04/2023]
Abstract
PURPOSE The tight junctions (TJ) responsible for the integrity of the intestinal barrier are altered in patients with inflammatory bowel disease (IBD), but the physiopathological mechanisms that lead to this alteration are not yet clear. The aim of this study was to determine whether vitamin D, which regulates the integrity of the epithelial barrier by expressing TJ proteins, reduces claudin-2 (Cl-2) levels by inhibiting Stat-6 phosphorylation and whether it increases claudin-4 (Cl-4) levels by blocking Smad-7 activity. METHODS Biopsies were obtained from inflamed and non-inflamed tracts of the right side colon (caecum or ascending colon) from the same patient with active UC. All the patients were affected by a recent flare-up of ulcerative rectocolitis (RCU), with no previous biologic or immunosuppressive therapy, and all the biopsies were obtained before any treatments. The biopsies were cultured in the presence or not of 1,25-dihydroxyvitamin D3 (1,25(OH)2D3). We also used T84 cells as an in vitro model to perform transfection experiments with Stat-6 and Smad-7. RESULTS Our results indicate that 1,25(OH)2D3 is able to regulate CL-2 and CL-4 protein levels, which are increased and reduced in the intestinal mucosa of UC patients, respectively. In the biopsies obtained from UC patients 1,25(OH)2D3 reduces Cl-2 levels by blocking Stat-6 phosphorylation and increases Cl-4 levels by blocking Smad-7 activity. T84 cells, transfected with siRNA of Stat-6 and Smad-7, showed reduced Cl-2 levels and increased Cl-4 levels, confirming that 1,25(OH)2D3 regulates Cl-2 and Cl-4 by decreasing p-Stat-6 and Smad-7 levels. CONCLUSIONS Our results indicate that the effects of vitamin D on Cl-2 and Cl-4 are mediated by p-Stat-6 and Smad-7 signal, respectively. The study suggests that vitamin D administration to UC patients could be a useful therapeutic intervention, given that vitamin D deficiency is found in these patients.
Collapse
|
8
|
Iacomino G, Rotondi Aufiero V, Iannaccone N, Melina R, Giardullo N, De Chiara G, Venezia A, Taccone FS, Iaquinto G, Mazzarella G. IBD: Role of intestinal compartments in the mucosal immune response. Immunobiology 2020; 225:151849. [PMID: 31563276 DOI: 10.1016/j.imbio.2019.09.008] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 08/30/2019] [Accepted: 09/03/2019] [Indexed: 12/17/2022]
Abstract
BACKGROUND AND AIMS Laser capture microdissection (LCM) is a powerful tool for the isolation of specific tissue compartments. We aimed to investigate the mucosal immune response that takes place in different intestinal compartments of IBD patients, dissected by LCM, analyzing cytokines expression profile and endoplasmic reticulum (ER) stress markers. METHODS Frozen sections of gut were obtained from patients with Crohn's disease (CD), ulcerative colitis (UC) and from controls. Using LCM, surface epithelium (SE) and lamina propria (LP) compartments were isolated and total RNA extracted. The relative expression of Th1, Th17 and Treg cytokines was evaluated by quantitative reverse transcriptase real-time PCR (qRT-PCR), in addition to the assessment of mRNA splicing of the transcription factor X-box binding protein-1 (XBP1). Human neutrophil elastase (HNE) and the transcription factor forkhead box P3 (Foxp3) were also analyzed by immunohistochemistry. RESULTS The increased expression of IL-17 was observed in both intestinal compartments of IBD patients when compared to controls. IFN- γ, TNF-α , IL-10, HNE and Foxp3 were overexpressed in the LP compartment of both IBD patients as compared to controls. An upregulation of IFN-γ and an infiltration of HNE+ cells was found in the SE of patients with UC. Splicing of XBP1 mRNA was recognized in both intestinal compartments of IBD patients when compared to controls. CONCLUSIONS In IBD patients, both intestinal compartments are involved in Th17 response, whereas, LP compartment plays a prominent role in Th1 and Treg immune responses. Nevertheless, high level of IFN- γ was found in the SE of UC patients, suggesting that this compartment is involved in the Th1 immune response. Our data also suggested that ER stress signalling is active in both LP and SE compartment of IBD patients, thus advocating that ER stress and immunity are intertwined.
Collapse
Affiliation(s)
| | | | | | - Raffaele Melina
- Department of Gastroenterology, San G. Moscati Hospital, Avellino, Italy
| | - Nicola Giardullo
- Department of Gastroenterology, San G. Moscati Hospital, Avellino, Italy
| | - Giovanni De Chiara
- Department of AnatomicPathology, San G. Moscati Hospital, Avellino, Italy
| | | | - Fabio Silvio Taccone
- Department of Intensive Care, Erasme Hospital, Universit e Libre de Bruxelles, Brussels, Belgium
| | - Gaetano Iaquinto
- Division of Gastroenterology, Santa Rita Hospital, Atripalda, Av, Italy
| | | |
Collapse
|
9
|
Kathrani A, Lezcano V, Hall EJ, Jergens AE, Seo YJ, Mochel JP, Atherly T, Allenspach K. Interleukin-13 and interleukin-33 mRNA are underexpressed in the duodenal mucosa of German Shepherd dogs with chronic enteropathy. J Vet Intern Med 2019; 33:1660-1668. [PMID: 31169944 PMCID: PMC6639532 DOI: 10.1111/jvim.15544] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 05/20/2019] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND A recent genome-wide association study in German Shepherd dogs (GSDs) with chronic enteropathy (CE) has identified polymorphisms in the Th2 cytokine genes. HYPOTHESIS/OBJECTIVE To determine if the expression of the Th2 cytokines, interleukin-13 (IL-13) and interleukin-33 (IL-33), is altered in the duodenal mucosa of GSDs with CE compared to non-GSDs with CE and healthy dogs. ANIMALS Twenty client-owned dogs diagnosed with CE (10 GSDs and 10 non-GSDs) at the Bristol Veterinary School and 8 healthy Beagle dogs from the Iowa State University Service Colony. METHODS Retrospective study using archived paraffin-embedded duodenal biopsy samples. A novel RNA in situ hybridization technology (RNAscope) was used to hybridize IL-13 and IL-33 mRNA probes onto at least 10 sections from duodenal biopsy samples for each dog. RNAscope signals were visualized using a microscope and semi-quantitative assessment was performed by a single operator. RESULTS Based on duodenal villus, subvillus, epithelial, and lamina propria average expression scores, GSDs with CE had significantly lower IL-13 and IL-33 mRNA expression compared to non-GSDs with CE (IL-13, P < .04; IL-33, P < .02) and healthy Beagle dogs (IL-13, P < .02; IL-33, P < .004). CONCLUSIONS AND CLINICAL IMPORTANCE Similar to human patients with ulcerative colitis, a subtype of human inflammatory bowel disease, these data indicate that Th2 cytokines may be involved in the pathogenesis of CE in GSDs.
Collapse
Affiliation(s)
| | - Victor Lezcano
- College of Veterinary Medicine, Tuskegee University, Tuskegee, Alabama
| | - Edward J Hall
- Bristol Veterinary School, University of Bristol, Bristol, United Kingdom
| | - Albert E Jergens
- College of Veterinary Medicine, Iowa State University, Ames, Iowa
| | - Yeon-Jung Seo
- College of Veterinary Medicine, Iowa State University, Ames, Iowa
| | | | - Todd Atherly
- College of Veterinary Medicine, Iowa State University, Ames, Iowa
| | - Karin Allenspach
- College of Veterinary Medicine, Iowa State University, Ames, Iowa
| |
Collapse
|
10
|
Giuffrida P, Caprioli F, Facciotti F, Di Sabatino A. The role of interleukin-13 in chronic inflammatory intestinal disorders. Autoimmun Rev 2019; 18:549-555. [DOI: 10.1016/j.autrev.2019.03.012] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Accepted: 01/04/2019] [Indexed: 12/17/2022]
|
11
|
Pavlidis S, Monast C, Loza MJ, Branigan P, Chung KF, Adcock IM, Guo Y, Rowe A, Baribaud F. I_MDS: an inflammatory bowel disease molecular activity score to classify patients with differing disease-driving pathways and therapeutic response to anti-TNF treatment. PLoS Comput Biol 2019; 15:e1006951. [PMID: 31039157 PMCID: PMC6510457 DOI: 10.1371/journal.pcbi.1006951] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 05/10/2019] [Accepted: 03/13/2019] [Indexed: 02/06/2023] Open
Abstract
Crohn’s disease and ulcerative colitis are driven by both common and distinct underlying mechanisms of pathobiology. Both diseases, exhibit heterogeneity underscored by the variable clinical responses to therapeutic interventions. We aimed to identify disease-driving pathways and classify individuals into subpopulations that differ in their pathobiology and response to treatment. We applied hierarchical clustering of enrichment scores derived from gene set variation analysis of signatures representative of various immunological processes and activated cell types, to a colonic biopsy dataset that included healthy volunteers, Crohn’s disease and ulcerative colitis patients. Patient stratification at baseline or after anti-TNF treatment in clinical responders and non-responders was queried. Signatures with significantly different enrichment scores were identified using a general linear model. Comparisons to healthy controls were made at baseline in all participants and then separately in responders and non-responders. Fifty-nine percent of the signatures were commonly enriched in both conditions at baseline, supporting the notion of a disease continuum within ulcerative colitis and Crohn’s disease. Signatures included T cells, macrophages, neutrophil activation and poly:IC signatures, representing acute inflammation and a complex mix of potential disease-driving biology. Collectively, identification of significantly enriched signatures allowed establishment of an inflammatory bowel disease molecular activity score which uses biopsy transcriptomics as a surrogate marker to accurately track disease severity. This score separated diseased from healthy samples, enabled discrimination of clinical responders and non-responders at baseline with 100% specificity and 78.8% sensitivity, and was validated in an independent data set that showed comparable classification. Comparing responders and non-responders separately at baseline to controls, 43% and 70% of signatures were enriched, respectively, suggesting greater molecular dysregulation in TNF non-responders at baseline. This methodological approach could facilitate better targeted design of clinical studies to test therapeutics, concentrating on patient subsets sharing similar underlying pathobiology, therefore increasing the likelihood of clinical response. Patients exhibiting similar phenotypical characteristics, diagnosed with the same disease, exhibit variable response to therapeutics. This is a major health care issue, due to the increased patient suffering and the socioeconomical burden that occurs. Crohn’s disease and ulcerative colitis constitute good examples of inflammatory conditions, with sufferers responding differentially to existent therapeutics. Here, we identified disease-driving pathways and classified individuals into subpopulations that differ in their pathobiology and response to treatment. We utilized gene set variation analysis and transcriptomic data from inflammatory bowel disease sufferers to stratify patients at baseline or after anti-TNF treatment in clinical responders and non-responders. We explored gene signatures obtained from the literature, relevant to immune processes, which were significantly enriched in disease compared to healthy controls, as well as before and after treatment. Using these signatures, we established an inflammatory bowel disease molecular activity score, which allowed us to separate clinical responders and non-responders at baseline with high specificity and sensitivity. We validated the proposed approach in an independent data set, demonstrating comparable classification. This methodological approach may lead to better targeted design of clinical studies, allowing the selection of patient sharing similar underlying pathobiology, thus increasing the likelihood of clinical response to treatment.
Collapse
Affiliation(s)
- Stelios Pavlidis
- Janssen Research & Development Ltd, High Wycombe, United Kingdom
- National Heart and Lung Institute, Imperial College & Biomedical Research Unit, Royal Brompton & Harefield NHS Trust, London, United Kingdom
- Data Science Institute, Imperial College London, London, United Kingdom
| | - Calixte Monast
- Janssen Research & Development LLC, United States of America
| | - Matthew J. Loza
- Janssen Research & Development LLC, United States of America
| | | | - Kiang F. Chung
- National Heart and Lung Institute, Imperial College & Biomedical Research Unit, Royal Brompton & Harefield NHS Trust, London, United Kingdom
| | - Ian M. Adcock
- National Heart and Lung Institute, Imperial College & Biomedical Research Unit, Royal Brompton & Harefield NHS Trust, London, United Kingdom
| | - Yike Guo
- Data Science Institute, Imperial College London, London, United Kingdom
| | - Anthony Rowe
- Janssen Research & Development LLC, United States of America
| | - Frédéric Baribaud
- Janssen Research & Development LLC, United States of America
- * E-mail:
| |
Collapse
|
12
|
Intestinal Organoids as a Novel Complementary Model to Dissect Inflammatory Bowel Disease. Stem Cells Int 2019; 2019:8010645. [PMID: 31015842 PMCID: PMC6444246 DOI: 10.1155/2019/8010645] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 02/04/2019] [Indexed: 12/13/2022] Open
Abstract
Inflammatory bowel diseases (IBDs) include colitis ulcerosa and Crohn's disease, besides the rare microscopic colitis. Both diseases show a long-lasting, relapsing-remitting, or even chronic active course with tremendous impact on quality of life. IBDs frequently cause disability, surgical interventions, and high costs; as in other autoimmune diseases, their prevalent occurrence at an early phase of life raises the burden on health care systems. Unfortunately, our understanding of the pathogenesis is still incomplete and treatment therefore largely focuses on suppressing the resulting excessive inflammation. One obstacle for deciphering the causative processes is the scarcity of models that parallel the development of the disease, since intestinal inflammation is mostly induced artificially; moreover, the intestinal epithelium, which strongly contributes to IBD pathogenesis, is difficult to assess. Recently, the development of intestinal epithelial organoids has overcome many of those problems. Here, we give an overview on the current understanding of the pathogenesis of IBDs with reference to the limitations of previous well-established experimental models. We highlight the advantages and detriments of recent organoid-based experimental setups within the IBD field and suggest possible future applications.
Collapse
|
13
|
Gwiggner M, Martinez-Nunez RT, Whiteoak SR, Bondanese VP, Claridge A, Collins JE, Cummings JRF, Sanchez-Elsner T. MicroRNA-31 and MicroRNA-155 Are Overexpressed in Ulcerative Colitis and Regulate IL-13 Signaling by Targeting Interleukin 13 Receptor α-1. Genes (Basel) 2018; 9:genes9020085. [PMID: 29438285 PMCID: PMC5852581 DOI: 10.3390/genes9020085] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 02/01/2018] [Accepted: 02/05/2018] [Indexed: 12/14/2022] Open
Abstract
Interleukin-13 (IL-13) is an important Type 2 T helper (Th2) cytokine, controlling biological functions in epithelium and has been linked to asthma, atopic dermatitis and ulcerative colitis (UC). Interleukin-13 signals through IL-13 receptor α-1 (IL13RA1 (gene) and IL13Rα1 (protein)), a receptor that can be regulated by microRNAs (miRs). MicroRNAs are small non-coding single-stranded RNAs with a role in several pathologies. However, their relevance in the pathophysiology of UC, a chronic inflammatory condition of the colonic mucosa, is poorly characterised. Here, we determined the expression of IL13Rα1 in UC, its potential regulation by miRs and the subsequent effect on IL-13 signalling. Inflamed mucosa of UC patients showed decreased mRNA and protein expression of IL13RA1 when compared to healthy controls. We show that miR-31 and miR-155 are upregulated in inflamed UC mucosa and that both directly target the 3' untranslated region of IL13RA1 mRNA. Transfection of miR-31 and miR-155 mimics reduced the expression of IL13RA1 mRNA and protein, and blocked IL-13-dependent phosphorylation of signal transducer and activator of transcription 6 (STAT6) in HT-29 cells, a gut epithelium cell line. Interleukin-13 activation of suppressor of cytokine signaling 1 (SOCS1) and eotaxin-3 (CCL26) expression was also diminished. MicroRNA-31/microRNA-155 mimics also downregulated IL13RA1 in ex vivo human inflamed UC biopsies. We propose that miR-31 and miR-155 have an important role in limiting IL-13 signalling in UC disease.
Collapse
Affiliation(s)
- Markus Gwiggner
- Clinical and Experimental Sciences, Sir Henry Wellcome Laboratories, University of Southampton School of Medicine, Southampton SO17 1BJ, UK.
- University Hospital Southampton NHS FT, Tremona Road, Southampton SO16 6YD, UK.
| | - Rocio T Martinez-Nunez
- Clinical and Experimental Sciences, Sir Henry Wellcome Laboratories, University of Southampton School of Medicine, Southampton SO17 1BJ, UK.
- School of Immunology and Microbial Sciences. MRC-Asthma UK Centre in Allergic Mechanisms of Asthma, Guy's Campus King's College, London SE1 9RT, UK.
| | - Simon R Whiteoak
- Clinical and Experimental Sciences, Sir Henry Wellcome Laboratories, University of Southampton School of Medicine, Southampton SO17 1BJ, UK.
- University Hospital Southampton NHS FT, Tremona Road, Southampton SO16 6YD, UK.
| | - Victor P Bondanese
- Clinical and Experimental Sciences, Sir Henry Wellcome Laboratories, University of Southampton School of Medicine, Southampton SO17 1BJ, UK.
| | - Andy Claridge
- Clinical and Experimental Sciences, Sir Henry Wellcome Laboratories, University of Southampton School of Medicine, Southampton SO17 1BJ, UK.
| | - Jane E Collins
- Clinical and Experimental Sciences, Sir Henry Wellcome Laboratories, University of Southampton School of Medicine, Southampton SO17 1BJ, UK.
| | - J R Fraser Cummings
- University Hospital Southampton NHS FT, Tremona Road, Southampton SO16 6YD, UK.
| | - Tilman Sanchez-Elsner
- Clinical and Experimental Sciences, Sir Henry Wellcome Laboratories, University of Southampton School of Medicine, Southampton SO17 1BJ, UK.
| |
Collapse
|
14
|
Abstract
Inflammatory bowel disease (IBD), encompassing Crohn's disease and ulcerative colitis, is a chronic intestinal inflammatory disorder characterized by diffuse accumulation of lymphocytes in the gut mucosa as a consequence of over-expression of endothelial adhesion molecules. The infiltrating lymphocytes have been identified as subsets of T cells, including T helper (Th)1 cells, Th17 cells, and regulatory T cells. The function of these lymphocyte subpopulations in the development of IBD is well-known, since they produce a number of pro-inflammatory cytokines, such as interferon-γ and interleukin-17A, which in turn activate mucosal proteases, thus leading to the development of intestinal lesions, i.e., ulcers, fistulas, abscesses, and strictures. However, the immune mechanisms underlying IBD are not yet fully understood, and knowledge about the function of newly discovered lymphocytes, including Th9 cells, innate lymphoid cells, mucosal-associated invariant T cells, and natural killer T cells, might add new pieces to the complex puzzle of IBD pathogenesis. This review summarizes the recent advances in the understanding of the role of mucosal lymphocytes in chronic intestinal inflammation and deals with the therapeutic potential of lymphocyte-targeting drugs in IBD patients.
Collapse
|
15
|
Wunschel EJ, Schirmer B, Seifert R, Neumann D. Lack of Histamine H 4-Receptor Expression Aggravates TNBS-Induced Acute Colitis Symptoms in Mice. Front Pharmacol 2017; 8:642. [PMID: 28955241 PMCID: PMC5601386 DOI: 10.3389/fphar.2017.00642] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 08/30/2017] [Indexed: 12/22/2022] Open
Abstract
Inflammatory bowel diseases (IBD) are a growing health problem worldwide, severely affecting patients’ life qualities and life expectancies. Therapeutic options, which are rare and focus on symptoms associated with the disease, suffer from increasing numbers of patients refractory to the established strategies. Thus, in order to generate new therapeutic regimens, the detailed understanding of the pathogenic mechanisms causing IBD is necessary. Histamine is an inflammatory mediator associated with IBD. Four histamine receptors are currently known of which the histamine H4-receptor (H4R) has been shown to possess a pro-inflammatory function in several experimental models of inflammatory diseases, including dextran sodium sulfate (DSS)-induced colitis in mice. No single model reflects the complexity of human IBD, but each model provides valuable information on specific aspects of IBD pathogenesis. While DSS-induced colitis mostly relies on innate immune mechanisms, trinitrobenzene sulfonic acid (TNBS)-induced colitis rather reflects T-cell mechanisms. Consequently, an observation made in a single model has to be verified in at least one other model. Therefore, in the present study we investigated the effect of genetic blockade of H4R-signaling in mice subjected to the model of TNBS-induced acute colitis. We analyzed severity and progression of clinical signs of colitis, as well as histopathologic alterations in the colon and local cytokine production. Genetic ablation of H4R expression worsened clinical signs of acute colitis and histological appearance of colon inflammation after TNBS application. Moreover, TNBS instillation enhanced local synthesis of inflammatory mediators associated with a neutrophilic response, i.e., CXCL1, CXCL2, and interleukin-6. Lastly, also myeloperoxidase concentration, indicative for the presence of neutrophils, was elevated in cola of TNBS-treated mice due to the absence of H4R expression. Our results indicate an anti-inflammatory role of histamine via H4R in TNBS-induced acute neutrophilic colitis in mice, thus questioning the strategy of pharmacological H4R blocked as new therapeutic option for patients suffering from IBD.
Collapse
Affiliation(s)
- Eva J Wunschel
- Institute of Pharmacology, Hannover Medical SchoolHanover, Germany
| | - Bastian Schirmer
- Institute of Pharmacology, Hannover Medical SchoolHanover, Germany
| | - Roland Seifert
- Institute of Pharmacology, Hannover Medical SchoolHanover, Germany
| | - Detlef Neumann
- Institute of Pharmacology, Hannover Medical SchoolHanover, Germany
| |
Collapse
|
16
|
Vitale S, Strisciuglio C, Pisapia L, Miele E, Barba P, Vitale A, Cenni S, Bassi V, Maglio M, Del Pozzo G, Troncone R, Staiano A, Gianfrani C. Cytokine production profile in intestinal mucosa of paediatric inflammatory bowel disease. PLoS One 2017; 12:e0182313. [PMID: 28797042 PMCID: PMC5552230 DOI: 10.1371/journal.pone.0182313] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Accepted: 07/17/2017] [Indexed: 02/07/2023] Open
Abstract
In the recent years, the incidence of inflammatory bowel disease (IBD) has dramatically increased in young subjects, however, the pathogenesis of paediatric IBD is poorly investigated. In this study we aimed to evaluate the cytokine pattern and the phenotype of cytokine producing cells in the intestinal mucosa of paediatric patients affected by Crohn’s disease (CD) or ulcerative colitis (UC) and of non-IBD healthy controls (HC). Cytokine (IL-15, TNF-α, INF-γ) production was analyzed at basal condition and after mitogen stimulation either intracellularly by flow cytometry or in intestinal cell culture supernatants by enzyme-linked immunosorbent assay (ELISA). A higher frequency of enterocytes (EpCam+ cells) was observed in UC patients compared to CD or HC. An expansion of enterocytes producing IL-15 and TNF-α were found in IBD patients compared to HC. A marked expression of IL-15 in the intestinal epithelium of IBD patients was further confirmed by immunohistochemistry. Myeloid dendritic (CD11c+) cells producing TNF-α and INF-γ were increased in IBD biopsies. Unexpectedly, only after a strong mitogen stimulus, as phytohaemagglutinin, the frequency of CD3+ cells producing IFN-γ was increased in IBD compared to control intestinal mucosa. Interestingly, functional studies performed on organ cultures of intestinal biopsies with neutralizing anti-IL-15 monoclonal antibody showed a marked reduction of mononuclear cell activation, proliferation of crypt enterocytes, as well as a reduction of TNF-α release in organ culture supernatants. In conclusion, we found that in the gut mucosa of IBD children both enterocytes and dendritic cells produce proinflammatory cytokines. The over-expression of IL-15 by enterocytes in IBD intestine and the reduced IBD inflammation by IL-15 blockage suggests that this cytokine could be a therapeutic target in IBD.
Collapse
Affiliation(s)
- Serena Vitale
- Institute of Protein Biochemistry, CNR, Naples, Italy
| | - Caterina Strisciuglio
- Department of Woman, Child and General and Specialized Surgery, Second University of Naples, Naples, Italy
- Department of Translational Medical Science (Section of Paediatrics), and European Laboratory for the Investigation of Food-Induced Diseases, University Federico II, Naples, Italy
| | - Laura Pisapia
- Institute of Genetics and Biophysics Adriano Buzzati Traverso, CNR, Naples, Italy
| | - Erasmo Miele
- Department of Translational Medical Science (Section of Paediatrics), and European Laboratory for the Investigation of Food-Induced Diseases, University Federico II, Naples, Italy
| | - Pasquale Barba
- Institute of Genetics and Biophysics Adriano Buzzati Traverso, CNR, Naples, Italy
| | - Alessandra Vitale
- Department of Woman, Child and General and Specialized Surgery, Second University of Naples, Naples, Italy
| | - Sabrina Cenni
- Department of Translational Medical Science (Section of Paediatrics), and European Laboratory for the Investigation of Food-Induced Diseases, University Federico II, Naples, Italy
| | - Virginia Bassi
- Department of Translational Medical Science (Section of Paediatrics), and European Laboratory for the Investigation of Food-Induced Diseases, University Federico II, Naples, Italy
| | - Mariantonia Maglio
- Department of Translational Medical Science (Section of Paediatrics), and European Laboratory for the Investigation of Food-Induced Diseases, University Federico II, Naples, Italy
| | - Giovanna Del Pozzo
- Institute of Genetics and Biophysics Adriano Buzzati Traverso, CNR, Naples, Italy
| | - Riccardo Troncone
- Department of Translational Medical Science (Section of Paediatrics), and European Laboratory for the Investigation of Food-Induced Diseases, University Federico II, Naples, Italy
| | - Annamaria Staiano
- Department of Translational Medical Science (Section of Paediatrics), and European Laboratory for the Investigation of Food-Induced Diseases, University Federico II, Naples, Italy
| | - Carmen Gianfrani
- Institute of Protein Biochemistry, CNR, Naples, Italy
- Department of Translational Medical Science (Section of Paediatrics), and European Laboratory for the Investigation of Food-Induced Diseases, University Federico II, Naples, Italy
- * E-mail:
| |
Collapse
|
17
|
Stio M, Retico L, Annese V, Bonanomi AG. Vitamin D regulates the tight-junction protein expression in active ulcerative colitis. Scand J Gastroenterol 2016; 51:1193-9. [PMID: 27207502 DOI: 10.1080/00365521.2016.1185463] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
OBJECTIVE Epithelial barrier function is primarily regulated by the tight-junction proteins. Ulcerative colitis (UC) is characterized by Th2 immune response with inflammation and epithelial barrier dysfunction, including an elevation of claudin-2 protein function. Recent studies support an important role of vitamin D in the pathogenesis as well as potential therapy of IBD. Vitamin D deficiency is in fact common in patients with IBD. The aim of the study was to determine whether vitamin D could affect IL-13 and IL-6 levels, and regulate the activity of tight-junction proteins. Claudin-1, -2, -4, and -7 in the inflamed and non-inflamed colonic mucosa of UC patients. MATERIAL AND METHODS Biopsies from inflamed and non-inflamed tract of colon and rectum from the same active UC patients were cultured with1,25(OH)2D3. IL-13, IL-6 and the tight-junction proteins level were determined. RESULTS Claudin-1 and claudin-2 proteins were up-regulated in active UC. The treatment with 1,25(OH)2D3 decreases the claudin-1 and claudin-2 protein levels in both inflamed and non-inflamed tract. Claudin-4 and claudin-7 proteins were down-regulated and their levels increase after incubation with the 1,25(OH)2D3. When the biopsies were incubated with 1,25(OH)2D3, a decrease in IL-13 and IL-6 levels was registered. CONCLUSIONS Our results, indicating the inhibition of cytokine levels and the regulation of claudin-2, claudin-4, and claudin-7 by 1,25(OH)2D3, suggest that vitamin D may represent a potential therapeutic agent for the treatment of active UC.
Collapse
Affiliation(s)
- Maria Stio
- a Department of Biomedical, Experimental and Clinical Sciences , "Mario Serio" University of Florence , Florence , Italy
| | - Luigina Retico
- b Gastroenterology Unit , Azienda Ospedaliero-Universitaria Careggi , Florence , Italy
| | - Vito Annese
- b Gastroenterology Unit , Azienda Ospedaliero-Universitaria Careggi , Florence , Italy
| | | |
Collapse
|
18
|
Tosiek MJ, Fiette L, El Daker S, Eberl G, Freitas AA. IL-15-dependent balance between Foxp3 and RORγt expression impacts inflammatory bowel disease. Nat Commun 2016; 7:10888. [PMID: 26964669 PMCID: PMC4792960 DOI: 10.1038/ncomms10888] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 01/29/2016] [Indexed: 12/19/2022] Open
Abstract
The ability of CD4+ T cells to change their phenotype and to specialize into different functional subsets may enhance the risk of autoimmune diseases. Here we investigate how a pleiotropic cytokine interleukin (IL)-15 may modify the functional commitment of CD4+ T cells expressing the lineage-associated transcription factors: forkhead box P3 (Foxp3; Treg) and RORγt (Th17) in the context of inflammatory bowel disease (IBD). We demonstrate in mice that impaired delivery of IL-15 to CD4+ T cells in the colon downmodulates Foxp3 expression (diminishing STAT5 phosphorylation) and enhances RORγt expression (by upregulating the expression of Runx1). In consequence, CD4+ T cells deprived of IL-15 rapidly trigger IBD characterized by enhanced production of pro-inflammatory cytokines (interferon-γ, IL-6) and accumulation of Th1/Th17 cells. Overall, our findings indicate a potentially beneficial role of IL-15 in IBD by fine-tuning the balance between Treg and Th17 cells and controlling intestinal inflammation.
Collapse
Affiliation(s)
- Milena J. Tosiek
- Unité de Biologie des Populations Lymphocytaires, Department of Immunology, Institut Pasteur, 25, rue du Docteur Roux, 75015 Paris, France
- CNRS, URA1961, 75015 Paris, France
| | - Laurence Fiette
- Unité d'Histopathologie Humaine et Modèles Animaux, Department of Infection and Epidemiology, Institut Pasteur, Hôpital Ste Anne, 75015 Paris, France
- Université Paris-Descartes, Hôpital Ste Anne, 75015 Paris, France
| | - Sary El Daker
- Unité de Biologie des Populations Lymphocytaires, Department of Immunology, Institut Pasteur, 25, rue du Docteur Roux, 75015 Paris, France
- CNRS, URA1961, 75015 Paris, France
| | - Gérard Eberl
- CNRS, URA1961, 75015 Paris, France
- Unité de Développement des Tissus Lymphoïdes, Department of Immunology, Institut Pasteur, Paris, France
| | - Antonio A. Freitas
- Unité de Biologie des Populations Lymphocytaires, Department of Immunology, Institut Pasteur, 25, rue du Docteur Roux, 75015 Paris, France
- CNRS, URA1961, 75015 Paris, France
| |
Collapse
|
19
|
Dunn ETJ, Taylor ES, Stebbings S, Schultz M, Butt AG, Kemp RA. Distinct immune signatures in the colon of Crohn's disease and ankylosing spondylitis patients in the absence of inflammation. Immunol Cell Biol 2015; 94:421-9. [PMID: 26647966 DOI: 10.1038/icb.2015.112] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Revised: 11/09/2015] [Accepted: 11/26/2015] [Indexed: 12/17/2022]
Abstract
Crohn's disease (CD) is an inflammatory bowel disease characterized by patchy inflammation of the gastrointestinal tract. Ankylosing spondylitis (AS) is primarily characterized by inflammation of the lower vertebral column, and many patients with AS present with inflammatory gut symptoms. Genome-wide association studies have highlighted significant overlap in short nucleotide polymorphisms for both diseases. We hypothesized that patients with CD and AS have a common intestinal immune signature, characterized by inflammatory T cells, compared with healthy people. We designed a pilot study to determine both the feasibility of defining complex immune signatures from primary tissue, and differences in the local immune signature of people with inflammatory diseases compared with healthy people. Intestinal biopsies were obtained by colonoscopy from healthy patients, non-inflamed regions of CD patients and AS patients with inflammatory gut symptoms. A flow cytometry platform was developed measuring polyfunctional T-cell populations based on cytokines, surface molecules and transcription factors. There was overlap in the immune signature of people with CD or AS, characterized by changes in the frequency of regulatory T cells, compared with healthy people. There were significant differences in frequencies of other polyfunctional T-cell populations-CD patients had an increased frequency of T cells producing interleukin-22 (IL-22) and interferon-γ, whereas AS patients had an increased frequency of T cells producing IL-2; compared with healthy people. These data indicate that the local immune signature could be described in these patients and that distinct immune mechanisms may underlie disease progression.
Collapse
Affiliation(s)
- Elliott T J Dunn
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Edward S Taylor
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Simon Stebbings
- Department of Medicine, University of Otago, Dunedin, New Zealand
| | - Michael Schultz
- Department of Medicine, University of Otago, Dunedin, New Zealand
| | - A Grant Butt
- Department of Physiology, University of Otago, Dunedin, New Zealand
| | - Roslyn A Kemp
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| |
Collapse
|
20
|
Jabri B, Abadie V. IL-15 functions as a danger signal to regulate tissue-resident T cells and tissue destruction. Nat Rev Immunol 2015; 15:771-83. [PMID: 26567920 PMCID: PMC5079184 DOI: 10.1038/nri3919] [Citation(s) in RCA: 229] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In this Opinion article, we discuss the function of tissues as a crucial checkpoint for the regulation of effector T cell responses, and the notion that interleukin-15 (IL-15) functions as a danger molecule that communicates to the immune system that the tissue is under attack and poises it to mediate tissue destruction. More specifically, we propose that expression of IL-15 in tissues promotes T helper 1 cell-mediated immunity and provides co-stimulatory signals to effector cytotoxic T cells to exert their effector functions and drive tissue destruction. Therefore, we think that IL-15 contributes to tissue protection by promoting the elimination of infected cells but that when its expression is chronically dysregulated, it can promote the development of complex T cell-mediated disorders associated with tissue destruction, such as coeliac disease and type 1 diabetes.
Collapse
Affiliation(s)
- Bana Jabri
- Departments of Medicine, Pathology and Pediatrics, University of Chicago, Knapp Center for Biomedical Discovery (KCBD), Chicago, Illinois 60637, USA
| | - Valérie Abadie
- Department of Microbiology, Infectious Diseases, and Immunology, University of Montreal, and the Centre Hospitalier Universitaire (CHU) Sainte-Justine Research Center, Montreal, Quebec H3T 1C5, Canada
| |
Collapse
|
21
|
Quetglas EG, Mujagic Z, Wigge S, Keszthelyi D, Wachten S, Masclee A, Reinisch W. Update on pathogenesis and predictors of response of therapeutic strategies used in inflammatory bowel disease. World J Gastroenterol 2015; 21:12519-12543. [PMID: 26640330 PMCID: PMC4658608 DOI: 10.3748/wjg.v21.i44.12519] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Accepted: 09/14/2015] [Indexed: 02/06/2023] Open
Abstract
The search for biomarkers that characterize specific aspects of inflammatory bowel disease (IBD), has received substantial interest in the past years and is moving forward rapidly with the help of modern technologies. Nevertheless, there is a direct demand to identify adequate biomarkers for predicting and evaluating therapeutic response to different therapies. In this subset, pharmacogenetics deserves more attention as part of the endeavor to provide personalized medicine. The ultimate goal in this area is the adjustment of medication for a patient’s specific genetic background and thereby to improve drug efficacy and safety rates. The aim of the following review is to utilize the latest knowledge on immunopathogenesis of IBD and update the findings on the field of Immunology and Genetics, to evaluate the response to the different therapies. In the present article, more than 400 publications were reviewed but finally 287 included based on design, reproducibility (or expectancy to be reproducible and translationable into humans) or already measured in humans. A few tests have shown clinical applicability. Other, i.e., genetic associations for the different therapies in IBD have not yet shown consistent or robust results. In the close future it is anticipated that this, cellular and genetic material, as well as the determination of biomarkers will be implemented in an integrated molecular diagnostic and prognostic approach to manage IBD patients.
Collapse
|
22
|
Tilg H, Kaser A. Failure of interleukin 13 blockade in ulcerative colitis. Gut 2015; 64:857-8. [PMID: 25804632 DOI: 10.1136/gutjnl-2015-309464] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Accepted: 03/07/2015] [Indexed: 12/18/2022]
Affiliation(s)
- Herbert Tilg
- Department of Internal Medicine I, Gastroenterology, Endocrinology & Metabolism, Medical University Innsbruck, Innsbruck, Austria
| | - Arthur Kaser
- Division of Gastroenterology and Hepatology, Department of Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK
| |
Collapse
|
23
|
Myokine interleukin-15 expression profile is different in suckling and weaning piglets. ACTA ACUST UNITED AC 2015; 1:30-35. [PMID: 29766983 PMCID: PMC5884465 DOI: 10.1016/j.aninu.2015.02.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Accepted: 01/08/2015] [Indexed: 11/25/2022]
Abstract
Interleukin-15 (IL-15) is a cytokine highly expressed in skeletal muscle. The objective of the present study was to investigate the development of muscle IL-15 expression in suckling piglets and in early weaning piglets (day 14) at each level, that is, mRNA, protein, and secretion. Eight litters (eight piglets per litter) of newborn healthy piglets (Large × White × Landrace) with a similar initial weight (1618.0 ± 140.1 g) were chosen and divided into two groups. Group one used suckling piglets that were killed, respectively, at days 1, 7, 14, 21, and group two used early (day 14) weaning piglets that were killed respectively, at days 15, 17, 19, 21. In group one, IL-15 gene expression levels increased significantly (P < 0.05) along with increased body weight over time. IL-15 protein expression levels in piglets at day 21 of age were higher (P < 0.05) than those in piglets at other ages, and there was no difference (P > 0.05) among piglets at other ages. These findings indicated that increased IL-15 mRNA expression did not result in a corresponding increase of its protein expression. In group two, which used early weaning piglets from days 15–19, IL-15 mRNA and protein expression levels increased constantly (P < 0.05) and were higher (P < 0.05) than those in suckling piglets. Moreover, there was no gain of body weight (P > 0.05) compared with suckling piglets at day 14 of age. However, IL-15 protein expression levels in early weaning piglets at day 21 of age dropped significantly (P < 0.05) to the levels as suckling piglets at day 21 of age, while body weight increased (P < 0.05) markedly to the levels as suckling piglets at day 21 of age. In both groups, the serum IL-15 levels of piglets decreased significantly (P < 0.01) over time. Taken together, our results indicate that IL-15 expression differs in suckling piglets and in weaning piglets. It is speculated that IL-15 may play an important role in counteracting the effects of early weaning stress.
Collapse
|
24
|
Abstract
Interleukin-15 (IL-15) exerts many biological functions essential for the maintenance and function of multiple cell types. Although its expression is tightly regulated, IL-15 upregulation has been reported in many organ-specific autoimmune disorders. In celiac disease, an intestinal inflammatory disorder driven by gluten exposure, the upregulation of IL-15 expression in the intestinal mucosa has become a hallmark of the disease. Interestingly, because it is overexpressed both in the gut epithelium and in the lamina propria, IL-15 acts on distinct cell types and impacts distinct immune components and pathways to disrupt intestinal immune homeostasis. In this article, we review our current knowledge of the multifaceted roles of IL-15 with regard to the main immunological processes involved in the pathogenesis of celiac disease.
Collapse
Affiliation(s)
- Valérie Abadie
- Sainte-Justine Hospital Research Center, Department of Microbiology and Immunology, Faculty of Medicine, University of Montreal, Montreal, Canada
| | | |
Collapse
|
25
|
Simulations of site-specific target-mediated pharmacokinetic models for guiding the development of bispecific antibodies. J Pharmacokinet Pharmacodyn 2015; 42:1-18. [PMID: 25559227 DOI: 10.1007/s10928-014-9401-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Accepted: 11/11/2014] [Indexed: 12/30/2022]
Abstract
Bispecific antibodies (BAbs) are novel constructs that are under development and show promise as new therapeutic modalities for cancer and autoimmune disorders. The aim of this study is to develop a semi-mechanistic modeling approach to elucidate the disposition of BAbs in plasma and possible sites of action in humans. Here we present two case studies that showcase the use of modeling to guide BAb development. In case one, a BAb is directed against a soluble and a membrane-bound ligand for treating systemic lupus erythematosus, and in case two, a BAb targets two soluble ligands as a potential treatment for ulcerative colitis and asthma. Model simulations revealed important differences between plasma and tissues, when evaluated for drug disposition and target suppression. Target concentrations at tissue sites and type (soluble vs membrane-bound), tissue-site binding, and binding affinity are all major determinants of BAb disposition and subsequently target suppression. For the presented case studies, higher doses and/or frequent dosing regimens are required to achieve 80 % target suppression in site specific tissue (the more relevant matrix) as compared to plasma. Site-specific target-mediated models may serve to guide the selection of first-in-human doses for new BAbs.
Collapse
|
26
|
Comprehensive intestinal T helper cell profiling reveals specific accumulation of IFN-γ+IL-17+coproducing CD4+ T cells in active inflammatory bowel disease. Inflamm Bowel Dis 2014; 20:2321-9. [PMID: 25248005 DOI: 10.1097/mib.0000000000000210] [Citation(s) in RCA: 113] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
OBJECTIVE Skewed T helper (TH) cell responses and specific functions of TH1, TH2, TH17, and Treg cells have been implicated in the pathogenesis of inflammatory bowel disease (IBD) that led to the establishment of the pathogenic TH1/TH2 and TH17/Treg cell imbalance paradigms. However, the relevant TH cell population driving mucosal inflammation is still unknown. METHODS We performed a comprehensive TH cell profiling of circulating and intestinal lymphocytes isolated from patients with Crohn's disease (CD; n = 69) and ulcerative colitis (UC; n = 41) undergoing endoscopy or surgical resection and compared them with healthy controls (n = 45). Mucosal inflammation was assessed endoscopically and histologically. TH cells were analyzed by flow cytometric evaluation of cytokine production and differentiation marker expression. RESULTS Specialized TH cell populations were enriched in the intestinal mucosa compared with peripheral blood. Specifically, we observed a concomitant upregulation of TH17 cells and Tregs in active inflammatory lesions in patients with both CD and UC compared with quiescent/mildly inflamed lesions and healthy tissue. Of note, interferon γ+ interleukin (IL)-17+coproducing CD4+ T cells with high expression of T-bet, CD26, and IL-22 resembling recently described pathogenic TH17 cells were specifically enriched in the inflamed mucosal tissue. CONCLUSIONS Our results argue against the controversial TH1/TH2 or TH17/Treg paradigms. In contrast, they suggest that a subpopulation of TH17 cells sharing a TH1 signature may be specifically involved in intestinal inflammation in CD and UC. These findings provide a better understanding of IBD pathogenesis and may help explain the efficacy of anti-IL-12p40/IL-23 and failure of anti-IL-17A therapies despite the enrichment of TH17 cells.
Collapse
|
27
|
Abstract
Interleukin-15 (IL-15) exerts many biological functions essential for the maintenance and function of multiple cell types. Although its expression is tightly regulated, IL-15 upregulation has been reported in many organ-specific autoimmune disorders. In celiac disease, an intestinal inflammatory disorder driven by gluten exposure, the upregulation of IL-15 expression in the intestinal mucosa has become a hallmark of the disease. Interestingly, because it is overexpressed both in the gut epithelium and in the lamina propria, IL-15 acts on distinct cell types and impacts distinct immune components and pathways to disrupt intestinal immune homeostasis. In this article, we review our current knowledge of the multifaceted roles of IL-15 with regard to the main immunological processes involved in the pathogenesis of celiac disease.
Collapse
Affiliation(s)
- Valérie Abadie
- Sainte-Justine Hospital Research Center, Department of Microbiology and Immunology, Faculty of Medicine, University of Montreal, Montreal, Canada
| | | |
Collapse
|
28
|
Biancheri P, Di Sabatino A, Ammoscato F, Facciotti F, Caprioli F, Curciarello R, Hoque SS, Ghanbari A, Joe‐Njoku I, Giuffrida P, Rovedatti L, Geginat J, Corazza GR, MacDonald TT. Absence of a role for interleukin‐13 in inflammatory bowel disease. Eur J Immunol 2014; 44:370-85. [DOI: 10.1002/eji.201343524] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Revised: 11/23/2013] [Accepted: 12/10/2013] [Indexed: 12/20/2022]
Affiliation(s)
- Paolo Biancheri
- Centre for Immunology and Infectious DiseaseBlizard InstituteBarts and the London School of Medicine and Dentistry London UK
- Department of Internal MedicineS. Matteo HospitalCentro per lo Studio e la Cura delle Malattie Infiammatorie Croniche IntestinaliUniversity of Pavia Pavia Italy
| | - Antonio Di Sabatino
- Department of Internal MedicineS. Matteo HospitalCentro per lo Studio e la Cura delle Malattie Infiammatorie Croniche IntestinaliUniversity of Pavia Pavia Italy
| | - Francesca Ammoscato
- Centre for Immunology and Infectious DiseaseBlizard InstituteBarts and the London School of Medicine and Dentistry London UK
| | | | - Flavio Caprioli
- Unit of Gastroenterology 2Fondazione IRCCS Ca’ Granda – Ospedale Maggiore Policlinico Milan Italy
- Dipartimento di Fisiopatologia Medico‐Chirurgica e dei TrapiantiUniversità degli Studi di Milano Milan Italy
| | - Renata Curciarello
- Centre for Immunology and Infectious DiseaseBlizard InstituteBarts and the London School of Medicine and Dentistry London UK
| | - Syed S. Hoque
- Centre for Immunology and Infectious DiseaseBlizard InstituteBarts and the London School of Medicine and Dentistry London UK
| | - Amir Ghanbari
- Centre for Immunology and Infectious DiseaseBlizard InstituteBarts and the London School of Medicine and Dentistry London UK
| | - Ijeoma Joe‐Njoku
- Centre for Immunology and Infectious DiseaseBlizard InstituteBarts and the London School of Medicine and Dentistry London UK
| | - Paolo Giuffrida
- Centre for Immunology and Infectious DiseaseBlizard InstituteBarts and the London School of Medicine and Dentistry London UK
| | - Laura Rovedatti
- Department of Internal MedicineS. Matteo HospitalCentro per lo Studio e la Cura delle Malattie Infiammatorie Croniche IntestinaliUniversity of Pavia Pavia Italy
| | - Jens Geginat
- Istituto Nazionale di Genetica Molecolare Milan Italy
| | - Gino R. Corazza
- Department of Internal MedicineS. Matteo HospitalCentro per lo Studio e la Cura delle Malattie Infiammatorie Croniche IntestinaliUniversity of Pavia Pavia Italy
| | - Thomas T. MacDonald
- Centre for Immunology and Infectious DiseaseBlizard InstituteBarts and the London School of Medicine and Dentistry London UK
| |
Collapse
|
29
|
Wallace KL, Zheng LB, Kanazawa Y, Shih DQ. Immunopathology of inflammatory bowel disease. World J Gastroenterol 2014; 20:6-21. [PMID: 24415853 PMCID: PMC3886033 DOI: 10.3748/wjg.v20.i1.6] [Citation(s) in RCA: 412] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Revised: 10/23/2013] [Accepted: 12/04/2013] [Indexed: 02/06/2023] Open
Abstract
Inflammatory bowel disease (IBD) results from a complex series of interactions between susceptibility genes, the environment, and the immune system. The host microbiome, as well as viruses and fungi, play important roles in the development of IBD either by causing inflammation directly or indirectly through an altered immune system. New technologies have allowed researchers to be able to quantify the various components of the microbiome, which will allow for future developments in the etiology of IBD. Various components of the mucosal immune system are implicated in the pathogenesis of IBD and include intestinal epithelial cells, innate lymphoid cells, cells of the innate (macrophages/monocytes, neutrophils, and dendritic cells) and adaptive (T-cells and B-cells) immune system, and their secreted mediators (cytokines and chemokines). Either a mucosal susceptibility or defect in sampling of gut luminal antigen, possibly through the process of autophagy, leads to activation of innate immune response that may be mediated by enhanced toll-like receptor activity. The antigen presenting cells then mediate the differentiation of naïve T-cells into effector T helper (Th) cells, including Th1, Th2, and Th17, which alter gut homeostasis and lead to IBD. In this review, the effects of these components in the immunopathogenesis of IBD will be discussed.
Collapse
|
30
|
Zhang YZ, Li YY. Inflammatory bowel disease: Pathogenesis. World J Gastroenterol 2014; 20:91-99. [PMID: 24415861 PMCID: PMC3886036 DOI: 10.3748/wjg.v20.i1.91] [Citation(s) in RCA: 996] [Impact Index Per Article: 90.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2013] [Revised: 11/05/2013] [Accepted: 11/30/2013] [Indexed: 02/06/2023] Open
Abstract
Inflammatory bowel disease (IBD), including Crohn’s disease and ulcerative colitis, is characterized by chronic relapsing intestinal inflammation. It has been a worldwide health-care problem with a continually increasing incidence. It is thought that IBD results from an aberrant and continuing immune response to the microbes in the gut, catalyzed by the genetic susceptibility of the individual. Although the etiology of IBD remains largely unknown, it involves a complex interaction between the genetic, environmental or microbial factors and the immune responses. Of the four components of IBD pathogenesis, most rapid progress has been made in the genetic study of gut inflammation. The latest internationally collaborative studies have ascertained 163 susceptibility gene loci for IBD. The genes implicated in childhood-onset and adult-onset IBD overlap, suggesting similar genetic predispositions. However, the fact that genetic factors account for only a portion of overall disease variance indicates that microbial and environmental factors may interact with genetic elements in the pathogenesis of IBD. Meanwhile, the adaptive immune response has been classically considered to play a major role in the pathogenesis of IBD, as new studies in immunology and genetics have clarified that the innate immune response maintains the same importance in inducing gut inflammation. Recent progress in understanding IBD pathogenesis sheds lights on relevant disease mechanisms, including the innate and adaptive immunity, and the interactions between genetic factors and microbial and environmental cues. In this review, we provide an update on the major advances that have occurred in above areas.
Collapse
|
31
|
Pagliari D, Cianci R, Frosali S, Landolfi R, Cammarota G, Newton EE, Pandolfi F. The role of IL-15 in gastrointestinal diseases: a bridge between innate and adaptive immune response. Cytokine Growth Factor Rev 2013; 24:455-66. [PMID: 23791986 DOI: 10.1016/j.cytogfr.2013.05.004] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Revised: 05/09/2013] [Accepted: 05/21/2013] [Indexed: 12/27/2022]
Abstract
IL-15 is a member of the IL-2 family of cytokines whose signaling pathways are a bridge between innate and adaptive immune response. IL-15 is part of the intestinal mucosal barrier, and functions to modulate gut homeostasis. IL-15 has pivotal roles in the control of development, proliferation and survival of both innate and adaptive immune cells. IL-15 becomes up-regulated in the inflamed tissue of intestinal inflammatory disease, such as IBD, Celiac Disease and related complications. Indeed, several studies have reported that IL-15 may participate to the pathogenesis of these diseases. Furthermore, although IL-15 seems to be responsible for inflammation and autoimmunity, it also may increase the immune response against cancer. For these reasons, we decided to study the intestinal mucosa as an 'immunological niche', in which immune response, inflammation and local homeostasis are modulated. Understanding the role of the IL-15/IL-15R system will provide a scientific basis for the development of new approaches that use IL-15 for immunotherapy of autoimmune diseases and malignancies. Indeed, a better understanding of the complexity of the mucosal immune system will contribute to the general understanding of immuno-pathology, which could lead to new therapeutical tools for widespread immuno-mediated diseases.
Collapse
Affiliation(s)
- Danilo Pagliari
- Institute of Internal Medicine, Catholic University of the Sacred Heart, Rome, Italy
| | | | | | | | | | | | | |
Collapse
|
32
|
Geremia A, Biancheri P, Allan P, Corazza GR, Di Sabatino A. Innate and adaptive immunity in inflammatory bowel disease. Autoimmun Rev 2013; 13:3-10. [PMID: 23774107 DOI: 10.1016/j.autrev.2013.06.004] [Citation(s) in RCA: 685] [Impact Index Per Article: 57.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Inflammatory bowel disease (IBD) includes Crohn's disease (CD) and ulcerative colitis (UC). The exact cause of IBD remains unknown. Available evidence suggests that an abnormal immune response against the microorganisms of the intestinal flora is responsible for the disease in genetically susceptible individuals. The adaptive immune response has classically been considered to play a major role in the pathogenesis of IBD. However, recent advances in immunology and genetics have clarified that the innate immune response is equally as important in inducing gut inflammation in these patients. In particular, an altered epithelial barrier function contributes to intestinal inflammation in patients with UC, while aberrant innate immune responses, such as antimicrobial peptide production, innate microbial sensing and autophagy are particularly associated to CD pathogenesis. On the other hand, besides T helper cell type (Th)1 and Th2 immune responses, other subsets of T cells, namely Th17 and regulatory T (Treg) cells, are likely to play a role in IBD. However, given the complexity and probably the redundancy of pathways leading to IBD lesions, and the fact that Th17 cells may also have protective functions, neutralization of IL-17A failed to induce any improvement in CD. Studying the interactions between various constituents of the innate and adaptive immune systems will certainly open new horizons in the knowledge about the immunologic mechanisms implicated in gut inflammation.
Collapse
Affiliation(s)
- Alessandra Geremia
- Translational Gastroenterology Unit, Experimental Medicine Division, Nuffield Department of Medicine, University of Oxford, Oxford, UK.
| | | | | | | | | |
Collapse
|
33
|
Brounais-Le Royer B, Pierroz DD, Velin D, Frossard C, Zheng XX, Lehr HA, Ferrari-Lacraz S, Ferrari SL. Effects of an Interleukin-15 Antagonist on Systemic and Skeletal Alterations in Mice with DSS-Induced Colitis. THE AMERICAN JOURNAL OF PATHOLOGY 2013; 182:2155-67. [DOI: 10.1016/j.ajpath.2013.02.033] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Revised: 01/18/2013] [Accepted: 02/12/2013] [Indexed: 02/06/2023]
|
34
|
Bailey JR, Bland PW, Tarlton JF, Peters I, Moorghen M, Sylvester PA, Probert CSJ, Whiting CV. IL-13 promotes collagen accumulation in Crohn's disease fibrosis by down-regulation of fibroblast MMP synthesis: a role for innate lymphoid cells? PLoS One 2012; 7:e52332. [PMID: 23300643 PMCID: PMC3534115 DOI: 10.1371/journal.pone.0052332] [Citation(s) in RCA: 97] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Accepted: 11/12/2012] [Indexed: 01/20/2023] Open
Abstract
Background Fibrosis is a serious consequence of Crohn’s disease (CD), often necessitating surgical resection. We examined the hypothesis that IL-13 may promote collagen accumulation within the CD muscle microenvironment. Methods Factors potentially modulating collagen deposition were examined in intestinal tissue samples from fibrotic (f) CD and compared with cancer control (C), ulcerative colitis (UC) and uninvolved (u) CD. Mechanisms attributable to IL-13 were analysed using cell lines derived from uninvolved muscle tissue and tissue explants. Results In fCD muscle extracts, collagen synthesis was significantly increased compared to other groups, but MMP-2 was not co-ordinately increased. IL-13 transcripts were highest in fCD muscle compared to muscle from other groups. IL-13 receptor (R) α1 was expressed by intestinal muscle smooth muscle, nerve and KIR+ cells. Fibroblasts from intestinal muscle expressed Rα1, phosphorylated STAT6 in response to IL-13, and subsequently down-regulated MMP-2 and TNF-α-induced MMP-1 and MMP-9 synthesis. Cells with the phenotype KIR+CD45+CD56+/−CD3− were significantly increased in fCD muscle compared to all other groups, expressed Rα1 and membrane IL-13, and transcribed high levels of IL-13. In explanted CD muscle, these cells did not phosphorylate STAT6 in response to exogenous IL-13. Conclusions The data indicate that in fibrotic intestinal muscle of Crohn’s patients, the IL-13 pathway is stimulated, involving a novel population of infiltrating IL-13Rα1+, KIR+ innate lymphoid cells, producing IL-13 which inhibits fibroblast MMP synthesis. Consequently, matrix degradation is down-regulated and this leads to excessive collagen deposition.
Collapse
Affiliation(s)
- Jennifer R. Bailey
- School of Veterinary Science, University of Bristol, Bristol, United Kingdom
| | - Paul W. Bland
- School of Veterinary Science, University of Bristol, Bristol, United Kingdom
- Mucosal Immunobiology and Vaccine Center (MIVAC), Department of Microbiology and Immunology, University of Gothenburg, Gothenburg, Sweden
| | - John F. Tarlton
- School of Veterinary Science, University of Bristol, Bristol, United Kingdom
- * E-mail:
| | - Iain Peters
- Molecular Testing, Innovation Centre, University of Exeter, Exeter, United Kingdom
| | | | - Paul A. Sylvester
- Department of Surgery, Bristol Royal Infirmary, Bristol, United Kingdom
| | | | | |
Collapse
|
35
|
Jung SH, Saxena A, Kaur K, Fletcher E, Ponemone V, Nottingham JM, Sheppe JA, Petroni M, Greene J, Graves K, Baliga MS, Fayad R. The role of adipose tissue-associated macrophages and T lymphocytes in the pathogenesis of inflammatory bowel disease. Cytokine 2012; 61:459-68. [PMID: 23245845 DOI: 10.1016/j.cyto.2012.11.021] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2012] [Revised: 10/24/2012] [Accepted: 11/20/2012] [Indexed: 12/24/2022]
Abstract
Inflammatory bowel diseases (IBDs) are chronic inflammatory disorders of the gastrointestinal tract that affect more than 3 million people worldwide, but the pathological etiology is still unknown. The overall purpose of our investigations was to elucidate the possibility of pathological causes of IBD, and therefore, we determined the difference of inflammatory cytokine profiles in adipose tissue macrophages (ATMs) and T lymphocytes (ATTs) obtained near active lesions of IBD; investigated whether the alteration in ATM activation induces genes involved in collagen formation; and evaluated the effects of fatty acid oxidation inhibitors on factors involved in inflammation and collagen production by ATMs in IBD. Adipose tissues (ATs) were collected near active lesions and also at the margin of resected segments of the bowel from IBD patients with ulcerative colitis (UC) and CD (n=14/group). Normal appearing ATs from control subjects (n=14) who had colon resection for adenocarcinoma were collected as far away from the cancer lesion as possible to rule out possible changes. Compared with inactive disease lesions, ATMs and ATTs from active lesions released more IL-6, IL-4 and IL-13. Treatments of cytokine IL-4 and/or IL-13 to ATMs reduced iNOS expression but increased Arg-I expression which were exacerbated when treated with T cell- and adipocyte-conditioned medium. However, fatty acid oxidation inhibitors prevented the effects of cytokines IL-4 and/or IL-13 on iNOS and Arg-I expressions. This study was the first to show the effect of IL-4 and IL-13 on collagen formation, through iNOS and Arg-I expressions, that was exacerbated in a condition that mimics in vivo condition of active lesions. Moreover, our study was the first to provide potential benefits of fatty acid oxidation inhibitors to ATMs on preventing collagen formation; thus, providing therapeutic implications for individuals with intestinal fibrosis and stricture lesions, although future study should be guaranteed to elucidate the underlying mechanisms.
Collapse
Affiliation(s)
- Seung Ho Jung
- Department of Pharmacology, Physiology & Neuroscience, School of Medicine, University of South Carolina, Columbia, SC 29208, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Yao Y, Levings MK, Steiner TS. ATP conditions intestinal epithelial cells to an inflammatory state that promotes components of DC maturation. Eur J Immunol 2012; 42:3310-21. [PMID: 22987503 DOI: 10.1002/eji.201142213] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Revised: 08/02/2012] [Accepted: 09/07/2012] [Indexed: 12/23/2022]
Abstract
Intestinal epithelial cells (IECs) normally promote the development of gut resident tolerogenic dendritic cells (DCs) and regulatory T cells, but how this process is altered in inflammatory bowel disease is not well characterized. Recently, we published that the cell injury signal ATP modulates IEC chemokine responses to the TLR5 ligand flagellin and exacerbates colitis in the presence of flagellin. We hypothesized that ATP switches these IECs from tolerogenic to proinflammatory, enhancing DC activation and immune responses to commensal antigens. Here, we report that ATP enhanced murine IEC production of KC, IL-6, TGF-β, and thymic stromal lymphopoietin in response to TLR1/2 stimulation by Pam(3) CSK(4) (PAM). Moreover, supernatants from IECs stimulated with ATP+PAM enhanced expression of CD80 on bone marrow derived dendritic cells, and increased their production of IL-12, IL-6, IL-23, TGF-β, and aldh1a2, suggesting a Th1/Th17 polarizing environment. DCs conditioned by stressed IECs stimulated an enhanced recall response to flagellin and supported the expansion of IFN-γ(+) and IL-17(+) memory T cells. Lastly, colonic administration of nonhydrolysable ATP increased production of IL-6 and Cxcl1 (KC) by IECs. These findings indicate that ATP influences the response of IECs to TLR ligands and biases the maturation of DCs to become inflammatory.
Collapse
Affiliation(s)
- Yu Yao
- Department of Medicine, University of British Columbia and Vancouver Coastal Health Research Institute, Vancouver, BC, Canada
| | | | | |
Collapse
|
37
|
Roberts-Thomson IC, Fon J, Uylaki W, Cummins AG, Barry S. Cells, cytokines and inflammatory bowel disease: a clinical perspective. Expert Rev Gastroenterol Hepatol 2011; 5:703-16. [PMID: 22017698 DOI: 10.1586/egh.11.74] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Ulcerative colitis and Crohn's disease are chronic inflammatory disorders of the GI tract. Although the disorders can usually be distinguished on clinical and pathological criteria, there are similarities in natural history and response to therapy. The purpose of this article is to examine the inflammatory infiltrate in both disorders and the cytokine profiles in intestinal mucosa and peripheral blood. For both disorders, the predominant cells in inflamed mucosa are neutrophils and lymphocytes positive for CD4. There are also increases in the number of B cells, macrophages, dendritic cells, plasma cells, eosinophils and perhaps mast cells. Cytokine levels and cytokine expression are also similar for both disorders, with increases in TNF-α and IFN-γ consistent with a Th1 response. As inflammation occurs in a microbial environment, one possibility is that the nature of the inflammatory response is largely independent of initiating factors. One concept that might be useful is that of initiating cells and cytokines and effector cells and cytokines. Persuasive evidence exists for a defect in phagocytic cells in Crohn's disease, perhaps with the expansion of a subset of activated macrophages. There are also possible links to natural killer cells and changes in the regulation of IL-8 and perhaps IL-22. For ulcerative colitis, the cellular events are less clear, but natural killer T cells may be important as initiating cells, and there is some evidence for upregulation of cytokines involved in Th2 responses, including IL-4 and IL-13. For both disorders, proinflammatory cytokines include TNF-α, IL-12, IL-23, and perhaps IL-17 and IFN-γ. Research challenges include the identification, activation and function of subsets of inflammatory cells, as well as new ways to terminate the inflammatory response.
Collapse
Affiliation(s)
- Ian C Roberts-Thomson
- Department of Gastroenterology and Hepatology, The Queen Elizabeth Hospital, Adelaide, South Australia, Australia.
| | | | | | | | | |
Collapse
|
38
|
Rosen MJ, Frey MR, Washington MK, Chaturvedi R, Kuhnhein LA, Matta P, Revetta FL, Wilson KT, Polk DB. STAT6 activation in ulcerative colitis: a new target for prevention of IL-13-induced colon epithelial cell dysfunction. Inflamm Bowel Dis 2011; 17:2224-34. [PMID: 21308881 PMCID: PMC3120916 DOI: 10.1002/ibd.21628] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2010] [Accepted: 12/08/2010] [Indexed: 12/12/2022]
Abstract
BACKGROUND Interleukin 13 (IL-13) is upregulated in ulcerative colitis (UC) and increases colon epithelial permeability by inducing apoptosis and expression of the pore-forming tight junction protein claudin-2. IL-13 induces activation of signal transducer and activator of transcription 6 (STAT6). However, the STAT6 phosphorylation status in patients with UC is unknown, as is the effect of STAT6 inhibition on colonic epithelium exposed to IL-13. The study aims were to determine if mucosal STAT6 phosphorylation is increased in patients with UC, and if STAT6 inhibition attenuates IL-13-induced colon epithelial cell dysfunction. METHODS Immunohistochemical staining for phosphorylated (p) STAT6 was performed on colonic tissue from newly diagnosed pediatric subjects with UC (early UC) or Crohn's disease (CD), colectomy tissue from adults with UC (advanced UC), and controls. Colon HT-29 and T84 cells were transfected with STAT6 small interfering RNA (siRNA), or treated with suberoylanilide hydroxamic acid (SAHA), a histone deacetylase inhibitor that inhibits STAT6, prior to IL-13 treatment. RESULTS The median score for epithelial pSTAT6 was 0 in control subjects, 2 in early UC (versus control P = 0.019), 4 in advanced UC (P = 0.003), and 0 in CD (P = 0.4). Cell transfection with STAT6 siRNA prevented IL-13-induced apoptosis and claudin-2 expression. SAHA inhibited IL-13-induced STAT6 phosphorylation, apoptosis, and claudin-2 expression, and mitigated IL-13-induced reductions in transepithelial resistance. CONCLUSIONS UC is associated with increased colonic epithelial STAT6 phosphorylation, and STAT6 inhibition prevents IL-13-induced apoptosis and barrier disruption. These data identify STAT6 as a novel target for UC treatment and support further study of SAHA as a therapeutic agent.
Collapse
Affiliation(s)
- Michael J Rosen
- Department of Pediatrics, Division of Gastroenterology, Hepatology, and Nutrition, Vanderbilt University School of Medicine, Nashville, TN, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
An intestinal epithelial defect conferring ER stress results in inflammation involving both innate and adaptive immunity. Mucosal Immunol 2011; 4:354-64. [PMID: 21107311 PMCID: PMC3130192 DOI: 10.1038/mi.2010.74] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
We recently characterized Winnie mice carrying a missense mutation in Muc2, leading to severe endoplasmic reticulum stress in intestinal goblet cells and spontaneous colitis. In this study, we characterized the immune responses due to this intestinal epithelial dysfunction. In Winnie, there was a fourfold increase in activated dendritic cells (DCs; CD11c(+) major histocompatibility complex (MHC) class II(hi)) in the colonic lamina propria accompanied by decreased colonic secretion of an inhibitor of DC activation, thymic stromal lymphopoietin (TSLP). Winnie also displayed a significant increase in mRNA expression of the mucosal T(H)17 signature genes Il17a, IL17f, Tgfb, and Ccr6, particularly in the distal colon. Winnie mesenteric lymph node leukocytes secreted multiple T(H)1, T(H)2, and T(H)17 cytokines on activation, with a large increase in interleukin-17A (IL-17A) progressively with age. A major source of mucosal IL-17A in Winnie was CD4(+) T lymphocytes. Loss of T and B lymphocytes in Rag1(-/-) × Winnie (RaW) crosses did not prevent spontaneous inflammation but did prevent progression with age in the colon but not the cecum. Adoptive transfer of naive T cells into RaW mice caused more rapid and severe colitis than in Rag1(-/-), indicating that the epithelial defect results in an intestinal microenvironment conducive to T-cell activation. Thus, the Winnie primary epithelial defect results in complex multicytokine-mediated colitis involving both innate and adaptive immune components with a prominent IL-23/T(H)17 response, similar to that of human ulcerative colitis.
Collapse
|
40
|
McNamee EN, Wermers JD, Masterson JC, Collins CB, Lebsack MD, Fillon S, Robinson ZD, Grenawalt J, Lee JJ, Jedlicka P, Furuta GT, Rivera-Nieves J. Novel model of TH2-polarized chronic ileitis: the SAMP1 mouse. Inflamm Bowel Dis 2010; 16:743-52. [PMID: 19856411 PMCID: PMC3786705 DOI: 10.1002/ibd.21148] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
BACKGROUND SAMP1/Yit mice develop spontaneous, segmental, transmural ileitis recapitulating many features of Crohn's disease (CD). The ileitic phenotype may have arisen during crosses of SAMP1 mice selected for the presence of skin lesions. We hereby describe that the original SAMP1 strain similarly develops ileitis. Our aim was to characterize the histopathological and immunological features of this model and assess its responsiveness to standard inflammatory bowel disease (IBD) therapy. METHODS The time course of histopathological features of ileitis was assessed. Immune compartments were characterized by flow cytometry. Ileal cytokine profiles and transcription factors were determined by real-time reverse-transcription polymerase chain reaction (RT-PCR). Finally, response to corticosteroid therapy and its effect on immune compartments and cellularity was evaluated. RESULTS Histological features and time course of disease were conserved, compared to those reported in SAMP1/Yit strains, with similar expansion of CD19+, CD4+, and CD8+ effector (CD44(high) CD62L(low)), and central memory lymphocytes (CD44(high)CD62L(high)). However, different from SAMP1/YitFc mice, analysis of ileal cytokine profiles revealed initial T(H)1 polarization followed by T(H)2-polarized profile accompanied by prominent eosinophilia during late disease. Lastly, corticosteroids attenuated ileitis, resulting in decreased lymphocyte subsets and cellularity of compartments. CONCLUSIONS Here we report that the ileitic phenotype of SAMP1-related strains was already present in the original SAMP1 strain. By contrast, the cytokine profile within the terminal ilea of SAMP1 is distinct from the mixed T(H)1/T(H)2 profile of SAMP1/YitFc mice during late disease, as it shows predominant T(H)2 polarization. Dissemination of these strains may advance our understanding of CD pathogenesis, which in 60% of patients involves the terminal ileum.
Collapse
Affiliation(s)
- Eoin N. McNamee
- Mucosal Inflammation Program, Division of Gastroenterology, University of Colorado Health Sciences Center, Denver
| | - Joshua D. Wermers
- Mucosal Inflammation Program, Division of Gastroenterology, University of Colorado Health Sciences Center, Denver
| | - Joanne C. Masterson
- Gastrointestinal Eosinophilic Disease Program, Section of Pediatric Gastroenterology, Hepatology and Nutrition, The Children’s Hospital, School of Medicine, University of Colorado, Denver
| | - Colm B. Collins
- Mucosal Inflammation Program, Division of Gastroenterology, University of Colorado Health Sciences Center, Denver
| | - Matthew D.P. Lebsack
- Mucosal Inflammation Program, Division of Gastroenterology, University of Colorado Health Sciences Center, Denver
| | - Sophie Fillon
- Gastrointestinal Eosinophilic Disease Program, Section of Pediatric Gastroenterology, Hepatology and Nutrition, The Children’s Hospital, School of Medicine, University of Colorado, Denver
| | - Zachary D. Robinson
- Gastrointestinal Eosinophilic Disease Program, Section of Pediatric Gastroenterology, Hepatology and Nutrition, The Children’s Hospital, School of Medicine, University of Colorado, Denver
| | - Joanna Grenawalt
- Gastrointestinal Eosinophilic Disease Program, Section of Pediatric Gastroenterology, Hepatology and Nutrition, The Children’s Hospital, School of Medicine, University of Colorado, Denver
| | - James J. Lee
- Division of Pulmonary Medicine, Department of Biochemistry and Molecular Biology, Mayo Clinic Arizona, Scottsdale, Arizona
| | - Paul Jedlicka
- Department of Pathology, University of Colorado, Denver
| | - Glenn T. Furuta
- Gastrointestinal Eosinophilic Disease Program, Section of Pediatric Gastroenterology, Hepatology and Nutrition, The Children’s Hospital, School of Medicine, University of Colorado, Denver
| | - Jesús Rivera-Nieves
- Mucosal Inflammation Program, Division of Gastroenterology, University of Colorado Health Sciences Center, Denver
| |
Collapse
|
41
|
Lampinen M, Backman M, Winqvist O, Rorsman F, Rönnblom A, Sangfelt P, Carlson M. Different regulation of eosinophil activity in Crohn's disease compared with ulcerative colitis. J Leukoc Biol 2008; 84:1392-9. [PMID: 18801925 DOI: 10.1189/jlb.0807513] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The aim of this investigation was to study the involvement of eosinophil and neutrophil granulocytes in different stages of Crohn's disease (CD) and ulcerative colitis (UC). Biopsy samples were taken from the right flexure of the colon and from the rectum in patients with active (n=12) and inactive colonic CD (n=7), patients with active (n=33) and inactive UC (n=24), and from control subjects (n=11). Cell suspensions from biopsies and blood were analyzed by flow cytometry with regards to activation markers and viability. Immunohistochemistry was used to evaluate cell number and degranulation. Blood eosinophils were cultured with Th1 and Th2 cytokines, and the expression of activity markers was assessed by flow cytometry. Eosinophil number, viability, and activity were increased during active CD and UC compared with controls. The activity, assessed as CD44 expression, tended to diminish during inactive CD but was increased further in quiescent UC. Neutrophil number and activity were increased only during inflammation in both diseases. Culture of blood eosinophils with IL-5 and IL-13 caused increased CD44 expression, whereas IL-5 and IFN-gamma induced elevated CD69 expression. We observed different patterns of eosinophil activation in CD and UC, with the highest CD44 expression during quiescent UC. Our in vitro experiments with recombinant cytokines suggest that the diverse mechanisms of eosinophil activation in CD and UC are a result of different cytokine milieus (Th1 vs. Th2). In contrast, neutrophil activation reflects the disease activity in CD and UC, irrespective of Th cell skewing.
Collapse
Affiliation(s)
- Maria Lampinen
- Department of Medical Sciences, Gastroenterology Research Group, University Hospital, S-751 85, Uppsala, Sweden.
| | | | | | | | | | | | | |
Collapse
|
42
|
Shih TC, Hsieh SY, Hsieh YY, Chen TC, Yeh CY, Lin CJ, Lin DY, Chiu CT. Aberrant activation of nuclear factor of activated T cell 2 in lamina propria mononuclear cells in ulcerative colitis. World J Gastroenterol 2008; 14:1759-67. [PMID: 18350607 PMCID: PMC2695916 DOI: 10.3748/wjg.14.1759] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the role of nuclear factor of activated T cell 2 (NFAT2), the major NFAT protein in peripheral T cells, in sustained T cell activation and intractable inflammation in human ulcerative colitis (UC).
METHODS: We used two-dimensional gel-electrophoresis, immunohistochemistry, double immunohistochemical staining, and confocal microscopy to inspect the expression of NFAT2 in 107, 15, 48 and 5 cases of UC, Crohn’s disease (CD), non-specific colitis, and 5 healthy individuals, respectively.
RESULTS: Up-regulation with profound nucleo-translocation/activation of NFAT2 of lamina propria mononuclear cells (LPMC) of colonic mucosa was found specifically in the affected colonic mucosa from patients with UC, as compared to CD or NC (P < 0.001, Kruskal-Wallis test). Nucleo-translocation/activation of NFAT2 primarily occurred in CD8+T, but was less prominent in CD4+ T cells or CD20+B cells. It was strongly associated with the disease activity, including endoscopic stage (τ = 0.2145, P = 0.0281) and histologic grade (τ = 0.4167, P < 0.001).
CONCLUSION: We disclose for the first time the nucleo-translocation/activatin of NFAT2 in lamina propria mononuclear cells in ulcerative colitis. Activation of NFAT2 was specific for ulcerative colitis and highly associated with disease activity. Since activation of NFAT2 is implicated in an auto-regulatory positive feedback loop of sustained T-cell activation and NFAT proteins play key roles in the calcium/calcineurin signaling pathways, our results not only provide new insights into the mechanism for sustained intractable inflammation, but also suggest the calcium-calcineurin/NFAT pathway as a new therapeutic target for ulcerative colitis.
Collapse
|
43
|
Heazlewood CK, Cook MC, Eri R, Price GR, Tauro SB, Taupin D, Thornton DJ, Png CW, Crockford TL, Cornall RJ, Adams R, Kato M, Nelms KA, Hong NA, Florin THJ, Goodnow CC, McGuckin MA. Aberrant mucin assembly in mice causes endoplasmic reticulum stress and spontaneous inflammation resembling ulcerative colitis. PLoS Med 2008; 5:e54. [PMID: 18318598 PMCID: PMC2270292 DOI: 10.1371/journal.pmed.0050054] [Citation(s) in RCA: 561] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2007] [Accepted: 01/17/2008] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND MUC2 mucin produced by intestinal goblet cells is the major component of the intestinal mucus barrier. The inflammatory bowel disease ulcerative colitis is characterized by depleted goblet cells and a reduced mucus layer, but the aetiology remains obscure. In this study we used random mutagenesis to produce two murine models of inflammatory bowel disease, characterised the basis and nature of the inflammation in these mice, and compared the pathology with human ulcerative colitis. METHODS AND FINDINGS By murine N-ethyl-N-nitrosourea mutagenesis we identified two distinct noncomplementing missense mutations in Muc2 causing an ulcerative colitis-like phenotype. 100% of mice of both strains developed mild spontaneous distal intestinal inflammation by 6 wk (histological colitis scores versus wild-type mice, p < 0.01) and chronic diarrhoea. Monitoring over 300 mice of each strain demonstrated that 25% and 40% of each strain, respectively, developed severe clinical signs of colitis by age 1 y. Mutant mice showed aberrant Muc2 biosynthesis, less stored mucin in goblet cells, a diminished mucus barrier, and increased susceptibility to colitis induced by a luminal toxin. Enhanced local production of IL-1beta, TNF-alpha, and IFN-gamma was seen in the distal colon, and intestinal permeability increased 2-fold. The number of leukocytes within mesenteric lymph nodes increased 5-fold and leukocytes cultured in vitro produced more Th1 and Th2 cytokines (IFN-gamma, TNF-alpha, and IL-13). This pathology was accompanied by accumulation of the Muc2 precursor and ultrastructural and biochemical evidence of endoplasmic reticulum (ER) stress in goblet cells, activation of the unfolded protein response, and altered intestinal expression of genes involved in ER stress, inflammation, apoptosis, and wound repair. Expression of mutated Muc2 oligomerisation domains in vitro demonstrated that aberrant Muc2 oligomerisation underlies the ER stress. In human ulcerative colitis we demonstrate similar accumulation of nonglycosylated MUC2 precursor in goblet cells together with ultrastructural and biochemical evidence of ER stress even in noninflamed intestinal tissue. Although our study demonstrates that mucin misfolding and ER stress initiate colitis in mice, it does not ascertain the genetic or environmental drivers of ER stress in human colitis. CONCLUSIONS Characterisation of the mouse models we created and comparison with human disease suggest that ER stress-related mucin depletion could be a fundamental component of the pathogenesis of human colitis and that clinical studies combining genetics, ER stress-related pathology and relevant environmental epidemiology are warranted.
Collapse
Affiliation(s)
- Chad K Heazlewood
- Mucin and IBD Research Teams, Mucosal Diseases Program, Mater Medical Research Institute, and the University of Queensland, Aubigny Place, Mater Health Services, South Brisbane, Queensland, Australia
| | - Matthew C Cook
- Immunology and Inflammation Group, Phenomix Australia, Acton, Australia
| | - Rajaraman Eri
- Mucin and IBD Research Teams, Mucosal Diseases Program, Mater Medical Research Institute, and the University of Queensland, Aubigny Place, Mater Health Services, South Brisbane, Queensland, Australia
| | - Gareth R Price
- Molecular Genetics Team, Mater Medical Research Institute, and the University of Queensland, Aubigny Place, Mater Health Services, South Brisbane, Queensland, Australia
| | - Sharyn B Tauro
- Mucin and IBD Research Teams, Mucosal Diseases Program, Mater Medical Research Institute, and the University of Queensland, Aubigny Place, Mater Health Services, South Brisbane, Queensland, Australia
| | - Douglas Taupin
- Gastroenterology Unit, Canberra Hospital, Woden, Australia
| | - David J Thornton
- Wellcome Trust Centre for Cell Matrix Research, Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - Chin Wen Png
- Mucin and IBD Research Teams, Mucosal Diseases Program, Mater Medical Research Institute, and the University of Queensland, Aubigny Place, Mater Health Services, South Brisbane, Queensland, Australia
| | - Tanya L Crockford
- Nuffield Dept of Clinical Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| | - Richard J Cornall
- Nuffield Dept of Clinical Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| | - Rachel Adams
- Mucin and IBD Research Teams, Mucosal Diseases Program, Mater Medical Research Institute, and the University of Queensland, Aubigny Place, Mater Health Services, South Brisbane, Queensland, Australia
| | - Masato Kato
- Dendritic Cell Program, Mater Medical Research Institute, Aubigny Place, Mater Health Services, South Brisbane, Queensland, Australia
| | - Keats A Nelms
- Immunology and Inflammation Group, Phenomix Australia, Acton, Australia
| | - Nancy A Hong
- Phenomix Corporation, San Diego, California, United States of America
| | - Timothy H. J Florin
- Mucin and IBD Research Teams, Mucosal Diseases Program, Mater Medical Research Institute, and the University of Queensland, Aubigny Place, Mater Health Services, South Brisbane, Queensland, Australia
| | - Christopher C Goodnow
- Division of Immunology and Genetics and Australian Phenomics Facility, John Curtin School of Medical Research, The Australian National University, Canberra, Australia
| | - Michael A McGuckin
- Mucin and IBD Research Teams, Mucosal Diseases Program, Mater Medical Research Institute, and the University of Queensland, Aubigny Place, Mater Health Services, South Brisbane, Queensland, Australia
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
44
|
Abstract
An increasing body of literature links immune and inflammatory factors to modulation of growth and control of fat:lean body composition. Recent progress in understanding the control of body composition has been made through identification of inflammatory cytokines and other factors produced by adipose tissue that affect body composition, often by direct effects on skeletal muscle tissue. Adipose-derived factors such as leptin, tumor necrosis factor-alpha, resistin, and adiponectin have been shown to affect muscle metabolism, protein dynamics, or both, by direct actions. This review summarizes recent results that support the existence of a reciprocal muscle-to-fat signaling pathway involving release of the cytokine IL-15 from muscle tissue. Cell culture studies, short-term in vivo studies, and human genotype association studies all support the model that muscle-derived IL-15 can decrease fat deposition and adipocyte metabolism via a muscle-to-fat endocrine pathway. Fat:lean body composition is an important factor determining the efficiency of meat production, as well as the fat content of meat products. Modulation of the IL-15 signaling axis may be a novel mechanism to affect body composition in meat animal production.
Collapse
Affiliation(s)
- L S Quinn
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
45
|
Grose RH, Thompson FM, Baxter AG, Pellicci DG, Cummins AG. Deficiency of invariant NK T cells in Crohn's disease and ulcerative colitis. Dig Dis Sci 2007; 52:1415-22. [PMID: 17420939 DOI: 10.1007/s10620-006-9261-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2006] [Accepted: 02/13/2006] [Indexed: 12/09/2022]
Abstract
The aim of this study was to investigate whether immunoregulatory invariant NK T cells are deficient in Crohn's disease or ulcerative colitis. Blood was collected for flow cytometry from 106 Crohn's disease, 91 ulcerative colitis, and 155 control subjects. Invariant NK T cells were assessed by Valpha24 and (alpha-galactosylceramide/CD1d tetramer markers. Intracellular cytokine was measured after in vitro anti-CD3 antibody stimulation. Valpha24+ T cells were quantified in ileocolonic biopsies as mRNA by real-time PCR and by immunofluorescence. Circulating invariant NK T cells were 5.3% of the control levels in Crohn's (P < 0.001) and 7.9% of the control levels in ulcerative colitis (P < 0.001). Interleukin-4 production was impaired in Crohn's disease and ulcerative colitis. Intestinal Valpha24 mRNA expression was 7% in Crohn's disease (P < 0.05) and 9% in ulcerative colitis (P < 0.05). Intestinal Valpha24+ T cells were 23% in Crohn's disease but not reduced in ulcerative colitis. We conclude that invariant NK T cells are deficient in Crohn's disease and in ulcerative colitis.
Collapse
Affiliation(s)
- Randall H Grose
- Basil Hetzel Institute for Medical Research and Department of Medicine, University of Adelaide, Adelaide, Australia
| | | | | | | | | |
Collapse
|
46
|
Obermeier F, Hausmann M, Kellermeier S, Kiessling S, Strauch UG, Duitman E, Bulfone-Paus S, Herfarth H, Bock J, Dunger N, Stoeck M, Schölmerich J, Falk W, Rogler G. IL-15 protects intestinal epithelial cells. Eur J Immunol 2006; 36:2691-9. [PMID: 16981178 DOI: 10.1002/eji.200535173] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
IL-15, a T-cell growth factor, has been shown to be increased in inflammatory bowel disease (IBD). It has been suggested that neutralization of IL-15 could protect from T cell-dependent autoimmune inflammation. On the other hand, an anti-apoptotic effect of IL-15 has been demonstrated in kidney epithelial cells during nephritis. We therefore tested the role of IL-15 in two different experimental models of colitis in vivo, and in models of intestinal epithelial cell (IEC) apoptosis in vitro. IL-15 blockade in chronic dextran sulphate sodium-induced colitis resulted in aggravation of the disease with a significantly 2.1-fold increased epithelial damage score compared to controls. TUNEL staining clearly revealed increased apoptosis. IL-6, TNF and IFN-gamma secretion by mesenteric lymph node cells were increased. In the T cell-dependent SCID transfer model of colitis IL-15 neutralization reduced the inflammatory infiltration and proinflammatory cytokine production. Despite that, the intestinal epithelial damage was not reduced. In vitro, IL-15 pre-incubation prevented up to 75% of CH11 antibody-induced apoptosis in SW-480 cells and reduced caspase-3 activity. According to this, endogenously produced IL-15 in chronic colitis does not only act as a proinflammatory cytokine but has at the same time the potential to reduce mucosal damage by preventing IEC apoptosis.
Collapse
Affiliation(s)
- Florian Obermeier
- Department of Internal Medicine I, University of Regensburg, Regensburg, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Mueller T, Terada T, Rosenberg IM, Shibolet O, Podolsky DK. Th2 Cytokines Down-Regulate TLR Expression and Function in Human Intestinal Epithelial Cells. THE JOURNAL OF IMMUNOLOGY 2006; 176:5805-14. [PMID: 16670286 DOI: 10.4049/jimmunol.176.10.5805] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
TLRs serve important immune and nonimmune functions in human intestinal epithelial cells (IECs). Proinflammatory Th1 cytokines have been shown to promote TLR expression and function in IECs, but the effect of key Th2 cytokines (IL-4, IL-5, IL-13) on TLR signaling in IECs has not been elucidated so far. We stimulated human model IECs with Th2 cytokines and examined TLR mRNA and protein expression by Northern blotting, RT-PCR, real-time RT-PCR, Western blotting, and flow cytometry. TLR function was determined by I-kappaBalpha phosphorylation assays, ELISA for IL-8 secretion after stimulation with TLR ligands and flow cytometry for LPS uptake. IL-4 and IL-13 significantly decreased TLR3 and TLR4 mRNA and protein expression including the requisite TLR4 coreceptor MD-2. TLR4/MD-2-mediated LPS uptake and TLR ligand-induced I-kappaBalpha phosphorylation and IL-8 secretion were significantly diminished in Th2 cytokine-primed IECs. The down-regulatory effect of Th2 cytokines on TLR expression and function in IECs also counteracted enhanced TLR signaling induced by stimulation with the hallmark Th1 cytokine IFN-gamma. In summary, Th2 cytokines appear to dampen TLR expression and function in resting and Th1 cytokine-primed human IECs. Diminished TLR function in IECs under the influence of Th2 cytokines may protect the host from excessive TLR signaling, but likely also impairs the host intestinal innate immune defense and increases IEC susceptibility to chronic inflammation in response to the intestinal microenvironment. Taken together, our data underscore the important role of Th2 cytokines in balancing TLR signaling in human IECs.
Collapse
Affiliation(s)
- Tobias Mueller
- Gastrointestinal Unit, Department of Medicine, Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Boston, MA 02114, USA
| | | | | | | | | |
Collapse
|
48
|
|
49
|
Prasad S, Mingrino R, Kaukinen K, Hayes KL, Powell RM, MacDonald TT, Collins JE. Inflammatory processes have differential effects on claudins 2, 3 and 4 in colonic epithelial cells. J Transl Med 2005; 85:1139-62. [PMID: 16007110 DOI: 10.1038/labinvest.3700316] [Citation(s) in RCA: 372] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Claudin proteins comprise a recently described family of tight junction proteins that differentially regulate paracellular permeability. Since other tight junction proteins show alterations in distribution or expression in inflammatory bowel disease (IBD) we assessed expression of claudins (CL) 2, 3 and 4 in IBD. CL 2 was strongly expressed along the inflamed crypt epithelium, whilst absent or barely detectable in normal colon. In contrast, CL 3 and 4 were present throughout normal colonic epithelium and were reduced or redistributed in the diseased surface epithelium. In a T84-cell culture model of the gut barrier, paracellular permeability decreased with time after plating and correlated with a marked decrease in the expression of CL 2. Addition of IFNgamma/TNFalpha led to further decreases in CL 2 and 3, the redistrbution of CL 4 and a marked increase in paracellular permeability. Conversely, IL-13 dramatically increased CL 2, with little effect on CL 3 or 4, but also resulted in increased paracellular permeability. Expression of CL 2 did not correlate with proliferation or junctional reorganisation after calcium ion depletion. Re-expression of CL 2 in response to IL-13 was inhibited by phophatidylinositol 3 kinase inhibitor, LY294002, which also restored the ion permeability to previous levels. CL 2 expression could be stimulated in the absence of IL-13 by activation of phospho-Akt in the phophatidylinositol 3 kinase pathway. These results suggest that INFgamma/TNFalpha and IL-13 have differential effects on CL 2, 3 and 4 in tight junctions, which may lead to increased permeability via different mechanisms.
Collapse
Affiliation(s)
- Shyam Prasad
- Division of Infection, Inflammation and Repair, Southampton General Hospital, University of Southampton School of Medicine, Southampton, UK
| | | | | | | | | | | | | |
Collapse
|
50
|
N/A. N/A. Shijie Huaren Xiaohua Zazhi 2004; 12:2162-2166. [DOI: 10.11569/wcjd.v12.i9.2162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|