1
|
Song S, Qiu R, Huang Y, Zhou Z, Yan J, Ou Q, Wei D, He J, Liang Y, Du X, Yao W, Lu T. Study on the mechanism of hepatotoxicity of Aucklandiae radix through liver metabolomics and network pharmacology. Toxicol Res (Camb) 2024; 13:tfae123. [PMID: 39119266 PMCID: PMC11303830 DOI: 10.1093/toxres/tfae123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 07/15/2024] [Accepted: 08/02/2024] [Indexed: 08/10/2024] Open
Abstract
Background Aucklandiae Radix (CAR) and its roasted processed products (PAR) are extensively used in various Chinese patent medicines due to their diverse pharmacological activities. However, numerous side effects of CAR have been reported and the hepatotoxicity and the corresponding mechanisms have not been thoroughly investigated. Our study aims to explore the underlying mechanism of the hepatotoxic impacts of CAR. Methods In this study, metabolomic analysis was performed using liver tissue from the mice administered with different dosages of CAR/PAR extracts to examine the hepatotoxic impacts of CAR and elucidate the underlying mechanism. Network pharmacology was employed to predict the potential molecular targets and associated signaling pathways based on the distinctive compounds between CAR and PAR. A composition-target-GO-Bio process-metabolic pathway network was constructed by integrating the hepatotoxicity-related metabolic pathways. Finally, the target proteins related with the hepatotoxic effect of CAR were identified and validated in vivo. Results The metabolomics analysis revealed that 33 related metabolic pathways were significantly altered in the high-dose CAR group, four of which were associated with the hepatotoxicity and could be alleviated by PAR. The network identified NQO1 as the primary target of the hepatotoxic effect induced by CAR exposure, which was subsequently verified by Western Blotting. Further evidence in vivo demonstrated that Nrf2 and HO-1, closely related to NQO1, were also the main targets through which CAR induced the liver injury, and that oxidative stress should be the primary mechanism for the CAR-induced hepatotoxicity. Conclusions This preliminary study on the hepatic toxic injury of CAR provides a theoretical basis for the rational and safe use of CAR rationally and safely in clinical settings.
Collapse
Affiliation(s)
- Shen Song
- School of Pharmacy, Nanjing University of Chinese Medicine, Xianlin Road 138, Nanjing 210023, China
| | - Rongli Qiu
- School of Pharmacy, Nanjing University of Chinese Medicine, Xianlin Road 138, Nanjing 210023, China
| | - Yan Huang
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Xianlin Road 138, Nanjing 210023, China
| | - Zhuxiu Zhou
- School of Pharmacy, Nanjing University of Chinese Medicine, Xianlin Road 138, Nanjing 210023, China
| | - Jin Yan
- School of Pharmacy, Nanjing University of Chinese Medicine, Xianlin Road 138, Nanjing 210023, China
| | - Qiaochan Ou
- School of Pharmacy, Nanjing University of Chinese Medicine, Xianlin Road 138, Nanjing 210023, China
| | - Donghui Wei
- School of Pharmacy, Nanjing University of Chinese Medicine, Xianlin Road 138, Nanjing 210023, China
| | - Jingxuan He
- School of Pharmacy, Nanjing University of Chinese Medicine, Xianlin Road 138, Nanjing 210023, China
| | - Yi Liang
- School of Pharmacy, Nanjing University of Chinese Medicine, Xianlin Road 138, Nanjing 210023, China
| | - Xingyue Du
- School of Pharmacy, Nanjing University of Chinese Medicine, Xianlin Road 138, Nanjing 210023, China
| | - Weifeng Yao
- School of Pharmacy, Nanjing University of Chinese Medicine, Xianlin Road 138, Nanjing 210023, China
| | - Tulin Lu
- School of Pharmacy, Nanjing University of Chinese Medicine, Xianlin Road 138, Nanjing 210023, China
| |
Collapse
|
2
|
Nakatake R, Schulz M, Kalvelage C, Benstoem C, Tolba RH. Effects of iNOS in Hepatic Warm Ischaemia and Reperfusion Models in Mice and Rats: A Systematic Review and Meta-Analysis. Int J Mol Sci 2022; 23:ijms231911916. [PMID: 36233220 PMCID: PMC9569681 DOI: 10.3390/ijms231911916] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 09/26/2022] [Accepted: 09/26/2022] [Indexed: 12/09/2022] Open
Abstract
Warm ischaemia is usually induced by the Pringle manoeuver (PM) during hepatectomy. Currently, there is no widely accepted standard protocol to minimise ischaemia-related injury, so reducing ischaemia-reperfusion damage is an active area of research. This systematic review and meta-analysis focused on inducible nitric oxide synthase (iNOS) as an early inflammatory response to hepatic ischaemia reperfusion injury (HIRI) in mouse- and rat-liver models. A systematic search of studies was performed within three databases. Studies meeting the inclusion criteria were subjected to qualitative and quantitative synthesis of results. We performed a meta-analysis of studies grouped by different HIRI models and ischaemia times. Additionally, we investigated a possible correlation of endothelial nitric oxide synthase (eNOS) and nitric oxide (NO) regulation with iNOS expression. Of 124 included studies, 49 were eligible for the meta-analysis, revealing that iNOS was upregulated in almost all HIRIs. We were able to show an increase of iNOS regardless of ischemia or reperfusion time. Additionally, we found no direct associations of eNOS or NO with iNOS. A sex gap of primarily male experimental animals used was observed, leading to a higher risk of outcomes not being translatable to humans of all sexes.
Collapse
Affiliation(s)
- Richi Nakatake
- Institute for Laboratory Animal Science and Experimental Surgery, RWTH Aachen University, 52074 Aachen, Germany
- Department of Surgery, Kansai Medical University, 2-5-1 Shinmachi, Hirakata, Osaka 573-1010, Japan
| | - Mareike Schulz
- Institute for Laboratory Animal Science and Experimental Surgery, RWTH Aachen University, 52074 Aachen, Germany
| | - Christina Kalvelage
- Department of Intensive Care Medicine, Medical Faculty, RWTH Aachen University, 52074 Aachen, Germany
| | - Carina Benstoem
- Department of Intensive Care Medicine, Medical Faculty, RWTH Aachen University, 52074 Aachen, Germany
| | - René H. Tolba
- Institute for Laboratory Animal Science and Experimental Surgery, RWTH Aachen University, 52074 Aachen, Germany
- Correspondence:
| |
Collapse
|
3
|
Cai J, Zhang X, Chen P, Li Y, Liu S, Liu Q, Zhang H, Wu Z, Song K, Liu J, Shan B, Liu Y. The ER stress sensor inositol-requiring enzyme 1α in Kupffer cells promotes hepatic ischemia-reperfusion injury. J Biol Chem 2021; 298:101532. [PMID: 34953853 PMCID: PMC8760522 DOI: 10.1016/j.jbc.2021.101532] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 12/13/2021] [Indexed: 12/18/2022] Open
Abstract
Hepatic ischemia/reperfusion (I/R) injury is an inflammation-mediated process arising from ischemia/reperfusion-elicited stress in multiple cell types, causing liver damage during surgical procedures and often resulting in liver failure. Endoplasmic reticulum (ER) stress triggers the activation of the unfolded protein response (UPR) and is implicated in tissue injuries, including hepatic I/R injury. However, the cellular mechanism that links the UPR signaling to local inflammatory responses during hepatic I/R injury remains largely obscure. Here, we report that IRE1α, a critical ER-resident transmembrane signal transducer of the UPR, plays an important role in promoting Kupffer-cell-mediated liver inflammation and hepatic I/R injury. Utilizing a mouse model in which IRE1α is specifically ablated in myeloid cells, we found that abrogation of IRE1α markedly attenuated necrosis and cell death in the liver, accompanied by reduced neutrophil infiltration and liver inflammation following hepatic I/R injury. Mechanistic investigations in mice as well as in primary Kupffer cells revealed that loss of IRE1α in Kupffer cells not only blunted the activation of the NLRP3 inflammasome and IL-1β production, but also suppressed the expression of the inducible nitric oxide synthase (iNos) and proinflammatory cytokines. Moreover, pharmacological inhibition of IRE1α′s RNase activity was able to attenuate inflammasome activation and iNos expression in Kupffer cells, leading to alleviation of hepatic I/R injury. Collectively, these results demonstrate that Kupffer cell IRE1α mediates local inflammatory damage during hepatic I/R injury. Our findings suggest that IRE1α RNase activity may serve as a promising target for therapeutic treatment of ischemia/reperfusion-associated liver inflammation and dysfunction.
Collapse
Affiliation(s)
- Jie Cai
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences; the Institute for Advanced Studies; Frontier Science Center for Immunology and Metabolism; Wuhan University, Wuhan 430072, China
| | - Xiaoge Zhang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences; the Institute for Advanced Studies; Frontier Science Center for Immunology and Metabolism; Wuhan University, Wuhan 430072, China
| | - Peng Chen
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences; the Institute for Advanced Studies; Frontier Science Center for Immunology and Metabolism; Wuhan University, Wuhan 430072, China
| | - Yang Li
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences; the Institute for Advanced Studies; Frontier Science Center for Immunology and Metabolism; Wuhan University, Wuhan 430072, China
| | - Songzi Liu
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences; the Institute for Advanced Studies; Frontier Science Center for Immunology and Metabolism; Wuhan University, Wuhan 430072, China
| | - Qian Liu
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences; the Institute for Advanced Studies; Frontier Science Center for Immunology and Metabolism; Wuhan University, Wuhan 430072, China
| | - Hanyong Zhang
- Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhuyin Wu
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences; the Institute for Advanced Studies; Frontier Science Center for Immunology and Metabolism; Wuhan University, Wuhan 430072, China
| | - Ke Song
- Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jianmiao Liu
- Cellular Signaling Laboratory, Key Laboratory of Molecular Biophysics of Ministry of Education, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Bo Shan
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| | - Yong Liu
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences; the Institute for Advanced Studies; Frontier Science Center for Immunology and Metabolism; Wuhan University, Wuhan 430072, China.
| |
Collapse
|
4
|
Shen Y, Shen X, Cheng Y, Liu Y. Myricitrin pretreatment ameliorates mouse liver ischemia reperfusion injury. Int Immunopharmacol 2020; 89:107005. [PMID: 33045574 DOI: 10.1016/j.intimp.2020.107005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 08/27/2020] [Accepted: 09/10/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND Myricitrin has been reported to exert protective effects on liver diseases, but the protective effects of myricitrin against liver ischemia reperfusion (I/R) injury and the underlying mechanisms remain unexplored. This study aimed to investigate the effects of myricitrin on liver I/R injury and elucidate the underlying mechanisms. METHODS Mice were pretreated with myricitrin before liver I/R injury modeling. The mice were pretreated with either myricitrin or vehicle prior to liver ischemia. Some mice were further pretreated with the PI3K inhibitor LY294002. Liver tissues and blood samples were collected after 6 h of reperfusion. The degree of liver damage was determined by the serum levels of alanine aminotransferase (ALT), aspartate transaminase (AST), and lactic dehydrogenase (LDH) and histological examinations. The tumour necrosis factor-α (TNF-α), interleukin--1β (IL-1β), IL-4 and IL-10 expression levels were assessed by qRT-PCR and enzyme-linked immunosorbent assays (ELISAs). Serum superoxide dismutase (SOD) activity, catalase (CAT) activity, and contents of malondialdehyde (MDA), glutathione (GSH) and nitric oxide (NO) contents were measured. Western blotting and caspase-3 activity were conducted to determine the effect of myricitrin on apoptosis. The expression levels of proliferation related genes (Cyclin D1 and Cyclin E1) were determined by qRT-PCR and western-blotting. The expression of p-Akt, p-mTOR and p-eNOS in liver tissue were investigated by western-blotting. RESULTS Myricitrin not only significantly decreased the ALT, AST and LDH levels but also reduced the necrotic areas in the liver tissue compared with liver I/R injury group. In addition, myricitrin pretreatment alleviated liver injury by inhibiting the inflammatory response and suppressing oxidative stress. Western blotting and caspase-3 activity revealed that myricitrin inhibited liver I/R induced-apoptosis. Myricitrin promoted hepatocyte proliferation following liver I/R injury by upregulating the expression levels of Cyclin D1 and Cyclin E1. Further experiments indicated that the myricitrin pretreatment increased nitric oxide (NO) production by activating the PI3K/Akt signaling pathway. However, myricitrin triggered the hepatocyte proliferation and NO synthase activation was blocked by LY294002. CONCLUSION These results demonstrate that myricitrin alleviates liver I/R injury by suppressing oxidative stress, the inflammatory response, and apoptosis, improving liver proliferation and upregulating p-eNOS expression.
Collapse
Affiliation(s)
- Yuntai Shen
- School of Clinical Medicine, Weifang Medical University, Weifang 266003, China
| | - Xiangrong Shen
- Department of Chinese Medicine, Zhucheng Shiqiaozi Hospital, Weifang 262208, China; Department of Chinese Medicine, The Affiliated Hospital of Qingdao University, Qingdao 260153, China
| | - Yao Cheng
- Department of Anesthesiology, Zhucheng People's Hospital, Weifang 262200, China
| | - Yulan Liu
- Department of Nursing, Zhucheng People's Hospital, Weifang 262200, China.
| |
Collapse
|
5
|
Grezzana Filho TDJM, Longo L, Santos JLD, Gabiatti G, Boffil C, Santos EBD, Cerski CTS, Chedid MF, Corso CO. Induction of selective liver hypothermia prevents significant ischemia/reperfusion injury in Wistar rats after 24 hours. Acta Cir Bras 2020; 35:e202000205. [PMID: 32428061 PMCID: PMC7217597 DOI: 10.1590/s0102-865020200020000005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 01/19/2020] [Indexed: 02/08/2023] Open
Abstract
Purpose To investigate the effects of induction of selective liver hypothermia in a rodent model. Methods Seven male Wistar rats were subjected to 90 minutes of partial 70% liver ischemia and topic liver 26°C hypothermia (H group). Other seven male Wistar rats were subjected to 90 minutes of partial 70% normothermic liver ischemia (N group). Five additional rats underwent a midline incision and section of liver ligaments under normothermic conditions and without any liver ischemia (sham group). All animals were sacrificed 24-h after reperfusion, and livers were sampled for analyses. Pathology sections were scored for sinusoidal congestion, ballooning, hepatocelllular necrosis and the presence of neutrophilic infiltrates. Results At the end of the experiment, liver tissue expressions of TNF-ɑ, IL-1β, iNOS and TNF-ɑ/IL-10 ratio were significantly reduced in the H group compared to N group, whereas IL-10 and eNOS were significantly increased in H group. Histopathological injury scores revealed a significant decrease in ischemia/reperfusion (I/R) injuries in H group. Conclusion Selective liver hypothermia prevented I/R injury by inhibiting the release of inflammatory cytokines, preserves microcirculation, prevents hepatocellular necrosis and leukocyte infiltration, allowing maintenance of the liver architecture.
Collapse
|
6
|
Cornide-Petronio ME, Álvarez-Mercado AI, Jiménez-Castro MB, Peralta C. Current Knowledge about the Effect of Nutritional Status, Supplemented Nutrition Diet, and Gut Microbiota on Hepatic Ischemia-Reperfusion and Regeneration in Liver Surgery. Nutrients 2020; 12:E284. [PMID: 31973190 PMCID: PMC7071361 DOI: 10.3390/nu12020284] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 01/13/2020] [Accepted: 01/15/2020] [Indexed: 02/06/2023] Open
Abstract
Ischemia-reperfusion (I/R) injury is an unresolved problem in liver resection and transplantation. The preexisting nutritional status related to the gut microbial profile might contribute to primary non-function after surgery. Clinical studies evaluating artificial nutrition in liver resection are limited. The optimal nutritional regimen to support regeneration has not yet been exactly defined. However, overnutrition and specific diet factors are crucial for the nonalcoholic or nonalcoholic steatohepatitis liver diseases. Gut-derived microbial products and the activation of innate immunity system and inflammatory response, leading to exacerbation of I/R injury or impaired regeneration after resection. This review summarizes the role of starvation, supplemented nutrition diet, nutritional status, and alterations in microbiota on hepatic I/R and regeneration. We discuss the most updated effects of nutritional interventions, their ability to alter microbiota, some of the controversies, and the suitability of these interventions as potential therapeutic strategies in hepatic resection and transplantation, overall highlighting the relevance of considering the extended criteria liver grafts in the translational liver surgery.
Collapse
Affiliation(s)
| | - Ana Isabel Álvarez-Mercado
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, 18071 Granada, Spain;
- Institute of Nutrition and Food Technology “José Mataix,” Center of Biomedical Research, University of Granada, Avda. del Conocimiento s/n, 18016 Armilla, Granada, Spain
- Instituto de Investigación Biosanitaria ibs, GRANADA, Complejo Hospitalario Universitario de Granada, 18014 Granada, Spain
| | - Mónica B. Jiménez-Castro
- Institut d’Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), 08036 Barcelona, Spain; (M.E.C.-P.); (M.B.J.-C.)
| | - Carmen Peralta
- Institut d’Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), 08036 Barcelona, Spain; (M.E.C.-P.); (M.B.J.-C.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 08036 Barcelona, Spain
| |
Collapse
|
7
|
Inflammasome-Mediated Inflammation in Liver Ischemia-Reperfusion Injury. Cells 2019; 8:cells8101131. [PMID: 31547621 PMCID: PMC6829519 DOI: 10.3390/cells8101131] [Citation(s) in RCA: 166] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 09/19/2019] [Accepted: 09/21/2019] [Indexed: 12/16/2022] Open
Abstract
Ischemia-reperfusion injury is an important cause of liver damage occurring during surgical procedures including hepatic resection and liver transplantation, and represents the main underlying cause of graft dysfunction and liver failure post-transplantation. To date, ischemia-reperfusion injury is an unsolved problem in clinical practice. In this context, inflammasome activation, recently described during ischemia-reperfusion injury, might be a potential therapeutic target to mitigate the clinical problems associated with liver transplantation and hepatic resections. The present review aims to summarize the current knowledge in inflammasome-mediated inflammation, describing the experimental models used to understand the molecular mechanisms of inflammasome in liver ischemia-reperfusion injury. In addition, a clear distinction between steatotic and non-steatotic livers and between warm and cold ischemia-reperfusion injury will be discussed. Finally, the most updated therapeutic strategies, as well as some of the scientific controversies in the field will be described. Such information may be useful to guide the design of better experimental models, as well as the effective therapeutic strategies in liver surgery and transplantation that can succeed in achieving its clinical application.
Collapse
|
8
|
Higher Risk of Posttransplant Liver Graft Failure in Male Recipients of Female Donor Grafts Might Not Be Due to Anastomotic Size Disparity. Transplantation 2019; 102:1115-1123. [PMID: 29443826 DOI: 10.1097/tp.0000000000002118] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND Posttransplant liver graft failure occurs most often in male recipients of livers from female donors. The respective role of donor sex itself and the size disparity in graft vessels/bile ducts according to donor sex are unclear. Thus, we aimed to evaluate the importance of donor sex with adjustment for anastomotic size disparity between female and male donor grafts. METHODS A total of 309 male patients without hepatic tumors who underwent living donor liver transplantation were analyzed (109 female donors and 200 male donors). The primary outcome was posttransplant graft failure (ie, retransplantation or death). Survival analysis was performed using the Cox model. Analyzed anastomosis-related factors comprised graft weight, number and size of hepatic vessels/bile ducts, and anastomosis techniques. RESULTS Graft failure probabilities at 1, 6, 12, 24, and 60 months posttransplantation were 9.1%, 19.5%, 20.2%, 23.0%, and 27.0%, respectively, with female donors and 2.0%, 5.5%, 8.1%, 10.1%, and 13.5% with male donors (hazards ratio [HR], 2.29; 95% confidence interval [CI], 1.35-3.88; P = 0.002). Multivariable analysis confirmed the significance of donor sex (HR, 2.30; 95% CI, 1.14-4.67; P = 0.021) after adjustment for anastomosis-related factors. All analyzed anastomosis-related factors showed no significant association with graft failure, although size of the graft hepatic artery showed marginal significance (HR, 0.50; 95% CI, 0.25-1.01; P = 0.053). The significance of donor sex was lost when donor was older than 36 to 40 years (age of poor ovarian reserve and the end of female fertility). Our institutional pediatric recipient cohort validated the inferiority of female-to-male donation. CONCLUSIONS Donor sex appears to be an independent factor modulating graft failure risk in male liver transplant recipients.
Collapse
|
9
|
Zaki AM, El-Tanbouly DM, Abdelsalam RM, Zaki HF. Plumbagin ameliorates hepatic ischemia-reperfusion injury in rats: Role of high mobility group box 1 in inflammation, oxidative stress and apoptosis. Biomed Pharmacother 2018; 106:785-793. [PMID: 29990872 DOI: 10.1016/j.biopha.2018.07.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 06/27/2018] [Accepted: 07/01/2018] [Indexed: 01/03/2023] Open
Abstract
Ischemia-reperfusion (I/R) injury is a pathological process which magnifies with the ensuing inflammatory response and endures with the increase of oxidants especially during reperfusion. The present study was conducted to assess the possible modulatory effects of plumbagin, the active constituent extracted from the roots of traditional medicinal plant Plumbago zeylanica L., on the dire role of high mobility group box 1 (HMGB1) as well as the associated inflammation, oxidative stress and apoptotic cell death following hepatic I/R. Four groups of rats were included: sham-operated, sham-operated treated with plumbagin, I/R (30 min ischemia and 1 h reperfusion) and I/R treated with plumbagin. Pretreatment with plumbagin markedly improved hepatic function and structural integrity compared to the I/R group, as manifested by depressed plasma transaminases and lactate dehydrogenase (LDH) activities as well as alleviated tissue pathological lesions. Plumbagin prominently hampered HMGB1 expression and subsequently quelled inflammatory cascades, as nuclear factor κB (NF-κB), tumor necrosis factor-alpha (TNF-α) and myeloperoxidase (MPO) activity. It also interrupted reactive oxygen species (ROS)-HMGB1loop as evident by restored liver reduced glutathione (GSH), elevated glutathione peroxidase (GPx) activity, along with decreased liver lipid peroxidation. Simultaneously, plumbagin significantly ameliorated apoptosis by amending the mRNA expressions of both anti-apoptotic (Bcl-2) and pro-apoptotic (Bax). The present results revealed that plumbagin is endowed with hepatoprotective activity ascribed to its antioxidant, anti-inflammatory and anti-apoptotic properties which are partially mediated through dampening of HMGB1 expression.
Collapse
Affiliation(s)
- Aya M Zaki
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Dalia M El-Tanbouly
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt.
| | - Rania M Abdelsalam
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Hala F Zaki
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
10
|
Yoon G, Oh CS, Kim HS. Distinctive expression patterns of hypoxia-inducible factor-1α and endothelial nitric oxide synthase following hypergravity exposure. Oncotarget 2018; 7:33675-88. [PMID: 27191892 PMCID: PMC5085111 DOI: 10.18632/oncotarget.9372] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 05/05/2016] [Indexed: 01/13/2023] Open
Abstract
This study was designed to examine the expression of hypoxia-inducible factor-1α (HIF-1α) and the level and activity of endothelial nitric oxide synthase (eNOS) in the hearts and livers of mice exposed to hypergravity. Hypergravity-induced hypoxia and the subsequent post-exposure reoxygenation significantly increased cardiac HIF-1α levels. Furthermore, the levels and activity of cardiac eNOS also showed significant increase immediately following hypergravity exposure and during the reoxygenation period. In contrast, the expression of phosphorylated Akt (p-Akt) and phosphorylated extracellular signal-regulated kinase (p-ERK) showed significant elevation only during the reoxygenation period. These data raise the possibility that the increase in cardiac HIF-1α expression induced by reoxygenation involves a cascade of signaling events, including activation of the Akt and ERK pathways. In the liver, HIF-1α expression was significantly increased immediately after hypergravity exposure, indicating that hypergravity exposure to causes hepatocellular hypoxia. The hypergravity-exposed livers showed significantly higher eNOS immunoreactivity than did those of control mice. Consistent with these results, significant increases in eNOS activity and nitrate/nitrite levels were also observed. These findings suggest that hypergravity-induced hypoxia plays a significant role in the upregulation of hepatic eNOS.
Collapse
Affiliation(s)
- Gun Yoon
- Department of Obstetrics and Gynecology, Pusan National University Yangsan Hospital, Pusan National University School of Medicine, Yangsan-si, Gyeongsangnam-do, Republic of Korea
| | - Choong Sik Oh
- Aerospace Medicine Research Center, Republic of Korea Air Force Aerospace Medical Center, Cheongju-si, Chungcheongbuk-do, Republic of Korea
| | - Hyun-Soo Kim
- Department of Pathology, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
11
|
Hepatic dysfunction and thrombocytopenia induced by excess sFlt1 in mice lacking endothelial nitric oxide synthase. Sci Rep 2018; 8:102. [PMID: 29311569 PMCID: PMC5758763 DOI: 10.1038/s41598-017-18260-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 11/27/2017] [Indexed: 01/09/2023] Open
Abstract
Liver dysfunction is a major problem in patients with severe preeclampsia (PE), hemolysis, elevated liver enzymes, and low platelet count (HELLP) syndrome, or in patients receiving anti-vascular endothelial growth factor (VEGF) therapy. Excessive soluble fms-like tyrosine kinase 1 (sFlt1) that antagonizes VEGF has been implicated in the pathogenesis of PE. VEGF increases the expression of endothelial nitric oxide synthase (eNOS) and activates it. eNOS polymorphisms that cause reduced NO production are associated with PE. The aim of this study was to clarify the role on hepatic function by excess sFlt1 in the absence of eNOS gene product. We first overexpressed sFlt1 using adenovirus in eNOS−/− and eNOS+/+ mice. Excessive sFlt1 and lack of eNOS synergistically increased plasma levels of liver transaminases, exacerbated infiltration of inflammatory cells, elevated expression levels of cytokines in the liver, and aggravated oxidative stress and coagulation abnormalities. Lack of eNOS in the presence of excess sFlt1 also induced thrombocytopenia, whereas eNOS+/+ mice with excess sFlt1 alone showed no or modest liver phenotype. Taken together, excessive sFlt1 and lack of eNOS synergistically induce hepatic dysfunction and thrombocytopenia, suggesting a novel role for VEGF and nitric oxide signaling in hepatocyte-endothelial cross-talk in health and in liver injury states.
Collapse
|
12
|
Neutrophils: a cornerstone of liver ischemia and reperfusion injury. J Transl Med 2018; 98:51-62. [PMID: 28920945 DOI: 10.1038/labinvest.2017.90] [Citation(s) in RCA: 138] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 07/05/2017] [Accepted: 07/09/2017] [Indexed: 12/12/2022] Open
Abstract
Ischemia-reperfusion injury (IRI) is the main cause of morbidity and mortality due to graft rejection after liver transplantation. During IRI, an intense inflammatory process occurs in the liver. This hepatic inflammation is initiated by the ischemic period but occurs mainly during the reperfusion phase, and is characterized by a large neutrophil recruitment to the liver. Production of cytokines, chemokines, and danger signals results in activation of resident hepatocytes, leukocytes, and Kupffer cells. The role of neutrophils as the main amplifiers of liver injury in IRI has been recognized in many publications. Several studies have shown that elimination of excessive neutrophils or inhibition of their function leads to reduction of liver injury and inflammation. However, the mechanisms involved in neutrophil recruitment during liver IRI are not well known. In addition, the molecules necessary for this type of migration are poorly defined, as the liver presents an atypical sinusoidal vasculature in which the classical leukocyte migration paradigm only partially applies. This review summarizes recent advances in neutrophil-mediated liver damage, and its application to liver IRI. Basic mechanisms of activation of neutrophils and their unique mechanisms of recruitment into the liver vasculature are discussed. In particular, the role of danger signals, adhesion molecules, chemokines, glycosaminoglycans (GAGs), and metalloproteinases is explored. The precise definition of the molecular events that govern the recruitment of neutrophils and their movement into inflamed tissue may offer new therapeutic alternatives for hepatic injury by IRI and other inflammatory diseases of the liver.
Collapse
|
13
|
Robertson FP, Fuller BJ, Davidson BR. An Evaluation of Ischaemic Preconditioning as a Method of Reducing Ischaemia Reperfusion Injury in Liver Surgery and Transplantation. J Clin Med 2017; 6:jcm6070069. [PMID: 28708111 PMCID: PMC5532577 DOI: 10.3390/jcm6070069] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 06/22/2017] [Accepted: 07/04/2017] [Indexed: 12/16/2022] Open
Abstract
Liver Ischaemia Reperfusion (IR) injury is a major cause of post-operative liver dysfunction, morbidity and mortality following liver resection surgery and transplantation. There are no proven therapies for IR injury in clinical practice and new approaches are required. Ischaemic Preconditioning (IPC) can be applied in both a direct and remote fashion and has been shown to ameliorate IR injury in small animal models. Its translation into clinical practice has been difficult, primarily by a lack of knowledge regarding the dominant protective mechanisms that it employs. A review of all current studies would suggest that IPC/RIPC relies on creating a small tissue injury resulting in the release of adenosine and l-arginine which act through the Adenosine receptors and the haem-oxygenase and endothelial nitric oxide synthase systems to reduce hepatocyte necrosis and improve the hepatic microcirculation post reperfusion. The next key step is to determine how long the stimulus requires to precondition humans to allow sufficient injury to occur to release the potential mediators. This would open the door to a new therapeutic chapter in this field.
Collapse
Affiliation(s)
- Francis P Robertson
- Division of Surgery and Interventional Science, Royal Free Campus, University College London, 9th Floor, Royal Free Hospital, Pond Street, London NW3 2QG, UK.
| | - Barry J Fuller
- Division of Surgery and Interventional Science, Royal Free Campus, University College London, 9th Floor, Royal Free Hospital, Pond Street, London NW3 2QG, UK.
| | - Brian R Davidson
- Division of Surgery and Interventional Science, Royal Free Campus, University College London, 9th Floor, Royal Free Hospital, Pond Street, London NW3 2QG, UK.
- Department of Hepaticopancreatobiliary Surgery and Liver Transplantation, Royal Free Foundation Trust, 9th Floor, Royal Free Hospital, Pond Street, London NW3 2QG, UK.
| |
Collapse
|
14
|
MRAZKOVA H, LISCHKE R, HERGET J. Influence of Gender on Ischemia-Reperfusion Injury in Lungs in an Animal Model. Physiol Res 2016; 65:953-958. [DOI: 10.33549/physiolres.933273] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
As with other organ transplants even lung transplantation raises the question of the possibility of the influence of gender on ischemia-reperfusion injury. This is a current topic especially for increasingly utilized method of lung transplantation from non-heart-beating donors, where reperfusion preceded by a period of warm and cold ischemia with subsequent treatment options for lung graft reperfusion. For measurements we used our laboratory previously created and validated animal model for ex vivo lung transplantation. As with other organ systems of our monitoring resulted protective effect of female sex on ischemia reperfusion lung injury. In two of the three parameters that were monitored, we found a significant difference. In females, higher oxygen transfer ability after reperfusion was manifested as well as lower perfusion pressure (vascular compliance). Conversely, weight gain (the development of pulmonary edema) in males was not significant difference from the females. These conclusions could cause further studies leading to influence the selection of appropriate donor grafts.
Collapse
Affiliation(s)
- H. MRAZKOVA
- Third Department of Surgery, University Hospital Motol and First Medical School, Charles University in Prague, Prague, Czech Republic
| | | | | |
Collapse
|
15
|
Iwakiri Y, Kim MY. Nitric oxide in liver diseases. Trends Pharmacol Sci 2015; 36:524-36. [PMID: 26027855 PMCID: PMC4532625 DOI: 10.1016/j.tips.2015.05.001] [Citation(s) in RCA: 192] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Revised: 05/05/2015] [Accepted: 05/06/2015] [Indexed: 02/06/2023]
Abstract
Nitric oxide (NO) and its derivatives play important roles in the physiology and pathophysiology of the liver. Despite its diverse and complicated roles, certain patterns of the effect of NO on the pathogenesis and progression of liver diseases are observed. In general, NO derived from endothelial NO synthase (eNOS) in liver sinusoidal endothelial cells (LSECs) is protective against disease development, while inducible NOS (iNOS)-derived NO contributes to pathological processes. This review addresses the roles of NO in the development of various liver diseases with a focus on recently published articles. We present here two recent advances in understanding NO-mediated signaling - nitrated fatty acids (NO2-FAs) and S-guanylation - and conclude with suggestions for future directions in NO-related studies on the liver.
Collapse
Affiliation(s)
- Yasuko Iwakiri
- Section of Digestive Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA.
| | - Moon Young Kim
- Section of Digestive Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA; Department of Internal Medicine, Yonsei University Wonju College of Medicine, Wonju, Republic of Korea
| |
Collapse
|
16
|
Wang TL. Statin (Mevalotin) preconditioning decreases infarct size in senile rat myocardial infarction model. J Acute Med 2014. [DOI: 10.1016/j.jacme.2014.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
17
|
Karatzas T, Neri AA, Baibaki ME, Dontas IA. Rodent models of hepatic ischemia-reperfusion injury: time and percentage-related pathophysiological mechanisms. J Surg Res 2014; 191:399-412. [PMID: 25033703 DOI: 10.1016/j.jss.2014.06.024] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Revised: 06/03/2014] [Accepted: 06/11/2014] [Indexed: 12/20/2022]
Abstract
Ischemia and reperfusion (IR) injury remains one of the major problems in liver surgery and transplantation, which determines the viability of the hepatic tissue after resection and of the grafted organ. This review aims to elucidate the mechanisms involved in IR injury of the liver in rodent experimental studies and the preventative methods and pharmacologic agents that have been applied. Many time- and percentage-related liver IR injury rodent models have been used to examine the pathophysiological mechanisms and the parameters implicated with different morbidity, mortality, and pathology findings. The most preferred experimental rodent model of liver IR is the induction of 70% IR for 45 min, which is associated with almost 100% survival. In this model, plasma levels of several parameters such as alanine transaminase, aspartate aminotransferase, gamma-glutamyltransferase, endothelin-1, malonodialdehyde, tumor necrosis factor α, interleukin 1b, inducible nitric oxide synthase, and caspases are increased. The increase of caspases is associated with the initiation of hepatic cellular apoptosis. The main injuries observed 24 h after reperfusion are nuclear pyknosis, cytoplasmic hypereosinophilia, severe necrosis, and loss of intercellular borders. Both ischemic pre- and post-conditioning preventative methods and pharmacologic agents are successfully applied to alleviate the IR injuries. The selection of the time- and percentage-related liver IR injury rodent model and the potential preventative method should be related to the clinical question being answered.
Collapse
Affiliation(s)
- Theodore Karatzas
- Laboratory of Experimental Surgery and Surgical Research "N. S. Christeas", School of Medicine, University of Athens, Athens, Greece; 2(nd) Department of Propedeutic Surgery, School of Medicine, University of Athens, Athens, Greece
| | - Anna-Aikaterini Neri
- Laboratory of Experimental Surgery and Surgical Research "N. S. Christeas", School of Medicine, University of Athens, Athens, Greece
| | | | - Ismene A Dontas
- Laboratory of Experimental Surgery and Surgical Research "N. S. Christeas", School of Medicine, University of Athens, Athens, Greece; Laboratory for Research of the Musculoskeletal System "T. Garofalidis", School of Medicine, University of Athens, Kifissia, Greece.
| |
Collapse
|
18
|
Palanisamy AP, Cheng G, Sutter AG, Liu J, Lewin DN, Chao J, Chavin K. Adenovirus-mediated eNOS expression augments liver injury after ischemia/reperfusion in mice. PLoS One 2014; 9:e93304. [PMID: 24667691 PMCID: PMC3965553 DOI: 10.1371/journal.pone.0093304] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Accepted: 02/28/2014] [Indexed: 01/16/2023] Open
Abstract
Hepatic ischemia/reperfusion (l/R) injury continues to be a critical problem. The role of nitric oxide in liver I/R injury is still controversial. This study examines the effect of endothelial nitric oxide synthase (eNOS) over-expression on hepatic function following I/R. Adenovirus expressing human eNOS (Ad-eNOS) was administered by tail vein injection into C57BL/6 mice. Control mice received either adenovirus expressing LacZ or vehicle only. Sixty minutes of total hepatic ischemia was performed 3 days after adenovirus treatment, and mice were sacrificed after 6 or 24 hrs of reperfusion to assess hepatic injury. eNOS over expression caused increased liver injury as evidenced by elevated AST and ALT levels and decreased hepatic ATP content. While necrosis was not pervasive in any group, TUNEL demonstrated significantly increased apoptosis in Ad-eNOS infected livers. Western blotting demonstrated increased levels of protein nitration and upregulation of the pro-apoptotic proteins bax and p53. Our data suggest that over-expression of eNOS is detrimental in the setting of hepatic I/R.
Collapse
Affiliation(s)
- Arun P. Palanisamy
- Division of Transplant Surgery, Department Of Surgery, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Gang Cheng
- Division of Transplant Surgery, Department Of Surgery, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Alton G. Sutter
- Division of Transplant Surgery, Department Of Surgery, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - John Liu
- Division of Transplant Surgery, Department Of Surgery, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - David N. Lewin
- Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Julie Chao
- Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Kenneth Chavin
- Division of Transplant Surgery, Department Of Surgery, Medical University of South Carolina, Charleston, South Carolina, United States of America
- * E-mail:
| |
Collapse
|
19
|
Datta G, Luong TV, Fuller BJ, Davidson BR. Endothelial nitric oxide synthase and heme oxygenase-1 act independently in liver ischemic preconditioning. J Surg Res 2013; 186:417-28. [PMID: 24094826 DOI: 10.1016/j.jss.2013.08.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Revised: 08/17/2013] [Accepted: 08/20/2013] [Indexed: 12/18/2022]
Abstract
BACKGROUND ischemic preconditioning (IPC) protects against liver ischemia-reperfusion (IR) injury. The mechanism involves nitric oxide metabolism but the importance of endothelial nitric oxide synthase (eNOS) has not been established. Heme oxygenase-1 (HO-1) protects against liver IR but it is unclear if this depends on nitric oxide synthase. MATERIALS AND METHODS A mouse model of IPC with liver IR using wild-type (WT) and eNOS transgenic knockout (eNOS-/-) mice was developed to study the role of eNOS and its relationship to HO-1. Serum alanine aminotransferase level, liver histopathologic injury scores, and liver microcirculatory blood flow were measured. Western blots measured liver HO-1/2, eNOS, phosphorylated eNOS, inducible nitric oxide synthase, and reverse transcription-polymerase chain reaction (HO-1). A set of 24-h recovery experiments was undertaken on WT mice with measurement of serum alanine aminotransferase level, histologic injury score, and HO-1 by Western blot. RESULTS In WT animals, IPC preceding IR resulted in a reduction in hepatocellular and histologic injury, and improvement in parenchymal perfusion. In contrast, IPC in the eNOS-/- model did not protect the animals from IR injury. There was no difference between the eNOS and phosphorylated eNOS expression in all the WT groups. HO-1 protein was not detected in the nonrecovery groups but HO-1 messenger RNA was detected in all groups. In WT recovery experiments, IPC was protective against IR injury. HO-1 protein was detected in the IPC + IR and IR only groups but not in the sham group. CONCLUSIONS This study developed and used an eNOS-/- model to demonstrate that eNOS mediates protection against liver IR injury by IPC. The eNOS expression and activity and HO-1 expression are increased independently in liver IPC and IR, with HO-1 expression increased in the later stages of IPC and IR.
Collapse
Affiliation(s)
- Gourab Datta
- Division of Surgery and Interventional Science, University College Hospital, London, United Kingdom
| | | | | | | |
Collapse
|
20
|
Tuuminen R, Nykänen AI, Saharinen P, Gautam P, Keränen MAI, Arnaudova R, Rouvinen E, Helin H, Tammi R, Rilla K, Krebs R, Lemström KB. Donor simvastatin treatment prevents ischemia-reperfusion and acute kidney injury by preserving microvascular barrier function. Am J Transplant 2013; 13:2019-34. [PMID: 23773358 DOI: 10.1111/ajt.12315] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Revised: 03/31/2013] [Accepted: 04/07/2013] [Indexed: 01/25/2023]
Abstract
Ischemia-reperfusion injury (IRI) after kidney transplantation may result in delayed graft function. We used rat renal artery clamping and transplantation models to investigate cholesterol-independent effects of clinically relevant single-dose peroral simvastatin treatment 2 h before renal ischemia on microvascular injury. The expression of HMG-CoA reductase was abundant in glomerular and peritubular microvasculature of normal kidneys. In renal artery clamping model with 30-min warm ischemia, simvastatin treatment prevented peritubular microvascular permeability and perfusion disturbances, glomerular barrier disruption, tubular dysfunction and acute kidney injury. In fully MHC-mismatched kidney allografts with 16-h cold and 1-h warm ischemia, donor simvastatin treatment increased the expression of flow-regulated transcription factor KLF2 and vasculoprotective eNOS and HO-1, and preserved glomerular and peritubular capillary barrier integrity during preservation. In vitro EC Weibel-Palade body exocytosis assays showed that simvastatin inhibited ischemia-induced release of vasoactive angiopoietin-2 and endothelin-1. After reperfusion, donor simvastatin treatment prevented microvascular permeability, danger-associated ligand hyaluronan induction, tubulointerstitial injury marker Kim-1 immunoreactivity and serum creatinine and NGAL levels, and activation of innate and adaptive immune responses. In conclusion, donor simvastatin treatment prevented renal microvascular dysfunction and IRI with beneficial effects on adaptive immune and early fibroproliferative responses. Further studies may determine potential benefits in clinical cadaveric kidney transplantation.
Collapse
Affiliation(s)
- R Tuuminen
- Cardiac Surgery, Heart and Lung Center, Transplantation Laboratory, Haartman Institute, University of Helsinki, Helsinki University Central Hospital, Helsinki, Finland.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Datta G, Fuller BJ, Davidson BR. Molecular mechanisms of liver ischemia reperfusion injury: Insights from transgenic knockout models. World J Gastroenterol 2013; 19:1683-98. [PMID: 23555157 PMCID: PMC3607745 DOI: 10.3748/wjg.v19.i11.1683] [Citation(s) in RCA: 149] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Revised: 06/29/2012] [Accepted: 07/09/2012] [Indexed: 02/06/2023] Open
Abstract
Ischemia reperfusion injury is a major obstacle in liver resection and liver transplantation surgery. Understanding the mechanisms of liver ischemia reperfusion injury (IRI) and developing strategies to counteract this injury will therefore reduce acute complications in hepatic resection and transplantation, as well as expanding the potential pool of usable donor grafts. The initial liver injury is initiated by reactive oxygen species which cause direct cellular injury and also activate a cascade of molecular mediators leading to microvascular changes, increased apoptosis and acute inflammatory changes with increased hepatocyte necrosis. Some adaptive pathways are activated during reperfusion that reduce the reperfusion injury. IRI involves a complex interplay between neutrophils, natural killer T-cells cells, CD4+ T cell subtypes, cytokines, nitric oxide synthases, haem oxygenase-1, survival kinases such as the signal transducer and activator of transcription, Phosphatidylinositol 3-kinases/Akt and nuclear factor κβ pathways. Transgenic animals, particularly genetic knockout models, have become a powerful tool at elucidating mechanisms of liver ischaemia reperfusion injury and are complementary to pharmacological studies. Targeted disruption of the protein at the genetic level is more specific and maintained than pharmacological inhibitors or stimulants of the same protein. This article reviews the evidence from knockout models of liver IRI about the cellular and molecular mechanisms underlying liver IRI.
Collapse
|
22
|
Abu-Amara M, Yang SY, Seifalian A, Davidson B, Fuller B. The nitric oxide pathway--evidence and mechanisms for protection against liver ischaemia reperfusion injury. Liver Int 2012; 32:531-43. [PMID: 22316165 DOI: 10.1111/j.1478-3231.2012.02755.x] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2010] [Accepted: 12/29/2011] [Indexed: 02/13/2023]
Abstract
Ischaemia reperfusion (IR) injury is a clinical entity with a major contribution to the morbidity and mortality of liver surgery and transplantation. A central pathway of protection against IR injury utilizes nitric oxide (NO). Nitric oxide synthase (NOS) enzymes manufacture NO from L-arginine. NO generated by the endothelial NOS (eNOS) isoform protects against liver IR injury, whereas inducible NOS (iNOS)-derived NO may have either a protective or a deleterious effect during the early phase of IR injury, depending on the length of ischaemia, length of reperfusion and experimental model. In late phase hepatic IR injury, iNOS-derived NO plays a protective role. In addition to NOS consumption of L-arginine during NO synthesis, this amino acid may also be metabolized by arginase, an enzyme whose release is increased during prolonged ischaemia, and therefore diverts L-arginine away from NOS metabolism leading to a drop in the rate of NO synthesis. NO most commonly acts through the soluble guanylyl cyclase-cyclic GMP- protein kinase G pathway to ameliorate hepatic IR injury. Both endogenously generated and exogenously administered NO donors protect against liver IR injury. The beneficial effects of NO on liver IR are not, however, universal, and certain conditions, such as steatosis, may influence the protective effects of NO. In this review, the evidence for, and mechanisms of these protective actions of NO are discussed, and areas in need of further research are highlighted.
Collapse
Affiliation(s)
- Mahmoud Abu-Amara
- Liver Transplantation and Hepatobiliary Unit, Royal Free Hospital, London, UK
| | | | | | | | | |
Collapse
|
23
|
Shupik MA, Vanin AF, Alessenko AV. Interaction of the nitric oxide signaling system with the sphingomyelin cycle and peroxidation on transmission of toxic signal of tumor necrosis factor-α in ischemia-reperfusion. BIOCHEMISTRY (MOSCOW) 2012; 76:1197-209. [PMID: 22117546 DOI: 10.1134/s0006297911110010] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
This review discusses the functional role of nitric oxide in ischemia-reperfusion injury and mechanisms of signal transduction of apoptosis, which accompanies ischemic damage to organs and tissues. On induction of apoptosis an interaction is observed of the nitric oxide signaling system with the sphingomyelin cycle, which is a source of a proapoptotic agent ceramide. Evidence is presented of an interaction of the sphingomyelin cycle enzymes and ceramide with nitric oxide and enzymes synthesizing nitric oxide. The role of a proinflammatory cytokine TNF-α in apoptosis and ischemia-reperfusion and mechanisms of its cytotoxic action, which involve nitric oxide, the sphingomyelin cycle, and lipid peroxidation are discussed. A comprehensive study of these signaling systems provides insight into the molecular mechanism of apoptosis during ischemia and allows us to consider new approaches for treatment of diseases associated with the activation of apoptosis.
Collapse
Affiliation(s)
- M A Shupik
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow, Russia
| | | | | |
Collapse
|
24
|
Yirmibeşoğlu O, Büyükgebiz O, Ars D, Unay Ö, Çevik D. Lisinopril Inhibits Endothelin-1 in the Early Period of Hepatic Reperfusion Injury in a Partial Hepatectomy Model. Transplant Proc 2011; 43:2524-30. [DOI: 10.1016/j.transproceed.2011.06.043] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2011] [Revised: 05/14/2011] [Accepted: 06/13/2011] [Indexed: 10/17/2022]
|
25
|
Cetin E, Kanbur M, Cetin N, Eraslan G, Atasever A. Hepatoprotective effect of ghrelin on carbon tetrachloride-induced acute liver injury in rats. ACTA ACUST UNITED AC 2011; 171:1-5. [PMID: 21640759 DOI: 10.1016/j.regpep.2011.05.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2010] [Revised: 04/19/2011] [Accepted: 05/17/2011] [Indexed: 12/30/2022]
Abstract
BACKGROUND & AIMS Recent studies have revealed that ghrelin may be an antioxidant and antiinflammatory agent. Oxidative stress are considered to play a prominent causative role in the development of various hepatic disorders. We investigated whether ghrelin plays a protective role against carbon tetrachloride (CCl(4))-induced acute liver injury in rats. METHODS Forty adult male Sprague-Dawley rats were randomly divided into four equal groups as; control, ghrelin, CCl(4) and ghrelin plus CCl(4). Evaluations were made for lipid peroxidation, enzyme activities and biochemical parameters. Pathological histology was also performed. RESULTS CCl(4) treatment increased plasma and liver tissue malondialdehyde (MDA) content and plasma nitric oxide (NO) level, and decreased erythrocyte and liver tissue superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx) activities when compared to control group. At the same time, CCl(4) treatment increased the serum aspartate aminotransferase (AST), alanine aminotransferase (ALT), and alcaline phosphatase (ALP) activities. By contrast, ghrelin pretreatment reduced plasma and liver MDA content and plasma NO level, and increased erythrocyte and liver tissue SOD, CAT and GPx activities when compared with CCl(4)-treated group. Moreover, both ghrelin alone and ghrelin plus CCl(4) treatment elevated serum glucose level. The CCl(4)-induced histopathological changes were also reduced by the ghrelin pretreatment. CONCLUSION Our results show that ghrelin can be proposed to protect the liver against CCl(4)-induced oxidative damage in rats, and the hepatoprotective effect may be correlated with its antioxidant and free radical scavenger effects.
Collapse
Affiliation(s)
- Ebru Cetin
- Department of Physiology, Faculty of Veterinary Medicine, University of Erciyes, Kayseri, Turkey.
| | | | | | | | | |
Collapse
|
26
|
Abu-Amara M, Yang SY, Quaglia A, Rowley P, Fuller B, Seifalian A, Davidson B. Role of endothelial nitric oxide synthase in remote ischemic preconditioning of the mouse liver. Liver Transpl 2011; 17:610-9. [PMID: 21506249 DOI: 10.1002/lt.22272] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Hindlimb remote ischemic preconditioning (RIPC) reduces liver ischemia/reperfusion (IR) injury in wild-type mice. The underlying mechanisms of RIPC are currently unknown. In this study, we investigated the role of endothelial nitric oxide synthase (eNOS) in mediating the protective effects of RIPC. Endothelial nitric oxide synthase knockout (eNOS(-/-) ) mice were divided into 4 groups: (1) a sham surgery group, (2) an RIPC group (6 cycles of 4 minutes of hindlimb ischemia and 4 minutes of hindlimb reperfusion), (3) an IR group [40 minutes of lobar (70%) hepatic ischemia and 2 hours of reperfusion], and (4) an RIPC+IR group (RIPC followed by the IR group procedures). Plasma liver aminotransferases, hepatic histopathological injury scores, transmission electron microscopy studies, and hepatic microcirculatory blood flow (MBF) were assessed. eNOS protein expression was analyzed in the livers and hindlimb muscles of wild-type mice. Hindlimb RIPC did not protect against subsequent liver IR injury in eNOS(-/-) mice; this was demonstrated by the lack of reduction in the plasma aminotransferase levels, histopathological scores, or ultrastructural features of IR injury in the RIPC+IR group versus the IR group. Hepatic MBF did not recover during liver reperfusion in the RIPC+IR group versus the IR group. eNOS protein expression was similar among all wild-type groups. In conclusion, eNOS is essential for the protective effects of hindlimb RIPC on liver IR injury. eNOS exerts its protective effects through the preservation of hepatic MBF. At 2 hours of reperfusion, eNOS protection is likely due to the increased activation of eNOS rather than increased expression.
Collapse
Affiliation(s)
- Mahmoud Abu-Amara
- Liver Transplantation and Hepatobiliary Unit, Royal Free Hospital, London, UK
| | | | | | | | | | | | | |
Collapse
|
27
|
Marson BP, Dickel S, Ishizawa MH, Metzger IF, Izidoro-Toledo T, da Costa BEP, Poli-de-Figueiredo CE, Tanus-Santos JE. Endothelial Nitric Oxide Genotypes and Haplotypes Are Not Associated with End-Stage Renal Disease. DNA Cell Biol 2011; 30:55-9. [DOI: 10.1089/dna.2010.1106] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Bernardo P. Marson
- Faculty of Medicine of Ribeirão Preto, University of São Paulo, Ribeirao Preto, Brazil
| | - Samantha Dickel
- Faculty of Medicine/IPB/HSL of Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| | - Marília H. Ishizawa
- Faculty of Medicine of Ribeirão Preto, University of São Paulo, Ribeirao Preto, Brazil
| | - Ingrid F. Metzger
- Faculty of Medicine of Ribeirão Preto, University of São Paulo, Ribeirao Preto, Brazil
| | | | | | | | - Jose E. Tanus-Santos
- Faculty of Medicine of Ribeirão Preto, University of São Paulo, Ribeirao Preto, Brazil
| |
Collapse
|
28
|
Hines IN, Grisham MB. Divergent roles of superoxide and nitric oxide in liver ischemia and reperfusion injury. J Clin Biochem Nutr 2010; 48:50-6. [PMID: 21297912 PMCID: PMC3022064 DOI: 10.3164/jcbn.11-016fr] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2010] [Accepted: 11/25/2010] [Indexed: 12/31/2022] Open
Abstract
Liver ischemia and reperfusion-induced injury is a major clinical complication associated with hemorrhagic or endotoxin shock and thermal injury as well as liver transplantation and resectional surgery. Data obtained from several different studies suggest that an important initiating event in the pathophysiology of ischemia and reperfusion-induced tissue injury is enhanced production of superoxide concomitant with a decrease in the bioavailability of endothelial cell-derived nitric oxide. This review will summarize the evidence supporting the hypothesis that the redox imbalance induced by alterations in superoxide and nitric oxide generation creates a more oxidative environment within the different cells of the liver that enhances the nuclear transcription factor-κB-dependent expression of a variety of different cytokines and mediators that may promote as well as limit ischemia and reperfusion-induced hepatocellular injury. In addition, the evidence implicating endothelial cell nitric oxide synthase-dependent and -independent generation of nitric oxide as important regulatory pathways that act to limit ischemia and reperfusion-induced liver injury and inflammation is also presented.
Collapse
Affiliation(s)
- Ian N Hines
- Department of Nutrition and Dietetics, College of Human Ecology, Eastern Carolina University, Greenville, NC 27858
| | | |
Collapse
|
29
|
Vollmar B, Menger MD. The hepatic microcirculation: mechanistic contributions and therapeutic targets in liver injury and repair. Physiol Rev 2009; 89:1269-339. [PMID: 19789382 DOI: 10.1152/physrev.00027.2008] [Citation(s) in RCA: 368] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The complex functions of the liver in biosynthesis, metabolism, clearance, and host defense are tightly dependent on an adequate microcirculation. To guarantee hepatic homeostasis, this requires not only a sufficient nutritive perfusion and oxygen supply, but also a balanced vasomotor control and an appropriate cell-cell communication. Deteriorations of the hepatic homeostasis, as observed in ischemia/reperfusion, cold preservation and transplantation, septic organ failure, and hepatic resection-induced hyperperfusion, are associated with a high morbidity and mortality. During the last two decades, experimental studies have demonstrated that microcirculatory disorders are determinants for organ failure in these disease states. Disorders include 1) a dysregulation of the vasomotor control with a deterioration of the endothelin-nitric oxide balance, an arterial and sinusoidal constriction, and a shutdown of the microcirculation as well as 2) an overwhelming inflammatory response with microvascular leukocyte accumulation, platelet adherence, and Kupffer cell activation. Within the sequelae of events, proinflammatory mediators, such as reactive oxygen species and tumor necrosis factor-alpha, are the key players, causing the microvascular dysfunction and perfusion failure. This review covers the morphological and functional characterization of the hepatic microcirculation, the mechanistic contributions in surgical disease states, and the therapeutic targets to attenuate tissue injury and organ dysfunction. It also indicates future directions to translate the knowledge achieved from experimental studies into clinical practice. By this, the use of the recently introduced techniques to monitor the hepatic microcirculation in humans, such as near-infrared spectroscopy or orthogonal polarized spectral imaging, may allow an early initiation of treatment, which should benefit the final outcome of these critically ill patients.
Collapse
Affiliation(s)
- Brigitte Vollmar
- Institute for Experimental Surgery, University of Rostock, Rostock, Germany.
| | | |
Collapse
|
30
|
Hamada T, Duarte S, Tsuchihashi S, Busuttil RW, Coito AJ. Inducible nitric oxide synthase deficiency impairs matrix metalloproteinase-9 activity and disrupts leukocyte migration in hepatic ischemia/reperfusion injury. THE AMERICAN JOURNAL OF PATHOLOGY 2009; 174:2265-77. [PMID: 19443702 DOI: 10.2353/ajpath.2009.080872] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Matrix metalloproteinase 9 (MMP-9) is a critical mediator of leukocyte migration in hepatic ischemia/reperfusion (I/R) injury. To test the relevance of inducible nitric oxide synthase (iNOS) expression on the regulation of MMP-9 activity in liver I/R injury, our experiments included both iNOS-deficient mice and mice treated with ONO-1714, a specific iNOS inhibitor. The inability of iNOS-deficient mice to generate iNOS-derived nitric oxide (NO) profoundly inhibited MMP-9 activity and depressed leukocyte migration in livers after I/R injury. While macrophages expressed both iNOS and MMP-9 in damaged wild-type livers, neutrophils expressed MMP-9 and were virtually negative for iNOS; however, exposure of isolated murine neutrophils and macrophages to exogenous NO increased MMP-9 activity in both cell types, suggesting that NO may activate MMP-9 in leukocytes by either autocrine or paracrine mechanisms. Furthermore, macrophage NO production through the induction of iNOS was capable of promoting neutrophil transmigration across fibronectin in a MMP-9-dependent manner. iNOS expression in liver I/R injury was also linked to liver apoptosis, which was reduced in the absence of MMP-9. These results suggest that MMP-9 activity induced by iNOS-derived NO may also lead to detachment of hepatocytes from the extracellular matrix and cell death, in addition to regulating leukocyte migration across extracellular matrix barriers. These data provide evidence for a novel mechanism by which MMP-9 can mediate iNOS-induced liver I/R injury.
Collapse
Affiliation(s)
- Takashi Hamada
- The Dumont-UCLA Transplant Center, 77-120 CHS, Box: 957054, Los Angeles, CA 90095-7054, USA
| | | | | | | | | |
Collapse
|
31
|
Abbas R, Kombu RS, Dignam D, Gunning W, Stulberg JJ, Brunengraber H, Sanabria JR. Polyethylene glycol modified-albumin enhances the cold preservation properties of University of Wisconsin solution in rat liver and a hepatocyte cell line. J Surg Res 2009; 164:95-104. [PMID: 19577257 DOI: 10.1016/j.jss.2009.03.030] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2009] [Revised: 03/07/2009] [Accepted: 03/17/2009] [Indexed: 12/13/2022]
Abstract
Liver grafts preserved in cold storage undergo changes mainly manifested by morphological modifications of the sinusoidal endothelium that result in poor graft function upon reperfusion. The present studies aimed to determine if the addition of polyethylene glycol-albumin to University of Wisconsin (Peg-AlbUW) solution ameliorates the cold preservation injuries of liver grafts. Rat livers were preserved cold with various preservation solutions and evaluated for weight changes and endothelial morphology. Solutions that preserved graft weight and endothelial morphology were tested in the isolated perfused rat liver model to assess graft function. A rat hepatocyte cell line was evaluated for both viability and glutathione concentrations emulating cold preservation and reperfusion conditions. Liver grafts preserved with Peg-AlbUW maintained their initial weight and showed a conserved endothelial morphology compared with liver grafts preserved in UW for 30 h (P<0.05). Liver grafts preserved with Peg-AlbUW had improved portal blood flow and bile secretion compared with liver grafts preserved in UW for 30 h (P<0.05). In vitro we noted comparable hepatocyte viability when cells were preserved in Peg-AlbUW versus UW under similar preservation conditions (P>0.05); glutathione concentrations (reduced and total) were significantly increased in hepatocytes preserved in 3% Peg-AlbUW compared with other preservation solutions (P<0.05). The addition of Peg-Alb to UW preservation solution ameliorated the cold preservation injuries of rat liver grafts as shown by stable liver graft weight, a better preservation of the endothelial morphology, improved portal vein blood flow, and increased bile secretion. Peg-Alb-UW solution improved the integrity of the glutathione redox buffer system of a hepatocyte cell line after cold storage and reperfusion.
Collapse
Affiliation(s)
- Rime Abbas
- Department of Surgery, University Hospitals Case Medical Center, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106-5047, USA
| | | | | | | | | | | | | |
Collapse
|
32
|
Abe Y, Hines I, Zibari G, Grisham MB. Hepatocellular protection by nitric oxide or nitrite in ischemia and reperfusion injury. Arch Biochem Biophys 2009; 484:232-7. [PMID: 18940177 PMCID: PMC2694442 DOI: 10.1016/j.abb.2008.10.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2008] [Revised: 10/02/2008] [Accepted: 10/02/2008] [Indexed: 02/09/2023]
Abstract
Ischemia and reperfusion (I/R)-induced liver injury occurs in several pathophysiological disorders including hemorrhagic shock and burn as well as resectional and transplantation surgery. One of the earliest events associated with reperfusion of ischemic liver is endothelial dysfunction characterized by the decreased production of endothelial cell-derived nitric oxide (NO). This rapid post-ischemic decrease in NO bioavailability appears to be due to decreased synthesis of NO, enhanced inactivation of NO by the overproduction of superoxide or both. This review presents the most current evidence supporting the concept that decreased bioavailability of NO concomitant with enhanced production of reactive oxygen species initiates hepatocellular injury and that endogenous NO or exogenous NO produced from nitrite play important roles in limiting post-ischemic tissue injury.
Collapse
Affiliation(s)
- Yuta Abe
- Department of Molecular and Cellular Physiology, LSU Health Sciences Center, Shreveport, LA 71130
| | - Ian Hines
- Department of Medicine, Division of Gastroenterology and Hepatology, MBRB 7336 Campus Box #7032, University of North Carolina, Chapel Hill, NC 27599
| | - Gazi Zibari
- Department of Surgery, LSU Health Sciences Center, Shreveport, LA 71130
| | - Matthew B. Grisham
- Department of Molecular and Cellular Physiology, LSU Health Sciences Center, Shreveport, LA 71130
| |
Collapse
|
33
|
Protective effects of nitric oxide synthase 3 and soluble guanylate cyclase on the outcome of cardiac arrest and cardiopulmonary resuscitation in mice. Crit Care Med 2009; 37:256-62. [PMID: 19050616 DOI: 10.1097/ccm.0b013e318192face] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
OBJECTIVES Despite advances in resuscitation methods, survival after out-of-hospital cardiac arrest remains low, at least in part, due to postcardiac arrest circulatory and neurologic failure. To elucidate the role of nitric oxide (NO) in the recovery from cardiac arrest and cardiopulmonary resuscitation (CPR), we studied the impact of NO synthase (NOS3)/cGMP signaling on cardiac and neurologic outcomes after cardiac arrest and CPR. DESIGN Prospective, randomized, controlled study. SETTING Animal research laboratory. SUBJECTS Mice. INTERVENTIONS Female wild-type (WT) mice, NOS3-deficient mice (NOS3-/-), NOS3-/- mice with cardiomyocyte-specific overexpression of NOS3 (NOS3-/-CSTg), and mice deficient for soluble guanylate cyclase alpha1 (sGCalpha1-/-) were subjected to potassium-induced cardiac arrest (9 min) followed by CPR. Cardiac and neurologic function and survival were assessed up to 24 hrs post-CPR. MEASUREMENTS AND MAIN RESULTS Cardiac arrest and CPR markedly depressed myocardial function in NOS3-/- and sGCalpha1-/- but not in WT and NOS3-/-CSTg. Neurologic function score and 24 hrs survival rate was lower in NOS3-/- and sGCalpha1-/- compared with WT and NOS3-/-CSTg. Detrimental effects of deficiency of NOS3 or sGCalpha1 were associated with enhanced inflammation of heart and liver and increased cell death in heart, liver, and brain that were largely prevented by cardiomyocyte-restricted NOS3 overexpression. CONCLUSIONS These results demonstrate an important salutary impact of NOS3/sGC signaling on the outcome of cardiac arrest. Myocardial NOS3 prevented postcardiac arrest myocardial dysfunction, attenuated end-organ damage, and improved neurologic outcome and survival. Our observations suggest that enhancement of cardiac NOS3 and/or sGC activity may improve outcome after cardiac arrest and CPR.
Collapse
|
34
|
Abe Y, Hines IN, Zibari G, Pavlick K, Gray L, Kitagawa Y, Grisham MB. Mouse model of liver ischemia and reperfusion injury: method for studying reactive oxygen and nitrogen metabolites in vivo. Free Radic Biol Med 2009; 46:1-7. [PMID: 18955130 PMCID: PMC2740994 DOI: 10.1016/j.freeradbiomed.2008.09.029] [Citation(s) in RCA: 130] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2008] [Revised: 09/10/2008] [Accepted: 09/16/2008] [Indexed: 11/29/2022]
Abstract
The mouse model of liver ischemia and reperfusion injury has proven to be valuable for our understanding of the role that reactive oxygen and nitrogen metabolites play in postischemic tissue injury. This methods paper provides a detailed protocol for inducing partial liver ischemia followed by reperfusion. Liver ischemia is induced in anesthetized mice by cross-clamping the hepatic artery and portal vein for varying lengths of time, resulting in deprivation of blood flow to approximately 70% of the liver. Restoration of blood flow to the ischemic lobes enhances superoxide production concomitant with a rapid and marked decrease in the bioavailability of nitric oxide, resulting in alterations in the redox state of the liver in favor of a more oxidative environment. This hepatocellular oxidative stress induces the activation of oxidant-sensitive transcription factors followed by the upregulation of proinflammatory cytokines and mediators that ultimately lead to liver injury. This model can be induced in any strain or sex of mouse and requires 1-2 months of practice to become proficient in the surgery and animal manipulation. The roles of various reactive metabolites of oxygen and nitrogen may be evaluated using genetically engineered mice as well as selective molecular, cellular, and/or pharmacological agents.
Collapse
Affiliation(s)
- Yuta Abe
- Department of Molecular and Cellular Physiology, LSU Health Sciences Center, Shreveport, LA 71130
| | - Ian N. Hines
- Department of Medicine, Division of Gastroenterology and Hepatology, MBRB 7336 Campus Box #7032, University of North Carolina, Chapel Hill, NC 27599
| | - Gazi Zibari
- Department of Surgery, LSU Health Sciences Center, Shreveport, LA 71130
| | - Kevin Pavlick
- Analgesics Team, East Coast Research and Early Development, Johnson & Johnson, Pharmaceutical Research and Development, Spring House, Penn 19477-0776
| | - Laura Gray
- Department of Molecular and Cellular Physiology, LSU Health Sciences Center, Shreveport, LA 71130
| | - Yuko Kitagawa
- Department of Surgery, Keio University School of Medicine, Tokyo 160-8582 Japan
| | - Matthew B. Grisham
- Department of Molecular and Cellular Physiology, LSU Health Sciences Center, Shreveport, LA 71130
| |
Collapse
|
35
|
Phillips L, Toledo AH, Lopez-Neblina F, Anaya-Prado R, Toledo-Pereyra LH. Nitric oxide mechanism of protection in ischemia and reperfusion injury. J INVEST SURG 2009; 22:46-55. [PMID: 19191157 DOI: 10.1080/08941930802709470] [Citation(s) in RCA: 132] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In 1992 nitric oxide (NO) was declared molecule of the year by Science magazine, and ever since research on this molecule continues to increase. Following this award, NO was shown to be a mediator/protector of ischemia and reperfusion injury in many organs, such as the heart, liver, lungs, and kidneys. Controversy has existed concerning the actual protective effects of NO. However, literature from the past 15 years seems to reinforce the consensus that NO is indeed protective. Some of the protective actions of NO in ischemia and reperfusion are due to its potential as an antioxidant and anti-inflammatory agent, along with its beneficial effects on cell signaling and inhibition of nuclear proteins, such as NF-kappa B and AP-1. New therapeutic potentials for this drug are also continuously emerging. Exogenous NO and endogenous NO may both play protective roles during ischemia and reperfusion injury. Sodium nitroprusside and nitroglycerin have been used clinically with much success; though only recently have they been tested and proven effective in attenuating some of the injuries associated with ischemia and reperfusion. NO inhalation has, in the past, mostly been used for its pulmonary effects, but has also recently been shown to be protective in other organs. The potential of NO in the treatment of ischemic disease is only just being realized. Elucidation of the mechanism by which NO exerts its protective effects needs further investigation. Therefore, this paper will focus on the mechanistic actions of NO in ischemia and reperfusion injury, along with the compound's potential therapeutic benefits.
Collapse
Affiliation(s)
- Lauren Phillips
- Department of Research, Michigan State University/Kalamazoo Center for Medical Studies, Kalamazoo, Michigan, USA
| | | | | | | | | |
Collapse
|
36
|
Huang HC, Wang SS, Lee FY, Chan CY, Chang FY, Lin HC, Chu CJ, Chen YC, Lee SD. Simvastatin for rats with thioacetamide-induced liver failure and encephalopathy. J Gastroenterol Hepatol 2008; 23:e236-42. [PMID: 17573832 DOI: 10.1111/j.1440-1746.2007.04988.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND AND AIM Nitric oxide (NO) inhibition aggravates hepatic damage and encephalopathy and increases mortality in rats with thioacetamide (TAA)-induced acute liver failure. Statins enhance NO synthase expression beyond their lipid-lowering capability, but the impact on encephalopathy remains unexplored. The aim of this study was to assess the effects of simvastatin on rats with TAA-induced acute liver damage and hepatic encephalopathy. METHODS Sprague-Dawley rats received TAA (350 mg/kg/day) or normal saline (NS) by intraperitoneal injection for 3 consecutive days. Two days before injections, each group was divided into three subgroups, taking (i) distilled water; (ii) simvastatin (20 mg/kg/day); or (iii) simvastatin plus N(G)-nitro-l-arginine methyl ester (L-NAME, 25 mg/kg/day) by oral gavage for 5 days. On the fifth day, severity of encephalopathy was assessed and plasma levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), total bilirubin and ammonia were measured. RESULTS The TAA subgroups showed higher ALT, AST, bilirubin and ammonia levels and lower motor activity counts as compared with the NS subgroups. Among the TAA-treated subgroups, rats with simvastatin treatment exerted higher motor activity counts and survival rate (P = 0.043), and a trend of lower ALT, AST, bilirubin and ammonia levels than those receiving saline. All rats that underwent simvastatin plus L-NAME treatment died during or after TAA injections. CONCLUSIONS Simvastatin improved encephalopathy and survival in TAA-administered rats. The beneficial effect was offset by L-NAME, suggesting the role of NO in liver damage and encephalopathy.
Collapse
Affiliation(s)
- Hui-Chun Huang
- Division of Gastroenterology, Taipei Veterans General Hospital, and National Yang-Ming University School of Medicine, Taipei, Taiwan
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
BHANDARY USWANATHANV, TSE WAI, YANG BINGMEI, KNOWLES MARKR, DEMAINE ANDREWG. Endothelial nitric oxide synthase polymorphisms are associated with hypertension and cardiovascular disease in renal transplantation. Nephrology (Carlton) 2008; 13:348-55. [DOI: 10.1111/j.1440-1797.2008.00925.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
38
|
Canbek M, Uyanoglu M, Bayramoglu G, Senturk H, Erkasap N, Koken T, Uslu S, Demirustu C, Aral E, Husnu Can Baser K. Effects of carvacrol on defects of ischemia-reperfusion in the rat liver. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2008; 15:447-52. [PMID: 18222668 DOI: 10.1016/j.phymed.2007.11.022] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2007] [Revised: 09/21/2007] [Accepted: 11/27/2007] [Indexed: 05/25/2023]
Abstract
Many plants found in nature have been used to treat various illnesses. One such plant is oregano (Kekik in Turkish). Health beneficial effects of carvacrol obtained from oregano oil have been shown scientifically. We have investigated the comparative effects of carvacrol in the liver of rats subjected to ischemia-reperfusion defect, with silymarin. To test the effects we formed four groups using male Wistar albino rats. Group I was control. The other three groups of animals were administered 60min prior to surgical operation single doses of physiological serum, carvacrol and silymarin, respectively. Group II, III and IV animal were subjected to 45min long liver ischemia and 60min reperfusion. Blood and tissue samples were collected for biochemical and histological analysis following the test. AST and ALT values obtained after biochemical analysis of the serums showed statistically significant difference in group II than the other three groups. A statistical evaluation of the serum AST levels among the groups II, III and IV showed that both groups III and IV which had no difference in between were significantly different in a positive way from group II (p<0.001). As to the serum ALT levels, difference between group II and group III (p<0.001) and group II and group IV (p<0.01) was found significant. No statistical difference was observed in groups I, III and IV for GSH, MDA and CAT levels of the liver. A statistical evaluation of the GSH level in group III and group IV was found to be significantly different from group II (p<0.001) without any difference between them. A similar evaluation for MDA and CAT levels among the revealed no difference between group III and group IV, however, group II showed difference with group II and group IV (p<0.05). Histological findings were in harmony with the biochemical results. We conclude that carvacrol protects the liver against defects caused by ischemia and reperfusion, and carvacrol is not hepatotoxic at the applied dosage.
Collapse
Affiliation(s)
- Mediha Canbek
- Department of Biology, Faculty of Science, Eskisehir Osmangazi University, 26480 Eskisehir, Turkey.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Lee SH, Culberson C, Korneszczuk K, Clemens MG. Differential mechanisms of hepatic vascular dysregulation with mild vs. moderate ischemia-reperfusion. Am J Physiol Gastrointest Liver Physiol 2008; 294:G1219-26. [PMID: 18325981 DOI: 10.1152/ajpgi.00527.2007] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Endotoxemia produces hepatic vascular dysregulation resulting from inhibition of endothelin (ET)-stimulated NO production. Mechanisms include overexpression of caveolin-1 (Cav-1) and altered phosphorylation of endothelial nitric oxide (NO) synthase (NOS; eNOS) in sinusoidal endothelial cells. Since ischemia-reperfusion (I/R) also causes vascular dysregulation, we tested whether the mechanisms are the same. Rats were exposed to either mild (30 min) or moderate (60 min) hepatic ischemia in vivo followed by reperfusion (6 h). Livers were harvested and prepared into precision-cut liver slices for in vitro analysis of NOS activity and regulation. Both I/R injuries significantly abrogated both the ET-1 (1 microM) and the ET(B) receptor agonist (IRL-1620, 0.5 microM)-mediated stimulation of NOS activity. 30 min I/R resulted in overexpression of Cav-1 and loss of ET-stimulated phosphorylation of Ser1177 on eNOS, consistent with an inflammatory response. Sixty-minute I/R also resulted in loss of ET-stimulated Ser1177 phosphorylation, but Cav-1 expression was not altered. Moreover, expression of ET(B) receptors was significantly decreased. This suggests that the failure of ET to activate eNOS following 60-min I/R is associated with decreased protein expression consistent with ischemic injury. Thus hepatic vascular dysregulation following I/R is mediated by inflammatory mechanisms with mild I/R whereas ischemic mechanisms dominate following more severe I/R stress.
Collapse
Affiliation(s)
- Sang Ho Lee
- Department of Biology, University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| | | | | | | |
Collapse
|
40
|
Lang JD, Teng X, Chumley P, Crawford JH, Isbell TS, Chacko BK, Liu Y, Jhala N, Crowe DR, Smith AB, Cross RC, Frenette L, Kelley EE, Wilhite DW, Hall CR, Page GP, Fallon MB, Bynon JS, Eckhoff DE, Patel RP. Inhaled NO accelerates restoration of liver function in adults following orthotopic liver transplantation. J Clin Invest 2007; 117:2583-91. [PMID: 17717604 PMCID: PMC1950460 DOI: 10.1172/jci31892] [Citation(s) in RCA: 171] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2007] [Accepted: 06/12/2007] [Indexed: 12/13/2022] Open
Abstract
Ischemia/reperfusion (IR) injury in transplanted livers contributes to organ dysfunction and failure and is characterized in part by loss of NO bioavailability. Inhalation of NO is nontoxic and at high concentrations (80 ppm) inhibits IR injury in extrapulmonary tissues. In this prospective, blinded, placebo-controlled study, we evaluated the hypothesis that administration of inhaled NO (iNO; 80 ppm) to patients undergoing orthotopic liver transplantation inhibits hepatic IR injury, resulting in improved liver function. Patients were randomized to receive either placebo or iNO (n = 10 per group) during the operative period only. When results were adjusted for cold ischemia time and sex, iNO significantly decreased hospital length of stay, and evaluation of serum transaminases (alanine transaminase, aspartate aminotransferase) and coagulation times (prothrombin time, partial thromboplastin time) indicated that iNO improved the rate at which liver function was restored after transplantation. iNO did not significantly affect changes in inflammatory markers in liver tissue 1 hour after reperfusion but significantly lowered hepatocyte apoptosis. Evaluation of circulating NO metabolites indicated that the most likely candidate transducer of extrapulmonary effects of iNO was nitrite. In summary, this study supports the clinical use of iNO as an extrapulmonary therapeutic to improve organ function following transplantation.
Collapse
Affiliation(s)
- John D. Lang
- Department of Anesthesiology, University of Washington School of Medicine, Seattle, Washington, USA.
Department of Pathology and
Department of Anesthesiology, University of Alabama at Birmingham, Birmingham, Alabama, USA.
Department of Anesthesiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.
Department of Biostatistics,
Department of Medicine,
Department of Surgery, and
Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Xinjun Teng
- Department of Anesthesiology, University of Washington School of Medicine, Seattle, Washington, USA.
Department of Pathology and
Department of Anesthesiology, University of Alabama at Birmingham, Birmingham, Alabama, USA.
Department of Anesthesiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.
Department of Biostatistics,
Department of Medicine,
Department of Surgery, and
Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Phillip Chumley
- Department of Anesthesiology, University of Washington School of Medicine, Seattle, Washington, USA.
Department of Pathology and
Department of Anesthesiology, University of Alabama at Birmingham, Birmingham, Alabama, USA.
Department of Anesthesiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.
Department of Biostatistics,
Department of Medicine,
Department of Surgery, and
Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Jack H. Crawford
- Department of Anesthesiology, University of Washington School of Medicine, Seattle, Washington, USA.
Department of Pathology and
Department of Anesthesiology, University of Alabama at Birmingham, Birmingham, Alabama, USA.
Department of Anesthesiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.
Department of Biostatistics,
Department of Medicine,
Department of Surgery, and
Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - T. Scott Isbell
- Department of Anesthesiology, University of Washington School of Medicine, Seattle, Washington, USA.
Department of Pathology and
Department of Anesthesiology, University of Alabama at Birmingham, Birmingham, Alabama, USA.
Department of Anesthesiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.
Department of Biostatistics,
Department of Medicine,
Department of Surgery, and
Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Balu K. Chacko
- Department of Anesthesiology, University of Washington School of Medicine, Seattle, Washington, USA.
Department of Pathology and
Department of Anesthesiology, University of Alabama at Birmingham, Birmingham, Alabama, USA.
Department of Anesthesiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.
Department of Biostatistics,
Department of Medicine,
Department of Surgery, and
Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Yuliang Liu
- Department of Anesthesiology, University of Washington School of Medicine, Seattle, Washington, USA.
Department of Pathology and
Department of Anesthesiology, University of Alabama at Birmingham, Birmingham, Alabama, USA.
Department of Anesthesiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.
Department of Biostatistics,
Department of Medicine,
Department of Surgery, and
Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Nirag Jhala
- Department of Anesthesiology, University of Washington School of Medicine, Seattle, Washington, USA.
Department of Pathology and
Department of Anesthesiology, University of Alabama at Birmingham, Birmingham, Alabama, USA.
Department of Anesthesiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.
Department of Biostatistics,
Department of Medicine,
Department of Surgery, and
Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - D. Ralph Crowe
- Department of Anesthesiology, University of Washington School of Medicine, Seattle, Washington, USA.
Department of Pathology and
Department of Anesthesiology, University of Alabama at Birmingham, Birmingham, Alabama, USA.
Department of Anesthesiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.
Department of Biostatistics,
Department of Medicine,
Department of Surgery, and
Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Alvin B. Smith
- Department of Anesthesiology, University of Washington School of Medicine, Seattle, Washington, USA.
Department of Pathology and
Department of Anesthesiology, University of Alabama at Birmingham, Birmingham, Alabama, USA.
Department of Anesthesiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.
Department of Biostatistics,
Department of Medicine,
Department of Surgery, and
Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Richard C. Cross
- Department of Anesthesiology, University of Washington School of Medicine, Seattle, Washington, USA.
Department of Pathology and
Department of Anesthesiology, University of Alabama at Birmingham, Birmingham, Alabama, USA.
Department of Anesthesiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.
Department of Biostatistics,
Department of Medicine,
Department of Surgery, and
Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Luc Frenette
- Department of Anesthesiology, University of Washington School of Medicine, Seattle, Washington, USA.
Department of Pathology and
Department of Anesthesiology, University of Alabama at Birmingham, Birmingham, Alabama, USA.
Department of Anesthesiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.
Department of Biostatistics,
Department of Medicine,
Department of Surgery, and
Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Eric E. Kelley
- Department of Anesthesiology, University of Washington School of Medicine, Seattle, Washington, USA.
Department of Pathology and
Department of Anesthesiology, University of Alabama at Birmingham, Birmingham, Alabama, USA.
Department of Anesthesiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.
Department of Biostatistics,
Department of Medicine,
Department of Surgery, and
Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Diana W. Wilhite
- Department of Anesthesiology, University of Washington School of Medicine, Seattle, Washington, USA.
Department of Pathology and
Department of Anesthesiology, University of Alabama at Birmingham, Birmingham, Alabama, USA.
Department of Anesthesiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.
Department of Biostatistics,
Department of Medicine,
Department of Surgery, and
Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Cheryl R. Hall
- Department of Anesthesiology, University of Washington School of Medicine, Seattle, Washington, USA.
Department of Pathology and
Department of Anesthesiology, University of Alabama at Birmingham, Birmingham, Alabama, USA.
Department of Anesthesiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.
Department of Biostatistics,
Department of Medicine,
Department of Surgery, and
Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Grier P. Page
- Department of Anesthesiology, University of Washington School of Medicine, Seattle, Washington, USA.
Department of Pathology and
Department of Anesthesiology, University of Alabama at Birmingham, Birmingham, Alabama, USA.
Department of Anesthesiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.
Department of Biostatistics,
Department of Medicine,
Department of Surgery, and
Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Michael B. Fallon
- Department of Anesthesiology, University of Washington School of Medicine, Seattle, Washington, USA.
Department of Pathology and
Department of Anesthesiology, University of Alabama at Birmingham, Birmingham, Alabama, USA.
Department of Anesthesiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.
Department of Biostatistics,
Department of Medicine,
Department of Surgery, and
Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - J. Steven Bynon
- Department of Anesthesiology, University of Washington School of Medicine, Seattle, Washington, USA.
Department of Pathology and
Department of Anesthesiology, University of Alabama at Birmingham, Birmingham, Alabama, USA.
Department of Anesthesiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.
Department of Biostatistics,
Department of Medicine,
Department of Surgery, and
Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Devin E. Eckhoff
- Department of Anesthesiology, University of Washington School of Medicine, Seattle, Washington, USA.
Department of Pathology and
Department of Anesthesiology, University of Alabama at Birmingham, Birmingham, Alabama, USA.
Department of Anesthesiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.
Department of Biostatistics,
Department of Medicine,
Department of Surgery, and
Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Rakesh P. Patel
- Department of Anesthesiology, University of Washington School of Medicine, Seattle, Washington, USA.
Department of Pathology and
Department of Anesthesiology, University of Alabama at Birmingham, Birmingham, Alabama, USA.
Department of Anesthesiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.
Department of Biostatistics,
Department of Medicine,
Department of Surgery, and
Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
41
|
Ramalho FS, Fernandez-Monteiro I, Rosello-Catafau J, Peralta C. Hepatic microcirculatory failure. Acta Cir Bras 2007; 21 Suppl 1:48-53. [PMID: 17013514 DOI: 10.1590/s0102-86502006000700012] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Liver ischemia has been considered a frequent problem in medical practice, and can be associated to a number of surgical and clinical situations, such as massive hepatic resections, sepsis, liver trauma, circulatory shock and liver transplantation. After restoring blood flow, the liver is further subjected to an additional injury more severe than that induced by ischemia. On account of the complexity of mechanisms related to pathophysiology of ischemia and reperfusion (I/R) injury, this review deals with I/R effects on sinusoidal microcirculation, especially when steatosis is present. Alterations in hepatic microcirculation are pointed as a main factor to explain lower tolerance of fatty liver to ischemia-reperfusion insult. The employment of therapeutic strategies that interfere directly with vasoactive mediators (nitric oxide and endothelins) acting on the sinusoidal perfusion seem to be determinant for the protection of the liver parenchyma against I/R. These approaches could be very suitable to take advantage of marginal specimens as fatty livers, in which the microcirculatory disarrangements hamper its employment in liver transplantation.
Collapse
|
42
|
Koeppel TA, Mihaljevic N, Kraenzlin B, Loehr M, Jesenofsky R, Post S, Palma P. Enhanced iNOS Gene Expression in the Steatotic Rat Liver after Normothermic Ischemia. Eur Surg Res 2007; 39:303-11. [PMID: 17595544 DOI: 10.1159/000104401] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2006] [Accepted: 03/23/2007] [Indexed: 12/23/2022]
Abstract
BACKGROUND Impaired hepatic microcirculation in the steatotic liver has been identified as a considerable factor for increased vulnerability after ischemia/reperfusion (I/R). Changes in regulation and synthesis of vasoactive mediators, such as nitric oxide (NO) and endothelin (ET-1), may result in functional impairment of postischemic sinusoidal perfusion. The aim of the current study was to assess the impact of I/R injury on postischemic gene expression of NO and ET-1 in steatotic livers. MATERIALS AND METHODS Male Sprague-Dawley rats with or without hepatic steatosis (induced by carbon tetrachloride treatment) were subjected to normothermic I/R injury. Steady-state mRNA levels were assessed using RT-PCR to study the expression of genes encoding ET-1, NO synthase (endothelial cell NO synthase and inducible NO synthase, iNOS). Immunohistochemistry was performed for detection of iNOS. RESULTS I/R injury was followed by increased iNOS gene expression (RT-PCR/immunohistochemistry) in animals with hepatic steatosis, predominately in hepatocytes with fatty degeneration. A mild increase in mRNA levels for ET-1 was found in steatotic rat livers. I/R induced a further increase in ET-1 gene expression in some but not all reperfused steatotic livers. CONCLUSIONS We show an enhanced gene expression of iNOS in postischemic steatotic rat livers. Hepatocytes with fatty degeneration appear to be the major source for NO generation. Furthermore, I/R may also induce ET-1 gene expression. Dysregulation of sinusoidal perfusion by NO and ET-1 is therefore likely to contribute to I/R injury of the steatotic liver.
Collapse
Affiliation(s)
- Thomas A Koeppel
- Department of Surgery, Klinikum Mannheim gGmbH, University Hospital, Faculty of Medicine of the University of Heidelberg, Mannheim, Germany
| | | | | | | | | | | | | |
Collapse
|
43
|
Yang SL, Chen LJ, Kong Y, Xu D, Lou YJ. Sodium nitroprusside regulates mRNA expressions of LTC4 synthesis enzymes in hepatic ischemia/reperfusion injury rats via NF-kappaB signaling pathway. Pharmacology 2007; 80:11-20. [PMID: 17496435 DOI: 10.1159/000102595] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2006] [Accepted: 11/02/2006] [Indexed: 12/11/2022]
Abstract
Leukotriene (LT) C4 (LTC4) synthesis enzymes including LTC4 synthase (LTC4S), microsomal glutathione S-transferase (MGST) 2 and MGST3 can all conjugate LTA4 and reduced glutathione (GSH) to form LTC4, which is related to hepatic ischemia/reperfusion (I/R) injury. The relationship between nitric oxide (NO) and cysteinyl LTs has been shown in previous studies. However, the mechanisms of NO action on gene expression of LTC4 synthesis enzymes are still largely unclear during hepatic I/R. Adult male Sprague-Dawley rats were divided into 5 groups: a sham group (control), an I/R group, and sodium nitroprusside (SNP, 2.5, 5 and 10 microg/kg/min)+I/R groups. Livers were subjected to 60 min of partial hepatic ischemia followed by 5 h of reperfusion, saline or SNP (2.5, 5 and 10 microg/kg/min) administered intravenously. The mRNA levels of LTC4 synthesis enzymes, inducible NO synthase (iNOS) and endothelial No synthase (eNOS) in rat liver tissue were examined by RT-PCR; the protein expressions of NF-kappaB p65, p50 and IkappaBalpha in liver cell lysates and nuclear extracts were detected by Western blot analysis, and serum NO2. levels were also evaluated. Serum NO2. levels, the protein expressions of NF-kappaB p65 and p50 in the nucleus extract, and hepatic mRNA expressions of LTC4S and iNOS were decreased while hepatic mRNA of eNOS was increased in the SNP (5 and 10 microg/kg/min)+I/R groups when compared with those in the I/R group. SNP (2.5 microg/kg/min) promoted the mRNA expressions of both MGST2 and MGST3, whereas SNP (10 microg/kg/min) increased MGST2 mRNA but decreased MGST3 mRNA compared to those in I/R group. Compared with control, the mRNA expression of MGST2 and MGST3 were elevated in SNP (2.5 microg/kg/min)+I/R group, MGST3 mRNA was significantly declined in the SNP (5 and 10 microg/kg/min)+I/R groups. Immunohistochemistry staining revealed that I/R liver exhibited strong cytoplasmic and nuclear staining for NF-kappaB p65, but the livers of the SNP (2.5 microg/kg/min)+I/R group presented slight cytoplasmic and nuclear staining. But IkappaBalpha protein in all groups remains unchanged. It was concluded that SNP downregulated LTC4S mRNA expression by inhibiting NF-kappaB activation independent of IkappaBalpha, but appeared to have a dual influence on the mRNA expressions of MGST2 and MGST3 by other signaling pathways during hepatic I/R injury.
Collapse
Affiliation(s)
- Shu-Long Yang
- Institute of Pharmacology and Toxicology and Biochemical Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | | | | | | | | |
Collapse
|
44
|
Yang SL, Huang X, Chen HF, Xu D, Chen LJ, Kong Y, Lou YJ. Increased leukotriene c4 synthesis accompanied enhanced leukotriene c4 synthase expression and activities of ischemia-reperfusion-injured liver in rats. J Surg Res 2007; 140:36-44. [PMID: 17397868 DOI: 10.1016/j.jss.2006.11.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2006] [Revised: 10/06/2006] [Accepted: 11/06/2006] [Indexed: 11/19/2022]
Abstract
BACKGROUND Hepatic ischemia-reperfusion (I/R) injury is an important clinical issue and relates to cysteinyl leukotrienes (LTs), the first committed synthesis step of which is that LTC4 synthesis enzymes including leukotriene C4 synthase (LTC4S), microsomal glutathione-S-transferase (mGST)2, and mGST3-catalyzed LTA4 and reduced glutathione (GSH), to generate LTC4. However, the mechanisms of LTC4 generation during hepatic I/R are far from being elucidated. MATERIALS AND METHODS Adult male Sprague Dawley rats were divided into two groups: sham group (control) and I/R group. Liver was subjected to 60 min of partial hepatic ischemia followed by 5 h of reperfusion; saline was administered intravenously. LTC4 content, the activities, and expressions of LTC4 synthesis enzymes were examined with reversed phase high-performance liquid chromatography, reverse transcriptase-polymerase chain reaction, immunoblot, and immunohistochemistry, respectively. Liver damage was assessed by serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) measurements and histological observation. The superoxide dismutase (SOD) activity and malondialdehyde (MDA) level in liver tissue were used to evaluate lipid peroxidation, and oxidative stress was estimated by the reduced GSH level in liver tissue in the pathological process. RESULTS Compared with control, LTC4 content, the LTC4 synthesis enzymes' activities, and the mRNA and protein expressions of LTC4S were significantly increased, while the mRNA expressions of mGST2 and mGST3 were declined obviously in rat liver during I/R (P < 0.05); most hepatocytes and sinusoidal endothelial cells expressed intensively LTC4S in an I/R-sensitive manner. This was accompanied by the increase in serum ALT and AST levels together with liver tissue MDA content (P < 0.05), the decrease in liver tissue GSH level, and SOD activity (P < 0.05), as well as histological damage. There were no differences in the protein expression of mGST3 between control and I/R groups. CONCLUSIONS These results demonstrated that hepatic I/R injury up-regulated the mRNA and protein expressions of LTC4S in hepatocytes and sinusoidal endothelial cells and enhanced the activities of the LTC4 synthesis enzymes. It suggests that LTC4 accumulation after hepatic I/R can be caused partially by LTC4S expression up-regulation and the LTC4 synthesis enzymes' activities augment to which LTC4S rather than mGST2 or mGST3 may mainly contribute.
Collapse
Affiliation(s)
- Shu-Long Yang
- Institute of Pharmacology--Toxicology and Biochemical Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | | | | | | | | | | | | |
Collapse
|
45
|
Huang HC, Wang SS, Chan CY, Chen YC, Lee FY, Chang FY, Chu CJ, Lin HC, Lu RH, Lee SD. Role of hepatic nitric oxide synthases in rats with thioacetamide-induced acute liver failure and encephalopathy. J Chin Med Assoc 2007; 70:16-23. [PMID: 17276928 DOI: 10.1016/s1726-4901(09)70295-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Hepatic encephalopathy is neuropsychiatric derangement secondary to hepatic decompensation or portal-systemic shunting. Nitric oxide (NO) synthase inhibition aggravates encephalopathy and increases mortality in rats with thioacetamide (TAA)-induced acute liver failure, suggesting a protective role of NO. This study investigated the roles of endothelium-derived constitutive NO synthase (eNOS) and inducible NOS (iNOS) in the liver of rats with fulminant hepatic failure and encephalopathy. METHODS Male Sprague-Dawley rats (300-350 g) were randomized to receive TAA 350 mg/kg/day, by intraperitoneal injection or normal saline for 3 days. Severity of encephalopathy was assessed with the Opto-Varimex animal activity meter. Plasma levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase, and bilirubin were measured. Hepatic iNOS and eNOS RNA and protein expressions were assessed by reverse transcription-polymerase chain reaction and Western blot analyses, respectively. RESULTS The TAA group showed lower motor activity counts than the normal saline group. Hepatic eNOS, but not iNOS, mRNA and protein expressions were enhanced in the TAA group. In addition, hepatic eNOS mRNA expression was negatively correlated with total movement but positively correlated with ALT and AST. Protein expression of hepatic eNOS was positively correlated with ALT, AST and bilirubin. CONCLUSION Upregulation of hepatic eNOS was observed in rats with TAA-induced fulminant hepatic failure and encephalopathy, which might play a regulatory role.
Collapse
Affiliation(s)
- Hui-Chun Huang
- Division of Gastroenterology, Department of Medicine, Taipei Veterans General Hospital, and National Yang-Ming University School of Medicine, Taipei, Taiwan, R.O.C
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Abstract
The discovery that mammalian cells have the ability to synthesize the free radical nitric oxide (NO) has stimulated an extraordinary impetus for scientific research in all the fields of biology and medicine. Since its early description as an endothelial-derived relaxing factor, NO has emerged as a fundamental signaling device regulating virtually every critical cellular function, as well as a potent mediator of cellular damage in a wide range of conditions. Recent evidence indicates that most of the cytotoxicity attributed to NO is rather due to peroxynitrite, produced from the diffusion-controlled reaction between NO and another free radical, the superoxide anion. Peroxynitrite interacts with lipids, DNA, and proteins via direct oxidative reactions or via indirect, radical-mediated mechanisms. These reactions trigger cellular responses ranging from subtle modulations of cell signaling to overwhelming oxidative injury, committing cells to necrosis or apoptosis. In vivo, peroxynitrite generation represents a crucial pathogenic mechanism in conditions such as stroke, myocardial infarction, chronic heart failure, diabetes, circulatory shock, chronic inflammatory diseases, cancer, and neurodegenerative disorders. Hence, novel pharmacological strategies aimed at removing peroxynitrite might represent powerful therapeutic tools in the future. Evidence supporting these novel roles of NO and peroxynitrite is presented in detail in this review.
Collapse
Affiliation(s)
- Pál Pacher
- Section on Oxidative Stress Tissue Injury, Laboratory of Physiologic Studies, National Institutes of Health, National Institute of Alcohol Abuse and Alcoholism, Bethesda, Maryland, USA.
| | | | | |
Collapse
|
47
|
Yang SL, Lou YJ. Sodium nitroprusside decreased leukotriene C4 generation by inhibiting leukotriene C4 synthase expression and activity in hepatic ischemia-reperfusion injured rats. Biochem Pharmacol 2006; 73:724-35. [PMID: 17194456 DOI: 10.1016/j.bcp.2006.11.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2006] [Revised: 11/01/2006] [Accepted: 11/13/2006] [Indexed: 12/13/2022]
Abstract
The effects of NO on LTC4 generation during hepatic ischemia-reperfusion (I/R) are largely unclear. Sprague-Dawley rats were divided into control, I/R and sodium nitroprusside (SNP, 2.5, 5 and 10 microg/kg/min)+I/R groups. Liver was subjected to I/R injury, saline or SNP administered intravenously. The protein expressions of LTC4 synthesis enzymes including LTC4 synthase (LTC4S), microsomal glutathione-S-transferase (mGST)2 and mGST3 were detected with immunoblotting, the LTC4 synthesis enzymes' activities and LTC4 content were measured by RP-HPLC, the mRNA expressions of inducible nitric oxide synthase (iNOS) and endogenous nitric oxide synthase (eNOS) in liver were measured by RT-PCR. Tissue injuries were assessed by serum ALT and AST and histological changes. Serum NO(2)(-) and liver tissue GSH were also examined. Compared with I/R group, SNP markedly decreased LTC4 content, LTC4S protein and iNOS mRNA levels, and the LTC4 synthesis enzymes' activities (P<0.05), but significantly enhanced eNOS mRNA expression in liver (P<0.05). The decline in serum ALT, AST and NO(2)(-) levels (P<0.05) together with hepatic GSH elevation (P<0.05) in SNP+I/R groups were also observed. LTC4S expression in hepatocytes and sinusoidal endothelial cells in SNP+I/R groups was lower than that in I/R group. But no significant differences in the protein expressions of mGST3 and mGST2 existed between control, I/R and SNP+I/R groups (P>0.05). These results demonstrated that the decline in LTC4 production by SNP treatment during hepatic I/R could be partially resulted from SNP down-regulating the protein expression of LTC4S rather than mGST2 or mGST3 and its inhibiting the LTC4 synthesis enzymes' activities.
Collapse
Affiliation(s)
- Shu-Long Yang
- Institute of Pharmacology-Toxicology and Biochemical Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | | |
Collapse
|
48
|
Elrod JW, Duranski MR, Langston W, Greer JJM, Tao L, Dugas TR, Kevil CG, Champion HC, Lefer DJ. eNOS gene therapy exacerbates hepatic ischemia-reperfusion injury in diabetes: a role for eNOS uncoupling. Circ Res 2006; 99:78-85. [PMID: 16763164 DOI: 10.1161/01.res.0000231306.03510.77] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Previous studies indicate that endothelial nitric oxide synthase (eNOS) function is impaired in diabetes as a result of increased vascular generation of reactive oxygen species. We hypothesized that eNOS gene therapy would augment NO. bioavailability and protect against hepatic ischemia-reperfusion (I-R) injury in type 2 diabetes mellitus. We developed a transgenic (Tg) diabetic mouse in which eNOS is systemically overexpressed. We also examined the effects of hepatic eNOS adenovirus therapy in diabetic mice. Diabetic (db/db) and nondiabetic mice were subjected to hepatic I-R injury. In nondiabetic mice, genetic overexpression of eNOS (both eNOS-Tg and eNOS adenovirus) resulted in hepatoprotection. In contrast, hepatic I-R injury was significantly increased in the db/db eNOS-Tg mouse, as serum alanine aminotransaminase (ALT) levels were increased by 3.3-fold compared with diabetic controls. Similarly, eNOS adenovirus treatment resulted in a 3.2-fold increase in serum ALT levels as compared with diabetic controls. We determined that hepatic eNOS was dysfunctional in the db/db mouse and increased genetic expression of eNOS resulted in greater production of peroxynitrite. Treatment with the eNOS cofactor tetrahydrobiopterin (BH4) or the BH4 precursor sepiapterin resulted in a significant decrease in serum ALT levels following I-R injury. We present clear examples of the protective and injurious nature of NO. therapy in I-R. Our data indicate that eNOS exists in an "uncoupled" state in the setting of diabetes and that "recoupling" of the eNOS enzyme with cofactor therapy is beneficial.
Collapse
Affiliation(s)
- John W Elrod
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Donahower B, McCullough SS, Kurten R, Lamps LW, Simpson P, Hinson JA, James LP. Vascular endothelial growth factor and hepatocyte regeneration in acetaminophen toxicity. Am J Physiol Gastrointest Liver Physiol 2006; 291:G102-9. [PMID: 16565415 DOI: 10.1152/ajpgi.00575.2005] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
VEGF or VEGF-A is a major regulator of angiogenesis and has been recently shown to be important in organ repair. The potential role of VEGF in acetaminophen (APAP)-induced hepatotoxicity and recovery was investigated in B6C3F1 male mice. Mice were treated with APAP (300 mg/kg ip) and killed at various time points that reflect both the acute and recovery stages of toxicity. VEGF-A protein levels were increased 7-fold at 8 h and followed the development of hepatotoxicity. VEGF receptor 1, 2, and 3 (VEGFR1, VEGFR2, and VEGFR3, respectively) expression increased throughout the time course, with maximal expression at 48, 8, and 72 h, respectively. Treatment with the VEGF receptor inhibitor SU5416 (25 mg/kg ip at 3 h) had no effect on toxicity at 6 or 24 h. In further studies, the role of SU5416 on the late stages of toxicity was examined. Treatment of mice with APAP and SU5416 (25 mg/kg ip at 3 h) resulted in decreased expression of PCNA, a marker of cellular proliferation. Expression of platelet endothelial cell adhesion molecule, a measure of small vessel density, and endothelial nitric oxide synthase (NOS), a downstream target of VEGFR2, were increased at 48 and 72 h following toxic doses of APAP, and treatment with SU5416 decreased their expression. These data indicate that endogenous VEGF is critically important to the process of hepatocyte regeneration in APAP-induced hepatotoxicity in the mouse.
Collapse
Affiliation(s)
- Brian Donahower
- Department of Pharmacology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | | | | | | | | | | | | |
Collapse
|
50
|
Kaminski A, Kasch C, Zhang L, Kumar S, Sponholz C, Choi YH, Ma N, Liebold A, Ladilov Y, Steinhoff G, Stamm C. Endothelial nitric oxide synthase mediates protective effects of hypoxic preconditioning in lungs. Respir Physiol Neurobiol 2006; 155:280-5. [PMID: 16916627 DOI: 10.1016/j.resp.2006.06.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2005] [Revised: 06/16/2006] [Accepted: 06/19/2006] [Indexed: 02/01/2023]
Abstract
To elucidate the protective mechanism of whole-body hypoxic preconditioning (WHPC) on pulmonary ischemia-reperfusion injury focussing on nitric oxide synthases (NOS), mice were placed in a hypoxic chamber (FIO(2)=0.1) for 4h followed by 12h of normoxia. Then, pulmonary ischemia for 1h followed by 5h of reperfusion was performed by clamping the left hilum in vivo (I/R). WHPC protected WT mice from pulmonary leukocyte infiltration as assessed by myeloperoxidase (MPO) activity, associated with a mild further increase in endothelial permeability (Evans Blue extravasation). When all NOS isoforms were inhibited during WHPC by L-NAME, mortality and MPO activity after I/R markedly increased. To determine the responsible NOS isoform, quantitative RT-PCR was performed for eNOS and iNOS mRNA, showing that only eNOS was upregulated in response to WHPC. While eNOS total protein expression remained unchanged, the amount of phosphorylated eNOS also increased. The WHPC/IR experiments were then repeated with eNOS knockout mice. Here, we found that the protective effect of WHPC on pulmonary leukocyte sequestration was abrogated, and endothelial leakage was further exacerbated. We conclude that WHPC limits neutrophil sequestration via an eNOS-dependent mechanism, and that eNOS helps preserve endothelial permeability during hypoxia and I/R.
Collapse
Affiliation(s)
- A Kaminski
- Department of Cardiac Surgery, University of Rostock, Schillingallee 35, 18055 Rostock, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|